1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Synthesize TLB refill handlers at runtime.
7 *
8 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
9 * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki
10 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
11 * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12 * Copyright (C) 2011 MIPS Technologies, Inc.
13 *
14 * ... and the days got worse and worse and now you see
15 * I've gone completly out of my mind.
16 *
17 * They're coming to take me a away haha
18 * they're coming to take me a away hoho hihi haha
19 * to the funny farm where code is beautiful all the time ...
20 *
21 * (Condolences to Napoleon XIV)
22 */
23
24 #include <linux/bug.h>
25 #include <linux/kernel.h>
26 #include <linux/types.h>
27 #include <linux/smp.h>
28 #include <linux/string.h>
29 #include <linux/cache.h>
30
31 #include <asm/cacheflush.h>
32 #include <asm/cpu-type.h>
33 #include <asm/pgtable.h>
34 #include <asm/war.h>
35 #include <asm/uasm.h>
36 #include <asm/setup.h>
37
38 static int __cpuinitdata mips_xpa_disabled;
39
xpa_disable(char * s)40 static int __init xpa_disable(char *s)
41 {
42 mips_xpa_disabled = 1;
43
44 return 1;
45 }
46
47 __setup("noxpa", xpa_disable);
48
49 /*
50 * TLB load/store/modify handlers.
51 *
52 * Only the fastpath gets synthesized at runtime, the slowpath for
53 * do_page_fault remains normal asm.
54 */
55 extern void tlb_do_page_fault_0(void);
56 extern void tlb_do_page_fault_1(void);
57
58 struct work_registers {
59 int r1;
60 int r2;
61 int r3;
62 };
63
64 struct tlb_reg_save {
65 unsigned long a;
66 unsigned long b;
67 } ____cacheline_aligned_in_smp;
68
69 static struct tlb_reg_save handler_reg_save[NR_CPUS];
70
r45k_bvahwbug(void)71 static inline int r45k_bvahwbug(void)
72 {
73 /* XXX: We should probe for the presence of this bug, but we don't. */
74 return 0;
75 }
76
r4k_250MHZhwbug(void)77 static inline int r4k_250MHZhwbug(void)
78 {
79 /* XXX: We should probe for the presence of this bug, but we don't. */
80 return 0;
81 }
82
bcm1250_m3_war(void)83 static inline int __maybe_unused bcm1250_m3_war(void)
84 {
85 return BCM1250_M3_WAR;
86 }
87
r10000_llsc_war(void)88 static inline int __maybe_unused r10000_llsc_war(void)
89 {
90 return R10000_LLSC_WAR;
91 }
92
use_bbit_insns(void)93 static int use_bbit_insns(void)
94 {
95 switch (current_cpu_type()) {
96 case CPU_CAVIUM_OCTEON:
97 case CPU_CAVIUM_OCTEON_PLUS:
98 case CPU_CAVIUM_OCTEON2:
99 case CPU_CAVIUM_OCTEON3:
100 return 1;
101 default:
102 return 0;
103 }
104 }
105
use_lwx_insns(void)106 static int use_lwx_insns(void)
107 {
108 switch (current_cpu_type()) {
109 case CPU_CAVIUM_OCTEON2:
110 case CPU_CAVIUM_OCTEON3:
111 return 1;
112 default:
113 return 0;
114 }
115 }
116 #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
117 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
scratchpad_available(void)118 static bool scratchpad_available(void)
119 {
120 return true;
121 }
scratchpad_offset(int i)122 static int scratchpad_offset(int i)
123 {
124 /*
125 * CVMSEG starts at address -32768 and extends for
126 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
127 */
128 i += 1; /* Kernel use starts at the top and works down. */
129 return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
130 }
131 #else
scratchpad_available(void)132 static bool scratchpad_available(void)
133 {
134 return false;
135 }
scratchpad_offset(int i)136 static int scratchpad_offset(int i)
137 {
138 BUG();
139 /* Really unreachable, but evidently some GCC want this. */
140 return 0;
141 }
142 #endif
143 /*
144 * Found by experiment: At least some revisions of the 4kc throw under
145 * some circumstances a machine check exception, triggered by invalid
146 * values in the index register. Delaying the tlbp instruction until
147 * after the next branch, plus adding an additional nop in front of
148 * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
149 * why; it's not an issue caused by the core RTL.
150 *
151 */
m4kc_tlbp_war(void)152 static int m4kc_tlbp_war(void)
153 {
154 return (current_cpu_data.processor_id & 0xffff00) ==
155 (PRID_COMP_MIPS | PRID_IMP_4KC);
156 }
157
158 /* Handle labels (which must be positive integers). */
159 enum label_id {
160 label_second_part = 1,
161 label_leave,
162 label_vmalloc,
163 label_vmalloc_done,
164 label_tlbw_hazard_0,
165 label_split = label_tlbw_hazard_0 + 8,
166 label_tlbl_goaround1,
167 label_tlbl_goaround2,
168 label_nopage_tlbl,
169 label_nopage_tlbs,
170 label_nopage_tlbm,
171 label_smp_pgtable_change,
172 label_r3000_write_probe_fail,
173 label_large_segbits_fault,
174 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
175 label_tlb_huge_update,
176 #endif
177 };
178
179 UASM_L_LA(_second_part)
180 UASM_L_LA(_leave)
181 UASM_L_LA(_vmalloc)
182 UASM_L_LA(_vmalloc_done)
183 /* _tlbw_hazard_x is handled differently. */
184 UASM_L_LA(_split)
185 UASM_L_LA(_tlbl_goaround1)
186 UASM_L_LA(_tlbl_goaround2)
187 UASM_L_LA(_nopage_tlbl)
188 UASM_L_LA(_nopage_tlbs)
189 UASM_L_LA(_nopage_tlbm)
190 UASM_L_LA(_smp_pgtable_change)
191 UASM_L_LA(_r3000_write_probe_fail)
192 UASM_L_LA(_large_segbits_fault)
193 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
194 UASM_L_LA(_tlb_huge_update)
195 #endif
196
197 static int hazard_instance;
198
uasm_bgezl_hazard(u32 ** p,struct uasm_reloc ** r,int instance)199 static void uasm_bgezl_hazard(u32 **p, struct uasm_reloc **r, int instance)
200 {
201 switch (instance) {
202 case 0 ... 7:
203 uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
204 return;
205 default:
206 BUG();
207 }
208 }
209
uasm_bgezl_label(struct uasm_label ** l,u32 ** p,int instance)210 static void uasm_bgezl_label(struct uasm_label **l, u32 **p, int instance)
211 {
212 switch (instance) {
213 case 0 ... 7:
214 uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
215 break;
216 default:
217 BUG();
218 }
219 }
220
221 /*
222 * pgtable bits are assigned dynamically depending on processor feature
223 * and statically based on kernel configuration. This spits out the actual
224 * values the kernel is using. Required to make sense from disassembled
225 * TLB exception handlers.
226 */
output_pgtable_bits_defines(void)227 static void output_pgtable_bits_defines(void)
228 {
229 #define pr_define(fmt, ...) \
230 pr_debug("#define " fmt, ##__VA_ARGS__)
231
232 pr_debug("#include <asm/asm.h>\n");
233 pr_debug("#include <asm/regdef.h>\n");
234 pr_debug("\n");
235
236 pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
237 pr_define("_PAGE_READ_SHIFT %d\n", _PAGE_READ_SHIFT);
238 pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
239 pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
240 pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
241 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
242 pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
243 pr_define("_PAGE_SPLITTING_SHIFT %d\n", _PAGE_SPLITTING_SHIFT);
244 #endif
245 #if defined(CONFIG_CPU_MIPSR2) || defined(CONFIG_CPU_MIPSR6)
246 if (cpu_has_rixi) {
247 #ifdef _PAGE_NO_EXEC_SHIFT
248 pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
249 pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
250 #endif
251 }
252 #endif
253 pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
254 pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
255 pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
256 pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT);
257 pr_debug("\n");
258 }
259
dump_handler(const char * symbol,const u32 * handler,int count)260 static inline void dump_handler(const char *symbol, const u32 *handler, int count)
261 {
262 int i;
263
264 pr_debug("LEAF(%s)\n", symbol);
265
266 pr_debug("\t.set push\n");
267 pr_debug("\t.set noreorder\n");
268
269 for (i = 0; i < count; i++)
270 pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
271
272 pr_debug("\t.set\tpop\n");
273
274 pr_debug("\tEND(%s)\n", symbol);
275 }
276
277 /* The only general purpose registers allowed in TLB handlers. */
278 #define K0 26
279 #define K1 27
280
281 /* Some CP0 registers */
282 #define C0_INDEX 0, 0
283 #define C0_ENTRYLO0 2, 0
284 #define C0_TCBIND 2, 2
285 #define C0_ENTRYLO1 3, 0
286 #define C0_CONTEXT 4, 0
287 #define C0_PAGEMASK 5, 0
288 #define C0_BADVADDR 8, 0
289 #define C0_ENTRYHI 10, 0
290 #define C0_EPC 14, 0
291 #define C0_XCONTEXT 20, 0
292
293 #ifdef CONFIG_64BIT
294 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
295 #else
296 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
297 #endif
298
299 /* The worst case length of the handler is around 18 instructions for
300 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
301 * Maximum space available is 32 instructions for R3000 and 64
302 * instructions for R4000.
303 *
304 * We deliberately chose a buffer size of 128, so we won't scribble
305 * over anything important on overflow before we panic.
