1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #ifdef CONFIG_BLOCK
13 #include <linux/bio.h>
14 #endif /* CONFIG_BLOCK */
15 #include <linux/dns_resolver.h>
16 #include <net/tcp.h>
17
18 #include <linux/ceph/ceph_features.h>
19 #include <linux/ceph/libceph.h>
20 #include <linux/ceph/messenger.h>
21 #include <linux/ceph/decode.h>
22 #include <linux/ceph/pagelist.h>
23 #include <linux/export.h>
24
25 #define list_entry_next(pos, member) \
26 list_entry(pos->member.next, typeof(*pos), member)
27
28 /*
29 * Ceph uses the messenger to exchange ceph_msg messages with other
30 * hosts in the system. The messenger provides ordered and reliable
31 * delivery. We tolerate TCP disconnects by reconnecting (with
32 * exponential backoff) in the case of a fault (disconnection, bad
33 * crc, protocol error). Acks allow sent messages to be discarded by
34 * the sender.
35 */
36
37 /*
38 * We track the state of the socket on a given connection using
39 * values defined below. The transition to a new socket state is
40 * handled by a function which verifies we aren't coming from an
41 * unexpected state.
42 *
43 * --------
44 * | NEW* | transient initial state
45 * --------
46 * | con_sock_state_init()
47 * v
48 * ----------
49 * | CLOSED | initialized, but no socket (and no
50 * ---------- TCP connection)
51 * ^ \
52 * | \ con_sock_state_connecting()
53 * | ----------------------
54 * | \
55 * + con_sock_state_closed() \
56 * |+--------------------------- \
57 * | \ \ \
58 * | ----------- \ \
59 * | | CLOSING | socket event; \ \
60 * | ----------- await close \ \
61 * | ^ \ |
62 * | | \ |
63 * | + con_sock_state_closing() \ |
64 * | / \ | |
65 * | / --------------- | |
66 * | / \ v v
67 * | / --------------
68 * | / -----------------| CONNECTING | socket created, TCP
69 * | | / -------------- connect initiated
70 * | | | con_sock_state_connected()
71 * | | v
72 * -------------
73 * | CONNECTED | TCP connection established
74 * -------------
75 *
76 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
77 */
78
79 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
84
85 /*
86 * connection states
87 */
88 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
89 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
90 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
91 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
92 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
93 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
94
95 /*
96 * ceph_connection flag bits
97 */
98 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
99 * messages on errors */
100 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
101 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
102 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
103 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
104
con_flag_valid(unsigned long con_flag)105 static bool con_flag_valid(unsigned long con_flag)
106 {
107 switch (con_flag) {
108 case CON_FLAG_LOSSYTX:
109 case CON_FLAG_KEEPALIVE_PENDING:
110 case CON_FLAG_WRITE_PENDING:
111 case CON_FLAG_SOCK_CLOSED:
112 case CON_FLAG_BACKOFF:
113 return true;
114 default:
115 return false;
116 }
117 }
118
con_flag_clear(struct ceph_connection * con,unsigned long con_flag)119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
120 {
121 BUG_ON(!con_flag_valid(con_flag));
122
123 clear_bit(con_flag, &con->flags);
124 }
125
con_flag_set(struct ceph_connection * con,unsigned long con_flag)126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
127 {
128 BUG_ON(!con_flag_valid(con_flag));
129
130 set_bit(con_flag, &con->flags);
131 }
132
con_flag_test(struct ceph_connection * con,unsigned long con_flag)133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
134 {
135 BUG_ON(!con_flag_valid(con_flag));
136
137 return test_bit(con_flag, &con->flags);
138 }
139
con_flag_test_and_clear(struct ceph_connection * con,unsigned long con_flag)140 static bool con_flag_test_and_clear(struct ceph_connection *con,
141 unsigned long con_flag)
142 {
143 BUG_ON(!con_flag_valid(con_flag));
144
145 return test_and_clear_bit(con_flag, &con->flags);
146 }
147
con_flag_test_and_set(struct ceph_connection * con,unsigned long con_flag)148 static bool con_flag_test_and_set(struct ceph_connection *con,
149 unsigned long con_flag)
150 {
151 BUG_ON(!con_flag_valid(con_flag));
152
153 return test_and_set_bit(con_flag, &con->flags);
154 }
155
156 /* Slab caches for frequently-allocated structures */
157
158 static struct kmem_cache *ceph_msg_cache;
159 static struct kmem_cache *ceph_msg_data_cache;
160
161 /* static tag bytes (protocol control messages) */
162 static char tag_msg = CEPH_MSGR_TAG_MSG;
163 static char tag_ack = CEPH_MSGR_TAG_ACK;
164 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
165
166 #ifdef CONFIG_LOCKDEP
167 static struct lock_class_key socket_class;
168 #endif
169
170 /*
171 * When skipping (ignoring) a block of input we read it into a "skip
172 * buffer," which is this many bytes in size.
173 */
174 #define SKIP_BUF_SIZE 1024
175
176 static void queue_con(struct ceph_connection *con);
177 static void cancel_con(struct ceph_connection *con);
178 static void con_work(struct work_struct *);
179 static void con_fault(struct ceph_connection *con);
180
181 /*
182 * Nicely render a sockaddr as a string. An array of formatted
183 * strings is used, to approximate reentrancy.
184 */
185 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
186 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
187 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
188 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
189
190 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
191 static atomic_t addr_str_seq = ATOMIC_INIT(0);
192
193 static struct page *zero_page; /* used in certain error cases */
194
ceph_pr_addr(const struct sockaddr_storage * ss)195 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
196 {
197 int i;
198 char *s;
199 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
200 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
201
202 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
203 s = addr_str[i];
204
205 switch (ss->ss_family) {
206 case AF_INET:
207 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
208 ntohs(in4->sin_port));
209 break;
210
211 case AF_INET6:
212 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
213 ntohs(in6->sin6_port));
214 break;
215
216 default:
217 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
218 ss->ss_family);
219 }
220
221 return s;
222 }
223 EXPORT_SYMBOL(ceph_pr_addr);
224
encode_my_addr(struct ceph_messenger * msgr)225 static void encode_my_addr(struct ceph_messenger *msgr)
226 {
227 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
228 ceph_encode_addr(&msgr->my_enc_addr);
229 }
230
231 /*
232 * work queue for all reading and writing to/from the socket.
233 */
234 static struct workqueue_struct *ceph_msgr_wq;
235
ceph_msgr_slab_init(void)236 static int ceph_msgr_slab_init(void)
237 {
238 BUG_ON(ceph_msg_cache);
239 ceph_msg_cache = kmem_cache_create("ceph_msg",
240 sizeof (struct ceph_msg),
241 __alignof__(struct ceph_msg), 0, NULL);
242
243 if (!ceph_msg_cache)
244 return -ENOMEM;
245
246 BUG_ON(ceph_msg_data_cache);
247 ceph_msg_data_cache = kmem_cache_create("ceph_msg_data",
248 sizeof (struct ceph_msg_data),
249 __alignof__(struct ceph_msg_data),
250 0, NULL);
251 if (ceph_msg_data_cache)
252 return 0;
253
254 kmem_cache_destroy(ceph_msg_cache);
255 ceph_msg_cache = NULL;
256
257 return -ENOMEM;
258 }
259
ceph_msgr_slab_exit(void)260 static void ceph_msgr_slab_exit(void)
261 {
262 BUG_ON(!ceph_msg_data_cache);
263 kmem_cache_destroy(ceph_msg_data_cache);
264 ceph_msg_data_cache = NULL;
265
266 BUG_ON(!ceph_msg_cache);
267 kmem_cache_destroy(ceph_msg_cache);
268 ceph_msg_cache = NULL;
269 }
270
_ceph_msgr_exit(void)271 static void _ceph_msgr_exit(void)
272 {
273 if (ceph_msgr_wq) {
274 destroy_workqueue(ceph_msgr_wq);
275 ceph_msgr_wq = NULL;
276 }
277
278 ceph_msgr_slab_exit();
279
280 BUG_ON(zero_page == NULL);
281 kunmap(zero_page);
282 page_cache_release(zero_page);
283 zero_page = NULL;
284 }
285
ceph_msgr_init(void)286 int ceph_msgr_init(void)
287 {
288 BUG_ON(zero_page != NULL);
289 zero_page = ZERO_PAGE(0);
290 page_cache_get(zero_page);
291
292 if (ceph_msgr_slab_init())
293 return -ENOMEM;
294
295 /*
296 * The number of active work items is limited by the number of
297 * connections, so leave @max_active at default.
298 */
299 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
300 if (ceph_msgr_wq)
301 return 0;
302
303 pr_err("msgr_init failed to create workqueue\n");
304 _ceph_msgr_exit();
305
306 return -ENOMEM;
307 }
308 EXPORT_SYMBOL(ceph_msgr_init);
309
ceph_msgr_exit(void)310 void ceph_msgr_exit(void)
311 {
312 BUG_ON(ceph_msgr_wq == NULL);
313
314 _ceph_msgr_exit();
315 }
316 EXPORT_SYMBOL(ceph_msgr_exit);
317
ceph_msgr_flush(void)318 void ceph_msgr_flush(void)
319 {
320 flush_workqueue(ceph_msgr_wq);
321 }
322 EXPORT_SYMBOL(ceph_msgr_flush);
323
324 /* Connection socket state transition functions */
325
con_sock_state_init(struct ceph_connection * con)326 static void con_sock_state_init(struct ceph_connection *con)
327 {
328 int old_state;
329
330 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
331 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
332 printk("%s: unexpected old state %d\n", __func__, old_state);
333 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
334 CON_SOCK_STATE_CLOSED);
335 }
336
con_sock_state_connecting(struct ceph_connection * con)337 static void con_sock_state_connecting(struct ceph_connection *con)
338 {
339 int old_state;
340
341 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
342 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
343 printk("%s: unexpected old state %d\n", __func__, old_state);
344 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
345 CON_SOCK_STATE_CONNECTING);
346 }
347
con_sock_state_connected(struct ceph_connection * con)348 static void con_sock_state_connected(struct ceph_connection *con)
349 {
350 int old_state;
351
352 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
353 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
354 printk("%s: unexpected old state %d\n", __func__, old_state);
355 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
356 CON_SOCK_STATE_CONNECTED);
357 }
358
con_sock_state_closing(struct ceph_connection * con)359 static void con_sock_state_closing(struct ceph_connection *con)
360 {
361 int old_state;
362
363 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
364 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
365 old_state != CON_SOCK_STATE_CONNECTED &&
366 old_state != CON_SOCK_STATE_CLOSING))
367 printk("%s: unexpected old state %d\n", __func__, old_state);
368 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
369 CON_SOCK_STATE_CLOSING);
370 }
371
con_sock_state_closed(struct ceph_connection * con)372 static void con_sock_state_closed(struct ceph_connection *con)
373 {
374 int old_state;
375
376 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
377 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
378 old_state != CON_SOCK_STATE_CLOSING &&
379 old_state != CON_SOCK_STATE_CONNECTING &&
380 old_state != CON_SOCK_STATE_CLOSED))
381 printk("%s: unexpected old state %d\n", __func__, old_state);
382 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
383 CON_SOCK_STATE_CLOSED);
384 }
385
386 /*
387 * socket callback functions
388 */
389
390 /* data available on socket, or listen socket received a connect */
ceph_sock_data_ready(struct sock * sk)391 static void ceph_sock_data_ready(struct sock *sk)
392 {
393 struct ceph_connection *con = sk->sk_user_data;
394 if (atomic_read(&con->msgr->stopping)) {
395 return;
396 }
397
398 if (sk->sk_state != TCP_CLOSE_WAIT) {
399 dout("%s on %p state = %lu, queueing work\n", __func__,
400 con, con->state);
401 queue_con(con);
402 }
403 }
404
405 /* socket has buffer space for writing */
ceph_sock_write_space(struct sock * sk)406 static void ceph_sock_write_space(struct sock *sk)
407 {
408 struct ceph_connection *con = sk->sk_user_data;
409
410 /* only queue to workqueue if there is data we want to write,
411 * and there is sufficient space in the socket buffer to accept
412 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
413 * doesn't get called again until try_write() fills the socket
414 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
415 * and net/core/stream.c:sk_stream_write_space().
416 */
417 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
418 if (sk_stream_is_writeable(sk)) {
419 dout("%s %p queueing write work\n", __func__, con);
420 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
421 queue_con(con);
422 }
423 } else {
424 dout("%s %p nothing to write\n", __func__, con);
425 }
426 }
427
428 /* socket's state has changed */
ceph_sock_state_change(struct sock * sk)429 static void ceph_sock_state_change(struct sock *sk)
430 {
431 struct ceph_connection *con = sk->sk_user_data;
432
433 dout("%s %p state = %lu sk_state = %u\n", __func__,
434 con, con->state, sk->sk_state);
435
436 switch (sk->sk_state) {
437 case TCP_CLOSE:
438 dout("%s TCP_CLOSE\n", __func__);
439 case TCP_CLOSE_WAIT:
440 dout("%s TCP_CLOSE_WAIT\n", __func__);
441 con_sock_state_closing(con);
442 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
443 queue_con(con);
444 break;
445 case TCP_ESTABLISHED:
446 dout("%s TCP_ESTABLISHED\n", __func__);
447 con_sock_state_connected(con);
448 queue_con(con);
449 break;
450 default: /* Everything else is uninteresting */
451 break;
452 }
453 }
454
455 /*
456 * set up socket callbacks
457 */
set_sock_callbacks(struct socket * sock,struct ceph_connection * con)458 static void set_sock_callbacks(struct socket *sock,
459 struct ceph_connection *con)
460 {
461 struct sock *sk = sock->sk;
462 sk->sk_user_data = con;
463 sk->sk_data_ready = ceph_sock_data_ready;
464 sk->sk_write_space = ceph_sock_write_space;
465 sk->sk_state_change = ceph_sock_state_change;
466 }
467
468
469 /*
470 * socket helpers
471 */
472
473 /*
474 * initiate connection to a remote socket.
