1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19  *
20  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21  * CA 95054 USA or visit www.sun.com if you need additional information or
22  * have any questions.
23  *
24  * GPL HEADER END
25  */
26 /*
27  * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
28  * Use is subject to license terms.
29  *
30  * Copyright (c) 2011, 2012, Intel Corporation.
31  */
32 /*
33  * This file is part of Lustre, http://www.lustre.org/
34  * Lustre is a trademark of Sun Microsystems, Inc.
35  *
36  * cl code shared between vvp and liblustre (and other Lustre clients in the
37  * future).
38  *
39  *   Author: Nikita Danilov <nikita.danilov@sun.com>
40  */
41 
42 #define DEBUG_SUBSYSTEM S_LLITE
43 
44 #include "../../include/linux/libcfs/libcfs.h"
45 # include <linux/fs.h>
46 # include <linux/sched.h>
47 # include <linux/mm.h>
48 # include <linux/quotaops.h>
49 # include <linux/highmem.h>
50 # include <linux/pagemap.h>
51 # include <linux/rbtree.h>
52 
53 #include "../include/obd.h"
54 #include "../include/obd_support.h"
55 #include "../include/lustre_fid.h"
56 #include "../include/lustre_lite.h"
57 #include "../include/lustre_dlm.h"
58 #include "../include/lustre_ver.h"
59 #include "../include/lustre_mdc.h"
60 #include "../include/cl_object.h"
61 
62 #include "../include/lclient.h"
63 
64 #include "../llite/llite_internal.h"
65 
66 static const struct cl_req_operations ccc_req_ops;
67 
68 /*
69  * ccc_ prefix stands for "Common Client Code".
70  */
71 
72 static struct kmem_cache *ccc_lock_kmem;
73 static struct kmem_cache *ccc_object_kmem;
74 static struct kmem_cache *ccc_thread_kmem;
75 static struct kmem_cache *ccc_session_kmem;
76 static struct kmem_cache *ccc_req_kmem;
77 
78 static struct lu_kmem_descr ccc_caches[] = {
79 	{
80 		.ckd_cache = &ccc_lock_kmem,
81 		.ckd_name  = "ccc_lock_kmem",
82 		.ckd_size  = sizeof(struct ccc_lock)
83 	},
84 	{
85 		.ckd_cache = &ccc_object_kmem,
86 		.ckd_name  = "ccc_object_kmem",
87 		.ckd_size  = sizeof(struct ccc_object)
88 	},
89 	{
90 		.ckd_cache = &ccc_thread_kmem,
91 		.ckd_name  = "ccc_thread_kmem",
92 		.ckd_size  = sizeof(struct ccc_thread_info),
93 	},
94 	{
95 		.ckd_cache = &ccc_session_kmem,
96 		.ckd_name  = "ccc_session_kmem",
97 		.ckd_size  = sizeof(struct ccc_session)
98 	},
99 	{
100 		.ckd_cache = &ccc_req_kmem,
101 		.ckd_name  = "ccc_req_kmem",
102 		.ckd_size  = sizeof(struct ccc_req)
103 	},
104 	{
105 		.ckd_cache = NULL
106 	}
107 };
108 
109 /*****************************************************************************
110  *
111  * Vvp device and device type functions.
112  *
113  */
114 
ccc_key_init(const struct lu_context * ctx,struct lu_context_key * key)115 void *ccc_key_init(const struct lu_context *ctx, struct lu_context_key *key)
116 {
117 	struct ccc_thread_info *info;
118 
119 	OBD_SLAB_ALLOC_PTR_GFP(info, ccc_thread_kmem, GFP_NOFS);
120 	if (info == NULL)
121 		info = ERR_PTR(-ENOMEM);
122 	return info;
123 }
124 
ccc_key_fini(const struct lu_context * ctx,struct lu_context_key * key,void * data)125 void ccc_key_fini(const struct lu_context *ctx,
126 			 struct lu_context_key *key, void *data)
127 {
128 	struct ccc_thread_info *info = data;
129 
130 	OBD_SLAB_FREE_PTR(info, ccc_thread_kmem);
131 }
132 
ccc_session_key_init(const struct lu_context * ctx,struct lu_context_key * key)133 void *ccc_session_key_init(const struct lu_context *ctx,
134 				  struct lu_context_key *key)
135 {
136 	struct ccc_session *session;
137 
138 	OBD_SLAB_ALLOC_PTR_GFP(session, ccc_session_kmem, GFP_NOFS);
139 	if (session == NULL)
140 		session = ERR_PTR(-ENOMEM);
141 	return session;
142 }
143 
ccc_session_key_fini(const struct lu_context * ctx,struct lu_context_key * key,void * data)144 void ccc_session_key_fini(const struct lu_context *ctx,
145 				 struct lu_context_key *key, void *data)
146 {
147 	struct ccc_session *session = data;
148 
149 	OBD_SLAB_FREE_PTR(session, ccc_session_kmem);
150 }
151 
152 struct lu_context_key ccc_key = {
153 	.lct_tags = LCT_CL_THREAD,
154 	.lct_init = ccc_key_init,
155 	.lct_fini = ccc_key_fini
156 };
157 
158 struct lu_context_key ccc_session_key = {
159 	.lct_tags = LCT_SESSION,
160 	.lct_init = ccc_session_key_init,
161 	.lct_fini = ccc_session_key_fini
162 };
163 
164 
165 /* type constructor/destructor: ccc_type_{init,fini,start,stop}(). */
166 /* LU_TYPE_INIT_FINI(ccc, &ccc_key, &ccc_session_key); */
167 
ccc_device_init(const struct lu_env * env,struct lu_device * d,const char * name,struct lu_device * next)168 int ccc_device_init(const struct lu_env *env, struct lu_device *d,
