1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
45 #include <linux/btrfs.h>
46 #include <linux/uaccess.h>
47 #include "ctree.h"
48 #include "disk-io.h"
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
52 #include "volumes.h"
53 #include "locking.h"
54 #include "inode-map.h"
55 #include "backref.h"
56 #include "rcu-string.h"
57 #include "send.h"
58 #include "dev-replace.h"
59 #include "props.h"
60 #include "sysfs.h"
61 #include "qgroup.h"
62 
63 #ifdef CONFIG_64BIT
64 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
65  * structures are incorrect, as the timespec structure from userspace
66  * is 4 bytes too small. We define these alternatives here to teach
67  * the kernel about the 32-bit struct packing.
68  */
69 struct btrfs_ioctl_timespec_32 {
70 	__u64 sec;
71 	__u32 nsec;
72 } __attribute__ ((__packed__));
73 
74 struct btrfs_ioctl_received_subvol_args_32 {
75 	char	uuid[BTRFS_UUID_SIZE];	/* in */
76 	__u64	stransid;		/* in */
77 	__u64	rtransid;		/* out */
78 	struct btrfs_ioctl_timespec_32 stime; /* in */
79 	struct btrfs_ioctl_timespec_32 rtime; /* out */
80 	__u64	flags;			/* in */
81 	__u64	reserved[16];		/* in */
82 } __attribute__ ((__packed__));
83 
84 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
85 				struct btrfs_ioctl_received_subvol_args_32)
86 #endif
87 
88 
89 static int btrfs_clone(struct inode *src, struct inode *inode,
90 		       u64 off, u64 olen, u64 olen_aligned, u64 destoff,
91 		       int no_time_update);
92 
93 /* Mask out flags that are inappropriate for the given type of inode. */
btrfs_mask_flags(umode_t mode,__u32 flags)94 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
95 {
96 	if (S_ISDIR(mode))
97 		return flags;
98 	else if (S_ISREG(mode))
99 		return flags & ~FS_DIRSYNC_FL;
100 	else
101 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
102 }
103 
104 /*
105  * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
106  */
btrfs_flags_to_ioctl(unsigned int flags)107 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
108 {
109 	unsigned int iflags = 0;
110 
111 	if (flags & BTRFS_INODE_SYNC)
112 		iflags |= FS_SYNC_FL;
113 	if (flags & BTRFS_INODE_IMMUTABLE)
114 		iflags |= FS_IMMUTABLE_FL;
115 	if (flags & BTRFS_INODE_APPEND)
116 		iflags |= FS_APPEND_FL;
117 	if (flags & BTRFS_INODE_NODUMP)
118 		iflags |= FS_NODUMP_FL;
119 	if (flags & BTRFS_INODE_NOATIME)
120 		iflags |= FS_NOATIME_FL;
121 	if (flags & BTRFS_INODE_DIRSYNC)
122 		iflags |= FS_DIRSYNC_FL;
123 	if (flags & BTRFS_INODE_NODATACOW)
124 		iflags |= FS_NOCOW_FL;
125 
126 	if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
127 		iflags |= FS_COMPR_FL;
128 	else if (flags & BTRFS_INODE_NOCOMPRESS)
129 		iflags |= FS_NOCOMP_FL;
130 
131 	return iflags;
132 }
133 
134 /*
135  * Update inode->i_flags based on the btrfs internal flags.
136  */
btrfs_update_iflags(struct inode * inode)137 void btrfs_update_iflags(struct inode *inode)
138 {
139 	struct btrfs_inode *ip = BTRFS_I(inode);
140 	unsigned int new_fl = 0;
141 
142 	if (ip->flags & BTRFS_INODE_SYNC)
143 		new_fl |= S_SYNC;
144 	if (ip->flags & BTRFS_INODE_IMMUTABLE)
145 		new_fl |= S_IMMUTABLE;
146 	if (ip->flags & BTRFS_INODE_APPEND)
147 		new_fl |= S_APPEND;
148 	if (ip->flags & BTRFS_INODE_NOATIME)
149 		new_fl |= S_NOATIME;
150 	if (ip->flags & BTRFS_INODE_DIRSYNC)
151 		new_fl |= S_DIRSYNC;
152 
153 	set_mask_bits(&inode->i_flags,
154 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
155 		      new_fl);
156 }
157 
158 /*
159  * Inherit flags from the parent inode.
160  *
161  * Currently only the compression flags and the cow flags are inherited.
162  */
btrfs_inherit_iflags(struct inode * inode,struct inode * dir)163 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
164 {
165 	unsigned int flags;
166 
167 	if (!dir)
168 		return;
169 
170 	flags = BTRFS_I(dir)->flags;
171 
172 	if (flags & BTRFS_INODE_NOCOMPRESS) {
173 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
174 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
175 	} else if (flags & BTRFS_INODE_COMPRESS) {
176 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
177 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
178 	}
179 
180 	if (flags & BTRFS_INODE_NODATACOW) {
181 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
182 		if (S_ISREG(inode->i_mode))
183 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
184 	}
185 
186 	btrfs_update_iflags(inode);
187 }
188 
btrfs_ioctl_getflags(struct file * file,void __user * arg)189 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
190 {
191 	struct btrfs_inode *ip = BTRFS_I(file_inode(file));
192 	unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
193 
194 	if (copy_to_user(arg, &flags, sizeof(flags)))
195 		return -EFAULT;
196 	return 0;
197 }
198 
check_flags(unsigned int flags)199 static int check_flags(unsigned int flags)
200 {
201 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
202 		      FS_NOATIME_FL | FS_NODUMP_FL | \
203 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
204 		      FS_NOCOMP_FL | FS_COMPR_FL |
205 		      FS_NOCOW_FL))
206 		return -EOPNOTSUPP;
207 
208 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
209 		return -EINVAL;
210 
211 	return 0;
212 }
213 
btrfs_ioctl_setflags(struct file * file,void __user * arg)214 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
215 {
216 	struct inode *inode = file_inode(file);
217 	struct btrfs_inode *ip = BTRFS_I(inode);
218 	struct btrfs_root *root = ip->root;
219 	struct btrfs_trans_handle *trans;
220 	unsigned int flags, oldflags;
221 	int ret;
222 	u64 ip_oldflags;
223 	unsigned int i_oldflags;
224 	umode_t mode;
225 
226 	if (!inode_owner_or_capable(inode))
227 		return -EPERM;
228 
229 	if (btrfs_root_readonly(root))
230 		return -EROFS;
231 
232 	if (copy_from_user(&flags, arg, sizeof(flags)))
233 		return -EFAULT;
234 
235 	ret = check_flags(flags);
236 	if (ret)
237 		return ret;
238 
239 	ret = mnt_want_write_file(file);
240 	if (ret)
241 		return ret;
242 
243 	mutex_lock(&inode->i_mutex);
244 
245 	ip_oldflags = ip->flags;
246 	i_oldflags = inode->i_flags;
247 	mode = inode->i_mode;
248 
249 	flags = btrfs_mask_flags(inode->i_mode, flags);
250 	oldflags = btrfs_flags_to_ioctl(ip->flags);
251 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
252 		if (!capable(CAP_LINUX_IMMUTABLE)) {
253 			ret = -EPERM;
254 			goto out_unlock;
255 		}
256 	}
257 
258 	if (flags & FS_SYNC_FL)
259 		ip->flags |= BTRFS_INODE_SYNC;
260 	else
261 		ip->flags &= ~BTRFS_INODE_SYNC;
262 	if (flags & FS_IMMUTABLE_FL)
263 		ip->flags |= BTRFS_INODE_IMMUTABLE;
264 	else
265 		ip->flags &= ~BTRFS_INODE_IMMUTABLE;
266 	if (flags & FS_APPEND_FL)
267 		ip->flags |= BTRFS_INODE_APPEND;
268 	else
269 		ip->flags &= ~BTRFS_INODE_APPEND;
270 	if (flags & FS_NODUMP_FL)
271 		ip->flags |= BTRFS_INODE_NODUMP;
272 	else
273 		ip->flags &= ~BTRFS_INODE_NODUMP;
274 	if (flags & FS_NOATIME_FL)
275 		ip->flags |= BTRFS_INODE_NOATIME;
276 	else
277 		ip->flags &= ~BTRFS_INODE_NOATIME;
278 	if (flags & FS_DIRSYNC_FL)
279 		ip->flags |= BTRFS_INODE_DIRSYNC;
280 	else
281 		ip->flags &= ~BTRFS_INODE_DIRSYNC;
282 	if (flags & FS_NOCOW_FL) {
283 		if (S_ISREG(mode)) {
284 			/*
285 			 * It's safe to turn csums off here, no extents exist.
286 			 * Otherwise we want the flag to reflect the real COW
287 			 * status of the file and will not set it.
288 			 */
289 			if (inode->i_size == 0)
290 				ip->flags |= BTRFS_INODE_NODATACOW
291 					   | BTRFS_INODE_NODATASUM;
292 		} else {
293 			ip->flags |= BTRFS_INODE_NODATACOW;
294 		}
295 	} else {
296 		/*
297 		 * Revert back under same assuptions as above
298 		 */
299 		if (S_ISREG(mode)) {
300 			if (inode->i_size == 0)
301 				ip->flags &= ~(BTRFS_INODE_NODATACOW
302 				             | BTRFS_INODE_NODATASUM);
303 		} else {
304 			ip->flags &= ~BTRFS_INODE_NODATACOW;
305 		}
306 	}
307 
308 	/*
309 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
310 	 * flag may be changed automatically if compression code won't make
311 	 * things smaller.
312 	 */
313 	if (flags & FS_NOCOMP_FL) {
314 		ip->flags &= ~BTRFS_INODE_COMPRESS;
315 		ip->flags |= BTRFS_INODE_NOCOMPRESS;
316 
317 		ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
318 		if (ret && ret != -ENODATA)
319 			goto out_drop;
320 	} else if (flags & FS_COMPR_FL) {
321 		const char *comp;
322 
323 		ip->flags |= BTRFS_INODE_COMPRESS;
324 		ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
325 
326 		if (root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
327 			comp = "lzo";
328 		else
329 			comp = "zlib";
330 		ret = btrfs_set_prop(inode, "btrfs.compression",
331 				     comp, strlen(comp), 0);
332 		if (ret)
333 			goto out_drop;
334 
335 	} else {
336 		ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
337 		if (ret && ret != -ENODATA)
338 			goto out_drop;
339 		ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
340 	}
341 
342 	trans = btrfs_start_transaction(root, 1);
343 	if (IS_ERR(trans)) {
344 		ret = PTR_ERR(trans);
345 		goto out_drop;
346 	}
347 
348 	btrfs_update_iflags(inode);
349 	inode_inc_iversion(inode);
350 	inode->i_ctime = CURRENT_TIME;
351 	ret = btrfs_update_inode(trans, root, inode);
352 
353 	btrfs_end_transaction(trans, root);
354  out_drop:
355 	if (ret) {
356 		ip->flags = ip_oldflags;
357 		inode->i_flags = i_oldflags;
358 	}
359 
360  out_unlock:
361 	mutex_unlock(&inode->i_mutex);
362 	mnt_drop_write_file(file);
363 	return ret;
364 }
365 
btrfs_ioctl_getversion(struct file * file,int __user * arg)366 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
367 {
368 	struct inode *inode = file_inode(file);
369 
370 	return put_user(inode->i_generation, arg);
371 }
372 
btrfs_ioctl_fitrim(struct file * file,void __user * arg)373 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
374 {
375 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
376 	struct btrfs_device *device;
377 	struct request_queue *q;
378 	struct fstrim_range range;
379 	u64 minlen = ULLONG_MAX;
380 	u64 num_devices = 0;
381 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
382 	int ret;
383 
384 	if (!capable(CAP_SYS_ADMIN))
385 		return -EPERM;
386 
387 	rcu_read_lock();
388 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
389 				dev_list) {
390 		if (!device->bdev)
391 			continue;
392 		q = bdev_get_queue(device->bdev);
393 		if (blk_queue_discard(q)) {
394 			num_devices++;
395 			minlen = min((u64)q->limits.discard_granularity,
396 				     minlen);
397 		}
398 	}
399 	rcu_read_unlock();
400 
401 	if (!num_devices)
402 		return -EOPNOTSUPP;
403 	if (copy_from_user(&range, arg, sizeof(range)))
404 		return -EFAULT;
405 	if (range.start > total_bytes ||
406 	    range.len < fs_info->sb->s_blocksize)
407 		return -EINVAL;
408 
409 	range.len = min(range.len, total_bytes - range.start);
410 	range.minlen = max(range.minlen, minlen);
411 	ret = btrfs_trim_fs(fs_info->tree_root, &range);
412 	if (ret < 0)
413 		return ret;
414 
415 	if (copy_to_user(arg, &range, sizeof(range)))
416 		return -EFAULT;
417 
418 	return 0;
419 }
420 
btrfs_is_empty_uuid(u8 * uuid)421 int btrfs_is_empty_uuid(u8 *uuid)
422 {
423 	int i;
424 
425 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
426 		if (uuid[i])
427 			return 0;
428 	}
429 	return 1;
430 }
431 
create_subvol(struct inode * dir,struct dentry * dentry,char * name,int namelen,u64 * async_transid,struct btrfs_qgroup_inherit * inherit)432 static noinline int create_subvol(struct inode *dir,
433 				  struct dentry *dentry,
434 				  char *name, int namelen,
435 				  u64 *async_transid,
436 				  struct btrfs_qgroup_inherit *inherit)
437 {
438 	struct btrfs_trans_handle *trans;
439 	struct btrfs_key key;
440 	struct btrfs_root_item root_item;
441 	struct btrfs_inode_item *inode_item;
442 	struct extent_buffer *leaf;
443 	struct btrfs_root *root = BTRFS_I(dir)->root;
444 	struct btrfs_root *new_root;
445 	struct btrfs_block_rsv block_rsv;
446 	struct timespec cur_time = CURRENT_TIME;
447 	struct inode *inode;
448 	int ret;
449 	int err;
450 	u64 objectid;
451 	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
452 	u64 index = 0;
453 	u64 qgroup_reserved;
454 	uuid_le new_uuid;
455 
456 	ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
457 	if (ret)
458 		return ret;
459 
460 	/*
461 	 * Don't create subvolume whose level is not zero. Or qgroup will be
462 	 * screwed up since it assume subvolme qgroup's level to be 0.
463 	 */
464 	if (btrfs_qgroup_level(objectid))
465 		return -ENOSPC;
466 
467 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
468 	/*
469 	 * The same as the snapshot creation, please see the comment
470 	 * of create_snapshot().
471 	 */
472 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
473 					       8, &qgroup_reserved, false);
474 	if (ret)
475 		return ret;
476 
477 	trans = btrfs_start_transaction(root, 0);
478 	if (IS_ERR(trans)) {
479 		ret = PTR_ERR(trans);
480 		btrfs_subvolume_release_metadata(root, &block_rsv,
481 						 qgroup_reserved);
482 		return ret;
483 	}
484 	trans->block_rsv = &block_rsv;
485 	trans->bytes_reserved = block_rsv.size;
486 
487 	ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit);
488 	if (ret)
489 		goto fail;
490 
491 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
492 	if (IS_ERR(leaf)) {
493 		ret = PTR_ERR(leaf);
494 		goto fail;
495 	}
496 
497 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
498 	btrfs_set_header_bytenr(leaf, leaf->start);
499 	btrfs_set_header_generation(leaf, trans->transid);
500 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
501 	btrfs_set_header_owner(leaf, objectid);
502 
503 	write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(),
504 			    BTRFS_FSID_SIZE);
505 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
506 			    btrfs_header_chunk_tree_uuid(leaf),
507 			    BTRFS_UUID_SIZE);
508 	btrfs_mark_buffer_dirty(leaf);
509 
510 	memset(&root_item, 0, sizeof(root_item));
511 
512 	inode_item = &root_item.inode;
513 	btrfs_set_stack_inode_generation(inode_item, 1);
514 	btrfs_set_stack_inode_size(inode_item, 3);
515 	btrfs_set_stack_inode_nlink(inode_item, 1);
516 	btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
517 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
518 
519 	btrfs_set_root_flags(&root_item, 0);
520 	btrfs_set_root_limit(&root_item, 0);
521 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
522 
523 	btrfs_set_root_bytenr(&root_item, leaf->start);
524 	btrfs_set_root_generation(&root_item, trans->transid);
525 	btrfs_set_root_level(&root_item, 0);
526 	btrfs_set_root_refs(&root_item, 1);
527 	btrfs_set_root_used(&root_item, leaf->len);
528 	btrfs_set_root_last_snapshot(&root_item, 0);
529 
530 	btrfs_set_root_generation_v2(&root_item,
531 			btrfs_root_generation(&root_item));
532 	uuid_le_gen(&new_uuid);
533 	memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE);
534 	btrfs_set_stack_timespec_sec(&root_item.otime, cur_time.tv_sec);
535 	btrfs_set_stack_timespec_nsec(&root_item.otime, cur_time.tv_nsec);
536 	root_item.ctime = root_item.otime;
537 	btrfs_set_root_ctransid(&root_item, trans->transid);
538 	btrfs_set_root_otransid(&root_item, trans->transid);
539 
540 	btrfs_tree_unlock(leaf);
541 	free_extent_buffer(leaf);
542 	leaf = NULL;
543 
544 	btrfs_set_root_dirid(&root_item, new_dirid);
545 
546 	key.objectid = objectid;
547 	key.offset = 0;
548 	key.type = BTRFS_ROOT_ITEM_KEY;
549 	ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
550 				&root_item);
551 	if (ret)
552 		goto fail;
553 
554 	key.offset = (u64)-1;
555 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
556 	if (IS_ERR(new_root)) {
557 		ret = PTR_ERR(new_root);
558 		btrfs_abort_transaction(trans, root, ret);
559 		goto fail;
560 	}
561 
562 	btrfs_record_root_in_trans(trans, new_root);
563 
564 	ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
565 	if (ret) {
566 		/* We potentially lose an unused inode item here */
567 		btrfs_abort_transaction(trans, root, ret);
568 		goto fail;
569 	}
570 
571 	mutex_lock(&new_root->objectid_mutex);
572 	new_root->highest_objectid = new_dirid;
573 	mutex_unlock(&new_root->objectid_mutex);
574 
575 	/*
576 	 * insert the directory item
577 	 */
578 	ret = btrfs_set_inode_index(dir, &index);
579 	if (ret) {
580 		btrfs_abort_transaction(trans, root, ret);
581 		goto fail;
582 	}
583 
584 	ret = btrfs_insert_dir_item(trans, root,
585 				    name, namelen, dir, &key,
586 				    BTRFS_FT_DIR, index);
587 	if (ret) {
588 		btrfs_abort_transaction(trans, root, ret);
589 		goto fail;
590 	}
591 
592 	btrfs_i_size_write(dir, dir->i_size + namelen * 2);
593 	ret = btrfs_update_inode(trans, root, dir);
594 	BUG_ON(ret);
595 
596 	ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
597 				 objectid, root->root_key.objectid,
598 				 btrfs_ino(dir), index, name, namelen);
599 	BUG_ON(ret);
600 
601 	ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
602 				  root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
603 				  objectid);
604 	if (ret)
605 		btrfs_abort_transaction(trans, root, ret);
606 
607 fail:
608 	trans->block_rsv = NULL;
609 	trans->bytes_reserved = 0;
610 	btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
611 
612 	if (async_transid) {
613 		*async_transid = trans->transid;
614 		err = btrfs_commit_transaction_async(trans, root, 1);
615 		if (err)
616 			err = btrfs_commit_transaction(trans, root);
617 	} else {
618 		err = btrfs_commit_transaction(trans, root);
619 	}
620 	if (err && !ret)
621 		ret = err;
622 
623 	if (!ret) {
624 		inode = btrfs_lookup_dentry(dir, dentry);
625 		if (IS_ERR(inode))
626 			return PTR_ERR(inode);
627 		d_instantiate(dentry, inode);
628 	}
629 	return ret;
630 }
631 
btrfs_wait_for_no_snapshoting_writes(struct btrfs_root * root)632 static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root *root)
633 {
634 	s64 writers;
635 	DEFINE_WAIT(wait);
636 
637 	do {
638 		prepare_to_wait(&root->subv_writers->wait, &wait,
639 				TASK_UNINTERRUPTIBLE);
640 
641 		writers = percpu_counter_sum(&root->subv_writers->counter);
642 		if (writers)
643 			schedule();
644 
645 		finish_wait(&root->subv_writers->wait, &wait);
646 	} while (writers);
647 }
648 
create_snapshot(struct btrfs_root * root,struct inode * dir,struct dentry * dentry,char * name,int namelen,u64 * async_transid,bool readonly,struct btrfs_qgroup_inherit * inherit)649 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
650 			   struct dentry *dentry, char *name, int namelen,
651 			   u64 *async_transid, bool readonly,
652 			   struct btrfs_qgroup_inherit *inherit)
653 {
654 	struct inode *inode;
655 	struct btrfs_pending_snapshot *pending_snapshot;
656 	struct btrfs_trans_handle *trans;
657 	int ret;
658 
659 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
660 		return -EINVAL;
661 
662 	atomic_inc(&root->will_be_snapshoted);
663 	smp_mb__after_atomic();
664 	btrfs_wait_for_no_snapshoting_writes(root);
665 
666 	ret = btrfs_start_delalloc_inodes(root, 0);
667 	if (ret)
668 		goto out;
669 
670 	btrfs_wait_ordered_extents(root, -1);
671 
672 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
673 	if (!pending_snapshot) {
674 		ret = -ENOMEM;
675 		goto out;
676 	}
677 
678 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
679 			     BTRFS_BLOCK_RSV_TEMP);
680 	/*
681 	 * 1 - parent dir inode
682 	 * 2 - dir entries
683 	 * 1 - root item
684 	 * 2 - root ref/backref
685 	 * 1 - root of snapshot
686 	 * 1 - UUID item
687 	 */
688 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
689 					&pending_snapshot->block_rsv, 8,
690 					&pending_snapshot->qgroup_reserved,
691 					false);
692 	if (ret)
693 		goto free;
694 
695 	pending_snapshot->dentry = dentry;
696 	pending_snapshot->root = root;
697 	pending_snapshot->readonly = readonly;
698 	pending_snapshot->dir = dir;
699 	pending_snapshot->inherit = inherit;
700 
701 	trans = btrfs_start_transaction(root, 0);
702 	if (IS_ERR(trans)) {
703 		ret = PTR_ERR(trans);
704 		goto fail;
705 	}
706 
707 	spin_lock(&root->fs_info->trans_lock);
708 	list_add(&pending_snapshot->list,
709 		 &trans->transaction->pending_snapshots);
710 	spin_unlock(&root->fs_info->trans_lock);
711 	if (async_transid) {
712 		*async_transid = trans->transid;
713 		ret = btrfs_commit_transaction_async(trans,
714 				     root->fs_info->extent_root, 1);
715 		if (ret)
716 			ret = btrfs_commit_transaction(trans, root);
717 	} else {
718 		ret = btrfs_commit_transaction(trans,
719 					       root->fs_info->extent_root);
720 	}
721 	if (ret)
722 		goto fail;
723 
724 	ret = pending_snapshot->error;
725 	if (ret)
726 		goto fail;
727 
728 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
729 	if (ret)
730 		goto fail;
731 
732 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
733 	if (IS_ERR(inode)) {
734 		ret = PTR_ERR(inode);
735 		goto fail;
736 	}
737 
738 	d_instantiate(dentry, inode);
739 	ret = 0;
740 fail:
741 	btrfs_subvolume_release_metadata(BTRFS_I(dir)->root,
742 					 &pending_snapshot->block_rsv,
743 					 pending_snapshot->qgroup_reserved);
744 free:
745 	kfree(pending_snapshot);
746 out:
747 	if (atomic_dec_and_test(&root->will_be_snapshoted))
748 		wake_up_atomic_t(&root->will_be_snapshoted);
749 	return ret;
750 }
751 
752 /*  copy of may_delete in fs/namei.c()
753  *	Check whether we can remove a link victim from directory dir, check
754  *  whether the type of victim is right.
