1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
42 #include <linux/btrfs.h>
43 #include <linux/blkdev.h>
44 #include <linux/posix_acl_xattr.h>
45 #include <linux/uio.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
52 #include "xattr.h"
53 #include "tree-log.h"
54 #include "volumes.h"
55 #include "compression.h"
56 #include "locking.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
59 #include "backref.h"
60 #include "hash.h"
61 #include "props.h"
62 #include "qgroup.h"
63
64 struct btrfs_iget_args {
65 struct btrfs_key *location;
66 struct btrfs_root *root;
67 };
68
69 static const struct inode_operations btrfs_dir_inode_operations;
70 static const struct inode_operations btrfs_symlink_inode_operations;
71 static const struct inode_operations btrfs_dir_ro_inode_operations;
72 static const struct inode_operations btrfs_special_inode_operations;
73 static const struct inode_operations btrfs_file_inode_operations;
74 static const struct address_space_operations btrfs_aops;
75 static const struct address_space_operations btrfs_symlink_aops;
76 static const struct file_operations btrfs_dir_file_operations;
77 static struct extent_io_ops btrfs_extent_io_ops;
78
79 static struct kmem_cache *btrfs_inode_cachep;
80 static struct kmem_cache *btrfs_delalloc_work_cachep;
81 struct kmem_cache *btrfs_trans_handle_cachep;
82 struct kmem_cache *btrfs_transaction_cachep;
83 struct kmem_cache *btrfs_path_cachep;
84 struct kmem_cache *btrfs_free_space_cachep;
85
86 #define S_SHIFT 12
87 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
88 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
89 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
90 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
91 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
92 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
93 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
94 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
95 };
96
97 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
98 static int btrfs_truncate(struct inode *inode);
99 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
100 static noinline int cow_file_range(struct inode *inode,
101 struct page *locked_page,
102 u64 start, u64 end, int *page_started,
103 unsigned long *nr_written, int unlock);
104 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
105 u64 len, u64 orig_start,
106 u64 block_start, u64 block_len,
107 u64 orig_block_len, u64 ram_bytes,
108 int type);
109
110 static int btrfs_dirty_inode(struct inode *inode);
111
112 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
btrfs_test_inode_set_ops(struct inode * inode)113 void btrfs_test_inode_set_ops(struct inode *inode)
114 {
115 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
116 }
117 #endif
118
btrfs_init_inode_security(struct btrfs_trans_handle * trans,struct inode * inode,struct inode * dir,const struct qstr * qstr)119 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
120 struct inode *inode, struct inode *dir,
121 const struct qstr *qstr)
122 {
123 int err;
124
125 err = btrfs_init_acl(trans, inode, dir);
126 if (!err)
127 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
128 return err;
129 }
130
131 /*
132 * this does all the hard work for inserting an inline extent into
133 * the btree. The caller should have done a btrfs_drop_extents so that
134 * no overlapping inline items exist in the btree
135 */
insert_inline_extent(struct btrfs_trans_handle * trans,struct btrfs_path * path,int extent_inserted,struct btrfs_root * root,struct inode * inode,u64 start,size_t size,size_t compressed_size,int compress_type,struct page ** compressed_pages)136 static int insert_inline_extent(struct btrfs_trans_handle *trans,
137 struct btrfs_path *path, int extent_inserted,
138 struct btrfs_root *root, struct inode *inode,
139 u64 start, size_t size, size_t compressed_size,
140 int compress_type,
141 struct page **compressed_pages)
142 {
143 struct extent_buffer *leaf;
144 struct page *page = NULL;
145 char *kaddr;
146 unsigned long ptr;
147 struct btrfs_file_extent_item *ei;
148 int err = 0;
149 int ret;
150 size_t cur_size = size;
151 unsigned long offset;
152
153 if (compressed_size && compressed_pages)
154 cur_size = compressed_size;
155
156 inode_add_bytes(inode, size);
157
158 if (!extent_inserted) {
159 struct btrfs_key key;
160 size_t datasize;
161
162 key.objectid = btrfs_ino(inode);
163 key.offset = start;
164 key.type = BTRFS_EXTENT_DATA_KEY;
165
166 datasize = btrfs_file_extent_calc_inline_size(cur_size);
167 path->leave_spinning = 1;
168 ret = btrfs_insert_empty_item(trans, root, path, &key,
169 datasize);
170 if (ret) {
171 err = ret;
172 goto fail;
173 }
174 }
175 leaf = path->nodes[0];
176 ei = btrfs_item_ptr(leaf, path->slots[0],
177 struct btrfs_file_extent_item);
178 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
179 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
180 btrfs_set_file_extent_encryption(leaf, ei, 0);
181 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
182 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
183 ptr = btrfs_file_extent_inline_start(ei);
184
185 if (compress_type != BTRFS_COMPRESS_NONE) {
186 struct page *cpage;
187 int i = 0;
188 while (compressed_size > 0) {
189 cpage = compressed_pages[i];
190 cur_size = min_t(unsigned long, compressed_size,
191 PAGE_CACHE_SIZE);
192
193 kaddr = kmap_atomic(cpage);
194 write_extent_buffer(leaf, kaddr, ptr, cur_size);
195 kunmap_atomic(kaddr);
196
197 i++;
198 ptr += cur_size;
199 compressed_size -= cur_size;
200 }
201 btrfs_set_file_extent_compression(leaf, ei,
202 compress_type);
203 } else {
204 page = find_get_page(inode->i_mapping,
205 start >> PAGE_CACHE_SHIFT);
206 btrfs_set_file_extent_compression(leaf, ei, 0);
207 kaddr = kmap_atomic(page);
208 offset = start & (PAGE_CACHE_SIZE - 1);
209 write_extent_buffer(leaf, kaddr + offset, ptr, size);
210 kunmap_atomic(kaddr);
211 page_cache_release(page);
212 }
213 btrfs_mark_buffer_dirty(leaf);
214 btrfs_release_path(path);
215
216 /*
217 * we're an inline extent, so nobody can
218 * extend the file past i_size without locking
219 * a page we already have locked.
220 *
221 * We must do any isize and inode updates
222 * before we unlock the pages. Otherwise we
223 * could end up racing with unlink.
224 */
225 BTRFS_I(inode)->disk_i_size = inode->i_size;
226 ret = btrfs_update_inode(trans, root, inode);
227
228 return ret;
229 fail:
230 return err;
231 }
232
233
234 /*
235 * conditionally insert an inline extent into the file. This
236 * does the checks required to make sure the data is small enough
237 * to fit as an inline extent.
238 */
cow_file_range_inline(struct btrfs_root * root,struct inode * inode,u64 start,u64 end,size_t compressed_size,int compress_type,struct page ** compressed_pages)239 static noinline int cow_file_range_inline(struct btrfs_root *root,
240 struct inode *inode, u64 start,
241 u64 end, size_t compressed_size,
242 int compress_type,
243 struct page **compressed_pages)
244 {
245 struct btrfs_trans_handle *trans;
246 u64 isize = i_size_read(inode);
247 u64 actual_end = min(end + 1, isize);
248 u64 inline_len = actual_end - start;
249 u64 aligned_end = ALIGN(end, root->sectorsize);
250 u64 data_len = inline_len;
251 int ret;
252 struct btrfs_path *path;
253 int extent_inserted = 0;
254 u32 extent_item_size;
255
256 if (compressed_size)
257 data_len = compressed_size;
258
259 if (start > 0 ||
260 actual_end > PAGE_CACHE_SIZE ||
261 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
262 (!compressed_size &&
263 (actual_end & (root->sectorsize - 1)) == 0) ||
264 end + 1 < isize ||
265 data_len > root->fs_info->max_inline) {
266 return 1;
267 }
268
269 path = btrfs_alloc_path();
270 if (!path)
271 return -ENOMEM;
272
273 trans = btrfs_join_transaction(root);
274 if (IS_ERR(trans)) {
275 btrfs_free_path(path);
276 return PTR_ERR(trans);
277 }
278 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
279
280 if (compressed_size && compressed_pages)
281 extent_item_size = btrfs_file_extent_calc_inline_size(
282 compressed_size);
283 else
284 extent_item_size = btrfs_file_extent_calc_inline_size(
285 inline_len);
286
287 ret = __btrfs_drop_extents(trans, root, inode, path,
288 start, aligned_end, NULL,
289 1, 1, extent_item_size, &extent_inserted);
290 if (ret) {
291 btrfs_abort_transaction(trans, root, ret);
292 goto out;
293 }
294
295 if (isize > actual_end)
296 inline_len = min_t(u64, isize, actual_end);
297 ret = insert_inline_extent(trans, path, extent_inserted,
298 root, inode, start,
299 inline_len, compressed_size,
300 compress_type, compressed_pages);
301 if (ret && ret != -ENOSPC) {
302 btrfs_abort_transaction(trans, root, ret);
303 goto out;
304 } else if (ret == -ENOSPC) {
305 ret = 1;
306 goto out;
307 }
308
309 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
310 btrfs_delalloc_release_metadata(inode, end + 1 - start);
311 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
312 out:
313 /*
314 * Don't forget to free the reserved space, as for inlined extent
315 * it won't count as data extent, free them directly here.
316 * And at reserve time, it's always aligned to page size, so
317 * just free one page here.
318 */
319 btrfs_qgroup_free_data(inode, 0, PAGE_CACHE_SIZE);
320 btrfs_free_path(path);
321 btrfs_end_transaction(trans, root);
322 return ret;
323 }
324
325 struct async_extent {
326 u64 start;
327 u64 ram_size;
328 u64 compressed_size;
329 struct page **pages;
330 unsigned long nr_pages;
331 int compress_type;
332 struct list_head list;
333 };
334
335 struct async_cow {
336 struct inode *inode;
337 struct btrfs_root *root;
338 struct page *locked_page;
339 u64 start;
340 u64 end;
341 struct list_head extents;
342 struct btrfs_work work;
343 };
344
add_async_extent(struct async_cow * cow,u64 start,u64 ram_size,u64 compressed_size,struct page ** pages,unsigned long nr_pages,int compress_type)345 static noinline int add_async_extent(struct async_cow *cow,
346 u64 start, u64 ram_size,
347 u64 compressed_size,
348 struct page **pages,
349 unsigned long nr_pages,
350 int compress_type)
351 {
352 struct async_extent *async_extent;
353
354 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
355 BUG_ON(!async_extent); /* -ENOMEM */
356 async_extent->start = start;
357 async_extent->ram_size = ram_size;
358 async_extent->compressed_size = compressed_size;
359 async_extent->pages = pages;
360 async_extent->nr_pages = nr_pages;
361 async_extent->compress_type = compress_type;
362 list_add_tail(&async_extent->list, &cow->extents);
363 return 0;
364 }
365
inode_need_compress(struct inode * inode)366 static inline int inode_need_compress(struct inode *inode)
367 {
368 struct btrfs_root *root = BTRFS_I(inode)->root;
369
370 /* force compress */
371 if (btrfs_test_opt(root, FORCE_COMPRESS))
372 return 1;
373 /* bad compression ratios */
374 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
375 return 0;
376 if (btrfs_test_opt(root, COMPRESS) ||
377 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
378 BTRFS_I(inode)->force_compress)
379 return 1;
380 return 0;
381 }
382
383 /*
384 * we create compressed extents in two phases. The first
385 * phase compresses a range of pages that have already been
386 * locked (both pages and state bits are locked).
387 *
388 * This is done inside an ordered work queue, and the compression
389 * is spread across many cpus. The actual IO submission is step
390 * two, and the ordered work queue takes care of making sure that
391 * happens in the same order things were put onto the queue by
392 * writepages and friends.
393 *
394 * If this code finds it can't get good compression, it puts an
395 * entry onto the work queue to write the uncompressed bytes. This
396 * makes sure that both compressed inodes and uncompressed inodes
397 * are written in the same order that the flusher thread sent them
398 * down.