169 			   const char *name, struct lu_device *next)
170 {
171 	struct ccc_device  *vdv;
172 	int rc;
173 
174 	vdv = lu2ccc_dev(d);
175 	vdv->cdv_next = lu2cl_dev(next);
176 
177 	LASSERT(d->ld_site != NULL && next->ld_type != NULL);
178 	next->ld_site = d->ld_site;
179 	rc = next->ld_type->ldt_ops->ldto_device_init(
180 			env, next, next->ld_type->ldt_name, NULL);
181 	if (rc == 0) {
182 		lu_device_get(next);
183 		lu_ref_add(&next->ld_reference, "lu-stack", &lu_site_init);
184 	}
185 	return rc;
186 }
187 
ccc_device_fini(const struct lu_env * env,struct lu_device * d)188 struct lu_device *ccc_device_fini(const struct lu_env *env,
189 					 struct lu_device *d)
190 {
191 	return cl2lu_dev(lu2ccc_dev(d)->cdv_next);
192 }
193 
ccc_device_alloc(const struct lu_env * env,struct lu_device_type * t,struct lustre_cfg * cfg,const struct lu_device_operations * luops,const struct cl_device_operations * clops)194 struct lu_device *ccc_device_alloc(const struct lu_env *env,
195 				   struct lu_device_type *t,
196 				   struct lustre_cfg *cfg,
197 				   const struct lu_device_operations *luops,
198 				   const struct cl_device_operations *clops)
199 {
200 	struct ccc_device *vdv;
201 	struct lu_device  *lud;
202 	struct cl_site    *site;
203 	int rc;
204 
205 	OBD_ALLOC_PTR(vdv);
206 	if (vdv == NULL)
207 		return ERR_PTR(-ENOMEM);
208 
209 	lud = &vdv->cdv_cl.cd_lu_dev;
210 	cl_device_init(&vdv->cdv_cl, t);
211 	ccc2lu_dev(vdv)->ld_ops = luops;
212 	vdv->cdv_cl.cd_ops = clops;
213 
214 	OBD_ALLOC_PTR(site);
215 	if (site != NULL) {
216 		rc = cl_site_init(site, &vdv->cdv_cl);
217 		if (rc == 0)
218 			rc = lu_site_init_finish(&site->cs_lu);
219 		else {
220 			LASSERT(lud->ld_site == NULL);
221 			CERROR("Cannot init lu_site, rc %d.\n", rc);
222 			OBD_FREE_PTR(site);
223 		}
224 	} else
225 		rc = -ENOMEM;
226 	if (rc != 0) {
227 		ccc_device_free(env, lud);
228 		lud = ERR_PTR(rc);
229 	}
230 	return lud;
231 }
232 
ccc_device_free(const struct lu_env * env,struct lu_device * d)233 struct lu_device *ccc_device_free(const struct lu_env *env,
234 					 struct lu_device *d)
235 {
236 	struct ccc_device *vdv  = lu2ccc_dev(d);
237 	struct cl_site    *site = lu2cl_site(d->ld_site);
238 	struct lu_device  *next = cl2lu_dev(vdv->cdv_next);
239 
240 	if (d->ld_site != NULL) {
241 		cl_site_fini(site);
242 		OBD_FREE_PTR(site);
243 	}
244 	cl_device_fini(lu2cl_dev(d));
245 	OBD_FREE_PTR(vdv);
246 	return next;
247 }
248 
ccc_req_init(const struct lu_env * env,struct cl_device * dev,struct cl_req * req)249 int ccc_req_init(const struct lu_env *env, struct cl_device *dev,
250 			struct cl_req *req)
251 {
252 	struct ccc_req *vrq;
253 	int result;
254 
255 	OBD_SLAB_ALLOC_PTR_GFP(vrq, ccc_req_kmem, GFP_NOFS);
256 	if (vrq != NULL) {
257 		cl_req_slice_add(req, &vrq->crq_cl, dev, &ccc_req_ops);
258 		result = 0;
259 	} else
260 		result = -ENOMEM;
261 	return result;
262 }
263 
264 /**
265  * An `emergency' environment used by ccc_inode_fini() when cl_env_get()
266  * fails. Access to this environment is serialized by ccc_inode_fini_guard
267  * mutex.
268  */
269 static struct lu_env *ccc_inode_fini_env;
270 
271 /**
272  * A mutex serializing calls to slp_inode_fini() under extreme memory
273  * pressure, when environments cannot be allocated.
274  */
275 static DEFINE_MUTEX(ccc_inode_fini_guard);
276 static int dummy_refcheck;
277 
ccc_global_init(struct lu_device_type * device_type)278 int ccc_global_init(struct lu_device_type *device_type)
279 {
280 	int result;
281 
282 	result = lu_kmem_init(ccc_caches);
283 	if (result)
284 		return result;
285 
286 	result = lu_device_type_init(device_type);
287 	if (result)
288 		goto out_kmem;
289 
290 	ccc_inode_fini_env = cl_env_alloc(&dummy_refcheck,
291 					  LCT_REMEMBER|LCT_NOREF);
292 	if (IS_ERR(ccc_inode_fini_env)) {
293 		result = PTR_ERR(ccc_inode_fini_env);
294 		goto out_device;
295 	}
296 
297 	ccc_inode_fini_env->le_ctx.lc_cookie = 0x4;
298 	return 0;
299 out_device:
300 	lu_device_type_fini(device_type);
301 out_kmem:
302 	lu_kmem_fini(ccc_caches);
303 	return result;
304 }
305 
ccc_global_fini(struct lu_device_type * device_type)306 void ccc_global_fini(struct lu_device_type *device_type)
307 {
308 	if (ccc_inode_fini_env != NULL) {
309 		cl_env_put(ccc_inode_fini_env, &dummy_refcheck);
310 		ccc_inode_fini_env = NULL;
311 	}
312 	lu_device_type_fini(device_type);
313 	lu_kmem_fini(ccc_caches);
314 }
315 
316 /*****************************************************************************
317  *
318  * Object operations.