755  *  1. We can't do it if dir is read-only (done in permission())
756  *  2. We should have write and exec permissions on dir
757  *  3. We can't remove anything from append-only dir
758  *  4. We can't do anything with immutable dir (done in permission())
759  *  5. If the sticky bit on dir is set we should either
760  *	a. be owner of dir, or
761  *	b. be owner of victim, or
762  *	c. have CAP_FOWNER capability
763  *  6. If the victim is append-only or immutable we can't do antyhing with
764  *     links pointing to it.
765  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
766  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
767  *  9. We can't remove a root or mountpoint.
768  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
769  *     nfs_async_unlink().
770  */
771 
btrfs_may_delete(struct inode * dir,struct dentry * victim,int isdir)772 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
773 {
774 	int error;
775 
776 	if (d_really_is_negative(victim))
777 		return -ENOENT;
778 
779 	BUG_ON(d_inode(victim->d_parent) != dir);
780 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
781 
782 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
783 	if (error)
784 		return error;
785 	if (IS_APPEND(dir))
786 		return -EPERM;
787 	if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
788 	    IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
789 		return -EPERM;
790 	if (isdir) {
791 		if (!d_is_dir(victim))
792 			return -ENOTDIR;
793 		if (IS_ROOT(victim))
794 			return -EBUSY;
795 	} else if (d_is_dir(victim))
796 		return -EISDIR;
797 	if (IS_DEADDIR(dir))
798 		return -ENOENT;
799 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
800 		return -EBUSY;
801 	return 0;
802 }
803 
804 /* copy of may_create in fs/namei.c() */
btrfs_may_create(struct inode * dir,struct dentry * child)805 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
806 {
807 	if (d_really_is_positive(child))
808 		return -EEXIST;
809 	if (IS_DEADDIR(dir))
810 		return -ENOENT;
811 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
812 }
813 
814 /*
815  * Create a new subvolume below @parent.  This is largely modeled after
816  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
817  * inside this filesystem so it's quite a bit simpler.
818  */
btrfs_mksubvol(struct path * parent,char * name,int namelen,struct btrfs_root * snap_src,u64 * async_transid,bool readonly,struct btrfs_qgroup_inherit * inherit)819 static noinline int btrfs_mksubvol(struct path *parent,
820 				   char *name, int namelen,
821 				   struct btrfs_root *snap_src,
822 				   u64 *async_transid, bool readonly,
823 				   struct btrfs_qgroup_inherit *inherit)
824 {
825 	struct inode *dir  = d_inode(parent->dentry);
826 	struct dentry *dentry;
827 	int error;
828 
829 	error = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
830 	if (error == -EINTR)
831 		return error;
832 
833 	dentry = lookup_one_len(name, parent->dentry, namelen);
834 	error = PTR_ERR(dentry);
835 	if (IS_ERR(dentry))
836 		goto out_unlock;
837 
838 	error = -EEXIST;
839 	if (d_really_is_positive(dentry))
840 		goto out_dput;
841 
842 	error = btrfs_may_create(dir, dentry);
843 	if (error)
844 		goto out_dput;
845 
846 	/*
847 	 * even if this name doesn't exist, we may get hash collisions.
848 	 * check for them now when we can safely fail
849 	 */
850 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
851 					       dir->i_ino, name,
852 					       namelen);
853 	if (error)
854 		goto out_dput;
855 
856 	down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
857 
858 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
859 		goto out_up_read;
860 
861 	if (snap_src) {
862 		error = create_snapshot(snap_src, dir, dentry, name, namelen,
863 					async_transid, readonly, inherit);
864 	} else {
865 		error = create_subvol(dir, dentry, name, namelen,
866 				      async_transid, inherit);
867 	}
868 	if (!error)
869 		fsnotify_mkdir(dir, dentry);
870 out_up_read:
871 	up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
872 out_dput:
873 	dput(dentry);
874 out_unlock:
875 	mutex_unlock(&dir->i_mutex);
876 	return error;
877 }
878 
879 /*
880  * When we're defragging a range, we don't want to kick it off again
881  * if it is really just waiting for delalloc to send it down.
882  * If we find a nice big extent or delalloc range for the bytes in the
883  * file you want to defrag, we return 0 to let you know to skip this
884  * part of the file
885  */
check_defrag_in_cache(struct inode * inode,u64 offset,u32 thresh)886 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
887 {
888 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
889 	struct extent_map *em = NULL;
890 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
891 	u64 end;
892 
893 	read_lock(&em_tree->lock);
894 	em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
895 	read_unlock(&em_tree->lock);
896 
897 	if (em) {
898 		end = extent_map_end(em);
899 		free_extent_map(em);
900 		if (end - offset > thresh)
901 			return 0;
902 	}
903 	/* if we already have a nice delalloc here, just stop */
904 	thresh /= 2;
905 	end = count_range_bits(io_tree, &offset, offset + thresh,
906 			       thresh, EXTENT_DELALLOC, 1);
907 	if (end >= thresh)
908 		return 0;
909 	return 1;
910 }
911 
912 /*
913  * helper function to walk through a file and find extents
914  * newer than a specific transid, and smaller than thresh.
915  *
916  * This is used by the defragging code to find new and small
917  * extents
918  */
find_new_extents(struct btrfs_root * root,struct inode * inode,u64 newer_than,u64 * off,u32 thresh)919 static int find_new_extents(struct btrfs_root *root,
920 			    struct inode *inode, u64 newer_than,
921 			    u64 *off, u32 thresh)
922 {
923 	struct btrfs_path *path;
924 	struct btrfs_key min_key;
925 	struct extent_buffer *leaf;
926 	struct btrfs_file_extent_item *extent;
927 	int type;
928 	int ret;
929 	u64 ino = btrfs_ino(inode);
930 
931 	path = btrfs_alloc_path();
932 	if (!path)
933 		return -ENOMEM;
934 
935 	min_key.objectid = ino;
936 	min_key.type = BTRFS_EXTENT_DATA_KEY;
937 	min_key.offset = *off;
938 
939 	while (1) {
940 		ret = btrfs_search_forward(root, &min_key, path, newer_than);
941 		if (ret != 0)
942 			goto none;
943 process_slot:
944 		if (min_key.objectid != ino)
945 			goto none;
946 		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
947 			goto none;
948 
949 		leaf = path->nodes[0];
950 		extent = btrfs_item_ptr(leaf, path->slots[0],
951 					struct btrfs_file_extent_item);
952 
953 		type = btrfs_file_extent_type(leaf, extent);
954 		if (type == BTRFS_FILE_EXTENT_REG &&
955 		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
956 		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
957 			*off = min_key.offset;
958 			btrfs_free_path(path);
959 			return 0;
960 		}
961 
962 		path->slots[0]++;
963 		if (path->slots[0] < btrfs_header_nritems(leaf)) {
964 			btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
965 			goto process_slot;
966 		}
967 
968 		if (min_key.offset == (u64)-1)
969 			goto none;
970 
971 		min_key.offset++;
972 		btrfs_release_path(path);
973 	}
974 none:
975 	btrfs_free_path(path);
976 	return -ENOENT;
977 }
978 
defrag_lookup_extent(struct inode * inode,u64 start)979 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
980 {
981 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
982 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
983 	struct extent_map *em;
984 	u64 len = PAGE_CACHE_SIZE;
985 
986 	/*
987 	 * hopefully we have this extent in the tree already, try without
988 	 * the full extent lock
989 	 */
990 	read_lock(&em_tree->lock);
991 	em = lookup_extent_mapping(em_tree, start, len);
992 	read_unlock(&em_tree->lock);
993 
994 	if (!em) {
995 		struct extent_state *cached = NULL;
996 		u64 end = start + len - 1;
997 
998 		/* get the big lock and read metadata off disk */
999 		lock_extent_bits(io_tree, start, end, 0, &cached);
1000 		em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
1001 		unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS);
1002 
1003 		if (IS_ERR(em))
1004 			return NULL;
1005 	}
1006 
1007 	return em;
1008 }
1009 
defrag_check_next_extent(struct inode * inode,struct extent_map * em)1010 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1011 {
1012 	struct extent_map *next;
1013 	bool ret = true;
1014 
1015 	/* this is the last extent */
1016 	if (em->start + em->len >= i_size_read(inode))
1017 		return false;
1018 
1019 	next = defrag_lookup_extent(inode, em->start + em->len);
1020 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1021 		ret = false;
1022 	else if ((em->block_start + em->block_len == next->block_start) &&
1023 		 (em->block_len > 128 * 1024 && next->block_len > 128 * 1024))
1024 		ret = false;
1025 
1026 	free_extent_map(next);
1027 	return ret;
1028 }
1029 
should_defrag_range(struct inode * inode,u64 start,u32 thresh,u64 * last_len,u64 * skip,u64 * defrag_end,int compress)1030 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1031 			       u64 *last_len, u64 *skip, u64 *defrag_end,
1032 			       int compress)
1033 {
1034 	struct extent_map *em;
1035 	int ret = 1;
1036 	bool next_mergeable = true;
1037 	bool prev_mergeable = true;
1038 
1039 	/*
1040 	 * make sure that once we start defragging an extent, we keep on
1041 	 * defragging it
1042 	 */
1043 	if (start < *defrag_end)
1044 		return 1;
1045 
1046 	*skip = 0;
1047 
1048 	em = defrag_lookup_extent(inode, start);
1049 	if (!em)
1050 		return 0;
1051 
1052 	/* this will cover holes, and inline extents */
1053 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1054 		ret = 0;
1055 		goto out;
1056 	}
1057 
1058 	if (!*defrag_end)
1059 		prev_mergeable = false;
1060 
1061 	next_mergeable = defrag_check_next_extent(inode, em);
1062 	/*
1063 	 * we hit a real extent, if it is big or the next extent is not a
1064 	 * real extent, don't bother defragging it
1065 	 */
1066 	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1067 	    (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1068 		ret = 0;
1069 out:
1070 	/*
1071 	 * last_len ends up being a counter of how many bytes we've defragged.
1072 	 * every time we choose not to defrag an extent, we reset *last_len
1073 	 * so that the next tiny extent will force a defrag.
1074 	 *
1075 	 * The end result of this is that tiny extents before a single big
1076 	 * extent will force at least part of that big extent to be defragged.
1077 	 */
1078 	if (ret) {
1079 		*defrag_end = extent_map_end(em);
1080 	} else {
1081 		*last_len = 0;
1082 		*skip = extent_map_end(em);
1083 		*defrag_end = 0;
1084 	}
1085 
1086 	free_extent_map(em);
1087 	return ret;
1088 }
1089 
1090 /*
1091  * it doesn't do much good to defrag one or two pages
1092  * at a time.  This pulls in a nice chunk of pages
1093  * to COW and defrag.
1094  *
1095  * It also makes sure the delalloc code has enough
1096  * dirty data to avoid making new small extents as part
1097  * of the defrag
1098  *
1099  * It's a good idea to start RA on this range
1100  * before calling this.
1101  */
cluster_pages_for_defrag(struct inode * inode,struct page ** pages,unsigned long start_index,unsigned long num_pages)1102 static int cluster_pages_for_defrag(struct inode *inode,
1103 				    struct page **pages,
1104 				    unsigned long start_index,
1105 				    unsigned long num_pages)
1106 {
1107 	unsigned long file_end;
1108 	u64 isize = i_size_read(inode);
1109 	u64 page_start;
1110 	u64 page_end;
1111 	u64 page_cnt;
1112 	int ret;
1113 	int i;
1114 	int i_done;
1115 	struct btrfs_ordered_extent *ordered;
1116 	struct extent_state *cached_state = NULL;
1117 	struct extent_io_tree *tree;
1118 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1119 
1120 	file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
1121 	if (!isize || start_index > file_end)
1122 		return 0;
1123 
1124 	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1125 
1126 	ret = btrfs_delalloc_reserve_space(inode,
1127 			start_index << PAGE_CACHE_SHIFT,
1128 			page_cnt << PAGE_CACHE_SHIFT);
1129 	if (ret)
1130 		return ret;
1131 	i_done = 0;
1132 	tree = &BTRFS_I(inode)->io_tree;
1133 
1134 	/* step one, lock all the pages */
1135 	for (i = 0; i < page_cnt; i++) {
1136 		struct page *page;
1137 again:
1138 		page = find_or_create_page(inode->i_mapping,
1139 					   start_index + i, mask);
1140 		if (!page)
1141 			break;
1142 
1143 		page_start = page_offset(page);
1144 		page_end = page_start + PAGE_CACHE_SIZE - 1;
1145 		while (1) {
1146 			lock_extent_bits(tree, page_start, page_end,
1147 					 0, &cached_state);
1148 			ordered = btrfs_lookup_ordered_extent(inode,
1149 							      page_start);
1150 			unlock_extent_cached(tree, page_start, page_end,
1151 					     &cached_state, GFP_NOFS);
1152 			if (!ordered)
1153 				break;
1154 
1155 			unlock_page(page);
1156 			btrfs_start_ordered_extent(inode, ordered, 1);
1157 			btrfs_put_ordered_extent(ordered);
1158 			lock_page(page);
1159 			/*
1160 			 * we unlocked the page above, so we need check if
1161 			 * it was released or not.
1162 			 */
1163 			if (page->mapping != inode->i_mapping) {
1164 				unlock_page(page);
1165 				page_cache_release(page);
1166 				goto again;
1167 			}
1168 		}
1169 
1170 		if (!PageUptodate(page)) {
1171 			btrfs_readpage(NULL, page);
1172 			lock_page(page);
1173 			if (!PageUptodate(page)) {
1174 				unlock_page(page);
1175 				page_cache_release(page);
1176 				ret = -EIO;
1177 				break;
1178 			}
1179 		}
1180 
1181 		if (page->mapping != inode->i_mapping) {
1182 			unlock_page(page);
1183 			page_cache_release(page);
1184 			goto again;
1185 		}
1186 
1187 		pages[i] = page;
1188 		i_done++;
1189 	}
1190 	if (!i_done || ret)
1191 		goto out;
1192 
1193 	if (!(inode->i_sb->s_flags & MS_ACTIVE))
1194 		goto out;
1195 
1196 	/*
1197 	 * so now we have a nice long stream of locked
1198 	 * and up to date pages, lets wait on them
1199 	 */
1200 	for (i = 0; i < i_done; i++)
1201 		wait_on_page_writeback(pages[i]);
1202 
1203 	page_start = page_offset(pages[0]);
1204 	page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
1205 
1206 	lock_extent_bits(&BTRFS_I(inode)->io_tree,
1207 			 page_start, page_end - 1, 0, &cached_state);
1208 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1209 			  page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1210 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1211 			  &cached_state, GFP_NOFS);
1212 
1213 	if (i_done != page_cnt) {
1214 		spin_lock(&BTRFS_I(inode)->lock);
1215 		BTRFS_I(inode)->outstanding_extents++;
1216 		spin_unlock(&BTRFS_I(inode)->lock);
1217 		btrfs_delalloc_release_space(inode,
1218 				start_index << PAGE_CACHE_SHIFT,
1219 				(page_cnt - i_done) << PAGE_CACHE_SHIFT);
1220 	}
1221 
1222 
1223 	set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1224 			  &cached_state, GFP_NOFS);
1225 
1226 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1227 			     page_start, page_end - 1, &cached_state,
1228 			     GFP_NOFS);
1229 
1230 	for (i = 0; i < i_done; i++) {
1231 		clear_page_dirty_for_io(pages[i]);
1232 		ClearPageChecked(pages[i]);
1233 		set_page_extent_mapped(pages[i]);
1234 		set_page_dirty(pages[i]);
1235 		unlock_page(pages[i]);
1236 		page_cache_release(pages[i]);
1237 	}
1238 	return i_done;
1239 out:
1240 	for (i = 0; i < i_done; i++) {
1241 		unlock_page(pages[i]);
1242 		page_cache_release(pages[i]);
1243 	}
1244 	btrfs_delalloc_release_space(inode,
1245 			start_index << PAGE_CACHE_SHIFT,
1246 			page_cnt << PAGE_CACHE_SHIFT);
1247 	return ret;
1248 
1249 }
1250 
btrfs_defrag_file(struct inode * inode,struct file * file,struct btrfs_ioctl_defrag_range_args * range,u64 newer_than,unsigned long max_to_defrag)1251 int btrfs_defrag_file(struct inode *inode, struct file *file,
1252 		      struct btrfs_ioctl_defrag_range_args *range,
1253 		      u64 newer_than, unsigned long max_to_defrag)
1254 {
1255 	struct btrfs_root *root = BTRFS_I(inode)->root;
1256 	struct file_ra_state *ra = NULL;
1257 	unsigned long last_index;
1258 	u64 isize = i_size_read(inode);
1259 	u64 last_len = 0;
1260 	u64 skip = 0;
1261 	u64 defrag_end = 0;
1262 	u64 newer_off = range->start;
1263 	unsigned long i;
1264 	unsigned long ra_index = 0;
1265 	int ret;
1266 	int defrag_count = 0;
1267 	int compress_type = BTRFS_COMPRESS_ZLIB;
1268 	u32 extent_thresh = range->extent_thresh;
1269 	unsigned long max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
1270 	unsigned long cluster = max_cluster;
1271 	u64 new_align = ~((u64)128 * 1024 - 1);
1272 	struct page **pages = NULL;
1273 
1274 	if (isize == 0)
1275 		return 0;
1276 
1277 	if (range->start >= isize)
1278 		return -EINVAL;
1279 
1280 	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1281 		if (range->compress_type > BTRFS_COMPRESS_TYPES)
1282 			return -EINVAL;
1283 		if (range->compress_type)
1284 			compress_type = range->compress_type;
1285 	}
1286 
1287 	if (extent_thresh == 0)
1288 		extent_thresh = 256 * 1024;
1289 
1290 	/*
1291 	 * if we were not given a file, allocate a readahead
1292 	 * context
1293 	 */
1294 	if (!file) {
1295 		ra = kzalloc(sizeof(*ra), GFP_NOFS);
1296 		if (!ra)
1297 			return -ENOMEM;
1298 		file_ra_state_init(ra, inode->i_mapping);
1299 	} else {
1300 		ra = &file->f_ra;
1301 	}
1302 
1303 	pages = kmalloc_array(max_cluster, sizeof(struct page *),
1304 			GFP_NOFS);
1305 	if (!pages) {
1306 		ret = -ENOMEM;
1307 		goto out_ra;
1308 	}
1309 
1310 	/* find the last page to defrag */
1311 	if (range->start + range->len > range->start) {
1312 		last_index = min_t(u64, isize - 1,
1313 			 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1314 	} else {
1315 		last_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1316 	}
1317 
1318 	if (newer_than) {
1319 		ret = find_new_extents(root, inode, newer_than,
1320 				       &newer_off, 64 * 1024);
1321 		if (!ret) {
1322 			range->start = newer_off;
1323 			/*
1324 			 * we always align our defrag to help keep
1325 			 * the extents in the file evenly spaced
1326 			 */
1327 			i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1328 		} else
1329 			goto out_ra;
1330 	} else {
1331 		i = range->start >> PAGE_CACHE_SHIFT;
1332 	}
1333 	if (!max_to_defrag)
1334 		max_to_defrag = last_index - i + 1;
1335 
1336 	/*
1337 	 * make writeback starts from i, so the defrag range can be
1338 	 * written sequentially.