475 */
ceph_tcp_connect(struct ceph_connection * con)476 static int ceph_tcp_connect(struct ceph_connection *con)
477 {
478 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
479 struct socket *sock;
480 int ret;
481
482 BUG_ON(con->sock);
483 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
484 IPPROTO_TCP, &sock);
485 if (ret)
486 return ret;
487 sock->sk->sk_allocation = GFP_NOFS;
488
489 #ifdef CONFIG_LOCKDEP
490 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
491 #endif
492
493 set_sock_callbacks(sock, con);
494
495 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
496
497 con_sock_state_connecting(con);
498 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
499 O_NONBLOCK);
500 if (ret == -EINPROGRESS) {
501 dout("connect %s EINPROGRESS sk_state = %u\n",
502 ceph_pr_addr(&con->peer_addr.in_addr),
503 sock->sk->sk_state);
504 } else if (ret < 0) {
505 pr_err("connect %s error %d\n",
506 ceph_pr_addr(&con->peer_addr.in_addr), ret);
507 sock_release(sock);
508 return ret;
509 }
510
511 if (con->msgr->tcp_nodelay) {
512 int optval = 1;
513
514 ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
515 (char *)&optval, sizeof(optval));
516 if (ret)
517 pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
518 ret);
519 }
520
521 con->sock = sock;
522 return 0;
523 }
524
ceph_tcp_recvmsg(struct socket * sock,void * buf,size_t len)525 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
526 {
527 struct kvec iov = {buf, len};
528 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
529 int r;
530
531 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
532 if (r == -EAGAIN)
533 r = 0;
534 return r;
535 }
536
ceph_tcp_recvpage(struct socket * sock,struct page * page,int page_offset,size_t length)537 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
538 int page_offset, size_t length)
539 {
540 void *kaddr;
541 int ret;
542
543 BUG_ON(page_offset + length > PAGE_SIZE);
544
545 kaddr = kmap(page);
546 BUG_ON(!kaddr);
547 ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
548 kunmap(page);
549
550 return ret;
551 }
552
553 /*
554 * write something. @more is true if caller will be sending more data
555 * shortly.
556 */
ceph_tcp_sendmsg(struct socket * sock,struct kvec * iov,size_t kvlen,size_t len,int more)557 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
558 size_t kvlen, size_t len, int more)
559 {
560 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
561 int r;
562
563 if (more)
564 msg.msg_flags |= MSG_MORE;
565 else
566 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
567
568 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
569 if (r == -EAGAIN)
570 r = 0;
571 return r;
572 }
573
__ceph_tcp_sendpage(struct socket * sock,struct page * page,int offset,size_t size,bool more)574 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
575 int offset, size_t size, bool more)
576 {
577 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
578 int ret;
579
580 ret = kernel_sendpage(sock, page, offset, size, flags);
581 if (ret == -EAGAIN)
582 ret = 0;
583
584 return ret;
585 }
586
ceph_tcp_sendpage(struct socket * sock,struct page * page,int offset,size_t size,bool more)587 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
588 int offset, size_t size, bool more)
589 {
590 int ret;
591 struct kvec iov;
592
593 /* sendpage cannot properly handle pages with page_count == 0,
594 * we need to fallback to sendmsg if that's the case */
595 if (page_count(page) >= 1)
596 return __ceph_tcp_sendpage(sock, page, offset, size, more);
597
598 iov.iov_base = kmap(page) + offset;
599 iov.iov_len = size;
600 ret = ceph_tcp_sendmsg(sock, &iov, 1, size, more);
601 kunmap(page);
602
603 return ret;
604 }
605
606 /*
607 * Shutdown/close the socket for the given connection.
608 */
con_close_socket(struct ceph_connection * con)609 static int con_close_socket(struct ceph_connection *con)
610 {
611 int rc = 0;
612
613 dout("con_close_socket on %p sock %p\n", con, con->sock);
614 if (con->sock) {
615 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
616 sock_release(con->sock);
617 con->sock = NULL;
618 }
619
620 /*
621 * Forcibly clear the SOCK_CLOSED flag. It gets set
622 * independent of the connection mutex, and we could have
623 * received a socket close event before we had the chance to
624 * shut the socket down.
625 */
626 con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
627
628 con_sock_state_closed(con);
629 return rc;
630 }
631
632 /*
633 * Reset a connection. Discard all incoming and outgoing messages
634 * and clear *_seq state.
635 */
ceph_msg_remove(struct ceph_msg * msg)636 static void ceph_msg_remove(struct ceph_msg *msg)
637 {
638 list_del_init(&msg->list_head);
639 BUG_ON(msg->con == NULL);
640 msg->con->ops->put(msg->con);
641 msg->con = NULL;
642
643 ceph_msg_put(msg);
644 }
ceph_msg_remove_list(struct list_head * head)645 static void ceph_msg_remove_list(struct list_head *head)
646 {
647 while (!list_empty(head)) {
648 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
649 list_head);
650 ceph_msg_remove(msg);
651 }
652 }
653
reset_connection(struct ceph_connection * con)654 static void reset_connection(struct ceph_connection *con)
655 {
656 /* reset connection, out_queue, msg_ and connect_seq */
657 /* discard existing out_queue and msg_seq */
658 dout("reset_connection %p\n", con);
659 ceph_msg_remove_list(&con->out_queue);
660 ceph_msg_remove_list(&con->out_sent);
661
662 if (con->in_msg) {
663 BUG_ON(con->in_msg->con != con);
664 con->in_msg->con = NULL;
665 ceph_msg_put(con->in_msg);
666 con->in_msg = NULL;
667 con->ops->put(con);
668 }
669
670 con->connect_seq = 0;
671 con->out_seq = 0;
672 if (con->out_msg) {
673 ceph_msg_put(con->out_msg);
674 con->out_msg = NULL;
675 }
676 con->in_seq = 0;
677 con->in_seq_acked = 0;
678
679 con->out_skip = 0;
680 }
681
682 /*
683 * mark a peer down. drop any open connections.
684 */
ceph_con_close(struct ceph_connection * con)685 void ceph_con_close(struct ceph_connection *con)
686 {
687 mutex_lock(&con->mutex);
688 dout("con_close %p peer %s\n", con,
689 ceph_pr_addr(&con->peer_addr.in_addr));
690 con->state = CON_STATE_CLOSED;
691
692 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */
693 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
694 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
695 con_flag_clear(con, CON_FLAG_BACKOFF);
696
697 reset_connection(con);
698 con->peer_global_seq = 0;
699 cancel_con(con);
700 con_close_socket(con);
701 mutex_unlock(&con->mutex);
702 }
703 EXPORT_SYMBOL(ceph_con_close);
704
705 /*
706 * Reopen a closed connection, with a new peer address.
707 */
ceph_con_open(struct ceph_connection * con,__u8 entity_type,__u64 entity_num,struct ceph_entity_addr * addr)708 void ceph_con_open(struct ceph_connection *con,
709 __u8 entity_type, __u64 entity_num,
710 struct ceph_entity_addr *addr)
711 {
712 mutex_lock(&con->mutex);
713 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
714
715 WARN_ON(con->state != CON_STATE_CLOSED);
716 con->state = CON_STATE_PREOPEN;
717
718 con->peer_name.type = (__u8) entity_type;
719 con->peer_name.num = cpu_to_le64(entity_num);
720
721 memcpy(&con->peer_addr, addr, sizeof(*addr));
722 con->delay = 0; /* reset backoff memory */
723 mutex_unlock(&con->mutex);
724 queue_con(con);
725 }
726 EXPORT_SYMBOL(ceph_con_open);
727
728 /*
729 * return true if this connection ever successfully opened
730 */
ceph_con_opened(struct ceph_connection * con)731 bool ceph_con_opened(struct ceph_connection *con)
732 {
733 return con->connect_seq > 0;
734 }
735
736 /*
737 * initialize a new connection.
738 */
ceph_con_init(struct ceph_connection * con,void * private,const struct ceph_connection_operations * ops,struct ceph_messenger * msgr)739 void ceph_con_init(struct ceph_connection *con, void *private,
740 const struct ceph_connection_operations *ops,
741 struct ceph_messenger *msgr)
742 {
743 dout("con_init %p\n", con);
744 memset(con, 0, sizeof(*con));
745 con->private = private;
746 con->ops = ops;
747 con->msgr = msgr;
748
749 con_sock_state_init(con);
750
751 mutex_init(&con->mutex);
752 INIT_LIST_HEAD(&con->out_queue);
753 INIT_LIST_HEAD(&con->out_sent);
754 INIT_DELAYED_WORK(&con->work, con_work);
755
756 con->state = CON_STATE_CLOSED;
757 }
758 EXPORT_SYMBOL(ceph_con_init);
759
760
761 /*
762 * We maintain a global counter to order connection attempts. Get
763 * a unique seq greater than @gt.
764 */
get_global_seq(struct ceph_messenger * msgr,u32 gt)765 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
766 {
767 u32 ret;
768
769 spin_lock(&msgr->global_seq_lock);
770 if (msgr->global_seq < gt)
771 msgr->global_seq = gt;
772 ret = ++msgr->global_seq;
773 spin_unlock(&msgr->global_seq_lock);
774 return ret;
775 }
776
con_out_kvec_reset(struct ceph_connection * con)777 static void con_out_kvec_reset(struct ceph_connection *con)
778 {
779 BUG_ON(con->out_skip);
780
781 con->out_kvec_left = 0;
782 con->out_kvec_bytes = 0;
783 con->out_kvec_cur = &con->out_kvec[0];
784 }
785
con_out_kvec_add(struct ceph_connection * con,size_t size,void * data)786 static void con_out_kvec_add(struct ceph_connection *con,
787 size_t size, void *data)
788 {
789 int index = con->out_kvec_left;
790
791 BUG_ON(con->out_skip);
792 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
793
794 con->out_kvec[index].iov_len = size;
795 con->out_kvec[index].iov_base = data;
796 con->out_kvec_left++;
797 con->out_kvec_bytes += size;
798 }
799
800 /*
801 * Chop off a kvec from the end. Return residual number of bytes for
802 * that kvec, i.e. how many bytes would have been written if the kvec
803 * hadn't been nuked.
804 */
con_out_kvec_skip(struct ceph_connection * con)805 static int con_out_kvec_skip(struct ceph_connection *con)
806 {
807 int off = con->out_kvec_cur - con->out_kvec;
808 int skip = 0;
809
810 if (con->out_kvec_bytes > 0) {
811 skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len;
812 BUG_ON(con->out_kvec_bytes < skip);
813 BUG_ON(!con->out_kvec_left);
814 con->out_kvec_bytes -= skip;
815 con->out_kvec_left--;
816 }
817
818 return skip;
819 }
820
821 #ifdef CONFIG_BLOCK
822
823 /*
824 * For a bio data item, a piece is whatever remains of the next
825 * entry in the current bio iovec, or the first entry in the next
826 * bio in the list.
827 */
ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor * cursor,size_t length)828 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
829 size_t length)
830 {
831 struct ceph_msg_data *data = cursor->data;
832 struct bio *bio;
833
834 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
835
836 bio = data->bio;
837 BUG_ON(!bio);
838
839 cursor->resid = min(length, data->bio_length);
840 cursor->bio = bio;
841 cursor->bvec_iter = bio->bi_iter;
842 cursor->last_piece =
843 cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
844 }
845
ceph_msg_data_bio_next(struct ceph_msg_data_cursor * cursor,size_t * page_offset,size_t * length)846 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
847 size_t *page_offset,
848 size_t *length)
849 {
850 struct ceph_msg_data *data = cursor->data;
851 struct bio *bio;
852 struct bio_vec bio_vec;
853
854 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
855
856 bio = cursor->bio;
857 BUG_ON(!bio);
858
859 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
860
861 *page_offset = (size_t) bio_vec.bv_offset;
862 BUG_ON(*page_offset >= PAGE_SIZE);
863 if (cursor->last_piece) /* pagelist offset is always 0 */
864 *length = cursor->resid;
865 else
866 *length = (size_t) bio_vec.bv_len;
867 BUG_ON(*length > cursor->resid);
868 BUG_ON(*page_offset + *length > PAGE_SIZE);
869
870 return bio_vec.bv_page;
871 }
872
ceph_msg_data_bio_advance(struct ceph_msg_data_cursor * cursor,size_t bytes)873 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
874 size_t bytes)
875 {
876 struct bio *bio;
877 struct bio_vec bio_vec;
878
879 BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
880
881 bio = cursor->bio;
882 BUG_ON(!bio);
883
884 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
885
886 /* Advance the cursor offset */
887
888 BUG_ON(cursor->resid < bytes);
889 cursor->resid -= bytes;
890
891 bio_advance_iter(bio, &cursor->bvec_iter, bytes);
892
893 if (bytes < bio_vec.bv_len)
894 return false; /* more bytes to process in this segment */
895
896 /* Move on to the next segment, and possibly the next bio */
897
898 if (!cursor->bvec_iter.bi_size) {
899 bio = bio->bi_next;
900 cursor->bio = bio;
901 if (bio)
902 cursor->bvec_iter = bio->bi_iter;
903 else
904 memset(&cursor->bvec_iter, 0,
905 sizeof(cursor->bvec_iter));
906 }
907
908 if (!cursor->last_piece) {
909 BUG_ON(!cursor->resid);
910 BUG_ON(!bio);
911 /* A short read is OK, so use <= rather than == */
912 if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
913 cursor->last_piece = true;
914 }
915
916 return true;
917 }
918 #endif /* CONFIG_BLOCK */
919
920 /*
921 * For a page array, a piece comes from the first page in the array
922 * that has not already been fully consumed.