319  *
320  */
321 
ccc_object_alloc(const struct lu_env * env,const struct lu_object_header * unused,struct lu_device * dev,const struct cl_object_operations * clops,const struct lu_object_operations * luops)322 struct lu_object *ccc_object_alloc(const struct lu_env *env,
323 				   const struct lu_object_header *unused,
324 				   struct lu_device *dev,
325 				   const struct cl_object_operations *clops,
326 				   const struct lu_object_operations *luops)
327 {
328 	struct ccc_object *vob;
329 	struct lu_object  *obj;
330 
331 	OBD_SLAB_ALLOC_PTR_GFP(vob, ccc_object_kmem, GFP_NOFS);
332 	if (vob != NULL) {
333 		struct cl_object_header *hdr;
334 
335 		obj = ccc2lu(vob);
336 		hdr = &vob->cob_header;
337 		cl_object_header_init(hdr);
338 		lu_object_init(obj, &hdr->coh_lu, dev);
339 		lu_object_add_top(&hdr->coh_lu, obj);
340 
341 		vob->cob_cl.co_ops = clops;
342 		obj->lo_ops = luops;
343 	} else
344 		obj = NULL;
345 	return obj;
346 }
347 
ccc_object_init0(const struct lu_env * env,struct ccc_object * vob,const struct cl_object_conf * conf)348 int ccc_object_init0(const struct lu_env *env,
349 			    struct ccc_object *vob,
350 			    const struct cl_object_conf *conf)
351 {
352 	vob->cob_inode = conf->coc_inode;
353 	vob->cob_transient_pages = 0;
354 	cl_object_page_init(&vob->cob_cl, sizeof(struct ccc_page));
355 	return 0;
356 }
357 
ccc_object_init(const struct lu_env * env,struct lu_object * obj,const struct lu_object_conf * conf)358 int ccc_object_init(const struct lu_env *env, struct lu_object *obj,
359 			   const struct lu_object_conf *conf)
360 {
361 	struct ccc_device *dev = lu2ccc_dev(obj->lo_dev);
362 	struct ccc_object *vob = lu2ccc(obj);
363 	struct lu_object  *below;
364 	struct lu_device  *under;
365 	int result;
366 
367 	under = &dev->cdv_next->cd_lu_dev;
368 	below = under->ld_ops->ldo_object_alloc(env, obj->lo_header, under);
369 	if (below != NULL) {
370 		const struct cl_object_conf *cconf;
371 
372 		cconf = lu2cl_conf(conf);
373 		INIT_LIST_HEAD(&vob->cob_pending_list);
374 		lu_object_add(obj, below);
375 		result = ccc_object_init0(env, vob, cconf);
376 	} else
377 		result = -ENOMEM;
378 	return result;
379 }
380 
ccc_object_free(const struct lu_env * env,struct lu_object * obj)381 void ccc_object_free(const struct lu_env *env, struct lu_object *obj)
382 {
383 	struct ccc_object *vob = lu2ccc(obj);
384 
385 	lu_object_fini(obj);
386 	lu_object_header_fini(obj->lo_header);
387 	OBD_SLAB_FREE_PTR(vob, ccc_object_kmem);
388 }
389 
ccc_lock_init(const struct lu_env * env,struct cl_object * obj,struct cl_lock * lock,const struct cl_io * unused,const struct cl_lock_operations * lkops)390 int ccc_lock_init(const struct lu_env *env,
391 		  struct cl_object *obj, struct cl_lock *lock,
392 		  const struct cl_io *unused,
393 		  const struct cl_lock_operations *lkops)
394 {
395 	struct ccc_lock *clk;
396 	int result;
397 
398 	CLOBINVRNT(env, obj, ccc_object_invariant(obj));
399 
400 	OBD_SLAB_ALLOC_PTR_GFP(clk, ccc_lock_kmem, GFP_NOFS);
401 	if (clk != NULL) {
402 		cl_lock_slice_add(lock, &clk->clk_cl, obj, lkops);
403 		result = 0;
404 	} else
405 		result = -ENOMEM;
406 	return result;
407 }
408 
ccc_attr_set(const struct lu_env * env,struct cl_object * obj,const struct cl_attr * attr,unsigned valid)409 int ccc_attr_set(const struct lu_env *env, struct cl_object *obj,
410 		 const struct cl_attr *attr, unsigned valid)
411 {
412 	return 0;
413 }
414 
ccc_object_glimpse(const struct lu_env * env,const struct cl_object * obj,struct ost_lvb * lvb)415 int ccc_object_glimpse(const struct lu_env *env,
416 		       const struct cl_object *obj, struct ost_lvb *lvb)
417 {
418 	struct inode *inode = ccc_object_inode(obj);
419 
420 	lvb->lvb_mtime = cl_inode_mtime(inode);
421 	lvb->lvb_atime = cl_inode_atime(inode);
422 	lvb->lvb_ctime = cl_inode_ctime(inode);
423 	/*
424 	 * LU-417: Add dirty pages block count lest i_blocks reports 0, some
425 	 * "cp" or "tar" on remote node may think it's a completely sparse file
426 	 * and skip it.
427 	 */
428 	if (lvb->lvb_size > 0 && lvb->lvb_blocks == 0)
429 		lvb->lvb_blocks = dirty_cnt(inode);
430 	return 0;
431 }
432 
433 
434 
ccc_conf_set(const struct lu_env * env,struct cl_object * obj,const struct cl_object_conf * conf)435 int ccc_conf_set(const struct lu_env *env, struct cl_object *obj,
436 			const struct cl_object_conf *conf)
437 {
438 	/* TODO: destroy all pages attached to this object. */
439 	return 0;
440 }
441 
ccc_object_size_lock(struct cl_object * obj)442 static void ccc_object_size_lock(struct cl_object *obj)
443 {
444 	struct inode *inode = ccc_object_inode(obj);
445 
446 	cl_isize_lock(inode);
447 	cl_object_attr_lock(obj);
448 }
449 
ccc_object_size_unlock(struct cl_object * obj)450 static void ccc_object_size_unlock(struct cl_object *obj)
451 {
452 	struct inode *inode = ccc_object_inode(obj);
453 
454 	cl_object_attr_unlock(obj);
455 	cl_isize_unlock(inode);
456 }
457 
458 /*****************************************************************************
459  *
460  * Page operations.
461  *
462  */
463 
ccc_page_vmpage(const struct lu_env * env,const struct cl_page_slice * slice)464 struct page *ccc_page_vmpage(const struct lu_env *env,
465 			    const struct cl_page_slice *slice)
466 {
467 	return cl2vm_page(slice);
468 }
469 
ccc_page_is_under_lock(const struct lu_env * env,const struct cl_page_slice * slice,struct cl_io * io)470 int ccc_page_is_under_lock(const struct lu_env *env,
471 			   const struct cl_page_slice *slice,
472 			   struct cl_io *io)
473 {
474 	struct ccc_io	*cio  = ccc_env_io(env);
475 	struct cl_lock_descr *desc = &ccc_env_info(env)->cti_descr;
476 	struct cl_page       *page = slice->cpl_page;
477 
478 	int result;
479 
480 	if (io->ci_type == CIT_READ || io->ci_type == CIT_WRITE ||
481 	    io->ci_type == CIT_FAULT) {
482 		if (cio->cui_fd->fd_flags & LL_FILE_GROUP_LOCKED)
483 			result = -EBUSY;
484 		else {
485 			desc->cld_start = page->cp_index;
486 			desc->cld_end   = page->cp_index;
487 			desc->cld_obj   = page->cp_obj;
488 			desc->cld_mode  = CLM_READ;
489 			result = cl_queue_match(&io->ci_lockset.cls_done,
490 						desc) ? -EBUSY : 0;
491 		}
492 	} else
493 		result = 0;
494 	return result;
495 }
496 
ccc_fail(const struct lu_env * env,const struct cl_page_slice * slice)497 int ccc_fail(const struct lu_env *env, const struct cl_page_slice *slice)
498 {
499 	/*
500 	 * Cached read?