306 */
307 static u32 tlb_handler[128];
308
309 /* simply assume worst case size for labels and relocs */
310 static struct uasm_label labels[128];
311 static struct uasm_reloc relocs[128];
312
313 static int check_for_high_segbits;
314
315 static unsigned int kscratch_used_mask;
316
c0_kscratch(void)317 static inline int __maybe_unused c0_kscratch(void)
318 {
319 switch (current_cpu_type()) {
320 case CPU_XLP:
321 case CPU_XLR:
322 return 22;
323 default:
324 return 31;
325 }
326 }
327
allocate_kscratch(void)328 static int allocate_kscratch(void)
329 {
330 int r;
331 unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
332
333 r = ffs(a);
334
335 if (r == 0)
336 return -1;
337
338 r--; /* make it zero based */
339
340 kscratch_used_mask |= (1 << r);
341
342 return r;
343 }
344
345 static int scratch_reg;
346 static int pgd_reg;
347 enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
348
build_get_work_registers(u32 ** p)349 static struct work_registers build_get_work_registers(u32 **p)
350 {
351 struct work_registers r;
352
353 if (scratch_reg >= 0) {
354 /* Save in CPU local C0_KScratch? */
355 UASM_i_MTC0(p, 1, c0_kscratch(), scratch_reg);
356 r.r1 = K0;
357 r.r2 = K1;
358 r.r3 = 1;
359 return r;
360 }
361
362 if (num_possible_cpus() > 1) {
363 /* Get smp_processor_id */
364 UASM_i_CPUID_MFC0(p, K0, SMP_CPUID_REG);
365 UASM_i_SRL_SAFE(p, K0, K0, SMP_CPUID_REGSHIFT);
366
367 /* handler_reg_save index in K0 */
368 UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
369
370 UASM_i_LA(p, K1, (long)&handler_reg_save);
371 UASM_i_ADDU(p, K0, K0, K1);
372 } else {
373 UASM_i_LA(p, K0, (long)&handler_reg_save);
374 }
375 /* K0 now points to save area, save $1 and $2 */
376 UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
377 UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
378
379 r.r1 = K1;
380 r.r2 = 1;
381 r.r3 = 2;
382 return r;
383 }
384
build_restore_work_registers(u32 ** p)385 static void build_restore_work_registers(u32 **p)
386 {
387 if (scratch_reg >= 0) {
388 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
389 return;
390 }
391 /* K0 already points to save area, restore $1 and $2 */
392 UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
393 UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
394 }
395
396 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
397
398 /*
399 * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
400 * we cannot do r3000 under these circumstances.
401 *
402 * Declare pgd_current here instead of including mmu_context.h to avoid type
403 * conflicts for tlbmiss_handler_setup_pgd
404 */
405 extern unsigned long pgd_current[];
406
407 /*
408 * The R3000 TLB handler is simple.
409 */
build_r3000_tlb_refill_handler(void)410 static void build_r3000_tlb_refill_handler(void)
411 {
412 long pgdc = (long)pgd_current;
413 u32 *p;
414
415 memset(tlb_handler, 0, sizeof(tlb_handler));
416 p = tlb_handler;
417
418 uasm_i_mfc0(&p, K0, C0_BADVADDR);
419 uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
420 uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
421 uasm_i_srl(&p, K0, K0, 22); /* load delay */
422 uasm_i_sll(&p, K0, K0, 2);
423 uasm_i_addu(&p, K1, K1, K0);
424 uasm_i_mfc0(&p, K0, C0_CONTEXT);
425 uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
426 uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
427 uasm_i_addu(&p, K1, K1, K0);
428 uasm_i_lw(&p, K0, 0, K1);
429 uasm_i_nop(&p); /* load delay */
430 uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
431 uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
432 uasm_i_tlbwr(&p); /* cp0 delay */
433 uasm_i_jr(&p, K1);
434 uasm_i_rfe(&p); /* branch delay */
435
436 if (p > tlb_handler + 32)
437 panic("TLB refill handler space exceeded");
438
439 pr_debug("Wrote TLB refill handler (%u instructions).\n",
440 (unsigned int)(p - tlb_handler));
441
442 memcpy((void *)ebase, tlb_handler, 0x80);
443 local_flush_icache_range(ebase, ebase + 0x80);
444
445 dump_handler("r3000_tlb_refill", (u32 *)ebase, 32);
446 }
447 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
448
449 /*
450 * The R4000 TLB handler is much more complicated. We have two
451 * consecutive handler areas with 32 instructions space each.
452 * Since they aren't used at the same time, we can overflow in the
453 * other one.To keep things simple, we first assume linear space,
454 * then we relocate it to the final handler layout as needed.
455 */
456 static u32 final_handler[64];
457
458 /*
459 * Hazards
460 *
461 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
462 * 2. A timing hazard exists for the TLBP instruction.
463 *
464 * stalling_instruction
465 * TLBP
466 *
467 * The JTLB is being read for the TLBP throughout the stall generated by the
468 * previous instruction. This is not really correct as the stalling instruction
469 * can modify the address used to access the JTLB. The failure symptom is that
470 * the TLBP instruction will use an address created for the stalling instruction
471 * and not the address held in C0_ENHI and thus report the wrong results.
472 *
473 * The software work-around is to not allow the instruction preceding the TLBP
474 * to stall - make it an NOP or some other instruction guaranteed not to stall.
475 *
476 * Errata 2 will not be fixed. This errata is also on the R5000.
477 *
478 * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
479 */
build_tlb_probe_entry(u32 ** p)480 static void __maybe_unused build_tlb_probe_entry(u32 **p)
481 {
482 switch (current_cpu_type()) {
483 /* Found by experiment: R4600 v2.0/R4700 needs this, too. */
484 case CPU_R4600:
485 case CPU_R4700:
486 case CPU_R5000:
487 case CPU_NEVADA:
488 uasm_i_nop(p);
489 uasm_i_tlbp(p);
490 break;
491
492 default:
493 uasm_i_tlbp(p);
494 break;
495 }
496 }
497
498 /*
499 * Write random or indexed TLB entry, and care about the hazards from
500 * the preceding mtc0 and for the following eret.
501 */
502 enum tlb_write_entry { tlb_random, tlb_indexed };
503
build_tlb_write_entry(u32 ** p,struct uasm_label ** l,struct uasm_reloc ** r,enum tlb_write_entry wmode)504 static void build_tlb_write_entry(u32 **p, struct uasm_label **l,
505 struct uasm_reloc **r,
506 enum tlb_write_entry wmode)
507 {
508 void(*tlbw)(u32 **) = NULL;
509
510 switch (wmode) {
511 case tlb_random: tlbw = uasm_i_tlbwr; break;
512 case tlb_indexed: tlbw = uasm_i_tlbwi; break;
513 }
514
515 if (cpu_has_mips_r2_r6) {
516 if (cpu_has_mips_r2_exec_hazard)
517 uasm_i_ehb(p);
518 tlbw(p);
519 return;
520 }
521
522 switch (current_cpu_type()) {
523 case CPU_R4000PC:
524 case CPU_R4000SC:
525 case CPU_R4000MC:
526 case CPU_R4400PC:
527 case CPU_R4400SC:
528 case CPU_R4400MC:
529 /*
530 * This branch uses up a mtc0 hazard nop slot and saves
531 * two nops after the tlbw instruction.
532 */
533 uasm_bgezl_hazard(p, r, hazard_instance);
534 tlbw(p);
535 uasm_bgezl_label(l, p, hazard_instance);
536 hazard_instance++;
537 uasm_i_nop(p);
538 break;
539
540 case CPU_R4600:
541 case CPU_R4700:
542 uasm_i_nop(p);
543 tlbw(p);
544 uasm_i_nop(p);
545 break;
546
547 case CPU_R5000:
548 case CPU_NEVADA:
549 uasm_i_nop(p); /* QED specifies 2 nops hazard */
550 uasm_i_nop(p); /* QED specifies 2 nops hazard */
551 tlbw(p);
552 break;
553
554 case CPU_R4300:
555 case CPU_5KC:
556 case CPU_TX49XX:
557 case CPU_PR4450:
558 case CPU_XLR:
559 uasm_i_nop(p);
560 tlbw(p);
561 break;
562
563 case CPU_R10000:
564 case CPU_R12000:
565 case CPU_R14000:
566 case CPU_R16000:
567 case CPU_4KC:
568 case CPU_4KEC:
569 case CPU_M14KC:
570 case CPU_M14KEC:
571 case CPU_SB1:
572 case CPU_SB1A:
573 case CPU_4KSC:
574 case CPU_20KC:
575 case CPU_25KF:
576 case CPU_BMIPS32:
577 case CPU_BMIPS3300:
578 case CPU_BMIPS4350:
579 case CPU_BMIPS4380:
580 case CPU_BMIPS5000:
581 case CPU_LOONGSON2:
582 case CPU_LOONGSON3:
583 case CPU_R5500:
584 if (m4kc_tlbp_war())
585 uasm_i_nop(p);
586 case CPU_ALCHEMY:
587 tlbw(p);
588 break;
589
590 case CPU_RM7000:
591 uasm_i_nop(p);
592 uasm_i_nop(p);
593 uasm_i_nop(p);
594 uasm_i_nop(p);
595 tlbw(p);
596 break;
597
598 case CPU_VR4111:
599 case CPU_VR4121:
600 case CPU_VR4122:
601 case CPU_VR4181:
602 case CPU_VR4181A:
603 uasm_i_nop(p);
604 uasm_i_nop(p);
605 tlbw(p);
606 uasm_i_nop(p);
607 uasm_i_nop(p);
608 break;
609
610 case CPU_VR4131:
611 case CPU_VR4133:
612 case CPU_R5432:
613 uasm_i_nop(p);
614 uasm_i_nop(p);
615 tlbw(p);
616 break;
617
618 case CPU_JZRISC:
619 tlbw(p);
620 uasm_i_nop(p);
621 break;
622
623 default:
624 panic("No TLB refill handler yet (CPU type: %d)",
625 current_cpu_type());
626 break;
627 }
628 }
629
build_convert_pte_to_entrylo(u32 ** p,unsigned int reg)630 static __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
631 unsigned int reg)
632 {
633 if (cpu_has_rixi) {
634 UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
635 } else {
636 #ifdef CONFIG_PHYS_ADDR_T_64BIT
637 uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
638 #else
639 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
640 #endif
641 }
642 }
643
644 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
645
build_restore_pagemask(u32 ** p,struct uasm_reloc ** r,unsigned int tmp,enum label_id lid,int restore_scratch)646 static void build_restore_pagemask(u32 **p, struct uasm_reloc **r,
647 unsigned int tmp, enum label_id lid,
648 int restore_scratch)
649 {
650 if (restore_scratch) {
651 /* Reset default page size */
652 if (PM_DEFAULT_MASK >> 16) {
653 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
654 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
655 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
656 uasm_il_b(p, r, lid);
657 } else if (PM_DEFAULT_MASK) {
658 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
659 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
660 uasm_il_b(p, r, lid);
661 } else {
662 uasm_i_mtc0(p, 0, C0_PAGEMASK);
663 uasm_il_b(p, r, lid);
664 }
665 if (scratch_reg >= 0)
666 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
667 else
668 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
669 } else {
670 /* Reset default page size */
671 if (PM_DEFAULT_MASK >> 16) {
672 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
673 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
674 uasm_il_b(p, r, lid);
675 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
676 } else if (PM_DEFAULT_MASK) {
677 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
678 uasm_il_b(p, r, lid);
679 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
680 } else {
681 uasm_il_b(p, r, lid);
682 uasm_i_mtc0(p, 0, C0_PAGEMASK);
683 }
684 }
685 }
686
build_huge_tlb_write_entry(u32 ** p,struct uasm_label ** l,struct uasm_reloc ** r,unsigned int tmp,enum tlb_write_entry wmode,int restore_scratch)687 static void build_huge_tlb_write_entry(u32 **p, struct uasm_label **l,
688 struct uasm_reloc **r,
689 unsigned int tmp,
690 enum tlb_write_entry wmode,
691 int restore_scratch)
692 {
693 /* Set huge page tlb entry size */
694 uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
695 uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
696 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
697
698 build_tlb_write_entry(p, l, r, wmode);
699
700 build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
701 }
702
703 /*
704 * Check if Huge PTE is present, if so then jump to LABEL.
