1 /*
2 * GPL HEADER START
3 *
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19 *
20 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21 * CA 95054 USA or visit www.sun.com if you need additional information or
22 * have any questions.
23 *
24 * GPL HEADER END
25 */
26 /*
27 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
28 * Use is subject to license terms.
29 *
30 * Copyright (c) 2011, 2012, Intel Corporation.
31 */
32 /*
33 * This file is part of Lustre, http://www.lustre.org/
34 * Lustre is a trademark of Sun Microsystems, Inc.
35 *
36 * Client Lustre Object.
37 *
38 * Author: Nikita Danilov <nikita.danilov@sun.com>
39 */
40
41 /*
42 * Locking.
43 *
44 * i_mutex
45 * PG_locked
46 * ->coh_page_guard
47 * ->coh_lock_guard
48 * ->coh_attr_guard
49 * ->ls_guard
50 */
51
52 #define DEBUG_SUBSYSTEM S_CLASS
53
54 #include "../../include/linux/libcfs/libcfs.h"
55 /* class_put_type() */
56 #include "../include/obd_class.h"
57 #include "../include/obd_support.h"
58 #include "../include/lustre_fid.h"
59 #include <linux/list.h>
60 #include "../../include/linux/libcfs/libcfs_hash.h" /* for cfs_hash stuff */
61 #include "../include/cl_object.h"
62 #include "cl_internal.h"
63
64 static struct kmem_cache *cl_env_kmem;
65
66 /** Lock class of cl_object_header::coh_page_guard */
67 static struct lock_class_key cl_page_guard_class;
68 /** Lock class of cl_object_header::coh_lock_guard */
69 static struct lock_class_key cl_lock_guard_class;
70 /** Lock class of cl_object_header::coh_attr_guard */
71 static struct lock_class_key cl_attr_guard_class;
72
73 extern __u32 lu_context_tags_default;
74 extern __u32 lu_session_tags_default;
75 /**
76 * Initialize cl_object_header.
77 */
cl_object_header_init(struct cl_object_header * h)78 int cl_object_header_init(struct cl_object_header *h)
79 {
80 int result;
81
82 result = lu_object_header_init(&h->coh_lu);
83 if (result == 0) {
84 spin_lock_init(&h->coh_page_guard);
85 spin_lock_init(&h->coh_lock_guard);
86 spin_lock_init(&h->coh_attr_guard);
87 lockdep_set_class(&h->coh_page_guard, &cl_page_guard_class);
88 lockdep_set_class(&h->coh_lock_guard, &cl_lock_guard_class);
89 lockdep_set_class(&h->coh_attr_guard, &cl_attr_guard_class);
90 h->coh_pages = 0;
91 /* XXX hard coded GFP_* mask. */
92 INIT_RADIX_TREE(&h->coh_tree, GFP_ATOMIC);
93 INIT_LIST_HEAD(&h->coh_locks);
94 h->coh_page_bufsize = ALIGN(sizeof(struct cl_page), 8);
95 }
96 return result;
97 }
98 EXPORT_SYMBOL(cl_object_header_init);
99
100 /**
101 * Finalize cl_object_header.
102 */
cl_object_header_fini(struct cl_object_header * h)103 void cl_object_header_fini(struct cl_object_header *h)
104 {
105 LASSERT(list_empty(&h->coh_locks));
106 lu_object_header_fini(&h->coh_lu);
107 }
108 EXPORT_SYMBOL(cl_object_header_fini);
109
110 /**
111 * Returns a cl_object with a given \a fid.
112 *
113 * Returns either cached or newly created object. Additional reference on the
114 * returned object is acquired.
115 *
116 * \see lu_object_find(), cl_page_find(), cl_lock_find()
117 */
cl_object_find(const struct lu_env * env,struct cl_device * cd,const struct lu_fid * fid,const struct cl_object_conf * c)118 struct cl_object *cl_object_find(const struct lu_env *env,
119 struct cl_device *cd, const struct lu_fid *fid,
120 const struct cl_object_conf *c)
121 {
122 might_sleep();
123 return lu2cl(lu_object_find_slice(env, cl2lu_dev(cd), fid, &c->coc_lu));
124 }
125 EXPORT_SYMBOL(cl_object_find);
126
127 /**
128 * Releases a reference on \a o.
129 *
130 * When last reference is released object is returned to the cache, unless
131 * lu_object_header_flags::LU_OBJECT_HEARD_BANSHEE bit is set in its header.
132 *
133 * \see cl_page_put(), cl_lock_put().
134 */
cl_object_put(const struct lu_env * env,struct cl_object * o)135 void cl_object_put(const struct lu_env *env, struct cl_object *o)
136 {
137 lu_object_put(env, &o->co_lu);
138 }
139 EXPORT_SYMBOL(cl_object_put);
140
141 /**
142 * Acquire an additional reference to the object \a o.
143 *
144 * This can only be used to acquire _additional_ reference, i.e., caller
145 * already has to possess at least one reference to \a o before calling this.
146 *
147 * \see cl_page_get(), cl_lock_get().
148 */
cl_object_get(struct cl_object * o)149 void cl_object_get(struct cl_object *o)
150 {
151 lu_object_get(&o->co_lu);
152 }
153 EXPORT_SYMBOL(cl_object_get);
154
155 /**
156 * Returns the top-object for a given \a o.