501 	 */
502 	LBUG();
503 	return 0;
504 }
505 
ccc_transient_page_verify(const struct cl_page * page)506 void ccc_transient_page_verify(const struct cl_page *page)
507 {
508 }
509 
ccc_transient_page_own(const struct lu_env * env,const struct cl_page_slice * slice,struct cl_io * unused,int nonblock)510 int ccc_transient_page_own(const struct lu_env *env,
511 				   const struct cl_page_slice *slice,
512 				   struct cl_io *unused,
513 				   int nonblock)
514 {
515 	ccc_transient_page_verify(slice->cpl_page);
516 	return 0;
517 }
518 
ccc_transient_page_assume(const struct lu_env * env,const struct cl_page_slice * slice,struct cl_io * unused)519 void ccc_transient_page_assume(const struct lu_env *env,
520 				      const struct cl_page_slice *slice,
521 				      struct cl_io *unused)
522 {
523 	ccc_transient_page_verify(slice->cpl_page);
524 }
525 
ccc_transient_page_unassume(const struct lu_env * env,const struct cl_page_slice * slice,struct cl_io * unused)526 void ccc_transient_page_unassume(const struct lu_env *env,
527 					const struct cl_page_slice *slice,
528 					struct cl_io *unused)
529 {
530 	ccc_transient_page_verify(slice->cpl_page);
531 }
532 
ccc_transient_page_disown(const struct lu_env * env,const struct cl_page_slice * slice,struct cl_io * unused)533 void ccc_transient_page_disown(const struct lu_env *env,
534 				      const struct cl_page_slice *slice,
535 				      struct cl_io *unused)
536 {
537 	ccc_transient_page_verify(slice->cpl_page);
538 }
539 
ccc_transient_page_discard(const struct lu_env * env,const struct cl_page_slice * slice,struct cl_io * unused)540 void ccc_transient_page_discard(const struct lu_env *env,
541 				       const struct cl_page_slice *slice,
542 				       struct cl_io *unused)
543 {
544 	struct cl_page *page = slice->cpl_page;
545 
546 	ccc_transient_page_verify(slice->cpl_page);
547 
548 	/*
549 	 * For transient pages, remove it from the radix tree.
550 	 */
551 	cl_page_delete(env, page);
552 }
553 
ccc_transient_page_prep(const struct lu_env * env,const struct cl_page_slice * slice,struct cl_io * unused)554 int ccc_transient_page_prep(const struct lu_env *env,
555 				   const struct cl_page_slice *slice,
556 				   struct cl_io *unused)
557 {
558 	/* transient page should always be sent. */
559 	return 0;
560 }
561 
562 /*****************************************************************************
563  *
564  * Lock operations.
565  *
566  */
567 
ccc_lock_delete(const struct lu_env * env,const struct cl_lock_slice * slice)568 void ccc_lock_delete(const struct lu_env *env,
569 		     const struct cl_lock_slice *slice)
570 {
571 	CLOBINVRNT(env, slice->cls_obj, ccc_object_invariant(slice->cls_obj));
572 }
573 
ccc_lock_fini(const struct lu_env * env,struct cl_lock_slice * slice)574 void ccc_lock_fini(const struct lu_env *env, struct cl_lock_slice *slice)
575 {
576 	struct ccc_lock *clk = cl2ccc_lock(slice);
577 
578 	OBD_SLAB_FREE_PTR(clk, ccc_lock_kmem);
579 }
580 
ccc_lock_enqueue(const struct lu_env * env,const struct cl_lock_slice * slice,struct cl_io * unused,__u32 enqflags)581 int ccc_lock_enqueue(const struct lu_env *env,
582 		     const struct cl_lock_slice *slice,
583 		     struct cl_io *unused, __u32 enqflags)
584 {
585 	CLOBINVRNT(env, slice->cls_obj, ccc_object_invariant(slice->cls_obj));
586 	return 0;
587 }
588 
ccc_lock_use(const struct lu_env * env,const struct cl_lock_slice * slice)589 int ccc_lock_use(const struct lu_env *env, const struct cl_lock_slice *slice)
590 {
591 	CLOBINVRNT(env, slice->cls_obj, ccc_object_invariant(slice->cls_obj));
592 	return 0;
593 }
594 
ccc_lock_unuse(const struct lu_env * env,const struct cl_lock_slice * slice)595 int ccc_lock_unuse(const struct lu_env *env, const struct cl_lock_slice *slice)
596 {
597 	CLOBINVRNT(env, slice->cls_obj, ccc_object_invariant(slice->cls_obj));
598 	return 0;
599 }
600 
ccc_lock_wait(const struct lu_env * env,const struct cl_lock_slice * slice)601 int ccc_lock_wait(const struct lu_env *env, const struct cl_lock_slice *slice)
602 {
603 	CLOBINVRNT(env, slice->cls_obj, ccc_object_invariant(slice->cls_obj));
604 	return 0;
605 }
606 
607 /**
608  * Implementation of cl_lock_operations::clo_fits_into() methods for ccc
609  * layer. This function is executed every time io finds an existing lock in
610  * the lock cache while creating new lock. This function has to decide whether
611  * cached lock "fits" into io.
612  *
613  * \param slice lock to be checked
614  * \param io    IO that wants a lock.
615  *
616  * \see lov_lock_fits_into().
617  */
ccc_lock_fits_into(const struct lu_env * env,const struct cl_lock_slice * slice,const struct cl_lock_descr * need,const struct cl_io * io)618 int ccc_lock_fits_into(const struct lu_env *env,
619 		       const struct cl_lock_slice *slice,
620 		       const struct cl_lock_descr *need,
621 		       const struct cl_io *io)
622 {
623 	const struct cl_lock       *lock  = slice->cls_lock;
624 	const struct cl_lock_descr *descr = &lock->cll_descr;
625 	const struct ccc_io	*cio   = ccc_env_io(env);
626 	int			 result;
627 
628 	/*
629 	 * Work around DLM peculiarity: it assumes that glimpse
630 	 * (LDLM_FL_HAS_INTENT) lock is always LCK_PR, and returns reads lock
631 	 * when asked for LCK_PW lock with LDLM_FL_HAS_INTENT flag set. Make
632 	 * sure that glimpse doesn't get CLM_WRITE top-lock, so that it
633 	 * doesn't enqueue CLM_WRITE sub-locks.
634 	 */
635 	if (cio->cui_glimpse)
636 		result = descr->cld_mode != CLM_WRITE;
637 
638 	/*
639 	 * Also, don't match incomplete write locks for read, otherwise read
640 	 * would enqueue missing sub-locks in the write mode.
641 	 */
642 	else if (need->cld_mode != descr->cld_mode)
643 		result = lock->cll_state >= CLS_ENQUEUED;
644 	else
645 		result = 1;
646 	return result;
647 }
648 
649 /**
650  * Implements cl_lock_operations::clo_state() method for ccc layer, invoked
651  * whenever lock state changes. Transfers object attributes, that might be
652  * updated as a result of lock acquiring into inode.
653  */
ccc_lock_state(const struct lu_env * env,const struct cl_lock_slice * slice,enum cl_lock_state state)654 void ccc_lock_state(const struct lu_env *env,
655 		    const struct cl_lock_slice *slice,
656 		    enum cl_lock_state state)
657 {
658 	struct cl_lock *lock = slice->cls_lock;
659 
660 	/*
661 	 * Refresh inode attributes when the lock is moving into CLS_HELD
662 	 * state, and only when this is a result of real enqueue, rather than
663 	 * of finding lock in the cache.