1339 	 */
1340 	if (i < inode->i_mapping->writeback_index)
1341 		inode->i_mapping->writeback_index = i;
1342 
1343 	while (i <= last_index && defrag_count < max_to_defrag &&
1344 	       (i < DIV_ROUND_UP(i_size_read(inode), PAGE_CACHE_SIZE))) {
1345 		/*
1346 		 * make sure we stop running if someone unmounts
1347 		 * the FS
1348 		 */
1349 		if (!(inode->i_sb->s_flags & MS_ACTIVE))
1350 			break;
1351 
1352 		if (btrfs_defrag_cancelled(root->fs_info)) {
1353 			btrfs_debug(root->fs_info, "defrag_file cancelled");
1354 			ret = -EAGAIN;
1355 			break;
1356 		}
1357 
1358 		if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1359 					 extent_thresh, &last_len, &skip,
1360 					 &defrag_end, range->flags &
1361 					 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1362 			unsigned long next;
1363 			/*
1364 			 * the should_defrag function tells us how much to skip
1365 			 * bump our counter by the suggested amount
1366 			 */
1367 			next = DIV_ROUND_UP(skip, PAGE_CACHE_SIZE);
1368 			i = max(i + 1, next);
1369 			continue;
1370 		}
1371 
1372 		if (!newer_than) {
1373 			cluster = (PAGE_CACHE_ALIGN(defrag_end) >>
1374 				   PAGE_CACHE_SHIFT) - i;
1375 			cluster = min(cluster, max_cluster);
1376 		} else {
1377 			cluster = max_cluster;
1378 		}
1379 
1380 		if (i + cluster > ra_index) {
1381 			ra_index = max(i, ra_index);
1382 			btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1383 				       cluster);
1384 			ra_index += cluster;
1385 		}
1386 
1387 		mutex_lock(&inode->i_mutex);
1388 		if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1389 			BTRFS_I(inode)->force_compress = compress_type;
1390 		ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1391 		if (ret < 0) {
1392 			mutex_unlock(&inode->i_mutex);
1393 			goto out_ra;
1394 		}
1395 
1396 		defrag_count += ret;
1397 		balance_dirty_pages_ratelimited(inode->i_mapping);
1398 		mutex_unlock(&inode->i_mutex);
1399 
1400 		if (newer_than) {
1401 			if (newer_off == (u64)-1)
1402 				break;
1403 
1404 			if (ret > 0)
1405 				i += ret;
1406 
1407 			newer_off = max(newer_off + 1,
1408 					(u64)i << PAGE_CACHE_SHIFT);
1409 
1410 			ret = find_new_extents(root, inode,
1411 					       newer_than, &newer_off,
1412 					       64 * 1024);
1413 			if (!ret) {
1414 				range->start = newer_off;
1415 				i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1416 			} else {
1417 				break;
1418 			}
1419 		} else {
1420 			if (ret > 0) {
1421 				i += ret;
1422 				last_len += ret << PAGE_CACHE_SHIFT;
1423 			} else {
1424 				i++;
1425 				last_len = 0;
1426 			}
1427 		}
1428 	}
1429 
1430 	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1431 		filemap_flush(inode->i_mapping);
1432 		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1433 			     &BTRFS_I(inode)->runtime_flags))
1434 			filemap_flush(inode->i_mapping);
1435 	}
1436 
1437 	if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1438 		/* the filemap_flush will queue IO into the worker threads, but
1439 		 * we have to make sure the IO is actually started and that
1440 		 * ordered extents get created before we return
1441 		 */
1442 		atomic_inc(&root->fs_info->async_submit_draining);
1443 		while (atomic_read(&root->fs_info->nr_async_submits) ||
1444 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1445 			wait_event(root->fs_info->async_submit_wait,
1446 			   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1447 			    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1448 		}
1449 		atomic_dec(&root->fs_info->async_submit_draining);
1450 	}
1451 
1452 	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1453 		btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
1454 	}
1455 
1456 	ret = defrag_count;
1457 
1458 out_ra:
1459 	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1460 		mutex_lock(&inode->i_mutex);
1461 		BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1462 		mutex_unlock(&inode->i_mutex);
1463 	}
1464 	if (!file)
1465 		kfree(ra);
1466 	kfree(pages);
1467 	return ret;
1468 }
1469 
btrfs_ioctl_resize(struct file * file,void __user * arg)1470 static noinline int btrfs_ioctl_resize(struct file *file,
1471 					void __user *arg)
1472 {
1473 	u64 new_size;
1474 	u64 old_size;
1475 	u64 devid = 1;
1476 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1477 	struct btrfs_ioctl_vol_args *vol_args;
1478 	struct btrfs_trans_handle *trans;
1479 	struct btrfs_device *device = NULL;
1480 	char *sizestr;
1481 	char *retptr;
1482 	char *devstr = NULL;
1483 	int ret = 0;
1484 	int mod = 0;
1485 
1486 	if (!capable(CAP_SYS_ADMIN))
1487 		return -EPERM;
1488 
1489 	ret = mnt_want_write_file(file);
1490 	if (ret)
1491 		return ret;
1492 
1493 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
1494 			1)) {
1495 		mnt_drop_write_file(file);
1496 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1497 	}
1498 
1499 	mutex_lock(&root->fs_info->volume_mutex);
1500 	vol_args = memdup_user(arg, sizeof(*vol_args));
1501 	if (IS_ERR(vol_args)) {
1502 		ret = PTR_ERR(vol_args);
1503 		goto out;
1504 	}
1505 
1506 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1507 
1508 	sizestr = vol_args->name;
1509 	devstr = strchr(sizestr, ':');
1510 	if (devstr) {
1511 		sizestr = devstr + 1;
1512 		*devstr = '\0';
1513 		devstr = vol_args->name;
1514 		ret = kstrtoull(devstr, 10, &devid);
1515 		if (ret)
1516 			goto out_free;
1517 		if (!devid) {
1518 			ret = -EINVAL;
1519 			goto out_free;
1520 		}
1521 		btrfs_info(root->fs_info, "resizing devid %llu", devid);
1522 	}
1523 
1524 	device = btrfs_find_device(root->fs_info, devid, NULL, NULL);
1525 	if (!device) {
1526 		btrfs_info(root->fs_info, "resizer unable to find device %llu",
1527 		       devid);
1528 		ret = -ENODEV;
1529 		goto out_free;
1530 	}
1531 
1532 	if (!device->writeable) {
1533 		btrfs_info(root->fs_info,
1534 			   "resizer unable to apply on readonly device %llu",
1535 		       devid);
1536 		ret = -EPERM;
1537 		goto out_free;
1538 	}
1539 
1540 	if (!strcmp(sizestr, "max"))
1541 		new_size = device->bdev->bd_inode->i_size;
1542 	else {
1543 		if (sizestr[0] == '-') {
1544 			mod = -1;
1545 			sizestr++;
1546 		} else if (sizestr[0] == '+') {
1547 			mod = 1;
1548 			sizestr++;
1549 		}
1550 		new_size = memparse(sizestr, &retptr);
1551 		if (*retptr != '\0' || new_size == 0) {
1552 			ret = -EINVAL;
1553 			goto out_free;
1554 		}
1555 	}
1556 
1557 	if (device->is_tgtdev_for_dev_replace) {
1558 		ret = -EPERM;
1559 		goto out_free;
1560 	}
1561 
1562 	old_size = btrfs_device_get_total_bytes(device);
1563 
1564 	if (mod < 0) {
1565 		if (new_size > old_size) {
1566 			ret = -EINVAL;
1567 			goto out_free;
1568 		}
1569 		new_size = old_size - new_size;
1570 	} else if (mod > 0) {
1571 		if (new_size > ULLONG_MAX - old_size) {
1572 			ret = -ERANGE;
1573 			goto out_free;
1574 		}
1575 		new_size = old_size + new_size;
1576 	}
1577 
1578 	if (new_size < 256 * 1024 * 1024) {
1579 		ret = -EINVAL;
1580 		goto out_free;
1581 	}
1582 	if (new_size > device->bdev->bd_inode->i_size) {
1583 		ret = -EFBIG;
1584 		goto out_free;
1585 	}
1586 
1587 	new_size = div_u64(new_size, root->sectorsize);
1588 	new_size *= root->sectorsize;
1589 
1590 	btrfs_info_in_rcu(root->fs_info, "new size for %s is %llu",
1591 		      rcu_str_deref(device->name), new_size);
1592 
1593 	if (new_size > old_size) {
1594 		trans = btrfs_start_transaction(root, 0);
1595 		if (IS_ERR(trans)) {
1596 			ret = PTR_ERR(trans);
1597 			goto out_free;
1598 		}
1599 		ret = btrfs_grow_device(trans, device, new_size);
1600 		btrfs_commit_transaction(trans, root);
1601 	} else if (new_size < old_size) {
1602 		ret = btrfs_shrink_device(device, new_size);
1603 	} /* equal, nothing need to do */
1604 
1605 out_free:
1606 	kfree(vol_args);
1607 out:
1608 	mutex_unlock(&root->fs_info->volume_mutex);
1609 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
1610 	mnt_drop_write_file(file);
1611 	return ret;
1612 }
1613 
btrfs_ioctl_snap_create_transid(struct file * file,char * name,unsigned long fd,int subvol,u64 * transid,bool readonly,struct btrfs_qgroup_inherit * inherit)1614 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1615 				char *name, unsigned long fd, int subvol,
1616 				u64 *transid, bool readonly,
1617 				struct btrfs_qgroup_inherit *inherit)
1618 {
1619 	int namelen;
1620 	int ret = 0;
1621 
1622 	ret = mnt_want_write_file(file);
1623 	if (ret)
1624 		goto out;
1625 
1626 	namelen = strlen(name);
1627 	if (strchr(name, '/')) {
1628 		ret = -EINVAL;
1629 		goto out_drop_write;
1630 	}
1631 
1632 	if (name[0] == '.' &&
1633 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1634 		ret = -EEXIST;
1635 		goto out_drop_write;
1636 	}
1637 
1638 	if (subvol) {
1639 		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1640 				     NULL, transid, readonly, inherit);
1641 	} else {
1642 		struct fd src = fdget(fd);
1643 		struct inode *src_inode;
1644 		if (!src.file) {
1645 			ret = -EINVAL;
1646 			goto out_drop_write;
1647 		}
1648 
1649 		src_inode = file_inode(src.file);
1650 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1651 			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1652 				   "Snapshot src from another FS");
1653 			ret = -EXDEV;
1654 		} else if (!inode_owner_or_capable(src_inode)) {
1655 			/*
1656 			 * Subvolume creation is not restricted, but snapshots
1657 			 * are limited to own subvolumes only
1658 			 */
1659 			ret = -EPERM;
1660 		} else {
1661 			ret = btrfs_mksubvol(&file->f_path, name, namelen,
1662 					     BTRFS_I(src_inode)->root,
1663 					     transid, readonly, inherit);
1664 		}
1665 		fdput(src);
1666 	}
1667 out_drop_write:
1668 	mnt_drop_write_file(file);
1669 out:
1670 	return ret;
1671 }
1672 
btrfs_ioctl_snap_create(struct file * file,void __user * arg,int subvol)1673 static noinline int btrfs_ioctl_snap_create(struct file *file,
1674 					    void __user *arg, int subvol)
1675 {
1676 	struct btrfs_ioctl_vol_args *vol_args;
1677 	int ret;
1678 
1679 	vol_args = memdup_user(arg, sizeof(*vol_args));
1680 	if (IS_ERR(vol_args))
1681 		return PTR_ERR(vol_args);
1682 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1683 
1684 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1685 					      vol_args->fd, subvol,
1686 					      NULL, false, NULL);
1687 
1688 	kfree(vol_args);
1689 	return ret;
1690 }
1691 
btrfs_ioctl_snap_create_v2(struct file * file,void __user * arg,int subvol)1692 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1693 					       void __user *arg, int subvol)
1694 {
1695 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1696 	int ret;
1697 	u64 transid = 0;
1698 	u64 *ptr = NULL;
1699 	bool readonly = false;
1700 	struct btrfs_qgroup_inherit *inherit = NULL;
1701 
1702 	vol_args = memdup_user(arg, sizeof(*vol_args));
1703 	if (IS_ERR(vol_args))
1704 		return PTR_ERR(vol_args);
1705 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1706 
1707 	if (vol_args->flags &
1708 	    ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1709 	      BTRFS_SUBVOL_QGROUP_INHERIT)) {
1710 		ret = -EOPNOTSUPP;
1711 		goto free_args;
1712 	}
1713 
1714 	if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1715 		ptr = &transid;
1716 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1717 		readonly = true;
1718 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1719 		if (vol_args->size > PAGE_CACHE_SIZE) {
1720 			ret = -EINVAL;
1721 			goto free_args;
1722 		}
1723 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1724 		if (IS_ERR(inherit)) {
1725 			ret = PTR_ERR(inherit);
1726 			goto free_args;
1727 		}
1728 	}
1729 
1730 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1731 					      vol_args->fd, subvol, ptr,
1732 					      readonly, inherit);
1733 	if (ret)
1734 		goto free_inherit;
1735 
1736 	if (ptr && copy_to_user(arg +
1737 				offsetof(struct btrfs_ioctl_vol_args_v2,
1738 					transid),
1739 				ptr, sizeof(*ptr)))
1740 		ret = -EFAULT;
1741 
1742 free_inherit:
1743 	kfree(inherit);
1744 free_args:
1745 	kfree(vol_args);
1746 	return ret;
1747 }
1748 
btrfs_ioctl_subvol_getflags(struct file * file,void __user * arg)1749 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1750 						void __user *arg)
1751 {
1752 	struct inode *inode = file_inode(file);
1753 	struct btrfs_root *root = BTRFS_I(inode)->root;
1754 	int ret = 0;
1755 	u64 flags = 0;
1756 
1757 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1758 		return -EINVAL;
1759 
1760 	down_read(&root->fs_info->subvol_sem);
1761 	if (btrfs_root_readonly(root))
1762 		flags |= BTRFS_SUBVOL_RDONLY;
1763 	up_read(&root->fs_info->subvol_sem);
1764 
1765 	if (copy_to_user(arg, &flags, sizeof(flags)))
1766 		ret = -EFAULT;
1767 
1768 	return ret;
1769 }
1770 
btrfs_ioctl_subvol_setflags(struct file * file,void __user * arg)1771 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1772 					      void __user *arg)
1773 {
1774 	struct inode *inode = file_inode(file);
1775 	struct btrfs_root *root = BTRFS_I(inode)->root;
1776 	struct btrfs_trans_handle *trans;
1777 	u64 root_flags;
1778 	u64 flags;
1779 	int ret = 0;
1780 
1781 	if (!inode_owner_or_capable(inode))
1782 		return -EPERM;
1783 
1784 	ret = mnt_want_write_file(file);
1785 	if (ret)
1786 		goto out;
1787 
1788 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1789 		ret = -EINVAL;
1790 		goto out_drop_write;
1791 	}
1792 
1793 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1794 		ret = -EFAULT;
1795 		goto out_drop_write;
1796 	}
1797 
1798 	if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1799 		ret = -EINVAL;
1800 		goto out_drop_write;
1801 	}
1802 
1803 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1804 		ret = -EOPNOTSUPP;
1805 		goto out_drop_write;
1806 	}
1807 
1808 	down_write(&root->fs_info->subvol_sem);
1809 
1810 	/* nothing to do */
1811 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1812 		goto out_drop_sem;
1813 
1814 	root_flags = btrfs_root_flags(&root->root_item);
1815 	if (flags & BTRFS_SUBVOL_RDONLY) {
1816 		btrfs_set_root_flags(&root->root_item,
1817 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1818 	} else {
1819 		/*
1820 		 * Block RO -> RW transition if this subvolume is involved in
1821 		 * send
1822 		 */
1823 		spin_lock(&root->root_item_lock);
1824 		if (root->send_in_progress == 0) {
1825 			btrfs_set_root_flags(&root->root_item,
1826 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1827 			spin_unlock(&root->root_item_lock);
1828 		} else {
1829 			spin_unlock(&root->root_item_lock);
1830 			btrfs_warn(root->fs_info,
1831 			"Attempt to set subvolume %llu read-write during send",
1832 					root->root_key.objectid);
1833 			ret = -EPERM;
1834 			goto out_drop_sem;
1835 		}
1836 	}
1837 
1838 	trans = btrfs_start_transaction(root, 1);
1839 	if (IS_ERR(trans)) {
1840 		ret = PTR_ERR(trans);
1841 		goto out_reset;
1842 	}
1843 
1844 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1845 				&root->root_key, &root->root_item);
1846 
1847 	btrfs_commit_transaction(trans, root);
1848 out_reset:
1849 	if (ret)
1850 		btrfs_set_root_flags(&root->root_item, root_flags);
1851 out_drop_sem:
1852 	up_write(&root->fs_info->subvol_sem);
1853 out_drop_write:
1854 	mnt_drop_write_file(file);
1855 out:
1856 	return ret;
1857 }
1858 
1859 /*
1860  * helper to check if the subvolume references other subvolumes
1861  */
may_destroy_subvol(struct btrfs_root * root)1862 static noinline int may_destroy_subvol(struct btrfs_root *root)
1863 {
1864 	struct btrfs_path *path;
1865 	struct btrfs_dir_item *di;
1866 	struct btrfs_key key;
1867 	u64 dir_id;
1868 	int ret;
1869 
1870 	path = btrfs_alloc_path();
1871 	if (!path)
1872 		return -ENOMEM;
1873 
1874 	/* Make sure this root isn't set as the default subvol */
1875 	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
1876 	di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path,
1877 				   dir_id, "default", 7, 0);
1878 	if (di && !IS_ERR(di)) {
1879 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1880 		if (key.objectid == root->root_key.objectid) {
1881 			ret = -EPERM;
1882 			btrfs_err(root->fs_info, "deleting default subvolume "
1883 				  "%llu is not allowed", key.objectid);
1884 			goto out;
1885 		}
1886 		btrfs_release_path(path);
1887 	}
1888 
1889 	key.objectid = root->root_key.objectid;
1890 	key.type = BTRFS_ROOT_REF_KEY;
1891 	key.offset = (u64)-1;
1892 
1893 	ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1894 				&key, path, 0, 0);
1895 	if (ret < 0)
1896 		goto out;
1897 	BUG_ON(ret == 0);
1898 
1899 	ret = 0;
1900 	if (path->slots[0] > 0) {
1901 		path->slots[0]--;
1902 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1903 		if (key.objectid == root->root_key.objectid &&
1904 		    key.type == BTRFS_ROOT_REF_KEY)
1905 			ret = -ENOTEMPTY;
1906 	}
1907 out:
1908 	btrfs_free_path(path);
1909 	return ret;
1910 }
1911 
key_in_sk(struct btrfs_key * key,struct btrfs_ioctl_search_key * sk)1912 static noinline int key_in_sk(struct btrfs_key *key,
1913 			      struct btrfs_ioctl_search_key *sk)
1914 {
1915 	struct btrfs_key test;
1916 	int ret;
1917 
1918 	test.objectid = sk->min_objectid;
1919 	test.type = sk->min_type;
1920 	test.offset = sk->min_offset;
1921 
1922 	ret = btrfs_comp_cpu_keys(key, &test);
1923 	if (ret < 0)
1924 		return 0;
1925 
1926 	test.objectid = sk->max_objectid;
1927 	test.type = sk->max_type;
1928 	test.offset = sk->max_offset;
1929 
1930 	ret = btrfs_comp_cpu_keys(key, &test);
1931 	if (ret > 0)
1932 		return 0;
1933 	return 1;
1934 }
1935 
copy_to_sk(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key,struct btrfs_ioctl_search_key * sk,size_t * buf_size,char __user * ubuf,unsigned long * sk_offset,int * num_found)1936 static noinline int copy_to_sk(struct btrfs_root *root,
1937 			       struct btrfs_path *path,
1938 			       struct btrfs_key *key,
1939 			       struct btrfs_ioctl_search_key *sk,
1940 			       size_t *buf_size,
1941 			       char __user *ubuf,
1942 			       unsigned long *sk_offset,
1943 			       int *num_found)
1944 {
1945 	u64 found_transid;
1946 	struct extent_buffer *leaf;
1947 	struct btrfs_ioctl_search_header sh;
1948 	struct btrfs_key test;
1949 	unsigned long item_off;
1950 	unsigned long item_len;
1951 	int nritems;
1952 	int i;
1953 	int slot;
1954 	int ret = 0;
1955 
1956 	leaf = path->nodes[0];
1957 	slot = path->slots[0];
1958 	nritems = btrfs_header_nritems(leaf);
1959 
1960 	if (btrfs_header_generation(leaf) > sk->max_transid) {
1961 		i = nritems;
1962 		goto advance_key;
1963 	}
1964 	found_transid = btrfs_header_generation(leaf);
1965 
1966 	for (i = slot; i < nritems; i++) {
1967 		item_off = btrfs_item_ptr_offset(leaf, i);
1968 		item_len = btrfs_item_size_nr(leaf, i);
1969 
1970 		btrfs_item_key_to_cpu(leaf, key, i);
1971 		if (!key_in_sk(key, sk))
1972 			continue;
1973 
1974 		if (sizeof(sh) + item_len > *buf_size) {
1975 			if (*num_found) {
1976 				ret = 1;
1977 				goto out;
1978 			}
1979 
1980 			/*
1981 			 * return one empty item back for v1, which does not
1982 			 * handle -EOVERFLOW
1983 			 */
1984 
1985 			*buf_size = sizeof(sh) + item_len;
1986 			item_len = 0;
1987 			ret = -EOVERFLOW;
1988 		}
1989 
1990 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1991 			ret = 1;
1992 			goto out;
1993 		}
1994 
1995 		sh.objectid = key->objectid;
1996 		sh.offset = key->offset;
1997 		sh.type = key->type;
1998 		sh.len = item_len;
1999 		sh.transid = found_transid;
2000 
2001 		/* copy search result header */
2002 		if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
2003 			ret = -EFAULT;
2004 			goto out;
2005 		}
2006 
2007 		*sk_offset += sizeof(sh);
2008 
2009 		if (item_len) {
2010 			char __user *up = ubuf + *sk_offset;
2011 			/* copy the item */
2012 			if (read_extent_buffer_to_user(leaf, up,
2013 						       item_off, item_len)) {
2014 				ret = -EFAULT;
2015 				goto out;
2016 			}
2017 
2018 			*sk_offset += item_len;
2019 		}
2020 		(*num_found)++;
2021 
2022 		if (ret) /* -EOVERFLOW from above */
2023 			goto out;
2024 
2025 		if (*num_found >= sk->nr_items) {
2026 			ret = 1;
2027 			goto out;
2028 		}
2029 	}
2030 advance_key:
2031 	ret = 0;
2032 	test.objectid = sk->max_objectid;
2033 	test.type = sk->max_type;
2034 	test.offset = sk->max_offset;
2035 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
2036 		ret = 1;
2037 	else if (key->offset < (u64)-1)
2038 		key->offset++;
2039 	else if (key->type < (u8)-1) {
2040 		key->offset = 0;
2041 		key->type++;
2042 	} else if (key->objectid < (u64)-1) {
2043 		key->offset = 0;
2044 		key->type = 0;
2045 		key->objectid++;
2046 	} else
2047 		ret = 1;
2048 out:
2049 	/*
2050 	 *  0: all items from this leaf copied, continue with next
2051 	 *  1: * more items can be copied, but unused buffer is too small
2052 	 *     * all items were found
2053 	 *     Either way, it will stops the loop which iterates to the next
2054 	 *     leaf
2055 	 *  -EOVERFLOW: item was to large for buffer
2056 	 *  -EFAULT: could not copy extent buffer back to userspace
2057 	 */
2058 	return ret;
2059 }
2060 
search_ioctl(struct inode * inode,struct btrfs_ioctl_search_key * sk,size_t * buf_size,char __user * ubuf)2061 static noinline int search_ioctl(struct inode *inode,
2062 				 struct btrfs_ioctl_search_key *sk,
2063 				 size_t *buf_size,
2064 				 char __user *ubuf)
2065 {
2066 	struct btrfs_root *root;
2067 	struct btrfs_key key;
2068 	struct btrfs_path *path;
2069 	struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
2070 	int ret;
2071 	int num_found = 0;
2072 	unsigned long sk_offset = 0;
2073 
2074 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2075 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2076 		return -EOVERFLOW;
2077 	}
2078 
2079 	path = btrfs_alloc_path();
2080 	if (!path)
2081 		return -ENOMEM;
2082 
2083 	if (sk->tree_id == 0) {
2084 		/* search the root of the inode that was passed */
2085 		root = BTRFS_I(inode)->root;
2086 	} else {
2087 		key.objectid = sk->tree_id;
2088 		key.type = BTRFS_ROOT_ITEM_KEY;
2089 		key.offset = (u64)-1;
2090 		root = btrfs_read_fs_root_no_name(info, &key);
2091 		if (IS_ERR(root)) {
2092 			btrfs_err(info, "could not find root %llu",
2093 			       sk->tree_id);
2094 			btrfs_free_path(path);
2095 			return -ENOENT;
2096 		}
2097 	}
2098 
2099 	key.objectid = sk->min_objectid;
2100 	key.type = sk->min_type;
2101 	key.offset = sk->min_offset;
2102 
2103 	while (1) {
2104 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2105 		if (ret != 0) {
2106 			if (ret > 0)
2107 				ret = 0;
2108 			goto err;
2109 		}
2110 		ret = copy_to_sk(root, path, &key, sk, buf_size, ubuf,
2111 				 &sk_offset, &num_found);
2112 		btrfs_release_path(path);
2113 		if (ret)
2114 			break;
2115 
2116 	}
2117 	if (ret > 0)
2118 		ret = 0;
2119 err:
2120 	sk->nr_items = num_found;
2121 	btrfs_free_path(path);
2122 	return ret;
2123 }
2124 
btrfs_ioctl_tree_search(struct file * file,void __user * argp)2125 static noinline int btrfs_ioctl_tree_search(struct file *file,
2126 					   void __user *argp)
2127 {
2128 	struct btrfs_ioctl_search_args __user *uargs;
2129 	struct btrfs_ioctl_search_key sk;
2130 	struct inode *inode;
2131 	int ret;
2132 	size_t buf_size;
2133 
2134 	if (!capable(CAP_SYS_ADMIN))
2135 		return -EPERM;
2136 
2137 	uargs = (struct btrfs_ioctl_search_args __user *)argp;
2138 
2139 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2140 		return -EFAULT;
2141 
2142 	buf_size = sizeof(uargs->buf);
2143 
2144 	inode = file_inode(file);
2145 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2146 
2147 	/*
2148 	 * In the origin implementation an overflow is handled by returning a
2149 	 * search header with a len of zero, so reset ret.
2150 	 */
2151 	if (ret == -EOVERFLOW)
2152 		ret = 0;
2153 
2154 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2155 		ret = -EFAULT;
2156 	return ret;
2157 }
2158 
btrfs_ioctl_tree_search_v2(struct file * file,void __user * argp)2159 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2160 					       void __user *argp)
2161 {
2162 	struct btrfs_ioctl_search_args_v2 __user *uarg;
2163 	struct btrfs_ioctl_search_args_v2 args;
2164 	struct inode *inode;
2165 	int ret;
2166 	size_t buf_size;
2167 	const size_t buf_limit = 16 * 1024 * 1024;
2168 
2169 	if (!capable(CAP_SYS_ADMIN))
2170 		return -EPERM;
2171 
2172 	/* copy search header and buffer size */
2173 	uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2174 	if (copy_from_user(&args, uarg, sizeof(args)))
2175 		return -EFAULT;
2176 
2177 	buf_size = args.buf_size;
2178 
2179 	if (buf_size < sizeof(struct btrfs_ioctl_search_header))
2180 		return -EOVERFLOW;
2181 
2182 	/* limit result size to 16MB */
2183 	if (buf_size > buf_limit)
2184 		buf_size = buf_limit;
2185 
2186 	inode = file_inode(file);
2187 	ret = search_ioctl(inode, &args.key, &buf_size,
2188 			   (char *)(&uarg->buf[0]));
2189 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2190 		ret = -EFAULT;
2191 	else if (ret == -EOVERFLOW &&
2192 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2193 		ret = -EFAULT;
2194 
2195 	return ret;
2196 }
2197 
2198 /*
2199  * Search INODE_REFs to identify path name of 'dirid' directory
2200  * in a 'tree_id' tree. and sets path name to 'name'.