705 */
706 static void
build_is_huge_pte(u32 ** p,struct uasm_reloc ** r,unsigned int tmp,unsigned int pmd,int lid)707 build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
708 unsigned int pmd, int lid)
709 {
710 UASM_i_LW(p, tmp, 0, pmd);
711 if (use_bbit_insns()) {
712 uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
713 } else {
714 uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
715 uasm_il_bnez(p, r, tmp, lid);
716 }
717 }
718
build_huge_update_entries(u32 ** p,unsigned int pte,unsigned int tmp)719 static void build_huge_update_entries(u32 **p, unsigned int pte,
720 unsigned int tmp)
721 {
722 int small_sequence;
723
724 /*
725 * A huge PTE describes an area the size of the
726 * configured huge page size. This is twice the
727 * of the large TLB entry size we intend to use.
728 * A TLB entry half the size of the configured
729 * huge page size is configured into entrylo0
730 * and entrylo1 to cover the contiguous huge PTE
731 * address space.
732 */
733 small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
734
735 /* We can clobber tmp. It isn't used after this.*/
736 if (!small_sequence)
737 uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
738
739 build_convert_pte_to_entrylo(p, pte);
740 UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
741 /* convert to entrylo1 */
742 if (small_sequence)
743 UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
744 else
745 UASM_i_ADDU(p, pte, pte, tmp);
746
747 UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
748 }
749
build_huge_handler_tail(u32 ** p,struct uasm_reloc ** r,struct uasm_label ** l,unsigned int pte,unsigned int ptr)750 static void build_huge_handler_tail(u32 **p, struct uasm_reloc **r,
751 struct uasm_label **l,
752 unsigned int pte,
753 unsigned int ptr)
754 {
755 #ifdef CONFIG_SMP
756 UASM_i_SC(p, pte, 0, ptr);
757 uasm_il_beqz(p, r, pte, label_tlb_huge_update);
758 UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
759 #else
760 UASM_i_SW(p, pte, 0, ptr);
761 #endif
762 build_huge_update_entries(p, pte, ptr);
763 build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
764 }
765 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
766
767 #ifdef CONFIG_64BIT
768 /*
769 * TMP and PTR are scratch.
770 * TMP will be clobbered, PTR will hold the pmd entry.
771 */
772 static void
build_get_pmde64(u32 ** p,struct uasm_label ** l,struct uasm_reloc ** r,unsigned int tmp,unsigned int ptr)773 build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
774 unsigned int tmp, unsigned int ptr)
775 {
776 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
777 long pgdc = (long)pgd_current;
778 #endif
779 /*
780 * The vmalloc handling is not in the hotpath.
781 */
782 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
783
784 if (check_for_high_segbits) {
785 /*
786 * The kernel currently implicitely assumes that the
787 * MIPS SEGBITS parameter for the processor is
788 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
789 * allocate virtual addresses outside the maximum
790 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
791 * that doesn't prevent user code from accessing the
792 * higher xuseg addresses. Here, we make sure that
793 * everything but the lower xuseg addresses goes down
794 * the module_alloc/vmalloc path.
795 */
796 uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
797 uasm_il_bnez(p, r, ptr, label_vmalloc);
798 } else {
799 uasm_il_bltz(p, r, tmp, label_vmalloc);
800 }
801 /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
802
803 if (pgd_reg != -1) {
804 /* pgd is in pgd_reg */
805 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
806 } else {
807 #if defined(CONFIG_MIPS_PGD_C0_CONTEXT)
808 /*
809 * &pgd << 11 stored in CONTEXT [23..63].
810 */
811 UASM_i_MFC0(p, ptr, C0_CONTEXT);
812
813 /* Clear lower 23 bits of context. */
814 uasm_i_dins(p, ptr, 0, 0, 23);
815
816 /* 1 0 1 0 1 << 6 xkphys cached */
817 uasm_i_ori(p, ptr, ptr, 0x540);
818 uasm_i_drotr(p, ptr, ptr, 11);
819 #elif defined(CONFIG_SMP)
820 UASM_i_CPUID_MFC0(p, ptr, SMP_CPUID_REG);
821 uasm_i_dsrl_safe(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
822 UASM_i_LA_mostly(p, tmp, pgdc);
823 uasm_i_daddu(p, ptr, ptr, tmp);
824 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
825 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
826 #else
827 UASM_i_LA_mostly(p, ptr, pgdc);
828 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
829 #endif
830 }
831
832 uasm_l_vmalloc_done(l, *p);
833
834 /* get pgd offset in bytes */
835 uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
836
837 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
838 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
839 #ifndef __PAGETABLE_PMD_FOLDED
840 uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
841 uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
842 uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
843 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
844 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
845 #endif
846 }
847
848 /*
849 * BVADDR is the faulting address, PTR is scratch.
850 * PTR will hold the pgd for vmalloc.
851 */
852 static void
build_get_pgd_vmalloc64(u32 ** p,struct uasm_label ** l,struct uasm_reloc ** r,unsigned int bvaddr,unsigned int ptr,enum vmalloc64_mode mode)853 build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
854 unsigned int bvaddr, unsigned int ptr,
855 enum vmalloc64_mode mode)
856 {
857 long swpd = (long)swapper_pg_dir;
858 int single_insn_swpd;
859 int did_vmalloc_branch = 0;
860
861 single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
862
863 uasm_l_vmalloc(l, *p);
864
865 if (mode != not_refill && check_for_high_segbits) {
866 if (single_insn_swpd) {
867 uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
868 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
869 did_vmalloc_branch = 1;
870 /* fall through */
871 } else {
872 uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
873 }
874 }
875 if (!did_vmalloc_branch) {
876 if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
877 uasm_il_b(p, r, label_vmalloc_done);
878 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
879 } else {
880 UASM_i_LA_mostly(p, ptr, swpd);
881 uasm_il_b(p, r, label_vmalloc_done);
882 if (uasm_in_compat_space_p(swpd))
883 uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
884 else
885 uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
886 }
887 }
888 if (mode != not_refill && check_for_high_segbits) {
889 uasm_l_large_segbits_fault(l, *p);
890 /*
891 * We get here if we are an xsseg address, or if we are
892 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
893 *
894 * Ignoring xsseg (assume disabled so would generate
895 * (address errors?), the only remaining possibility
896 * is the upper xuseg addresses. On processors with
897 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
898 * addresses would have taken an address error. We try
899 * to mimic that here by taking a load/istream page
900 * fault.
901 */
902 UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
903 uasm_i_jr(p, ptr);
904
905 if (mode == refill_scratch) {
906 if (scratch_reg >= 0)
907 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
908 else
909 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
910 } else {
911 uasm_i_nop(p);
912 }
913 }
914 }
915
916 #else /* !CONFIG_64BIT */
917
918 /*
919 * TMP and PTR are scratch.
920 * TMP will be clobbered, PTR will hold the pgd entry.
921 */
922 static void __maybe_unused
build_get_pgde32(u32 ** p,unsigned int tmp,unsigned int ptr)923 build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
924 {
925 if (pgd_reg != -1) {
926 /* pgd is in pgd_reg */
927 uasm_i_mfc0(p, ptr, c0_kscratch(), pgd_reg);
928 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
929 } else {
930 long pgdc = (long)pgd_current;
931
932 /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
933 #ifdef CONFIG_SMP
934 uasm_i_mfc0(p, ptr, SMP_CPUID_REG);
935 UASM_i_LA_mostly(p, tmp, pgdc);
936 uasm_i_srl(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
937 uasm_i_addu(p, ptr, tmp, ptr);
938 #else
939 UASM_i_LA_mostly(p, ptr, pgdc);
940 #endif
941 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
942 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
943 }
944 uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
945 uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
946 uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
947 }
948
949 #endif /* !CONFIG_64BIT */
950
build_adjust_context(u32 ** p,unsigned int ctx)951 static void build_adjust_context(u32 **p, unsigned int ctx)
952 {
953 unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
954 unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
955
956 switch (current_cpu_type()) {
957 case CPU_VR41XX:
958 case CPU_VR4111:
959 case CPU_VR4121:
960 case CPU_VR4122:
961 case CPU_VR4131:
962 case CPU_VR4181:
963 case CPU_VR4181A:
964 case CPU_VR4133:
965 shift += 2;
966 break;
967
968 default:
969 break;
970 }
971
972 if (shift)
973 UASM_i_SRL(p, ctx, ctx, shift);
974 uasm_i_andi(p, ctx, ctx, mask);
975 }
976
build_get_ptep(u32 ** p,unsigned int tmp,unsigned int ptr)977 static void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
978 {
979 /*
980 * Bug workaround for the Nevada. It seems as if under certain
981 * circumstances the move from cp0_context might produce a
982 * bogus result when the mfc0 instruction and its consumer are
983 * in a different cacheline or a load instruction, probably any
984 * memory reference, is between them.
