1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/delay.h>
20 #include <linux/kthread.h>
21 #include <linux/pagemap.h>
22 
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "free-space-cache.h"
26 #include "inode-map.h"
27 #include "transaction.h"
28 
caching_kthread(void * data)29 static int caching_kthread(void *data)
30 {
31 	struct btrfs_root *root = data;
32 	struct btrfs_fs_info *fs_info = root->fs_info;
33 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
34 	struct btrfs_key key;
35 	struct btrfs_path *path;
36 	struct extent_buffer *leaf;
37 	u64 last = (u64)-1;
38 	int slot;
39 	int ret;
40 
41 	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
42 		return 0;
43 
44 	path = btrfs_alloc_path();
45 	if (!path)
46 		return -ENOMEM;
47 
48 	/* Since the commit root is read-only, we can safely skip locking. */
49 	path->skip_locking = 1;
50 	path->search_commit_root = 1;
51 	path->reada = 2;
52 
53 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
54 	key.offset = 0;
55 	key.type = BTRFS_INODE_ITEM_KEY;
56 again:
57 	/* need to make sure the commit_root doesn't disappear */
58 	down_read(&fs_info->commit_root_sem);
59 
60 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
61 	if (ret < 0)
62 		goto out;
63 
64 	while (1) {
65 		if (btrfs_fs_closing(fs_info))
66 			goto out;
67 
68 		leaf = path->nodes[0];
69 		slot = path->slots[0];
70 		if (slot >= btrfs_header_nritems(leaf)) {
71 			ret = btrfs_next_leaf(root, path);
72 			if (ret < 0)
73 				goto out;
74 			else if (ret > 0)
75 				break;
76 
77 			if (need_resched() ||
78 			    btrfs_transaction_in_commit(fs_info)) {
79 				leaf = path->nodes[0];
80 
81 				if (WARN_ON(btrfs_header_nritems(leaf) == 0))
82 					break;
83 
84 				/*
85 				 * Save the key so we can advances forward
86 				 * in the next search.
87 				 */
88 				btrfs_item_key_to_cpu(leaf, &key, 0);
89 				btrfs_release_path(path);
90 				root->ino_cache_progress = last;
91 				up_read(&fs_info->commit_root_sem);
92 				schedule_timeout(1);
93 				goto again;
94 			} else
95 				continue;
96 		}
97 
98 		btrfs_item_key_to_cpu(leaf, &key, slot);
99 
100 		if (key.type != BTRFS_INODE_ITEM_KEY)
101 			goto next;
102 
103 		if (key.objectid >= root->highest_objectid)
104 			break;
105 
106 		if (last != (u64)-1 && last + 1 != key.objectid) {
107 			__btrfs_add_free_space(ctl, last + 1,
108 					       key.objectid - last - 1);
109 			wake_up(&root->ino_cache_wait);
110 		}
111 
112 		last = key.objectid;
113 next:
114 		path->slots[0]++;
115 	}
116 
117 	if (last < root->highest_objectid - 1) {
118 		__btrfs_add_free_space(ctl, last + 1,
119 				       root->highest_objectid - last - 1);
120 	}
121 
122 	spin_lock(&root->ino_cache_lock);
123 	root->ino_cache_state = BTRFS_CACHE_FINISHED;
124 	spin_unlock(&root->ino_cache_lock);
125 
126 	root->ino_cache_progress = (u64)-1;
127 	btrfs_unpin_free_ino(root);
128 out:
129 	wake_up(&root->ino_cache_wait);
130 	up_read(&fs_info->commit_root_sem);
131 
132 	btrfs_free_path(path);
133 
134 	return ret;
135 }
136 
start_caching(struct btrfs_root * root)137 static void start_caching(struct btrfs_root *root)
138 {
139 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
140 	struct task_struct *tsk;
141 	int ret;
142 	u64 objectid;
143 
144 	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
145 		return;
146 
147 	spin_lock(&root->ino_cache_lock);
148 	if (root->ino_cache_state != BTRFS_CACHE_NO) {
149 		spin_unlock(&root->ino_cache_lock);
150 		return;
151 	}
152 
153 	root->ino_cache_state = BTRFS_CACHE_STARTED;
154 	spin_unlock(&root->ino_cache_lock);
155 
156 	ret = load_free_ino_cache(root->fs_info, root);
157 	if (ret == 1) {
158 		spin_lock(&root->ino_cache_lock);
159 		root->ino_cache_state = BTRFS_CACHE_FINISHED;
160 		spin_unlock(&root->ino_cache_lock);
161 		return;
162 	}
163 
164 	/*
165 	 * It can be quite time-consuming to fill the cache by searching
166 	 * through the extent tree, and this can keep ino allocation path
167 	 * waiting. Therefore at start we quickly find out the highest
168 	 * inode number and we know we can use inode numbers which fall in
169 	 * [highest_ino + 1, BTRFS_LAST_FREE_OBJECTID].