2201  */
btrfs_search_path_in_tree(struct btrfs_fs_info * info,u64 tree_id,u64 dirid,char * name)2202 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2203 				u64 tree_id, u64 dirid, char *name)
2204 {
2205 	struct btrfs_root *root;
2206 	struct btrfs_key key;
2207 	char *ptr;
2208 	int ret = -1;
2209 	int slot;
2210 	int len;
2211 	int total_len = 0;
2212 	struct btrfs_inode_ref *iref;
2213 	struct extent_buffer *l;
2214 	struct btrfs_path *path;
2215 
2216 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2217 		name[0]='\0';
2218 		return 0;
2219 	}
2220 
2221 	path = btrfs_alloc_path();
2222 	if (!path)
2223 		return -ENOMEM;
2224 
2225 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
2226 
2227 	key.objectid = tree_id;
2228 	key.type = BTRFS_ROOT_ITEM_KEY;
2229 	key.offset = (u64)-1;
2230 	root = btrfs_read_fs_root_no_name(info, &key);
2231 	if (IS_ERR(root)) {
2232 		btrfs_err(info, "could not find root %llu", tree_id);
2233 		ret = -ENOENT;
2234 		goto out;
2235 	}
2236 
2237 	key.objectid = dirid;
2238 	key.type = BTRFS_INODE_REF_KEY;
2239 	key.offset = (u64)-1;
2240 
2241 	while (1) {
2242 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2243 		if (ret < 0)
2244 			goto out;
2245 		else if (ret > 0) {
2246 			ret = btrfs_previous_item(root, path, dirid,
2247 						  BTRFS_INODE_REF_KEY);
2248 			if (ret < 0)
2249 				goto out;
2250 			else if (ret > 0) {
2251 				ret = -ENOENT;
2252 				goto out;
2253 			}
2254 		}
2255 
2256 		l = path->nodes[0];
2257 		slot = path->slots[0];
2258 		btrfs_item_key_to_cpu(l, &key, slot);
2259 
2260 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2261 		len = btrfs_inode_ref_name_len(l, iref);
2262 		ptr -= len + 1;
2263 		total_len += len + 1;
2264 		if (ptr < name) {
2265 			ret = -ENAMETOOLONG;
2266 			goto out;
2267 		}
2268 
2269 		*(ptr + len) = '/';
2270 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2271 
2272 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2273 			break;
2274 
2275 		btrfs_release_path(path);
2276 		key.objectid = key.offset;
2277 		key.offset = (u64)-1;
2278 		dirid = key.objectid;
2279 	}
2280 	memmove(name, ptr, total_len);
2281 	name[total_len] = '\0';
2282 	ret = 0;
2283 out:
2284 	btrfs_free_path(path);
2285 	return ret;
2286 }
2287 
btrfs_ioctl_ino_lookup(struct file * file,void __user * argp)2288 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2289 					   void __user *argp)
2290 {
2291 	 struct btrfs_ioctl_ino_lookup_args *args;
2292 	 struct inode *inode;
2293 	int ret = 0;
2294 
2295 	args = memdup_user(argp, sizeof(*args));
2296 	if (IS_ERR(args))
2297 		return PTR_ERR(args);
2298 
2299 	inode = file_inode(file);
2300 
2301 	/*
2302 	 * Unprivileged query to obtain the containing subvolume root id. The
2303 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2304 	 */
2305 	if (args->treeid == 0)
2306 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2307 
2308 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2309 		args->name[0] = 0;
2310 		goto out;
2311 	}
2312 
2313 	if (!capable(CAP_SYS_ADMIN)) {
2314 		ret = -EPERM;
2315 		goto out;
2316 	}
2317 
2318 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2319 					args->treeid, args->objectid,
2320 					args->name);
2321 
2322 out:
2323 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2324 		ret = -EFAULT;
2325 
2326 	kfree(args);
2327 	return ret;
2328 }
2329 
btrfs_ioctl_snap_destroy(struct file * file,void __user * arg)2330 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2331 					     void __user *arg)
2332 {
2333 	struct dentry *parent = file->f_path.dentry;
2334 	struct dentry *dentry;
2335 	struct inode *dir = d_inode(parent);
2336 	struct inode *inode;
2337 	struct btrfs_root *root = BTRFS_I(dir)->root;
2338 	struct btrfs_root *dest = NULL;
2339 	struct btrfs_ioctl_vol_args *vol_args;
2340 	struct btrfs_trans_handle *trans;
2341 	struct btrfs_block_rsv block_rsv;
2342 	u64 root_flags;
2343 	u64 qgroup_reserved;
2344 	int namelen;
2345 	int ret;
2346 	int err = 0;
2347 
2348 	vol_args = memdup_user(arg, sizeof(*vol_args));
2349 	if (IS_ERR(vol_args))
2350 		return PTR_ERR(vol_args);
2351 
2352 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2353 	namelen = strlen(vol_args->name);
2354 	if (strchr(vol_args->name, '/') ||
2355 	    strncmp(vol_args->name, "..", namelen) == 0) {
2356 		err = -EINVAL;
2357 		goto out;
2358 	}
2359 
2360 	err = mnt_want_write_file(file);
2361 	if (err)
2362 		goto out;
2363 
2364 
2365 	err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
2366 	if (err == -EINTR)
2367 		goto out_drop_write;
2368 	dentry = lookup_one_len(vol_args->name, parent, namelen);
2369 	if (IS_ERR(dentry)) {
2370 		err = PTR_ERR(dentry);
2371 		goto out_unlock_dir;
2372 	}
2373 
2374 	if (d_really_is_negative(dentry)) {
2375 		err = -ENOENT;
2376 		goto out_dput;
2377 	}
2378 
2379 	inode = d_inode(dentry);
2380 	dest = BTRFS_I(inode)->root;
2381 	if (!capable(CAP_SYS_ADMIN)) {
2382 		/*
2383 		 * Regular user.  Only allow this with a special mount
2384 		 * option, when the user has write+exec access to the
2385 		 * subvol root, and when rmdir(2) would have been
2386 		 * allowed.
2387 		 *
2388 		 * Note that this is _not_ check that the subvol is
2389 		 * empty or doesn't contain data that we wouldn't
2390 		 * otherwise be able to delete.
2391 		 *
2392 		 * Users who want to delete empty subvols should try
2393 		 * rmdir(2).
2394 		 */
2395 		err = -EPERM;
2396 		if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
2397 			goto out_dput;
2398 
2399 		/*
2400 		 * Do not allow deletion if the parent dir is the same
2401 		 * as the dir to be deleted.  That means the ioctl
2402 		 * must be called on the dentry referencing the root
2403 		 * of the subvol, not a random directory contained
2404 		 * within it.
2405 		 */
2406 		err = -EINVAL;
2407 		if (root == dest)
2408 			goto out_dput;
2409 
2410 		err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2411 		if (err)
2412 			goto out_dput;
2413 	}
2414 
2415 	/* check if subvolume may be deleted by a user */
2416 	err = btrfs_may_delete(dir, dentry, 1);
2417 	if (err)
2418 		goto out_dput;
2419 
2420 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2421 		err = -EINVAL;
2422 		goto out_dput;
2423 	}
2424 
2425 	mutex_lock(&inode->i_mutex);
2426 
2427 	/*
2428 	 * Don't allow to delete a subvolume with send in progress. This is
2429 	 * inside the i_mutex so the error handling that has to drop the bit
2430 	 * again is not run concurrently.
2431 	 */
2432 	spin_lock(&dest->root_item_lock);
2433 	root_flags = btrfs_root_flags(&dest->root_item);
2434 	if (dest->send_in_progress == 0) {
2435 		btrfs_set_root_flags(&dest->root_item,
2436 				root_flags | BTRFS_ROOT_SUBVOL_DEAD);
2437 		spin_unlock(&dest->root_item_lock);
2438 	} else {
2439 		spin_unlock(&dest->root_item_lock);
2440 		btrfs_warn(root->fs_info,
2441 			"Attempt to delete subvolume %llu during send",
2442 			dest->root_key.objectid);
2443 		err = -EPERM;
2444 		goto out_unlock_inode;
2445 	}
2446 
2447 	down_write(&root->fs_info->subvol_sem);
2448 
2449 	err = may_destroy_subvol(dest);
2450 	if (err)
2451 		goto out_up_write;
2452 
2453 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2454 	/*
2455 	 * One for dir inode, two for dir entries, two for root
2456 	 * ref/backref.
2457 	 */
2458 	err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2459 					       5, &qgroup_reserved, true);
2460 	if (err)
2461 		goto out_up_write;
2462 
2463 	trans = btrfs_start_transaction(root, 0);
2464 	if (IS_ERR(trans)) {
2465 		err = PTR_ERR(trans);
2466 		goto out_release;
2467 	}
2468 	trans->block_rsv = &block_rsv;
2469 	trans->bytes_reserved = block_rsv.size;
2470 
2471 	ret = btrfs_unlink_subvol(trans, root, dir,
2472 				dest->root_key.objectid,
2473 				dentry->d_name.name,
2474 				dentry->d_name.len);
2475 	if (ret) {
2476 		err = ret;
2477 		btrfs_abort_transaction(trans, root, ret);
2478 		goto out_end_trans;
2479 	}
2480 
2481 	btrfs_record_root_in_trans(trans, dest);
2482 
2483 	memset(&dest->root_item.drop_progress, 0,
2484 		sizeof(dest->root_item.drop_progress));
2485 	dest->root_item.drop_level = 0;
2486 	btrfs_set_root_refs(&dest->root_item, 0);
2487 
2488 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
2489 		ret = btrfs_insert_orphan_item(trans,
2490 					root->fs_info->tree_root,
2491 					dest->root_key.objectid);
2492 		if (ret) {
2493 			btrfs_abort_transaction(trans, root, ret);
2494 			err = ret;
2495 			goto out_end_trans;
2496 		}
2497 	}
2498 
2499 	ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2500 				  dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
2501 				  dest->root_key.objectid);
2502 	if (ret && ret != -ENOENT) {
2503 		btrfs_abort_transaction(trans, root, ret);
2504 		err = ret;
2505 		goto out_end_trans;
2506 	}
2507 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2508 		ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2509 					  dest->root_item.received_uuid,
2510 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2511 					  dest->root_key.objectid);
2512 		if (ret && ret != -ENOENT) {
2513 			btrfs_abort_transaction(trans, root, ret);
2514 			err = ret;
2515 			goto out_end_trans;
2516 		}
2517 	}
2518 
2519 out_end_trans:
2520 	trans->block_rsv = NULL;
2521 	trans->bytes_reserved = 0;
2522 	ret = btrfs_end_transaction(trans, root);
2523 	if (ret && !err)
2524 		err = ret;
2525 	inode->i_flags |= S_DEAD;
2526 out_release:
2527 	btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
2528 out_up_write:
2529 	up_write(&root->fs_info->subvol_sem);
2530 	if (err) {
2531 		spin_lock(&dest->root_item_lock);
2532 		root_flags = btrfs_root_flags(&dest->root_item);
2533 		btrfs_set_root_flags(&dest->root_item,
2534 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
2535 		spin_unlock(&dest->root_item_lock);
2536 	}
2537 out_unlock_inode:
2538 	mutex_unlock(&inode->i_mutex);
2539 	if (!err) {
2540 		d_invalidate(dentry);
2541 		btrfs_invalidate_inodes(dest);
2542 		d_delete(dentry);
2543 		ASSERT(dest->send_in_progress == 0);
2544 
2545 		/* the last ref */
2546 		if (dest->ino_cache_inode) {
2547 			iput(dest->ino_cache_inode);
2548 			dest->ino_cache_inode = NULL;
2549 		}
2550 	}
2551 out_dput:
2552 	dput(dentry);
2553 out_unlock_dir:
2554 	mutex_unlock(&dir->i_mutex);
2555 out_drop_write:
2556 	mnt_drop_write_file(file);
2557 out:
2558 	kfree(vol_args);
2559 	return err;
2560 }
2561 
btrfs_ioctl_defrag(struct file * file,void __user * argp)2562 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2563 {
2564 	struct inode *inode = file_inode(file);
2565 	struct btrfs_root *root = BTRFS_I(inode)->root;
2566 	struct btrfs_ioctl_defrag_range_args *range;
2567 	int ret;
2568 
2569 	ret = mnt_want_write_file(file);
2570 	if (ret)
2571 		return ret;
2572 
2573 	if (btrfs_root_readonly(root)) {
2574 		ret = -EROFS;
2575 		goto out;
2576 	}
2577 
2578 	switch (inode->i_mode & S_IFMT) {
2579 	case S_IFDIR:
2580 		if (!capable(CAP_SYS_ADMIN)) {
2581 			ret = -EPERM;
2582 			goto out;
2583 		}
2584 		ret = btrfs_defrag_root(root);
2585 		if (ret)
2586 			goto out;
2587 		ret = btrfs_defrag_root(root->fs_info->extent_root);
2588 		break;
2589 	case S_IFREG:
2590 		if (!(file->f_mode & FMODE_WRITE)) {
2591 			ret = -EINVAL;
2592 			goto out;
2593 		}
2594 
2595 		range = kzalloc(sizeof(*range), GFP_KERNEL);
2596 		if (!range) {
2597 			ret = -ENOMEM;
2598 			goto out;
2599 		}
2600 
2601 		if (argp) {
2602 			if (copy_from_user(range, argp,
2603 					   sizeof(*range))) {
2604 				ret = -EFAULT;
2605 				kfree(range);
2606 				goto out;
2607 			}
2608 			/* compression requires us to start the IO */
2609 			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2610 				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2611 				range->extent_thresh = (u32)-1;
2612 			}
2613 		} else {
2614 			/* the rest are all set to zero by kzalloc */
2615 			range->len = (u64)-1;
2616 		}
2617 		ret = btrfs_defrag_file(file_inode(file), file,
2618 					range, 0, 0);
2619 		if (ret > 0)
2620 			ret = 0;
2621 		kfree(range);
2622 		break;
2623 	default:
2624 		ret = -EINVAL;
2625 	}
2626 out:
2627 	mnt_drop_write_file(file);
2628 	return ret;
2629 }
2630 
btrfs_ioctl_add_dev(struct btrfs_root * root,void __user * arg)2631 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2632 {
2633 	struct btrfs_ioctl_vol_args *vol_args;
2634 	int ret;
2635 
2636 	if (!capable(CAP_SYS_ADMIN))
2637 		return -EPERM;
2638 
2639 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2640 			1)) {
2641 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2642 	}
2643 
2644 	mutex_lock(&root->fs_info->volume_mutex);
2645 	vol_args = memdup_user(arg, sizeof(*vol_args));
2646 	if (IS_ERR(vol_args)) {
2647 		ret = PTR_ERR(vol_args);
2648 		goto out;
2649 	}
2650 
2651 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2652 	ret = btrfs_init_new_device(root, vol_args->name);
2653 
2654 	if (!ret)
2655 		btrfs_info(root->fs_info, "disk added %s",vol_args->name);
2656 
2657 	kfree(vol_args);
2658 out:
2659 	mutex_unlock(&root->fs_info->volume_mutex);
2660 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2661 	return ret;
2662 }
2663 
btrfs_ioctl_rm_dev(struct file * file,void __user * arg)2664 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2665 {
2666 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2667 	struct btrfs_ioctl_vol_args *vol_args;
2668 	int ret;
2669 
2670 	if (!capable(CAP_SYS_ADMIN))
2671 		return -EPERM;
2672 
2673 	ret = mnt_want_write_file(file);
2674 	if (ret)
2675 		return ret;
2676 
2677 	vol_args = memdup_user(arg, sizeof(*vol_args));
2678 	if (IS_ERR(vol_args)) {
2679 		ret = PTR_ERR(vol_args);
2680 		goto err_drop;
2681 	}
2682 
2683 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2684 
2685 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2686 			1)) {
2687 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2688 		goto out;
2689 	}
2690 
2691 	mutex_lock(&root->fs_info->volume_mutex);
2692 	ret = btrfs_rm_device(root, vol_args->name);
2693 	mutex_unlock(&root->fs_info->volume_mutex);
2694 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2695 
2696 	if (!ret)
2697 		btrfs_info(root->fs_info, "disk deleted %s",vol_args->name);
2698 
2699 out:
2700 	kfree(vol_args);
2701 err_drop:
2702 	mnt_drop_write_file(file);
2703 	return ret;
2704 }
2705 
btrfs_ioctl_fs_info(struct btrfs_root * root,void __user * arg)2706 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2707 {
2708 	struct btrfs_ioctl_fs_info_args *fi_args;
2709 	struct btrfs_device *device;
2710 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2711 	int ret = 0;
2712 
2713 	fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2714 	if (!fi_args)
2715 		return -ENOMEM;
2716 
2717 	mutex_lock(&fs_devices->device_list_mutex);
2718 	fi_args->num_devices = fs_devices->num_devices;
2719 	memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2720 
2721 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2722 		if (device->devid > fi_args->max_id)
2723 			fi_args->max_id = device->devid;
2724 	}
2725 	mutex_unlock(&fs_devices->device_list_mutex);
2726 
2727 	fi_args->nodesize = root->fs_info->super_copy->nodesize;
2728 	fi_args->sectorsize = root->fs_info->super_copy->sectorsize;
2729 	fi_args->clone_alignment = root->fs_info->super_copy->sectorsize;
2730 
2731 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2732 		ret = -EFAULT;
2733 
2734 	kfree(fi_args);
2735 	return ret;
2736 }
2737 
btrfs_ioctl_dev_info(struct btrfs_root * root,void __user * arg)2738 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2739 {
2740 	struct btrfs_ioctl_dev_info_args *di_args;
2741 	struct btrfs_device *dev;
2742 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2743 	int ret = 0;
2744 	char *s_uuid = NULL;
2745 
2746 	di_args = memdup_user(arg, sizeof(*di_args));
2747 	if (IS_ERR(di_args))
2748 		return PTR_ERR(di_args);
2749 
2750 	if (!btrfs_is_empty_uuid(di_args->uuid))
2751 		s_uuid = di_args->uuid;
2752 
2753 	mutex_lock(&fs_devices->device_list_mutex);
2754 	dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL);
2755 
2756 	if (!dev) {
2757 		ret = -ENODEV;
2758 		goto out;
2759 	}
2760 
2761 	di_args->devid = dev->devid;
2762 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2763 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2764 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2765 	if (dev->name) {
2766 		struct rcu_string *name;
2767 
2768 		rcu_read_lock();
2769 		name = rcu_dereference(dev->name);
2770 		strncpy(di_args->path, name->str, sizeof(di_args->path));
2771 		rcu_read_unlock();
2772 		di_args->path[sizeof(di_args->path) - 1] = 0;
2773 	} else {
2774 		di_args->path[0] = '\0';
2775 	}
2776 
2777 out:
2778 	mutex_unlock(&fs_devices->device_list_mutex);
2779 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2780 		ret = -EFAULT;
2781 
2782 	kfree(di_args);
2783 	return ret;
2784 }
2785 
extent_same_get_page(struct inode * inode,pgoff_t index)2786 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index)
2787 {
2788 	struct page *page;
2789 
2790 	page = grab_cache_page(inode->i_mapping, index);
2791 	if (!page)
2792 		return ERR_PTR(-ENOMEM);
2793 
2794 	if (!PageUptodate(page)) {
2795 		int ret;
2796 
2797 		ret = btrfs_readpage(NULL, page);
2798 		if (ret)
2799 			return ERR_PTR(ret);
2800 		lock_page(page);
2801 		if (!PageUptodate(page)) {
2802 			unlock_page(page);
2803 			page_cache_release(page);
2804 			return ERR_PTR(-EIO);
2805 		}
2806 		if (page->mapping != inode->i_mapping) {
2807 			unlock_page(page);
2808 			page_cache_release(page);
2809 			return ERR_PTR(-EAGAIN);
2810 		}
2811 	}
2812 
2813 	return page;
2814 }
2815 
gather_extent_pages(struct inode * inode,struct page ** pages,int num_pages,u64 off)2816 static int gather_extent_pages(struct inode *inode, struct page **pages,
2817 			       int num_pages, u64 off)
2818 {
2819 	int i;
2820 	pgoff_t index = off >> PAGE_CACHE_SHIFT;
2821 
2822 	for (i = 0; i < num_pages; i++) {
2823 again:
2824 		pages[i] = extent_same_get_page(inode, index + i);
2825 		if (IS_ERR(pages[i])) {
2826 			int err = PTR_ERR(pages[i]);
2827 
2828 			if (err == -EAGAIN)
2829 				goto again;
2830 			pages[i] = NULL;
2831 			return err;
2832 		}
2833 	}
2834 	return 0;
2835 }
2836 
lock_extent_range(struct inode * inode,u64 off,u64 len,bool retry_range_locking)2837 static int lock_extent_range(struct inode *inode, u64 off, u64 len,
2838 			     bool retry_range_locking)
2839 {
2840 	/*
2841 	 * Do any pending delalloc/csum calculations on inode, one way or
2842 	 * another, and lock file content.
2843 	 * The locking order is:
2844 	 *
2845 	 *   1) pages
2846 	 *   2) range in the inode's io tree
2847 	 */
2848 	while (1) {
2849 		struct btrfs_ordered_extent *ordered;
2850 		lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2851 		ordered = btrfs_lookup_first_ordered_extent(inode,
2852 							    off + len - 1);
2853 		if ((!ordered ||
2854 		     ordered->file_offset + ordered->len <= off ||
2855 		     ordered->file_offset >= off + len) &&
2856 		    !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2857 				    off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
2858 			if (ordered)
2859 				btrfs_put_ordered_extent(ordered);
2860 			break;
2861 		}
2862 		unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2863 		if (ordered)
2864 			btrfs_put_ordered_extent(ordered);
2865 		if (!retry_range_locking)
2866 			return -EAGAIN;
2867 		btrfs_wait_ordered_range(inode, off, len);
2868 	}
2869 	return 0;
2870 }
2871 
btrfs_double_inode_unlock(struct inode * inode1,struct inode * inode2)2872 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2)
2873 {
2874 	mutex_unlock(&inode1->i_mutex);
2875 	mutex_unlock(&inode2->i_mutex);
2876 }
2877 
btrfs_double_inode_lock(struct inode * inode1,struct inode * inode2)2878 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2)
2879 {
2880 	if (inode1 < inode2)
2881 		swap(inode1, inode2);
2882 
2883 	mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT);
2884 	mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD);
2885 }
2886 
btrfs_double_extent_unlock(struct inode * inode1,u64 loff1,struct inode * inode2,u64 loff2,u64 len)2887 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
2888 				      struct inode *inode2, u64 loff2, u64 len)
2889 {
2890 	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2891 	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2892 }
2893 
btrfs_double_extent_lock(struct inode * inode1,u64 loff1,struct inode * inode2,u64 loff2,u64 len,bool retry_range_locking)2894 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
2895 				    struct inode *inode2, u64 loff2, u64 len,
2896 				    bool retry_range_locking)
2897 {
2898 	int ret;
2899 
2900 	if (inode1 < inode2) {
2901 		swap(inode1, inode2);
2902 		swap(loff1, loff2);
2903 	}
2904 	ret = lock_extent_range(inode1, loff1, len, retry_range_locking);
2905 	if (ret)
2906 		return ret;
2907 	ret = lock_extent_range(inode2, loff2, len, retry_range_locking);
2908 	if (ret)
2909 		unlock_extent(&BTRFS_I(inode1)->io_tree, loff1,
2910 			      loff1 + len - 1);
2911 	return ret;
2912 }
2913 
2914 struct cmp_pages {
2915 	int		num_pages;
2916 	struct page	**src_pages;
2917 	struct page	**dst_pages;
2918 };
2919 
btrfs_cmp_data_free(struct cmp_pages * cmp)2920 static void btrfs_cmp_data_free(struct cmp_pages *cmp)
2921 {
2922 	int i;
2923 	struct page *pg;
2924 
2925 	for (i = 0; i < cmp->num_pages; i++) {
2926 		pg = cmp->src_pages[i];
2927 		if (pg) {
2928 			unlock_page(pg);
2929 			page_cache_release(pg);
2930 		}
2931 		pg = cmp->dst_pages[i];
2932 		if (pg) {
2933 			unlock_page(pg);
2934 			page_cache_release(pg);
2935 		}
2936 	}
2937 	kfree(cmp->src_pages);
2938 	kfree(cmp->dst_pages);
2939 }
2940 
btrfs_cmp_data_prepare(struct inode * src,u64 loff,struct inode * dst,u64 dst_loff,u64 len,struct cmp_pages * cmp)2941 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff,
2942 				  struct inode *dst, u64 dst_loff,
2943 				  u64 len, struct cmp_pages *cmp)
2944 {
2945 	int ret;
2946 	int num_pages = PAGE_CACHE_ALIGN(len) >> PAGE_CACHE_SHIFT;
2947 	struct page **src_pgarr, **dst_pgarr;
2948 
2949 	/*
2950 	 * We must gather up all the pages before we initiate our
2951 	 * extent locking. We use an array for the page pointers. Size
2952 	 * of the array is bounded by len, which is in turn bounded by
2953 	 * BTRFS_MAX_DEDUPE_LEN.