923 */
ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor * cursor,size_t length)924 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
925 size_t length)
926 {
927 struct ceph_msg_data *data = cursor->data;
928 int page_count;
929
930 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
931
932 BUG_ON(!data->pages);
933 BUG_ON(!data->length);
934
935 cursor->resid = min(length, data->length);
936 page_count = calc_pages_for(data->alignment, (u64)data->length);
937 cursor->page_offset = data->alignment & ~PAGE_MASK;
938 cursor->page_index = 0;
939 BUG_ON(page_count > (int)USHRT_MAX);
940 cursor->page_count = (unsigned short)page_count;
941 BUG_ON(length > SIZE_MAX - cursor->page_offset);
942 cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
943 }
944
945 static struct page *
ceph_msg_data_pages_next(struct ceph_msg_data_cursor * cursor,size_t * page_offset,size_t * length)946 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
947 size_t *page_offset, size_t *length)
948 {
949 struct ceph_msg_data *data = cursor->data;
950
951 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
952
953 BUG_ON(cursor->page_index >= cursor->page_count);
954 BUG_ON(cursor->page_offset >= PAGE_SIZE);
955
956 *page_offset = cursor->page_offset;
957 if (cursor->last_piece)
958 *length = cursor->resid;
959 else
960 *length = PAGE_SIZE - *page_offset;
961
962 return data->pages[cursor->page_index];
963 }
964
ceph_msg_data_pages_advance(struct ceph_msg_data_cursor * cursor,size_t bytes)965 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
966 size_t bytes)
967 {
968 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
969
970 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
971
972 /* Advance the cursor page offset */
973
974 cursor->resid -= bytes;
975 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
976 if (!bytes || cursor->page_offset)
977 return false; /* more bytes to process in the current page */
978
979 if (!cursor->resid)
980 return false; /* no more data */
981
982 /* Move on to the next page; offset is already at 0 */
983
984 BUG_ON(cursor->page_index >= cursor->page_count);
985 cursor->page_index++;
986 cursor->last_piece = cursor->resid <= PAGE_SIZE;
987
988 return true;
989 }
990
991 /*
992 * For a pagelist, a piece is whatever remains to be consumed in the
993 * first page in the list, or the front of the next page.
994 */
995 static void
ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor * cursor,size_t length)996 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
997 size_t length)
998 {
999 struct ceph_msg_data *data = cursor->data;
1000 struct ceph_pagelist *pagelist;
1001 struct page *page;
1002
1003 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1004
1005 pagelist = data->pagelist;
1006 BUG_ON(!pagelist);
1007
1008 if (!length)
1009 return; /* pagelist can be assigned but empty */
1010
1011 BUG_ON(list_empty(&pagelist->head));
1012 page = list_first_entry(&pagelist->head, struct page, lru);
1013
1014 cursor->resid = min(length, pagelist->length);
1015 cursor->page = page;
1016 cursor->offset = 0;
1017 cursor->last_piece = cursor->resid <= PAGE_SIZE;
1018 }
1019
1020 static struct page *
ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor * cursor,size_t * page_offset,size_t * length)1021 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
1022 size_t *page_offset, size_t *length)
1023 {
1024 struct ceph_msg_data *data = cursor->data;
1025 struct ceph_pagelist *pagelist;
1026
1027 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1028
1029 pagelist = data->pagelist;
1030 BUG_ON(!pagelist);
1031
1032 BUG_ON(!cursor->page);
1033 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1034
1035 /* offset of first page in pagelist is always 0 */
1036 *page_offset = cursor->offset & ~PAGE_MASK;
1037 if (cursor->last_piece)
1038 *length = cursor->resid;
1039 else
1040 *length = PAGE_SIZE - *page_offset;
1041
1042 return cursor->page;
1043 }
1044
ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor * cursor,size_t bytes)1045 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1046 size_t bytes)
1047 {
1048 struct ceph_msg_data *data = cursor->data;
1049 struct ceph_pagelist *pagelist;
1050
1051 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1052
1053 pagelist = data->pagelist;
1054 BUG_ON(!pagelist);
1055
1056 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1057 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1058
1059 /* Advance the cursor offset */
1060
1061 cursor->resid -= bytes;
1062 cursor->offset += bytes;
1063 /* offset of first page in pagelist is always 0 */
1064 if (!bytes || cursor->offset & ~PAGE_MASK)
1065 return false; /* more bytes to process in the current page */
1066
1067 if (!cursor->resid)
1068 return false; /* no more data */
1069
1070 /* Move on to the next page */
1071
1072 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1073 cursor->page = list_entry_next(cursor->page, lru);
1074 cursor->last_piece = cursor->resid <= PAGE_SIZE;
1075
1076 return true;
1077 }
1078
1079 /*
1080 * Message data is handled (sent or received) in pieces, where each
1081 * piece resides on a single page. The network layer might not
1082 * consume an entire piece at once. A data item's cursor keeps
1083 * track of which piece is next to process and how much remains to
1084 * be processed in that piece. It also tracks whether the current
1085 * piece is the last one in the data item.
1086 */
__ceph_msg_data_cursor_init(struct ceph_msg_data_cursor * cursor)1087 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1088 {
1089 size_t length = cursor->total_resid;
1090
1091 switch (cursor->data->type) {
1092 case CEPH_MSG_DATA_PAGELIST:
1093 ceph_msg_data_pagelist_cursor_init(cursor, length);
1094 break;
1095 case CEPH_MSG_DATA_PAGES:
1096 ceph_msg_data_pages_cursor_init(cursor, length);
1097 break;
1098 #ifdef CONFIG_BLOCK
1099 case CEPH_MSG_DATA_BIO:
1100 ceph_msg_data_bio_cursor_init(cursor, length);
1101 break;
1102 #endif /* CONFIG_BLOCK */
1103 case CEPH_MSG_DATA_NONE:
1104 default:
1105 /* BUG(); */
1106 break;
1107 }
1108 cursor->need_crc = true;
1109 }
1110
ceph_msg_data_cursor_init(struct ceph_msg * msg,size_t length)1111 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1112 {
1113 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1114 struct ceph_msg_data *data;
1115
1116 BUG_ON(!length);
1117 BUG_ON(length > msg->data_length);
1118 BUG_ON(list_empty(&msg->data));
1119
1120 cursor->data_head = &msg->data;
1121 cursor->total_resid = length;
1122 data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1123 cursor->data = data;
1124
1125 __ceph_msg_data_cursor_init(cursor);
1126 }
1127
1128 /*
1129 * Return the page containing the next piece to process for a given
1130 * data item, and supply the page offset and length of that piece.
1131 * Indicate whether this is the last piece in this data item.
1132 */
ceph_msg_data_next(struct ceph_msg_data_cursor * cursor,size_t * page_offset,size_t * length,bool * last_piece)1133 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1134 size_t *page_offset, size_t *length,
1135 bool *last_piece)
1136 {
1137 struct page *page;
1138
1139 switch (cursor->data->type) {
1140 case CEPH_MSG_DATA_PAGELIST:
1141 page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1142 break;
1143 case CEPH_MSG_DATA_PAGES:
1144 page = ceph_msg_data_pages_next(cursor, page_offset, length);
1145 break;
1146 #ifdef CONFIG_BLOCK
1147 case CEPH_MSG_DATA_BIO:
1148 page = ceph_msg_data_bio_next(cursor, page_offset, length);
1149 break;
1150 #endif /* CONFIG_BLOCK */
1151 case CEPH_MSG_DATA_NONE:
1152 default:
1153 page = NULL;
1154 break;
1155 }
1156 BUG_ON(!page);
1157 BUG_ON(*page_offset + *length > PAGE_SIZE);
1158 BUG_ON(!*length);
1159 if (last_piece)
1160 *last_piece = cursor->last_piece;
1161
1162 return page;
1163 }
1164
1165 /*
1166 * Returns true if the result moves the cursor on to the next piece
1167 * of the data item.
1168 */
ceph_msg_data_advance(struct ceph_msg_data_cursor * cursor,size_t bytes)1169 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1170 size_t bytes)
1171 {
1172 bool new_piece;
1173
1174 BUG_ON(bytes > cursor->resid);
1175 switch (cursor->data->type) {
1176 case CEPH_MSG_DATA_PAGELIST:
1177 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1178 break;
1179 case CEPH_MSG_DATA_PAGES:
1180 new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1181 break;
1182 #ifdef CONFIG_BLOCK
1183 case CEPH_MSG_DATA_BIO:
1184 new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1185 break;
1186 #endif /* CONFIG_BLOCK */
1187 case CEPH_MSG_DATA_NONE:
1188 default:
1189 BUG();
1190 break;
1191 }
1192 cursor->total_resid -= bytes;
1193
1194 if (!cursor->resid && cursor->total_resid) {
1195 WARN_ON(!cursor->last_piece);
1196 BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1197 cursor->data = list_entry_next(cursor->data, links);
1198 __ceph_msg_data_cursor_init(cursor);
1199 new_piece = true;
1200 }
1201 cursor->need_crc = new_piece;
1202
1203 return new_piece;
1204 }
1205
sizeof_footer(struct ceph_connection * con)1206 static size_t sizeof_footer(struct ceph_connection *con)
1207 {
1208 return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ?
1209 sizeof(struct ceph_msg_footer) :
1210 sizeof(struct ceph_msg_footer_old);
1211 }
1212
prepare_message_data(struct ceph_msg * msg,u32 data_len)1213 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1214 {
1215 BUG_ON(!msg);
1216 BUG_ON(!data_len);
1217
1218 /* Initialize data cursor */
1219
1220 ceph_msg_data_cursor_init(msg, (size_t)data_len);
1221 }
1222
1223 /*
1224 * Prepare footer for currently outgoing message, and finish things
1225 * off. Assumes out_kvec* are already valid.. we just add on to the end.
1226 */
prepare_write_message_footer(struct ceph_connection * con)1227 static void prepare_write_message_footer(struct ceph_connection *con)
1228 {
1229 struct ceph_msg *m = con->out_msg;
1230 int v = con->out_kvec_left;
1231
1232 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1233
1234 dout("prepare_write_message_footer %p\n", con);
1235 con->out_kvec[v].iov_base = &m->footer;
1236 if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1237 if (con->ops->sign_message)
1238 con->ops->sign_message(con, m);
1239 else
1240 m->footer.sig = 0;
1241 con->out_kvec[v].iov_len = sizeof(m->footer);
1242 con->out_kvec_bytes += sizeof(m->footer);
1243 } else {
1244 m->old_footer.flags = m->footer.flags;
1245 con->out_kvec[v].iov_len = sizeof(m->old_footer);
1246 con->out_kvec_bytes += sizeof(m->old_footer);
1247 }
1248 con->out_kvec_left++;
1249 con->out_more = m->more_to_follow;
1250 con->out_msg_done = true;
1251 }
1252
1253 /*
1254 * Prepare headers for the next outgoing message.
1255 */
prepare_write_message(struct ceph_connection * con)1256 static void prepare_write_message(struct ceph_connection *con)
1257 {
1258 struct ceph_msg *m;
1259 u32 crc;
1260
1261 con_out_kvec_reset(con);
1262 con->out_msg_done = false;
1263
1264 /* Sneak an ack in there first? If we can get it into the same
1265 * TCP packet that's a good thing. */
1266 if (con->in_seq > con->in_seq_acked) {
1267 con->in_seq_acked = con->in_seq;
1268 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1269 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1270 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1271 &con->out_temp_ack);
1272 }
1273
1274 BUG_ON(list_empty(&con->out_queue));
1275 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1276 con->out_msg = m;
1277 BUG_ON(m->con != con);
1278
1279 /* put message on sent list */
1280 ceph_msg_get(m);
1281 list_move_tail(&m->list_head, &con->out_sent);
1282
1283 /*
1284 * only assign outgoing seq # if we haven't sent this message
1285 * yet. if it is requeued, resend with it's original seq.
1286 */
1287 if (m->needs_out_seq) {
1288 m->hdr.seq = cpu_to_le64(++con->out_seq);
1289 m->needs_out_seq = false;
1290 }
1291 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1292
1293 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1294 m, con->out_seq, le16_to_cpu(m->hdr.type),
1295 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1296 m->data_length);
1297 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1298
1299 /* tag + hdr + front + middle */
1300 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1301 con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr);
1302 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1303
1304 if (m->middle)
1305 con_out_kvec_add(con, m->middle->vec.iov_len,
1306 m->middle->vec.iov_base);
1307
1308 /* fill in hdr crc and finalize hdr */
1309 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1310 con->out_msg->hdr.crc = cpu_to_le32(crc);
1311 memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr));
1312
1313 /* fill in front and middle crc, footer */
1314 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1315 con->out_msg->footer.front_crc = cpu_to_le32(crc);
1316 if (m->middle) {
1317 crc = crc32c(0, m->middle->vec.iov_base,
1318 m->middle->vec.iov_len);
1319 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1320 } else
1321 con->out_msg->footer.middle_crc = 0;
1322 dout("%s front_crc %u middle_crc %u\n", __func__,
1323 le32_to_cpu(con->out_msg->footer.front_crc),
1324 le32_to_cpu(con->out_msg->footer.middle_crc));
1325 con->out_msg->footer.flags = 0;
1326
1327 /* is there a data payload? */
1328 con->out_msg->footer.data_crc = 0;
1329 if (m->data_length) {
1330 prepare_message_data(con->out_msg, m->data_length);
1331 con->out_more = 1; /* data + footer will follow */
1332 } else {
1333 /* no, queue up footer too and be done */
1334 prepare_write_message_footer(con);
1335 }
1336
1337 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1338 }
1339
1340 /*
1341 * Prepare an ack.