985 */
986 switch (current_cpu_type()) {
987 case CPU_NEVADA:
988 UASM_i_LW(p, ptr, 0, ptr);
989 GET_CONTEXT(p, tmp); /* get context reg */
990 break;
991
992 default:
993 GET_CONTEXT(p, tmp); /* get context reg */
994 UASM_i_LW(p, ptr, 0, ptr);
995 break;
996 }
997
998 build_adjust_context(p, tmp);
999 UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
1000 }
1001
build_update_entries(u32 ** p,unsigned int tmp,unsigned int ptep)1002 static void build_update_entries(u32 **p, unsigned int tmp, unsigned int ptep)
1003 {
1004 /*
1005 * 64bit address support (36bit on a 32bit CPU) in a 32bit
1006 * Kernel is a special case. Only a few CPUs use it.
1007 */
1008 #ifdef CONFIG_PHYS_ADDR_T_64BIT
1009 if (cpu_has_64bits) {
1010 uasm_i_ld(p, tmp, 0, ptep); /* get even pte */
1011 uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1012 if (cpu_has_rixi) {
1013 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1014 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1015 UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1016 } else {
1017 uasm_i_dsrl_safe(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1018 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1019 uasm_i_dsrl_safe(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1020 }
1021 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1022 } else {
1023 int pte_off_even = sizeof(pte_t) / 2;
1024 int pte_off_odd = pte_off_even + sizeof(pte_t);
1025 #ifdef CONFIG_XPA
1026 const int scratch = 1; /* Our extra working register */
1027
1028 uasm_i_addu(p, scratch, 0, ptep);
1029 #endif
1030 uasm_i_lw(p, tmp, pte_off_even, ptep); /* even pte */
1031 uasm_i_lw(p, ptep, pte_off_odd, ptep); /* odd pte */
1032 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1033 UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1034 UASM_i_MTC0(p, tmp, C0_ENTRYLO0);
1035 UASM_i_MTC0(p, ptep, C0_ENTRYLO1);
1036 #ifdef CONFIG_XPA
1037 uasm_i_lw(p, tmp, 0, scratch);
1038 uasm_i_lw(p, ptep, sizeof(pte_t), scratch);
1039 uasm_i_lui(p, scratch, 0xff);
1040 uasm_i_ori(p, scratch, scratch, 0xffff);
1041 uasm_i_and(p, tmp, scratch, tmp);
1042 uasm_i_and(p, ptep, scratch, ptep);
1043 uasm_i_mthc0(p, tmp, C0_ENTRYLO0);
1044 uasm_i_mthc0(p, ptep, C0_ENTRYLO1);
1045 #endif
1046 }
1047 #else
1048 UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
1049 UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1050 if (r45k_bvahwbug())
1051 build_tlb_probe_entry(p);
1052 if (cpu_has_rixi) {
1053 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1054 if (r4k_250MHZhwbug())
1055 UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1056 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1057 UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1058 } else {
1059 UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1060 if (r4k_250MHZhwbug())
1061 UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1062 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1063 UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1064 if (r45k_bvahwbug())
1065 uasm_i_mfc0(p, tmp, C0_INDEX);
1066 }
1067 if (r4k_250MHZhwbug())
1068 UASM_i_MTC0(p, 0, C0_ENTRYLO1);
1069 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1070 #endif
1071 }
1072
1073 struct mips_huge_tlb_info {
1074 int huge_pte;
1075 int restore_scratch;
1076 bool need_reload_pte;
1077 };
1078
1079 static struct mips_huge_tlb_info
build_fast_tlb_refill_handler(u32 ** p,struct uasm_label ** l,struct uasm_reloc ** r,unsigned int tmp,unsigned int ptr,int c0_scratch_reg)1080 build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
1081 struct uasm_reloc **r, unsigned int tmp,
1082 unsigned int ptr, int c0_scratch_reg)
1083 {
1084 struct mips_huge_tlb_info rv;
1085 unsigned int even, odd;
1086 int vmalloc_branch_delay_filled = 0;
1087 const int scratch = 1; /* Our extra working register */
1088
1089 rv.huge_pte = scratch;
1090 rv.restore_scratch = 0;
1091 rv.need_reload_pte = false;
1092
1093 if (check_for_high_segbits) {
1094 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1095
1096 if (pgd_reg != -1)
1097 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1098 else
1099 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1100
1101 if (c0_scratch_reg >= 0)
1102 UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1103 else
1104 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1105
1106 uasm_i_dsrl_safe(p, scratch, tmp,
1107 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1108 uasm_il_bnez(p, r, scratch, label_vmalloc);
1109
1110 if (pgd_reg == -1) {
1111 vmalloc_branch_delay_filled = 1;
1112 /* Clear lower 23 bits of context. */
1113 uasm_i_dins(p, ptr, 0, 0, 23);
1114 }
1115 } else {
1116 if (pgd_reg != -1)
1117 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1118 else
1119 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1120
1121 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1122
1123 if (c0_scratch_reg >= 0)
1124 UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1125 else
1126 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1127
1128 if (pgd_reg == -1)
1129 /* Clear lower 23 bits of context. */
1130 uasm_i_dins(p, ptr, 0, 0, 23);
1131
1132 uasm_il_bltz(p, r, tmp, label_vmalloc);
1133 }
1134
1135 if (pgd_reg == -1) {
1136 vmalloc_branch_delay_filled = 1;
1137 /* 1 0 1 0 1 << 6 xkphys cached */
1138 uasm_i_ori(p, ptr, ptr, 0x540);
1139 uasm_i_drotr(p, ptr, ptr, 11);
1140 }
1141
1142 #ifdef __PAGETABLE_PMD_FOLDED
1143 #define LOC_PTEP scratch
1144 #else
1145 #define LOC_PTEP ptr
1146 #endif
1147
1148 if (!vmalloc_branch_delay_filled)
1149 /* get pgd offset in bytes */
1150 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1151
1152 uasm_l_vmalloc_done(l, *p);
1153
1154 /*
1155 * tmp ptr
1156 * fall-through case = badvaddr *pgd_current
1157 * vmalloc case = badvaddr swapper_pg_dir
1158 */
1159
1160 if (vmalloc_branch_delay_filled)
1161 /* get pgd offset in bytes */
1162 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1163
1164 #ifdef __PAGETABLE_PMD_FOLDED
1165 GET_CONTEXT(p, tmp); /* get context reg */
1166 #endif
1167 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1168
1169 if (use_lwx_insns()) {
1170 UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1171 } else {
1172 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1173 uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1174 }
1175
1176 #ifndef __PAGETABLE_PMD_FOLDED
1177 /* get pmd offset in bytes */
1178 uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1179 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1180 GET_CONTEXT(p, tmp); /* get context reg */
1181
1182 if (use_lwx_insns()) {
1183 UASM_i_LWX(p, scratch, scratch, ptr);
1184 } else {
1185 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1186 UASM_i_LW(p, scratch, 0, ptr);
1187 }
1188 #endif
1189 /* Adjust the context during the load latency. */
1190 build_adjust_context(p, tmp);
1191
1192 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1193 uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1194 /*
1195 * The in the LWX case we don't want to do the load in the
1196 * delay slot. It cannot issue in the same cycle and may be
1197 * speculative and unneeded.
1198 */
1199 if (use_lwx_insns())
1200 uasm_i_nop(p);
1201 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
1202
1203
1204 /* build_update_entries */
1205 if (use_lwx_insns()) {
1206 even = ptr;
1207 odd = tmp;
1208 UASM_i_LWX(p, even, scratch, tmp);
1209 UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1210 UASM_i_LWX(p, odd, scratch, tmp);
1211 } else {
1212 UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1213 even = tmp;
1214 odd = ptr;
1215 UASM_i_LW(p, even, 0, ptr); /* get even pte */
1216 UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1217 }
1218 if (cpu_has_rixi) {
1219 uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
1220 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1221 uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
1222 } else {
1223 uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1224 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1225 uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1226 }
1227 UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1228
1229 if (c0_scratch_reg >= 0) {
1230 UASM_i_MFC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1231 build_tlb_write_entry(p, l, r, tlb_random);
1232 uasm_l_leave(l, *p);
1233 rv.restore_scratch = 1;
1234 } else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13) {
1235 build_tlb_write_entry(p, l, r, tlb_random);
1236 uasm_l_leave(l, *p);
1237 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1238 } else {
1239 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1240 build_tlb_write_entry(p, l, r, tlb_random);
1241 uasm_l_leave(l, *p);
1242 rv.restore_scratch = 1;
1243 }
1244
1245 uasm_i_eret(p); /* return from trap */
1246
1247 return rv;
1248 }
1249
1250 /*
1251 * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1252 * because EXL == 0. If we wrap, we can also use the 32 instruction
1253 * slots before the XTLB refill exception handler which belong to the
1254 * unused TLB refill exception.
1255 */
1256 #define MIPS64_REFILL_INSNS 32
1257
build_r4000_tlb_refill_handler(void)1258 static void build_r4000_tlb_refill_handler(void)
1259 {
1260 u32 *p = tlb_handler;
1261 struct uasm_label *l = labels;
1262 struct uasm_reloc *r = relocs;
1263 u32 *f;
1264 unsigned int final_len;
1265 struct mips_huge_tlb_info htlb_info __maybe_unused;
1266 enum vmalloc64_mode vmalloc_mode __maybe_unused;
1267
1268 memset(tlb_handler, 0, sizeof(tlb_handler));
1269 memset(labels, 0, sizeof(labels));
1270 memset(relocs, 0, sizeof(relocs));
1271 memset(final_handler, 0, sizeof(final_handler));
1272
1273 if (IS_ENABLED(CONFIG_64BIT) && (scratch_reg >= 0 || scratchpad_available()) && use_bbit_insns()) {
1274 htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
1275 scratch_reg);
1276 vmalloc_mode = refill_scratch;
1277 } else {
1278 htlb_info.huge_pte = K0;
1279 htlb_info.restore_scratch = 0;
1280 htlb_info.need_reload_pte = true;
1281 vmalloc_mode = refill_noscratch;
1282 /*
1283 * create the plain linear handler
1284 */
1285 if (bcm1250_m3_war()) {
1286 unsigned int segbits = 44;
1287
1288 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1289 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1290 uasm_i_xor(&p, K0, K0, K1);
1291 uasm_i_dsrl_safe(&p, K1, K0, 62);
1292 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1293 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1294 uasm_i_or(&p, K0, K0, K1);
1295 uasm_il_bnez(&p, &r, K0, label_leave);
1296 /* No need for uasm_i_nop */
1297 }
1298
1299 #ifdef CONFIG_64BIT
1300 build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1301 #else
1302 build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1303 #endif
1304
1305 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1306 build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
1307 #endif
1308
1309 build_get_ptep(&p, K0, K1);
1310 build_update_entries(&p, K0, K1);
1311 build_tlb_write_entry(&p, &l, &r, tlb_random);
1312 uasm_l_leave(&l, p);
1313 uasm_i_eret(&p); /* return from trap */
1314 }
1315 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1316 uasm_l_tlb_huge_update(&l, p);
1317 if (htlb_info.need_reload_pte)
1318 UASM_i_LW(&p, htlb_info.huge_pte, 0, K1);
1319 build_huge_update_entries(&p, htlb_info.huge_pte, K1);
1320 build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
1321 htlb_info.restore_scratch);
1322 #endif
1323
1324 #ifdef CONFIG_64BIT
1325 build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
1326 #endif
1327
1328 /*
1329 * Overflow check: For the 64bit handler, we need at least one
1330 * free instruction slot for the wrap-around branch. In worst
1331 * case, if the intended insertion point is a delay slot, we
1332 * need three, with the second nop'ed and the third being
1333 * unused.