157 *
158 * \see cl_page_top(), cl_io_top()
159 */
cl_object_top(struct cl_object * o)160 struct cl_object *cl_object_top(struct cl_object *o)
161 {
162 struct cl_object_header *hdr = cl_object_header(o);
163 struct cl_object *top;
164
165 while (hdr->coh_parent != NULL)
166 hdr = hdr->coh_parent;
167
168 top = lu2cl(lu_object_top(&hdr->coh_lu));
169 CDEBUG(D_TRACE, "%p -> %p\n", o, top);
170 return top;
171 }
172 EXPORT_SYMBOL(cl_object_top);
173
174 /**
175 * Returns pointer to the lock protecting data-attributes for the given object
176 * \a o.
177 *
178 * Data-attributes are protected by the cl_object_header::coh_attr_guard
179 * spin-lock in the top-object.
180 *
181 * \see cl_attr, cl_object_attr_lock(), cl_object_operations::coo_attr_get().
182 */
cl_object_attr_guard(struct cl_object * o)183 static spinlock_t *cl_object_attr_guard(struct cl_object *o)
184 {
185 return &cl_object_header(cl_object_top(o))->coh_attr_guard;
186 }
187
188 /**
189 * Locks data-attributes.
190 *
191 * Prevents data-attributes from changing, until lock is released by
192 * cl_object_attr_unlock(). This has to be called before calls to
193 * cl_object_attr_get(), cl_object_attr_set().
194 */
cl_object_attr_lock(struct cl_object * o)195 void cl_object_attr_lock(struct cl_object *o)
196 __acquires(cl_object_attr_guard(o))
197 {
198 spin_lock(cl_object_attr_guard(o));
199 }
200 EXPORT_SYMBOL(cl_object_attr_lock);
201
202 /**
203 * Releases data-attributes lock, acquired by cl_object_attr_lock().
204 */
cl_object_attr_unlock(struct cl_object * o)205 void cl_object_attr_unlock(struct cl_object *o)
206 __releases(cl_object_attr_guard(o))
207 {
208 spin_unlock(cl_object_attr_guard(o));
209 }
210 EXPORT_SYMBOL(cl_object_attr_unlock);
211
212 /**
213 * Returns data-attributes of an object \a obj.
214 *
215 * Every layer is asked (by calling cl_object_operations::coo_attr_get())
216 * top-to-bottom to fill in parts of \a attr that this layer is responsible
217 * for.
218 */
cl_object_attr_get(const struct lu_env * env,struct cl_object * obj,struct cl_attr * attr)219 int cl_object_attr_get(const struct lu_env *env, struct cl_object *obj,
220 struct cl_attr *attr)
221 {
222 struct lu_object_header *top;
223 int result;
224
225 assert_spin_locked(cl_object_attr_guard(obj));
226
227 top = obj->co_lu.lo_header;
228 result = 0;
229 list_for_each_entry(obj, &top->loh_layers, co_lu.lo_linkage) {
230 if (obj->co_ops->coo_attr_get != NULL) {
231 result = obj->co_ops->coo_attr_get(env, obj, attr);
232 if (result != 0) {
233 if (result > 0)
234 result = 0;
235 break;
236 }
237 }
238 }
239 return result;
240 }
241 EXPORT_SYMBOL(cl_object_attr_get);
242
243 /**
244 * Updates data-attributes of an object \a obj.
245 *
246 * Only attributes, mentioned in a validness bit-mask \a v are
247 * updated. Calls cl_object_operations::coo_attr_set() on every layer, bottom
248 * to top.
249 */
cl_object_attr_set(const struct lu_env * env,struct cl_object * obj,const struct cl_attr * attr,unsigned v)250 int cl_object_attr_set(const struct lu_env *env, struct cl_object *obj,
251 const struct cl_attr *attr, unsigned v)
252 {
253 struct lu_object_header *top;
254 int result;
255
256 assert_spin_locked(cl_object_attr_guard(obj));
257
258 top = obj->co_lu.lo_header;
259 result = 0;
260 list_for_each_entry_reverse(obj, &top->loh_layers,
261 co_lu.lo_linkage) {
262 if (obj->co_ops->coo_attr_set != NULL) {
263 result = obj->co_ops->coo_attr_set(env, obj, attr, v);
264 if (result != 0) {
265 if (result > 0)
266 result = 0;
267 break;
268 }
269 }
270 }
271 return result;
272 }
273 EXPORT_SYMBOL(cl_object_attr_set);
274
275 /**
276 * Notifies layers (bottom-to-top) that glimpse AST was received.
277 *
278 * Layers have to fill \a lvb fields with information that will be shipped
279 * back to glimpse issuer.
280 *
281 * \see cl_lock_operations::clo_glimpse()
282 */
cl_object_glimpse(const struct lu_env * env,struct cl_object * obj,struct ost_lvb * lvb)283 int cl_object_glimpse(const struct lu_env *env, struct cl_object *obj,
284 struct ost_lvb *lvb)
285 {
286 struct lu_object_header *top;
287 int result;
288
289 top = obj->co_lu.lo_header;
290 result = 0;
291 list_for_each_entry_reverse(obj, &top->loh_layers,
292 co_lu.lo_linkage) {
293 if (obj->co_ops->coo_glimpse != NULL) {
294 result = obj->co_ops->coo_glimpse(env, obj, lvb);
295 if (result != 0)
296 break;
297 }
298 }
299 LU_OBJECT_HEADER(D_DLMTRACE, env, lu_object_top(top),
300 "size: %llu mtime: %llu atime: %llu ctime: %llu blocks: %llu\n",
301 lvb->lvb_size, lvb->lvb_mtime, lvb->lvb_atime,
302 lvb->lvb_ctime, lvb->lvb_blocks);
303 return result;
304 }
305 EXPORT_SYMBOL(cl_object_glimpse);
306
307 /**
308 * Updates a configuration of an object \a obj.