1342 */
prepare_write_ack(struct ceph_connection * con)1343 static void prepare_write_ack(struct ceph_connection *con)
1344 {
1345 dout("prepare_write_ack %p %llu -> %llu\n", con,
1346 con->in_seq_acked, con->in_seq);
1347 con->in_seq_acked = con->in_seq;
1348
1349 con_out_kvec_reset(con);
1350
1351 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1352
1353 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1354 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1355 &con->out_temp_ack);
1356
1357 con->out_more = 1; /* more will follow.. eventually.. */
1358 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1359 }
1360
1361 /*
1362 * Prepare to share the seq during handshake
1363 */
prepare_write_seq(struct ceph_connection * con)1364 static void prepare_write_seq(struct ceph_connection *con)
1365 {
1366 dout("prepare_write_seq %p %llu -> %llu\n", con,
1367 con->in_seq_acked, con->in_seq);
1368 con->in_seq_acked = con->in_seq;
1369
1370 con_out_kvec_reset(con);
1371
1372 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1373 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1374 &con->out_temp_ack);
1375
1376 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1377 }
1378
1379 /*
1380 * Prepare to write keepalive byte.
1381 */
prepare_write_keepalive(struct ceph_connection * con)1382 static void prepare_write_keepalive(struct ceph_connection *con)
1383 {
1384 dout("prepare_write_keepalive %p\n", con);
1385 con_out_kvec_reset(con);
1386 con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
1387 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1388 }
1389
1390 /*
1391 * Connection negotiation.
1392 */
1393
get_connect_authorizer(struct ceph_connection * con,int * auth_proto)1394 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1395 int *auth_proto)
1396 {
1397 struct ceph_auth_handshake *auth;
1398
1399 if (!con->ops->get_authorizer) {
1400 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1401 con->out_connect.authorizer_len = 0;
1402 return NULL;
1403 }
1404
1405 /* Can't hold the mutex while getting authorizer */
1406 mutex_unlock(&con->mutex);
1407 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1408 mutex_lock(&con->mutex);
1409
1410 if (IS_ERR(auth))
1411 return auth;
1412 if (con->state != CON_STATE_NEGOTIATING)
1413 return ERR_PTR(-EAGAIN);
1414
1415 con->auth_reply_buf = auth->authorizer_reply_buf;
1416 con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1417 return auth;
1418 }
1419
1420 /*
1421 * We connected to a peer and are saying hello.
1422 */
prepare_write_banner(struct ceph_connection * con)1423 static void prepare_write_banner(struct ceph_connection *con)
1424 {
1425 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1426 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1427 &con->msgr->my_enc_addr);
1428
1429 con->out_more = 0;
1430 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1431 }
1432
prepare_write_connect(struct ceph_connection * con)1433 static int prepare_write_connect(struct ceph_connection *con)
1434 {
1435 unsigned int global_seq = get_global_seq(con->msgr, 0);
1436 int proto;
1437 int auth_proto;
1438 struct ceph_auth_handshake *auth;
1439
1440 switch (con->peer_name.type) {
1441 case CEPH_ENTITY_TYPE_MON:
1442 proto = CEPH_MONC_PROTOCOL;
1443 break;
1444 case CEPH_ENTITY_TYPE_OSD:
1445 proto = CEPH_OSDC_PROTOCOL;
1446 break;
1447 case CEPH_ENTITY_TYPE_MDS:
1448 proto = CEPH_MDSC_PROTOCOL;
1449 break;
1450 default:
1451 BUG();
1452 }
1453
1454 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1455 con->connect_seq, global_seq, proto);
1456
1457 con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
1458 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1459 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1460 con->out_connect.global_seq = cpu_to_le32(global_seq);
1461 con->out_connect.protocol_version = cpu_to_le32(proto);
1462 con->out_connect.flags = 0;
1463
1464 auth_proto = CEPH_AUTH_UNKNOWN;
1465 auth = get_connect_authorizer(con, &auth_proto);
1466 if (IS_ERR(auth))
1467 return PTR_ERR(auth);
1468
1469 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1470 con->out_connect.authorizer_len = auth ?
1471 cpu_to_le32(auth->authorizer_buf_len) : 0;
1472
1473 con_out_kvec_add(con, sizeof (con->out_connect),
1474 &con->out_connect);
1475 if (auth && auth->authorizer_buf_len)
1476 con_out_kvec_add(con, auth->authorizer_buf_len,
1477 auth->authorizer_buf);
1478
1479 con->out_more = 0;
1480 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1481
1482 return 0;
1483 }
1484
1485 /*
1486 * write as much of pending kvecs to the socket as we can.
1487 * 1 -> done
1488 * 0 -> socket full, but more to do
1489 * <0 -> error
1490 */
write_partial_kvec(struct ceph_connection * con)1491 static int write_partial_kvec(struct ceph_connection *con)
1492 {
1493 int ret;
1494
1495 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1496 while (con->out_kvec_bytes > 0) {
1497 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1498 con->out_kvec_left, con->out_kvec_bytes,
1499 con->out_more);
1500 if (ret <= 0)
1501 goto out;
1502 con->out_kvec_bytes -= ret;
1503 if (con->out_kvec_bytes == 0)
1504 break; /* done */
1505
1506 /* account for full iov entries consumed */
1507 while (ret >= con->out_kvec_cur->iov_len) {
1508 BUG_ON(!con->out_kvec_left);
1509 ret -= con->out_kvec_cur->iov_len;
1510 con->out_kvec_cur++;
1511 con->out_kvec_left--;
1512 }
1513 /* and for a partially-consumed entry */
1514 if (ret) {
1515 con->out_kvec_cur->iov_len -= ret;
1516 con->out_kvec_cur->iov_base += ret;
1517 }
1518 }
1519 con->out_kvec_left = 0;
1520 ret = 1;
1521 out:
1522 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1523 con->out_kvec_bytes, con->out_kvec_left, ret);
1524 return ret; /* done! */
1525 }
1526
ceph_crc32c_page(u32 crc,struct page * page,unsigned int page_offset,unsigned int length)1527 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1528 unsigned int page_offset,
1529 unsigned int length)
1530 {
1531 char *kaddr;
1532
1533 kaddr = kmap(page);
1534 BUG_ON(kaddr == NULL);
1535 crc = crc32c(crc, kaddr + page_offset, length);
1536 kunmap(page);
1537
1538 return crc;
1539 }
1540 /*
1541 * Write as much message data payload as we can. If we finish, queue
1542 * up the footer.
1543 * 1 -> done, footer is now queued in out_kvec[].
1544 * 0 -> socket full, but more to do
1545 * <0 -> error
1546 */
write_partial_message_data(struct ceph_connection * con)1547 static int write_partial_message_data(struct ceph_connection *con)
1548 {
1549 struct ceph_msg *msg = con->out_msg;
1550 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1551 bool do_datacrc = !con->msgr->nocrc;
1552 u32 crc;
1553
1554 dout("%s %p msg %p\n", __func__, con, msg);
1555
1556 if (list_empty(&msg->data))
1557 return -EINVAL;
1558
1559 /*
1560 * Iterate through each page that contains data to be
1561 * written, and send as much as possible for each.
1562 *
1563 * If we are calculating the data crc (the default), we will
1564 * need to map the page. If we have no pages, they have
1565 * been revoked, so use the zero page.
1566 */
1567 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1568 while (cursor->resid) {
1569 struct page *page;
1570 size_t page_offset;
1571 size_t length;
1572 bool last_piece;
1573 bool need_crc;
1574 int ret;
1575
1576 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
1577 &last_piece);
1578 ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1579 length, last_piece);
1580 if (ret <= 0) {
1581 if (do_datacrc)
1582 msg->footer.data_crc = cpu_to_le32(crc);
1583
1584 return ret;
1585 }
1586 if (do_datacrc && cursor->need_crc)
1587 crc = ceph_crc32c_page(crc, page, page_offset, length);
1588 need_crc = ceph_msg_data_advance(&msg->cursor, (size_t)ret);
1589 }
1590
1591 dout("%s %p msg %p done\n", __func__, con, msg);
1592
1593 /* prepare and queue up footer, too */
1594 if (do_datacrc)
1595 msg->footer.data_crc = cpu_to_le32(crc);
1596 else
1597 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1598 con_out_kvec_reset(con);
1599 prepare_write_message_footer(con);
1600
1601 return 1; /* must return > 0 to indicate success */
1602 }
1603
1604 /*
1605 * write some zeros
1606 */
write_partial_skip(struct ceph_connection * con)1607 static int write_partial_skip(struct ceph_connection *con)
1608 {
1609 int ret;
1610
1611 dout("%s %p %d left\n", __func__, con, con->out_skip);
1612 while (con->out_skip > 0) {
1613 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1614
1615 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1616 if (ret <= 0)
1617 goto out;
1618 con->out_skip -= ret;
1619 }
1620 ret = 1;
1621 out:
1622 return ret;
1623 }
1624
1625 /*
1626 * Prepare to read connection handshake, or an ack.
1627 */
prepare_read_banner(struct ceph_connection * con)1628 static void prepare_read_banner(struct ceph_connection *con)
1629 {
1630 dout("prepare_read_banner %p\n", con);
1631 con->in_base_pos = 0;
1632 }
1633
prepare_read_connect(struct ceph_connection * con)1634 static void prepare_read_connect(struct ceph_connection *con)
1635 {
1636 dout("prepare_read_connect %p\n", con);
1637 con->in_base_pos = 0;
1638 }
1639
prepare_read_ack(struct ceph_connection * con)1640 static void prepare_read_ack(struct ceph_connection *con)
1641 {
1642 dout("prepare_read_ack %p\n", con);
1643 con->in_base_pos = 0;
1644 }
1645
prepare_read_seq(struct ceph_connection * con)1646 static void prepare_read_seq(struct ceph_connection *con)
1647 {
1648 dout("prepare_read_seq %p\n", con);
1649 con->in_base_pos = 0;
1650 con->in_tag = CEPH_MSGR_TAG_SEQ;
1651 }
1652
prepare_read_tag(struct ceph_connection * con)1653 static void prepare_read_tag(struct ceph_connection *con)
1654 {
1655 dout("prepare_read_tag %p\n", con);
1656 con->in_base_pos = 0;
1657 con->in_tag = CEPH_MSGR_TAG_READY;
1658 }
1659
1660 /*
1661 * Prepare to read a message.
1662 */
prepare_read_message(struct ceph_connection * con)1663 static int prepare_read_message(struct ceph_connection *con)
1664 {
1665 dout("prepare_read_message %p\n", con);
1666 BUG_ON(con->in_msg != NULL);
1667 con->in_base_pos = 0;
1668 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1669 return 0;
1670 }
1671
1672
read_partial(struct ceph_connection * con,int end,int size,void * object)1673 static int read_partial(struct ceph_connection *con,
1674 int end, int size, void *object)
1675 {
1676 while (con->in_base_pos < end) {
1677 int left = end - con->in_base_pos;
1678 int have = size - left;
1679 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1680 if (ret <= 0)
1681 return ret;
1682 con->in_base_pos += ret;
1683 }
1684 return 1;
1685 }
1686
1687
1688 /*
1689 * Read all or part of the connect-side handshake on a new connection
1690 */
read_partial_banner(struct ceph_connection * con)1691 static int read_partial_banner(struct ceph_connection *con)
1692 {
1693 int size;
1694 int end;
1695 int ret;
1696
1697 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1698
1699 /* peer's banner */
1700 size = strlen(CEPH_BANNER);
1701 end = size;
1702 ret = read_partial(con, end, size, con->in_banner);
1703 if (ret <= 0)
1704 goto out;
1705
1706 size = sizeof (con->actual_peer_addr);
1707 end += size;
1708 ret = read_partial(con, end, size, &con->actual_peer_addr);
1709 if (ret <= 0)
1710 goto out;
1711
1712 size = sizeof (con->peer_addr_for_me);
1713 end += size;
1714 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1715 if (ret <= 0)
1716 goto out;
1717
1718 out:
1719 return ret;
1720 }
1721
read_partial_connect(struct ceph_connection * con)1722 static int read_partial_connect(struct ceph_connection *con)
1723 {
1724 int size;
1725 int end;
1726 int ret;
1727
1728 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1729
1730 size = sizeof (con->in_reply);
1731 end = size;
1732 ret = read_partial(con, end, size, &con->in_reply);
1733 if (ret <= 0)
1734 goto out;
1735
1736 size = le32_to_cpu(con->in_reply.authorizer_len);
1737 end += size;
1738 ret = read_partial(con, end, size, con->auth_reply_buf);
1739 if (ret <= 0)
1740 goto out;
1741
1742 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1743 con, (int)con->in_reply.tag,
1744 le32_to_cpu(con->in_reply.connect_seq),
1745 le32_to_cpu(con->in_reply.global_seq));
1746 out:
1747 return ret;
1748
1749 }
1750
1751 /*
1752 * Verify the hello banner looks okay.