399 */
compress_file_range(struct inode * inode,struct page * locked_page,u64 start,u64 end,struct async_cow * async_cow,int * num_added)400 static noinline void compress_file_range(struct inode *inode,
401 struct page *locked_page,
402 u64 start, u64 end,
403 struct async_cow *async_cow,
404 int *num_added)
405 {
406 struct btrfs_root *root = BTRFS_I(inode)->root;
407 u64 num_bytes;
408 u64 blocksize = root->sectorsize;
409 u64 actual_end;
410 u64 isize = i_size_read(inode);
411 int ret = 0;
412 struct page **pages = NULL;
413 unsigned long nr_pages;
414 unsigned long nr_pages_ret = 0;
415 unsigned long total_compressed = 0;
416 unsigned long total_in = 0;
417 unsigned long max_compressed = 128 * 1024;
418 unsigned long max_uncompressed = 128 * 1024;
419 int i;
420 int will_compress;
421 int compress_type = root->fs_info->compress_type;
422 int redirty = 0;
423
424 /* if this is a small write inside eof, kick off a defrag */
425 if ((end - start + 1) < 16 * 1024 &&
426 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
427 btrfs_add_inode_defrag(NULL, inode);
428
429 actual_end = min_t(u64, isize, end + 1);
430 again:
431 will_compress = 0;
432 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
433 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
434
435 /*
436 * we don't want to send crud past the end of i_size through
437 * compression, that's just a waste of CPU time. So, if the
438 * end of the file is before the start of our current
439 * requested range of bytes, we bail out to the uncompressed
440 * cleanup code that can deal with all of this.
441 *
442 * It isn't really the fastest way to fix things, but this is a
443 * very uncommon corner.
444 */
445 if (actual_end <= start)
446 goto cleanup_and_bail_uncompressed;
447
448 total_compressed = actual_end - start;
449
450 /*
451 * skip compression for a small file range(<=blocksize) that
452 * isn't an inline extent, since it dosen't save disk space at all.
453 */
454 if (total_compressed <= blocksize &&
455 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
456 goto cleanup_and_bail_uncompressed;
457
458 /* we want to make sure that amount of ram required to uncompress
459 * an extent is reasonable, so we limit the total size in ram
460 * of a compressed extent to 128k. This is a crucial number
461 * because it also controls how easily we can spread reads across
462 * cpus for decompression.
463 *
464 * We also want to make sure the amount of IO required to do
465 * a random read is reasonably small, so we limit the size of
466 * a compressed extent to 128k.
467 */
468 total_compressed = min(total_compressed, max_uncompressed);
469 num_bytes = ALIGN(end - start + 1, blocksize);
470 num_bytes = max(blocksize, num_bytes);
471 total_in = 0;
472 ret = 0;
473
474 /*
475 * we do compression for mount -o compress and when the
476 * inode has not been flagged as nocompress. This flag can
477 * change at any time if we discover bad compression ratios.
478 */
479 if (inode_need_compress(inode)) {
480 WARN_ON(pages);
481 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
482 if (!pages) {
483 /* just bail out to the uncompressed code */
484 goto cont;
485 }
486
487 if (BTRFS_I(inode)->force_compress)
488 compress_type = BTRFS_I(inode)->force_compress;
489
490 /*
491 * we need to call clear_page_dirty_for_io on each
492 * page in the range. Otherwise applications with the file
493 * mmap'd can wander in and change the page contents while
494 * we are compressing them.
495 *
496 * If the compression fails for any reason, we set the pages
497 * dirty again later on.
498 */
499 extent_range_clear_dirty_for_io(inode, start, end);
500 redirty = 1;
501 ret = btrfs_compress_pages(compress_type,
502 inode->i_mapping, start,
503 total_compressed, pages,
504 nr_pages, &nr_pages_ret,
505 &total_in,
506 &total_compressed,
507 max_compressed);
508
509 if (!ret) {
510 unsigned long offset = total_compressed &
511 (PAGE_CACHE_SIZE - 1);
512 struct page *page = pages[nr_pages_ret - 1];
513 char *kaddr;
514
515 /* zero the tail end of the last page, we might be
516 * sending it down to disk
517 */
518 if (offset) {
519 kaddr = kmap_atomic(page);
520 memset(kaddr + offset, 0,
521 PAGE_CACHE_SIZE - offset);
522 kunmap_atomic(kaddr);
523 }
524 will_compress = 1;
525 }
526 }
527 cont:
528 if (start == 0) {
529 /* lets try to make an inline extent */
530 if (ret || total_in < (actual_end - start)) {
531 /* we didn't compress the entire range, try
532 * to make an uncompressed inline extent.
533 */
534 ret = cow_file_range_inline(root, inode, start, end,
535 0, 0, NULL);
536 } else {
537 /* try making a compressed inline extent */
538 ret = cow_file_range_inline(root, inode, start, end,
539 total_compressed,
540 compress_type, pages);
541 }
542 if (ret <= 0) {
543 unsigned long clear_flags = EXTENT_DELALLOC |
544 EXTENT_DEFRAG;
545 unsigned long page_error_op;
546
547 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
548 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
549
550 /*
551 * inline extent creation worked or returned error,
552 * we don't need to create any more async work items.
553 * Unlock and free up our temp pages.
554 */
555 extent_clear_unlock_delalloc(inode, start, end, NULL,
556 clear_flags, PAGE_UNLOCK |
557 PAGE_CLEAR_DIRTY |
558 PAGE_SET_WRITEBACK |
559 page_error_op |
560 PAGE_END_WRITEBACK);
561 goto free_pages_out;
562 }
563 }
564
565 if (will_compress) {
566 /*
567 * we aren't doing an inline extent round the compressed size
568 * up to a block size boundary so the allocator does sane
569 * things
570 */
571 total_compressed = ALIGN(total_compressed, blocksize);
572
573 /*
574 * one last check to make sure the compression is really a
575 * win, compare the page count read with the blocks on disk
576 */
577 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
578 if (total_compressed >= total_in) {
579 will_compress = 0;
580 } else {
581 num_bytes = total_in;
582 }
583 }
584 if (!will_compress && pages) {
585 /*
586 * the compression code ran but failed to make things smaller,
587 * free any pages it allocated and our page pointer array
588 */
589 for (i = 0; i < nr_pages_ret; i++) {
590 WARN_ON(pages[i]->mapping);
591 page_cache_release(pages[i]);
592 }
593 kfree(pages);
594 pages = NULL;
595 total_compressed = 0;
596 nr_pages_ret = 0;
597
598 /* flag the file so we don't compress in the future */
599 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
600 !(BTRFS_I(inode)->force_compress)) {
601 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
602 }
603 }
604 if (will_compress) {
605 *num_added += 1;
606
607 /* the async work queues will take care of doing actual
608 * allocation on disk for these compressed pages,
609 * and will submit them to the elevator.
610 */
611 add_async_extent(async_cow, start, num_bytes,
612 total_compressed, pages, nr_pages_ret,
613 compress_type);
614
615 if (start + num_bytes < end) {
616 start += num_bytes;
617 pages = NULL;
618 cond_resched();
619 goto again;
620 }
621 } else {
622 cleanup_and_bail_uncompressed:
623 /*
624 * No compression, but we still need to write the pages in
625 * the file we've been given so far. redirty the locked
626 * page if it corresponds to our extent and set things up
627 * for the async work queue to run cow_file_range to do
628 * the normal delalloc dance
629 */
630 if (page_offset(locked_page) >= start &&
631 page_offset(locked_page) <= end) {
632 __set_page_dirty_nobuffers(locked_page);
633 /* unlocked later on in the async handlers */
634 }
635 if (redirty)
636 extent_range_redirty_for_io(inode, start, end);
637 add_async_extent(async_cow, start, end - start + 1,
638 0, NULL, 0, BTRFS_COMPRESS_NONE);
639 *num_added += 1;
640 }
641
642 return;
643
644 free_pages_out:
645 for (i = 0; i < nr_pages_ret; i++) {
646 WARN_ON(pages[i]->mapping);
647 page_cache_release(pages[i]);
648 }
649 kfree(pages);
650 }
651
free_async_extent_pages(struct async_extent * async_extent)652 static void free_async_extent_pages(struct async_extent *async_extent)
653 {
654 int i;
655
656 if (!async_extent->pages)
657 return;
658
659 for (i = 0; i < async_extent->nr_pages; i++) {
660 WARN_ON(async_extent->pages[i]->mapping);
661 page_cache_release(async_extent->pages[i]);
662 }
663 kfree(async_extent->pages);
664 async_extent->nr_pages = 0;
665 async_extent->pages = NULL;
666 }
667
668 /*
669 * phase two of compressed writeback. This is the ordered portion
670 * of the code, which only gets called in the order the work was
671 * queued. We walk all the async extents created by compress_file_range
672 * and send them down to the disk.
673 */
submit_compressed_extents(struct inode * inode,struct async_cow * async_cow)674 static noinline void submit_compressed_extents(struct inode *inode,
675 struct async_cow *async_cow)
676 {
677 struct async_extent *async_extent;
678 u64 alloc_hint = 0;
679 struct btrfs_key ins;
680 struct extent_map *em;
681 struct btrfs_root *root = BTRFS_I(inode)->root;
682 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
683 struct extent_io_tree *io_tree;
684 int ret = 0;
685
686 again:
687 while (!list_empty(&async_cow->extents)) {
688 async_extent = list_entry(async_cow->extents.next,
689 struct async_extent, list);
690 list_del(&async_extent->list);
691
692 io_tree = &BTRFS_I(inode)->io_tree;
693
694 retry:
695 /* did the compression code fall back to uncompressed IO? */
696 if (!async_extent->pages) {
697 int page_started = 0;
698 unsigned long nr_written = 0;
699
700 lock_extent(io_tree, async_extent->start,
701 async_extent->start +
702 async_extent->ram_size - 1);
703
704 /* allocate blocks */
705 ret = cow_file_range(inode, async_cow->locked_page,
706 async_extent->start,
707 async_extent->start +
708 async_extent->ram_size - 1,
709 &page_started, &nr_written, 0);
710
711 /* JDM XXX */
712
713 /*
714 * if page_started, cow_file_range inserted an
715 * inline extent and took care of all the unlocking
716 * and IO for us. Otherwise, we need to submit
717 * all those pages down to the drive.
718 */
719 if (!page_started && !ret)
720 extent_write_locked_range(io_tree,
721 inode, async_extent->start,
722 async_extent->start +
723 async_extent->ram_size - 1,
724 btrfs_get_extent,
725 WB_SYNC_ALL);
726 else if (ret)
727 unlock_page(async_cow->locked_page);
728 kfree(async_extent);
729 cond_resched();
730 continue;
731 }
732
733 lock_extent(io_tree, async_extent->start,
734 async_extent->start + async_extent->ram_size - 1);
735
736 ret = btrfs_reserve_extent(root,
737 async_extent->compressed_size,
738 async_extent->compressed_size,
739 0, alloc_hint, &ins, 1, 1);
740 if (ret) {
741 free_async_extent_pages(async_extent);
742
743 if (ret == -ENOSPC) {
744 unlock_extent(io_tree, async_extent->start,
745 async_extent->start +
746 async_extent->ram_size - 1);
747
748 /*
749 * we need to redirty the pages if we decide to
750 * fallback to uncompressed IO, otherwise we
751 * will not submit these pages down to lower
752 * layers.