1334 */
1335 switch (boot_cpu_type()) {
1336 default:
1337 if (sizeof(long) == 4) {
1338 case CPU_LOONGSON2:
1339 /* Loongson2 ebase is different than r4k, we have more space */
1340 if ((p - tlb_handler) > 64)
1341 panic("TLB refill handler space exceeded");
1342 /*
1343 * Now fold the handler in the TLB refill handler space.
1344 */
1345 f = final_handler;
1346 /* Simplest case, just copy the handler. */
1347 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1348 final_len = p - tlb_handler;
1349 break;
1350 } else {
1351 if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1352 || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1353 && uasm_insn_has_bdelay(relocs,
1354 tlb_handler + MIPS64_REFILL_INSNS - 3)))
1355 panic("TLB refill handler space exceeded");
1356 /*
1357 * Now fold the handler in the TLB refill handler space.
1358 */
1359 f = final_handler + MIPS64_REFILL_INSNS;
1360 if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1361 /* Just copy the handler. */
1362 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1363 final_len = p - tlb_handler;
1364 } else {
1365 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1366 const enum label_id ls = label_tlb_huge_update;
1367 #else
1368 const enum label_id ls = label_vmalloc;
1369 #endif
1370 u32 *split;
1371 int ov = 0;
1372 int i;
1373
1374 for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1375 ;
1376 BUG_ON(i == ARRAY_SIZE(labels));
1377 split = labels[i].addr;
1378
1379 /*
1380 * See if we have overflown one way or the other.
1381 */
1382 if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1383 split < p - MIPS64_REFILL_INSNS)
1384 ov = 1;
1385
1386 if (ov) {
1387 /*
1388 * Split two instructions before the end. One
1389 * for the branch and one for the instruction
1390 * in the delay slot.
1391 */
1392 split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1393
1394 /*
1395 * If the branch would fall in a delay slot,
1396 * we must back up an additional instruction
1397 * so that it is no longer in a delay slot.
1398 */
1399 if (uasm_insn_has_bdelay(relocs, split - 1))
1400 split--;
1401 }
1402 /* Copy first part of the handler. */
1403 uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1404 f += split - tlb_handler;
1405
1406 if (ov) {
1407 /* Insert branch. */
1408 uasm_l_split(&l, final_handler);
1409 uasm_il_b(&f, &r, label_split);
1410 if (uasm_insn_has_bdelay(relocs, split))
1411 uasm_i_nop(&f);
1412 else {
1413 uasm_copy_handler(relocs, labels,
1414 split, split + 1, f);
1415 uasm_move_labels(labels, f, f + 1, -1);
1416 f++;
1417 split++;
1418 }
1419 }
1420
1421 /* Copy the rest of the handler. */
1422 uasm_copy_handler(relocs, labels, split, p, final_handler);
1423 final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1424 (p - split);
1425 }
1426 }
1427 break;
1428 }
1429
1430 uasm_resolve_relocs(relocs, labels);
1431 pr_debug("Wrote TLB refill handler (%u instructions).\n",
1432 final_len);
1433
1434 memcpy((void *)ebase, final_handler, 0x100);
1435 local_flush_icache_range(ebase, ebase + 0x100);
1436
1437 dump_handler("r4000_tlb_refill", (u32 *)ebase, 64);
1438 }
1439
1440 extern u32 handle_tlbl[], handle_tlbl_end[];
1441 extern u32 handle_tlbs[], handle_tlbs_end[];
1442 extern u32 handle_tlbm[], handle_tlbm_end[];
1443 extern u32 tlbmiss_handler_setup_pgd_start[], tlbmiss_handler_setup_pgd[];
1444 extern u32 tlbmiss_handler_setup_pgd_end[];
1445
build_setup_pgd(void)1446 static void build_setup_pgd(void)
1447 {
1448 const int a0 = 4;
1449 const int __maybe_unused a1 = 5;
1450 const int __maybe_unused a2 = 6;
1451 u32 *p = tlbmiss_handler_setup_pgd_start;
1452 const int tlbmiss_handler_setup_pgd_size =
1453 tlbmiss_handler_setup_pgd_end - tlbmiss_handler_setup_pgd_start;
1454 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1455 long pgdc = (long)pgd_current;
1456 #endif
1457
1458 memset(tlbmiss_handler_setup_pgd, 0, tlbmiss_handler_setup_pgd_size *
1459 sizeof(tlbmiss_handler_setup_pgd[0]));
1460 memset(labels, 0, sizeof(labels));
1461 memset(relocs, 0, sizeof(relocs));
1462 pgd_reg = allocate_kscratch();
1463 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1464 if (pgd_reg == -1) {
1465 struct uasm_label *l = labels;
1466 struct uasm_reloc *r = relocs;
1467
1468 /* PGD << 11 in c0_Context */
1469 /*
1470 * If it is a ckseg0 address, convert to a physical
1471 * address. Shifting right by 29 and adding 4 will
1472 * result in zero for these addresses.
1473 *
1474 */
1475 UASM_i_SRA(&p, a1, a0, 29);
1476 UASM_i_ADDIU(&p, a1, a1, 4);
1477 uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1478 uasm_i_nop(&p);
1479 uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1480 uasm_l_tlbl_goaround1(&l, p);
1481 UASM_i_SLL(&p, a0, a0, 11);
1482 uasm_i_jr(&p, 31);
1483 UASM_i_MTC0(&p, a0, C0_CONTEXT);
1484 } else {
1485 /* PGD in c0_KScratch */
1486 uasm_i_jr(&p, 31);
1487 UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1488 }
1489 #else
1490 #ifdef CONFIG_SMP
1491 /* Save PGD to pgd_current[smp_processor_id()] */
1492 UASM_i_CPUID_MFC0(&p, a1, SMP_CPUID_REG);
1493 UASM_i_SRL_SAFE(&p, a1, a1, SMP_CPUID_PTRSHIFT);
1494 UASM_i_LA_mostly(&p, a2, pgdc);
1495 UASM_i_ADDU(&p, a2, a2, a1);
1496 UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1497 #else
1498 UASM_i_LA_mostly(&p, a2, pgdc);
1499 UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1500 #endif /* SMP */
1501 uasm_i_jr(&p, 31);
1502
1503 /* if pgd_reg is allocated, save PGD also to scratch register */
1504 if (pgd_reg != -1)
1505 UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1506 else
1507 uasm_i_nop(&p);
1508 #endif
1509 if (p >= tlbmiss_handler_setup_pgd_end)
1510 panic("tlbmiss_handler_setup_pgd space exceeded");
1511
1512 uasm_resolve_relocs(relocs, labels);
1513 pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
1514 (unsigned int)(p - tlbmiss_handler_setup_pgd));
1515
1516 dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd,
1517 tlbmiss_handler_setup_pgd_size);
1518 }
1519
1520 static void
iPTE_LW(u32 ** p,unsigned int pte,unsigned int ptr)1521 iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1522 {
1523 #ifdef CONFIG_SMP
1524 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1525 if (cpu_has_64bits)
1526 uasm_i_lld(p, pte, 0, ptr);
1527 else
1528 # endif
1529 UASM_i_LL(p, pte, 0, ptr);
1530 #else
1531 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1532 if (cpu_has_64bits)
1533 uasm_i_ld(p, pte, 0, ptr);
1534 else
1535 # endif
1536 UASM_i_LW(p, pte, 0, ptr);
1537 #endif
1538 }
1539
1540 static void
iPTE_SW(u32 ** p,struct uasm_reloc ** r,unsigned int pte,unsigned int ptr,unsigned int mode)1541 iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1542 unsigned int mode)
1543 {
1544 #ifdef CONFIG_PHYS_ADDR_T_64BIT
1545 unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1546
1547 if (!cpu_has_64bits) {
1548 const int scratch = 1; /* Our extra working register */
1549
1550 uasm_i_lui(p, scratch, (mode >> 16));
1551 uasm_i_or(p, pte, pte, scratch);
1552 } else
1553 #endif
1554 uasm_i_ori(p, pte, pte, mode);
1555 #ifdef CONFIG_SMP
1556 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1557 if (cpu_has_64bits)
1558 uasm_i_scd(p, pte, 0, ptr);
1559 else
1560 # endif
1561 UASM_i_SC(p, pte, 0, ptr);
1562
1563 if (r10000_llsc_war())
1564 uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1565 else
1566 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1567
1568 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1569 if (!cpu_has_64bits) {
1570 /* no uasm_i_nop needed */
1571 uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1572 uasm_i_ori(p, pte, pte, hwmode);
1573 uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1574 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1575 /* no uasm_i_nop needed */
1576 uasm_i_lw(p, pte, 0, ptr);
1577 } else
1578 uasm_i_nop(p);
1579 # else
1580 uasm_i_nop(p);
1581 # endif
1582 #else
1583 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1584 if (cpu_has_64bits)
1585 uasm_i_sd(p, pte, 0, ptr);
1586 else
1587 # endif
1588 UASM_i_SW(p, pte, 0, ptr);
1589
1590 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1591 if (!cpu_has_64bits) {
1592 uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1593 uasm_i_ori(p, pte, pte, hwmode);
1594 uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1595 uasm_i_lw(p, pte, 0, ptr);
1596 }
1597 # endif
1598 #endif
1599 }
1600
1601 /*
1602 * Check if PTE is present, if not then jump to LABEL. PTR points to
1603 * the page table where this PTE is located, PTE will be re-loaded
1604 * with it's original value.