1753 */
verify_hello(struct ceph_connection * con)1754 static int verify_hello(struct ceph_connection *con)
1755 {
1756 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1757 pr_err("connect to %s got bad banner\n",
1758 ceph_pr_addr(&con->peer_addr.in_addr));
1759 con->error_msg = "protocol error, bad banner";
1760 return -1;
1761 }
1762 return 0;
1763 }
1764
addr_is_blank(struct sockaddr_storage * ss)1765 static bool addr_is_blank(struct sockaddr_storage *ss)
1766 {
1767 switch (ss->ss_family) {
1768 case AF_INET:
1769 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1770 case AF_INET6:
1771 return
1772 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1773 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1774 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1775 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1776 }
1777 return false;
1778 }
1779
addr_port(struct sockaddr_storage * ss)1780 static int addr_port(struct sockaddr_storage *ss)
1781 {
1782 switch (ss->ss_family) {
1783 case AF_INET:
1784 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1785 case AF_INET6:
1786 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1787 }
1788 return 0;
1789 }
1790
addr_set_port(struct sockaddr_storage * ss,int p)1791 static void addr_set_port(struct sockaddr_storage *ss, int p)
1792 {
1793 switch (ss->ss_family) {
1794 case AF_INET:
1795 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1796 break;
1797 case AF_INET6:
1798 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1799 break;
1800 }
1801 }
1802
1803 /*
1804 * Unlike other *_pton function semantics, zero indicates success.
1805 */
ceph_pton(const char * str,size_t len,struct sockaddr_storage * ss,char delim,const char ** ipend)1806 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1807 char delim, const char **ipend)
1808 {
1809 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1810 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1811
1812 memset(ss, 0, sizeof(*ss));
1813
1814 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1815 ss->ss_family = AF_INET;
1816 return 0;
1817 }
1818
1819 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1820 ss->ss_family = AF_INET6;
1821 return 0;
1822 }
1823
1824 return -EINVAL;
1825 }
1826
1827 /*
1828 * Extract hostname string and resolve using kernel DNS facility.
1829 */
1830 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
ceph_dns_resolve_name(const char * name,size_t namelen,struct sockaddr_storage * ss,char delim,const char ** ipend)1831 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1832 struct sockaddr_storage *ss, char delim, const char **ipend)
1833 {
1834 const char *end, *delim_p;
1835 char *colon_p, *ip_addr = NULL;
1836 int ip_len, ret;
1837
1838 /*
1839 * The end of the hostname occurs immediately preceding the delimiter or
1840 * the port marker (':') where the delimiter takes precedence.
1841 */
1842 delim_p = memchr(name, delim, namelen);
1843 colon_p = memchr(name, ':', namelen);
1844
1845 if (delim_p && colon_p)
1846 end = delim_p < colon_p ? delim_p : colon_p;
1847 else if (!delim_p && colon_p)
1848 end = colon_p;
1849 else {
1850 end = delim_p;
1851 if (!end) /* case: hostname:/ */
1852 end = name + namelen;
1853 }
1854
1855 if (end <= name)
1856 return -EINVAL;
1857
1858 /* do dns_resolve upcall */
1859 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1860 if (ip_len > 0)
1861 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1862 else
1863 ret = -ESRCH;
1864
1865 kfree(ip_addr);
1866
1867 *ipend = end;
1868
1869 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1870 ret, ret ? "failed" : ceph_pr_addr(ss));
1871
1872 return ret;
1873 }
1874 #else
ceph_dns_resolve_name(const char * name,size_t namelen,struct sockaddr_storage * ss,char delim,const char ** ipend)1875 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1876 struct sockaddr_storage *ss, char delim, const char **ipend)
1877 {
1878 return -EINVAL;
1879 }
1880 #endif
1881
1882 /*
1883 * Parse a server name (IP or hostname). If a valid IP address is not found
1884 * then try to extract a hostname to resolve using userspace DNS upcall.
1885 */
ceph_parse_server_name(const char * name,size_t namelen,struct sockaddr_storage * ss,char delim,const char ** ipend)1886 static int ceph_parse_server_name(const char *name, size_t namelen,
1887 struct sockaddr_storage *ss, char delim, const char **ipend)
1888 {
1889 int ret;
1890
1891 ret = ceph_pton(name, namelen, ss, delim, ipend);
1892 if (ret)
1893 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1894
1895 return ret;
1896 }
1897
1898 /*
1899 * Parse an ip[:port] list into an addr array. Use the default
1900 * monitor port if a port isn't specified.
1901 */
ceph_parse_ips(const char * c,const char * end,struct ceph_entity_addr * addr,int max_count,int * count)1902 int ceph_parse_ips(const char *c, const char *end,
1903 struct ceph_entity_addr *addr,
1904 int max_count, int *count)
1905 {
1906 int i, ret = -EINVAL;
1907 const char *p = c;
1908
1909 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1910 for (i = 0; i < max_count; i++) {
1911 const char *ipend;
1912 struct sockaddr_storage *ss = &addr[i].in_addr;
1913 int port;
1914 char delim = ',';
1915
1916 if (*p == '[') {
1917 delim = ']';
1918 p++;
1919 }
1920
1921 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1922 if (ret)
1923 goto bad;
1924 ret = -EINVAL;
1925
1926 p = ipend;
1927
1928 if (delim == ']') {
1929 if (*p != ']') {
1930 dout("missing matching ']'\n");
1931 goto bad;
1932 }
1933 p++;
1934 }
1935
1936 /* port? */
1937 if (p < end && *p == ':') {
1938 port = 0;
1939 p++;
1940 while (p < end && *p >= '0' && *p <= '9') {
1941 port = (port * 10) + (*p - '0');
1942 p++;
1943 }
1944 if (port == 0)
1945 port = CEPH_MON_PORT;
1946 else if (port > 65535)
1947 goto bad;
1948 } else {
1949 port = CEPH_MON_PORT;
1950 }
1951
1952 addr_set_port(ss, port);
1953
1954 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1955
1956 if (p == end)
1957 break;
1958 if (*p != ',')
1959 goto bad;
1960 p++;
1961 }
1962
1963 if (p != end)
1964 goto bad;
1965
1966 if (count)
1967 *count = i + 1;
1968 return 0;
1969
1970 bad:
1971 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1972 return ret;
1973 }
1974 EXPORT_SYMBOL(ceph_parse_ips);
1975
process_banner(struct ceph_connection * con)1976 static int process_banner(struct ceph_connection *con)
1977 {
1978 dout("process_banner on %p\n", con);
1979
1980 if (verify_hello(con) < 0)
1981 return -1;
1982
1983 ceph_decode_addr(&con->actual_peer_addr);
1984 ceph_decode_addr(&con->peer_addr_for_me);
1985
1986 /*
1987 * Make sure the other end is who we wanted. note that the other
1988 * end may not yet know their ip address, so if it's 0.0.0.0, give
1989 * them the benefit of the doubt.
1990 */
1991 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1992 sizeof(con->peer_addr)) != 0 &&
1993 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1994 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1995 pr_warn("wrong peer, want %s/%d, got %s/%d\n",
1996 ceph_pr_addr(&con->peer_addr.in_addr),
1997 (int)le32_to_cpu(con->peer_addr.nonce),
1998 ceph_pr_addr(&con->actual_peer_addr.in_addr),
1999 (int)le32_to_cpu(con->actual_peer_addr.nonce));
2000 con->error_msg = "wrong peer at address";
2001 return -1;
2002 }
2003
2004 /*
2005 * did we learn our address?
2006 */
2007 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
2008 int port = addr_port(&con->msgr->inst.addr.in_addr);
2009
2010 memcpy(&con->msgr->inst.addr.in_addr,
2011 &con->peer_addr_for_me.in_addr,
2012 sizeof(con->peer_addr_for_me.in_addr));
2013 addr_set_port(&con->msgr->inst.addr.in_addr, port);
2014 encode_my_addr(con->msgr);
2015 dout("process_banner learned my addr is %s\n",
2016 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
2017 }
2018
2019 return 0;
2020 }
2021
process_connect(struct ceph_connection * con)2022 static int process_connect(struct ceph_connection *con)
2023 {
2024 u64 sup_feat = con->msgr->supported_features;
2025 u64 req_feat = con->msgr->required_features;
2026 u64 server_feat = ceph_sanitize_features(
2027 le64_to_cpu(con->in_reply.features));
2028 int ret;
2029
2030 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2031
2032 switch (con->in_reply.tag) {
2033 case CEPH_MSGR_TAG_FEATURES:
2034 pr_err("%s%lld %s feature set mismatch,"
2035 " my %llx < server's %llx, missing %llx\n",
2036 ENTITY_NAME(con->peer_name),
2037 ceph_pr_addr(&con->peer_addr.in_addr),
2038 sup_feat, server_feat, server_feat & ~sup_feat);
2039 con->error_msg = "missing required protocol features";
2040 reset_connection(con);
2041 return -1;
2042
2043 case CEPH_MSGR_TAG_BADPROTOVER:
2044 pr_err("%s%lld %s protocol version mismatch,"
2045 " my %d != server's %d\n",
2046 ENTITY_NAME(con->peer_name),
2047 ceph_pr_addr(&con->peer_addr.in_addr),
2048 le32_to_cpu(con->out_connect.protocol_version),
2049 le32_to_cpu(con->in_reply.protocol_version));
2050 con->error_msg = "protocol version mismatch";
2051 reset_connection(con);
2052 return -1;
2053
2054 case CEPH_MSGR_TAG_BADAUTHORIZER:
2055 con->auth_retry++;
2056 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2057 con->auth_retry);
2058 if (con->auth_retry == 2) {
2059 con->error_msg = "connect authorization failure";
2060 return -1;
2061 }
2062 con_out_kvec_reset(con);
2063 ret = prepare_write_connect(con);
2064 if (ret < 0)
2065 return ret;
2066 prepare_read_connect(con);
2067 break;
2068
2069 case CEPH_MSGR_TAG_RESETSESSION:
2070 /*
2071 * If we connected with a large connect_seq but the peer
2072 * has no record of a session with us (no connection, or
2073 * connect_seq == 0), they will send RESETSESION to indicate
2074 * that they must have reset their session, and may have
2075 * dropped messages.
2076 */
2077 dout("process_connect got RESET peer seq %u\n",
2078 le32_to_cpu(con->in_reply.connect_seq));
2079 pr_err("%s%lld %s connection reset\n",
2080 ENTITY_NAME(con->peer_name),
2081 ceph_pr_addr(&con->peer_addr.in_addr));
2082 reset_connection(con);
2083 con_out_kvec_reset(con);
2084 ret = prepare_write_connect(con);
2085 if (ret < 0)
2086 return ret;
2087 prepare_read_connect(con);
2088
2089 /* Tell ceph about it. */
2090 mutex_unlock(&con->mutex);
2091 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2092 if (con->ops->peer_reset)
2093 con->ops->peer_reset(con);
2094 mutex_lock(&con->mutex);
2095 if (con->state != CON_STATE_NEGOTIATING)
2096 return -EAGAIN;
2097 break;
2098
2099 case CEPH_MSGR_TAG_RETRY_SESSION:
2100 /*
2101 * If we sent a smaller connect_seq than the peer has, try
2102 * again with a larger value.
2103 */
2104 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2105 le32_to_cpu(con->out_connect.connect_seq),
2106 le32_to_cpu(con->in_reply.connect_seq));
2107 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2108 con_out_kvec_reset(con);
2109 ret = prepare_write_connect(con);
2110 if (ret < 0)
2111 return ret;
2112 prepare_read_connect(con);
2113 break;
2114
2115 case CEPH_MSGR_TAG_RETRY_GLOBAL:
2116 /*
2117 * If we sent a smaller global_seq than the peer has, try
2118 * again with a larger value.
2119 */
2120 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2121 con->peer_global_seq,
2122 le32_to_cpu(con->in_reply.global_seq));
2123 get_global_seq(con->msgr,
2124 le32_to_cpu(con->in_reply.global_seq));
2125 con_out_kvec_reset(con);
2126 ret = prepare_write_connect(con);
2127 if (ret < 0)
2128 return ret;
2129 prepare_read_connect(con);
2130 break;
2131
2132 case CEPH_MSGR_TAG_SEQ:
2133 case CEPH_MSGR_TAG_READY:
2134 if (req_feat & ~server_feat) {
2135 pr_err("%s%lld %s protocol feature mismatch,"
2136 " my required %llx > server's %llx, need %llx\n",
2137 ENTITY_NAME(con->peer_name),
2138 ceph_pr_addr(&con->peer_addr.in_addr),
2139 req_feat, server_feat, req_feat & ~server_feat);
2140 con->error_msg = "missing required protocol features";
2141 reset_connection(con);
2142 return -1;
2143 }
2144
2145 WARN_ON(con->state != CON_STATE_NEGOTIATING);
2146 con->state = CON_STATE_OPEN;
2147 con->auth_retry = 0; /* we authenticated; clear flag */
2148 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2149 con->connect_seq++;
2150 con->peer_features = server_feat;
2151 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2152 con->peer_global_seq,
2153 le32_to_cpu(con->in_reply.connect_seq),
2154 con->connect_seq);
2155 WARN_ON(con->connect_seq !=
2156 le32_to_cpu(con->in_reply.connect_seq));
2157
2158 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2159 con_flag_set(con, CON_FLAG_LOSSYTX);
2160
2161 con->delay = 0; /* reset backoff memory */
2162
2163 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2164 prepare_write_seq(con);
2165 prepare_read_seq(con);
2166 } else {
2167 prepare_read_tag(con);
2168 }
2169 break;
2170
2171 case CEPH_MSGR_TAG_WAIT:
2172 /*
2173 * If there is a connection race (we are opening
2174 * connections to each other), one of us may just have
2175 * to WAIT. This shouldn't happen if we are the
2176 * client.
