1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/rbtree.h>
24 #include <linux/slab.h>
25 #include <linux/workqueue.h>
26 #include "ctree.h"
27 #include "volumes.h"
28 #include "disk-io.h"
29 #include "transaction.h"
30 #include "dev-replace.h"
31 
32 #undef DEBUG
33 
34 /*
35  * This is the implementation for the generic read ahead framework.
36  *
37  * To trigger a readahead, btrfs_reada_add must be called. It will start
38  * a read ahead for the given range [start, end) on tree root. The returned
39  * handle can either be used to wait on the readahead to finish
40  * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
41  *
42  * The read ahead works as follows:
43  * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
44  * reada_start_machine will then search for extents to prefetch and trigger
45  * some reads. When a read finishes for a node, all contained node/leaf
46  * pointers that lie in the given range will also be enqueued. The reads will
47  * be triggered in sequential order, thus giving a big win over a naive
48  * enumeration. It will also make use of multi-device layouts. Each disk
49  * will have its on read pointer and all disks will by utilized in parallel.
50  * Also will no two disks read both sides of a mirror simultaneously, as this
51  * would waste seeking capacity. Instead both disks will read different parts
52  * of the filesystem.
53  * Any number of readaheads can be started in parallel. The read order will be
54  * determined globally, i.e. 2 parallel readaheads will normally finish faster
55  * than the 2 started one after another.
56  */
57 
58 #define MAX_IN_FLIGHT 6
59 
60 struct reada_extctl {
61 	struct list_head	list;
62 	struct reada_control	*rc;
63 	u64			generation;
64 };
65 
66 struct reada_extent {
67 	u64			logical;
68 	struct btrfs_key	top;
69 	int			err;
70 	struct list_head	extctl;
71 	int 			refcnt;
72 	spinlock_t		lock;
73 	struct reada_zone	*zones[BTRFS_MAX_MIRRORS];
74 	int			nzones;
75 	struct btrfs_device	*scheduled_for;
76 };
77 
78 struct reada_zone {
79 	u64			start;
80 	u64			end;
81 	u64			elems;
82 	struct list_head	list;
83 	spinlock_t		lock;
84 	int			locked;
85 	struct btrfs_device	*device;
86 	struct btrfs_device	*devs[BTRFS_MAX_MIRRORS]; /* full list, incl
87 							   * self */
88 	int			ndevs;
89 	struct kref		refcnt;
90 };
91 
92 struct reada_machine_work {
93 	struct btrfs_work	work;
94 	struct btrfs_fs_info	*fs_info;
95 };
96 
97 static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
98 static void reada_control_release(struct kref *kref);
99 static void reada_zone_release(struct kref *kref);
100 static void reada_start_machine(struct btrfs_fs_info *fs_info);
101 static void __reada_start_machine(struct btrfs_fs_info *fs_info);
102 
103 static int reada_add_block(struct reada_control *rc, u64 logical,
104 			   struct btrfs_key *top, int level, u64 generation);
105 
106 /* recurses */
107 /* in case of err, eb might be NULL */
__readahead_hook(struct btrfs_root * root,struct extent_buffer * eb,u64 start,int err)108 static int __readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
109 			    u64 start, int err)
110 {
111 	int level = 0;
112 	int nritems;
113 	int i;
114 	u64 bytenr;
115 	u64 generation;
116 	struct reada_extent *re;
117 	struct btrfs_fs_info *fs_info = root->fs_info;
118 	struct list_head list;
119 	unsigned long index = start >> PAGE_CACHE_SHIFT;
120 	struct btrfs_device *for_dev;
121 
122 	if (eb)
123 		level = btrfs_header_level(eb);
124 
125 	/* find extent */
126 	spin_lock(&fs_info->reada_lock);
127 	re = radix_tree_lookup(&fs_info->reada_tree, index);
128 	if (re)
129 		re->refcnt++;
130 	spin_unlock(&fs_info->reada_lock);
131 
132 	if (!re)
133 		return -1;
134 
135 	spin_lock(&re->lock);
136 	/*
137 	 * just take the full list from the extent. afterwards we
138 	 * don't need the lock anymore
139 	 */
140 	list_replace_init(&re->extctl, &list);
141 	for_dev = re->scheduled_for;
142 	re->scheduled_for = NULL;
143 	spin_unlock(&re->lock);
144 
145 	if (err == 0) {
146 		nritems = level ? btrfs_header_nritems(eb) : 0;
147 		generation = btrfs_header_generation(eb);
148 		/*
149 		 * FIXME: currently we just set nritems to 0 if this is a leaf,
150 		 * effectively ignoring the content. In a next step we could
151 		 * trigger more readahead depending from the content, e.g.