309 */
cl_conf_set(const struct lu_env * env,struct cl_object * obj,const struct cl_object_conf * conf)310 int cl_conf_set(const struct lu_env *env, struct cl_object *obj,
311 const struct cl_object_conf *conf)
312 {
313 struct lu_object_header *top;
314 int result;
315
316 top = obj->co_lu.lo_header;
317 result = 0;
318 list_for_each_entry(obj, &top->loh_layers, co_lu.lo_linkage) {
319 if (obj->co_ops->coo_conf_set != NULL) {
320 result = obj->co_ops->coo_conf_set(env, obj, conf);
321 if (result != 0)
322 break;
323 }
324 }
325 return result;
326 }
327 EXPORT_SYMBOL(cl_conf_set);
328
329 /**
330 * Helper function removing all object locks, and marking object for
331 * deletion. All object pages must have been deleted at this point.
332 *
333 * This is called by cl_inode_fini() and lov_object_delete() to destroy top-
334 * and sub- objects respectively.
335 */
cl_object_kill(const struct lu_env * env,struct cl_object * obj)336 void cl_object_kill(const struct lu_env *env, struct cl_object *obj)
337 {
338 struct cl_object_header *hdr;
339
340 hdr = cl_object_header(obj);
341 LASSERT(hdr->coh_tree.rnode == NULL);
342 LASSERT(hdr->coh_pages == 0);
343
344 set_bit(LU_OBJECT_HEARD_BANSHEE, &hdr->coh_lu.loh_flags);
345 /*
346 * Destroy all locks. Object destruction (including cl_inode_fini())
347 * cannot cancel the locks, because in the case of a local client,
348 * where client and server share the same thread running
349 * prune_icache(), this can dead-lock with ldlm_cancel_handler()
350 * waiting on __wait_on_freeing_inode().
351 */
352 cl_locks_prune(env, obj, 0);
353 }
354 EXPORT_SYMBOL(cl_object_kill);
355
356 /**
357 * Prunes caches of pages and locks for this object.
358 */
cl_object_prune(const struct lu_env * env,struct cl_object * obj)359 void cl_object_prune(const struct lu_env *env, struct cl_object *obj)
360 {
361 cl_pages_prune(env, obj);
362 cl_locks_prune(env, obj, 1);
363 }
364 EXPORT_SYMBOL(cl_object_prune);
365
366 /**
367 * Check if the object has locks.
368 */
cl_object_has_locks(struct cl_object * obj)369 int cl_object_has_locks(struct cl_object *obj)
370 {
371 struct cl_object_header *head = cl_object_header(obj);
372 int has;
373
374 spin_lock(&head->coh_lock_guard);
375 has = list_empty(&head->coh_locks);
376 spin_unlock(&head->coh_lock_guard);
377
378 return (has == 0);
379 }
380 EXPORT_SYMBOL(cl_object_has_locks);
381
cache_stats_init(struct cache_stats * cs,const char * name)382 void cache_stats_init(struct cache_stats *cs, const char *name)
383 {
384 int i;
385
386 cs->cs_name = name;
387 for (i = 0; i < CS_NR; i++)
388 atomic_set(&cs->cs_stats[i], 0);
389 }
390
cache_stats_print(const struct cache_stats * cs,struct seq_file * m,int h)391 int cache_stats_print(const struct cache_stats *cs, struct seq_file *m, int h)
392 {
393 int i;
394 /*
395 * lookup hit total cached create
396 * env: ...... ...... ...... ...... ......
397 */
398 if (h) {
399 const char *names[CS_NR] = CS_NAMES;
400
401 seq_printf(m, "%6s", " ");
402 for (i = 0; i < CS_NR; i++)
403 seq_printf(m, "%8s", names[i]);
404 seq_printf(m, "\n");
405 }
406
407 seq_printf(m, "%5.5s:", cs->cs_name);
408 for (i = 0; i < CS_NR; i++)
409 seq_printf(m, "%8u", atomic_read(&cs->cs_stats[i]));
410 return 0;
411 }
412
413 /**
414 * Initialize client site.
415 *
416 * Perform common initialization (lu_site_init()), and initialize statistical
417 * counters. Also perform global initializations on the first call.
418 */
cl_site_init(struct cl_site * s,struct cl_device * d)419 int cl_site_init(struct cl_site *s, struct cl_device *d)
420 {
421 int i;
422 int result;
423
424 result = lu_site_init(&s->cs_lu, &d->cd_lu_dev);
425 if (result == 0) {
426 cache_stats_init(&s->cs_pages, "pages");
427 cache_stats_init(&s->cs_locks, "locks");
428 for (i = 0; i < ARRAY_SIZE(s->cs_pages_state); ++i)
429 atomic_set(&s->cs_pages_state[0], 0);
430 for (i = 0; i < ARRAY_SIZE(s->cs_locks_state); ++i)
431 atomic_set(&s->cs_locks_state[i], 0);
432 }
433 return result;
434 }
435 EXPORT_SYMBOL(cl_site_init);
436
437 /**
438 * Finalize client site. Dual to cl_site_init().