753 */
754 extent_range_redirty_for_io(inode,
755 async_extent->start,
756 async_extent->start +
757 async_extent->ram_size - 1);
758
759 goto retry;
760 }
761 goto out_free;
762 }
763 /*
764 * here we're doing allocation and writeback of the
765 * compressed pages
766 */
767 btrfs_drop_extent_cache(inode, async_extent->start,
768 async_extent->start +
769 async_extent->ram_size - 1, 0);
770
771 em = alloc_extent_map();
772 if (!em) {
773 ret = -ENOMEM;
774 goto out_free_reserve;
775 }
776 em->start = async_extent->start;
777 em->len = async_extent->ram_size;
778 em->orig_start = em->start;
779 em->mod_start = em->start;
780 em->mod_len = em->len;
781
782 em->block_start = ins.objectid;
783 em->block_len = ins.offset;
784 em->orig_block_len = ins.offset;
785 em->ram_bytes = async_extent->ram_size;
786 em->bdev = root->fs_info->fs_devices->latest_bdev;
787 em->compress_type = async_extent->compress_type;
788 set_bit(EXTENT_FLAG_PINNED, &em->flags);
789 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
790 em->generation = -1;
791
792 while (1) {
793 write_lock(&em_tree->lock);
794 ret = add_extent_mapping(em_tree, em, 1);
795 write_unlock(&em_tree->lock);
796 if (ret != -EEXIST) {
797 free_extent_map(em);
798 break;
799 }
800 btrfs_drop_extent_cache(inode, async_extent->start,
801 async_extent->start +
802 async_extent->ram_size - 1, 0);
803 }
804
805 if (ret)
806 goto out_free_reserve;
807
808 ret = btrfs_add_ordered_extent_compress(inode,
809 async_extent->start,
810 ins.objectid,
811 async_extent->ram_size,
812 ins.offset,
813 BTRFS_ORDERED_COMPRESSED,
814 async_extent->compress_type);
815 if (ret) {
816 btrfs_drop_extent_cache(inode, async_extent->start,
817 async_extent->start +
818 async_extent->ram_size - 1, 0);
819 goto out_free_reserve;
820 }
821
822 /*
823 * clear dirty, set writeback and unlock the pages.
824 */
825 extent_clear_unlock_delalloc(inode, async_extent->start,
826 async_extent->start +
827 async_extent->ram_size - 1,
828 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
829 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
830 PAGE_SET_WRITEBACK);
831 ret = btrfs_submit_compressed_write(inode,
832 async_extent->start,
833 async_extent->ram_size,
834 ins.objectid,
835 ins.offset, async_extent->pages,
836 async_extent->nr_pages);
837 if (ret) {
838 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
839 struct page *p = async_extent->pages[0];
840 const u64 start = async_extent->start;
841 const u64 end = start + async_extent->ram_size - 1;
842
843 p->mapping = inode->i_mapping;
844 tree->ops->writepage_end_io_hook(p, start, end,
845 NULL, 0);
846 p->mapping = NULL;
847 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
848 PAGE_END_WRITEBACK |
849 PAGE_SET_ERROR);
850 free_async_extent_pages(async_extent);
851 }
852 alloc_hint = ins.objectid + ins.offset;
853 kfree(async_extent);
854 cond_resched();
855 }
856 return;
857 out_free_reserve:
858 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
859 out_free:
860 extent_clear_unlock_delalloc(inode, async_extent->start,
861 async_extent->start +
862 async_extent->ram_size - 1,
863 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
864 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
865 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
866 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
867 PAGE_SET_ERROR);
868 free_async_extent_pages(async_extent);
869 kfree(async_extent);
870 goto again;
871 }
872
get_extent_allocation_hint(struct inode * inode,u64 start,u64 num_bytes)873 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
874 u64 num_bytes)
875 {
876 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
877 struct extent_map *em;
878 u64 alloc_hint = 0;
879
880 read_lock(&em_tree->lock);
881 em = search_extent_mapping(em_tree, start, num_bytes);
882 if (em) {
883 /*
884 * if block start isn't an actual block number then find the
885 * first block in this inode and use that as a hint. If that
886 * block is also bogus then just don't worry about it.
887 */
888 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
889 free_extent_map(em);
890 em = search_extent_mapping(em_tree, 0, 0);
891 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
892 alloc_hint = em->block_start;
893 if (em)
894 free_extent_map(em);
895 } else {
896 alloc_hint = em->block_start;
897 free_extent_map(em);
898 }
899 }
900 read_unlock(&em_tree->lock);
901
902 return alloc_hint;
903 }
904
905 /*
906 * when extent_io.c finds a delayed allocation range in the file,
907 * the call backs end up in this code. The basic idea is to
908 * allocate extents on disk for the range, and create ordered data structs
909 * in ram to track those extents.
910 *
911 * locked_page is the page that writepage had locked already. We use
912 * it to make sure we don't do extra locks or unlocks.
913 *
914 * *page_started is set to one if we unlock locked_page and do everything
915 * required to start IO on it. It may be clean and already done with
916 * IO when we return.
917 */
cow_file_range(struct inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written,int unlock)918 static noinline int cow_file_range(struct inode *inode,
919 struct page *locked_page,
920 u64 start, u64 end, int *page_started,
921 unsigned long *nr_written,
922 int unlock)
923 {
924 struct btrfs_root *root = BTRFS_I(inode)->root;
925 u64 alloc_hint = 0;
926 u64 num_bytes;
927 unsigned long ram_size;
928 u64 disk_num_bytes;
929 u64 cur_alloc_size;
930 u64 blocksize = root->sectorsize;
931 struct btrfs_key ins;
932 struct extent_map *em;
933 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
934 int ret = 0;
935
936 if (btrfs_is_free_space_inode(inode)) {
937 WARN_ON_ONCE(1);
938 ret = -EINVAL;
939 goto out_unlock;
940 }
941
942 num_bytes = ALIGN(end - start + 1, blocksize);
943 num_bytes = max(blocksize, num_bytes);
944 disk_num_bytes = num_bytes;
945
946 /* if this is a small write inside eof, kick off defrag */
947 if (num_bytes < 64 * 1024 &&
948 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
949 btrfs_add_inode_defrag(NULL, inode);
950
951 if (start == 0) {
952 /* lets try to make an inline extent */
953 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
954 NULL);
955 if (ret == 0) {
956 extent_clear_unlock_delalloc(inode, start, end, NULL,
957 EXTENT_LOCKED | EXTENT_DELALLOC |
958 EXTENT_DEFRAG, PAGE_UNLOCK |
959 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
960 PAGE_END_WRITEBACK);
961
962 *nr_written = *nr_written +
963 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
964 *page_started = 1;
965 goto out;
966 } else if (ret < 0) {
967 goto out_unlock;
968 }
969 }
970
971 BUG_ON(disk_num_bytes >
972 btrfs_super_total_bytes(root->fs_info->super_copy));
973
974 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
975 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
976
977 while (disk_num_bytes > 0) {
978 unsigned long op;
979
980 cur_alloc_size = disk_num_bytes;
981 ret = btrfs_reserve_extent(root, cur_alloc_size,
982 root->sectorsize, 0, alloc_hint,
983 &ins, 1, 1);
984 if (ret < 0)
985 goto out_unlock;
986
987 em = alloc_extent_map();
988 if (!em) {
989 ret = -ENOMEM;
990 goto out_reserve;
991 }
992 em->start = start;
993 em->orig_start = em->start;
994 ram_size = ins.offset;
995 em->len = ins.offset;
996 em->mod_start = em->start;
997 em->mod_len = em->len;
998
999 em->block_start = ins.objectid;
1000 em->block_len = ins.offset;
1001 em->orig_block_len = ins.offset;
1002 em->ram_bytes = ram_size;
1003 em->bdev = root->fs_info->fs_devices->latest_bdev;
1004 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1005 em->generation = -1;
1006
1007 while (1) {
1008 write_lock(&em_tree->lock);
1009 ret = add_extent_mapping(em_tree, em, 1);
1010 write_unlock(&em_tree->lock);
1011 if (ret != -EEXIST) {
1012 free_extent_map(em);
1013 break;
1014 }
1015 btrfs_drop_extent_cache(inode, start,
1016 start + ram_size - 1, 0);
1017 }
1018 if (ret)
1019 goto out_reserve;
1020
1021 cur_alloc_size = ins.offset;
1022 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1023 ram_size, cur_alloc_size, 0);
1024 if (ret)
1025 goto out_drop_extent_cache;
1026
1027 if (root->root_key.objectid ==
1028 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1029 ret = btrfs_reloc_clone_csums(inode, start,
1030 cur_alloc_size);
1031 if (ret)
1032 goto out_drop_extent_cache;
1033 }
1034
1035 if (disk_num_bytes < cur_alloc_size)
1036 break;
1037
1038 /* we're not doing compressed IO, don't unlock the first
1039 * page (which the caller expects to stay locked), don't
1040 * clear any dirty bits and don't set any writeback bits
1041 *
1042 * Do set the Private2 bit so we know this page was properly
1043 * setup for writepage
1044 */
1045 op = unlock ? PAGE_UNLOCK : 0;
1046 op |= PAGE_SET_PRIVATE2;
1047
1048 extent_clear_unlock_delalloc(inode, start,
1049 start + ram_size - 1, locked_page,
1050 EXTENT_LOCKED | EXTENT_DELALLOC,
1051 op);
1052 disk_num_bytes -= cur_alloc_size;
1053 num_bytes -= cur_alloc_size;
1054 alloc_hint = ins.objectid + ins.offset;
1055 start += cur_alloc_size;
1056 }
1057 out:
1058 return ret;
1059
1060 out_drop_extent_cache:
1061 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1062 out_reserve:
1063 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
1064 out_unlock:
1065 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1066 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1067 EXTENT_DELALLOC | EXTENT_DEFRAG,
1068 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1069 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
1070 goto out;
1071 }
1072
1073 /*
1074 * work queue call back to started compression on a file and pages
1075 */
async_cow_start(struct btrfs_work * work)1076 static noinline void async_cow_start(struct btrfs_work *work)
1077 {
1078 struct async_cow *async_cow;
1079 int num_added = 0;
1080 async_cow = container_of(work, struct async_cow, work);
1081
1082 compress_file_range(async_cow->inode, async_cow->locked_page,
1083 async_cow->start, async_cow->end, async_cow,
1084 &num_added);
1085 if (num_added == 0) {
1086 btrfs_add_delayed_iput(async_cow->inode);
1087 async_cow->inode = NULL;
1088 }
1089 }
1090
1091 /*
1092 * work queue call back to submit previously compressed pages
1093 */
async_cow_submit(struct btrfs_work * work)1094 static noinline void async_cow_submit(struct btrfs_work *work)
1095 {
1096 struct async_cow *async_cow;
1097 struct btrfs_root *root;
1098 unsigned long nr_pages;
1099
1100 async_cow = container_of(work, struct async_cow, work);
1101
1102 root = async_cow->root;
1103 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1104 PAGE_CACHE_SHIFT;
1105
1106 /*
1107 * atomic_sub_return implies a barrier for waitqueue_active
1108 */
1109 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1110 5 * 1024 * 1024 &&
1111 waitqueue_active(&root->fs_info->async_submit_wait))
1112 wake_up(&root->fs_info->async_submit_wait);
1113
1114 if (async_cow->inode)
1115 submit_compressed_extents(async_cow->inode, async_cow);
1116 }
1117
async_cow_free(struct btrfs_work * work)1118 static noinline void async_cow_free(struct btrfs_work *work)
1119 {
1120 struct async_cow *async_cow;
1121 async_cow = container_of(work, struct async_cow, work);
1122 if (async_cow->inode)
1123 btrfs_add_delayed_iput(async_cow->inode);
1124 kfree(async_cow);
1125 }
1126
cow_file_range_async(struct inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written)1127 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1128 u64 start, u64 end, int *page_started,
1129 unsigned long *nr_written)
1130 {
1131 struct async_cow *async_cow;
1132 struct btrfs_root *root = BTRFS_I(inode)->root;
1133 unsigned long nr_pages;
1134 u64 cur_end;
1135 int limit = 10 * 1024 * 1024;
1136
1137 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1138 1, 0, NULL, GFP_NOFS);
1139 while (start < end) {
1140 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1141 BUG_ON(!async_cow); /* -ENOMEM */
1142 async_cow->inode = igrab(inode);
1143 async_cow->root = root;
1144 async_cow->locked_page = locked_page;
1145 async_cow->start = start;
1146
1147 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1148 !btrfs_test_opt(root, FORCE_COMPRESS))
1149 cur_end = end;
1150 else
1151 cur_end = min(end, start + 512 * 1024 - 1);
1152
1153 async_cow->end = cur_end;
1154 INIT_LIST_HEAD(&async_cow->extents);
1155
1156 btrfs_init_work(&async_cow->work,
1157 btrfs_delalloc_helper,
1158 async_cow_start, async_cow_submit,
1159 async_cow_free);
1160
1161 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1162 PAGE_CACHE_SHIFT;
1163 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1164
1165 btrfs_queue_work(root->fs_info->delalloc_workers,
1166 &async_cow->work);
1167
1168 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1169 wait_event(root->fs_info->async_submit_wait,
1170 (atomic_read(&root->fs_info->async_delalloc_pages) <
1171 limit));
1172 }
1173
1174 while (atomic_read(&root->fs_info->async_submit_draining) &&
1175 atomic_read(&root->fs_info->async_delalloc_pages)) {
1176 wait_event(root->fs_info->async_submit_wait,
1177 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1178 0));
1179 }
1180
1181 *nr_written += nr_pages;
1182 start = cur_end + 1;
1183 }
1184 *page_started = 1;
1185 return 0;
1186 }
1187
csum_exist_in_range(struct btrfs_root * root,u64 bytenr,u64 num_bytes)1188 static noinline int csum_exist_in_range(struct btrfs_root *root,
1189 u64 bytenr, u64 num_bytes)
1190 {
1191 int ret;
1192 struct btrfs_ordered_sum *sums;
1193 LIST_HEAD(list);
1194
1195 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1196 bytenr + num_bytes - 1, &list, 0);
1197 if (ret == 0 && list_empty(&list))
1198 return 0;
1199
1200 while (!list_empty(&list)) {
1201 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1202 list_del(&sums->list);
1203 kfree(sums);
1204 }
1205 return 1;
1206 }
1207
1208 /*
1209 * when nowcow writeback call back. This checks for snapshots or COW copies
1210 * of the extents that exist in the file, and COWs the file as required.