152 		 * fetch the checksums for the extents in the leaf.
153 		 */
154 	} else {
155 		/*
156 		 * this is the error case, the extent buffer has not been
157 		 * read correctly. We won't access anything from it and
158 		 * just cleanup our data structures. Effectively this will
159 		 * cut the branch below this node from read ahead.
160 		 */
161 		nritems = 0;
162 		generation = 0;
163 	}
164 
165 	for (i = 0; i < nritems; i++) {
166 		struct reada_extctl *rec;
167 		u64 n_gen;
168 		struct btrfs_key key;
169 		struct btrfs_key next_key;
170 
171 		btrfs_node_key_to_cpu(eb, &key, i);
172 		if (i + 1 < nritems)
173 			btrfs_node_key_to_cpu(eb, &next_key, i + 1);
174 		else
175 			next_key = re->top;
176 		bytenr = btrfs_node_blockptr(eb, i);
177 		n_gen = btrfs_node_ptr_generation(eb, i);
178 
179 		list_for_each_entry(rec, &list, list) {
180 			struct reada_control *rc = rec->rc;
181 
182 			/*
183 			 * if the generation doesn't match, just ignore this
184 			 * extctl. This will probably cut off a branch from
185 			 * prefetch. Alternatively one could start a new (sub-)
186 			 * prefetch for this branch, starting again from root.
187 			 * FIXME: move the generation check out of this loop
188 			 */
189 #ifdef DEBUG
190 			if (rec->generation != generation) {
191 				btrfs_debug(root->fs_info,
192 					   "generation mismatch for (%llu,%d,%llu) %llu != %llu",
193 				       key.objectid, key.type, key.offset,
194 				       rec->generation, generation);
195 			}
196 #endif
197 			if (rec->generation == generation &&
198 			    btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
199 			    btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
200 				reada_add_block(rc, bytenr, &next_key,
201 						level - 1, n_gen);
202 		}
203 	}
204 	/*
205 	 * free extctl records
206 	 */
207 	while (!list_empty(&list)) {
208 		struct reada_control *rc;
209 		struct reada_extctl *rec;
210 
211 		rec = list_first_entry(&list, struct reada_extctl, list);
212 		list_del(&rec->list);
213 		rc = rec->rc;
214 		kfree(rec);
215 
216 		kref_get(&rc->refcnt);
217 		if (atomic_dec_and_test(&rc->elems)) {
218 			kref_put(&rc->refcnt, reada_control_release);
219 			wake_up(&rc->wait);
220 		}
221 		kref_put(&rc->refcnt, reada_control_release);
222 
223 		reada_extent_put(fs_info, re);	/* one ref for each entry */
224 	}
225 	reada_extent_put(fs_info, re);	/* our ref */
226 	if (for_dev)
227 		atomic_dec(&for_dev->reada_in_flight);
228 
229 	return 0;
230 }
231 
232 /*
233  * start is passed separately in case eb in NULL, which may be the case with
234  * failed I/O
235  */
btree_readahead_hook(struct btrfs_root * root,struct extent_buffer * eb,u64 start,int err)236 int btree_readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
237 			 u64 start, int err)
238 {
239 	int ret;
240 
241 	ret = __readahead_hook(root, eb, start, err);
242 
243 	reada_start_machine(root->fs_info);
244 
245 	return ret;
246 }
247 
reada_find_zone(struct btrfs_fs_info * fs_info,struct btrfs_device * dev,u64 logical,struct btrfs_bio * bbio)248 static struct reada_zone *reada_find_zone(struct btrfs_fs_info *fs_info,
249 					  struct btrfs_device *dev, u64 logical,
250 					  struct btrfs_bio *bbio)
251 {
252 	int ret;
253 	struct reada_zone *zone;
254 	struct btrfs_block_group_cache *cache = NULL;
255 	u64 start;
256 	u64 end;
257 	int i;
258 
259 	zone = NULL;
260 	spin_lock(&fs_info->reada_lock);
261 	ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
262 				     logical >> PAGE_CACHE_SHIFT, 1);
263 	if (ret == 1)
264 		kref_get(&zone->refcnt);
265 	spin_unlock(&fs_info->reada_lock);
266 
267 	if (ret == 1) {
268 		if (logical >= zone->start && logical < zone->end)
269 			return zone;
270 		spin_lock(&fs_info->reada_lock);