439 */
cl_site_fini(struct cl_site * s)440 void cl_site_fini(struct cl_site *s)
441 {
442 lu_site_fini(&s->cs_lu);
443 }
444 EXPORT_SYMBOL(cl_site_fini);
445
446 static struct cache_stats cl_env_stats = {
447 .cs_name = "envs",
448 .cs_stats = { ATOMIC_INIT(0), }
449 };
450
451 /**
452 * Outputs client site statistical counters into a buffer. Suitable for
453 * ll_rd_*()-style functions.
454 */
cl_site_stats_print(const struct cl_site * site,struct seq_file * m)455 int cl_site_stats_print(const struct cl_site *site, struct seq_file *m)
456 {
457 int i;
458 static const char *pstate[] = {
459 [CPS_CACHED] = "c",
460 [CPS_OWNED] = "o",
461 [CPS_PAGEOUT] = "w",
462 [CPS_PAGEIN] = "r",
463 [CPS_FREEING] = "f"
464 };
465 static const char *lstate[] = {
466 [CLS_NEW] = "n",
467 [CLS_QUEUING] = "q",
468 [CLS_ENQUEUED] = "e",
469 [CLS_HELD] = "h",
470 [CLS_INTRANSIT] = "t",
471 [CLS_CACHED] = "c",
472 [CLS_FREEING] = "f"
473 };
474 /*
475 lookup hit total busy create
476 pages: ...... ...... ...... ...... ...... [...... ...... ...... ......]
477 locks: ...... ...... ...... ...... ...... [...... ...... ...... ...... ......]
478 env: ...... ...... ...... ...... ......
479 */
480 lu_site_stats_print(&site->cs_lu, m);
481 cache_stats_print(&site->cs_pages, m, 1);
482 seq_printf(m, " [");
483 for (i = 0; i < ARRAY_SIZE(site->cs_pages_state); ++i)
484 seq_printf(m, "%s: %u ", pstate[i],
485 atomic_read(&site->cs_pages_state[i]));
486 seq_printf(m, "]\n");
487 cache_stats_print(&site->cs_locks, m, 0);
488 seq_printf(m, " [");
489 for (i = 0; i < ARRAY_SIZE(site->cs_locks_state); ++i)
490 seq_printf(m, "%s: %u ", lstate[i],
491 atomic_read(&site->cs_locks_state[i]));
492 seq_printf(m, "]\n");
493 cache_stats_print(&cl_env_stats, m, 0);
494 seq_printf(m, "\n");
495 return 0;
496 }
497 EXPORT_SYMBOL(cl_site_stats_print);
498
499 /*****************************************************************************
500 *
501 * lu_env handling on client.
502 *
503 */
504
505 /**
506 * The most efficient way is to store cl_env pointer in task specific
507 * structures. On Linux, it wont' be easy to use task_struct->journal_info
508 * because Lustre code may call into other fs which has certain assumptions
509 * about journal_info. Currently following fields in task_struct are identified
510 * can be used for this purpose:
511 * - cl_env: for liblustre.
512 * - tux_info: only on RedHat kernel.
513 * - ...
514 * \note As long as we use task_struct to store cl_env, we assume that once
515 * called into Lustre, we'll never call into the other part of the kernel
516 * which will use those fields in task_struct without explicitly exiting
517 * Lustre.
518 *
519 * If there's no space in task_struct is available, hash will be used.
520 * bz20044, bz22683.
521 */
522
523 struct cl_env {
524 void *ce_magic;
525 struct lu_env ce_lu;
526 struct lu_context ce_ses;
527
528 /**
529 * This allows cl_env to be entered into cl_env_hash which implements
530 * the current thread -> client environment lookup.
531 */
532 struct hlist_node ce_node;
533 /**
534 * Owner for the current cl_env.
535 *
536 * If LL_TASK_CL_ENV is defined, this point to the owning current,
537 * only for debugging purpose ;
538 * Otherwise hash is used, and this is the key for cfs_hash.
539 * Now current thread pid is stored. Note using thread pointer would
540 * lead to unbalanced hash because of its specific allocation locality
541 * and could be varied for different platforms and OSes, even different
542 * OS versions.
543 */
544 void *ce_owner;
545
546 /*
547 * Linkage into global list of all client environments. Used for
548 * garbage collection.
549 */
550 struct list_head ce_linkage;
551 /*
552 *
553 */
554 int ce_ref;
555 /*
556 * Debugging field: address of the caller who made original
557 * allocation.