2954 	 */
2955 	src_pgarr = kzalloc(num_pages * sizeof(struct page *), GFP_NOFS);
2956 	dst_pgarr = kzalloc(num_pages * sizeof(struct page *), GFP_NOFS);
2957 	if (!src_pgarr || !dst_pgarr) {
2958 		kfree(src_pgarr);
2959 		kfree(dst_pgarr);
2960 		return -ENOMEM;
2961 	}
2962 	cmp->num_pages = num_pages;
2963 	cmp->src_pages = src_pgarr;
2964 	cmp->dst_pages = dst_pgarr;
2965 
2966 	ret = gather_extent_pages(src, cmp->src_pages, cmp->num_pages, loff);
2967 	if (ret)
2968 		goto out;
2969 
2970 	ret = gather_extent_pages(dst, cmp->dst_pages, cmp->num_pages, dst_loff);
2971 
2972 out:
2973 	if (ret)
2974 		btrfs_cmp_data_free(cmp);
2975 	return 0;
2976 }
2977 
btrfs_cmp_data(struct inode * src,u64 loff,struct inode * dst,u64 dst_loff,u64 len,struct cmp_pages * cmp)2978 static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst,
2979 			  u64 dst_loff, u64 len, struct cmp_pages *cmp)
2980 {
2981 	int ret = 0;
2982 	int i;
2983 	struct page *src_page, *dst_page;
2984 	unsigned int cmp_len = PAGE_CACHE_SIZE;
2985 	void *addr, *dst_addr;
2986 
2987 	i = 0;
2988 	while (len) {
2989 		if (len < PAGE_CACHE_SIZE)
2990 			cmp_len = len;
2991 
2992 		BUG_ON(i >= cmp->num_pages);
2993 
2994 		src_page = cmp->src_pages[i];
2995 		dst_page = cmp->dst_pages[i];
2996 		ASSERT(PageLocked(src_page));
2997 		ASSERT(PageLocked(dst_page));
2998 
2999 		addr = kmap_atomic(src_page);
3000 		dst_addr = kmap_atomic(dst_page);
3001 
3002 		flush_dcache_page(src_page);
3003 		flush_dcache_page(dst_page);
3004 
3005 		if (memcmp(addr, dst_addr, cmp_len))
3006 			ret = BTRFS_SAME_DATA_DIFFERS;
3007 
3008 		kunmap_atomic(addr);
3009 		kunmap_atomic(dst_addr);
3010 
3011 		if (ret)
3012 			break;
3013 
3014 		len -= cmp_len;
3015 		i++;
3016 	}
3017 
3018 	return ret;
3019 }
3020 
extent_same_check_offsets(struct inode * inode,u64 off,u64 * plen,u64 olen)3021 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen,
3022 				     u64 olen)
3023 {
3024 	u64 len = *plen;
3025 	u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
3026 
3027 	if (off + olen > inode->i_size || off + olen < off)
3028 		return -EINVAL;
3029 
3030 	/* if we extend to eof, continue to block boundary */
3031 	if (off + len == inode->i_size)
3032 		*plen = len = ALIGN(inode->i_size, bs) - off;
3033 
3034 	/* Check that we are block aligned - btrfs_clone() requires this */
3035 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
3036 		return -EINVAL;
3037 
3038 	return 0;
3039 }
3040 
btrfs_extent_same(struct inode * src,u64 loff,u64 olen,struct inode * dst,u64 dst_loff)3041 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3042 			     struct inode *dst, u64 dst_loff)
3043 {
3044 	int ret;
3045 	u64 len = olen;
3046 	struct cmp_pages cmp;
3047 	int same_inode = 0;
3048 	u64 same_lock_start = 0;
3049 	u64 same_lock_len = 0;
3050 
3051 	if (src == dst)
3052 		same_inode = 1;
3053 
3054 	if (len == 0)
3055 		return 0;
3056 
3057 	if (same_inode) {
3058 		mutex_lock(&src->i_mutex);
3059 
3060 		ret = extent_same_check_offsets(src, loff, &len, olen);
3061 		if (ret)
3062 			goto out_unlock;
3063 
3064 		/*
3065 		 * Single inode case wants the same checks, except we
3066 		 * don't want our length pushed out past i_size as
3067 		 * comparing that data range makes no sense.
3068 		 *
3069 		 * extent_same_check_offsets() will do this for an
3070 		 * unaligned length at i_size, so catch it here and
3071 		 * reject the request.
3072 		 *
3073 		 * This effectively means we require aligned extents
3074 		 * for the single-inode case, whereas the other cases
3075 		 * allow an unaligned length so long as it ends at
3076 		 * i_size.
3077 		 */
3078 		if (len != olen) {
3079 			ret = -EINVAL;
3080 			goto out_unlock;
3081 		}
3082 
3083 		/* Check for overlapping ranges */
3084 		if (dst_loff + len > loff && dst_loff < loff + len) {
3085 			ret = -EINVAL;
3086 			goto out_unlock;
3087 		}
3088 
3089 		same_lock_start = min_t(u64, loff, dst_loff);
3090 		same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start;
3091 	} else {
3092 		btrfs_double_inode_lock(src, dst);
3093 
3094 		ret = extent_same_check_offsets(src, loff, &len, olen);
3095 		if (ret)
3096 			goto out_unlock;
3097 
3098 		ret = extent_same_check_offsets(dst, dst_loff, &len, olen);
3099 		if (ret)
3100 			goto out_unlock;
3101 	}
3102 
3103 	/* don't make the dst file partly checksummed */
3104 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3105 	    (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
3106 		ret = -EINVAL;
3107 		goto out_unlock;
3108 	}
3109 
3110 again:
3111 	ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp);
3112 	if (ret)
3113 		goto out_unlock;
3114 
3115 	if (same_inode)
3116 		ret = lock_extent_range(src, same_lock_start, same_lock_len,
3117 					false);
3118 	else
3119 		ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len,
3120 					       false);
3121 	/*
3122 	 * If one of the inodes has dirty pages in the respective range or
3123 	 * ordered extents, we need to flush dellaloc and wait for all ordered
3124 	 * extents in the range. We must unlock the pages and the ranges in the
3125 	 * io trees to avoid deadlocks when flushing delalloc (requires locking
3126 	 * pages) and when waiting for ordered extents to complete (they require
3127 	 * range locking).
3128 	 */
3129 	if (ret == -EAGAIN) {
3130 		/*
3131 		 * Ranges in the io trees already unlocked. Now unlock all
3132 		 * pages before waiting for all IO to complete.
3133 		 */
3134 		btrfs_cmp_data_free(&cmp);
3135 		if (same_inode) {
3136 			btrfs_wait_ordered_range(src, same_lock_start,
3137 						 same_lock_len);
3138 		} else {
3139 			btrfs_wait_ordered_range(src, loff, len);
3140 			btrfs_wait_ordered_range(dst, dst_loff, len);
3141 		}
3142 		goto again;
3143 	}
3144 	ASSERT(ret == 0);
3145 	if (WARN_ON(ret)) {
3146 		/* ranges in the io trees already unlocked */
3147 		btrfs_cmp_data_free(&cmp);
3148 		return ret;
3149 	}
3150 
3151 	/* pass original length for comparison so we stay within i_size */
3152 	ret = btrfs_cmp_data(src, loff, dst, dst_loff, olen, &cmp);
3153 	if (ret == 0)
3154 		ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1);
3155 
3156 	if (same_inode)
3157 		unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start,
3158 			      same_lock_start + same_lock_len - 1);
3159 	else
3160 		btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3161 
3162 	btrfs_cmp_data_free(&cmp);
3163 out_unlock:
3164 	if (same_inode)
3165 		mutex_unlock(&src->i_mutex);
3166 	else
3167 		btrfs_double_inode_unlock(src, dst);
3168 
3169 	return ret;
3170 }
3171 
3172 #define BTRFS_MAX_DEDUPE_LEN	(16 * 1024 * 1024)
3173 
btrfs_ioctl_file_extent_same(struct file * file,struct btrfs_ioctl_same_args __user * argp)3174 static long btrfs_ioctl_file_extent_same(struct file *file,
3175 			struct btrfs_ioctl_same_args __user *argp)
3176 {
3177 	struct btrfs_ioctl_same_args *same = NULL;
3178 	struct btrfs_ioctl_same_extent_info *info;
3179 	struct inode *src = file_inode(file);
3180 	u64 off;
3181 	u64 len;
3182 	int i;
3183 	int ret;
3184 	unsigned long size;
3185 	u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
3186 	bool is_admin = capable(CAP_SYS_ADMIN);
3187 	u16 count;
3188 
3189 	if (!(file->f_mode & FMODE_READ))
3190 		return -EINVAL;
3191 
3192 	ret = mnt_want_write_file(file);
3193 	if (ret)
3194 		return ret;
3195 
3196 	if (get_user(count, &argp->dest_count)) {
3197 		ret = -EFAULT;
3198 		goto out;
3199 	}
3200 
3201 	size = offsetof(struct btrfs_ioctl_same_args __user, info[count]);
3202 
3203 	same = memdup_user(argp, size);
3204 
3205 	if (IS_ERR(same)) {
3206 		ret = PTR_ERR(same);
3207 		same = NULL;
3208 		goto out;
3209 	}
3210 
3211 	off = same->logical_offset;
3212 	len = same->length;
3213 
3214 	/*
3215 	 * Limit the total length we will dedupe for each operation.
3216 	 * This is intended to bound the total time spent in this
3217 	 * ioctl to something sane.
3218 	 */
3219 	if (len > BTRFS_MAX_DEDUPE_LEN)
3220 		len = BTRFS_MAX_DEDUPE_LEN;
3221 
3222 	if (WARN_ON_ONCE(bs < PAGE_CACHE_SIZE)) {
3223 		/*
3224 		 * Btrfs does not support blocksize < page_size. As a
3225 		 * result, btrfs_cmp_data() won't correctly handle
3226 		 * this situation without an update.
3227 		 */
3228 		ret = -EINVAL;
3229 		goto out;
3230 	}
3231 
3232 	ret = -EISDIR;
3233 	if (S_ISDIR(src->i_mode))
3234 		goto out;
3235 
3236 	ret = -EACCES;
3237 	if (!S_ISREG(src->i_mode))
3238 		goto out;
3239 
3240 	/* pre-format output fields to sane values */
3241 	for (i = 0; i < count; i++) {
3242 		same->info[i].bytes_deduped = 0ULL;
3243 		same->info[i].status = 0;
3244 	}
3245 
3246 	for (i = 0, info = same->info; i < count; i++, info++) {
3247 		struct inode *dst;
3248 		struct fd dst_file = fdget(info->fd);
3249 		if (!dst_file.file) {
3250 			info->status = -EBADF;
3251 			continue;
3252 		}
3253 		dst = file_inode(dst_file.file);
3254 
3255 		if (!(is_admin || (dst_file.file->f_mode & FMODE_WRITE))) {
3256 			info->status = -EINVAL;
3257 		} else if (file->f_path.mnt != dst_file.file->f_path.mnt) {
3258 			info->status = -EXDEV;
3259 		} else if (S_ISDIR(dst->i_mode)) {
3260 			info->status = -EISDIR;
3261 		} else if (!S_ISREG(dst->i_mode)) {
3262 			info->status = -EACCES;
3263 		} else {
3264 			info->status = btrfs_extent_same(src, off, len, dst,
3265 							info->logical_offset);
3266 			if (info->status == 0)
3267 				info->bytes_deduped += len;
3268 		}
3269 		fdput(dst_file);
3270 	}
3271 
3272 	ret = copy_to_user(argp, same, size);
3273 	if (ret)
3274 		ret = -EFAULT;
3275 
3276 out:
3277 	mnt_drop_write_file(file);
3278 	kfree(same);
3279 	return ret;
3280 }
3281 
clone_finish_inode_update(struct btrfs_trans_handle * trans,struct inode * inode,u64 endoff,const u64 destoff,const u64 olen,int no_time_update)3282 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3283 				     struct inode *inode,
3284 				     u64 endoff,
3285 				     const u64 destoff,
3286 				     const u64 olen,
3287 				     int no_time_update)
3288 {
3289 	struct btrfs_root *root = BTRFS_I(inode)->root;
3290 	int ret;
3291 
3292 	inode_inc_iversion(inode);
3293 	if (!no_time_update)
3294 		inode->i_mtime = inode->i_ctime = CURRENT_TIME;
3295 	/*
3296 	 * We round up to the block size at eof when determining which
3297 	 * extents to clone above, but shouldn't round up the file size.
3298 	 */
3299 	if (endoff > destoff + olen)
3300 		endoff = destoff + olen;
3301 	if (endoff > inode->i_size)
3302 		btrfs_i_size_write(inode, endoff);
3303 
3304 	ret = btrfs_update_inode(trans, root, inode);
3305 	if (ret) {
3306 		btrfs_abort_transaction(trans, root, ret);
3307 		btrfs_end_transaction(trans, root);
3308 		goto out;
3309 	}
3310 	ret = btrfs_end_transaction(trans, root);
3311 out:
3312 	return ret;
3313 }
3314 
clone_update_extent_map(struct inode * inode,const struct btrfs_trans_handle * trans,const struct btrfs_path * path,const u64 hole_offset,const u64 hole_len)3315 static void clone_update_extent_map(struct inode *inode,
3316 				    const struct btrfs_trans_handle *trans,
3317 				    const struct btrfs_path *path,
3318 				    const u64 hole_offset,
3319 				    const u64 hole_len)
3320 {
3321 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3322 	struct extent_map *em;
3323 	int ret;
3324 
3325 	em = alloc_extent_map();
3326 	if (!em) {
3327 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3328 			&BTRFS_I(inode)->runtime_flags);
3329 		return;
3330 	}
3331 
3332 	if (path) {
3333 		struct btrfs_file_extent_item *fi;
3334 
3335 		fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3336 				    struct btrfs_file_extent_item);
3337 		btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3338 		em->generation = -1;
3339 		if (btrfs_file_extent_type(path->nodes[0], fi) ==
3340 		    BTRFS_FILE_EXTENT_INLINE)
3341 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3342 				&BTRFS_I(inode)->runtime_flags);
3343 	} else {
3344 		em->start = hole_offset;
3345 		em->len = hole_len;
3346 		em->ram_bytes = em->len;
3347 		em->orig_start = hole_offset;
3348 		em->block_start = EXTENT_MAP_HOLE;
3349 		em->block_len = 0;
3350 		em->orig_block_len = 0;
3351 		em->compress_type = BTRFS_COMPRESS_NONE;
3352 		em->generation = trans->transid;
3353 	}
3354 
3355 	while (1) {
3356 		write_lock(&em_tree->lock);
3357 		ret = add_extent_mapping(em_tree, em, 1);
3358 		write_unlock(&em_tree->lock);
3359 		if (ret != -EEXIST) {
3360 			free_extent_map(em);
3361 			break;
3362 		}
3363 		btrfs_drop_extent_cache(inode, em->start,
3364 					em->start + em->len - 1, 0);
3365 	}
3366 
3367 	if (ret)
3368 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3369 			&BTRFS_I(inode)->runtime_flags);
3370 }
3371 
3372 /*
3373  * Make sure we do not end up inserting an inline extent into a file that has
3374  * already other (non-inline) extents. If a file has an inline extent it can
3375  * not have any other extents and the (single) inline extent must start at the
3376  * file offset 0. Failing to respect these rules will lead to file corruption,
3377  * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3378  *
3379  * We can have extents that have been already written to disk or we can have
3380  * dirty ranges still in delalloc, in which case the extent maps and items are
3381  * created only when we run delalloc, and the delalloc ranges might fall outside
3382  * the range we are currently locking in the inode's io tree. So we check the
3383  * inode's i_size because of that (i_size updates are done while holding the
3384  * i_mutex, which we are holding here).
3385  * We also check to see if the inode has a size not greater than "datal" but has
3386  * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3387  * protected against such concurrent fallocate calls by the i_mutex).
3388  *
3389  * If the file has no extents but a size greater than datal, do not allow the
3390  * copy because we would need turn the inline extent into a non-inline one (even
3391  * with NO_HOLES enabled). If we find our destination inode only has one inline
3392  * extent, just overwrite it with the source inline extent if its size is less
3393  * than the source extent's size, or we could copy the source inline extent's
3394  * data into the destination inode's inline extent if the later is greater then
3395  * the former.
3396  */
clone_copy_inline_extent(struct inode * src,struct inode * dst,struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_key * new_key,const u64 drop_start,const u64 datal,const u64 skip,const u64 size,char * inline_data)3397 static int clone_copy_inline_extent(struct inode *src,
3398 				    struct inode *dst,
3399 				    struct btrfs_trans_handle *trans,
3400 				    struct btrfs_path *path,
3401 				    struct btrfs_key *new_key,
3402 				    const u64 drop_start,
3403 				    const u64 datal,
3404 				    const u64 skip,
3405 				    const u64 size,
3406 				    char *inline_data)
3407 {
3408 	struct btrfs_root *root = BTRFS_I(dst)->root;
3409 	const u64 aligned_end = ALIGN(new_key->offset + datal,
3410 				      root->sectorsize);
3411 	int ret;
3412 	struct btrfs_key key;
3413 
3414 	if (new_key->offset > 0)
3415 		return -EOPNOTSUPP;
3416 
3417 	key.objectid = btrfs_ino(dst);
3418 	key.type = BTRFS_EXTENT_DATA_KEY;
3419 	key.offset = 0;
3420 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3421 	if (ret < 0) {
3422 		return ret;
3423 	} else if (ret > 0) {
3424 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3425 			ret = btrfs_next_leaf(root, path);
3426 			if (ret < 0)
3427 				return ret;
3428 			else if (ret > 0)
3429 				goto copy_inline_extent;
3430 		}
3431 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3432 		if (key.objectid == btrfs_ino(dst) &&
3433 		    key.type == BTRFS_EXTENT_DATA_KEY) {
3434 			ASSERT(key.offset > 0);
3435 			return -EOPNOTSUPP;
3436 		}
3437 	} else if (i_size_read(dst) <= datal) {
3438 		struct btrfs_file_extent_item *ei;
3439 		u64 ext_len;
3440 
3441 		/*
3442 		 * If the file size is <= datal, make sure there are no other
3443 		 * extents following (can happen do to an fallocate call with
3444 		 * the flag FALLOC_FL_KEEP_SIZE).
3445 		 */
3446 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3447 				    struct btrfs_file_extent_item);
3448 		/*
3449 		 * If it's an inline extent, it can not have other extents
3450 		 * following it.
3451 		 */
3452 		if (btrfs_file_extent_type(path->nodes[0], ei) ==
3453 		    BTRFS_FILE_EXTENT_INLINE)
3454 			goto copy_inline_extent;
3455 
3456 		ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3457 		if (ext_len > aligned_end)
3458 			return -EOPNOTSUPP;
3459 
3460 		ret = btrfs_next_item(root, path);
3461 		if (ret < 0) {
3462 			return ret;
3463 		} else if (ret == 0) {
3464 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3465 					      path->slots[0]);
3466 			if (key.objectid == btrfs_ino(dst) &&
3467 			    key.type == BTRFS_EXTENT_DATA_KEY)
3468 				return -EOPNOTSUPP;
3469 		}
3470 	}
3471 
3472 copy_inline_extent:
3473 	/*
3474 	 * We have no extent items, or we have an extent at offset 0 which may
3475 	 * or may not be inlined. All these cases are dealt the same way.
3476 	 */
3477 	if (i_size_read(dst) > datal) {
3478 		/*
3479 		 * If the destination inode has an inline extent...
3480 		 * This would require copying the data from the source inline
3481 		 * extent into the beginning of the destination's inline extent.
3482 		 * But this is really complex, both extents can be compressed
3483 		 * or just one of them, which would require decompressing and
3484 		 * re-compressing data (which could increase the new compressed
3485 		 * size, not allowing the compressed data to fit anymore in an
3486 		 * inline extent).
3487 		 * So just don't support this case for now (it should be rare,
3488 		 * we are not really saving space when cloning inline extents).
3489 		 */
3490 		return -EOPNOTSUPP;
3491 	}
3492 
3493 	btrfs_release_path(path);
3494 	ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3495 	if (ret)
3496 		return ret;
3497 	ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3498 	if (ret)
3499 		return ret;
3500 
3501 	if (skip) {
3502 		const u32 start = btrfs_file_extent_calc_inline_size(0);
3503 
3504 		memmove(inline_data + start, inline_data + start + skip, datal);
3505 	}
3506 
3507 	write_extent_buffer(path->nodes[0], inline_data,
3508 			    btrfs_item_ptr_offset(path->nodes[0],
3509 						  path->slots[0]),
3510 			    size);
3511 	inode_add_bytes(dst, datal);
3512 
3513 	return 0;
3514 }
3515 
3516 /**
3517  * btrfs_clone() - clone a range from inode file to another
3518  *
3519  * @src: Inode to clone from
3520  * @inode: Inode to clone to
3521  * @off: Offset within source to start clone from
3522  * @olen: Original length, passed by user, of range to clone
3523  * @olen_aligned: Block-aligned value of olen
3524  * @destoff: Offset within @inode to start clone
3525  * @no_time_update: Whether to update mtime/ctime on the target inode
3526  */
btrfs_clone(struct inode * src,struct inode * inode,const u64 off,const u64 olen,const u64 olen_aligned,const u64 destoff,int no_time_update)3527 static int btrfs_clone(struct inode *src, struct inode *inode,
3528 		       const u64 off, const u64 olen, const u64 olen_aligned,
3529 		       const u64 destoff, int no_time_update)
3530 {
3531 	struct btrfs_root *root = BTRFS_I(inode)->root;
3532 	struct btrfs_path *path = NULL;
3533 	struct extent_buffer *leaf;
3534 	struct btrfs_trans_handle *trans;
3535 	char *buf = NULL;
3536 	struct btrfs_key key;
3537 	u32 nritems;
3538 	int slot;
3539 	int ret;
3540 	const u64 len = olen_aligned;
3541 	u64 last_dest_end = destoff;
3542 
3543 	ret = -ENOMEM;
3544 	buf = vmalloc(root->nodesize);
3545 	if (!buf)
3546 		return ret;
3547 
3548 	path = btrfs_alloc_path();
3549 	if (!path) {
3550 		vfree(buf);
3551 		return ret;
3552 	}
3553 
3554 	path->reada = 2;
3555 	/* clone data */
3556 	key.objectid = btrfs_ino(src);
3557 	key.type = BTRFS_EXTENT_DATA_KEY;
3558 	key.offset = off;
3559 
3560 	while (1) {
3561 		u64 next_key_min_offset = key.offset + 1;
3562 
3563 		/*
3564 		 * note the key will change type as we walk through the
3565 		 * tree.
3566 		 */
3567 		path->leave_spinning = 1;
3568 		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3569 				0, 0);
3570 		if (ret < 0)
3571 			goto out;
3572 		/*
3573 		 * First search, if no extent item that starts at offset off was
3574 		 * found but the previous item is an extent item, it's possible
3575 		 * it might overlap our target range, therefore process it.