2177 */
2178 con->error_msg = "protocol error, got WAIT as client";
2179 return -1;
2180
2181 default:
2182 con->error_msg = "protocol error, garbage tag during connect";
2183 return -1;
2184 }
2185 return 0;
2186 }
2187
2188
2189 /*
2190 * read (part of) an ack
2191 */
read_partial_ack(struct ceph_connection * con)2192 static int read_partial_ack(struct ceph_connection *con)
2193 {
2194 int size = sizeof (con->in_temp_ack);
2195 int end = size;
2196
2197 return read_partial(con, end, size, &con->in_temp_ack);
2198 }
2199
2200 /*
2201 * We can finally discard anything that's been acked.
2202 */
process_ack(struct ceph_connection * con)2203 static void process_ack(struct ceph_connection *con)
2204 {
2205 struct ceph_msg *m;
2206 u64 ack = le64_to_cpu(con->in_temp_ack);
2207 u64 seq;
2208
2209 while (!list_empty(&con->out_sent)) {
2210 m = list_first_entry(&con->out_sent, struct ceph_msg,
2211 list_head);
2212 seq = le64_to_cpu(m->hdr.seq);
2213 if (seq > ack)
2214 break;
2215 dout("got ack for seq %llu type %d at %p\n", seq,
2216 le16_to_cpu(m->hdr.type), m);
2217 m->ack_stamp = jiffies;
2218 ceph_msg_remove(m);
2219 }
2220 prepare_read_tag(con);
2221 }
2222
2223
read_partial_message_section(struct ceph_connection * con,struct kvec * section,unsigned int sec_len,u32 * crc)2224 static int read_partial_message_section(struct ceph_connection *con,
2225 struct kvec *section,
2226 unsigned int sec_len, u32 *crc)
2227 {
2228 int ret, left;
2229
2230 BUG_ON(!section);
2231
2232 while (section->iov_len < sec_len) {
2233 BUG_ON(section->iov_base == NULL);
2234 left = sec_len - section->iov_len;
2235 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2236 section->iov_len, left);
2237 if (ret <= 0)
2238 return ret;
2239 section->iov_len += ret;
2240 }
2241 if (section->iov_len == sec_len)
2242 *crc = crc32c(0, section->iov_base, section->iov_len);
2243
2244 return 1;
2245 }
2246
read_partial_msg_data(struct ceph_connection * con)2247 static int read_partial_msg_data(struct ceph_connection *con)
2248 {
2249 struct ceph_msg *msg = con->in_msg;
2250 struct ceph_msg_data_cursor *cursor = &msg->cursor;
2251 const bool do_datacrc = !con->msgr->nocrc;
2252 struct page *page;
2253 size_t page_offset;
2254 size_t length;
2255 u32 crc = 0;
2256 int ret;
2257
2258 BUG_ON(!msg);
2259 if (list_empty(&msg->data))
2260 return -EIO;
2261
2262 if (do_datacrc)
2263 crc = con->in_data_crc;
2264 while (cursor->resid) {
2265 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
2266 NULL);
2267 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2268 if (ret <= 0) {
2269 if (do_datacrc)
2270 con->in_data_crc = crc;
2271
2272 return ret;
2273 }
2274
2275 if (do_datacrc)
2276 crc = ceph_crc32c_page(crc, page, page_offset, ret);
2277 (void) ceph_msg_data_advance(&msg->cursor, (size_t)ret);
2278 }
2279 if (do_datacrc)
2280 con->in_data_crc = crc;
2281
2282 return 1; /* must return > 0 to indicate success */
2283 }
2284
2285 /*
2286 * read (part of) a message.
2287 */
2288 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2289
read_partial_message(struct ceph_connection * con)2290 static int read_partial_message(struct ceph_connection *con)
2291 {
2292 struct ceph_msg *m = con->in_msg;
2293 int size;
2294 int end;
2295 int ret;
2296 unsigned int front_len, middle_len, data_len;
2297 bool do_datacrc = !con->msgr->nocrc;
2298 bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2299 u64 seq;
2300 u32 crc;
2301
2302 dout("read_partial_message con %p msg %p\n", con, m);
2303
2304 /* header */
2305 size = sizeof (con->in_hdr);
2306 end = size;
2307 ret = read_partial(con, end, size, &con->in_hdr);
2308 if (ret <= 0)
2309 return ret;
2310
2311 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2312 if (cpu_to_le32(crc) != con->in_hdr.crc) {
2313 pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2314 crc, con->in_hdr.crc);
2315 return -EBADMSG;
2316 }
2317
2318 front_len = le32_to_cpu(con->in_hdr.front_len);
2319 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2320 return -EIO;
2321 middle_len = le32_to_cpu(con->in_hdr.middle_len);
2322 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2323 return -EIO;
2324 data_len = le32_to_cpu(con->in_hdr.data_len);
2325 if (data_len > CEPH_MSG_MAX_DATA_LEN)
2326 return -EIO;
2327
2328 /* verify seq# */
2329 seq = le64_to_cpu(con->in_hdr.seq);
2330 if ((s64)seq - (s64)con->in_seq < 1) {
2331 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2332 ENTITY_NAME(con->peer_name),
2333 ceph_pr_addr(&con->peer_addr.in_addr),
2334 seq, con->in_seq + 1);
2335 con->in_base_pos = -front_len - middle_len - data_len -
2336 sizeof_footer(con);
2337 con->in_tag = CEPH_MSGR_TAG_READY;
2338 return 1;
2339 } else if ((s64)seq - (s64)con->in_seq > 1) {
2340 pr_err("read_partial_message bad seq %lld expected %lld\n",
2341 seq, con->in_seq + 1);
2342 con->error_msg = "bad message sequence # for incoming message";
2343 return -EBADE;
2344 }
2345
2346 /* allocate message? */
2347 if (!con->in_msg) {
2348 int skip = 0;
2349
2350 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2351 front_len, data_len);
2352 ret = ceph_con_in_msg_alloc(con, &skip);
2353 if (ret < 0)
2354 return ret;
2355
2356 BUG_ON(!con->in_msg ^ skip);
2357 if (con->in_msg && data_len > con->in_msg->data_length) {
2358 pr_warn("%s skipping long message (%u > %zd)\n",
2359 __func__, data_len, con->in_msg->data_length);
2360 ceph_msg_put(con->in_msg);
2361 con->in_msg = NULL;
2362 skip = 1;
2363 }
2364 if (skip) {
2365 /* skip this message */
2366 dout("alloc_msg said skip message\n");
2367 con->in_base_pos = -front_len - middle_len - data_len -
2368 sizeof_footer(con);
2369 con->in_tag = CEPH_MSGR_TAG_READY;
2370 con->in_seq++;
2371 return 1;
2372 }
2373
2374 BUG_ON(!con->in_msg);
2375 BUG_ON(con->in_msg->con != con);
2376 m = con->in_msg;
2377 m->front.iov_len = 0; /* haven't read it yet */
2378 if (m->middle)
2379 m->middle->vec.iov_len = 0;
2380
2381 /* prepare for data payload, if any */
2382
2383 if (data_len)
2384 prepare_message_data(con->in_msg, data_len);
2385 }
2386
2387 /* front */
2388 ret = read_partial_message_section(con, &m->front, front_len,
2389 &con->in_front_crc);
2390 if (ret <= 0)
2391 return ret;
2392
2393 /* middle */
2394 if (m->middle) {
2395 ret = read_partial_message_section(con, &m->middle->vec,
2396 middle_len,
2397 &con->in_middle_crc);
2398 if (ret <= 0)
2399 return ret;
2400 }
2401
2402 /* (page) data */
2403 if (data_len) {
2404 ret = read_partial_msg_data(con);
2405 if (ret <= 0)
2406 return ret;
2407 }
2408
2409 /* footer */
2410 if (need_sign)
2411 size = sizeof(m->footer);
2412 else
2413 size = sizeof(m->old_footer);
2414
2415 end += size;
2416 ret = read_partial(con, end, size, &m->footer);
2417 if (ret <= 0)
2418 return ret;
2419
2420 if (!need_sign) {
2421 m->footer.flags = m->old_footer.flags;
2422 m->footer.sig = 0;
2423 }
2424
2425 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2426 m, front_len, m->footer.front_crc, middle_len,
2427 m->footer.middle_crc, data_len, m->footer.data_crc);
2428
2429 /* crc ok? */
2430 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2431 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2432 m, con->in_front_crc, m->footer.front_crc);
2433 return -EBADMSG;
2434 }
2435 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2436 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2437 m, con->in_middle_crc, m->footer.middle_crc);
2438 return -EBADMSG;
2439 }
2440 if (do_datacrc &&
2441 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2442 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2443 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2444 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2445 return -EBADMSG;
2446 }
2447
2448 if (need_sign && con->ops->check_message_signature &&
2449 con->ops->check_message_signature(con, m)) {
2450 pr_err("read_partial_message %p signature check failed\n", m);
2451 return -EBADMSG;
2452 }
2453
2454 return 1; /* done! */
2455 }
2456
2457 /*
2458 * Process message. This happens in the worker thread. The callback should
2459 * be careful not to do anything that waits on other incoming messages or it
2460 * may deadlock.
2461 */
process_message(struct ceph_connection * con)2462 static void process_message(struct ceph_connection *con)
2463 {
2464 struct ceph_msg *msg;
2465
2466 BUG_ON(con->in_msg->con != con);
2467 con->in_msg->con = NULL;
2468 msg = con->in_msg;
2469 con->in_msg = NULL;
2470 con->ops->put(con);
2471
2472 /* if first message, set peer_name */
2473 if (con->peer_name.type == 0)
2474 con->peer_name = msg->hdr.src;
2475
2476 con->in_seq++;
2477 mutex_unlock(&con->mutex);
2478
2479 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2480 msg, le64_to_cpu(msg->hdr.seq),
2481 ENTITY_NAME(msg->hdr.src),
2482 le16_to_cpu(msg->hdr.type),
2483 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2484 le32_to_cpu(msg->hdr.front_len),
2485 le32_to_cpu(msg->hdr.data_len),
2486 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2487 con->ops->dispatch(con, msg);
2488
2489 mutex_lock(&con->mutex);
2490 }
2491
2492
2493 /*
2494 * Write something to the socket. Called in a worker thread when the
2495 * socket appears to be writeable and we have something ready to send.
2496 */
try_write(struct ceph_connection * con)2497 static int try_write(struct ceph_connection *con)
2498 {
2499 int ret = 1;
2500
2501 dout("try_write start %p state %lu\n", con, con->state);
2502
2503 more:
2504 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2505
2506 /* open the socket first? */
2507 if (con->state == CON_STATE_PREOPEN) {
2508 BUG_ON(con->sock);
2509 con->state = CON_STATE_CONNECTING;
2510
2511 con_out_kvec_reset(con);
2512 prepare_write_banner(con);
2513 prepare_read_banner(con);
2514
2515 BUG_ON(con->in_msg);
2516 con->in_tag = CEPH_MSGR_TAG_READY;
2517 dout("try_write initiating connect on %p new state %lu\n",
2518 con, con->state);
2519 ret = ceph_tcp_connect(con);
2520 if (ret < 0) {
2521 con->error_msg = "connect error";
2522 goto out;
2523 }
2524 }
2525
2526 more_kvec:
2527 /* kvec data queued? */
2528 if (con->out_kvec_left) {
2529 ret = write_partial_kvec(con);
2530 if (ret <= 0)
2531 goto out;
2532 }
2533 if (con->out_skip) {
2534 ret = write_partial_skip(con);
2535 if (ret <= 0)
2536 goto out;
2537 }
2538
2539 /* msg pages? */
2540 if (con->out_msg) {
2541 if (con->out_msg_done) {
2542 ceph_msg_put(con->out_msg);
2543 con->out_msg = NULL; /* we're done with this one */
2544 goto do_next;
2545 }
2546
2547 ret = write_partial_message_data(con);
2548 if (ret == 1)
2549 goto more_kvec; /* we need to send the footer, too! */
2550 if (ret == 0)
2551 goto out;
2552 if (ret < 0) {
2553 dout("try_write write_partial_message_data err %d\n",
2554 ret);
2555 goto out;
2556 }
2557 }
2558
2559 do_next:
2560 if (con->state == CON_STATE_OPEN) {
2561 /* is anything else pending? */
2562 if (!list_empty(&con->out_queue)) {
2563 prepare_write_message(con);
2564 goto more;
2565 }
2566 if (con->in_seq > con->in_seq_acked) {
2567 prepare_write_ack(con);
2568 goto more;
2569 }
2570 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2571 prepare_write_keepalive(con);
2572 goto more;
2573 }
2574 }
2575
2576 /* Nothing to do! */
2577 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2578 dout("try_write nothing else to write.\n");
2579 ret = 0;
2580 out:
2581 dout("try_write done on %p ret %d\n", con, ret);
2582 return ret;
2583 }
2584
2585
2586
2587 /*
2588 * Read what we can from the socket.
2589 */
try_read(struct ceph_connection * con)2590 static int try_read(struct ceph_connection *con)
2591 {
2592 int ret = -1;
2593
2594 more:
2595 dout("try_read start on %p state %lu\n", con, con->state);
2596 if (con->state != CON_STATE_CONNECTING &&
2597 con->state != CON_STATE_NEGOTIATING &&
2598 con->state != CON_STATE_OPEN)
2599 return 0;
2600
2601 BUG_ON(!con->sock);
2602
2603 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2604 con->in_base_pos);
2605
2606 if (con->state == CON_STATE_CONNECTING) {
2607 dout("try_read connecting\n");
2608 ret = read_partial_banner(con);
2609 if (ret <= 0)
2610 goto out;
2611 ret = process_banner(con);
2612 if (ret < 0)
2613 goto out;
2614
2615 con->state = CON_STATE_NEGOTIATING;
2616
2617 /*
2618 * Received banner is good, exchange connection info.