170 	 */
171 	ret = btrfs_find_free_objectid(root, &objectid);
172 	if (!ret && objectid <= BTRFS_LAST_FREE_OBJECTID) {
173 		__btrfs_add_free_space(ctl, objectid,
174 				       BTRFS_LAST_FREE_OBJECTID - objectid + 1);
175 	}
176 
177 	tsk = kthread_run(caching_kthread, root, "btrfs-ino-cache-%llu",
178 			  root->root_key.objectid);
179 	if (IS_ERR(tsk)) {
180 		btrfs_warn(root->fs_info, "failed to start inode caching task");
181 		btrfs_clear_pending_and_info(root->fs_info, INODE_MAP_CACHE,
182 				"disabling inode map caching");
183 	}
184 }
185 
btrfs_find_free_ino(struct btrfs_root * root,u64 * objectid)186 int btrfs_find_free_ino(struct btrfs_root *root, u64 *objectid)
187 {
188 	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
189 		return btrfs_find_free_objectid(root, objectid);
190 
191 again:
192 	*objectid = btrfs_find_ino_for_alloc(root);
193 
194 	if (*objectid != 0)
195 		return 0;
196 
197 	start_caching(root);
198 
199 	wait_event(root->ino_cache_wait,
200 		   root->ino_cache_state == BTRFS_CACHE_FINISHED ||
201 		   root->free_ino_ctl->free_space > 0);
202 
203 	if (root->ino_cache_state == BTRFS_CACHE_FINISHED &&
204 	    root->free_ino_ctl->free_space == 0)
205 		return -ENOSPC;
206 	else
207 		goto again;
208 }
209 
btrfs_return_ino(struct btrfs_root * root,u64 objectid)210 void btrfs_return_ino(struct btrfs_root *root, u64 objectid)
211 {
212 	struct btrfs_free_space_ctl *pinned = root->free_ino_pinned;
213 
214 	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
215 		return;
216 again:
217 	if (root->ino_cache_state == BTRFS_CACHE_FINISHED) {
218 		__btrfs_add_free_space(pinned, objectid, 1);
219 	} else {
220 		down_write(&root->fs_info->commit_root_sem);
221 		spin_lock(&root->ino_cache_lock);
222 		if (root->ino_cache_state == BTRFS_CACHE_FINISHED) {
223 			spin_unlock(&root->ino_cache_lock);
224 			up_write(&root->fs_info->commit_root_sem);
225 			goto again;
226 		}
227 		spin_unlock(&root->ino_cache_lock);
228 
229 		start_caching(root);
230 
231 		__btrfs_add_free_space(pinned, objectid, 1);
232 
233 		up_write(&root->fs_info->commit_root_sem);
234 	}
235 }
236 
237 /*
238  * When a transaction is committed, we'll move those inode numbers which are
239  * smaller than root->ino_cache_progress from pinned tree to free_ino tree, and
240  * others will just be dropped, because the commit root we were searching has
241  * changed.