558 */
559 void *ce_debug;
560 };
561
562 #define CL_ENV_INC(counter)
563 #define CL_ENV_DEC(counter)
564
cl_env_init0(struct cl_env * cle,void * debug)565 static void cl_env_init0(struct cl_env *cle, void *debug)
566 {
567 LASSERT(cle->ce_ref == 0);
568 LASSERT(cle->ce_magic == &cl_env_init0);
569 LASSERT(cle->ce_debug == NULL && cle->ce_owner == NULL);
570
571 cle->ce_ref = 1;
572 cle->ce_debug = debug;
573 CL_ENV_INC(busy);
574 }
575
576
577 /*
578 * The implementation of using hash table to connect cl_env and thread
579 */
580
581 static struct cfs_hash *cl_env_hash;
582
cl_env_hops_hash(struct cfs_hash * lh,const void * key,unsigned mask)583 static unsigned cl_env_hops_hash(struct cfs_hash *lh,
584 const void *key, unsigned mask)
585 {
586 #if BITS_PER_LONG == 64
587 return cfs_hash_u64_hash((__u64)key, mask);
588 #else
589 return cfs_hash_u32_hash((__u32)key, mask);
590 #endif
591 }
592
cl_env_hops_obj(struct hlist_node * hn)593 static void *cl_env_hops_obj(struct hlist_node *hn)
594 {
595 struct cl_env *cle = hlist_entry(hn, struct cl_env, ce_node);
596 LASSERT(cle->ce_magic == &cl_env_init0);
597 return (void *)cle;
598 }
599
cl_env_hops_keycmp(const void * key,struct hlist_node * hn)600 static int cl_env_hops_keycmp(const void *key, struct hlist_node *hn)
601 {
602 struct cl_env *cle = cl_env_hops_obj(hn);
603
604 LASSERT(cle->ce_owner != NULL);
605 return (key == cle->ce_owner);
606 }
607
cl_env_hops_noop(struct cfs_hash * hs,struct hlist_node * hn)608 static void cl_env_hops_noop(struct cfs_hash *hs, struct hlist_node *hn)
609 {
610 struct cl_env *cle = hlist_entry(hn, struct cl_env, ce_node);
611 LASSERT(cle->ce_magic == &cl_env_init0);
612 }
613
614 static cfs_hash_ops_t cl_env_hops = {
615 .hs_hash = cl_env_hops_hash,
616 .hs_key = cl_env_hops_obj,
617 .hs_keycmp = cl_env_hops_keycmp,
618 .hs_object = cl_env_hops_obj,
619 .hs_get = cl_env_hops_noop,
620 .hs_put_locked = cl_env_hops_noop,
621 };
622
cl_env_fetch(void)623 static inline struct cl_env *cl_env_fetch(void)
624 {
625 struct cl_env *cle;
626
627 cle = cfs_hash_lookup(cl_env_hash, (void *) (long) current->pid);
628 LASSERT(ergo(cle, cle->ce_magic == &cl_env_init0));
629 return cle;
630 }
631
cl_env_attach(struct cl_env * cle)632 static inline void cl_env_attach(struct cl_env *cle)
633 {
634 if (cle) {
635 int rc;
636
637 LASSERT(cle->ce_owner == NULL);
638 cle->ce_owner = (void *) (long) current->pid;
639 rc = cfs_hash_add_unique(cl_env_hash, cle->ce_owner,
640 &cle->ce_node);
641 LASSERT(rc == 0);
642 }
643 }
644
cl_env_do_detach(struct cl_env * cle)645 static inline void cl_env_do_detach(struct cl_env *cle)
646 {
647 void *cookie;
648
649 LASSERT(cle->ce_owner == (void *) (long) current->pid);
650 cookie = cfs_hash_del(cl_env_hash, cle->ce_owner,
651 &cle->ce_node);
652 LASSERT(cookie == cle);
653 cle->ce_owner = NULL;
654 }
655
cl_env_store_init(void)656 static int cl_env_store_init(void) {
657 cl_env_hash = cfs_hash_create("cl_env",
658 HASH_CL_ENV_BITS, HASH_CL_ENV_BITS,
659 HASH_CL_ENV_BKT_BITS, 0,
660 CFS_HASH_MIN_THETA,
661 CFS_HASH_MAX_THETA,
662 &cl_env_hops,
663 CFS_HASH_RW_BKTLOCK);
664 return cl_env_hash != NULL ? 0 :-ENOMEM;
665 }
666
cl_env_store_fini(void)667 static void cl_env_store_fini(void)
668 {
669 cfs_hash_putref(cl_env_hash);
670 }
671
672
cl_env_detach(struct cl_env * cle)673 static inline struct cl_env *cl_env_detach(struct cl_env *cle)
674 {
675 if (cle == NULL)
676 cle = cl_env_fetch();
677
678 if (cle && cle->ce_owner)
679 cl_env_do_detach(cle);
680
681 return cle;
682 }
683
cl_env_new(__u32 ctx_tags,__u32 ses_tags,void * debug)684 static struct lu_env *cl_env_new(__u32 ctx_tags, __u32 ses_tags, void *debug)
685 {
686 struct lu_env *env;
687 struct cl_env *cle;
688
689 OBD_SLAB_ALLOC_PTR_GFP(cle, cl_env_kmem, GFP_NOFS);
690 if (cle != NULL) {
691 int rc;
692
693 INIT_LIST_HEAD(&cle->ce_linkage);
694 cle->ce_magic = &cl_env_init0;
695 env = &cle->ce_lu;
696 rc = lu_env_init(env, LCT_CL_THREAD|ctx_tags);
697 if (rc == 0) {
698 rc = lu_context_init(&cle->ce_ses,
699 LCT_SESSION | ses_tags);
700 if (rc == 0) {
701 lu_context_enter(&cle->ce_ses);