1605 */
1606 static void
build_pte_present(u32 ** p,struct uasm_reloc ** r,int pte,int ptr,int scratch,enum label_id lid)1607 build_pte_present(u32 **p, struct uasm_reloc **r,
1608 int pte, int ptr, int scratch, enum label_id lid)
1609 {
1610 int t = scratch >= 0 ? scratch : pte;
1611
1612 if (cpu_has_rixi) {
1613 if (use_bbit_insns()) {
1614 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1615 uasm_i_nop(p);
1616 } else {
1617 uasm_i_srl(p, t, pte, _PAGE_PRESENT_SHIFT);
1618 uasm_i_andi(p, t, t, 1);
1619 uasm_il_beqz(p, r, t, lid);
1620 if (pte == t)
1621 /* You lose the SMP race :-(*/
1622 iPTE_LW(p, pte, ptr);
1623 }
1624 } else {
1625 uasm_i_srl(p, t, pte, _PAGE_PRESENT_SHIFT);
1626 uasm_i_andi(p, t, t, 3);
1627 uasm_i_xori(p, t, t, 3);
1628 uasm_il_bnez(p, r, t, lid);
1629 if (pte == t)
1630 /* You lose the SMP race :-(*/
1631 iPTE_LW(p, pte, ptr);
1632 }
1633 }
1634
1635 /* Make PTE valid, store result in PTR. */
1636 static void
build_make_valid(u32 ** p,struct uasm_reloc ** r,unsigned int pte,unsigned int ptr)1637 build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1638 unsigned int ptr)
1639 {
1640 unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1641
1642 iPTE_SW(p, r, pte, ptr, mode);
1643 }
1644
1645 /*
1646 * Check if PTE can be written to, if not branch to LABEL. Regardless
1647 * restore PTE with value from PTR when done.
1648 */
1649 static void
build_pte_writable(u32 ** p,struct uasm_reloc ** r,unsigned int pte,unsigned int ptr,int scratch,enum label_id lid)1650 build_pte_writable(u32 **p, struct uasm_reloc **r,
1651 unsigned int pte, unsigned int ptr, int scratch,
1652 enum label_id lid)
1653 {
1654 int t = scratch >= 0 ? scratch : pte;
1655
1656 uasm_i_srl(p, t, pte, _PAGE_PRESENT_SHIFT);
1657 uasm_i_andi(p, t, t, 5);
1658 uasm_i_xori(p, t, t, 5);
1659 uasm_il_bnez(p, r, t, lid);
1660 if (pte == t)
1661 /* You lose the SMP race :-(*/
1662 iPTE_LW(p, pte, ptr);
1663 else
1664 uasm_i_nop(p);
1665 }
1666
1667 /* Make PTE writable, update software status bits as well, then store
1668 * at PTR.
1669 */
1670 static void
build_make_write(u32 ** p,struct uasm_reloc ** r,unsigned int pte,unsigned int ptr)1671 build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1672 unsigned int ptr)
1673 {
1674 unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1675 | _PAGE_DIRTY);
1676
1677 iPTE_SW(p, r, pte, ptr, mode);
1678 }
1679
1680 /*
1681 * Check if PTE can be modified, if not branch to LABEL. Regardless
1682 * restore PTE with value from PTR when done.
1683 */
1684 static void
build_pte_modifiable(u32 ** p,struct uasm_reloc ** r,unsigned int pte,unsigned int ptr,int scratch,enum label_id lid)1685 build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1686 unsigned int pte, unsigned int ptr, int scratch,
1687 enum label_id lid)
1688 {
1689 if (use_bbit_insns()) {
1690 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1691 uasm_i_nop(p);
1692 } else {
1693 int t = scratch >= 0 ? scratch : pte;
1694 uasm_i_srl(p, t, pte, _PAGE_WRITE_SHIFT);
1695 uasm_i_andi(p, t, t, 1);
1696 uasm_il_beqz(p, r, t, lid);
1697 if (pte == t)
1698 /* You lose the SMP race :-(*/
1699 iPTE_LW(p, pte, ptr);
1700 }
1701 }
1702
1703 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1704
1705
1706 /*
1707 * R3000 style TLB load/store/modify handlers.
1708 */
1709
1710 /*
1711 * This places the pte into ENTRYLO0 and writes it with tlbwi.
1712 * Then it returns.
1713 */
1714 static void
build_r3000_pte_reload_tlbwi(u32 ** p,unsigned int pte,unsigned int tmp)1715 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1716 {
1717 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1718 uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1719 uasm_i_tlbwi(p);
1720 uasm_i_jr(p, tmp);
1721 uasm_i_rfe(p); /* branch delay */
1722 }
1723
1724 /*
1725 * This places the pte into ENTRYLO0 and writes it with tlbwi
1726 * or tlbwr as appropriate. This is because the index register
1727 * may have the probe fail bit set as a result of a trap on a
1728 * kseg2 access, i.e. without refill. Then it returns.
1729 */
1730 static void
build_r3000_tlb_reload_write(u32 ** p,struct uasm_label ** l,struct uasm_reloc ** r,unsigned int pte,unsigned int tmp)1731 build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1732 struct uasm_reloc **r, unsigned int pte,
1733 unsigned int tmp)
1734 {
1735 uasm_i_mfc0(p, tmp, C0_INDEX);
1736 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1737 uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1738 uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1739 uasm_i_tlbwi(p); /* cp0 delay */
1740 uasm_i_jr(p, tmp);
1741 uasm_i_rfe(p); /* branch delay */
1742 uasm_l_r3000_write_probe_fail(l, *p);
1743 uasm_i_tlbwr(p); /* cp0 delay */
1744 uasm_i_jr(p, tmp);
1745 uasm_i_rfe(p); /* branch delay */
1746 }
1747
1748 static void
build_r3000_tlbchange_handler_head(u32 ** p,unsigned int pte,unsigned int ptr)1749 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1750 unsigned int ptr)
1751 {
1752 long pgdc = (long)pgd_current;
1753
1754 uasm_i_mfc0(p, pte, C0_BADVADDR);
1755 uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1756 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1757 uasm_i_srl(p, pte, pte, 22); /* load delay */
1758 uasm_i_sll(p, pte, pte, 2);
1759 uasm_i_addu(p, ptr, ptr, pte);
1760 uasm_i_mfc0(p, pte, C0_CONTEXT);
1761 uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1762 uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1763 uasm_i_addu(p, ptr, ptr, pte);
1764 uasm_i_lw(p, pte, 0, ptr);
1765 uasm_i_tlbp(p); /* load delay */
1766 }
1767
build_r3000_tlb_load_handler(void)1768 static void build_r3000_tlb_load_handler(void)
1769 {
1770 u32 *p = handle_tlbl;
1771 const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
1772 struct uasm_label *l = labels;
1773 struct uasm_reloc *r = relocs;
1774
1775 memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
1776 memset(labels, 0, sizeof(labels));
1777 memset(relocs, 0, sizeof(relocs));
1778
1779 build_r3000_tlbchange_handler_head(&p, K0, K1);
1780 build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
1781 uasm_i_nop(&p); /* load delay */
1782 build_make_valid(&p, &r, K0, K1);
1783 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1784
1785 uasm_l_nopage_tlbl(&l, p);
1786 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1787 uasm_i_nop(&p);
1788
1789 if (p >= handle_tlbl_end)
1790 panic("TLB load handler fastpath space exceeded");
1791
1792 uasm_resolve_relocs(relocs, labels);
1793 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1794 (unsigned int)(p - handle_tlbl));
1795
1796 dump_handler("r3000_tlb_load", handle_tlbl, handle_tlbl_size);
1797 }
1798
build_r3000_tlb_store_handler(void)1799 static void build_r3000_tlb_store_handler(void)
1800 {
1801 u32 *p = handle_tlbs;
1802 const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
1803 struct uasm_label *l = labels;
1804 struct uasm_reloc *r = relocs;
1805
1806 memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
1807 memset(labels, 0, sizeof(labels));
1808 memset(relocs, 0, sizeof(relocs));
1809
1810 build_r3000_tlbchange_handler_head(&p, K0, K1);
1811 build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
1812 uasm_i_nop(&p); /* load delay */
1813 build_make_write(&p, &r, K0, K1);
1814 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1815
1816 uasm_l_nopage_tlbs(&l, p);
1817 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1818 uasm_i_nop(&p);
1819
1820 if (p >= handle_tlbs_end)
1821 panic("TLB store handler fastpath space exceeded");
1822
1823 uasm_resolve_relocs(relocs, labels);
1824 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1825 (unsigned int)(p - handle_tlbs));
1826
1827 dump_handler("r3000_tlb_store", handle_tlbs, handle_tlbs_size);
1828 }
1829
build_r3000_tlb_modify_handler(void)1830 static void build_r3000_tlb_modify_handler(void)
1831 {
1832 u32 *p = handle_tlbm;
1833 const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
1834 struct uasm_label *l = labels;
1835 struct uasm_reloc *r = relocs;
1836
1837 memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
1838 memset(labels, 0, sizeof(labels));
1839 memset(relocs, 0, sizeof(relocs));
1840
1841 build_r3000_tlbchange_handler_head(&p, K0, K1);
1842 build_pte_modifiable(&p, &r, K0, K1, -1, label_nopage_tlbm);
1843 uasm_i_nop(&p); /* load delay */
1844 build_make_write(&p, &r, K0, K1);
1845 build_r3000_pte_reload_tlbwi(&p, K0, K1);
1846
1847 uasm_l_nopage_tlbm(&l, p);
1848 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1849 uasm_i_nop(&p);
1850
1851 if (p >= handle_tlbm_end)
1852 panic("TLB modify handler fastpath space exceeded");
1853
1854 uasm_resolve_relocs(relocs, labels);
1855 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1856 (unsigned int)(p - handle_tlbm));
1857
1858 dump_handler("r3000_tlb_modify", handle_tlbm, handle_tlbm_size);
1859 }
1860 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
1861
1862 /*
1863 * R4000 style TLB load/store/modify handlers.