3576 		 */
3577 		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3578 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3579 					      path->slots[0] - 1);
3580 			if (key.type == BTRFS_EXTENT_DATA_KEY)
3581 				path->slots[0]--;
3582 		}
3583 
3584 		nritems = btrfs_header_nritems(path->nodes[0]);
3585 process_slot:
3586 		if (path->slots[0] >= nritems) {
3587 			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3588 			if (ret < 0)
3589 				goto out;
3590 			if (ret > 0)
3591 				break;
3592 			nritems = btrfs_header_nritems(path->nodes[0]);
3593 		}
3594 		leaf = path->nodes[0];
3595 		slot = path->slots[0];
3596 
3597 		btrfs_item_key_to_cpu(leaf, &key, slot);
3598 		if (key.type > BTRFS_EXTENT_DATA_KEY ||
3599 		    key.objectid != btrfs_ino(src))
3600 			break;
3601 
3602 		if (key.type == BTRFS_EXTENT_DATA_KEY) {
3603 			struct btrfs_file_extent_item *extent;
3604 			int type;
3605 			u32 size;
3606 			struct btrfs_key new_key;
3607 			u64 disko = 0, diskl = 0;
3608 			u64 datao = 0, datal = 0;
3609 			u8 comp;
3610 			u64 drop_start;
3611 
3612 			extent = btrfs_item_ptr(leaf, slot,
3613 						struct btrfs_file_extent_item);
3614 			comp = btrfs_file_extent_compression(leaf, extent);
3615 			type = btrfs_file_extent_type(leaf, extent);
3616 			if (type == BTRFS_FILE_EXTENT_REG ||
3617 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3618 				disko = btrfs_file_extent_disk_bytenr(leaf,
3619 								      extent);
3620 				diskl = btrfs_file_extent_disk_num_bytes(leaf,
3621 								 extent);
3622 				datao = btrfs_file_extent_offset(leaf, extent);
3623 				datal = btrfs_file_extent_num_bytes(leaf,
3624 								    extent);
3625 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3626 				/* take upper bound, may be compressed */
3627 				datal = btrfs_file_extent_ram_bytes(leaf,
3628 								    extent);
3629 			}
3630 
3631 			/*
3632 			 * The first search might have left us at an extent
3633 			 * item that ends before our target range's start, can
3634 			 * happen if we have holes and NO_HOLES feature enabled.
3635 			 */
3636 			if (key.offset + datal <= off) {
3637 				path->slots[0]++;
3638 				goto process_slot;
3639 			} else if (key.offset >= off + len) {
3640 				break;
3641 			}
3642 			next_key_min_offset = key.offset + datal;
3643 			size = btrfs_item_size_nr(leaf, slot);
3644 			read_extent_buffer(leaf, buf,
3645 					   btrfs_item_ptr_offset(leaf, slot),
3646 					   size);
3647 
3648 			btrfs_release_path(path);
3649 			path->leave_spinning = 0;
3650 
3651 			memcpy(&new_key, &key, sizeof(new_key));
3652 			new_key.objectid = btrfs_ino(inode);
3653 			if (off <= key.offset)
3654 				new_key.offset = key.offset + destoff - off;
3655 			else
3656 				new_key.offset = destoff;
3657 
3658 			/*
3659 			 * Deal with a hole that doesn't have an extent item
3660 			 * that represents it (NO_HOLES feature enabled).
3661 			 * This hole is either in the middle of the cloning
3662 			 * range or at the beginning (fully overlaps it or
3663 			 * partially overlaps it).
3664 			 */
3665 			if (new_key.offset != last_dest_end)
3666 				drop_start = last_dest_end;
3667 			else
3668 				drop_start = new_key.offset;
3669 
3670 			/*
3671 			 * 1 - adjusting old extent (we may have to split it)
3672 			 * 1 - add new extent
3673 			 * 1 - inode update
3674 			 */
3675 			trans = btrfs_start_transaction(root, 3);
3676 			if (IS_ERR(trans)) {
3677 				ret = PTR_ERR(trans);
3678 				goto out;
3679 			}
3680 
3681 			if (type == BTRFS_FILE_EXTENT_REG ||
3682 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3683 				/*
3684 				 *    a  | --- range to clone ---|  b
3685 				 * | ------------- extent ------------- |
3686 				 */
3687 
3688 				/* subtract range b */
3689 				if (key.offset + datal > off + len)
3690 					datal = off + len - key.offset;
3691 
3692 				/* subtract range a */
3693 				if (off > key.offset) {
3694 					datao += off - key.offset;
3695 					datal -= off - key.offset;
3696 				}
3697 
3698 				ret = btrfs_drop_extents(trans, root, inode,
3699 							 drop_start,
3700 							 new_key.offset + datal,
3701 							 1);
3702 				if (ret) {
3703 					if (ret != -EOPNOTSUPP)
3704 						btrfs_abort_transaction(trans,
3705 								root, ret);
3706 					btrfs_end_transaction(trans, root);
3707 					goto out;
3708 				}
3709 
3710 				ret = btrfs_insert_empty_item(trans, root, path,
3711 							      &new_key, size);
3712 				if (ret) {
3713 					btrfs_abort_transaction(trans, root,
3714 								ret);
3715 					btrfs_end_transaction(trans, root);
3716 					goto out;
3717 				}
3718 
3719 				leaf = path->nodes[0];
3720 				slot = path->slots[0];
3721 				write_extent_buffer(leaf, buf,
3722 					    btrfs_item_ptr_offset(leaf, slot),
3723 					    size);
3724 
3725 				extent = btrfs_item_ptr(leaf, slot,
3726 						struct btrfs_file_extent_item);
3727 
3728 				/* disko == 0 means it's a hole */
3729 				if (!disko)
3730 					datao = 0;
3731 
3732 				btrfs_set_file_extent_offset(leaf, extent,
3733 							     datao);
3734 				btrfs_set_file_extent_num_bytes(leaf, extent,
3735 								datal);
3736 
3737 				if (disko) {
3738 					inode_add_bytes(inode, datal);
3739 					ret = btrfs_inc_extent_ref(trans, root,
3740 							disko, diskl, 0,
3741 							root->root_key.objectid,
3742 							btrfs_ino(inode),
3743 							new_key.offset - datao);
3744 					if (ret) {
3745 						btrfs_abort_transaction(trans,
3746 									root,
3747 									ret);
3748 						btrfs_end_transaction(trans,
3749 								      root);
3750 						goto out;
3751 
3752 					}
3753 				}
3754 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3755 				u64 skip = 0;
3756 				u64 trim = 0;
3757 
3758 				if (off > key.offset) {
3759 					skip = off - key.offset;
3760 					new_key.offset += skip;
3761 				}
3762 
3763 				if (key.offset + datal > off + len)
3764 					trim = key.offset + datal - (off + len);
3765 
3766 				if (comp && (skip || trim)) {
3767 					ret = -EINVAL;
3768 					btrfs_end_transaction(trans, root);
3769 					goto out;
3770 				}
3771 				size -= skip + trim;
3772 				datal -= skip + trim;
3773 
3774 				ret = clone_copy_inline_extent(src, inode,
3775 							       trans, path,
3776 							       &new_key,
3777 							       drop_start,
3778 							       datal,
3779 							       skip, size, buf);
3780 				if (ret) {
3781 					if (ret != -EOPNOTSUPP)
3782 						btrfs_abort_transaction(trans,
3783 									root,
3784 									ret);
3785 					btrfs_end_transaction(trans, root);
3786 					goto out;
3787 				}
3788 				leaf = path->nodes[0];
3789 				slot = path->slots[0];
3790 			}
3791 
3792 			/* If we have an implicit hole (NO_HOLES feature). */
3793 			if (drop_start < new_key.offset)
3794 				clone_update_extent_map(inode, trans,
3795 						NULL, drop_start,
3796 						new_key.offset - drop_start);
3797 
3798 			clone_update_extent_map(inode, trans, path, 0, 0);
3799 
3800 			btrfs_mark_buffer_dirty(leaf);
3801 			btrfs_release_path(path);
3802 
3803 			last_dest_end = ALIGN(new_key.offset + datal,
3804 					      root->sectorsize);
3805 			ret = clone_finish_inode_update(trans, inode,
3806 							last_dest_end,
3807 							destoff, olen,
3808 							no_time_update);
3809 			if (ret)
3810 				goto out;
3811 			if (new_key.offset + datal >= destoff + len)
3812 				break;
3813 		}
3814 		btrfs_release_path(path);
3815 		key.offset = next_key_min_offset;
3816 	}
3817 	ret = 0;
3818 
3819 	if (last_dest_end < destoff + len) {
3820 		/*
3821 		 * We have an implicit hole (NO_HOLES feature is enabled) that
3822 		 * fully or partially overlaps our cloning range at its end.
3823 		 */
3824 		btrfs_release_path(path);
3825 
3826 		/*
3827 		 * 1 - remove extent(s)
3828 		 * 1 - inode update
3829 		 */
3830 		trans = btrfs_start_transaction(root, 2);
3831 		if (IS_ERR(trans)) {
3832 			ret = PTR_ERR(trans);
3833 			goto out;
3834 		}
3835 		ret = btrfs_drop_extents(trans, root, inode,
3836 					 last_dest_end, destoff + len, 1);
3837 		if (ret) {
3838 			if (ret != -EOPNOTSUPP)
3839 				btrfs_abort_transaction(trans, root, ret);
3840 			btrfs_end_transaction(trans, root);
3841 			goto out;
3842 		}
3843 		clone_update_extent_map(inode, trans, NULL, last_dest_end,
3844 					destoff + len - last_dest_end);
3845 		ret = clone_finish_inode_update(trans, inode, destoff + len,
3846 						destoff, olen, no_time_update);
3847 	}
3848 
3849 out:
3850 	btrfs_free_path(path);
3851 	vfree(buf);
3852 	return ret;
3853 }
3854 
btrfs_ioctl_clone(struct file * file,unsigned long srcfd,u64 off,u64 olen,u64 destoff)3855 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
3856 				       u64 off, u64 olen, u64 destoff)
3857 {
3858 	struct inode *inode = file_inode(file);
3859 	struct btrfs_root *root = BTRFS_I(inode)->root;
3860 	struct fd src_file;
3861 	struct inode *src;
3862 	int ret;
3863 	u64 len = olen;
3864 	u64 bs = root->fs_info->sb->s_blocksize;
3865 	int same_inode = 0;
3866 
3867 	/*
3868 	 * TODO:
3869 	 * - split compressed inline extents.  annoying: we need to
3870 	 *   decompress into destination's address_space (the file offset
3871 	 *   may change, so source mapping won't do), then recompress (or
3872 	 *   otherwise reinsert) a subrange.
3873 	 *
3874 	 * - split destination inode's inline extents.  The inline extents can
3875 	 *   be either compressed or non-compressed.
3876 	 */
3877 
3878 	/* the destination must be opened for writing */
3879 	if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
3880 		return -EINVAL;
3881 
3882 	if (btrfs_root_readonly(root))
3883 		return -EROFS;
3884 
3885 	ret = mnt_want_write_file(file);
3886 	if (ret)
3887 		return ret;
3888 
3889 	src_file = fdget(srcfd);
3890 	if (!src_file.file) {
3891 		ret = -EBADF;
3892 		goto out_drop_write;
3893 	}
3894 
3895 	ret = -EXDEV;
3896 	if (src_file.file->f_path.mnt != file->f_path.mnt)
3897 		goto out_fput;
3898 
3899 	src = file_inode(src_file.file);
3900 
3901 	ret = -EINVAL;
3902 	if (src == inode)
3903 		same_inode = 1;
3904 
3905 	/* the src must be open for reading */
3906 	if (!(src_file.file->f_mode & FMODE_READ))
3907 		goto out_fput;
3908 
3909 	/* don't make the dst file partly checksummed */
3910 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3911 	    (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3912 		goto out_fput;
3913 
3914 	ret = -EISDIR;
3915 	if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3916 		goto out_fput;
3917 
3918 	ret = -EXDEV;
3919 	if (src->i_sb != inode->i_sb)
3920 		goto out_fput;
3921 
3922 	if (!same_inode) {
3923 		btrfs_double_inode_lock(src, inode);
3924 	} else {
3925 		mutex_lock(&src->i_mutex);
3926 	}
3927 
3928 	/* determine range to clone */
3929 	ret = -EINVAL;
3930 	if (off + len > src->i_size || off + len < off)
3931 		goto out_unlock;
3932 	if (len == 0)
3933 		olen = len = src->i_size - off;
3934 	/* if we extend to eof, continue to block boundary */
3935 	if (off + len == src->i_size)
3936 		len = ALIGN(src->i_size, bs) - off;
3937 
3938 	if (len == 0) {
3939 		ret = 0;
3940 		goto out_unlock;
3941 	}
3942 
3943 	/* verify the end result is block aligned */
3944 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3945 	    !IS_ALIGNED(destoff, bs))
3946 		goto out_unlock;
3947 
3948 	/* verify if ranges are overlapped within the same file */
3949 	if (same_inode) {
3950 		if (destoff + len > off && destoff < off + len)
3951 			goto out_unlock;
3952 	}
3953 
3954 	if (destoff > inode->i_size) {
3955 		ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3956 		if (ret)
3957 			goto out_unlock;
3958 	}
3959 
3960 	/*
3961 	 * Lock the target range too. Right after we replace the file extent
3962 	 * items in the fs tree (which now point to the cloned data), we might
3963 	 * have a worker replace them with extent items relative to a write
3964 	 * operation that was issued before this clone operation (i.e. confront
3965 	 * with inode.c:btrfs_finish_ordered_io).
3966 	 */
3967 	if (same_inode) {
3968 		u64 lock_start = min_t(u64, off, destoff);
3969 		u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
3970 
3971 		ret = lock_extent_range(src, lock_start, lock_len, true);
3972 	} else {
3973 		ret = btrfs_double_extent_lock(src, off, inode, destoff, len,
3974 					       true);
3975 	}
3976 	ASSERT(ret == 0);
3977 	if (WARN_ON(ret)) {
3978 		/* ranges in the io trees already unlocked */
3979 		goto out_unlock;
3980 	}
3981 
3982 	ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
3983 
3984 	if (same_inode) {
3985 		u64 lock_start = min_t(u64, off, destoff);
3986 		u64 lock_end = max_t(u64, off, destoff) + len - 1;
3987 
3988 		unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
3989 	} else {
3990 		btrfs_double_extent_unlock(src, off, inode, destoff, len);
3991 	}
3992 	/*
3993 	 * Truncate page cache pages so that future reads will see the cloned
3994 	 * data immediately and not the previous data.
3995 	 */
3996 	truncate_inode_pages_range(&inode->i_data, destoff,
3997 				   PAGE_CACHE_ALIGN(destoff + len) - 1);
3998 out_unlock:
3999 	if (!same_inode)
4000 		btrfs_double_inode_unlock(src, inode);
4001 	else
4002 		mutex_unlock(&src->i_mutex);
4003 out_fput:
4004 	fdput(src_file);
4005 out_drop_write:
4006 	mnt_drop_write_file(file);
4007 	return ret;
4008 }
4009 
btrfs_ioctl_clone_range(struct file * file,void __user * argp)4010 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
4011 {
4012 	struct btrfs_ioctl_clone_range_args args;
4013 
4014 	if (copy_from_user(&args, argp, sizeof(args)))
4015 		return -EFAULT;
4016 	return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
4017 				 args.src_length, args.dest_offset);
4018 }
4019 
4020 /*
4021  * there are many ways the trans_start and trans_end ioctls can lead
4022  * to deadlocks.  They should only be used by applications that
4023  * basically own the machine, and have a very in depth understanding
4024  * of all the possible deadlocks and enospc problems.
4025  */
btrfs_ioctl_trans_start(struct file * file)4026 static long btrfs_ioctl_trans_start(struct file *file)
4027 {
4028 	struct inode *inode = file_inode(file);
4029 	struct btrfs_root *root = BTRFS_I(inode)->root;
4030 	struct btrfs_trans_handle *trans;
4031 	int ret;
4032 
4033 	ret = -EPERM;
4034 	if (!capable(CAP_SYS_ADMIN))
4035 		goto out;
4036 
4037 	ret = -EINPROGRESS;
4038 	if (file->private_data)
4039 		goto out;
4040 
4041 	ret = -EROFS;
4042 	if (btrfs_root_readonly(root))
4043 		goto out;
4044 
4045 	ret = mnt_want_write_file(file);
4046 	if (ret)
4047 		goto out;
4048 
4049 	atomic_inc(&root->fs_info->open_ioctl_trans);
4050 
4051 	ret = -ENOMEM;
4052 	trans = btrfs_start_ioctl_transaction(root);
4053 	if (IS_ERR(trans))
4054 		goto out_drop;
4055 
4056 	file->private_data = trans;
4057 	return 0;
4058 
4059 out_drop:
4060 	atomic_dec(&root->fs_info->open_ioctl_trans);
4061 	mnt_drop_write_file(file);
4062 out:
4063 	return ret;
4064 }
4065 
btrfs_ioctl_default_subvol(struct file * file,void __user * argp)4066 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
4067 {
4068 	struct inode *inode = file_inode(file);
4069 	struct btrfs_root *root = BTRFS_I(inode)->root;
4070 	struct btrfs_root *new_root;
4071 	struct btrfs_dir_item *di;
4072 	struct btrfs_trans_handle *trans;
4073 	struct btrfs_path *path;
4074 	struct btrfs_key location;
4075 	struct btrfs_disk_key disk_key;
4076 	u64 objectid = 0;
4077 	u64 dir_id;
4078 	int ret;
4079 
4080 	if (!capable(CAP_SYS_ADMIN))
4081 		return -EPERM;
4082 
4083 	ret = mnt_want_write_file(file);
4084 	if (ret)
4085 		return ret;
4086 
4087 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
4088 		ret = -EFAULT;
4089 		goto out;
4090 	}
4091 
4092 	if (!objectid)
4093 		objectid = BTRFS_FS_TREE_OBJECTID;
4094 
4095 	location.objectid = objectid;
4096 	location.type = BTRFS_ROOT_ITEM_KEY;
4097 	location.offset = (u64)-1;
4098 
4099 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
4100 	if (IS_ERR(new_root)) {
4101 		ret = PTR_ERR(new_root);
4102 		goto out;
4103 	}
4104 
4105 	path = btrfs_alloc_path();
4106 	if (!path) {
4107 		ret = -ENOMEM;
4108 		goto out;
4109 	}
4110 	path->leave_spinning = 1;
4111 
4112 	trans = btrfs_start_transaction(root, 1);
4113 	if (IS_ERR(trans)) {
4114 		btrfs_free_path(path);
4115 		ret = PTR_ERR(trans);
4116 		goto out;
4117 	}
4118 
4119 	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
4120 	di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
4121 				   dir_id, "default", 7, 1);
4122 	if (IS_ERR_OR_NULL(di)) {
4123 		btrfs_free_path(path);
4124 		btrfs_end_transaction(trans, root);
4125 		btrfs_err(new_root->fs_info, "Umm, you don't have the default dir"
4126 			   "item, this isn't going to work");
4127 		ret = -ENOENT;
4128 		goto out;
4129 	}
4130 
4131 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
4132 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
4133 	btrfs_mark_buffer_dirty(path->nodes[0]);
4134 	btrfs_free_path(path);
4135 
4136 	btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL);
4137 	btrfs_end_transaction(trans, root);
4138 out:
4139 	mnt_drop_write_file(file);
4140 	return ret;
4141 }
4142 
btrfs_get_block_group_info(struct list_head * groups_list,struct btrfs_ioctl_space_info * space)4143 void btrfs_get_block_group_info(struct list_head *groups_list,
4144 				struct btrfs_ioctl_space_info *space)
4145 {
4146 	struct btrfs_block_group_cache *block_group;
4147 
4148 	space->total_bytes = 0;
4149 	space->used_bytes = 0;
4150 	space->flags = 0;
4151 	list_for_each_entry(block_group, groups_list, list) {
4152 		space->flags = block_group->flags;
4153 		space->total_bytes += block_group->key.offset;
4154 		space->used_bytes +=
4155 			btrfs_block_group_used(&block_group->item);
4156 	}
4157 }
4158 
btrfs_ioctl_space_info(struct btrfs_root * root,void __user * arg)4159 static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
4160 {
4161 	struct btrfs_ioctl_space_args space_args;
4162 	struct btrfs_ioctl_space_info space;
4163 	struct btrfs_ioctl_space_info *dest;
4164 	struct btrfs_ioctl_space_info *dest_orig;
4165 	struct btrfs_ioctl_space_info __user *user_dest;
4166 	struct btrfs_space_info *info;
4167 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
4168 		       BTRFS_BLOCK_GROUP_SYSTEM,
4169 		       BTRFS_BLOCK_GROUP_METADATA,
4170 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
4171 	int num_types = 4;
4172 	int alloc_size;
4173 	int ret = 0;
4174 	u64 slot_count = 0;
4175 	int i, c;
4176 
4177 	if (copy_from_user(&space_args,
4178 			   (struct btrfs_ioctl_space_args __user *)arg,
4179 			   sizeof(space_args)))
4180 		return -EFAULT;
4181 
4182 	for (i = 0; i < num_types; i++) {
4183 		struct btrfs_space_info *tmp;
4184 
4185 		info = NULL;
4186 		rcu_read_lock();
4187 		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
4188 					list) {
4189 			if (tmp->flags == types[i]) {
4190 				info = tmp;
4191 				break;
4192 			}
4193 		}
4194 		rcu_read_unlock();
4195 
4196 		if (!info)
4197 			continue;
4198 
4199 		down_read(&info->groups_sem);
4200 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4201 			if (!list_empty(&info->block_groups[c]))
4202 				slot_count++;
4203 		}
4204 		up_read(&info->groups_sem);
4205 	}
4206 
4207 	/*
4208 	 * Global block reserve, exported as a space_info
4209 	 */
4210 	slot_count++;
4211 
4212 	/* space_slots == 0 means they are asking for a count */
4213 	if (space_args.space_slots == 0) {
4214 		space_args.total_spaces = slot_count;
4215 		goto out;
4216 	}
4217 
4218 	slot_count = min_t(u64, space_args.space_slots, slot_count);
4219 
4220 	alloc_size = sizeof(*dest) * slot_count;
4221 
4222 	/* we generally have at most 6 or so space infos, one for each raid
4223 	 * level.  So, a whole page should be more than enough for everyone
4224 	 */
4225 	if (alloc_size > PAGE_CACHE_SIZE)
4226 		return -ENOMEM;
4227 
4228 	space_args.total_spaces = 0;
4229 	dest = kmalloc(alloc_size, GFP_NOFS);
4230 	if (!dest)
4231 		return -ENOMEM;
4232 	dest_orig = dest;
4233 
4234 	/* now we have a buffer to copy into */
4235 	for (i = 0; i < num_types; i++) {
4236 		struct btrfs_space_info *tmp;
4237 
4238 		if (!slot_count)
4239 			break;
4240 
4241 		info = NULL;
4242 		rcu_read_lock();
4243 		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
4244 					list) {
4245 			if (tmp->flags == types[i]) {
4246 				info = tmp;
4247 				break;
4248 			}
4249 		}
4250 		rcu_read_unlock();
4251 
4252 		if (!info)
4253 			continue;
4254 		down_read(&info->groups_sem);
4255 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4256 			if (!list_empty(&info->block_groups[c])) {
4257 				btrfs_get_block_group_info(
4258 					&info->block_groups[c], &space);
4259 				memcpy(dest, &space, sizeof(space));
4260 				dest++;
4261 				space_args.total_spaces++;
4262 				slot_count--;
4263 			}
4264 			if (!slot_count)
4265 				break;
4266 		}
4267 		up_read(&info->groups_sem);
4268 	}
4269 
4270 	/*
4271 	 * Add global block reserve
4272 	 */
4273 	if (slot_count) {
4274 		struct btrfs_block_rsv *block_rsv = &root->fs_info->global_block_rsv;
4275 
4276 		spin_lock(&block_rsv->lock);
4277 		space.total_bytes = block_rsv->size;
4278 		space.used_bytes = block_rsv->size - block_rsv->reserved;
4279 		spin_unlock(&block_rsv->lock);
4280 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4281 		memcpy(dest, &space, sizeof(space));
4282 		space_args.total_spaces++;
4283 	}
4284 
4285 	user_dest = (struct btrfs_ioctl_space_info __user *)
4286 		(arg + sizeof(struct btrfs_ioctl_space_args));
4287 
4288 	if (copy_to_user(user_dest, dest_orig, alloc_size))
4289 		ret = -EFAULT;
4290 
4291 	kfree(dest_orig);
4292 out:
4293 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4294 		ret = -EFAULT;
4295 
4296 	return ret;
4297 }
4298 
4299 /*
4300  * there are many ways the trans_start and trans_end ioctls can lead
4301  * to deadlocks.  They should only be used by applications that
4302  * basically own the machine, and have a very in depth understanding
4303  * of all the possible deadlocks and enospc problems.