1211 *
1212 * If no cow copies or snapshots exist, we write directly to the existing
1213 * blocks on disk
1214 */
run_delalloc_nocow(struct inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,int force,unsigned long * nr_written)1215 static noinline int run_delalloc_nocow(struct inode *inode,
1216 struct page *locked_page,
1217 u64 start, u64 end, int *page_started, int force,
1218 unsigned long *nr_written)
1219 {
1220 struct btrfs_root *root = BTRFS_I(inode)->root;
1221 struct btrfs_trans_handle *trans;
1222 struct extent_buffer *leaf;
1223 struct btrfs_path *path;
1224 struct btrfs_file_extent_item *fi;
1225 struct btrfs_key found_key;
1226 u64 cow_start;
1227 u64 cur_offset;
1228 u64 extent_end;
1229 u64 extent_offset;
1230 u64 disk_bytenr;
1231 u64 num_bytes;
1232 u64 disk_num_bytes;
1233 u64 ram_bytes;
1234 int extent_type;
1235 int ret, err;
1236 int type;
1237 int nocow;
1238 int check_prev = 1;
1239 bool nolock;
1240 u64 ino = btrfs_ino(inode);
1241
1242 path = btrfs_alloc_path();
1243 if (!path) {
1244 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1245 EXTENT_LOCKED | EXTENT_DELALLOC |
1246 EXTENT_DO_ACCOUNTING |
1247 EXTENT_DEFRAG, PAGE_UNLOCK |
1248 PAGE_CLEAR_DIRTY |
1249 PAGE_SET_WRITEBACK |
1250 PAGE_END_WRITEBACK);
1251 return -ENOMEM;
1252 }
1253
1254 nolock = btrfs_is_free_space_inode(inode);
1255
1256 if (nolock)
1257 trans = btrfs_join_transaction_nolock(root);
1258 else
1259 trans = btrfs_join_transaction(root);
1260
1261 if (IS_ERR(trans)) {
1262 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1263 EXTENT_LOCKED | EXTENT_DELALLOC |
1264 EXTENT_DO_ACCOUNTING |
1265 EXTENT_DEFRAG, PAGE_UNLOCK |
1266 PAGE_CLEAR_DIRTY |
1267 PAGE_SET_WRITEBACK |
1268 PAGE_END_WRITEBACK);
1269 btrfs_free_path(path);
1270 return PTR_ERR(trans);
1271 }
1272
1273 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1274
1275 cow_start = (u64)-1;
1276 cur_offset = start;
1277 while (1) {
1278 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1279 cur_offset, 0);
1280 if (ret < 0)
1281 goto error;
1282 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1283 leaf = path->nodes[0];
1284 btrfs_item_key_to_cpu(leaf, &found_key,
1285 path->slots[0] - 1);
1286 if (found_key.objectid == ino &&
1287 found_key.type == BTRFS_EXTENT_DATA_KEY)
1288 path->slots[0]--;
1289 }
1290 check_prev = 0;
1291 next_slot:
1292 leaf = path->nodes[0];
1293 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1294 ret = btrfs_next_leaf(root, path);
1295 if (ret < 0)
1296 goto error;
1297 if (ret > 0)
1298 break;
1299 leaf = path->nodes[0];
1300 }
1301
1302 nocow = 0;
1303 disk_bytenr = 0;
1304 num_bytes = 0;
1305 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1306
1307 if (found_key.objectid > ino)
1308 break;
1309 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1310 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1311 path->slots[0]++;
1312 goto next_slot;
1313 }
1314 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1315 found_key.offset > end)
1316 break;
1317
1318 if (found_key.offset > cur_offset) {
1319 extent_end = found_key.offset;
1320 extent_type = 0;
1321 goto out_check;
1322 }
1323
1324 fi = btrfs_item_ptr(leaf, path->slots[0],
1325 struct btrfs_file_extent_item);
1326 extent_type = btrfs_file_extent_type(leaf, fi);
1327
1328 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1329 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1330 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1331 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1332 extent_offset = btrfs_file_extent_offset(leaf, fi);
1333 extent_end = found_key.offset +
1334 btrfs_file_extent_num_bytes(leaf, fi);
1335 disk_num_bytes =
1336 btrfs_file_extent_disk_num_bytes(leaf, fi);
1337 if (extent_end <= start) {
1338 path->slots[0]++;
1339 goto next_slot;
1340 }
1341 if (disk_bytenr == 0)
1342 goto out_check;
1343 if (btrfs_file_extent_compression(leaf, fi) ||
1344 btrfs_file_extent_encryption(leaf, fi) ||
1345 btrfs_file_extent_other_encoding(leaf, fi))
1346 goto out_check;
1347 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1348 goto out_check;
1349 if (btrfs_extent_readonly(root, disk_bytenr))
1350 goto out_check;
1351 if (btrfs_cross_ref_exist(trans, root, ino,
1352 found_key.offset -
1353 extent_offset, disk_bytenr))
1354 goto out_check;
1355 disk_bytenr += extent_offset;
1356 disk_bytenr += cur_offset - found_key.offset;
1357 num_bytes = min(end + 1, extent_end) - cur_offset;
1358 /*
1359 * if there are pending snapshots for this root,
1360 * we fall into common COW way.
1361 */
1362 if (!nolock) {
1363 err = btrfs_start_write_no_snapshoting(root);
1364 if (!err)
1365 goto out_check;
1366 }
1367 /*
1368 * force cow if csum exists in the range.
1369 * this ensure that csum for a given extent are
1370 * either valid or do not exist.
1371 */
1372 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1373 goto out_check;
1374 nocow = 1;
1375 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1376 extent_end = found_key.offset +
1377 btrfs_file_extent_inline_len(leaf,
1378 path->slots[0], fi);
1379 extent_end = ALIGN(extent_end, root->sectorsize);
1380 } else {
1381 BUG_ON(1);
1382 }
1383 out_check:
1384 if (extent_end <= start) {
1385 path->slots[0]++;
1386 if (!nolock && nocow)
1387 btrfs_end_write_no_snapshoting(root);
1388 goto next_slot;
1389 }
1390 if (!nocow) {
1391 if (cow_start == (u64)-1)
1392 cow_start = cur_offset;
1393 cur_offset = extent_end;
1394 if (cur_offset > end)
1395 break;
1396 path->slots[0]++;
1397 goto next_slot;
1398 }
1399
1400 btrfs_release_path(path);
1401 if (cow_start != (u64)-1) {
1402 ret = cow_file_range(inode, locked_page,
1403 cow_start, found_key.offset - 1,
1404 page_started, nr_written, 1);
1405 if (ret) {
1406 if (!nolock && nocow)
1407 btrfs_end_write_no_snapshoting(root);
1408 goto error;
1409 }
1410 cow_start = (u64)-1;
1411 }
1412
1413 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1414 struct extent_map *em;
1415 struct extent_map_tree *em_tree;
1416 em_tree = &BTRFS_I(inode)->extent_tree;
1417 em = alloc_extent_map();
1418 BUG_ON(!em); /* -ENOMEM */
1419 em->start = cur_offset;
1420 em->orig_start = found_key.offset - extent_offset;
1421 em->len = num_bytes;
1422 em->block_len = num_bytes;
1423 em->block_start = disk_bytenr;
1424 em->orig_block_len = disk_num_bytes;
1425 em->ram_bytes = ram_bytes;
1426 em->bdev = root->fs_info->fs_devices->latest_bdev;
1427 em->mod_start = em->start;
1428 em->mod_len = em->len;
1429 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1430 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1431 em->generation = -1;
1432 while (1) {
1433 write_lock(&em_tree->lock);
1434 ret = add_extent_mapping(em_tree, em, 1);
1435 write_unlock(&em_tree->lock);
1436 if (ret != -EEXIST) {
1437 free_extent_map(em);
1438 break;
1439 }
1440 btrfs_drop_extent_cache(inode, em->start,
1441 em->start + em->len - 1, 0);
1442 }
1443 type = BTRFS_ORDERED_PREALLOC;
1444 } else {
1445 type = BTRFS_ORDERED_NOCOW;
1446 }
1447
1448 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1449 num_bytes, num_bytes, type);
1450 BUG_ON(ret); /* -ENOMEM */
1451
1452 if (root->root_key.objectid ==
1453 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1454 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1455 num_bytes);
1456 if (ret) {
1457 if (!nolock && nocow)
1458 btrfs_end_write_no_snapshoting(root);
1459 goto error;
1460 }
1461 }
1462
1463 extent_clear_unlock_delalloc(inode, cur_offset,
1464 cur_offset + num_bytes - 1,
1465 locked_page, EXTENT_LOCKED |
1466 EXTENT_DELALLOC, PAGE_UNLOCK |
1467 PAGE_SET_PRIVATE2);
1468 if (!nolock && nocow)
1469 btrfs_end_write_no_snapshoting(root);
1470 cur_offset = extent_end;
1471 if (cur_offset > end)
1472 break;
1473 }
1474 btrfs_release_path(path);
1475
1476 if (cur_offset <= end && cow_start == (u64)-1) {
1477 cow_start = cur_offset;
1478 cur_offset = end;
1479 }
1480
1481 if (cow_start != (u64)-1) {
1482 ret = cow_file_range(inode, locked_page, cow_start, end,
1483 page_started, nr_written, 1);
1484 if (ret)
1485 goto error;
1486 }
1487
1488 error:
1489 err = btrfs_end_transaction(trans, root);
1490 if (!ret)
1491 ret = err;
1492
1493 if (ret && cur_offset < end)
1494 extent_clear_unlock_delalloc(inode, cur_offset, end,
1495 locked_page, EXTENT_LOCKED |
1496 EXTENT_DELALLOC | EXTENT_DEFRAG |
1497 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1498 PAGE_CLEAR_DIRTY |
1499 PAGE_SET_WRITEBACK |
1500 PAGE_END_WRITEBACK);
1501 btrfs_free_path(path);
1502 return ret;
1503 }
1504
need_force_cow(struct inode * inode,u64 start,u64 end)1505 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1506 {
1507
1508 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1509 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1510 return 0;
1511
1512 /*
1513 * @defrag_bytes is a hint value, no spinlock held here,
1514 * if is not zero, it means the file is defragging.