271 		kref_put(&zone->refcnt, reada_zone_release);
272 		spin_unlock(&fs_info->reada_lock);
273 	}
274 
275 	cache = btrfs_lookup_block_group(fs_info, logical);
276 	if (!cache)
277 		return NULL;
278 
279 	start = cache->key.objectid;
280 	end = start + cache->key.offset - 1;
281 	btrfs_put_block_group(cache);
282 
283 	zone = kzalloc(sizeof(*zone), GFP_NOFS);
284 	if (!zone)
285 		return NULL;
286 
287 	zone->start = start;
288 	zone->end = end;
289 	INIT_LIST_HEAD(&zone->list);
290 	spin_lock_init(&zone->lock);
291 	zone->locked = 0;
292 	kref_init(&zone->refcnt);
293 	zone->elems = 0;
294 	zone->device = dev; /* our device always sits at index 0 */
295 	for (i = 0; i < bbio->num_stripes; ++i) {
296 		/* bounds have already been checked */
297 		zone->devs[i] = bbio->stripes[i].dev;
298 	}
299 	zone->ndevs = bbio->num_stripes;
300 
301 	spin_lock(&fs_info->reada_lock);
302 	ret = radix_tree_insert(&dev->reada_zones,
303 				(unsigned long)(zone->end >> PAGE_CACHE_SHIFT),
304 				zone);
305 
306 	if (ret == -EEXIST) {
307 		kfree(zone);
308 		ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
309 					     logical >> PAGE_CACHE_SHIFT, 1);
310 		if (ret == 1)
311 			kref_get(&zone->refcnt);
312 	}
313 	spin_unlock(&fs_info->reada_lock);
314 
315 	return zone;
316 }
317 
reada_find_extent(struct btrfs_root * root,u64 logical,struct btrfs_key * top,int level)318 static struct reada_extent *reada_find_extent(struct btrfs_root *root,
319 					      u64 logical,
320 					      struct btrfs_key *top, int level)
321 {
322 	int ret;
323 	struct reada_extent *re = NULL;
324 	struct reada_extent *re_exist = NULL;
325 	struct btrfs_fs_info *fs_info = root->fs_info;
326 	struct btrfs_bio *bbio = NULL;
327 	struct btrfs_device *dev;
328 	struct btrfs_device *prev_dev;
329 	u32 blocksize;
330 	u64 length;
331 	int real_stripes;
332 	int nzones = 0;
333 	int i;
334 	unsigned long index = logical >> PAGE_CACHE_SHIFT;
335 	int dev_replace_is_ongoing;
336 
337 	spin_lock(&fs_info->reada_lock);
338 	re = radix_tree_lookup(&fs_info->reada_tree, index);
339 	if (re)
340 		re->refcnt++;
341 	spin_unlock(&fs_info->reada_lock);
342 
343 	if (re)
344 		return re;
345 
346 	re = kzalloc(sizeof(*re), GFP_NOFS);
347 	if (!re)
348 		return NULL;
349 
350 	blocksize = root->nodesize;
351 	re->logical = logical;
352 	re->top = *top;
353 	INIT_LIST_HEAD(&re->extctl);
354 	spin_lock_init(&re->lock);
355 	re->refcnt = 1;
356 
357 	/*
358 	 * map block
359 	 */
360 	length = blocksize;
361 	ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical, &length,
362 			      &bbio, 0);
363 	if (ret || !bbio || length < blocksize)
364 		goto error;
365 
366 	if (bbio->num_stripes > BTRFS_MAX_MIRRORS) {
367 		btrfs_err(root->fs_info,
368 			   "readahead: more than %d copies not supported",
369 			   BTRFS_MAX_MIRRORS);
370 		goto error;
371 	}
372 
373 	real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
374 	for (nzones = 0; nzones < real_stripes; ++nzones) {
375 		struct reada_zone *zone;
376 
377 		dev = bbio->stripes[nzones].dev;
378 		zone = reada_find_zone(fs_info, dev, logical, bbio);
379 		if (!zone)
380 			break;
381 
382 		re->zones[nzones] = zone;
383 		spin_lock(&zone->lock);
384 		if (!zone->elems)
385 			kref_get(&zone->refcnt);
386 		++zone->elems;
387 		spin_unlock(&zone->lock);
388 		spin_lock(&fs_info->reada_lock);
389 		kref_put(&zone->refcnt, reada_zone_release);
390 		spin_unlock(&fs_info->reada_lock);
391 	}
392 	re->nzones = nzones;
393 	if (nzones == 0) {
394 		/* not a single zone found, error and out */
395 		goto error;
396 	}
397 
398 	/* insert extent in reada_tree + all per-device trees, all or nothing */
399 	btrfs_dev_replace_lock(&fs_info->dev_replace);
400 	spin_lock(&fs_info->reada_lock);