702 env->le_ses = &cle->ce_ses;
703 cl_env_init0(cle, debug);
704 } else
705 lu_env_fini(env);
706 }
707 if (rc != 0) {
708 OBD_SLAB_FREE_PTR(cle, cl_env_kmem);
709 env = ERR_PTR(rc);
710 } else {
711 CL_ENV_INC(create);
712 CL_ENV_INC(total);
713 }
714 } else
715 env = ERR_PTR(-ENOMEM);
716 return env;
717 }
718
cl_env_fini(struct cl_env * cle)719 static void cl_env_fini(struct cl_env *cle)
720 {
721 CL_ENV_DEC(total);
722 lu_context_fini(&cle->ce_lu.le_ctx);
723 lu_context_fini(&cle->ce_ses);
724 OBD_SLAB_FREE_PTR(cle, cl_env_kmem);
725 }
726
cl_env_container(struct lu_env * env)727 static inline struct cl_env *cl_env_container(struct lu_env *env)
728 {
729 return container_of(env, struct cl_env, ce_lu);
730 }
731
cl_env_peek(int * refcheck)732 struct lu_env *cl_env_peek(int *refcheck)
733 {
734 struct lu_env *env;
735 struct cl_env *cle;
736
737 CL_ENV_INC(lookup);
738
739 /* check that we don't go far from untrusted pointer */
740 CLASSERT(offsetof(struct cl_env, ce_magic) == 0);
741
742 env = NULL;
743 cle = cl_env_fetch();
744 if (cle != NULL) {
745 CL_ENV_INC(hit);
746 env = &cle->ce_lu;
747 *refcheck = ++cle->ce_ref;
748 }
749 CDEBUG(D_OTHER, "%d@%p\n", cle ? cle->ce_ref : 0, cle);
750 return env;
751 }
752 EXPORT_SYMBOL(cl_env_peek);
753
754 /**
755 * Returns lu_env: if there already is an environment associated with the
756 * current thread, it is returned, otherwise, new environment is allocated.
757 *
758 * \param refcheck pointer to a counter used to detect environment leaks. In
759 * the usual case cl_env_get() and cl_env_put() are called in the same lexical
760 * scope and pointer to the same integer is passed as \a refcheck. This is
761 * used to detect missed cl_env_put().
762 *
763 * \see cl_env_put()
764 */
cl_env_get(int * refcheck)765 struct lu_env *cl_env_get(int *refcheck)
766 {
767 struct lu_env *env;
768
769 env = cl_env_peek(refcheck);
770 if (env == NULL) {
771 env = cl_env_new(lu_context_tags_default,
772 lu_session_tags_default,
773 __builtin_return_address(0));
774
775 if (!IS_ERR(env)) {
776 struct cl_env *cle;
777
778 cle = cl_env_container(env);
779 cl_env_attach(cle);
780 *refcheck = cle->ce_ref;
781 CDEBUG(D_OTHER, "%d@%p\n", cle->ce_ref, cle);
782 }
783 }
784 return env;
785 }
786 EXPORT_SYMBOL(cl_env_get);
787
788 /**
789 * Forces an allocation of a fresh environment with given tags.
790 *
791 * \see cl_env_get()
792 */
cl_env_alloc(int * refcheck,__u32 tags)793 struct lu_env *cl_env_alloc(int *refcheck, __u32 tags)
794 {
795 struct lu_env *env;
796
797 LASSERT(cl_env_peek(refcheck) == NULL);
798 env = cl_env_new(tags, tags, __builtin_return_address(0));
799 if (!IS_ERR(env)) {
800 struct cl_env *cle;
801
802 cle = cl_env_container(env);
803 *refcheck = cle->ce_ref;
804 CDEBUG(D_OTHER, "%d@%p\n", cle->ce_ref, cle);
805 }
806 return env;
807 }
808 EXPORT_SYMBOL(cl_env_alloc);
809
cl_env_exit(struct cl_env * cle)810 static void cl_env_exit(struct cl_env *cle)
811 {
812 LASSERT(cle->ce_owner == NULL);
813 lu_context_exit(&cle->ce_lu.le_ctx);
814 lu_context_exit(&cle->ce_ses);
815 }
816
817 /**
818 * Release an environment.
819 *
820 * Decrement \a env reference counter. When counter drops to 0, nothing in
821 * this thread is using environment and it is returned to the allocation
822 * cache, or freed straight away, if cache is large enough.
823 */
cl_env_put(struct lu_env * env,int * refcheck)824 void cl_env_put(struct lu_env *env, int *refcheck)
825 {
826 struct cl_env *cle;
827
828 cle = cl_env_container(env);
829
830 LASSERT(cle->ce_ref > 0);
831 LASSERT(ergo(refcheck != NULL, cle->ce_ref == *refcheck));
832
833 CDEBUG(D_OTHER, "%d@%p\n", cle->ce_ref, cle);
834 if (--cle->ce_ref == 0) {
835 CL_ENV_DEC(busy);
836 cl_env_detach(cle);
837 cle->ce_debug = NULL;
838 cl_env_exit(cle);
839 cl_env_fini(cle);
840 }
841 }
842 EXPORT_SYMBOL(cl_env_put);
843
844 /**
845 * Declares a point of re-entrancy.
846 *
847 * \see cl_env_reexit()
848 */
cl_env_reenter(void)849 void *cl_env_reenter(void)
850 {
851 return cl_env_detach(NULL);
852 }
853 EXPORT_SYMBOL(cl_env_reenter);
854
855 /**
856 * Exits re-entrancy.