2619 * Do not reset out_kvec, as sending our banner raced
2620 * with receiving peer banner after connect completed.
2621 */
2622 ret = prepare_write_connect(con);
2623 if (ret < 0)
2624 goto out;
2625 prepare_read_connect(con);
2626
2627 /* Send connection info before awaiting response */
2628 goto out;
2629 }
2630
2631 if (con->state == CON_STATE_NEGOTIATING) {
2632 dout("try_read negotiating\n");
2633 ret = read_partial_connect(con);
2634 if (ret <= 0)
2635 goto out;
2636 ret = process_connect(con);
2637 if (ret < 0)
2638 goto out;
2639 goto more;
2640 }
2641
2642 WARN_ON(con->state != CON_STATE_OPEN);
2643
2644 if (con->in_base_pos < 0) {
2645 /*
2646 * skipping + discarding content.
2647 *
2648 * FIXME: there must be a better way to do this!
2649 */
2650 static char buf[SKIP_BUF_SIZE];
2651 int skip = min((int) sizeof (buf), -con->in_base_pos);
2652
2653 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2654 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2655 if (ret <= 0)
2656 goto out;
2657 con->in_base_pos += ret;
2658 if (con->in_base_pos)
2659 goto more;
2660 }
2661 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2662 /*
2663 * what's next?
2664 */
2665 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2666 if (ret <= 0)
2667 goto out;
2668 dout("try_read got tag %d\n", (int)con->in_tag);
2669 switch (con->in_tag) {
2670 case CEPH_MSGR_TAG_MSG:
2671 prepare_read_message(con);
2672 break;
2673 case CEPH_MSGR_TAG_ACK:
2674 prepare_read_ack(con);
2675 break;
2676 case CEPH_MSGR_TAG_CLOSE:
2677 con_close_socket(con);
2678 con->state = CON_STATE_CLOSED;
2679 goto out;
2680 default:
2681 goto bad_tag;
2682 }
2683 }
2684 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2685 ret = read_partial_message(con);
2686 if (ret <= 0) {
2687 switch (ret) {
2688 case -EBADMSG:
2689 con->error_msg = "bad crc";
2690 /* fall through */
2691 case -EBADE:
2692 ret = -EIO;
2693 break;
2694 case -EIO:
2695 con->error_msg = "io error";
2696 break;
2697 }
2698 goto out;
2699 }
2700 if (con->in_tag == CEPH_MSGR_TAG_READY)
2701 goto more;
2702 process_message(con);
2703 if (con->state == CON_STATE_OPEN)
2704 prepare_read_tag(con);
2705 goto more;
2706 }
2707 if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2708 con->in_tag == CEPH_MSGR_TAG_SEQ) {
2709 /*
2710 * the final handshake seq exchange is semantically
2711 * equivalent to an ACK
2712 */
2713 ret = read_partial_ack(con);
2714 if (ret <= 0)
2715 goto out;
2716 process_ack(con);
2717 goto more;
2718 }
2719
2720 out:
2721 dout("try_read done on %p ret %d\n", con, ret);
2722 return ret;
2723
2724 bad_tag:
2725 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2726 con->error_msg = "protocol error, garbage tag";
2727 ret = -1;
2728 goto out;
2729 }
2730
2731
2732 /*
2733 * Atomically queue work on a connection after the specified delay.
2734 * Bump @con reference to avoid races with connection teardown.
2735 * Returns 0 if work was queued, or an error code otherwise.
2736 */
queue_con_delay(struct ceph_connection * con,unsigned long delay)2737 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2738 {
2739 if (!con->ops->get(con)) {
2740 dout("%s %p ref count 0\n", __func__, con);
2741 return -ENOENT;
2742 }
2743
2744 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2745 dout("%s %p - already queued\n", __func__, con);
2746 con->ops->put(con);
2747 return -EBUSY;
2748 }
2749
2750 dout("%s %p %lu\n", __func__, con, delay);
2751 return 0;
2752 }
2753
queue_con(struct ceph_connection * con)2754 static void queue_con(struct ceph_connection *con)
2755 {
2756 (void) queue_con_delay(con, 0);
2757 }
2758
cancel_con(struct ceph_connection * con)2759 static void cancel_con(struct ceph_connection *con)
2760 {
2761 if (cancel_delayed_work(&con->work)) {
2762 dout("%s %p\n", __func__, con);
2763 con->ops->put(con);
2764 }
2765 }
2766
con_sock_closed(struct ceph_connection * con)2767 static bool con_sock_closed(struct ceph_connection *con)
2768 {
2769 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2770 return false;
2771
2772 #define CASE(x) \
2773 case CON_STATE_ ## x: \
2774 con->error_msg = "socket closed (con state " #x ")"; \
2775 break;
2776
2777 switch (con->state) {
2778 CASE(CLOSED);
2779 CASE(PREOPEN);
2780 CASE(CONNECTING);
2781 CASE(NEGOTIATING);
2782 CASE(OPEN);
2783 CASE(STANDBY);
2784 default:
2785 pr_warn("%s con %p unrecognized state %lu\n",
2786 __func__, con, con->state);
2787 con->error_msg = "unrecognized con state";
2788 BUG();
2789 break;
2790 }
2791 #undef CASE
2792
2793 return true;
2794 }
2795
con_backoff(struct ceph_connection * con)2796 static bool con_backoff(struct ceph_connection *con)
2797 {
2798 int ret;
2799
2800 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2801 return false;
2802
2803 ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2804 if (ret) {
2805 dout("%s: con %p FAILED to back off %lu\n", __func__,
2806 con, con->delay);
2807 BUG_ON(ret == -ENOENT);
2808 con_flag_set(con, CON_FLAG_BACKOFF);
2809 }
2810
2811 return true;
2812 }
2813
2814 /* Finish fault handling; con->mutex must *not* be held here */
2815
con_fault_finish(struct ceph_connection * con)2816 static void con_fault_finish(struct ceph_connection *con)
2817 {
2818 /*
2819 * in case we faulted due to authentication, invalidate our
2820 * current tickets so that we can get new ones.
2821 */
2822 if (con->auth_retry && con->ops->invalidate_authorizer) {
2823 dout("calling invalidate_authorizer()\n");
2824 con->ops->invalidate_authorizer(con);
2825 }
2826
2827 if (con->ops->fault)
2828 con->ops->fault(con);
2829 }
2830
2831 /*
2832 * Do some work on a connection. Drop a connection ref when we're done.
2833 */
con_work(struct work_struct * work)2834 static void con_work(struct work_struct *work)
2835 {
2836 struct ceph_connection *con = container_of(work, struct ceph_connection,
2837 work.work);
2838 bool fault;
2839
2840 mutex_lock(&con->mutex);
2841 while (true) {
2842 int ret;
2843
2844 if ((fault = con_sock_closed(con))) {
2845 dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2846 break;
2847 }
2848 if (con_backoff(con)) {
2849 dout("%s: con %p BACKOFF\n", __func__, con);
2850 break;
2851 }
2852 if (con->state == CON_STATE_STANDBY) {
2853 dout("%s: con %p STANDBY\n", __func__, con);
2854 break;
2855 }
2856 if (con->state == CON_STATE_CLOSED) {
2857 dout("%s: con %p CLOSED\n", __func__, con);
2858 BUG_ON(con->sock);
2859 break;
2860 }
2861 if (con->state == CON_STATE_PREOPEN) {
2862 dout("%s: con %p PREOPEN\n", __func__, con);
2863 BUG_ON(con->sock);
2864 }
2865
2866 ret = try_read(con);
2867 if (ret < 0) {
2868 if (ret == -EAGAIN)
2869 continue;
2870 if (!con->error_msg)
2871 con->error_msg = "socket error on read";
2872 fault = true;
2873 break;
2874 }
2875
2876 ret = try_write(con);
2877 if (ret < 0) {
2878 if (ret == -EAGAIN)
2879 continue;
2880 if (!con->error_msg)
2881 con->error_msg = "socket error on write";
2882 fault = true;
2883 }
2884
2885 break; /* If we make it to here, we're done */
2886 }
2887 if (fault)
2888 con_fault(con);
2889 mutex_unlock(&con->mutex);
2890
2891 if (fault)
2892 con_fault_finish(con);
2893
2894 con->ops->put(con);
2895 }
2896
2897 /*
2898 * Generic error/fault handler. A retry mechanism is used with
2899 * exponential backoff
2900 */
con_fault(struct ceph_connection * con)2901 static void con_fault(struct ceph_connection *con)
2902 {
2903 dout("fault %p state %lu to peer %s\n",
2904 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2905
2906 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2907 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2908 con->error_msg = NULL;
2909
2910 WARN_ON(con->state != CON_STATE_CONNECTING &&
2911 con->state != CON_STATE_NEGOTIATING &&
2912 con->state != CON_STATE_OPEN);
2913
2914 con_close_socket(con);
2915
2916 if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2917 dout("fault on LOSSYTX channel, marking CLOSED\n");
2918 con->state = CON_STATE_CLOSED;
2919 return;
2920 }
2921
2922 if (con->in_msg) {
2923 BUG_ON(con->in_msg->con != con);
2924 con->in_msg->con = NULL;
2925 ceph_msg_put(con->in_msg);
2926 con->in_msg = NULL;
2927 con->ops->put(con);
2928 }
2929
2930 /* Requeue anything that hasn't been acked */
2931 list_splice_init(&con->out_sent, &con->out_queue);
2932
2933 /* If there are no messages queued or keepalive pending, place
2934 * the connection in a STANDBY state */
2935 if (list_empty(&con->out_queue) &&
2936 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2937 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2938 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2939 con->state = CON_STATE_STANDBY;
2940 } else {
2941 /* retry after a delay. */
2942 con->state = CON_STATE_PREOPEN;
2943 if (con->delay == 0)
2944 con->delay = BASE_DELAY_INTERVAL;
2945 else if (con->delay < MAX_DELAY_INTERVAL)
2946 con->delay *= 2;
2947 con_flag_set(con, CON_FLAG_BACKOFF);
2948 queue_con(con);
2949 }
2950 }
2951
2952
2953
2954 /*
2955 * initialize a new messenger instance
2956 */
ceph_messenger_init(struct ceph_messenger * msgr,struct ceph_entity_addr * myaddr,u64 supported_features,u64 required_features,bool nocrc,bool tcp_nodelay)2957 void ceph_messenger_init(struct ceph_messenger *msgr,
2958 struct ceph_entity_addr *myaddr,
2959 u64 supported_features,
2960 u64 required_features,
2961 bool nocrc,
2962 bool tcp_nodelay)
2963 {
2964 msgr->supported_features = supported_features;
2965 msgr->required_features = required_features;
2966
2967 spin_lock_init(&msgr->global_seq_lock);
2968
2969 if (myaddr)
2970 msgr->inst.addr = *myaddr;
2971
2972 /* select a random nonce */
2973 msgr->inst.addr.type = 0;
2974 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2975 encode_my_addr(msgr);
2976 msgr->nocrc = nocrc;
2977 msgr->tcp_nodelay = tcp_nodelay;
2978
2979 atomic_set(&msgr->stopping, 0);
2980
2981 dout("%s %p\n", __func__, msgr);
2982 }
2983 EXPORT_SYMBOL(ceph_messenger_init);
2984
clear_standby(struct ceph_connection * con)2985 static void clear_standby(struct ceph_connection *con)
2986 {
2987 /* come back from STANDBY? */
2988 if (con->state == CON_STATE_STANDBY) {
2989 dout("clear_standby %p and ++connect_seq\n", con);
2990 con->state = CON_STATE_PREOPEN;
2991 con->connect_seq++;
2992 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2993 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2994 }
2995 }
2996
2997 /*
2998 * Queue up an outgoing message on the given connection.