401 	ret = radix_tree_insert(&fs_info->reada_tree, index, re);
402 	if (ret == -EEXIST) {
403 		re_exist = radix_tree_lookup(&fs_info->reada_tree, index);
404 		BUG_ON(!re_exist);
405 		re_exist->refcnt++;
406 		spin_unlock(&fs_info->reada_lock);
407 		btrfs_dev_replace_unlock(&fs_info->dev_replace);
408 		goto error;
409 	}
410 	if (ret) {
411 		spin_unlock(&fs_info->reada_lock);
412 		btrfs_dev_replace_unlock(&fs_info->dev_replace);
413 		goto error;
414 	}
415 	prev_dev = NULL;
416 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(
417 			&fs_info->dev_replace);
418 	for (i = 0; i < nzones; ++i) {
419 		dev = bbio->stripes[i].dev;
420 		if (dev == prev_dev) {
421 			/*
422 			 * in case of DUP, just add the first zone. As both
423 			 * are on the same device, there's nothing to gain
424 			 * from adding both.
425 			 * Also, it wouldn't work, as the tree is per device
426 			 * and adding would fail with EEXIST
427 			 */
428 			continue;
429 		}
430 		if (!dev->bdev) {
431 			/*
432 			 * cannot read ahead on missing device, but for RAID5/6,
433 			 * REQ_GET_READ_MIRRORS return 1. So don't skip missing
434 			 * device for such case.
435 			 */
436 			if (nzones > 1)
437 				continue;
438 		}
439 		if (dev_replace_is_ongoing &&
440 		    dev == fs_info->dev_replace.tgtdev) {
441 			/*
442 			 * as this device is selected for reading only as
443 			 * a last resort, skip it for read ahead.
444 			 */
445 			continue;
446 		}
447 		prev_dev = dev;
448 		ret = radix_tree_insert(&dev->reada_extents, index, re);
449 		if (ret) {
450 			while (--i >= 0) {
451 				dev = bbio->stripes[i].dev;
452 				BUG_ON(dev == NULL);
453 				/* ignore whether the entry was inserted */
454 				radix_tree_delete(&dev->reada_extents, index);
455 			}
456 			BUG_ON(fs_info == NULL);
457 			radix_tree_delete(&fs_info->reada_tree, index);
458 			spin_unlock(&fs_info->reada_lock);
459 			btrfs_dev_replace_unlock(&fs_info->dev_replace);
460 			goto error;
461 		}
462 	}
463 	spin_unlock(&fs_info->reada_lock);
464 	btrfs_dev_replace_unlock(&fs_info->dev_replace);
465 
466 	btrfs_put_bbio(bbio);
467 	return re;
468 
469 error:
470 	while (nzones) {
471 		struct reada_zone *zone;
472 
473 		--nzones;
474 		zone = re->zones[nzones];
475 		kref_get(&zone->refcnt);
476 		spin_lock(&zone->lock);
477 		--zone->elems;
478 		if (zone->elems == 0) {
479 			/*
480 			 * no fs_info->reada_lock needed, as this can't be
481 			 * the last ref
482 			 */
483 			kref_put(&zone->refcnt, reada_zone_release);
484 		}
485 		spin_unlock(&zone->lock);
486 
487 		spin_lock(&fs_info->reada_lock);
488 		kref_put(&zone->refcnt, reada_zone_release);
489 		spin_unlock(&fs_info->reada_lock);
490 	}
491 	btrfs_put_bbio(bbio);
492 	kfree(re);
493 	return re_exist;
494 }
495 
reada_extent_put(struct btrfs_fs_info * fs_info,struct reada_extent * re)496 static void reada_extent_put(struct btrfs_fs_info *fs_info,
497 			     struct reada_extent *re)
498 {
499 	int i;
500 	unsigned long index = re->logical >> PAGE_CACHE_SHIFT;
501 
502 	spin_lock(&fs_info->reada_lock);
503 	if (--re->refcnt) {
504 		spin_unlock(&fs_info->reada_lock);
505 		return;
506 	}
507 
508 	radix_tree_delete(&fs_info->reada_tree, index);
509 	for (i = 0; i < re->nzones; ++i) {
510 		struct reada_zone *zone = re->zones[i];
511 
512 		radix_tree_delete(&zone->device->reada_extents, index);
513 	}
514 
515 	spin_unlock(&fs_info->reada_lock);
516 
517 	for (i = 0; i < re->nzones; ++i) {
518 		struct reada_zone *zone = re->zones[i];
519 
520 		kref_get(&zone->refcnt);
521 		spin_lock(&zone->lock);
522 		--zone->elems;
523 		if (zone->elems == 0) {
524 			/* no fs_info->reada_lock needed, as this can't be
525 			 * the last ref */
526 			kref_put(&zone->refcnt, reada_zone_release);