857 */
cl_env_reexit(void * cookie)858 void cl_env_reexit(void *cookie)
859 {
860 cl_env_detach(NULL);
861 cl_env_attach(cookie);
862 }
863 EXPORT_SYMBOL(cl_env_reexit);
864
865 /**
866 * Setup user-supplied \a env as a current environment. This is to be used to
867 * guaranteed that environment exists even when cl_env_get() fails. It is up
868 * to user to ensure proper concurrency control.
869 *
870 * \see cl_env_unplant()
871 */
cl_env_implant(struct lu_env * env,int * refcheck)872 void cl_env_implant(struct lu_env *env, int *refcheck)
873 {
874 struct cl_env *cle = cl_env_container(env);
875
876 LASSERT(cle->ce_ref > 0);
877
878 cl_env_attach(cle);
879 cl_env_get(refcheck);
880 CDEBUG(D_OTHER, "%d@%p\n", cle->ce_ref, cle);
881 }
882 EXPORT_SYMBOL(cl_env_implant);
883
884 /**
885 * Detach environment installed earlier by cl_env_implant().
886 */
cl_env_unplant(struct lu_env * env,int * refcheck)887 void cl_env_unplant(struct lu_env *env, int *refcheck)
888 {
889 struct cl_env *cle = cl_env_container(env);
890
891 LASSERT(cle->ce_ref > 1);
892
893 CDEBUG(D_OTHER, "%d@%p\n", cle->ce_ref, cle);
894
895 cl_env_detach(cle);
896 cl_env_put(env, refcheck);
897 }
898 EXPORT_SYMBOL(cl_env_unplant);
899
cl_env_nested_get(struct cl_env_nest * nest)900 struct lu_env *cl_env_nested_get(struct cl_env_nest *nest)
901 {
902 struct lu_env *env;
903
904 nest->cen_cookie = NULL;
905 env = cl_env_peek(&nest->cen_refcheck);
906 if (env != NULL) {
907 if (!cl_io_is_going(env))
908 return env;
909 else {
910 cl_env_put(env, &nest->cen_refcheck);
911 nest->cen_cookie = cl_env_reenter();
912 }
913 }
914 env = cl_env_get(&nest->cen_refcheck);
915 if (IS_ERR(env)) {
916 cl_env_reexit(nest->cen_cookie);
917 return env;
918 }
919
920 LASSERT(!cl_io_is_going(env));
921 return env;
922 }
923 EXPORT_SYMBOL(cl_env_nested_get);
924
cl_env_nested_put(struct cl_env_nest * nest,struct lu_env * env)925 void cl_env_nested_put(struct cl_env_nest *nest, struct lu_env *env)
926 {
927 cl_env_put(env, &nest->cen_refcheck);
928 cl_env_reexit(nest->cen_cookie);
929 }
930 EXPORT_SYMBOL(cl_env_nested_put);
931
932 /**
933 * Converts struct cl_attr to struct ost_lvb.
934 *
935 * \see cl_lvb2attr
936 */
cl_attr2lvb(struct ost_lvb * lvb,const struct cl_attr * attr)937 void cl_attr2lvb(struct ost_lvb *lvb, const struct cl_attr *attr)
938 {
939 lvb->lvb_size = attr->cat_size;
940 lvb->lvb_mtime = attr->cat_mtime;
941 lvb->lvb_atime = attr->cat_atime;
942 lvb->lvb_ctime = attr->cat_ctime;
943 lvb->lvb_blocks = attr->cat_blocks;
944 }
945 EXPORT_SYMBOL(cl_attr2lvb);
946
947 /**
948 * Converts struct ost_lvb to struct cl_attr.
949 *
950 * \see cl_attr2lvb
951 */
cl_lvb2attr(struct cl_attr * attr,const struct ost_lvb * lvb)952 void cl_lvb2attr(struct cl_attr *attr, const struct ost_lvb *lvb)
953 {
954 attr->cat_size = lvb->lvb_size;
955 attr->cat_mtime = lvb->lvb_mtime;
956 attr->cat_atime = lvb->lvb_atime;
957 attr->cat_ctime = lvb->lvb_ctime;
958 attr->cat_blocks = lvb->lvb_blocks;
959 }
960 EXPORT_SYMBOL(cl_lvb2attr);
961
962 /*****************************************************************************
963 *
964 * Temporary prototype thing: mirror obd-devices into cl devices.
965 *
966 */
967
cl_type_setup(const struct lu_env * env,struct lu_site * site,struct lu_device_type * ldt,struct lu_device * next)968 struct cl_device *cl_type_setup(const struct lu_env *env, struct lu_site *site,
969 struct lu_device_type *ldt,
970 struct lu_device *next)
971 {
972 const char *typename;
973 struct lu_device *d;
974
975 LASSERT(ldt != NULL);
976
977 typename = ldt->ldt_name;
978 d = ldt->ldt_ops->ldto_device_alloc(env, ldt, NULL);
979 if (!IS_ERR(d)) {
980 int rc;
981
982 if (site != NULL)
983 d->ld_site = site;
984 rc = ldt->ldt_ops->ldto_device_init(env, d, typename, next);
985 if (rc == 0) {
986 lu_device_get(d);
987 lu_ref_add(&d->ld_reference,
988 "lu-stack", &lu_site_init);
989 } else {
990 ldt->ldt_ops->ldto_device_free(env, d);
991 CERROR("can't init device '%s', %d\n", typename, rc);
992 d = ERR_PTR(rc);
993 }
994 } else
995 CERROR("Cannot allocate device: '%s'\n", typename);
996 return lu2cl_dev(d);
997 }
998 EXPORT_SYMBOL(cl_type_setup);
999
1000 /**
1001 * Finalize device stack by calling lu_stack_fini().