2999 */
ceph_con_send(struct ceph_connection * con,struct ceph_msg * msg)3000 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
3001 {
3002 /* set src+dst */
3003 msg->hdr.src = con->msgr->inst.name;
3004 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
3005 msg->needs_out_seq = true;
3006
3007 mutex_lock(&con->mutex);
3008
3009 if (con->state == CON_STATE_CLOSED) {
3010 dout("con_send %p closed, dropping %p\n", con, msg);
3011 ceph_msg_put(msg);
3012 mutex_unlock(&con->mutex);
3013 return;
3014 }
3015
3016 BUG_ON(msg->con != NULL);
3017 msg->con = con->ops->get(con);
3018 BUG_ON(msg->con == NULL);
3019
3020 BUG_ON(!list_empty(&msg->list_head));
3021 list_add_tail(&msg->list_head, &con->out_queue);
3022 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3023 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3024 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3025 le32_to_cpu(msg->hdr.front_len),
3026 le32_to_cpu(msg->hdr.middle_len),
3027 le32_to_cpu(msg->hdr.data_len));
3028
3029 clear_standby(con);
3030 mutex_unlock(&con->mutex);
3031
3032 /* if there wasn't anything waiting to send before, queue
3033 * new work */
3034 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3035 queue_con(con);
3036 }
3037 EXPORT_SYMBOL(ceph_con_send);
3038
3039 /*
3040 * Revoke a message that was previously queued for send
3041 */
ceph_msg_revoke(struct ceph_msg * msg)3042 void ceph_msg_revoke(struct ceph_msg *msg)
3043 {
3044 struct ceph_connection *con = msg->con;
3045
3046 if (!con)
3047 return; /* Message not in our possession */
3048
3049 mutex_lock(&con->mutex);
3050 if (!list_empty(&msg->list_head)) {
3051 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3052 list_del_init(&msg->list_head);
3053 BUG_ON(msg->con == NULL);
3054 msg->con->ops->put(msg->con);
3055 msg->con = NULL;
3056 msg->hdr.seq = 0;
3057
3058 ceph_msg_put(msg);
3059 }
3060 if (con->out_msg == msg) {
3061 BUG_ON(con->out_skip);
3062 /* footer */
3063 if (con->out_msg_done) {
3064 con->out_skip += con_out_kvec_skip(con);
3065 } else {
3066 BUG_ON(!msg->data_length);
3067 if (con->peer_features & CEPH_FEATURE_MSG_AUTH)
3068 con->out_skip += sizeof(msg->footer);
3069 else
3070 con->out_skip += sizeof(msg->old_footer);
3071 }
3072 /* data, middle, front */
3073 if (msg->data_length)
3074 con->out_skip += msg->cursor.total_resid;
3075 if (msg->middle)
3076 con->out_skip += con_out_kvec_skip(con);
3077 con->out_skip += con_out_kvec_skip(con);
3078
3079 dout("%s %p msg %p - was sending, will write %d skip %d\n",
3080 __func__, con, msg, con->out_kvec_bytes, con->out_skip);
3081 msg->hdr.seq = 0;
3082 con->out_msg = NULL;
3083 ceph_msg_put(msg);
3084 }
3085
3086 mutex_unlock(&con->mutex);
3087 }
3088
3089 /*
3090 * Revoke a message that we may be reading data into
3091 */
ceph_msg_revoke_incoming(struct ceph_msg * msg)3092 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3093 {
3094 struct ceph_connection *con;
3095
3096 BUG_ON(msg == NULL);
3097 if (!msg->con) {
3098 dout("%s msg %p null con\n", __func__, msg);
3099
3100 return; /* Message not in our possession */
3101 }
3102
3103 con = msg->con;
3104 mutex_lock(&con->mutex);
3105 if (con->in_msg == msg) {
3106 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3107 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3108 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3109
3110 /* skip rest of message */
3111 dout("%s %p msg %p revoked\n", __func__, con, msg);
3112 con->in_base_pos = con->in_base_pos -
3113 sizeof(struct ceph_msg_header) -
3114 front_len -
3115 middle_len -
3116 data_len -
3117 sizeof(struct ceph_msg_footer);
3118 ceph_msg_put(con->in_msg);
3119 con->in_msg = NULL;
3120 con->in_tag = CEPH_MSGR_TAG_READY;
3121 con->in_seq++;
3122 } else {
3123 dout("%s %p in_msg %p msg %p no-op\n",
3124 __func__, con, con->in_msg, msg);
3125 }
3126 mutex_unlock(&con->mutex);
3127 }
3128
3129 /*
3130 * Queue a keepalive byte to ensure the tcp connection is alive.
3131 */
ceph_con_keepalive(struct ceph_connection * con)3132 void ceph_con_keepalive(struct ceph_connection *con)
3133 {
3134 dout("con_keepalive %p\n", con);
3135 mutex_lock(&con->mutex);
3136 clear_standby(con);
3137 mutex_unlock(&con->mutex);
3138 if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3139 con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3140 queue_con(con);
3141 }
3142 EXPORT_SYMBOL(ceph_con_keepalive);
3143
ceph_msg_data_create(enum ceph_msg_data_type type)3144 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3145 {
3146 struct ceph_msg_data *data;
3147
3148 if (WARN_ON(!ceph_msg_data_type_valid(type)))
3149 return NULL;
3150
3151 data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3152 if (data)
3153 data->type = type;
3154 INIT_LIST_HEAD(&data->links);
3155
3156 return data;
3157 }
3158
ceph_msg_data_destroy(struct ceph_msg_data * data)3159 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3160 {
3161 if (!data)
3162 return;
3163
3164 WARN_ON(!list_empty(&data->links));
3165 if (data->type == CEPH_MSG_DATA_PAGELIST)
3166 ceph_pagelist_release(data->pagelist);
3167 kmem_cache_free(ceph_msg_data_cache, data);
3168 }
3169
ceph_msg_data_add_pages(struct ceph_msg * msg,struct page ** pages,size_t length,size_t alignment)3170 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3171 size_t length, size_t alignment)
3172 {
3173 struct ceph_msg_data *data;
3174
3175 BUG_ON(!pages);
3176 BUG_ON(!length);
3177
3178 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3179 BUG_ON(!data);
3180 data->pages = pages;
3181 data->length = length;
3182 data->alignment = alignment & ~PAGE_MASK;
3183
3184 list_add_tail(&data->links, &msg->data);
3185 msg->data_length += length;
3186 }
3187 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3188
ceph_msg_data_add_pagelist(struct ceph_msg * msg,struct ceph_pagelist * pagelist)3189 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3190 struct ceph_pagelist *pagelist)
3191 {
3192 struct ceph_msg_data *data;
3193
3194 BUG_ON(!pagelist);
3195 BUG_ON(!pagelist->length);
3196
3197 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3198 BUG_ON(!data);
3199 data->pagelist = pagelist;
3200
3201 list_add_tail(&data->links, &msg->data);
3202 msg->data_length += pagelist->length;
3203 }
3204 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3205
3206 #ifdef CONFIG_BLOCK
ceph_msg_data_add_bio(struct ceph_msg * msg,struct bio * bio,size_t length)3207 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3208 size_t length)
3209 {
3210 struct ceph_msg_data *data;
3211
3212 BUG_ON(!bio);
3213
3214 data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3215 BUG_ON(!data);
3216 data->bio = bio;
3217 data->bio_length = length;
3218
3219 list_add_tail(&data->links, &msg->data);
3220 msg->data_length += length;
3221 }
3222 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3223 #endif /* CONFIG_BLOCK */
3224
3225 /*
3226 * construct a new message with given type, size
3227 * the new msg has a ref count of 1.
3228 */
ceph_msg_new(int type,int front_len,gfp_t flags,bool can_fail)3229 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3230 bool can_fail)
3231 {
3232 struct ceph_msg *m;
3233
3234 m = kmem_cache_zalloc(ceph_msg_cache, flags);
3235 if (m == NULL)
3236 goto out;
3237
3238 m->hdr.type = cpu_to_le16(type);
3239 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3240 m->hdr.front_len = cpu_to_le32(front_len);
3241
3242 INIT_LIST_HEAD(&m->list_head);
3243 kref_init(&m->kref);
3244 INIT_LIST_HEAD(&m->data);
3245
3246 /* front */
3247 if (front_len) {
3248 m->front.iov_base = ceph_kvmalloc(front_len, flags);
3249 if (m->front.iov_base == NULL) {
3250 dout("ceph_msg_new can't allocate %d bytes\n",
3251 front_len);
3252 goto out2;
3253 }
3254 } else {
3255 m->front.iov_base = NULL;
3256 }
3257 m->front_alloc_len = m->front.iov_len = front_len;
3258
3259 dout("ceph_msg_new %p front %d\n", m, front_len);
3260 return m;
3261
3262 out2:
3263 ceph_msg_put(m);
3264 out:
3265 if (!can_fail) {
3266 pr_err("msg_new can't create type %d front %d\n", type,
3267 front_len);
3268 WARN_ON(1);
3269 } else {
3270 dout("msg_new can't create type %d front %d\n", type,
3271 front_len);
3272 }
3273 return NULL;
3274 }
3275 EXPORT_SYMBOL(ceph_msg_new);
3276
3277 /*
3278 * Allocate "middle" portion of a message, if it is needed and wasn't
3279 * allocated by alloc_msg. This allows us to read a small fixed-size
3280 * per-type header in the front and then gracefully fail (i.e.,
3281 * propagate the error to the caller based on info in the front) when
3282 * the middle is too large.
3283 */
ceph_alloc_middle(struct ceph_connection * con,struct ceph_msg * msg)3284 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3285 {
3286 int type = le16_to_cpu(msg->hdr.type);
3287 int middle_len = le32_to_cpu(msg->hdr.middle_len);
3288
3289 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3290 ceph_msg_type_name(type), middle_len);
3291 BUG_ON(!middle_len);
3292 BUG_ON(msg->middle);
3293
3294 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3295 if (!msg->middle)
3296 return -ENOMEM;
3297 return 0;
3298 }
3299
3300 /*
3301 * Allocate a message for receiving an incoming message on a
3302 * connection, and save the result in con->in_msg. Uses the
3303 * connection's private alloc_msg op if available.
3304 *
3305 * Returns 0 on success, or a negative error code.
3306 *
3307 * On success, if we set *skip = 1:
3308 * - the next message should be skipped and ignored.
3309 * - con->in_msg == NULL
3310 * or if we set *skip = 0:
3311 * - con->in_msg is non-null.
3312 * On error (ENOMEM, EAGAIN, ...),
3313 * - con->in_msg == NULL
3314 */
ceph_con_in_msg_alloc(struct ceph_connection * con,int * skip)3315 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3316 {
3317 struct ceph_msg_header *hdr = &con->in_hdr;
3318 int middle_len = le32_to_cpu(hdr->middle_len);
3319 struct ceph_msg *msg;
3320 int ret = 0;
3321
3322 BUG_ON(con->in_msg != NULL);
3323 BUG_ON(!con->ops->alloc_msg);
3324
3325 mutex_unlock(&con->mutex);
3326 msg = con->ops->alloc_msg(con, hdr, skip);
3327 mutex_lock(&con->mutex);
3328 if (con->state != CON_STATE_OPEN) {
3329 if (msg)
3330 ceph_msg_put(msg);
3331 return -EAGAIN;
3332 }
3333 if (msg) {
3334 BUG_ON(*skip);
3335 con->in_msg = msg;
3336 con->in_msg->con = con->ops->get(con);
3337 BUG_ON(con->in_msg->con == NULL);
3338 } else {
3339 /*
3340 * Null message pointer means either we should skip
3341 * this message or we couldn't allocate memory. The
3342 * former is not an error.
3343 */
3344 if (*skip)
3345 return 0;
3346
3347 con->error_msg = "error allocating memory for incoming message";
3348 return -ENOMEM;
3349 }
3350 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3351
3352 if (middle_len && !con->in_msg->middle) {
3353 ret = ceph_alloc_middle(con, con->in_msg);
3354 if (ret < 0) {
3355 ceph_msg_put(con->in_msg);
3356 con->in_msg = NULL;
3357 }
3358 }
3359
3360 return ret;
3361 }
3362
3363
3364 /*
3365 * Free a generically kmalloc'd message.
3366 */
ceph_msg_free(struct ceph_msg * m)3367 static void ceph_msg_free(struct ceph_msg *m)
3368 {
3369 dout("%s %p\n", __func__, m);
3370 kvfree(m->front.iov_base);
3371 kmem_cache_free(ceph_msg_cache, m);
3372 }
3373
ceph_msg_release(struct kref * kref)3374 static void ceph_msg_release(struct kref *kref)
3375 {
3376 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3377 LIST_HEAD(data);
3378 struct list_head *links;
3379 struct list_head *next;
3380
3381 dout("%s %p\n", __func__, m);
3382 WARN_ON(!list_empty(&m->list_head));
3383
3384 /* drop middle, data, if any */
3385 if (m->middle) {
3386 ceph_buffer_put(m->middle);
3387 m->middle = NULL;
3388 }
3389
3390 list_splice_init(&m->data, &data);
3391 list_for_each_safe(links, next, &data) {
3392 struct ceph_msg_data *data;
3393
3394 data = list_entry(links, struct ceph_msg_data, links);
3395 list_del_init(links);
3396 ceph_msg_data_destroy(data);
3397 }
3398 m->data_length = 0;
3399
3400 if (m->pool)
3401 ceph_msgpool_put(m->pool, m);
3402 else
3403 ceph_msg_free(m);
3404 }
3405
ceph_msg_get(struct ceph_msg * msg)3406 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3407 {
3408 dout("%s %p (was %d)\n", __func__, msg,
3409 atomic_read(&msg->kref.refcount));
3410 kref_get(&msg->kref);
3411 return msg;
3412 }
3413 EXPORT_SYMBOL(ceph_msg_get);
3414
ceph_msg_put(struct ceph_msg * msg)3415 void ceph_msg_put(struct ceph_msg *msg)
3416 {
3417 dout("%s %p (was %d)\n", __func__, msg,
3418 atomic_read(&msg->kref.refcount));
3419 kref_put(&msg->kref, ceph_msg_release);
3420 }
3421 EXPORT_SYMBOL(ceph_msg_put);
3422
ceph_msg_dump(struct ceph_msg * msg)3423 void ceph_msg_dump(struct ceph_msg *msg)
3424 {
3425 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3426 msg->front_alloc_len, msg->data_length);
3427 print_hex_dump(KERN_DEBUG, "header: ",
3428 DUMP_PREFIX_OFFSET, 16, 1,
3429 &msg->hdr, sizeof(msg->hdr), true);
3430 print_hex_dump(KERN_DEBUG, " front: ",
3431 DUMP_PREFIX_OFFSET, 16, 1,
3432 msg->front.iov_base, msg->front.iov_len, true);
3433 if (msg->middle)
3434 print_hex_dump(KERN_DEBUG, "middle: ",
3435 DUMP_PREFIX_OFFSET, 16, 1,
3436 msg->middle->vec.iov_base,
3437 msg->middle->vec.iov_len, true);
3438 print_hex_dump(KERN_DEBUG, "footer: ",
3439 DUMP_PREFIX_OFFSET, 16, 1,
3440 &msg->footer, sizeof(msg->footer), true);
3441 }
3442 EXPORT_SYMBOL(ceph_msg_dump);
3443