664 	 */
665 	if (state == CLS_HELD && lock->cll_state < CLS_HELD) {
666 		struct cl_object *obj;
667 		struct inode     *inode;
668 
669 		obj   = slice->cls_obj;
670 		inode = ccc_object_inode(obj);
671 
672 		/* vmtruncate() sets the i_size
673 		 * under both a DLM lock and the
674 		 * ll_inode_size_lock().  If we don't get the
675 		 * ll_inode_size_lock() here we can match the DLM lock and
676 		 * reset i_size.  generic_file_write can then trust the
677 		 * stale i_size when doing appending writes and effectively
678 		 * cancel the result of the truncate.  Getting the
679 		 * ll_inode_size_lock() after the enqueue maintains the DLM
680 		 * -> ll_inode_size_lock() acquiring order. */
681 		if (lock->cll_descr.cld_start == 0 &&
682 		    lock->cll_descr.cld_end == CL_PAGE_EOF)
683 			cl_merge_lvb(env, inode);
684 	}
685 }
686 
687 /*****************************************************************************
688  *
689  * io operations.
690  *
691  */
692 
ccc_io_fini(const struct lu_env * env,const struct cl_io_slice * ios)693 void ccc_io_fini(const struct lu_env *env, const struct cl_io_slice *ios)
694 {
695 	struct cl_io *io = ios->cis_io;
696 
697 	CLOBINVRNT(env, io->ci_obj, ccc_object_invariant(io->ci_obj));
698 }
699 
ccc_io_one_lock_index(const struct lu_env * env,struct cl_io * io,__u32 enqflags,enum cl_lock_mode mode,pgoff_t start,pgoff_t end)700 int ccc_io_one_lock_index(const struct lu_env *env, struct cl_io *io,
701 			  __u32 enqflags, enum cl_lock_mode mode,
702 			  pgoff_t start, pgoff_t end)
703 {
704 	struct ccc_io	  *cio   = ccc_env_io(env);
705 	struct cl_lock_descr   *descr = &cio->cui_link.cill_descr;
706 	struct cl_object       *obj   = io->ci_obj;
707 
708 	CLOBINVRNT(env, obj, ccc_object_invariant(obj));
709 
710 	CDEBUG(D_VFSTRACE, "lock: %d [%lu, %lu]\n", mode, start, end);
711 
712 	memset(&cio->cui_link, 0, sizeof(cio->cui_link));
713 
714 	if (cio->cui_fd && (cio->cui_fd->fd_flags & LL_FILE_GROUP_LOCKED)) {
715 		descr->cld_mode = CLM_GROUP;
716 		descr->cld_gid  = cio->cui_fd->fd_grouplock.cg_gid;
717 	} else {
718 		descr->cld_mode  = mode;
719 	}
720 	descr->cld_obj   = obj;
721 	descr->cld_start = start;
722 	descr->cld_end   = end;
723 	descr->cld_enq_flags = enqflags;
724 
725 	cl_io_lock_add(env, io, &cio->cui_link);
726 	return 0;
727 }
728 
ccc_io_update_iov(const struct lu_env * env,struct ccc_io * cio,struct cl_io * io)729 void ccc_io_update_iov(const struct lu_env *env,
730 		       struct ccc_io *cio, struct cl_io *io)
731 {
732 	size_t size = io->u.ci_rw.crw_count;
733 
734 	if (!cl_is_normalio(env, io) || cio->cui_iter == NULL)
735 		return;
736 
737 	iov_iter_truncate(cio->cui_iter, size);
738 }
739 
ccc_io_one_lock(const struct lu_env * env,struct cl_io * io,__u32 enqflags,enum cl_lock_mode mode,loff_t start,loff_t end)740 int ccc_io_one_lock(const struct lu_env *env, struct cl_io *io,
741 		    __u32 enqflags, enum cl_lock_mode mode,
742 		    loff_t start, loff_t end)
743 {
744 	struct cl_object *obj = io->ci_obj;
745 
746 	return ccc_io_one_lock_index(env, io, enqflags, mode,
747 				     cl_index(obj, start), cl_index(obj, end));
748 }
749 
ccc_io_end(const struct lu_env * env,const struct cl_io_slice * ios)750 void ccc_io_end(const struct lu_env *env, const struct cl_io_slice *ios)
751 {
752 	CLOBINVRNT(env, ios->cis_io->ci_obj,
753 		   ccc_object_invariant(ios->cis_io->ci_obj));
754 }
755 
ccc_io_advance(const struct lu_env * env,const struct cl_io_slice * ios,size_t nob)756 void ccc_io_advance(const struct lu_env *env,
757 		    const struct cl_io_slice *ios,
758 		    size_t nob)
759 {
760 	struct ccc_io    *cio = cl2ccc_io(env, ios);
761 	struct cl_io     *io  = ios->cis_io;
762 	struct cl_object *obj = ios->cis_io->ci_obj;
763 
764 	CLOBINVRNT(env, obj, ccc_object_invariant(obj));
765 
766 	if (!cl_is_normalio(env, io))
767 		return;
768 
769 	iov_iter_reexpand(cio->cui_iter, cio->cui_tot_count  -= nob);
770 }
771 
772 /**
773  * Helper function that if necessary adjusts file size (inode->i_size), when
774  * position at the offset \a pos is accessed. File size can be arbitrary stale
775  * on a Lustre client, but client at least knows KMS. If accessed area is
776  * inside [0, KMS], set file size to KMS, otherwise glimpse file size.
777  *
778  * Locking: cl_isize_lock is used to serialize changes to inode size and to
779  * protect consistency between inode size and cl_object
780  * attributes. cl_object_size_lock() protects consistency between cl_attr's of
781  * top-object and sub-objects.
782  */
ccc_prep_size(const struct lu_env * env,struct cl_object * obj,struct cl_io * io,loff_t start,size_t count,int * exceed)783 int ccc_prep_size(const struct lu_env *env, struct cl_object *obj,
784 		  struct cl_io *io, loff_t start, size_t count, int *exceed)
785 {
786 	struct cl_attr *attr  = ccc_env_thread_attr(env);
787 	struct inode   *inode = ccc_object_inode(obj);
788 	loff_t	  pos   = start + count - 1;
789 	loff_t kms;
790 	int result;
791 
792 	/*
793 	 * Consistency guarantees: following possibilities exist for the
794 	 * relation between region being accessed and real file size at this
795 	 * moment:
796 	 *
797 	 *  (A): the region is completely inside of the file;
798 	 *
799 	 *  (B-x): x bytes of region are inside of the file, the rest is
800 	 *  outside;
801 	 *
802 	 *  (C): the region is completely outside of the file.
803 	 *
804 	 * This classification is stable under DLM lock already acquired by
805 	 * the caller, because to change the class, other client has to take
806 	 * DLM lock conflicting with our lock. Also, any updates to ->i_size
807 	 * by other threads on this client are serialized by
808 	 * ll_inode_size_lock(). This guarantees that short reads are handled
809 	 * correctly in the face of concurrent writes and truncates.