1002 */
cl_stack_fini(const struct lu_env * env,struct cl_device * cl)1003 void cl_stack_fini(const struct lu_env *env, struct cl_device *cl)
1004 {
1005 lu_stack_fini(env, cl2lu_dev(cl));
1006 }
1007 EXPORT_SYMBOL(cl_stack_fini);
1008
1009 int cl_lock_init(void);
1010 void cl_lock_fini(void);
1011
1012 int cl_page_init(void);
1013 void cl_page_fini(void);
1014
1015 static struct lu_context_key cl_key;
1016
cl_env_info(const struct lu_env * env)1017 struct cl_thread_info *cl_env_info(const struct lu_env *env)
1018 {
1019 return lu_context_key_get(&env->le_ctx, &cl_key);
1020 }
1021
1022 /* defines cl0_key_{init,fini}() */
1023 LU_KEY_INIT_FINI(cl0, struct cl_thread_info);
1024
cl_key_init(const struct lu_context * ctx,struct lu_context_key * key)1025 static void *cl_key_init(const struct lu_context *ctx,
1026 struct lu_context_key *key)
1027 {
1028 struct cl_thread_info *info;
1029
1030 info = cl0_key_init(ctx, key);
1031 if (!IS_ERR(info)) {
1032 int i;
1033
1034 for (i = 0; i < ARRAY_SIZE(info->clt_counters); ++i)
1035 lu_ref_init(&info->clt_counters[i].ctc_locks_locked);
1036 }
1037 return info;
1038 }
1039
cl_key_fini(const struct lu_context * ctx,struct lu_context_key * key,void * data)1040 static void cl_key_fini(const struct lu_context *ctx,
1041 struct lu_context_key *key, void *data)
1042 {
1043 struct cl_thread_info *info;
1044 int i;
1045
1046 info = data;
1047 for (i = 0; i < ARRAY_SIZE(info->clt_counters); ++i)
1048 lu_ref_fini(&info->clt_counters[i].ctc_locks_locked);
1049 cl0_key_fini(ctx, key, data);
1050 }
1051
cl_key_exit(const struct lu_context * ctx,struct lu_context_key * key,void * data)1052 static void cl_key_exit(const struct lu_context *ctx,
1053 struct lu_context_key *key, void *data)
1054 {
1055 struct cl_thread_info *info = data;
1056 int i;
1057
1058 for (i = 0; i < ARRAY_SIZE(info->clt_counters); ++i) {
1059 LASSERT(info->clt_counters[i].ctc_nr_held == 0);
1060 LASSERT(info->clt_counters[i].ctc_nr_used == 0);
1061 LASSERT(info->clt_counters[i].ctc_nr_locks_acquired == 0);
1062 LASSERT(info->clt_counters[i].ctc_nr_locks_locked == 0);
1063 lu_ref_fini(&info->clt_counters[i].ctc_locks_locked);
1064 lu_ref_init(&info->clt_counters[i].ctc_locks_locked);
1065 }
1066 }
1067
1068 static struct lu_context_key cl_key = {
1069 .lct_tags = LCT_CL_THREAD,
1070 .lct_init = cl_key_init,
1071 .lct_fini = cl_key_fini,
1072 .lct_exit = cl_key_exit
1073 };
1074
1075 static struct lu_kmem_descr cl_object_caches[] = {
1076 {
1077 .ckd_cache = &cl_env_kmem,
1078 .ckd_name = "cl_env_kmem",
1079 .ckd_size = sizeof (struct cl_env)
1080 },
1081 {
1082 .ckd_cache = NULL
1083 }
1084 };
1085
1086 /**
1087 * Global initialization of cl-data. Create kmem caches, register
1088 * lu_context_key's, etc.
1089 *
1090 * \see cl_global_fini()
1091 */
cl_global_init(void)1092 int cl_global_init(void)
1093 {
1094 int result;
1095
1096 result = cl_env_store_init();
1097 if (result)
1098 return result;
1099
1100 result = lu_kmem_init(cl_object_caches);
1101 if (result)
1102 goto out_store;
1103
1104 LU_CONTEXT_KEY_INIT(&cl_key);
1105 result = lu_context_key_register(&cl_key);
1106 if (result)
1107 goto out_kmem;
1108
1109 result = cl_lock_init();
1110 if (result)
1111 goto out_context;
1112
1113 result = cl_page_init();
1114 if (result)
1115 goto out_lock;
1116
1117 return 0;
1118 out_lock:
1119 cl_lock_fini();
1120 out_context:
1121 lu_context_key_degister(&cl_key);
1122 out_kmem:
1123 lu_kmem_fini(cl_object_caches);
1124 out_store:
1125 cl_env_store_fini();
1126 return result;
1127 }
1128
1129 /**
1130 * Finalization of global cl-data. Dual to cl_global_init().
1131 */
cl_global_fini(void)1132 void cl_global_fini(void)
1133 {
1134 cl_lock_fini();
1135 cl_page_fini();
1136 lu_context_key_degister(&cl_key);
1137 lu_kmem_fini(cl_object_caches);
1138 cl_env_store_fini();
1139 }
1140