1515 * Force cow if given extent needs to be defragged.
1516 */
1517 if (BTRFS_I(inode)->defrag_bytes &&
1518 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1519 EXTENT_DEFRAG, 0, NULL))
1520 return 1;
1521
1522 return 0;
1523 }
1524
1525 /*
1526 * extent_io.c call back to do delayed allocation processing
1527 */
run_delalloc_range(struct inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written)1528 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1529 u64 start, u64 end, int *page_started,
1530 unsigned long *nr_written)
1531 {
1532 int ret;
1533 int force_cow = need_force_cow(inode, start, end);
1534
1535 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1536 ret = run_delalloc_nocow(inode, locked_page, start, end,
1537 page_started, 1, nr_written);
1538 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1539 ret = run_delalloc_nocow(inode, locked_page, start, end,
1540 page_started, 0, nr_written);
1541 } else if (!inode_need_compress(inode)) {
1542 ret = cow_file_range(inode, locked_page, start, end,
1543 page_started, nr_written, 1);
1544 } else {
1545 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1546 &BTRFS_I(inode)->runtime_flags);
1547 ret = cow_file_range_async(inode, locked_page, start, end,
1548 page_started, nr_written);
1549 }
1550 return ret;
1551 }
1552
btrfs_split_extent_hook(struct inode * inode,struct extent_state * orig,u64 split)1553 static void btrfs_split_extent_hook(struct inode *inode,
1554 struct extent_state *orig, u64 split)
1555 {
1556 u64 size;
1557
1558 /* not delalloc, ignore it */
1559 if (!(orig->state & EXTENT_DELALLOC))
1560 return;
1561
1562 size = orig->end - orig->start + 1;
1563 if (size > BTRFS_MAX_EXTENT_SIZE) {
1564 u64 num_extents;
1565 u64 new_size;
1566
1567 /*
1568 * See the explanation in btrfs_merge_extent_hook, the same
1569 * applies here, just in reverse.
1570 */
1571 new_size = orig->end - split + 1;
1572 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1573 BTRFS_MAX_EXTENT_SIZE);
1574 new_size = split - orig->start;
1575 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1576 BTRFS_MAX_EXTENT_SIZE);
1577 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1578 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1579 return;
1580 }
1581
1582 spin_lock(&BTRFS_I(inode)->lock);
1583 BTRFS_I(inode)->outstanding_extents++;
1584 spin_unlock(&BTRFS_I(inode)->lock);
1585 }
1586
1587 /*
1588 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1589 * extents so we can keep track of new extents that are just merged onto old
1590 * extents, such as when we are doing sequential writes, so we can properly
1591 * account for the metadata space we'll need.
1592 */
btrfs_merge_extent_hook(struct inode * inode,struct extent_state * new,struct extent_state * other)1593 static void btrfs_merge_extent_hook(struct inode *inode,
1594 struct extent_state *new,
1595 struct extent_state *other)
1596 {
1597 u64 new_size, old_size;
1598 u64 num_extents;
1599
1600 /* not delalloc, ignore it */
1601 if (!(other->state & EXTENT_DELALLOC))
1602 return;
1603
1604 if (new->start > other->start)
1605 new_size = new->end - other->start + 1;
1606 else
1607 new_size = other->end - new->start + 1;
1608
1609 /* we're not bigger than the max, unreserve the space and go */
1610 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1611 spin_lock(&BTRFS_I(inode)->lock);
1612 BTRFS_I(inode)->outstanding_extents--;
1613 spin_unlock(&BTRFS_I(inode)->lock);
1614 return;
1615 }
1616
1617 /*
1618 * We have to add up either side to figure out how many extents were
1619 * accounted for before we merged into one big extent. If the number of
1620 * extents we accounted for is <= the amount we need for the new range
1621 * then we can return, otherwise drop. Think of it like this
1622 *
1623 * [ 4k][MAX_SIZE]
1624 *
1625 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1626 * need 2 outstanding extents, on one side we have 1 and the other side
1627 * we have 1 so they are == and we can return. But in this case
1628 *
1629 * [MAX_SIZE+4k][MAX_SIZE+4k]
1630 *
1631 * Each range on their own accounts for 2 extents, but merged together
1632 * they are only 3 extents worth of accounting, so we need to drop in
1633 * this case.
1634 */
1635 old_size = other->end - other->start + 1;
1636 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1637 BTRFS_MAX_EXTENT_SIZE);
1638 old_size = new->end - new->start + 1;
1639 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1640 BTRFS_MAX_EXTENT_SIZE);
1641
1642 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1643 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1644 return;
1645
1646 spin_lock(&BTRFS_I(inode)->lock);
1647 BTRFS_I(inode)->outstanding_extents--;
1648 spin_unlock(&BTRFS_I(inode)->lock);
1649 }
1650
btrfs_add_delalloc_inodes(struct btrfs_root * root,struct inode * inode)1651 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1652 struct inode *inode)
1653 {
1654 spin_lock(&root->delalloc_lock);
1655 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1656 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1657 &root->delalloc_inodes);
1658 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1659 &BTRFS_I(inode)->runtime_flags);
1660 root->nr_delalloc_inodes++;
1661 if (root->nr_delalloc_inodes == 1) {
1662 spin_lock(&root->fs_info->delalloc_root_lock);
1663 BUG_ON(!list_empty(&root->delalloc_root));
1664 list_add_tail(&root->delalloc_root,
1665 &root->fs_info->delalloc_roots);
1666 spin_unlock(&root->fs_info->delalloc_root_lock);
1667 }
1668 }
1669 spin_unlock(&root->delalloc_lock);
1670 }
1671
btrfs_del_delalloc_inode(struct btrfs_root * root,struct inode * inode)1672 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1673 struct inode *inode)
1674 {
1675 spin_lock(&root->delalloc_lock);
1676 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1677 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1678 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1679 &BTRFS_I(inode)->runtime_flags);
1680 root->nr_delalloc_inodes--;
1681 if (!root->nr_delalloc_inodes) {
1682 spin_lock(&root->fs_info->delalloc_root_lock);
1683 BUG_ON(list_empty(&root->delalloc_root));
1684 list_del_init(&root->delalloc_root);
1685 spin_unlock(&root->fs_info->delalloc_root_lock);
1686 }
1687 }
1688 spin_unlock(&root->delalloc_lock);
1689 }
1690
1691 /*
1692 * extent_io.c set_bit_hook, used to track delayed allocation
1693 * bytes in this file, and to maintain the list of inodes that
1694 * have pending delalloc work to be done.
1695 */
btrfs_set_bit_hook(struct inode * inode,struct extent_state * state,unsigned * bits)1696 static void btrfs_set_bit_hook(struct inode *inode,
1697 struct extent_state *state, unsigned *bits)
1698 {
1699
1700 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1701 WARN_ON(1);
1702 /*
1703 * set_bit and clear bit hooks normally require _irqsave/restore
1704 * but in this case, we are only testing for the DELALLOC
1705 * bit, which is only set or cleared with irqs on
1706 */
1707 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1708 struct btrfs_root *root = BTRFS_I(inode)->root;
1709 u64 len = state->end + 1 - state->start;
1710 bool do_list = !btrfs_is_free_space_inode(inode);
1711
1712 if (*bits & EXTENT_FIRST_DELALLOC) {
1713 *bits &= ~EXTENT_FIRST_DELALLOC;
1714 } else {
1715 spin_lock(&BTRFS_I(inode)->lock);
1716 BTRFS_I(inode)->outstanding_extents++;
1717 spin_unlock(&BTRFS_I(inode)->lock);
1718 }
1719
1720 /* For sanity tests */
1721 if (btrfs_test_is_dummy_root(root))
1722 return;
1723
1724 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1725 root->fs_info->delalloc_batch);
1726 spin_lock(&BTRFS_I(inode)->lock);
1727 BTRFS_I(inode)->delalloc_bytes += len;
1728 if (*bits & EXTENT_DEFRAG)
1729 BTRFS_I(inode)->defrag_bytes += len;
1730 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1731 &BTRFS_I(inode)->runtime_flags))
1732 btrfs_add_delalloc_inodes(root, inode);
1733 spin_unlock(&BTRFS_I(inode)->lock);
1734 }
1735 }
1736
1737 /*
1738 * extent_io.c clear_bit_hook, see set_bit_hook for why
1739 */
btrfs_clear_bit_hook(struct inode * inode,struct extent_state * state,unsigned * bits)1740 static void btrfs_clear_bit_hook(struct inode *inode,
1741 struct extent_state *state,
1742 unsigned *bits)
1743 {
1744 u64 len = state->end + 1 - state->start;
1745 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1746 BTRFS_MAX_EXTENT_SIZE);
1747
1748 spin_lock(&BTRFS_I(inode)->lock);
1749 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1750 BTRFS_I(inode)->defrag_bytes -= len;
1751 spin_unlock(&BTRFS_I(inode)->lock);
1752
1753 /*
1754 * set_bit and clear bit hooks normally require _irqsave/restore
1755 * but in this case, we are only testing for the DELALLOC
1756 * bit, which is only set or cleared with irqs on
1757 */
1758 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1759 struct btrfs_root *root = BTRFS_I(inode)->root;
1760 bool do_list = !btrfs_is_free_space_inode(inode);
1761
1762 if (*bits & EXTENT_FIRST_DELALLOC) {
1763 *bits &= ~EXTENT_FIRST_DELALLOC;
1764 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1765 spin_lock(&BTRFS_I(inode)->lock);
1766 BTRFS_I(inode)->outstanding_extents -= num_extents;
1767 spin_unlock(&BTRFS_I(inode)->lock);
1768 }
1769
1770 /*
1771 * We don't reserve metadata space for space cache inodes so we
1772 * don't need to call dellalloc_release_metadata if there is an
1773 * error.
1774 */
1775 if (*bits & EXTENT_DO_ACCOUNTING &&
1776 root != root->fs_info->tree_root)
1777 btrfs_delalloc_release_metadata(inode, len);
1778
1779 /* For sanity tests. */
1780 if (btrfs_test_is_dummy_root(root))
1781 return;
1782
1783 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1784 && do_list && !(state->state & EXTENT_NORESERVE))
1785 btrfs_free_reserved_data_space_noquota(inode,
1786 state->start, len);
1787
1788 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1789 root->fs_info->delalloc_batch);
1790 spin_lock(&BTRFS_I(inode)->lock);
1791 BTRFS_I(inode)->delalloc_bytes -= len;
1792 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1793 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1794 &BTRFS_I(inode)->runtime_flags))
1795 btrfs_del_delalloc_inode(root, inode);
1796 spin_unlock(&BTRFS_I(inode)->lock);
1797 }
1798 }
1799
1800 /*
1801 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1802 * we don't create bios that span stripes or chunks
1803 */
btrfs_merge_bio_hook(int rw,struct page * page,unsigned long offset,size_t size,struct bio * bio,unsigned long bio_flags)1804 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1805 size_t size, struct bio *bio,
1806 unsigned long bio_flags)
1807 {
1808 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1809 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1810 u64 length = 0;
1811 u64 map_length;
1812 int ret;
1813
1814 if (bio_flags & EXTENT_BIO_COMPRESSED)
1815 return 0;
1816
1817 length = bio->bi_iter.bi_size;
1818 map_length = length;
1819 ret = btrfs_map_block(root->fs_info, rw, logical,
1820 &map_length, NULL, 0);
1821 /* Will always return 0 with map_multi == NULL */
1822 BUG_ON(ret < 0);
1823 if (map_length < length + size)
1824 return 1;
1825 return 0;
1826 }
1827
1828 /*
1829 * in order to insert checksums into the metadata in large chunks,
1830 * we wait until bio submission time. All the pages in the bio are
1831 * checksummed and sums are attached onto the ordered extent record.