527 		}
528 		spin_unlock(&zone->lock);
529 
530 		spin_lock(&fs_info->reada_lock);
531 		kref_put(&zone->refcnt, reada_zone_release);
532 		spin_unlock(&fs_info->reada_lock);
533 	}
534 	if (re->scheduled_for)
535 		atomic_dec(&re->scheduled_for->reada_in_flight);
536 
537 	kfree(re);
538 }
539 
reada_zone_release(struct kref * kref)540 static void reada_zone_release(struct kref *kref)
541 {
542 	struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
543 
544 	radix_tree_delete(&zone->device->reada_zones,
545 			  zone->end >> PAGE_CACHE_SHIFT);
546 
547 	kfree(zone);
548 }
549 
reada_control_release(struct kref * kref)550 static void reada_control_release(struct kref *kref)
551 {
552 	struct reada_control *rc = container_of(kref, struct reada_control,
553 						refcnt);
554 
555 	kfree(rc);
556 }
557 
reada_add_block(struct reada_control * rc,u64 logical,struct btrfs_key * top,int level,u64 generation)558 static int reada_add_block(struct reada_control *rc, u64 logical,
559 			   struct btrfs_key *top, int level, u64 generation)
560 {
561 	struct btrfs_root *root = rc->root;
562 	struct reada_extent *re;
563 	struct reada_extctl *rec;
564 
565 	re = reada_find_extent(root, logical, top, level); /* takes one ref */
566 	if (!re)
567 		return -1;
568 
569 	rec = kzalloc(sizeof(*rec), GFP_NOFS);
570 	if (!rec) {
571 		reada_extent_put(root->fs_info, re);
572 		return -ENOMEM;
573 	}
574 
575 	rec->rc = rc;
576 	rec->generation = generation;
577 	atomic_inc(&rc->elems);
578 
579 	spin_lock(&re->lock);
580 	list_add_tail(&rec->list, &re->extctl);
581 	spin_unlock(&re->lock);
582 
583 	/* leave the ref on the extent */
584 
585 	return 0;
586 }
587 
588 /*
589  * called with fs_info->reada_lock held
590  */
reada_peer_zones_set_lock(struct reada_zone * zone,int lock)591 static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
592 {
593 	int i;
594 	unsigned long index = zone->end >> PAGE_CACHE_SHIFT;
595 
596 	for (i = 0; i < zone->ndevs; ++i) {
597 		struct reada_zone *peer;
598 		peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
599 		if (peer && peer->device != zone->device)
600 			peer->locked = lock;
601 	}
602 }
603 
604 /*
605  * called with fs_info->reada_lock held
606  */
reada_pick_zone(struct btrfs_device * dev)607 static int reada_pick_zone(struct btrfs_device *dev)
608 {
609 	struct reada_zone *top_zone = NULL;
610 	struct reada_zone *top_locked_zone = NULL;
611 	u64 top_elems = 0;
612 	u64 top_locked_elems = 0;
613 	unsigned long index = 0;
614 	int ret;
615 
616 	if (dev->reada_curr_zone) {
617 		reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
618 		kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
619 		dev->reada_curr_zone = NULL;
620 	}
621 	/* pick the zone with the most elements */
622 	while (1) {
623 		struct reada_zone *zone;
624 
625 		ret = radix_tree_gang_lookup(&dev->reada_zones,
626 					     (void **)&zone, index, 1);
627 		if (ret == 0)
628 			break;
629 		index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
630 		if (zone->locked) {
631 			if (zone->elems > top_locked_elems) {
632 				top_locked_elems = zone->elems;
633 				top_locked_zone = zone;
634 			}
635 		} else {
636 			if (zone->elems > top_elems) {
637 				top_elems = zone->elems;
638 				top_zone = zone;
639 			}
640 		}
641 	}
642 	if (top_zone)
643 		dev->reada_curr_zone = top_zone;
644 	else if (top_locked_zone)
645 		dev->reada_curr_zone = top_locked_zone;
646 	else
647 		return 0;
648 
649 	dev->reada_next = dev->reada_curr_zone->start;
650 	kref_get(&dev->reada_curr_zone->refcnt);
651 	reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
652 
653 	return 1;
654 }
655 