1864 */
1865 static struct work_registers
build_r4000_tlbchange_handler_head(u32 ** p,struct uasm_label ** l,struct uasm_reloc ** r)1866 build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
1867 struct uasm_reloc **r)
1868 {
1869 struct work_registers wr = build_get_work_registers(p);
1870
1871 #ifdef CONFIG_64BIT
1872 build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
1873 #else
1874 build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
1875 #endif
1876
1877 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1878 /*
1879 * For huge tlb entries, pmd doesn't contain an address but
1880 * instead contains the tlb pte. Check the PAGE_HUGE bit and
1881 * see if we need to jump to huge tlb processing.
1882 */
1883 build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
1884 #endif
1885
1886 UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
1887 UASM_i_LW(p, wr.r2, 0, wr.r2);
1888 UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1889 uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1890 UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
1891
1892 #ifdef CONFIG_SMP
1893 uasm_l_smp_pgtable_change(l, *p);
1894 #endif
1895 iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
1896 if (!m4kc_tlbp_war()) {
1897 build_tlb_probe_entry(p);
1898 if (cpu_has_htw) {
1899 /* race condition happens, leaving */
1900 uasm_i_ehb(p);
1901 uasm_i_mfc0(p, wr.r3, C0_INDEX);
1902 uasm_il_bltz(p, r, wr.r3, label_leave);
1903 uasm_i_nop(p);
1904 }
1905 }
1906 return wr;
1907 }
1908
1909 static void
build_r4000_tlbchange_handler_tail(u32 ** p,struct uasm_label ** l,struct uasm_reloc ** r,unsigned int tmp,unsigned int ptr)1910 build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
1911 struct uasm_reloc **r, unsigned int tmp,
1912 unsigned int ptr)
1913 {
1914 uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
1915 uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
1916 build_update_entries(p, tmp, ptr);
1917 build_tlb_write_entry(p, l, r, tlb_indexed);
1918 uasm_l_leave(l, *p);
1919 build_restore_work_registers(p);
1920 uasm_i_eret(p); /* return from trap */
1921
1922 #ifdef CONFIG_64BIT
1923 build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
1924 #endif
1925 }
1926
build_r4000_tlb_load_handler(void)1927 static void build_r4000_tlb_load_handler(void)
1928 {
1929 u32 *p = handle_tlbl;
1930 const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
1931 struct uasm_label *l = labels;
1932 struct uasm_reloc *r = relocs;
1933 struct work_registers wr;
1934
1935 memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
1936 memset(labels, 0, sizeof(labels));
1937 memset(relocs, 0, sizeof(relocs));
1938
1939 if (bcm1250_m3_war()) {
1940 unsigned int segbits = 44;
1941
1942 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1943 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1944 uasm_i_xor(&p, K0, K0, K1);
1945 uasm_i_dsrl_safe(&p, K1, K0, 62);
1946 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1947 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1948 uasm_i_or(&p, K0, K0, K1);
1949 uasm_il_bnez(&p, &r, K0, label_leave);
1950 /* No need for uasm_i_nop */
1951 }
1952
1953 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
1954 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1955 if (m4kc_tlbp_war())
1956 build_tlb_probe_entry(&p);
1957
1958 if (cpu_has_rixi && !cpu_has_rixiex) {
1959 /*
1960 * If the page is not _PAGE_VALID, RI or XI could not
1961 * have triggered it. Skip the expensive test..
1962 */
1963 if (use_bbit_insns()) {
1964 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1965 label_tlbl_goaround1);
1966 } else {
1967 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1968 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
1969 }
1970 uasm_i_nop(&p);
1971
1972 uasm_i_tlbr(&p);
1973
1974 switch (current_cpu_type()) {
1975 default:
1976 if (cpu_has_mips_r2_exec_hazard) {
1977 uasm_i_ehb(&p);
1978
1979 case CPU_CAVIUM_OCTEON:
1980 case CPU_CAVIUM_OCTEON_PLUS:
1981 case CPU_CAVIUM_OCTEON2:
1982 break;
1983 }
1984 }
1985
1986 /* Examine entrylo 0 or 1 based on ptr. */
1987 if (use_bbit_insns()) {
1988 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
1989 } else {
1990 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
1991 uasm_i_beqz(&p, wr.r3, 8);
1992 }
1993 /* load it in the delay slot*/
1994 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
1995 /* load it if ptr is odd */
1996 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
1997 /*
1998 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
1999 * XI must have triggered it.
2000 */
2001 if (use_bbit_insns()) {
2002 uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
2003 uasm_i_nop(&p);
2004 uasm_l_tlbl_goaround1(&l, p);
2005 } else {
2006 uasm_i_andi(&p, wr.r3, wr.r3, 2);
2007 uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
2008 uasm_i_nop(&p);
2009 }
2010 uasm_l_tlbl_goaround1(&l, p);
2011 }
2012 build_make_valid(&p, &r, wr.r1, wr.r2);
2013 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2014
2015 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2016 /*
2017 * This is the entry point when build_r4000_tlbchange_handler_head
2018 * spots a huge page.
2019 */
2020 uasm_l_tlb_huge_update(&l, p);
2021 iPTE_LW(&p, wr.r1, wr.r2);
2022 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
2023 build_tlb_probe_entry(&p);
2024
2025 if (cpu_has_rixi && !cpu_has_rixiex) {
2026 /*
2027 * If the page is not _PAGE_VALID, RI or XI could not
2028 * have triggered it. Skip the expensive test..
2029 */
2030 if (use_bbit_insns()) {
2031 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
2032 label_tlbl_goaround2);
2033 } else {
2034 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
2035 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2036 }
2037 uasm_i_nop(&p);
2038
2039 uasm_i_tlbr(&p);
2040
2041 switch (current_cpu_type()) {
2042 default:
2043 if (cpu_has_mips_r2_exec_hazard) {
2044 uasm_i_ehb(&p);
2045
2046 case CPU_CAVIUM_OCTEON:
2047 case CPU_CAVIUM_OCTEON_PLUS:
2048 case CPU_CAVIUM_OCTEON2:
2049 break;
2050 }
2051 }
2052
2053 /* Examine entrylo 0 or 1 based on ptr. */
2054 if (use_bbit_insns()) {
2055 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2056 } else {
2057 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2058 uasm_i_beqz(&p, wr.r3, 8);
2059 }
2060 /* load it in the delay slot*/
2061 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2062 /* load it if ptr is odd */
2063 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2064 /*
2065 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2066 * XI must have triggered it.
2067 */
2068 if (use_bbit_insns()) {
2069 uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
2070 } else {
2071 uasm_i_andi(&p, wr.r3, wr.r3, 2);
2072 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2073 }
2074 if (PM_DEFAULT_MASK == 0)
2075 uasm_i_nop(&p);
2076 /*
2077 * We clobbered C0_PAGEMASK, restore it. On the other branch
2078 * it is restored in build_huge_tlb_write_entry.
2079 */
2080 build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
2081
2082 uasm_l_tlbl_goaround2(&l, p);
2083 }
2084 uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
2085 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2086 #endif
2087
2088 uasm_l_nopage_tlbl(&l, p);
2089 build_restore_work_registers(&p);
2090 #ifdef CONFIG_CPU_MICROMIPS
2091 if ((unsigned long)tlb_do_page_fault_0 & 1) {
2092 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0));
2093 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0));
2094 uasm_i_jr(&p, K0);
2095 } else
2096 #endif
2097 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
2098 uasm_i_nop(&p);
2099
2100 if (p >= handle_tlbl_end)
2101 panic("TLB load handler fastpath space exceeded");
2102
2103 uasm_resolve_relocs(relocs, labels);
2104 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
2105 (unsigned int)(p - handle_tlbl));
2106
2107 dump_handler("r4000_tlb_load", handle_tlbl, handle_tlbl_size);
2108 }
2109
build_r4000_tlb_store_handler(void)2110 static void build_r4000_tlb_store_handler(void)
2111 {
2112 u32 *p = handle_tlbs;
2113 const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
2114 struct uasm_label *l = labels;
2115 struct uasm_reloc *r = relocs;
2116 struct work_registers wr;
2117
2118 memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
2119 memset(labels, 0, sizeof(labels));
2120 memset(relocs, 0, sizeof(relocs));
2121
2122 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2123 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2124 if (m4kc_tlbp_war())
2125 build_tlb_probe_entry(&p);
2126 build_make_write(&p, &r, wr.r1, wr.r2);
2127 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2128
2129 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2130 /*
2131 * This is the entry point when
2132 * build_r4000_tlbchange_handler_head spots a huge page.
2133 */
2134 uasm_l_tlb_huge_update(&l, p);
2135 iPTE_LW(&p, wr.r1, wr.r2);
2136 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2137 build_tlb_probe_entry(&p);
2138 uasm_i_ori(&p, wr.r1, wr.r1,
2139 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2140 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2141 #endif
2142
2143 uasm_l_nopage_tlbs(&l, p);
2144 build_restore_work_registers(&p);
2145 #ifdef CONFIG_CPU_MICROMIPS
2146 if ((unsigned long)tlb_do_page_fault_1 & 1) {
2147 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2148 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2149 uasm_i_jr(&p, K0);
2150 } else
2151 #endif
2152 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2153 uasm_i_nop(&p);
2154
2155 if (p >= handle_tlbs_end)
2156 panic("TLB store handler fastpath space exceeded");
2157
2158 uasm_resolve_relocs(relocs, labels);
2159 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2160 (unsigned int)(p - handle_tlbs));
2161
2162 dump_handler("r4000_tlb_store", handle_tlbs, handle_tlbs_size);
2163 }
2164
build_r4000_tlb_modify_handler(void)2165 static void build_r4000_tlb_modify_handler(void)
2166 {
2167 u32 *p = handle_tlbm;
2168 const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
2169 struct uasm_label *l = labels;
2170 struct uasm_reloc *r = relocs;
2171 struct work_registers wr;
2172
2173 memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
2174 memset(labels, 0, sizeof(labels));
2175 memset(relocs, 0, sizeof(relocs));
2176
2177 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2178 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2179 if (m4kc_tlbp_war())
2180 build_tlb_probe_entry(&p);
2181 /* Present and writable bits set, set accessed and dirty bits. */
2182 build_make_write(&p, &r, wr.r1, wr.r2);
2183 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2184
2185 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2186 /*
2187 * This is the entry point when
2188 * build_r4000_tlbchange_handler_head spots a huge page.