242  *
243  * Must be called with root->fs_info->commit_root_sem held
244  */
btrfs_unpin_free_ino(struct btrfs_root * root)245 void btrfs_unpin_free_ino(struct btrfs_root *root)
246 {
247 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
248 	struct rb_root *rbroot = &root->free_ino_pinned->free_space_offset;
249 	spinlock_t *rbroot_lock = &root->free_ino_pinned->tree_lock;
250 	struct btrfs_free_space *info;
251 	struct rb_node *n;
252 	u64 count;
253 
254 	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
255 		return;
256 
257 	while (1) {
258 		bool add_to_ctl = true;
259 
260 		spin_lock(rbroot_lock);
261 		n = rb_first(rbroot);
262 		if (!n) {
263 			spin_unlock(rbroot_lock);
264 			break;
265 		}
266 
267 		info = rb_entry(n, struct btrfs_free_space, offset_index);
268 		BUG_ON(info->bitmap); /* Logic error */
269 
270 		if (info->offset > root->ino_cache_progress)
271 			add_to_ctl = false;
272 		else if (info->offset + info->bytes > root->ino_cache_progress)
273 			count = root->ino_cache_progress - info->offset + 1;
274 		else
275 			count = info->bytes;
276 
277 		rb_erase(&info->offset_index, rbroot);
278 		spin_unlock(rbroot_lock);
279 		if (add_to_ctl)
280 			__btrfs_add_free_space(ctl, info->offset, count);
281 		kmem_cache_free(btrfs_free_space_cachep, info);
282 	}
283 }
284 
285 #define INIT_THRESHOLD	(((1024 * 32) / 2) / sizeof(struct btrfs_free_space))
286 #define INODES_PER_BITMAP (PAGE_CACHE_SIZE * 8)
287 
288 /*
289  * The goal is to keep the memory used by the free_ino tree won't
290  * exceed the memory if we use bitmaps only.
291  */
recalculate_thresholds(struct btrfs_free_space_ctl * ctl)292 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
293 {
294 	struct btrfs_free_space *info;
295 	struct rb_node *n;
296 	int max_ino;
297 	int max_bitmaps;
298 
299 	n = rb_last(&ctl->free_space_offset);
300 	if (!n) {
301 		ctl->extents_thresh = INIT_THRESHOLD;
302 		return;
303 	}
304 	info = rb_entry(n, struct btrfs_free_space, offset_index);
305 
306 	/*
307 	 * Find the maximum inode number in the filesystem. Note we
308 	 * ignore the fact that this can be a bitmap, because we are
309 	 * not doing precise calculation.
310 	 */
311 	max_ino = info->bytes - 1;
312 
313 	max_bitmaps = ALIGN(max_ino, INODES_PER_BITMAP) / INODES_PER_BITMAP;
314 	if (max_bitmaps <= ctl->total_bitmaps) {
315 		ctl->extents_thresh = 0;
316 		return;
317 	}
318 
319 	ctl->extents_thresh = (max_bitmaps - ctl->total_bitmaps) *
320 				PAGE_CACHE_SIZE / sizeof(*info);
321 }
322 
323 /*
324  * We don't fall back to bitmap, if we are below the extents threshold
325  * or this chunk of inode numbers is a big one.
326  */
use_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)327 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
328 		       struct btrfs_free_space *info)
329 {
330 	if (ctl->free_extents < ctl->extents_thresh ||
331 	    info->bytes > INODES_PER_BITMAP / 10)
332 		return false;
333 
334 	return true;
335 }
336 
337 static struct btrfs_free_space_op free_ino_op = {
338 	.recalc_thresholds	= recalculate_thresholds,
339 	.use_bitmap		= use_bitmap,
340 };
341 
pinned_recalc_thresholds(struct btrfs_free_space_ctl * ctl)342 static void pinned_recalc_thresholds(struct btrfs_free_space_ctl *ctl)
343 {
344 }
345 
pinned_use_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)346 static bool pinned_use_bitmap(struct btrfs_free_space_ctl *ctl,
347 			      struct btrfs_free_space *info)
348 {
349 	/*
350 	 * We always use extents for two reasons:
351 	 *
352 	 * - The pinned tree is only used during the process of caching
353 	 *   work.
354 	 * - Make code simpler. See btrfs_unpin_free_ino().