reada_start_machine_dev(struct btrfs_fs_info * fs_info,struct btrfs_device * dev)656 static int reada_start_machine_dev(struct btrfs_fs_info *fs_info,
657 				   struct btrfs_device *dev)
658 {
659 	struct reada_extent *re = NULL;
660 	int mirror_num = 0;
661 	struct extent_buffer *eb = NULL;
662 	u64 logical;
663 	int ret;
664 	int i;
665 	int need_kick = 0;
666 
667 	spin_lock(&fs_info->reada_lock);
668 	if (dev->reada_curr_zone == NULL) {
669 		ret = reada_pick_zone(dev);
670 		if (!ret) {
671 			spin_unlock(&fs_info->reada_lock);
672 			return 0;
673 		}
674 	}
675 	/*
676 	 * FIXME currently we issue the reads one extent at a time. If we have
677 	 * a contiguous block of extents, we could also coagulate them or use
678 	 * plugging to speed things up
679 	 */
680 	ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
681 				     dev->reada_next >> PAGE_CACHE_SHIFT, 1);
682 	if (ret == 0 || re->logical >= dev->reada_curr_zone->end) {
683 		ret = reada_pick_zone(dev);
684 		if (!ret) {
685 			spin_unlock(&fs_info->reada_lock);
686 			return 0;
687 		}
688 		re = NULL;
689 		ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
690 					dev->reada_next >> PAGE_CACHE_SHIFT, 1);
691 	}
692 	if (ret == 0) {
693 		spin_unlock(&fs_info->reada_lock);
694 		return 0;
695 	}
696 	dev->reada_next = re->logical + fs_info->tree_root->nodesize;
697 	re->refcnt++;
698 
699 	spin_unlock(&fs_info->reada_lock);
700 
701 	/*
702 	 * find mirror num
703 	 */
704 	for (i = 0; i < re->nzones; ++i) {
705 		if (re->zones[i]->device == dev) {
706 			mirror_num = i + 1;
707 			break;
708 		}
709 	}
710 	logical = re->logical;
711 
712 	spin_lock(&re->lock);
713 	if (re->scheduled_for == NULL) {
714 		re->scheduled_for = dev;
715 		need_kick = 1;
716 	}
717 	spin_unlock(&re->lock);
718 
719 	reada_extent_put(fs_info, re);
720 
721 	if (!need_kick)
722 		return 0;
723 
724 	atomic_inc(&dev->reada_in_flight);
725 	ret = reada_tree_block_flagged(fs_info->extent_root, logical,
726 			mirror_num, &eb);
727 	if (ret)
728 		__readahead_hook(fs_info->extent_root, NULL, logical, ret);
729 	else if (eb)
730 		__readahead_hook(fs_info->extent_root, eb, eb->start, ret);
731 
732 	if (eb)
733 		free_extent_buffer(eb);
734 
735 	return 1;
736 
737 }
738 
reada_start_machine_worker(struct btrfs_work * work)739 static void reada_start_machine_worker(struct btrfs_work *work)
740 {
741 	struct reada_machine_work *rmw;
742 	struct btrfs_fs_info *fs_info;
743 	int old_ioprio;
744 
745 	rmw = container_of(work, struct reada_machine_work, work);
746 	fs_info = rmw->fs_info;
747 
748 	kfree(rmw);
749 
750 	old_ioprio = IOPRIO_PRIO_VALUE(task_nice_ioclass(current),
751 				       task_nice_ioprio(current));
752 	set_task_ioprio(current, BTRFS_IOPRIO_READA);
753 	__reada_start_machine(fs_info);
754 	set_task_ioprio(current, old_ioprio);
755 }
756 
__reada_start_machine(struct btrfs_fs_info * fs_info)757 static void __reada_start_machine(struct btrfs_fs_info *fs_info)
758 {
759 	struct btrfs_device *device;
760 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
761 	u64 enqueued;
762 	u64 total = 0;
763 	int i;
764 
765 	do {
766 		enqueued = 0;
767 		list_for_each_entry(device, &fs_devices->devices, dev_list) {
768 			if (atomic_read(&device->reada_in_flight) <
769 			    MAX_IN_FLIGHT)
770 				enqueued += reada_start_machine_dev(fs_info,
771 								    device);
772 		}
773 		total += enqueued;
774 	} while (enqueued && total < 10000);
775 
776 	if (enqueued == 0)
777 		return;
778 
779 	/*
780 	 * If everything is already in the cache, this is effectively single
781 	 * threaded. To a) not hold the caller for too long and b) to utilize
782 	 * more cores, we broke the loop above after 10000 iterations and now
783 	 * enqueue to workers to finish it. This will distribute the load to
784 	 * the cores.