1832 *
1833 * At IO completion time the cums attached on the ordered extent record
1834 * are inserted into the btree
1835 */
__btrfs_submit_bio_start(struct inode * inode,int rw,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset)1836 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1837 struct bio *bio, int mirror_num,
1838 unsigned long bio_flags,
1839 u64 bio_offset)
1840 {
1841 struct btrfs_root *root = BTRFS_I(inode)->root;
1842 int ret = 0;
1843
1844 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1845 BUG_ON(ret); /* -ENOMEM */
1846 return 0;
1847 }
1848
1849 /*
1850 * in order to insert checksums into the metadata in large chunks,
1851 * we wait until bio submission time. All the pages in the bio are
1852 * checksummed and sums are attached onto the ordered extent record.
1853 *
1854 * At IO completion time the cums attached on the ordered extent record
1855 * are inserted into the btree
1856 */
__btrfs_submit_bio_done(struct inode * inode,int rw,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset)1857 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1858 int mirror_num, unsigned long bio_flags,
1859 u64 bio_offset)
1860 {
1861 struct btrfs_root *root = BTRFS_I(inode)->root;
1862 int ret;
1863
1864 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1865 if (ret) {
1866 bio->bi_error = ret;
1867 bio_endio(bio);
1868 }
1869 return ret;
1870 }
1871
1872 /*
1873 * extent_io.c submission hook. This does the right thing for csum calculation
1874 * on write, or reading the csums from the tree before a read
1875 */
btrfs_submit_bio_hook(struct inode * inode,int rw,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset)1876 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1877 int mirror_num, unsigned long bio_flags,
1878 u64 bio_offset)
1879 {
1880 struct btrfs_root *root = BTRFS_I(inode)->root;
1881 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1882 int ret = 0;
1883 int skip_sum;
1884 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1885
1886 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1887
1888 if (btrfs_is_free_space_inode(inode))
1889 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
1890
1891 if (!(rw & REQ_WRITE)) {
1892 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1893 if (ret)
1894 goto out;
1895
1896 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1897 ret = btrfs_submit_compressed_read(inode, bio,
1898 mirror_num,
1899 bio_flags);
1900 goto out;
1901 } else if (!skip_sum) {
1902 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1903 if (ret)
1904 goto out;
1905 }
1906 goto mapit;
1907 } else if (async && !skip_sum) {
1908 /* csum items have already been cloned */
1909 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1910 goto mapit;
1911 /* we're doing a write, do the async checksumming */
1912 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1913 inode, rw, bio, mirror_num,
1914 bio_flags, bio_offset,
1915 __btrfs_submit_bio_start,
1916 __btrfs_submit_bio_done);
1917 goto out;
1918 } else if (!skip_sum) {
1919 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1920 if (ret)
1921 goto out;
1922 }
1923
1924 mapit:
1925 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1926
1927 out:
1928 if (ret < 0) {
1929 bio->bi_error = ret;
1930 bio_endio(bio);
1931 }
1932 return ret;
1933 }
1934
1935 /*
1936 * given a list of ordered sums record them in the inode. This happens
1937 * at IO completion time based on sums calculated at bio submission time.
1938 */
add_pending_csums(struct btrfs_trans_handle * trans,struct inode * inode,u64 file_offset,struct list_head * list)1939 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1940 struct inode *inode, u64 file_offset,
1941 struct list_head *list)
1942 {
1943 struct btrfs_ordered_sum *sum;
1944
1945 list_for_each_entry(sum, list, list) {
1946 trans->adding_csums = 1;
1947 btrfs_csum_file_blocks(trans,
1948 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1949 trans->adding_csums = 0;
1950 }
1951 return 0;
1952 }
1953
btrfs_set_extent_delalloc(struct inode * inode,u64 start,u64 end,struct extent_state ** cached_state)1954 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1955 struct extent_state **cached_state)
1956 {
1957 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
1958 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1959 cached_state, GFP_NOFS);
1960 }
1961
1962 /* see btrfs_writepage_start_hook for details on why this is required */
1963 struct btrfs_writepage_fixup {
1964 struct page *page;
1965 struct btrfs_work work;
1966 };
1967
btrfs_writepage_fixup_worker(struct btrfs_work * work)1968 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1969 {
1970 struct btrfs_writepage_fixup *fixup;
1971 struct btrfs_ordered_extent *ordered;
1972 struct extent_state *cached_state = NULL;
1973 struct page *page;
1974 struct inode *inode;
1975 u64 page_start;
1976 u64 page_end;
1977 int ret;
1978
1979 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1980 page = fixup->page;
1981 again:
1982 lock_page(page);
1983 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1984 ClearPageChecked(page);
1985 goto out_page;
1986 }
1987
1988 inode = page->mapping->host;
1989 page_start = page_offset(page);
1990 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1991
1992 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1993 &cached_state);
1994
1995 /* already ordered? We're done */
1996 if (PagePrivate2(page))
1997 goto out;
1998
1999 ordered = btrfs_lookup_ordered_extent(inode, page_start);
2000 if (ordered) {
2001 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2002 page_end, &cached_state, GFP_NOFS);
2003 unlock_page(page);
2004 btrfs_start_ordered_extent(inode, ordered, 1);
2005 btrfs_put_ordered_extent(ordered);
2006 goto again;
2007 }
2008
2009 ret = btrfs_delalloc_reserve_space(inode, page_start,
2010 PAGE_CACHE_SIZE);
2011 if (ret) {
2012 mapping_set_error(page->mapping, ret);
2013 end_extent_writepage(page, ret, page_start, page_end);
2014 ClearPageChecked(page);
2015 goto out;
2016 }
2017
2018 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
2019 ClearPageChecked(page);
2020 set_page_dirty(page);
2021 out:
2022 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2023 &cached_state, GFP_NOFS);
2024 out_page:
2025 unlock_page(page);
2026 page_cache_release(page);
2027 kfree(fixup);
2028 }
2029
2030 /*
2031 * There are a few paths in the higher layers of the kernel that directly
2032 * set the page dirty bit without asking the filesystem if it is a
2033 * good idea. This causes problems because we want to make sure COW
2034 * properly happens and the data=ordered rules are followed.
2035 *
2036 * In our case any range that doesn't have the ORDERED bit set
2037 * hasn't been properly setup for IO. We kick off an async process
2038 * to fix it up. The async helper will wait for ordered extents, set
2039 * the delalloc bit and make it safe to write the page.
2040 */
btrfs_writepage_start_hook(struct page * page,u64 start,u64 end)2041 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2042 {
2043 struct inode *inode = page->mapping->host;
2044 struct btrfs_writepage_fixup *fixup;
2045 struct btrfs_root *root = BTRFS_I(inode)->root;
2046
2047 /* this page is properly in the ordered list */
2048 if (TestClearPagePrivate2(page))
2049 return 0;
2050
2051 if (PageChecked(page))
2052 return -EAGAIN;
2053
2054 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2055 if (!fixup)
2056 return -EAGAIN;
2057
2058 SetPageChecked(page);
2059 page_cache_get(page);
2060 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2061 btrfs_writepage_fixup_worker, NULL, NULL);
2062 fixup->page = page;
2063 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
2064 return -EBUSY;
2065 }
2066
insert_reserved_file_extent(struct btrfs_trans_handle * trans,struct inode * inode,u64 file_pos,u64 disk_bytenr,u64 disk_num_bytes,u64 num_bytes,u64 ram_bytes,u8 compression,u8 encryption,u16 other_encoding,int extent_type)2067 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2068 struct inode *inode, u64 file_pos,
2069 u64 disk_bytenr, u64 disk_num_bytes,
2070 u64 num_bytes, u64 ram_bytes,
2071 u8 compression, u8 encryption,
2072 u16 other_encoding, int extent_type)
2073 {
2074 struct btrfs_root *root = BTRFS_I(inode)->root;
2075 struct btrfs_file_extent_item *fi;
2076 struct btrfs_path *path;
2077 struct extent_buffer *leaf;
2078 struct btrfs_key ins;
2079 int extent_inserted = 0;
2080 int ret;
2081
2082 path = btrfs_alloc_path();
2083 if (!path)
2084 return -ENOMEM;
2085
2086 /*
2087 * we may be replacing one extent in the tree with another.
2088 * The new extent is pinned in the extent map, and we don't want
2089 * to drop it from the cache until it is completely in the btree.
2090 *
2091 * So, tell btrfs_drop_extents to leave this extent in the cache.
2092 * the caller is expected to unpin it and allow it to be merged
2093 * with the others.
2094 */
2095 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2096 file_pos + num_bytes, NULL, 0,
2097 1, sizeof(*fi), &extent_inserted);
2098 if (ret)
2099 goto out;
2100
2101 if (!extent_inserted) {
2102 ins.objectid = btrfs_ino(inode);
2103 ins.offset = file_pos;
2104 ins.type = BTRFS_EXTENT_DATA_KEY;
2105
2106 path->leave_spinning = 1;
2107 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2108 sizeof(*fi));
2109 if (ret)
2110 goto out;
2111 }
2112 leaf = path->nodes[0];
2113 fi = btrfs_item_ptr(leaf, path->slots[0],
2114 struct btrfs_file_extent_item);
2115 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2116 btrfs_set_file_extent_type(leaf, fi, extent_type);
2117 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2118 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2119 btrfs_set_file_extent_offset(leaf, fi, 0);
2120 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2121 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2122 btrfs_set_file_extent_compression(leaf, fi, compression);
2123 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2124 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2125
2126 btrfs_mark_buffer_dirty(leaf);
2127 btrfs_release_path(path);
2128
2129 inode_add_bytes(inode, num_bytes);
2130
2131 ins.objectid = disk_bytenr;
2132 ins.offset = disk_num_bytes;
2133 ins.type = BTRFS_EXTENT_ITEM_KEY;
2134 ret = btrfs_alloc_reserved_file_extent(trans, root,
2135 root->root_key.objectid,
2136 btrfs_ino(inode), file_pos,
2137 ram_bytes, &ins);
2138 /*
2139 * Release the reserved range from inode dirty range map, as it is
2140 * already moved into delayed_ref_head
2141 */
2142 btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2143 out:
2144 btrfs_free_path(path);
2145
2146 return ret;
2147 }
2148
2149 /* snapshot-aware defrag */
2150 struct sa_defrag_extent_backref {
2151 struct rb_node node;
2152 struct old_sa_defrag_extent *old;
2153 u64 root_id;
2154 u64 inum;
2155 u64 file_pos;
2156 u64 extent_offset;
2157 u64 num_bytes;
2158 u64 generation;
2159 };
2160
2161 struct old_sa_defrag_extent {
2162 struct list_head list;
2163 struct new_sa_defrag_extent *new;
2164
2165 u64 extent_offset;
2166 u64 bytenr;
2167 u64 offset;
2168 u64 len;
2169 int count;
2170 };
2171
2172 struct new_sa_defrag_extent {
2173 struct rb_root root;
2174 struct list_head head;
2175 struct btrfs_path *path;
2176 struct inode *inode;
2177 u64 file_pos;
2178 u64 len;
2179 u64 bytenr;
2180 u64 disk_len;
2181 u8 compress_type;
2182 };
2183
backref_comp(struct sa_defrag_extent_backref * b1,struct sa_defrag_extent_backref * b2)2184 static int backref_comp(struct sa_defrag_extent_backref *b1,
2185 struct sa_defrag_extent_backref *b2)
2186 {
2187 if (b1->root_id < b2->root_id)
2188 return -1;
2189 else if (b1->root_id > b2->root_id)
2190 return 1;
2191
2192 if (b1->inum < b2->inum)
2193 return -1;
2194 else if (b1->inum > b2->inum)
2195 return 1;
2196
2197 if (b1->file_pos < b2->file_pos)
2198 return -1;
2199 else if (b1->file_pos > b2->file_pos)
2200 return 1;
2201
2202 /*
2203 * [------------------------------] ===> (a range of space)
2204 * |<--->| |<---->| =============> (fs/file tree A)
2205 * |<---------------------------->| ===> (fs/file tree B)
2206 *
2207 * A range of space can refer to two file extents in one tree while
2208 * refer to only one file extent in another tree.