4304  */
btrfs_ioctl_trans_end(struct file * file)4305 long btrfs_ioctl_trans_end(struct file *file)
4306 {
4307 	struct inode *inode = file_inode(file);
4308 	struct btrfs_root *root = BTRFS_I(inode)->root;
4309 	struct btrfs_trans_handle *trans;
4310 
4311 	trans = file->private_data;
4312 	if (!trans)
4313 		return -EINVAL;
4314 	file->private_data = NULL;
4315 
4316 	btrfs_end_transaction(trans, root);
4317 
4318 	atomic_dec(&root->fs_info->open_ioctl_trans);
4319 
4320 	mnt_drop_write_file(file);
4321 	return 0;
4322 }
4323 
btrfs_ioctl_start_sync(struct btrfs_root * root,void __user * argp)4324 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4325 					    void __user *argp)
4326 {
4327 	struct btrfs_trans_handle *trans;
4328 	u64 transid;
4329 	int ret;
4330 
4331 	trans = btrfs_attach_transaction_barrier(root);
4332 	if (IS_ERR(trans)) {
4333 		if (PTR_ERR(trans) != -ENOENT)
4334 			return PTR_ERR(trans);
4335 
4336 		/* No running transaction, don't bother */
4337 		transid = root->fs_info->last_trans_committed;
4338 		goto out;
4339 	}
4340 	transid = trans->transid;
4341 	ret = btrfs_commit_transaction_async(trans, root, 0);
4342 	if (ret) {
4343 		btrfs_end_transaction(trans, root);
4344 		return ret;
4345 	}
4346 out:
4347 	if (argp)
4348 		if (copy_to_user(argp, &transid, sizeof(transid)))
4349 			return -EFAULT;
4350 	return 0;
4351 }
4352 
btrfs_ioctl_wait_sync(struct btrfs_root * root,void __user * argp)4353 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root,
4354 					   void __user *argp)
4355 {
4356 	u64 transid;
4357 
4358 	if (argp) {
4359 		if (copy_from_user(&transid, argp, sizeof(transid)))
4360 			return -EFAULT;
4361 	} else {
4362 		transid = 0;  /* current trans */
4363 	}
4364 	return btrfs_wait_for_commit(root, transid);
4365 }
4366 
btrfs_ioctl_scrub(struct file * file,void __user * arg)4367 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4368 {
4369 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4370 	struct btrfs_ioctl_scrub_args *sa;
4371 	int ret;
4372 
4373 	if (!capable(CAP_SYS_ADMIN))
4374 		return -EPERM;
4375 
4376 	sa = memdup_user(arg, sizeof(*sa));
4377 	if (IS_ERR(sa))
4378 		return PTR_ERR(sa);
4379 
4380 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4381 		ret = mnt_want_write_file(file);
4382 		if (ret)
4383 			goto out;
4384 	}
4385 
4386 	ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end,
4387 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4388 			      0);
4389 
4390 	if (copy_to_user(arg, sa, sizeof(*sa)))
4391 		ret = -EFAULT;
4392 
4393 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
4394 		mnt_drop_write_file(file);
4395 out:
4396 	kfree(sa);
4397 	return ret;
4398 }
4399 
btrfs_ioctl_scrub_cancel(struct btrfs_root * root,void __user * arg)4400 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
4401 {
4402 	if (!capable(CAP_SYS_ADMIN))
4403 		return -EPERM;
4404 
4405 	return btrfs_scrub_cancel(root->fs_info);
4406 }
4407 
btrfs_ioctl_scrub_progress(struct btrfs_root * root,void __user * arg)4408 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
4409 				       void __user *arg)
4410 {
4411 	struct btrfs_ioctl_scrub_args *sa;
4412 	int ret;
4413 
4414 	if (!capable(CAP_SYS_ADMIN))
4415 		return -EPERM;
4416 
4417 	sa = memdup_user(arg, sizeof(*sa));
4418 	if (IS_ERR(sa))
4419 		return PTR_ERR(sa);
4420 
4421 	ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
4422 
4423 	if (copy_to_user(arg, sa, sizeof(*sa)))
4424 		ret = -EFAULT;
4425 
4426 	kfree(sa);
4427 	return ret;
4428 }
4429 
btrfs_ioctl_get_dev_stats(struct btrfs_root * root,void __user * arg)4430 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
4431 				      void __user *arg)
4432 {
4433 	struct btrfs_ioctl_get_dev_stats *sa;
4434 	int ret;
4435 
4436 	sa = memdup_user(arg, sizeof(*sa));
4437 	if (IS_ERR(sa))
4438 		return PTR_ERR(sa);
4439 
4440 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4441 		kfree(sa);
4442 		return -EPERM;
4443 	}
4444 
4445 	ret = btrfs_get_dev_stats(root, sa);
4446 
4447 	if (copy_to_user(arg, sa, sizeof(*sa)))
4448 		ret = -EFAULT;
4449 
4450 	kfree(sa);
4451 	return ret;
4452 }
4453 
btrfs_ioctl_dev_replace(struct btrfs_root * root,void __user * arg)4454 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg)
4455 {
4456 	struct btrfs_ioctl_dev_replace_args *p;
4457 	int ret;
4458 
4459 	if (!capable(CAP_SYS_ADMIN))
4460 		return -EPERM;
4461 
4462 	p = memdup_user(arg, sizeof(*p));
4463 	if (IS_ERR(p))
4464 		return PTR_ERR(p);
4465 
4466 	switch (p->cmd) {
4467 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4468 		if (root->fs_info->sb->s_flags & MS_RDONLY) {
4469 			ret = -EROFS;
4470 			goto out;
4471 		}
4472 		if (atomic_xchg(
4473 			&root->fs_info->mutually_exclusive_operation_running,
4474 			1)) {
4475 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4476 		} else {
4477 			ret = btrfs_dev_replace_start(root, p);
4478 			atomic_set(
4479 			 &root->fs_info->mutually_exclusive_operation_running,
4480 			 0);
4481 		}
4482 		break;
4483 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4484 		btrfs_dev_replace_status(root->fs_info, p);
4485 		ret = 0;
4486 		break;
4487 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4488 		ret = btrfs_dev_replace_cancel(root->fs_info, p);
4489 		break;
4490 	default:
4491 		ret = -EINVAL;
4492 		break;
4493 	}
4494 
4495 	if (copy_to_user(arg, p, sizeof(*p)))
4496 		ret = -EFAULT;
4497 out:
4498 	kfree(p);
4499 	return ret;
4500 }
4501 
btrfs_ioctl_ino_to_path(struct btrfs_root * root,void __user * arg)4502 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4503 {
4504 	int ret = 0;
4505 	int i;
4506 	u64 rel_ptr;
4507 	int size;
4508 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
4509 	struct inode_fs_paths *ipath = NULL;
4510 	struct btrfs_path *path;
4511 
4512 	if (!capable(CAP_DAC_READ_SEARCH))
4513 		return -EPERM;
4514 
4515 	path = btrfs_alloc_path();
4516 	if (!path) {
4517 		ret = -ENOMEM;
4518 		goto out;
4519 	}
4520 
4521 	ipa = memdup_user(arg, sizeof(*ipa));
4522 	if (IS_ERR(ipa)) {
4523 		ret = PTR_ERR(ipa);
4524 		ipa = NULL;
4525 		goto out;
4526 	}
4527 
4528 	size = min_t(u32, ipa->size, 4096);
4529 	ipath = init_ipath(size, root, path);
4530 	if (IS_ERR(ipath)) {
4531 		ret = PTR_ERR(ipath);
4532 		ipath = NULL;
4533 		goto out;
4534 	}
4535 
4536 	ret = paths_from_inode(ipa->inum, ipath);
4537 	if (ret < 0)
4538 		goto out;
4539 
4540 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4541 		rel_ptr = ipath->fspath->val[i] -
4542 			  (u64)(unsigned long)ipath->fspath->val;
4543 		ipath->fspath->val[i] = rel_ptr;
4544 	}
4545 
4546 	ret = copy_to_user((void *)(unsigned long)ipa->fspath,
4547 			   (void *)(unsigned long)ipath->fspath, size);
4548 	if (ret) {
4549 		ret = -EFAULT;
4550 		goto out;
4551 	}
4552 
4553 out:
4554 	btrfs_free_path(path);
4555 	free_ipath(ipath);
4556 	kfree(ipa);
4557 
4558 	return ret;
4559 }
4560 
build_ino_list(u64 inum,u64 offset,u64 root,void * ctx)4561 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4562 {
4563 	struct btrfs_data_container *inodes = ctx;
4564 	const size_t c = 3 * sizeof(u64);
4565 
4566 	if (inodes->bytes_left >= c) {
4567 		inodes->bytes_left -= c;
4568 		inodes->val[inodes->elem_cnt] = inum;
4569 		inodes->val[inodes->elem_cnt + 1] = offset;
4570 		inodes->val[inodes->elem_cnt + 2] = root;
4571 		inodes->elem_cnt += 3;
4572 	} else {
4573 		inodes->bytes_missing += c - inodes->bytes_left;
4574 		inodes->bytes_left = 0;
4575 		inodes->elem_missed += 3;
4576 	}
4577 
4578 	return 0;
4579 }
4580 
btrfs_ioctl_logical_to_ino(struct btrfs_root * root,void __user * arg)4581 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
4582 					void __user *arg)
4583 {
4584 	int ret = 0;
4585 	int size;
4586 	struct btrfs_ioctl_logical_ino_args *loi;
4587 	struct btrfs_data_container *inodes = NULL;
4588 	struct btrfs_path *path = NULL;
4589 
4590 	if (!capable(CAP_SYS_ADMIN))
4591 		return -EPERM;
4592 
4593 	loi = memdup_user(arg, sizeof(*loi));
4594 	if (IS_ERR(loi)) {
4595 		ret = PTR_ERR(loi);
4596 		loi = NULL;
4597 		goto out;
4598 	}
4599 
4600 	path = btrfs_alloc_path();
4601 	if (!path) {
4602 		ret = -ENOMEM;
4603 		goto out;
4604 	}
4605 
4606 	size = min_t(u32, loi->size, 64 * 1024);
4607 	inodes = init_data_container(size);
4608 	if (IS_ERR(inodes)) {
4609 		ret = PTR_ERR(inodes);
4610 		inodes = NULL;
4611 		goto out;
4612 	}
4613 
4614 	ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path,
4615 					  build_ino_list, inodes);
4616 	if (ret == -EINVAL)
4617 		ret = -ENOENT;
4618 	if (ret < 0)
4619 		goto out;
4620 
4621 	ret = copy_to_user((void *)(unsigned long)loi->inodes,
4622 			   (void *)(unsigned long)inodes, size);
4623 	if (ret)
4624 		ret = -EFAULT;
4625 
4626 out:
4627 	btrfs_free_path(path);
4628 	vfree(inodes);
4629 	kfree(loi);
4630 
4631 	return ret;
4632 }
4633 
update_ioctl_balance_args(struct btrfs_fs_info * fs_info,int lock,struct btrfs_ioctl_balance_args * bargs)4634 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
4635 			       struct btrfs_ioctl_balance_args *bargs)
4636 {
4637 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4638 
4639 	bargs->flags = bctl->flags;
4640 
4641 	if (atomic_read(&fs_info->balance_running))
4642 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4643 	if (atomic_read(&fs_info->balance_pause_req))
4644 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4645 	if (atomic_read(&fs_info->balance_cancel_req))
4646 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4647 
4648 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4649 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4650 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4651 
4652 	if (lock) {
4653 		spin_lock(&fs_info->balance_lock);
4654 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4655 		spin_unlock(&fs_info->balance_lock);
4656 	} else {
4657 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4658 	}
4659 }
4660 
btrfs_ioctl_balance(struct file * file,void __user * arg)4661 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4662 {
4663 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4664 	struct btrfs_fs_info *fs_info = root->fs_info;
4665 	struct btrfs_ioctl_balance_args *bargs;
4666 	struct btrfs_balance_control *bctl;
4667 	bool need_unlock; /* for mut. excl. ops lock */
4668 	int ret;
4669 
4670 	if (!capable(CAP_SYS_ADMIN))
4671 		return -EPERM;
4672 
4673 	ret = mnt_want_write_file(file);
4674 	if (ret)
4675 		return ret;
4676 
4677 again:
4678 	if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
4679 		mutex_lock(&fs_info->volume_mutex);
4680 		mutex_lock(&fs_info->balance_mutex);
4681 		need_unlock = true;
4682 		goto locked;
4683 	}
4684 
4685 	/*
4686 	 * mut. excl. ops lock is locked.  Three possibilites:
4687 	 *   (1) some other op is running
4688 	 *   (2) balance is running
4689 	 *   (3) balance is paused -- special case (think resume)
4690 	 */
4691 	mutex_lock(&fs_info->balance_mutex);
4692 	if (fs_info->balance_ctl) {
4693 		/* this is either (2) or (3) */
4694 		if (!atomic_read(&fs_info->balance_running)) {
4695 			mutex_unlock(&fs_info->balance_mutex);
4696 			if (!mutex_trylock(&fs_info->volume_mutex))
4697 				goto again;
4698 			mutex_lock(&fs_info->balance_mutex);
4699 
4700 			if (fs_info->balance_ctl &&
4701 			    !atomic_read(&fs_info->balance_running)) {
4702 				/* this is (3) */
4703 				need_unlock = false;
4704 				goto locked;
4705 			}
4706 
4707 			mutex_unlock(&fs_info->balance_mutex);
4708 			mutex_unlock(&fs_info->volume_mutex);
4709 			goto again;
4710 		} else {
4711 			/* this is (2) */
4712 			mutex_unlock(&fs_info->balance_mutex);
4713 			ret = -EINPROGRESS;
4714 			goto out;
4715 		}
4716 	} else {
4717 		/* this is (1) */
4718 		mutex_unlock(&fs_info->balance_mutex);
4719 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4720 		goto out;
4721 	}
4722 
4723 locked:
4724 	BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running));
4725 
4726 	if (arg) {
4727 		bargs = memdup_user(arg, sizeof(*bargs));
4728 		if (IS_ERR(bargs)) {
4729 			ret = PTR_ERR(bargs);
4730 			goto out_unlock;
4731 		}
4732 
4733 		if (bargs->flags & BTRFS_BALANCE_RESUME) {
4734 			if (!fs_info->balance_ctl) {
4735 				ret = -ENOTCONN;
4736 				goto out_bargs;
4737 			}
4738 
4739 			bctl = fs_info->balance_ctl;
4740 			spin_lock(&fs_info->balance_lock);
4741 			bctl->flags |= BTRFS_BALANCE_RESUME;
4742 			spin_unlock(&fs_info->balance_lock);
4743 
4744 			goto do_balance;
4745 		}
4746 	} else {
4747 		bargs = NULL;
4748 	}
4749 
4750 	if (fs_info->balance_ctl) {
4751 		ret = -EINPROGRESS;
4752 		goto out_bargs;
4753 	}
4754 
4755 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4756 	if (!bctl) {
4757 		ret = -ENOMEM;
4758 		goto out_bargs;
4759 	}
4760 
4761 	bctl->fs_info = fs_info;
4762 	if (arg) {
4763 		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4764 		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4765 		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4766 
4767 		bctl->flags = bargs->flags;
4768 	} else {
4769 		/* balance everything - no filters */
4770 		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4771 	}
4772 
4773 	if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4774 		ret = -EINVAL;
4775 		goto out_bctl;
4776 	}
4777 
4778 do_balance:
4779 	/*
4780 	 * Ownership of bctl and mutually_exclusive_operation_running
4781 	 * goes to to btrfs_balance.  bctl is freed in __cancel_balance,
4782 	 * or, if restriper was paused all the way until unmount, in
4783 	 * free_fs_info.  mutually_exclusive_operation_running is
4784 	 * cleared in __cancel_balance.
4785 	 */
4786 	need_unlock = false;
4787 
4788 	ret = btrfs_balance(bctl, bargs);
4789 	bctl = NULL;
4790 
4791 	if (arg) {
4792 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4793 			ret = -EFAULT;
4794 	}
4795 
4796 out_bctl:
4797 	kfree(bctl);
4798 out_bargs:
4799 	kfree(bargs);
4800 out_unlock:
4801 	mutex_unlock(&fs_info->balance_mutex);
4802 	mutex_unlock(&fs_info->volume_mutex);
4803 	if (need_unlock)
4804 		atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
4805 out:
4806 	mnt_drop_write_file(file);
4807 	return ret;
4808 }
4809 
btrfs_ioctl_balance_ctl(struct btrfs_root * root,int cmd)4810 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
4811 {
4812 	if (!capable(CAP_SYS_ADMIN))
4813 		return -EPERM;
4814 
4815 	switch (cmd) {
4816 	case BTRFS_BALANCE_CTL_PAUSE:
4817 		return btrfs_pause_balance(root->fs_info);
4818 	case BTRFS_BALANCE_CTL_CANCEL:
4819 		return btrfs_cancel_balance(root->fs_info);
4820 	}
4821 
4822 	return -EINVAL;
4823 }
4824 
btrfs_ioctl_balance_progress(struct btrfs_root * root,void __user * arg)4825 static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
4826 					 void __user *arg)
4827 {
4828 	struct btrfs_fs_info *fs_info = root->fs_info;
4829 	struct btrfs_ioctl_balance_args *bargs;
4830 	int ret = 0;
4831 
4832 	if (!capable(CAP_SYS_ADMIN))
4833 		return -EPERM;
4834 
4835 	mutex_lock(&fs_info->balance_mutex);
4836 	if (!fs_info->balance_ctl) {
4837 		ret = -ENOTCONN;
4838 		goto out;
4839 	}
4840 
4841 	bargs = kzalloc(sizeof(*bargs), GFP_NOFS);
4842 	if (!bargs) {
4843 		ret = -ENOMEM;
4844 		goto out;
4845 	}
4846 
4847 	update_ioctl_balance_args(fs_info, 1, bargs);
4848 
4849 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4850 		ret = -EFAULT;
4851 
4852 	kfree(bargs);
4853 out:
4854 	mutex_unlock(&fs_info->balance_mutex);
4855 	return ret;
4856 }
4857 
btrfs_ioctl_quota_ctl(struct file * file,void __user * arg)4858 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4859 {
4860 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4861 	struct btrfs_ioctl_quota_ctl_args *sa;
4862 	struct btrfs_trans_handle *trans = NULL;
4863 	int ret;
4864 	int err;
4865 
4866 	if (!capable(CAP_SYS_ADMIN))
4867 		return -EPERM;
4868 
4869 	ret = mnt_want_write_file(file);
4870 	if (ret)
4871 		return ret;
4872 
4873 	sa = memdup_user(arg, sizeof(*sa));
4874 	if (IS_ERR(sa)) {
4875 		ret = PTR_ERR(sa);
4876 		goto drop_write;
4877 	}
4878 
4879 	down_write(&root->fs_info->subvol_sem);
4880 	trans = btrfs_start_transaction(root->fs_info->tree_root, 2);
4881 	if (IS_ERR(trans)) {
4882 		ret = PTR_ERR(trans);
4883 		goto out;
4884 	}
4885 
4886 	switch (sa->cmd) {
4887 	case BTRFS_QUOTA_CTL_ENABLE:
4888 		ret = btrfs_quota_enable(trans, root->fs_info);
4889 		break;
4890 	case BTRFS_QUOTA_CTL_DISABLE:
4891 		ret = btrfs_quota_disable(trans, root->fs_info);
4892 		break;
4893 	default:
4894 		ret = -EINVAL;
4895 		break;
4896 	}
4897 
4898 	err = btrfs_commit_transaction(trans, root->fs_info->tree_root);
4899 	if (err && !ret)
4900 		ret = err;
4901 out:
4902 	kfree(sa);
4903 	up_write(&root->fs_info->subvol_sem);
4904 drop_write:
4905 	mnt_drop_write_file(file);
4906 	return ret;
4907 }
4908 
btrfs_ioctl_qgroup_assign(struct file * file,void __user * arg)4909 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4910 {
4911 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4912 	struct btrfs_ioctl_qgroup_assign_args *sa;
4913 	struct btrfs_trans_handle *trans;
4914 	int ret;
4915 	int err;
4916 
4917 	if (!capable(CAP_SYS_ADMIN))
4918 		return -EPERM;
4919 
4920 	ret = mnt_want_write_file(file);
4921 	if (ret)
4922 		return ret;
4923 
4924 	sa = memdup_user(arg, sizeof(*sa));
4925 	if (IS_ERR(sa)) {
4926 		ret = PTR_ERR(sa);
4927 		goto drop_write;
4928 	}
4929 
4930 	trans = btrfs_join_transaction(root);
4931 	if (IS_ERR(trans)) {
4932 		ret = PTR_ERR(trans);
4933 		goto out;
4934 	}
4935 
4936 	/* FIXME: check if the IDs really exist */
4937 	if (sa->assign) {
4938 		ret = btrfs_add_qgroup_relation(trans, root->fs_info,
4939 						sa->src, sa->dst);
4940 	} else {
4941 		ret = btrfs_del_qgroup_relation(trans, root->fs_info,
4942 						sa->src, sa->dst);
4943 	}
4944 
4945 	/* update qgroup status and info */
4946 	err = btrfs_run_qgroups(trans, root->fs_info);
4947 	if (err < 0)
4948 		btrfs_std_error(root->fs_info, ret,
4949 			    "failed to update qgroup status and info\n");
4950 	err = btrfs_end_transaction(trans, root);
4951 	if (err && !ret)
4952 		ret = err;
4953 
4954 out:
4955 	kfree(sa);
4956 drop_write:
4957 	mnt_drop_write_file(file);
4958 	return ret;
4959 }
4960 
btrfs_ioctl_qgroup_create(struct file * file,void __user * arg)4961 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4962 {
4963 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4964 	struct btrfs_ioctl_qgroup_create_args *sa;
4965 	struct btrfs_trans_handle *trans;
4966 	int ret;
4967 	int err;
4968 
4969 	if (!capable(CAP_SYS_ADMIN))
4970 		return -EPERM;
4971 
4972 	ret = mnt_want_write_file(file);
4973 	if (ret)
4974 		return ret;
4975 
4976 	sa = memdup_user(arg, sizeof(*sa));
4977 	if (IS_ERR(sa)) {
4978 		ret = PTR_ERR(sa);
4979 		goto drop_write;
4980 	}
4981 
4982 	if (!sa->qgroupid) {
4983 		ret = -EINVAL;
4984 		goto out;
4985 	}
4986 
4987 	trans = btrfs_join_transaction(root);
4988 	if (IS_ERR(trans)) {
4989 		ret = PTR_ERR(trans);
4990 		goto out;
4991 	}
4992 
4993 	/* FIXME: check if the IDs really exist */
4994 	if (sa->create) {
4995 		ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid);
4996 	} else {
4997 		ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid);
4998 	}
4999 
5000 	err = btrfs_end_transaction(trans, root);
5001 	if (err && !ret)
5002 		ret = err;
5003 
5004 out:
5005 	kfree(sa);
5006 drop_write:
5007 	mnt_drop_write_file(file);
5008 	return ret;
5009 }
5010 
btrfs_ioctl_qgroup_limit(struct file * file,void __user * arg)5011 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
5012 {
5013 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5014 	struct btrfs_ioctl_qgroup_limit_args *sa;
5015 	struct btrfs_trans_handle *trans;
5016 	int ret;
5017 	int err;
5018 	u64 qgroupid;
5019 
5020 	if (!capable(CAP_SYS_ADMIN))
5021 		return -EPERM;
5022 
5023 	ret = mnt_want_write_file(file);
5024 	if (ret)
5025 		return ret;
5026 
5027 	sa = memdup_user(arg, sizeof(*sa));
5028 	if (IS_ERR(sa)) {
5029 		ret = PTR_ERR(sa);
5030 		goto drop_write;
5031 	}
5032 
5033 	trans = btrfs_join_transaction(root);
5034 	if (IS_ERR(trans)) {
5035 		ret = PTR_ERR(trans);
5036 		goto out;
5037 	}
5038 
5039 	qgroupid = sa->qgroupid;
5040 	if (!qgroupid) {
5041 		/* take the current subvol as qgroup */
5042 		qgroupid = root->root_key.objectid;
5043 	}
5044 
5045 	/* FIXME: check if the IDs really exist */
5046 	ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim);
5047 
5048 	err = btrfs_end_transaction(trans, root);