355 	 */
356 	return false;
357 }
358 
359 static struct btrfs_free_space_op pinned_free_ino_op = {
360 	.recalc_thresholds	= pinned_recalc_thresholds,
361 	.use_bitmap		= pinned_use_bitmap,
362 };
363 
btrfs_init_free_ino_ctl(struct btrfs_root * root)364 void btrfs_init_free_ino_ctl(struct btrfs_root *root)
365 {
366 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
367 	struct btrfs_free_space_ctl *pinned = root->free_ino_pinned;
368 
369 	spin_lock_init(&ctl->tree_lock);
370 	ctl->unit = 1;
371 	ctl->start = 0;
372 	ctl->private = NULL;
373 	ctl->op = &free_ino_op;
374 	INIT_LIST_HEAD(&ctl->trimming_ranges);
375 	mutex_init(&ctl->cache_writeout_mutex);
376 
377 	/*
378 	 * Initially we allow to use 16K of ram to cache chunks of
379 	 * inode numbers before we resort to bitmaps. This is somewhat
380 	 * arbitrary, but it will be adjusted in runtime.
381 	 */
382 	ctl->extents_thresh = INIT_THRESHOLD;
383 
384 	spin_lock_init(&pinned->tree_lock);
385 	pinned->unit = 1;
386 	pinned->start = 0;
387 	pinned->private = NULL;
388 	pinned->extents_thresh = 0;
389 	pinned->op = &pinned_free_ino_op;
390 }
391 
btrfs_save_ino_cache(struct btrfs_root * root,struct btrfs_trans_handle * trans)392 int btrfs_save_ino_cache(struct btrfs_root *root,
393 			 struct btrfs_trans_handle *trans)
394 {
395 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
396 	struct btrfs_path *path;
397 	struct inode *inode;
398 	struct btrfs_block_rsv *rsv;
399 	u64 num_bytes;
400 	u64 alloc_hint = 0;
401 	int ret;
402 	int prealloc;
403 	bool retry = false;
404 
405 	/* only fs tree and subvol/snap needs ino cache */
406 	if (root->root_key.objectid != BTRFS_FS_TREE_OBJECTID &&
407 	    (root->root_key.objectid < BTRFS_FIRST_FREE_OBJECTID ||
408 	     root->root_key.objectid > BTRFS_LAST_FREE_OBJECTID))
409 		return 0;
410 
411 	/* Don't save inode cache if we are deleting this root */
412 	if (btrfs_root_refs(&root->root_item) == 0)
413 		return 0;
414 
415 	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
416 		return 0;
417 
418 	path = btrfs_alloc_path();
419 	if (!path)
420 		return -ENOMEM;
421 
422 	rsv = trans->block_rsv;
423 	trans->block_rsv = &root->fs_info->trans_block_rsv;
424 
425 	num_bytes = trans->bytes_reserved;
426 	/*
427 	 * 1 item for inode item insertion if need
428 	 * 4 items for inode item update (in the worst case)
429 	 * 1 items for slack space if we need do truncation
430 	 * 1 item for free space object
431 	 * 3 items for pre-allocation
432 	 */
433 	trans->bytes_reserved = btrfs_calc_trans_metadata_size(root, 10);
434 	ret = btrfs_block_rsv_add(root, trans->block_rsv,
435 				  trans->bytes_reserved,
436 				  BTRFS_RESERVE_NO_FLUSH);
437 	if (ret)
438 		goto out;
439 	trace_btrfs_space_reservation(root->fs_info, "ino_cache",
440 				      trans->transid, trans->bytes_reserved, 1);
441 again:
442 	inode = lookup_free_ino_inode(root, path);
443 	if (IS_ERR(inode) && (PTR_ERR(inode) != -ENOENT || retry)) {
444 		ret = PTR_ERR(inode);
445 		goto out_release;
446 	}
447 
448 	if (IS_ERR(inode)) {
449 		BUG_ON(retry); /* Logic error */
450 		retry = true;
451 
452 		ret = create_free_ino_inode(root, trans, path);
453 		if (ret)
454 			goto out_release;
455 		goto again;
456 	}
457 
458 	BTRFS_I(inode)->generation = 0;