785 	 */
786 	for (i = 0; i < 2; ++i)
787 		reada_start_machine(fs_info);
788 }
789 
reada_start_machine(struct btrfs_fs_info * fs_info)790 static void reada_start_machine(struct btrfs_fs_info *fs_info)
791 {
792 	struct reada_machine_work *rmw;
793 
794 	rmw = kzalloc(sizeof(*rmw), GFP_NOFS);
795 	if (!rmw) {
796 		/* FIXME we cannot handle this properly right now */
797 		BUG();
798 	}
799 	btrfs_init_work(&rmw->work, btrfs_readahead_helper,
800 			reada_start_machine_worker, NULL, NULL);
801 	rmw->fs_info = fs_info;
802 
803 	btrfs_queue_work(fs_info->readahead_workers, &rmw->work);
804 }
805 
806 #ifdef DEBUG
dump_devs(struct btrfs_fs_info * fs_info,int all)807 static void dump_devs(struct btrfs_fs_info *fs_info, int all)
808 {
809 	struct btrfs_device *device;
810 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
811 	unsigned long index;
812 	int ret;
813 	int i;
814 	int j;
815 	int cnt;
816 
817 	spin_lock(&fs_info->reada_lock);
818 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
819 		printk(KERN_DEBUG "dev %lld has %d in flight\n", device->devid,
820 			atomic_read(&device->reada_in_flight));
821 		index = 0;
822 		while (1) {
823 			struct reada_zone *zone;
824 			ret = radix_tree_gang_lookup(&device->reada_zones,
825 						     (void **)&zone, index, 1);
826 			if (ret == 0)
827 				break;
828 			printk(KERN_DEBUG "  zone %llu-%llu elems %llu locked "
829 				"%d devs", zone->start, zone->end, zone->elems,
830 				zone->locked);
831 			for (j = 0; j < zone->ndevs; ++j) {
832 				printk(KERN_CONT " %lld",
833 					zone->devs[j]->devid);
834 			}
835 			if (device->reada_curr_zone == zone)
836 				printk(KERN_CONT " curr off %llu",
837 					device->reada_next - zone->start);
838 			printk(KERN_CONT "\n");
839 			index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
840 		}
841 		cnt = 0;
842 		index = 0;
843 		while (all) {
844 			struct reada_extent *re = NULL;
845 
846 			ret = radix_tree_gang_lookup(&device->reada_extents,
847 						     (void **)&re, index, 1);
848 			if (ret == 0)
849 				break;
850 			printk(KERN_DEBUG
851 				"  re: logical %llu size %u empty %d for %lld",
852 				re->logical, fs_info->tree_root->nodesize,
853 				list_empty(&re->extctl), re->scheduled_for ?