2209 *
2210 * So we may process a disk offset more than one time(two extents in A)
2211 * and locate at the same extent(one extent in B), then insert two same
2212 * backrefs(both refer to the extent in B).
2213 */
2214 return 0;
2215 }
2216
backref_insert(struct rb_root * root,struct sa_defrag_extent_backref * backref)2217 static void backref_insert(struct rb_root *root,
2218 struct sa_defrag_extent_backref *backref)
2219 {
2220 struct rb_node **p = &root->rb_node;
2221 struct rb_node *parent = NULL;
2222 struct sa_defrag_extent_backref *entry;
2223 int ret;
2224
2225 while (*p) {
2226 parent = *p;
2227 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2228
2229 ret = backref_comp(backref, entry);
2230 if (ret < 0)
2231 p = &(*p)->rb_left;
2232 else
2233 p = &(*p)->rb_right;
2234 }
2235
2236 rb_link_node(&backref->node, parent, p);
2237 rb_insert_color(&backref->node, root);
2238 }
2239
2240 /*
2241 * Note the backref might has changed, and in this case we just return 0.
2242 */
record_one_backref(u64 inum,u64 offset,u64 root_id,void * ctx)2243 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2244 void *ctx)
2245 {
2246 struct btrfs_file_extent_item *extent;
2247 struct btrfs_fs_info *fs_info;
2248 struct old_sa_defrag_extent *old = ctx;
2249 struct new_sa_defrag_extent *new = old->new;
2250 struct btrfs_path *path = new->path;
2251 struct btrfs_key key;
2252 struct btrfs_root *root;
2253 struct sa_defrag_extent_backref *backref;
2254 struct extent_buffer *leaf;
2255 struct inode *inode = new->inode;
2256 int slot;
2257 int ret;
2258 u64 extent_offset;
2259 u64 num_bytes;
2260
2261 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2262 inum == btrfs_ino(inode))
2263 return 0;
2264
2265 key.objectid = root_id;
2266 key.type = BTRFS_ROOT_ITEM_KEY;
2267 key.offset = (u64)-1;
2268
2269 fs_info = BTRFS_I(inode)->root->fs_info;
2270 root = btrfs_read_fs_root_no_name(fs_info, &key);
2271 if (IS_ERR(root)) {
2272 if (PTR_ERR(root) == -ENOENT)
2273 return 0;
2274 WARN_ON(1);
2275 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2276 inum, offset, root_id);
2277 return PTR_ERR(root);
2278 }
2279
2280 key.objectid = inum;
2281 key.type = BTRFS_EXTENT_DATA_KEY;
2282 if (offset > (u64)-1 << 32)
2283 key.offset = 0;
2284 else
2285 key.offset = offset;
2286
2287 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2288 if (WARN_ON(ret < 0))
2289 return ret;
2290 ret = 0;
2291
2292 while (1) {
2293 cond_resched();
2294
2295 leaf = path->nodes[0];
2296 slot = path->slots[0];
2297
2298 if (slot >= btrfs_header_nritems(leaf)) {
2299 ret = btrfs_next_leaf(root, path);
2300 if (ret < 0) {
2301 goto out;
2302 } else if (ret > 0) {
2303 ret = 0;
2304 goto out;
2305 }
2306 continue;
2307 }
2308
2309 path->slots[0]++;
2310
2311 btrfs_item_key_to_cpu(leaf, &key, slot);
2312
2313 if (key.objectid > inum)
2314 goto out;
2315
2316 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2317 continue;
2318
2319 extent = btrfs_item_ptr(leaf, slot,
2320 struct btrfs_file_extent_item);
2321
2322 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2323 continue;
2324
2325 /*
2326 * 'offset' refers to the exact key.offset,
2327 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2328 * (key.offset - extent_offset).
2329 */
2330 if (key.offset != offset)
2331 continue;
2332
2333 extent_offset = btrfs_file_extent_offset(leaf, extent);
2334 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2335
2336 if (extent_offset >= old->extent_offset + old->offset +
2337 old->len || extent_offset + num_bytes <=
2338 old->extent_offset + old->offset)
2339 continue;
2340 break;
2341 }
2342
2343 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2344 if (!backref) {
2345 ret = -ENOENT;
2346 goto out;
2347 }
2348
2349 backref->root_id = root_id;
2350 backref->inum = inum;
2351 backref->file_pos = offset;
2352 backref->num_bytes = num_bytes;
2353 backref->extent_offset = extent_offset;
2354 backref->generation = btrfs_file_extent_generation(leaf, extent);
2355 backref->old = old;
2356 backref_insert(&new->root, backref);
2357 old->count++;
2358 out:
2359 btrfs_release_path(path);
2360 WARN_ON(ret);
2361 return ret;
2362 }
2363
record_extent_backrefs(struct btrfs_path * path,struct new_sa_defrag_extent * new)2364 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2365 struct new_sa_defrag_extent *new)
2366 {
2367 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2368 struct old_sa_defrag_extent *old, *tmp;
2369 int ret;
2370
2371 new->path = path;
2372
2373 list_for_each_entry_safe(old, tmp, &new->head, list) {
2374 ret = iterate_inodes_from_logical(old->bytenr +
2375 old->extent_offset, fs_info,
2376 path, record_one_backref,
2377 old);
2378 if (ret < 0 && ret != -ENOENT)
2379 return false;
2380
2381 /* no backref to be processed for this extent */
2382 if (!old->count) {
2383 list_del(&old->list);
2384 kfree(old);
2385 }
2386 }
2387
2388 if (list_empty(&new->head))
2389 return false;
2390
2391 return true;
2392 }
2393
relink_is_mergable(struct extent_buffer * leaf,struct btrfs_file_extent_item * fi,struct new_sa_defrag_extent * new)2394 static int relink_is_mergable(struct extent_buffer *leaf,
2395 struct btrfs_file_extent_item *fi,
2396 struct new_sa_defrag_extent *new)
2397 {
2398 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2399 return 0;
2400
2401 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2402 return 0;
2403
2404 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2405 return 0;
2406
2407 if (btrfs_file_extent_encryption(leaf, fi) ||
2408 btrfs_file_extent_other_encoding(leaf, fi))
2409 return 0;
2410
2411 return 1;
2412 }
2413
2414 /*
2415 * Note the backref might has changed, and in this case we just return 0.
2416 */
relink_extent_backref(struct btrfs_path * path,struct sa_defrag_extent_backref * prev,struct sa_defrag_extent_backref * backref)2417 static noinline int relink_extent_backref(struct btrfs_path *path,
2418 struct sa_defrag_extent_backref *prev,
2419 struct sa_defrag_extent_backref *backref)
2420 {
2421 struct btrfs_file_extent_item *extent;
2422 struct btrfs_file_extent_item *item;
2423 struct btrfs_ordered_extent *ordered;
2424 struct btrfs_trans_handle *trans;
2425 struct btrfs_fs_info *fs_info;
2426 struct btrfs_root *root;
2427 struct btrfs_key key;
2428 struct extent_buffer *leaf;
2429 struct old_sa_defrag_extent *old = backref->old;
2430 struct new_sa_defrag_extent *new = old->new;
2431 struct inode *src_inode = new->inode;
2432 struct inode *inode;
2433 struct extent_state *cached = NULL;
2434 int ret = 0;
2435 u64 start;
2436 u64 len;
2437 u64 lock_start;
2438 u64 lock_end;
2439 bool merge = false;
2440 int index;
2441
2442 if (prev && prev->root_id == backref->root_id &&
2443 prev->inum == backref->inum &&
2444 prev->file_pos + prev->num_bytes == backref->file_pos)
2445 merge = true;
2446
2447 /* step 1: get root */
2448 key.objectid = backref->root_id;
2449 key.type = BTRFS_ROOT_ITEM_KEY;
2450 key.offset = (u64)-1;
2451
2452 fs_info = BTRFS_I(src_inode)->root->fs_info;
2453 index = srcu_read_lock(&fs_info->subvol_srcu);
2454
2455 root = btrfs_read_fs_root_no_name(fs_info, &key);
2456 if (IS_ERR(root)) {
2457 srcu_read_unlock(&fs_info->subvol_srcu, index);
2458 if (PTR_ERR(root) == -ENOENT)
2459 return 0;
2460 return PTR_ERR(root);
2461 }
2462
2463 if (btrfs_root_readonly(root)) {
2464 srcu_read_unlock(&fs_info->subvol_srcu, index);
2465 return 0;
2466 }
2467
2468 /* step 2: get inode */
2469 key.objectid = backref->inum;
2470 key.type = BTRFS_INODE_ITEM_KEY;
2471 key.offset = 0;
2472
2473 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2474 if (IS_ERR(inode)) {
2475 srcu_read_unlock(&fs_info->subvol_srcu, index);
2476 return 0;
2477 }
2478
2479 srcu_read_unlock(&fs_info->subvol_srcu, index);
2480
2481 /* step 3: relink backref */
2482 lock_start = backref->file_pos;
2483 lock_end = backref->file_pos + backref->num_bytes - 1;
2484 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2485 0, &cached);
2486
2487 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2488 if (ordered) {
2489 btrfs_put_ordered_extent(ordered);
2490 goto out_unlock;
2491 }
2492
2493 trans = btrfs_join_transaction(root);
2494 if (IS_ERR(trans)) {
2495 ret = PTR_ERR(trans);
2496 goto out_unlock;
2497 }
2498
2499 key.objectid = backref->inum;
2500 key.type = BTRFS_EXTENT_DATA_KEY;
2501 key.offset = backref->file_pos;
2502
2503 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2504 if (ret < 0) {
2505 goto out_free_path;
2506 } else if (ret > 0) {
2507 ret = 0;
2508 goto out_free_path;
2509 }
2510
2511 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2512 struct btrfs_file_extent_item);
2513
2514 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2515 backref->generation)
2516 goto out_free_path;
2517
2518 btrfs_release_path(path);
2519
2520 start = backref->file_pos;
2521 if (backref->extent_offset < old->extent_offset + old->offset)
2522 start += old->extent_offset + old->offset -
2523 backref->extent_offset;
2524
2525 len = min(backref->extent_offset + backref->num_bytes,
2526 old->extent_offset + old->offset + old->len);
2527 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2528
2529 ret = btrfs_drop_extents(trans, root, inode, start,
2530 start + len, 1);
2531 if (ret)
2532 goto out_free_path;
2533 again:
2534 key.objectid = btrfs_ino(inode);
2535 key.type = BTRFS_EXTENT_DATA_KEY;
2536 key.offset = start;
2537
2538 path->leave_spinning = 1;
2539 if (merge) {
2540 struct btrfs_file_extent_item *fi;
2541 u64 extent_len;
2542 struct btrfs_key found_key;
2543
2544 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2545 if (ret < 0)
2546 goto out_free_path;
2547
2548 path->slots[0]--;
2549 leaf = path->nodes[0];
2550 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2551
2552 fi = btrfs_item_ptr(leaf, path->slots[0],
2553 struct btrfs_file_extent_item);
2554 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2555
2556 if (extent_len + found_key.offset == start &&
2557 relink_is_mergable(leaf, fi, new)) {
2558 btrfs_set_file_extent_num_bytes(leaf, fi,
2559 extent_len + len);
2560 btrfs_mark_buffer_dirty(leaf);
2561 inode_add_bytes(inode, len);
2562
2563 ret = 1;
2564 goto out_free_path;
2565 } else {
2566 merge = false;
2567 btrfs_release_path(path);
2568 goto again;
2569 }
2570 }
2571
2572 ret = btrfs_insert_empty_item(trans, root, path, &key,
2573 sizeof(*extent));
2574 if (ret) {
2575 btrfs_abort_transaction(trans, root, ret);
2576 goto out_free_path;
2577 }
2578
2579 leaf = path->nodes[0];
2580 item = btrfs_item_ptr(leaf, path->slots[0],
2581 struct btrfs_file_extent_item);