459 	ret = btrfs_update_inode(trans, root, inode);
460 	if (ret) {
461 		btrfs_abort_transaction(trans, root, ret);
462 		goto out_put;
463 	}
464 
465 	if (i_size_read(inode) > 0) {
466 		ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
467 		if (ret) {
468 			if (ret != -ENOSPC)
469 				btrfs_abort_transaction(trans, root, ret);
470 			goto out_put;
471 		}
472 	}
473 
474 	spin_lock(&root->ino_cache_lock);
475 	if (root->ino_cache_state != BTRFS_CACHE_FINISHED) {
476 		ret = -1;
477 		spin_unlock(&root->ino_cache_lock);
478 		goto out_put;
479 	}
480 	spin_unlock(&root->ino_cache_lock);
481 
482 	spin_lock(&ctl->tree_lock);
483 	prealloc = sizeof(struct btrfs_free_space) * ctl->free_extents;
484 	prealloc = ALIGN(prealloc, PAGE_CACHE_SIZE);
485 	prealloc += ctl->total_bitmaps * PAGE_CACHE_SIZE;
486 	spin_unlock(&ctl->tree_lock);
487 
488 	/* Just to make sure we have enough space */
489 	prealloc += 8 * PAGE_CACHE_SIZE;
490 
491 	ret = btrfs_delalloc_reserve_space(inode, 0, prealloc);
492 	if (ret)
493 		goto out_put;
494 
495 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, prealloc,
496 					      prealloc, prealloc, &alloc_hint);
497 	if (ret) {
498 		btrfs_delalloc_release_space(inode, 0, prealloc);
499 		goto out_put;
500 	}
501 	btrfs_free_reserved_data_space(inode, 0, prealloc);
502 
503 	ret = btrfs_write_out_ino_cache(root, trans, path, inode);
504 out_put:
505 	iput(inode);
506 out_release:
507 	trace_btrfs_space_reservation(root->fs_info, "ino_cache",
508 				      trans->transid, trans->bytes_reserved, 0);
509 	btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
510 out:
511 	trans->block_rsv = rsv;
512 	trans->bytes_reserved = num_bytes;
513 
514 	btrfs_free_path(path);
515 	return ret;
516 }
517 
btrfs_find_highest_objectid(struct btrfs_root * root,u64 * objectid)518 int btrfs_find_highest_objectid(struct btrfs_root *root, u64 *objectid)
519 {
520 	struct btrfs_path *path;
521 	int ret;
522 	struct extent_buffer *l;
523 	struct btrfs_key search_key;
524 	struct btrfs_key found_key;
525 	int slot;
526 
527 	path = btrfs_alloc_path();
528 	if (!path)
529 		return -ENOMEM;
530 
531 	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
532 	search_key.type = -1;
533 	search_key.offset = (u64)-1;
534 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
535 	if (ret < 0)
536 		goto error;
537 	BUG_ON(ret == 0); /* Corruption */
538 	if (path->slots[0] > 0) {
539 		slot = path->slots[0] - 1;
540 		l = path->nodes[0];
541 		btrfs_item_key_to_cpu(l, &found_key, slot);
542 		*objectid = max_t(u64, found_key.objectid,
543 				  BTRFS_FIRST_FREE_OBJECTID - 1);
544 	} else {
545 		*objectid = BTRFS_FIRST_FREE_OBJECTID - 1;
546 	}
547 	ret = 0;
548 error:
549 	btrfs_free_path(path);
550 	return ret;
551 }
552 
btrfs_find_free_objectid(struct btrfs_root * root,u64 * objectid)553 int btrfs_find_free_objectid(struct btrfs_root *root, u64 *objectid)
554 {
555 	int ret;
556 	mutex_lock(&root->objectid_mutex);
557 
558 	if (unlikely(root->highest_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
559 		ret = -ENOSPC;
560 		goto out;
561 	}
562 
563 	*objectid = ++root->highest_objectid;
564 	ret = 0;
565 out:
566 	mutex_unlock(&root->objectid_mutex);
567 	return ret;
568 }
569