2189 */
2190 uasm_l_tlb_huge_update(&l, p);
2191 iPTE_LW(&p, wr.r1, wr.r2);
2192 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2193 build_tlb_probe_entry(&p);
2194 uasm_i_ori(&p, wr.r1, wr.r1,
2195 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2196 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2197 #endif
2198
2199 uasm_l_nopage_tlbm(&l, p);
2200 build_restore_work_registers(&p);
2201 #ifdef CONFIG_CPU_MICROMIPS
2202 if ((unsigned long)tlb_do_page_fault_1 & 1) {
2203 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2204 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2205 uasm_i_jr(&p, K0);
2206 } else
2207 #endif
2208 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2209 uasm_i_nop(&p);
2210
2211 if (p >= handle_tlbm_end)
2212 panic("TLB modify handler fastpath space exceeded");
2213
2214 uasm_resolve_relocs(relocs, labels);
2215 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2216 (unsigned int)(p - handle_tlbm));
2217
2218 dump_handler("r4000_tlb_modify", handle_tlbm, handle_tlbm_size);
2219 }
2220
flush_tlb_handlers(void)2221 static void flush_tlb_handlers(void)
2222 {
2223 local_flush_icache_range((unsigned long)handle_tlbl,
2224 (unsigned long)handle_tlbl_end);
2225 local_flush_icache_range((unsigned long)handle_tlbs,
2226 (unsigned long)handle_tlbs_end);
2227 local_flush_icache_range((unsigned long)handle_tlbm,
2228 (unsigned long)handle_tlbm_end);
2229 local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
2230 (unsigned long)tlbmiss_handler_setup_pgd_end);
2231 }
2232
print_htw_config(void)2233 static void print_htw_config(void)
2234 {
2235 unsigned long config;
2236 unsigned int pwctl;
2237 const int field = 2 * sizeof(unsigned long);
2238
2239 config = read_c0_pwfield();
2240 pr_debug("PWField (0x%0*lx): GDI: 0x%02lx UDI: 0x%02lx MDI: 0x%02lx PTI: 0x%02lx PTEI: 0x%02lx\n",
2241 field, config,
2242 (config & MIPS_PWFIELD_GDI_MASK) >> MIPS_PWFIELD_GDI_SHIFT,
2243 (config & MIPS_PWFIELD_UDI_MASK) >> MIPS_PWFIELD_UDI_SHIFT,
2244 (config & MIPS_PWFIELD_MDI_MASK) >> MIPS_PWFIELD_MDI_SHIFT,
2245 (config & MIPS_PWFIELD_PTI_MASK) >> MIPS_PWFIELD_PTI_SHIFT,
2246 (config & MIPS_PWFIELD_PTEI_MASK) >> MIPS_PWFIELD_PTEI_SHIFT);
2247
2248 config = read_c0_pwsize();
2249 pr_debug("PWSize (0x%0*lx): GDW: 0x%02lx UDW: 0x%02lx MDW: 0x%02lx PTW: 0x%02lx PTEW: 0x%02lx\n",
2250 field, config,
2251 (config & MIPS_PWSIZE_GDW_MASK) >> MIPS_PWSIZE_GDW_SHIFT,
2252 (config & MIPS_PWSIZE_UDW_MASK) >> MIPS_PWSIZE_UDW_SHIFT,
2253 (config & MIPS_PWSIZE_MDW_MASK) >> MIPS_PWSIZE_MDW_SHIFT,
2254 (config & MIPS_PWSIZE_PTW_MASK) >> MIPS_PWSIZE_PTW_SHIFT,
2255 (config & MIPS_PWSIZE_PTEW_MASK) >> MIPS_PWSIZE_PTEW_SHIFT);
2256
2257 pwctl = read_c0_pwctl();
2258 pr_debug("PWCtl (0x%x): PWEn: 0x%x DPH: 0x%x HugePg: 0x%x Psn: 0x%x\n",
2259 pwctl,
2260 (pwctl & MIPS_PWCTL_PWEN_MASK) >> MIPS_PWCTL_PWEN_SHIFT,
2261 (pwctl & MIPS_PWCTL_DPH_MASK) >> MIPS_PWCTL_DPH_SHIFT,
2262 (pwctl & MIPS_PWCTL_HUGEPG_MASK) >> MIPS_PWCTL_HUGEPG_SHIFT,
2263 (pwctl & MIPS_PWCTL_PSN_MASK) >> MIPS_PWCTL_PSN_SHIFT);
2264 }
2265
config_htw_params(void)2266 static void config_htw_params(void)
2267 {
2268 unsigned long pwfield, pwsize, ptei;
2269 unsigned int config;
2270
2271 /*
2272 * We are using 2-level page tables, so we only need to
2273 * setup GDW and PTW appropriately. UDW and MDW will remain 0.
2274 * The default value of GDI/UDI/MDI/PTI is 0xc. It is illegal to
2275 * write values less than 0xc in these fields because the entire
2276 * write will be dropped. As a result of which, we must preserve
2277 * the original reset values and overwrite only what we really want.
2278 */
2279
2280 pwfield = read_c0_pwfield();
2281 /* re-initialize the GDI field */
2282 pwfield &= ~MIPS_PWFIELD_GDI_MASK;
2283 pwfield |= PGDIR_SHIFT << MIPS_PWFIELD_GDI_SHIFT;
2284 /* re-initialize the PTI field including the even/odd bit */
2285 pwfield &= ~MIPS_PWFIELD_PTI_MASK;
2286 pwfield |= PAGE_SHIFT << MIPS_PWFIELD_PTI_SHIFT;
2287 /* Set the PTEI right shift */
2288 ptei = _PAGE_GLOBAL_SHIFT << MIPS_PWFIELD_PTEI_SHIFT;
2289 pwfield |= ptei;
2290 write_c0_pwfield(pwfield);
2291 /* Check whether the PTEI value is supported */
2292 back_to_back_c0_hazard();
2293 pwfield = read_c0_pwfield();
2294 if (((pwfield & MIPS_PWFIELD_PTEI_MASK) << MIPS_PWFIELD_PTEI_SHIFT)
2295 != ptei) {
2296 pr_warn("Unsupported PTEI field value: 0x%lx. HTW will not be enabled",
2297 ptei);
2298 /*
2299 * Drop option to avoid HTW being enabled via another path
2300 * (eg htw_reset())
2301 */
2302 current_cpu_data.options &= ~MIPS_CPU_HTW;
2303 return;
2304 }
2305
2306 pwsize = ilog2(PTRS_PER_PGD) << MIPS_PWSIZE_GDW_SHIFT;
2307 pwsize |= ilog2(PTRS_PER_PTE) << MIPS_PWSIZE_PTW_SHIFT;
2308
2309 /* If XPA has been enabled, PTEs are 64-bit in size. */
2310 if (read_c0_pagegrain() & PG_ELPA)
2311 pwsize |= 1;
2312
2313 write_c0_pwsize(pwsize);
2314
2315 /* Make sure everything is set before we enable the HTW */
2316 back_to_back_c0_hazard();
2317
2318 /* Enable HTW and disable the rest of the pwctl fields */
2319 config = 1 << MIPS_PWCTL_PWEN_SHIFT;
2320 write_c0_pwctl(config);
2321 pr_info("Hardware Page Table Walker enabled\n");
2322
2323 print_htw_config();
2324 }
2325
config_xpa_params(void)2326 static void config_xpa_params(void)
2327 {
2328 #ifdef CONFIG_XPA
2329 unsigned int pagegrain;
2330
2331 if (mips_xpa_disabled) {
2332 pr_info("Extended Physical Addressing (XPA) disabled\n");
2333 return;
2334 }
2335
2336 pagegrain = read_c0_pagegrain();
2337 write_c0_pagegrain(pagegrain | PG_ELPA);
2338 back_to_back_c0_hazard();
2339 pagegrain = read_c0_pagegrain();
2340
2341 if (pagegrain & PG_ELPA)
2342 pr_info("Extended Physical Addressing (XPA) enabled\n");
2343 else
2344 panic("Extended Physical Addressing (XPA) disabled");
2345 #endif
2346 }
2347
build_tlb_refill_handler(void)2348 void build_tlb_refill_handler(void)
2349 {
2350 /*
2351 * The refill handler is generated per-CPU, multi-node systems
2352 * may have local storage for it. The other handlers are only
2353 * needed once.
2354 */
2355 static int run_once = 0;
2356
2357 output_pgtable_bits_defines();
2358
2359 #ifdef CONFIG_64BIT
2360 check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
2361 #endif
2362
2363 switch (current_cpu_type()) {
2364 case CPU_R2000:
2365 case CPU_R3000:
2366 case CPU_R3000A:
2367 case CPU_R3081E:
2368 case CPU_TX3912:
2369 case CPU_TX3922:
2370 case CPU_TX3927:
2371 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2372 if (cpu_has_local_ebase)
2373 build_r3000_tlb_refill_handler();
2374 if (!run_once) {
2375 if (!cpu_has_local_ebase)
2376 build_r3000_tlb_refill_handler();
2377 build_setup_pgd();
2378 build_r3000_tlb_load_handler();
2379 build_r3000_tlb_store_handler();
2380 build_r3000_tlb_modify_handler();
2381 flush_tlb_handlers();
2382 run_once++;
2383 }
2384 #else
2385 panic("No R3000 TLB refill handler");
2386 #endif
2387 break;
2388
2389 case CPU_R6000:
2390 case CPU_R6000A:
2391 panic("No R6000 TLB refill handler yet");
2392 break;
2393
2394 case CPU_R8000:
2395 panic("No R8000 TLB refill handler yet");
2396 break;
2397
2398 default:
2399 if (!run_once) {
2400 scratch_reg = allocate_kscratch();
2401 build_setup_pgd();
2402 build_r4000_tlb_load_handler();
2403 build_r4000_tlb_store_handler();
2404 build_r4000_tlb_modify_handler();
2405 if (!cpu_has_local_ebase)
2406 build_r4000_tlb_refill_handler();
2407 flush_tlb_handlers();
2408 run_once++;
2409 }
2410 if (cpu_has_local_ebase)
2411 build_r4000_tlb_refill_handler();
2412 if (cpu_has_xpa)
2413 config_xpa_params();
2414 if (cpu_has_htw)
2415 config_htw_params();
2416 }
2417 }
2418