810 	 */
811 	ccc_object_size_lock(obj);
812 	result = cl_object_attr_get(env, obj, attr);
813 	if (result == 0) {
814 		kms = attr->cat_kms;
815 		if (pos > kms) {
816 			/*
817 			 * A glimpse is necessary to determine whether we
818 			 * return a short read (B) or some zeroes at the end
819 			 * of the buffer (C)
820 			 */
821 			ccc_object_size_unlock(obj);
822 			result = cl_glimpse_lock(env, io, inode, obj, 0);
823 			if (result == 0 && exceed != NULL) {
824 				/* If objective page index exceed end-of-file
825 				 * page index, return directly. Do not expect
826 				 * kernel will check such case correctly.
827 				 * linux-2.6.18-128.1.1 miss to do that.
828 				 * --bug 17336 */
829 				loff_t size = cl_isize_read(inode);
830 				loff_t cur_index = start >> PAGE_CACHE_SHIFT;
831 				loff_t size_index = (size - 1) >>
832 						    PAGE_CACHE_SHIFT;
833 
834 				if ((size == 0 && cur_index != 0) ||
835 				    size_index < cur_index)
836 					*exceed = 1;
837 			}
838 			return result;
839 		} else {
840 			/*
841 			 * region is within kms and, hence, within real file
842 			 * size (A). We need to increase i_size to cover the
843 			 * read region so that generic_file_read() will do its
844 			 * job, but that doesn't mean the kms size is
845 			 * _correct_, it is only the _minimum_ size. If
846 			 * someone does a stat they will get the correct size
847 			 * which will always be >= the kms value here.
848 			 * b=11081
849 			 */
850 			if (cl_isize_read(inode) < kms) {
851 				cl_isize_write_nolock(inode, kms);
852 				CDEBUG(D_VFSTRACE,
853 				       DFID" updating i_size %llu\n",
854 				       PFID(lu_object_fid(&obj->co_lu)),
855 				       (__u64)cl_isize_read(inode));
856 
857 			}
858 		}
859 	}
860 	ccc_object_size_unlock(obj);
861 	return result;
862 }
863 
864 /*****************************************************************************
865  *
866  * Transfer operations.
867  *
868  */
869 
ccc_req_completion(const struct lu_env * env,const struct cl_req_slice * slice,int ioret)870 void ccc_req_completion(const struct lu_env *env,
871 			const struct cl_req_slice *slice, int ioret)
872 {
873 	struct ccc_req *vrq;
874 
875 	if (ioret > 0)
876 		cl_stats_tally(slice->crs_dev, slice->crs_req->crq_type, ioret);
877 
878 	vrq = cl2ccc_req(slice);
879 	OBD_SLAB_FREE_PTR(vrq, ccc_req_kmem);
880 }
881 
882 /**
883  * Implementation of struct cl_req_operations::cro_attr_set() for ccc
884  * layer. ccc is responsible for
885  *
886  *    - o_[mac]time
887  *
888  *    - o_mode
889  *
890  *    - o_parent_seq
891  *
892  *    - o_[ug]id
893  *
894  *    - o_parent_oid
895  *
896  *    - o_parent_ver
897  *
898  *    - o_ioepoch,
899  *
900  *  and capability.
901  */
ccc_req_attr_set(const struct lu_env * env,const struct cl_req_slice * slice,const struct cl_object * obj,struct cl_req_attr * attr,u64 flags)902 void ccc_req_attr_set(const struct lu_env *env,
903 		      const struct cl_req_slice *slice,
904 		      const struct cl_object *obj,
905 		      struct cl_req_attr *attr, u64 flags)
906 {
907 	struct inode *inode;
908 	struct obdo  *oa;
909 	u32	      valid_flags;
910 
911 	oa = attr->cra_oa;
912 	inode = ccc_object_inode(obj);
913 	valid_flags = OBD_MD_FLTYPE;
914 
915 	if ((flags & OBD_MD_FLOSSCAPA) != 0) {
916 		LASSERT(attr->cra_capa == NULL);
917 		attr->cra_capa = cl_capa_lookup(inode,
918 						slice->crs_req->crq_type);
919 	}
920 
921 	if (slice->crs_req->crq_type == CRT_WRITE) {
922 		if (flags & OBD_MD_FLEPOCH) {
923 			oa->o_valid |= OBD_MD_FLEPOCH;
924 			oa->o_ioepoch = cl_i2info(inode)->lli_ioepoch;
925 			valid_flags |= OBD_MD_FLMTIME | OBD_MD_FLCTIME |
926 				       OBD_MD_FLUID | OBD_MD_FLGID;
927 		}
928 	}
929 	obdo_from_inode(oa, inode, valid_flags & flags);
930 	obdo_set_parent_fid(oa, &cl_i2info(inode)->lli_fid);
931 	memcpy(attr->cra_jobid, cl_i2info(inode)->lli_jobid,
932 	       JOBSTATS_JOBID_SIZE);
933 }
934 
935 static const struct cl_req_operations ccc_req_ops = {
936 	.cro_attr_set   = ccc_req_attr_set,
937 	.cro_completion = ccc_req_completion
938 };
939 
cl_setattr_ost(struct inode * inode,const struct iattr * attr,struct obd_capa * capa)940 int cl_setattr_ost(struct inode *inode, const struct iattr *attr,
941 		   struct obd_capa *capa)
942 {
943 	struct lu_env *env;
944 	struct cl_io  *io;
945 	int	    result;
946 	int	    refcheck;
947 
948 	env = cl_env_get(&refcheck);
949 	if (IS_ERR(env))
950 		return PTR_ERR(env);
951 
952 	io = ccc_env_thread_io(env);
953 	io->ci_obj = cl_i2info(inode)->lli_clob;
954 
955 	io->u.ci_setattr.sa_attr.lvb_atime = LTIME_S(attr->ia_atime);
956 	io->u.ci_setattr.sa_attr.lvb_mtime = LTIME_S(attr->ia_mtime);
957 	io->u.ci_setattr.sa_attr.lvb_ctime = LTIME_S(attr->ia_ctime);
958 	io->u.ci_setattr.sa_attr.lvb_size = attr->ia_size;
959 	io->u.ci_setattr.sa_valid = attr->ia_valid;
960 	io->u.ci_setattr.sa_capa = capa;
961 
962 again:
963 	if (cl_io_init(env, io, CIT_SETATTR, io->ci_obj) == 0) {
964 		struct ccc_io *cio = ccc_env_io(env);
965 
966 		if (attr->ia_valid & ATTR_FILE)
967 			/* populate the file descriptor for ftruncate to honor
968 			 * group lock - see LU-787 */
969 			cio->cui_fd = cl_iattr2fd(inode, attr);
970 
971 		result = cl_io_loop(env, io);
972 	} else {
973 		result = io->ci_result;
974 	}
975 	cl_io_fini(env, io);
976 	if (unlikely(io->ci_need_restart))
977 		goto again;
978 	/* HSM import case: file is released, cannot be restored
979 	 * no need to fail except if restore registration failed
980 	 * with -ENODATA */
981 	if (result == -ENODATA && io->ci_restore_needed &&
982 	    io->ci_result != -ENODATA)
983 		result = 0;
984 	cl_env_put(env, &refcheck);
985 	return result;
986 }
987 
988 /*****************************************************************************
989  *
990  * Type conversions.