854 				re->scheduled_for->devid : -1);
855 
856 			for (i = 0; i < re->nzones; ++i) {
857 				printk(KERN_CONT " zone %llu-%llu devs",
858 					re->zones[i]->start,
859 					re->zones[i]->end);
860 				for (j = 0; j < re->zones[i]->ndevs; ++j) {
861 					printk(KERN_CONT " %lld",
862 						re->zones[i]->devs[j]->devid);
863 				}
864 			}
865 			printk(KERN_CONT "\n");
866 			index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
867 			if (++cnt > 15)
868 				break;
869 		}
870 	}
871 
872 	index = 0;
873 	cnt = 0;
874 	while (all) {
875 		struct reada_extent *re = NULL;
876 
877 		ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
878 					     index, 1);
879 		if (ret == 0)
880 			break;
881 		if (!re->scheduled_for) {
882 			index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
883 			continue;
884 		}
885 		printk(KERN_DEBUG
886 			"re: logical %llu size %u list empty %d for %lld",
887 			re->logical, fs_info->tree_root->nodesize,
888 			list_empty(&re->extctl),
889 			re->scheduled_for ? re->scheduled_for->devid : -1);
890 		for (i = 0; i < re->nzones; ++i) {
891 			printk(KERN_CONT " zone %llu-%llu devs",
892 				re->zones[i]->start,
893 				re->zones[i]->end);
894 			for (i = 0; i < re->nzones; ++i) {
895 				printk(KERN_CONT " zone %llu-%llu devs",
896 					re->zones[i]->start,
897 					re->zones[i]->end);
898 				for (j = 0; j < re->zones[i]->ndevs; ++j) {
899 					printk(KERN_CONT " %lld",
900 						re->zones[i]->devs[j]->devid);
901 				}
902 			}
903 		}
904 		printk(KERN_CONT "\n");
905 		index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
906 	}
907 	spin_unlock(&fs_info->reada_lock);
908 }
909 #endif
910 
911 /*
912  * interface
913  */
btrfs_reada_add(struct btrfs_root * root,struct btrfs_key * key_start,struct btrfs_key * key_end)914 struct reada_control *btrfs_reada_add(struct btrfs_root *root,
915 			struct btrfs_key *key_start, struct btrfs_key *key_end)
916 {
917 	struct reada_control *rc;
918 	u64 start;
919 	u64 generation;
920 	int level;
921 	int ret;
922 	struct extent_buffer *node;
923 	static struct btrfs_key max_key = {
924 		.objectid = (u64)-1,
925 		.type = (u8)-1,
926 		.offset = (u64)-1
927 	};
928 
929 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
930 	if (!rc)
931 		return ERR_PTR(-ENOMEM);
932 
933 	rc->root = root;
934 	rc->key_start = *key_start;
935 	rc->key_end = *key_end;
936 	atomic_set(&rc->elems, 0);
937 	init_waitqueue_head(&rc->wait);
938 	kref_init(&rc->refcnt);
939 	kref_get(&rc->refcnt); /* one ref for having elements */
940 
941 	node = btrfs_root_node(root);
942 	start = node->start;
943 	level = btrfs_header_level(node);
944 	generation = btrfs_header_generation(node);
945 	free_extent_buffer(node);
946 
947 	ret = reada_add_block(rc, start, &max_key, level, generation);
948 	if (ret) {
949 		kfree(rc);
950 		return ERR_PTR(ret);
951 	}
952 
953 	reada_start_machine(root->fs_info);
954 
955 	return rc;
956 }
957 
958 #ifdef DEBUG
btrfs_reada_wait(void * handle)959 int btrfs_reada_wait(void *handle)
960 {
961 	struct reada_control *rc = handle;
962 
963 	while (atomic_read(&rc->elems)) {
964 		wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
965 				   5 * HZ);
966 		dump_devs(rc->root->fs_info,
967 			  atomic_read(&rc->elems) < 10 ? 1 : 0);
968 	}
969 
970 	dump_devs(rc->root->fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
971 
972 	kref_put(&rc->refcnt, reada_control_release);
973 
974 	return 0;
975 }
976 #else
btrfs_reada_wait(void * handle)977 int btrfs_reada_wait(void *handle)
978 {
979 	struct reada_control *rc = handle;
980 
981 	while (atomic_read(&rc->elems)) {
982 		wait_event(rc->wait, atomic_read(&rc->elems) == 0);
983 	}
984 
985 	kref_put(&rc->refcnt, reada_control_release);
986 
987 	return 0;
988 }
989 #endif
990 
btrfs_reada_detach(void * handle)991 void btrfs_reada_detach(void *handle)
992 {
993 	struct reada_control *rc = handle;
994 
995 	kref_put(&rc->refcnt, reada_control_release);
996 }
997