5049 	if (err && !ret)
5050 		ret = err;
5051 
5052 out:
5053 	kfree(sa);
5054 drop_write:
5055 	mnt_drop_write_file(file);
5056 	return ret;
5057 }
5058 
btrfs_ioctl_quota_rescan(struct file * file,void __user * arg)5059 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
5060 {
5061 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5062 	struct btrfs_ioctl_quota_rescan_args *qsa;
5063 	int ret;
5064 
5065 	if (!capable(CAP_SYS_ADMIN))
5066 		return -EPERM;
5067 
5068 	ret = mnt_want_write_file(file);
5069 	if (ret)
5070 		return ret;
5071 
5072 	qsa = memdup_user(arg, sizeof(*qsa));
5073 	if (IS_ERR(qsa)) {
5074 		ret = PTR_ERR(qsa);
5075 		goto drop_write;
5076 	}
5077 
5078 	if (qsa->flags) {
5079 		ret = -EINVAL;
5080 		goto out;
5081 	}
5082 
5083 	ret = btrfs_qgroup_rescan(root->fs_info);
5084 
5085 out:
5086 	kfree(qsa);
5087 drop_write:
5088 	mnt_drop_write_file(file);
5089 	return ret;
5090 }
5091 
btrfs_ioctl_quota_rescan_status(struct file * file,void __user * arg)5092 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
5093 {
5094 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5095 	struct btrfs_ioctl_quota_rescan_args *qsa;
5096 	int ret = 0;
5097 
5098 	if (!capable(CAP_SYS_ADMIN))
5099 		return -EPERM;
5100 
5101 	qsa = kzalloc(sizeof(*qsa), GFP_NOFS);
5102 	if (!qsa)
5103 		return -ENOMEM;
5104 
5105 	if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
5106 		qsa->flags = 1;
5107 		qsa->progress = root->fs_info->qgroup_rescan_progress.objectid;
5108 	}
5109 
5110 	if (copy_to_user(arg, qsa, sizeof(*qsa)))
5111 		ret = -EFAULT;
5112 
5113 	kfree(qsa);
5114 	return ret;
5115 }
5116 
btrfs_ioctl_quota_rescan_wait(struct file * file,void __user * arg)5117 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
5118 {
5119 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5120 
5121 	if (!capable(CAP_SYS_ADMIN))
5122 		return -EPERM;
5123 
5124 	return btrfs_qgroup_wait_for_completion(root->fs_info);
5125 }
5126 
_btrfs_ioctl_set_received_subvol(struct file * file,struct btrfs_ioctl_received_subvol_args * sa)5127 static long _btrfs_ioctl_set_received_subvol(struct file *file,
5128 					    struct btrfs_ioctl_received_subvol_args *sa)
5129 {
5130 	struct inode *inode = file_inode(file);
5131 	struct btrfs_root *root = BTRFS_I(inode)->root;
5132 	struct btrfs_root_item *root_item = &root->root_item;
5133 	struct btrfs_trans_handle *trans;
5134 	struct timespec ct = CURRENT_TIME;
5135 	int ret = 0;
5136 	int received_uuid_changed;
5137 
5138 	if (!inode_owner_or_capable(inode))
5139 		return -EPERM;
5140 
5141 	ret = mnt_want_write_file(file);
5142 	if (ret < 0)
5143 		return ret;
5144 
5145 	down_write(&root->fs_info->subvol_sem);
5146 
5147 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
5148 		ret = -EINVAL;
5149 		goto out;
5150 	}
5151 
5152 	if (btrfs_root_readonly(root)) {
5153 		ret = -EROFS;
5154 		goto out;
5155 	}
5156 
5157 	/*
5158 	 * 1 - root item
5159 	 * 2 - uuid items (received uuid + subvol uuid)
5160 	 */
5161 	trans = btrfs_start_transaction(root, 3);
5162 	if (IS_ERR(trans)) {
5163 		ret = PTR_ERR(trans);
5164 		trans = NULL;
5165 		goto out;
5166 	}
5167 
5168 	sa->rtransid = trans->transid;
5169 	sa->rtime.sec = ct.tv_sec;
5170 	sa->rtime.nsec = ct.tv_nsec;
5171 
5172 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5173 				       BTRFS_UUID_SIZE);
5174 	if (received_uuid_changed &&
5175 	    !btrfs_is_empty_uuid(root_item->received_uuid))
5176 		btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
5177 				    root_item->received_uuid,
5178 				    BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5179 				    root->root_key.objectid);
5180 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5181 	btrfs_set_root_stransid(root_item, sa->stransid);
5182 	btrfs_set_root_rtransid(root_item, sa->rtransid);
5183 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5184 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5185 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5186 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5187 
5188 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
5189 				&root->root_key, &root->root_item);
5190 	if (ret < 0) {
5191 		btrfs_end_transaction(trans, root);
5192 		goto out;
5193 	}
5194 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5195 		ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
5196 					  sa->uuid,
5197 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5198 					  root->root_key.objectid);
5199 		if (ret < 0 && ret != -EEXIST) {
5200 			btrfs_abort_transaction(trans, root, ret);
5201 			goto out;
5202 		}
5203 	}
5204 	ret = btrfs_commit_transaction(trans, root);
5205 	if (ret < 0) {
5206 		btrfs_abort_transaction(trans, root, ret);
5207 		goto out;
5208 	}
5209 
5210 out:
5211 	up_write(&root->fs_info->subvol_sem);
5212 	mnt_drop_write_file(file);
5213 	return ret;
5214 }
5215 
5216 #ifdef CONFIG_64BIT
btrfs_ioctl_set_received_subvol_32(struct file * file,void __user * arg)5217 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5218 						void __user *arg)
5219 {
5220 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5221 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5222 	int ret = 0;
5223 
5224 	args32 = memdup_user(arg, sizeof(*args32));
5225 	if (IS_ERR(args32)) {
5226 		ret = PTR_ERR(args32);
5227 		args32 = NULL;
5228 		goto out;
5229 	}
5230 
5231 	args64 = kmalloc(sizeof(*args64), GFP_NOFS);
5232 	if (!args64) {
5233 		ret = -ENOMEM;
5234 		goto out;
5235 	}
5236 
5237 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5238 	args64->stransid = args32->stransid;
5239 	args64->rtransid = args32->rtransid;
5240 	args64->stime.sec = args32->stime.sec;
5241 	args64->stime.nsec = args32->stime.nsec;
5242 	args64->rtime.sec = args32->rtime.sec;
5243 	args64->rtime.nsec = args32->rtime.nsec;
5244 	args64->flags = args32->flags;
5245 
5246 	ret = _btrfs_ioctl_set_received_subvol(file, args64);
5247 	if (ret)
5248 		goto out;
5249 
5250 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5251 	args32->stransid = args64->stransid;
5252 	args32->rtransid = args64->rtransid;
5253 	args32->stime.sec = args64->stime.sec;
5254 	args32->stime.nsec = args64->stime.nsec;
5255 	args32->rtime.sec = args64->rtime.sec;
5256 	args32->rtime.nsec = args64->rtime.nsec;
5257 	args32->flags = args64->flags;
5258 
5259 	ret = copy_to_user(arg, args32, sizeof(*args32));
5260 	if (ret)
5261 		ret = -EFAULT;
5262 
5263 out:
5264 	kfree(args32);
5265 	kfree(args64);
5266 	return ret;
5267 }
5268 #endif
5269 
btrfs_ioctl_set_received_subvol(struct file * file,void __user * arg)5270 static long btrfs_ioctl_set_received_subvol(struct file *file,
5271 					    void __user *arg)
5272 {
5273 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
5274 	int ret = 0;
5275 
5276 	sa = memdup_user(arg, sizeof(*sa));
5277 	if (IS_ERR(sa)) {
5278 		ret = PTR_ERR(sa);
5279 		sa = NULL;
5280 		goto out;
5281 	}
5282 
5283 	ret = _btrfs_ioctl_set_received_subvol(file, sa);
5284 
5285 	if (ret)
5286 		goto out;
5287 
5288 	ret = copy_to_user(arg, sa, sizeof(*sa));
5289 	if (ret)
5290 		ret = -EFAULT;
5291 
5292 out:
5293 	kfree(sa);
5294 	return ret;
5295 }
5296 
btrfs_ioctl_get_fslabel(struct file * file,void __user * arg)5297 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5298 {
5299 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5300 	size_t len;
5301 	int ret;
5302 	char label[BTRFS_LABEL_SIZE];
5303 
5304 	spin_lock(&root->fs_info->super_lock);
5305 	memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5306 	spin_unlock(&root->fs_info->super_lock);
5307 
5308 	len = strnlen(label, BTRFS_LABEL_SIZE);
5309 
5310 	if (len == BTRFS_LABEL_SIZE) {
5311 		btrfs_warn(root->fs_info,
5312 			"label is too long, return the first %zu bytes", --len);
5313 	}
5314 
5315 	ret = copy_to_user(arg, label, len);
5316 
5317 	return ret ? -EFAULT : 0;
5318 }
5319 
btrfs_ioctl_set_fslabel(struct file * file,void __user * arg)5320 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5321 {
5322 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5323 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
5324 	struct btrfs_trans_handle *trans;
5325 	char label[BTRFS_LABEL_SIZE];
5326 	int ret;
5327 
5328 	if (!capable(CAP_SYS_ADMIN))
5329 		return -EPERM;
5330 
5331 	if (copy_from_user(label, arg, sizeof(label)))
5332 		return -EFAULT;
5333 
5334 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5335 		btrfs_err(root->fs_info, "unable to set label with more than %d bytes",
5336 		       BTRFS_LABEL_SIZE - 1);
5337 		return -EINVAL;
5338 	}
5339 
5340 	ret = mnt_want_write_file(file);
5341 	if (ret)
5342 		return ret;
5343 
5344 	trans = btrfs_start_transaction(root, 0);
5345 	if (IS_ERR(trans)) {
5346 		ret = PTR_ERR(trans);
5347 		goto out_unlock;
5348 	}
5349 
5350 	spin_lock(&root->fs_info->super_lock);
5351 	strcpy(super_block->label, label);
5352 	spin_unlock(&root->fs_info->super_lock);
5353 	ret = btrfs_commit_transaction(trans, root);
5354 
5355 out_unlock:
5356 	mnt_drop_write_file(file);
5357 	return ret;
5358 }
5359 
5360 #define INIT_FEATURE_FLAGS(suffix) \
5361 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5362 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5363 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5364 
btrfs_ioctl_get_supported_features(struct file * file,void __user * arg)5365 static int btrfs_ioctl_get_supported_features(struct file *file,
5366 					      void __user *arg)
5367 {
5368 	static struct btrfs_ioctl_feature_flags features[3] = {
5369 		INIT_FEATURE_FLAGS(SUPP),
5370 		INIT_FEATURE_FLAGS(SAFE_SET),
5371 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
5372 	};
5373 
5374 	if (copy_to_user(arg, &features, sizeof(features)))
5375 		return -EFAULT;
5376 
5377 	return 0;
5378 }
5379 
btrfs_ioctl_get_features(struct file * file,void __user * arg)5380 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5381 {
5382 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5383 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
5384 	struct btrfs_ioctl_feature_flags features;
5385 
5386 	features.compat_flags = btrfs_super_compat_flags(super_block);
5387 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5388 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
5389 
5390 	if (copy_to_user(arg, &features, sizeof(features)))
5391 		return -EFAULT;
5392 
5393 	return 0;
5394 }
5395 
check_feature_bits(struct btrfs_root * root,enum btrfs_feature_set set,u64 change_mask,u64 flags,u64 supported_flags,u64 safe_set,u64 safe_clear)5396 static int check_feature_bits(struct btrfs_root *root,
5397 			      enum btrfs_feature_set set,
5398 			      u64 change_mask, u64 flags, u64 supported_flags,
5399 			      u64 safe_set, u64 safe_clear)
5400 {
5401 	const char *type = btrfs_feature_set_names[set];
5402 	char *names;
5403 	u64 disallowed, unsupported;
5404 	u64 set_mask = flags & change_mask;
5405 	u64 clear_mask = ~flags & change_mask;
5406 
5407 	unsupported = set_mask & ~supported_flags;
5408 	if (unsupported) {
5409 		names = btrfs_printable_features(set, unsupported);
5410 		if (names) {
5411 			btrfs_warn(root->fs_info,
5412 			   "this kernel does not support the %s feature bit%s",
5413 			   names, strchr(names, ',') ? "s" : "");
5414 			kfree(names);
5415 		} else
5416 			btrfs_warn(root->fs_info,
5417 			   "this kernel does not support %s bits 0x%llx",
5418 			   type, unsupported);
5419 		return -EOPNOTSUPP;
5420 	}
5421 
5422 	disallowed = set_mask & ~safe_set;
5423 	if (disallowed) {
5424 		names = btrfs_printable_features(set, disallowed);
5425 		if (names) {
5426 			btrfs_warn(root->fs_info,
5427 			   "can't set the %s feature bit%s while mounted",
5428 			   names, strchr(names, ',') ? "s" : "");
5429 			kfree(names);
5430 		} else
5431 			btrfs_warn(root->fs_info,
5432 			   "can't set %s bits 0x%llx while mounted",
5433 			   type, disallowed);
5434 		return -EPERM;
5435 	}
5436 
5437 	disallowed = clear_mask & ~safe_clear;
5438 	if (disallowed) {
5439 		names = btrfs_printable_features(set, disallowed);
5440 		if (names) {
5441 			btrfs_warn(root->fs_info,
5442 			   "can't clear the %s feature bit%s while mounted",
5443 			   names, strchr(names, ',') ? "s" : "");
5444 			kfree(names);
5445 		} else
5446 			btrfs_warn(root->fs_info,
5447 			   "can't clear %s bits 0x%llx while mounted",
5448 			   type, disallowed);
5449 		return -EPERM;
5450 	}
5451 
5452 	return 0;
5453 }
5454 
5455 #define check_feature(root, change_mask, flags, mask_base)	\
5456 check_feature_bits(root, FEAT_##mask_base, change_mask, flags,	\
5457 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
5458 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
5459 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5460 
btrfs_ioctl_set_features(struct file * file,void __user * arg)5461 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5462 {
5463 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5464 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
5465 	struct btrfs_ioctl_feature_flags flags[2];
5466 	struct btrfs_trans_handle *trans;
5467 	u64 newflags;
5468 	int ret;
5469 
5470 	if (!capable(CAP_SYS_ADMIN))
5471 		return -EPERM;
5472 
5473 	if (copy_from_user(flags, arg, sizeof(flags)))
5474 		return -EFAULT;
5475 
5476 	/* Nothing to do */
5477 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5478 	    !flags[0].incompat_flags)
5479 		return 0;
5480 
5481 	ret = check_feature(root, flags[0].compat_flags,
5482 			    flags[1].compat_flags, COMPAT);
5483 	if (ret)
5484 		return ret;
5485 
5486 	ret = check_feature(root, flags[0].compat_ro_flags,
5487 			    flags[1].compat_ro_flags, COMPAT_RO);
5488 	if (ret)
5489 		return ret;
5490 
5491 	ret = check_feature(root, flags[0].incompat_flags,
5492 			    flags[1].incompat_flags, INCOMPAT);
5493 	if (ret)
5494 		return ret;
5495 
5496 	trans = btrfs_start_transaction(root, 0);
5497 	if (IS_ERR(trans))
5498 		return PTR_ERR(trans);
5499 
5500 	spin_lock(&root->fs_info->super_lock);
5501 	newflags = btrfs_super_compat_flags(super_block);
5502 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
5503 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5504 	btrfs_set_super_compat_flags(super_block, newflags);
5505 
5506 	newflags = btrfs_super_compat_ro_flags(super_block);
5507 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5508 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5509 	btrfs_set_super_compat_ro_flags(super_block, newflags);
5510 
5511 	newflags = btrfs_super_incompat_flags(super_block);
5512 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5513 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5514 	btrfs_set_super_incompat_flags(super_block, newflags);
5515 	spin_unlock(&root->fs_info->super_lock);
5516 
5517 	return btrfs_commit_transaction(trans, root);
5518 }
5519 
btrfs_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5520 long btrfs_ioctl(struct file *file, unsigned int
5521 		cmd, unsigned long arg)
5522 {
5523 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5524 	void __user *argp = (void __user *)arg;
5525 
5526 	switch (cmd) {
5527 	case FS_IOC_GETFLAGS:
5528 		return btrfs_ioctl_getflags(file, argp);
5529 	case FS_IOC_SETFLAGS:
5530 		return btrfs_ioctl_setflags(file, argp);
5531 	case FS_IOC_GETVERSION:
5532 		return btrfs_ioctl_getversion(file, argp);
5533 	case FITRIM:
5534 		return btrfs_ioctl_fitrim(file, argp);
5535 	case BTRFS_IOC_SNAP_CREATE:
5536 		return btrfs_ioctl_snap_create(file, argp, 0);
5537 	case BTRFS_IOC_SNAP_CREATE_V2:
5538 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
5539 	case BTRFS_IOC_SUBVOL_CREATE:
5540 		return btrfs_ioctl_snap_create(file, argp, 1);
5541 	case BTRFS_IOC_SUBVOL_CREATE_V2:
5542 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
5543 	case BTRFS_IOC_SNAP_DESTROY:
5544 		return btrfs_ioctl_snap_destroy(file, argp);
5545 	case BTRFS_IOC_SUBVOL_GETFLAGS:
5546 		return btrfs_ioctl_subvol_getflags(file, argp);
5547 	case BTRFS_IOC_SUBVOL_SETFLAGS:
5548 		return btrfs_ioctl_subvol_setflags(file, argp);
5549 	case BTRFS_IOC_DEFAULT_SUBVOL:
5550 		return btrfs_ioctl_default_subvol(file, argp);
5551 	case BTRFS_IOC_DEFRAG:
5552 		return btrfs_ioctl_defrag(file, NULL);
5553 	case BTRFS_IOC_DEFRAG_RANGE:
5554 		return btrfs_ioctl_defrag(file, argp);
5555 	case BTRFS_IOC_RESIZE:
5556 		return btrfs_ioctl_resize(file, argp);
5557 	case BTRFS_IOC_ADD_DEV:
5558 		return btrfs_ioctl_add_dev(root, argp);
5559 	case BTRFS_IOC_RM_DEV:
5560 		return btrfs_ioctl_rm_dev(file, argp);
5561 	case BTRFS_IOC_FS_INFO:
5562 		return btrfs_ioctl_fs_info(root, argp);
5563 	case BTRFS_IOC_DEV_INFO:
5564 		return btrfs_ioctl_dev_info(root, argp);
5565 	case BTRFS_IOC_BALANCE:
5566 		return btrfs_ioctl_balance(file, NULL);
5567 	case BTRFS_IOC_CLONE:
5568 		return btrfs_ioctl_clone(file, arg, 0, 0, 0);
5569 	case BTRFS_IOC_CLONE_RANGE:
5570 		return btrfs_ioctl_clone_range(file, argp);
5571 	case BTRFS_IOC_TRANS_START:
5572 		return btrfs_ioctl_trans_start(file);
5573 	case BTRFS_IOC_TRANS_END:
5574 		return btrfs_ioctl_trans_end(file);
5575 	case BTRFS_IOC_TREE_SEARCH:
5576 		return btrfs_ioctl_tree_search(file, argp);
5577 	case BTRFS_IOC_TREE_SEARCH_V2:
5578 		return btrfs_ioctl_tree_search_v2(file, argp);
5579 	case BTRFS_IOC_INO_LOOKUP:
5580 		return btrfs_ioctl_ino_lookup(file, argp);
5581 	case BTRFS_IOC_INO_PATHS:
5582 		return btrfs_ioctl_ino_to_path(root, argp);
5583 	case BTRFS_IOC_LOGICAL_INO:
5584 		return btrfs_ioctl_logical_to_ino(root, argp);
5585 	case BTRFS_IOC_SPACE_INFO:
5586 		return btrfs_ioctl_space_info(root, argp);
5587 	case BTRFS_IOC_SYNC: {
5588 		int ret;
5589 
5590 		ret = btrfs_start_delalloc_roots(root->fs_info, 0, -1);
5591 		if (ret)
5592 			return ret;
5593 		ret = btrfs_sync_fs(file_inode(file)->i_sb, 1);
5594 		/*
5595 		 * The transaction thread may want to do more work,
5596 		 * namely it pokes the cleaner ktread that will start
5597 		 * processing uncleaned subvols.
5598 		 */
5599 		wake_up_process(root->fs_info->transaction_kthread);
5600 		return ret;
5601 	}
5602 	case BTRFS_IOC_START_SYNC:
5603 		return btrfs_ioctl_start_sync(root, argp);
5604 	case BTRFS_IOC_WAIT_SYNC:
5605 		return btrfs_ioctl_wait_sync(root, argp);
5606 	case BTRFS_IOC_SCRUB:
5607 		return btrfs_ioctl_scrub(file, argp);
5608 	case BTRFS_IOC_SCRUB_CANCEL:
5609 		return btrfs_ioctl_scrub_cancel(root, argp);
5610 	case BTRFS_IOC_SCRUB_PROGRESS:
5611 		return btrfs_ioctl_scrub_progress(root, argp);
5612 	case BTRFS_IOC_BALANCE_V2:
5613 		return btrfs_ioctl_balance(file, argp);
5614 	case BTRFS_IOC_BALANCE_CTL:
5615 		return btrfs_ioctl_balance_ctl(root, arg);
5616 	case BTRFS_IOC_BALANCE_PROGRESS:
5617 		return btrfs_ioctl_balance_progress(root, argp);
5618 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5619 		return btrfs_ioctl_set_received_subvol(file, argp);
5620 #ifdef CONFIG_64BIT
5621 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5622 		return btrfs_ioctl_set_received_subvol_32(file, argp);
5623 #endif
5624 	case BTRFS_IOC_SEND:
5625 		return btrfs_ioctl_send(file, argp);
5626 	case BTRFS_IOC_GET_DEV_STATS:
5627 		return btrfs_ioctl_get_dev_stats(root, argp);
5628 	case BTRFS_IOC_QUOTA_CTL:
5629 		return btrfs_ioctl_quota_ctl(file, argp);
5630 	case BTRFS_IOC_QGROUP_ASSIGN:
5631 		return btrfs_ioctl_qgroup_assign(file, argp);
5632 	case BTRFS_IOC_QGROUP_CREATE:
5633 		return btrfs_ioctl_qgroup_create(file, argp);
5634 	case BTRFS_IOC_QGROUP_LIMIT:
5635 		return btrfs_ioctl_qgroup_limit(file, argp);
5636 	case BTRFS_IOC_QUOTA_RESCAN:
5637 		return btrfs_ioctl_quota_rescan(file, argp);
5638 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5639 		return btrfs_ioctl_quota_rescan_status(file, argp);
5640 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5641 		return btrfs_ioctl_quota_rescan_wait(file, argp);
5642 	case BTRFS_IOC_DEV_REPLACE:
5643 		return btrfs_ioctl_dev_replace(root, argp);
5644 	case BTRFS_IOC_GET_FSLABEL:
5645 		return btrfs_ioctl_get_fslabel(file, argp);
5646 	case BTRFS_IOC_SET_FSLABEL:
5647 		return btrfs_ioctl_set_fslabel(file, argp);
5648 	case BTRFS_IOC_FILE_EXTENT_SAME:
5649 		return btrfs_ioctl_file_extent_same(file, argp);
5650 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5651 		return btrfs_ioctl_get_supported_features(file, argp);
5652 	case BTRFS_IOC_GET_FEATURES:
5653 		return btrfs_ioctl_get_features(file, argp);
5654 	case BTRFS_IOC_SET_FEATURES:
5655 		return btrfs_ioctl_set_features(file, argp);
5656 	}
5657 
5658 	return -ENOTTY;
5659 }
5660