991  *
992  */
993 
ccc2lu_dev(struct ccc_device * vdv)994 struct lu_device *ccc2lu_dev(struct ccc_device *vdv)
995 {
996 	return &vdv->cdv_cl.cd_lu_dev;
997 }
998 
lu2ccc_dev(const struct lu_device * d)999 struct ccc_device *lu2ccc_dev(const struct lu_device *d)
1000 {
1001 	return container_of0(d, struct ccc_device, cdv_cl.cd_lu_dev);
1002 }
1003 
cl2ccc_dev(const struct cl_device * d)1004 struct ccc_device *cl2ccc_dev(const struct cl_device *d)
1005 {
1006 	return container_of0(d, struct ccc_device, cdv_cl);
1007 }
1008 
ccc2lu(struct ccc_object * vob)1009 struct lu_object *ccc2lu(struct ccc_object *vob)
1010 {
1011 	return &vob->cob_cl.co_lu;
1012 }
1013 
lu2ccc(const struct lu_object * obj)1014 struct ccc_object *lu2ccc(const struct lu_object *obj)
1015 {
1016 	return container_of0(obj, struct ccc_object, cob_cl.co_lu);
1017 }
1018 
cl2ccc(const struct cl_object * obj)1019 struct ccc_object *cl2ccc(const struct cl_object *obj)
1020 {
1021 	return container_of0(obj, struct ccc_object, cob_cl);
1022 }
1023 
cl2ccc_lock(const struct cl_lock_slice * slice)1024 struct ccc_lock *cl2ccc_lock(const struct cl_lock_slice *slice)
1025 {
1026 	return container_of(slice, struct ccc_lock, clk_cl);
1027 }
1028 
cl2ccc_io(const struct lu_env * env,const struct cl_io_slice * slice)1029 struct ccc_io *cl2ccc_io(const struct lu_env *env,
1030 			 const struct cl_io_slice *slice)
1031 {
1032 	struct ccc_io *cio;
1033 
1034 	cio = container_of(slice, struct ccc_io, cui_cl);
1035 	LASSERT(cio == ccc_env_io(env));
1036 	return cio;
1037 }
1038 
cl2ccc_req(const struct cl_req_slice * slice)1039 struct ccc_req *cl2ccc_req(const struct cl_req_slice *slice)
1040 {
1041 	return container_of0(slice, struct ccc_req, crq_cl);
1042 }
1043 
cl2vm_page(const struct cl_page_slice * slice)1044 struct page *cl2vm_page(const struct cl_page_slice *slice)
1045 {
1046 	return cl2ccc_page(slice)->cpg_page;
1047 }
1048 
1049 /*****************************************************************************
1050  *
1051  * Accessors.
1052  *
1053  */
ccc_object_invariant(const struct cl_object * obj)1054 int ccc_object_invariant(const struct cl_object *obj)
1055 {
1056 	struct inode	 *inode = ccc_object_inode(obj);
1057 	struct cl_inode_info *lli   = cl_i2info(inode);
1058 
1059 	return (S_ISREG(cl_inode_mode(inode)) ||
1060 		/* i_mode of unlinked inode is zeroed. */
1061 		cl_inode_mode(inode) == 0) && lli->lli_clob == obj;
1062 }
1063 
ccc_object_inode(const struct cl_object * obj)1064 struct inode *ccc_object_inode(const struct cl_object *obj)
1065 {
1066 	return cl2ccc(obj)->cob_inode;
1067 }
1068 
1069 /**
1070  * Returns a pointer to cl_page associated with \a vmpage, without acquiring
1071  * additional reference to the resulting page. This is an unsafe version of
1072  * cl_vmpage_page() that can only be used under vmpage lock.
1073  */
ccc_vmpage_page_transient(struct page * vmpage)1074 struct cl_page *ccc_vmpage_page_transient(struct page *vmpage)
1075 {
1076 	KLASSERT(PageLocked(vmpage));
1077 	return (struct cl_page *)vmpage->private;
1078 }
1079 
1080 /**
1081  * Initialize or update CLIO structures for regular files when new
1082  * meta-data arrives from the server.
1083  *
1084  * \param inode regular file inode
1085  * \param md    new file metadata from MDS
1086  * - allocates cl_object if necessary,
1087  * - updated layout, if object was already here.
1088  */
cl_file_inode_init(struct inode * inode,struct lustre_md * md)1089 int cl_file_inode_init(struct inode *inode, struct lustre_md *md)
1090 {
1091 	struct lu_env	*env;
1092 	struct cl_inode_info *lli;
1093 	struct cl_object     *clob;
1094 	struct lu_site       *site;
1095 	struct lu_fid	*fid;
1096 	struct cl_object_conf conf = {
1097 		.coc_inode = inode,
1098 		.u = {
1099 			.coc_md    = md
1100 		}
1101 	};
1102 	int result = 0;
1103 	int refcheck;
1104 
1105 	LASSERT(md->body->valid & OBD_MD_FLID);
1106 	LASSERT(S_ISREG(cl_inode_mode(inode)));
1107 
1108 	env = cl_env_get(&refcheck);
1109 	if (IS_ERR(env))
1110 		return PTR_ERR(env);
1111 
1112 	site = cl_i2sbi(inode)->ll_site;
1113 	lli  = cl_i2info(inode);
1114 	fid  = &lli->lli_fid;
1115 	LASSERT(fid_is_sane(fid));
1116 
1117 	if (lli->lli_clob == NULL) {
1118 		/* clob is slave of inode, empty lli_clob means for new inode,
1119 		 * there is no clob in cache with the given fid, so it is
1120 		 * unnecessary to perform lookup-alloc-lookup-insert, just
1121 		 * alloc and insert directly. */
1122 		LASSERT(inode->i_state & I_NEW);
1123 		conf.coc_lu.loc_flags = LOC_F_NEW;
1124 		clob = cl_object_find(env, lu2cl_dev(site->ls_top_dev),
1125 				      fid, &conf);
1126 		if (!IS_ERR(clob)) {
1127 			/*
1128 			 * No locking is necessary, as new inode is
1129 			 * locked by I_NEW bit.
1130 			 */
1131 			lli->lli_clob = clob;
1132 			lli->lli_has_smd = lsm_has_objects(md->lsm);
1133 			lu_object_ref_add(&clob->co_lu, "inode", inode);
1134 		} else
1135 			result = PTR_ERR(clob);
1136 	} else {
1137 		result = cl_conf_set(env, lli->lli_clob, &conf);
1138 	}
1139 
1140 	cl_env_put(env, &refcheck);
1141 
1142 	if (result != 0)
1143 		CERROR("Failure to initialize cl object "DFID": %d\n",
1144 		       PFID(fid), result);
1145 	return result;
1146 }
1147 
1148 /**
1149  * Wait for others drop their references of the object at first, then we drop
1150  * the last one, which will lead to the object be destroyed immediately.
1151  * Must be called after cl_object_kill() against this object.
1152  *
1153  * The reason we want to do this is: destroying top object will wait for sub
1154  * objects being destroyed first, so we can't let bottom layer (e.g. from ASTs)
1155  * to initiate top object destroying which may deadlock. See bz22520.
1156  */
cl_object_put_last(struct lu_env * env,struct cl_object * obj)1157 static void cl_object_put_last(struct lu_env *env, struct cl_object *obj)
1158 {
1159 	struct lu_object_header *header = obj->co_lu.lo_header;
1160 	wait_queue_t	   waiter;
1161 
1162 	if (unlikely(atomic_read(&header->loh_ref) != 1)) {
1163 		struct lu_site *site = obj->co_lu.lo_dev->ld_site;
1164 		struct lu_site_bkt_data *bkt;
1165 
1166 		bkt = lu_site_bkt_from_fid(site, &header->loh_fid);
1167 
1168 		init_waitqueue_entry(&waiter, current);
1169 		add_wait_queue(&bkt->lsb_marche_funebre, &waiter);
1170 
1171 		while (1) {
1172 			set_current_state(TASK_UNINTERRUPTIBLE);
1173 			if (atomic_read(&header->loh_ref) == 1)
1174 				break;
1175 			schedule();
1176 		}
1177 
1178 		set_current_state(TASK_RUNNING);
1179 		remove_wait_queue(&bkt->lsb_marche_funebre, &waiter);
1180 	}
1181 
1182 	cl_object_put(env, obj);
1183 }
1184 
cl_inode_fini(struct inode * inode)1185 void cl_inode_fini(struct inode *inode)
1186 {
1187 	struct lu_env	   *env;
1188 	struct cl_inode_info    *lli  = cl_i2info(inode);
1189 	struct cl_object	*clob = lli->lli_clob;
1190 	int refcheck;
1191 	int emergency;
1192 
1193 	if (clob != NULL) {
1194 		void		    *cookie;
1195 
1196 		cookie = cl_env_reenter();
1197 		env = cl_env_get(&refcheck);
1198 		emergency = IS_ERR(env);
1199 		if (emergency) {
1200 			mutex_lock(&ccc_inode_fini_guard);
1201 			LASSERT(ccc_inode_fini_env != NULL);
1202 			cl_env_implant(ccc_inode_fini_env, &refcheck);
1203 			env = ccc_inode_fini_env;
1204 		}
1205 		/*
1206 		 * cl_object cache is a slave to inode cache (which, in turn
1207 		 * is a slave to dentry cache), don't keep cl_object in memory
1208 		 * when its master is evicted.
1209 		 */
1210 		cl_object_kill(env, clob);
1211 		lu_object_ref_del(&clob->co_lu, "inode", inode);
1212 		cl_object_put_last(env, clob);
1213 		lli->lli_clob = NULL;
1214 		if (emergency) {
1215 			cl_env_unplant(ccc_inode_fini_env, &refcheck);
1216 			mutex_unlock(&ccc_inode_fini_guard);
1217 		} else
1218 			cl_env_put(env, &refcheck);
1219 		cl_env_reexit(cookie);
1220 	}
1221 }
1222 
1223 /**
1224  * return IF_* type for given lu_dirent entry.
1225  * IF_* flag shld be converted to particular OS file type in
1226  * platform llite module.
1227  */
ll_dirent_type_get(struct lu_dirent * ent)1228 __u16 ll_dirent_type_get(struct lu_dirent *ent)
1229 {
1230 	__u16 type = 0;
1231 	struct luda_type *lt;
1232 	int len = 0;
1233 
1234 	if (le32_to_cpu(ent->lde_attrs) & LUDA_TYPE) {
1235 		const unsigned align = sizeof(struct luda_type) - 1;
1236 
1237 		len = le16_to_cpu(ent->lde_namelen);
1238 		len = (len + align) & ~align;
1239 		lt = (void *)ent->lde_name + len;
1240 		type = IFTODT(le16_to_cpu(lt->lt_type));
1241 	}
1242 	return type;
1243 }
1244 
1245 /**
1246  * build inode number from passed @fid */
cl_fid_build_ino(const struct lu_fid * fid,int api32)1247 __u64 cl_fid_build_ino(const struct lu_fid *fid, int api32)
1248 {
1249 	if (BITS_PER_LONG == 32 || api32)
1250 		return fid_flatten32(fid);
1251 	else
1252 		return fid_flatten(fid);
1253 }
1254 
1255 /**
1256  * build inode generation from passed @fid.  If our FID overflows the 32-bit
1257  * inode number then return a non-zero generation to distinguish them. */
cl_fid_build_gen(const struct lu_fid * fid)1258 __u32 cl_fid_build_gen(const struct lu_fid *fid)
1259 {
1260 	__u32 gen;
1261 
1262 	if (fid_is_igif(fid)) {
1263 		gen = lu_igif_gen(fid);
1264 		return gen;
1265 	}
1266 
1267 	gen = fid_flatten(fid) >> 32;
1268 	return gen;
1269 }
1270 
1271 /* lsm is unreliable after hsm implementation as layout can be changed at
1272  * any time. This is only to support old, non-clio-ized interfaces. It will
1273  * cause deadlock if clio operations are called with this extra layout refcount
1274  * because in case the layout changed during the IO, ll_layout_refresh() will
1275  * have to wait for the refcount to become zero to destroy the older layout.
1276  *
1277  * Notice that the lsm returned by this function may not be valid unless called
1278  * inside layout lock - MDS_INODELOCK_LAYOUT. */
ccc_inode_lsm_get(struct inode * inode)1279 struct lov_stripe_md *ccc_inode_lsm_get(struct inode *inode)
1280 {
1281 	return lov_lsm_get(cl_i2info(inode)->lli_clob);
1282 }
1283 
ccc_inode_lsm_put(struct inode * inode,struct lov_stripe_md * lsm)1284 inline void ccc_inode_lsm_put(struct inode *inode, struct lov_stripe_md *lsm)
1285 {
1286 	lov_lsm_put(cl_i2info(inode)->lli_clob, lsm);
1287 }
1288