2582 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2583 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2584 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2585 btrfs_set_file_extent_num_bytes(leaf, item, len);
2586 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2587 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2588 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2589 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2590 btrfs_set_file_extent_encryption(leaf, item, 0);
2591 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2592
2593 btrfs_mark_buffer_dirty(leaf);
2594 inode_add_bytes(inode, len);
2595 btrfs_release_path(path);
2596
2597 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2598 new->disk_len, 0,
2599 backref->root_id, backref->inum,
2600 new->file_pos); /* start - extent_offset */
2601 if (ret) {
2602 btrfs_abort_transaction(trans, root, ret);
2603 goto out_free_path;
2604 }
2605
2606 ret = 1;
2607 out_free_path:
2608 btrfs_release_path(path);
2609 path->leave_spinning = 0;
2610 btrfs_end_transaction(trans, root);
2611 out_unlock:
2612 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2613 &cached, GFP_NOFS);
2614 iput(inode);
2615 return ret;
2616 }
2617
free_sa_defrag_extent(struct new_sa_defrag_extent * new)2618 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2619 {
2620 struct old_sa_defrag_extent *old, *tmp;
2621
2622 if (!new)
2623 return;
2624
2625 list_for_each_entry_safe(old, tmp, &new->head, list) {
2626 kfree(old);
2627 }
2628 kfree(new);
2629 }
2630
relink_file_extents(struct new_sa_defrag_extent * new)2631 static void relink_file_extents(struct new_sa_defrag_extent *new)
2632 {
2633 struct btrfs_path *path;
2634 struct sa_defrag_extent_backref *backref;
2635 struct sa_defrag_extent_backref *prev = NULL;
2636 struct inode *inode;
2637 struct btrfs_root *root;
2638 struct rb_node *node;
2639 int ret;
2640
2641 inode = new->inode;
2642 root = BTRFS_I(inode)->root;
2643
2644 path = btrfs_alloc_path();
2645 if (!path)
2646 return;
2647
2648 if (!record_extent_backrefs(path, new)) {
2649 btrfs_free_path(path);
2650 goto out;
2651 }
2652 btrfs_release_path(path);
2653
2654 while (1) {
2655 node = rb_first(&new->root);
2656 if (!node)
2657 break;
2658 rb_erase(node, &new->root);
2659
2660 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2661
2662 ret = relink_extent_backref(path, prev, backref);
2663 WARN_ON(ret < 0);
2664
2665 kfree(prev);
2666
2667 if (ret == 1)
2668 prev = backref;
2669 else
2670 prev = NULL;
2671 cond_resched();
2672 }
2673 kfree(prev);
2674
2675 btrfs_free_path(path);
2676 out:
2677 free_sa_defrag_extent(new);
2678
2679 atomic_dec(&root->fs_info->defrag_running);
2680 wake_up(&root->fs_info->transaction_wait);
2681 }
2682
2683 static struct new_sa_defrag_extent *
record_old_file_extents(struct inode * inode,struct btrfs_ordered_extent * ordered)2684 record_old_file_extents(struct inode *inode,
2685 struct btrfs_ordered_extent *ordered)
2686 {
2687 struct btrfs_root *root = BTRFS_I(inode)->root;
2688 struct btrfs_path *path;
2689 struct btrfs_key key;
2690 struct old_sa_defrag_extent *old;
2691 struct new_sa_defrag_extent *new;
2692 int ret;
2693
2694 new = kmalloc(sizeof(*new), GFP_NOFS);
2695 if (!new)
2696 return NULL;
2697
2698 new->inode = inode;
2699 new->file_pos = ordered->file_offset;
2700 new->len = ordered->len;
2701 new->bytenr = ordered->start;
2702 new->disk_len = ordered->disk_len;
2703 new->compress_type = ordered->compress_type;
2704 new->root = RB_ROOT;
2705 INIT_LIST_HEAD(&new->head);
2706
2707 path = btrfs_alloc_path();
2708 if (!path)
2709 goto out_kfree;
2710
2711 key.objectid = btrfs_ino(inode);
2712 key.type = BTRFS_EXTENT_DATA_KEY;
2713 key.offset = new->file_pos;
2714
2715 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2716 if (ret < 0)
2717 goto out_free_path;
2718 if (ret > 0 && path->slots[0] > 0)
2719 path->slots[0]--;
2720
2721 /* find out all the old extents for the file range */
2722 while (1) {
2723 struct btrfs_file_extent_item *extent;
2724 struct extent_buffer *l;
2725 int slot;
2726 u64 num_bytes;
2727 u64 offset;
2728 u64 end;
2729 u64 disk_bytenr;
2730 u64 extent_offset;
2731
2732 l = path->nodes[0];
2733 slot = path->slots[0];
2734
2735 if (slot >= btrfs_header_nritems(l)) {
2736 ret = btrfs_next_leaf(root, path);
2737 if (ret < 0)
2738 goto out_free_path;
2739 else if (ret > 0)
2740 break;
2741 continue;
2742 }
2743
2744 btrfs_item_key_to_cpu(l, &key, slot);
2745
2746 if (key.objectid != btrfs_ino(inode))
2747 break;
2748 if (key.type != BTRFS_EXTENT_DATA_KEY)
2749 break;
2750 if (key.offset >= new->file_pos + new->len)
2751 break;
2752
2753 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2754
2755 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2756 if (key.offset + num_bytes < new->file_pos)
2757 goto next;
2758
2759 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2760 if (!disk_bytenr)
2761 goto next;
2762
2763 extent_offset = btrfs_file_extent_offset(l, extent);
2764
2765 old = kmalloc(sizeof(*old), GFP_NOFS);
2766 if (!old)
2767 goto out_free_path;
2768
2769 offset = max(new->file_pos, key.offset);
2770 end = min(new->file_pos + new->len, key.offset + num_bytes);
2771
2772 old->bytenr = disk_bytenr;
2773 old->extent_offset = extent_offset;
2774 old->offset = offset - key.offset;
2775 old->len = end - offset;
2776 old->new = new;
2777 old->count = 0;
2778 list_add_tail(&old->list, &new->head);
2779 next:
2780 path->slots[0]++;
2781 cond_resched();
2782 }
2783
2784 btrfs_free_path(path);
2785 atomic_inc(&root->fs_info->defrag_running);
2786
2787 return new;
2788
2789 out_free_path:
2790 btrfs_free_path(path);
2791 out_kfree:
2792 free_sa_defrag_extent(new);
2793 return NULL;
2794 }
2795
btrfs_release_delalloc_bytes(struct btrfs_root * root,u64 start,u64 len)2796 static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2797 u64 start, u64 len)
2798 {
2799 struct btrfs_block_group_cache *cache;
2800
2801 cache = btrfs_lookup_block_group(root->fs_info, start);
2802 ASSERT(cache);
2803
2804 spin_lock(&cache->lock);
2805 cache->delalloc_bytes -= len;
2806 spin_unlock(&cache->lock);
2807
2808 btrfs_put_block_group(cache);
2809 }
2810
2811 /* as ordered data IO finishes, this gets called so we can finish
2812 * an ordered extent if the range of bytes in the file it covers are
2813 * fully written.
2814 */
btrfs_finish_ordered_io(struct btrfs_ordered_extent * ordered_extent)2815 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2816 {
2817 struct inode *inode = ordered_extent->inode;
2818 struct btrfs_root *root = BTRFS_I(inode)->root;
2819 struct btrfs_trans_handle *trans = NULL;
2820 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2821 struct extent_state *cached_state = NULL;
2822 struct new_sa_defrag_extent *new = NULL;
2823 int compress_type = 0;
2824 int ret = 0;
2825 u64 logical_len = ordered_extent->len;
2826 bool nolock;
2827 bool truncated = false;
2828
2829 nolock = btrfs_is_free_space_inode(inode);
2830
2831 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2832 ret = -EIO;
2833 goto out;
2834 }
2835
2836 btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2837 ordered_extent->file_offset +
2838 ordered_extent->len - 1);
2839
2840 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2841 truncated = true;
2842 logical_len = ordered_extent->truncated_len;
2843 /* Truncated the entire extent, don't bother adding */
2844 if (!logical_len)
2845 goto out;
2846 }
2847
2848 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2849 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2850
2851 /*
2852 * For mwrite(mmap + memset to write) case, we still reserve
2853 * space for NOCOW range.
2854 * As NOCOW won't cause a new delayed ref, just free the space
2855 */
2856 btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2857 ordered_extent->len);
2858 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2859 if (nolock)
2860 trans = btrfs_join_transaction_nolock(root);
2861 else
2862 trans = btrfs_join_transaction(root);
2863 if (IS_ERR(trans)) {
2864 ret = PTR_ERR(trans);
2865 trans = NULL;
2866 goto out;
2867 }
2868 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2869 ret = btrfs_update_inode_fallback(trans, root, inode);
2870 if (ret) /* -ENOMEM or corruption */
2871 btrfs_abort_transaction(trans, root, ret);
2872 goto out;
2873 }
2874
2875 lock_extent_bits(io_tree, ordered_extent->file_offset,
2876 ordered_extent->file_offset + ordered_extent->len - 1,
2877 0, &cached_state);
2878
2879 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2880 ordered_extent->file_offset + ordered_extent->len - 1,
2881 EXTENT_DEFRAG, 1, cached_state);
2882 if (ret) {
2883 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2884 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2885 /* the inode is shared */
2886 new = record_old_file_extents(inode, ordered_extent);
2887
2888 clear_extent_bit(io_tree, ordered_extent->file_offset,
2889 ordered_extent->file_offset + ordered_extent->len - 1,
2890 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2891 }
2892
2893 if (nolock)
2894 trans = btrfs_join_transaction_nolock(root);
2895 else
2896 trans = btrfs_join_transaction(root);
2897 if (IS_ERR(trans)) {
2898 ret = PTR_ERR(trans);
2899 trans = NULL;
2900 goto out_unlock;
2901 }
2902
2903 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2904
2905 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2906 compress_type = ordered_extent->compress_type;
2907 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2908 BUG_ON(compress_type);
2909 ret = btrfs_mark_extent_written(trans, inode,
2910 ordered_extent->file_offset,
2911 ordered_extent->file_offset +
2912 logical_len);
2913 } else {
2914 BUG_ON(root == root->fs_info->tree_root);
2915 ret = insert_reserved_file_extent(trans, inode,
2916 ordered_extent->file_offset,
2917 ordered_extent->start,
2918 ordered_extent->disk_len,
2919 logical_len, logical_len,
2920 compress_type, 0, 0,
2921 BTRFS_FILE_EXTENT_REG);
2922 if (!ret)
2923 btrfs_release_delalloc_bytes(root,
2924 ordered_extent->start,
2925 ordered_extent->disk_len);
2926 }
2927 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2928 ordered_extent->file_offset, ordered_extent->len,
2929 trans->transid);
2930 if (ret < 0) {
2931 btrfs_abort_transaction(trans, root, ret);
2932 goto out_unlock;
2933 }
2934
2935 add_pending_csums(trans, inode, ordered_extent->file_offset,
2936 &ordered_extent->list);
2937
2938 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2939 ret = btrfs_update_inode_fallback(trans, root, inode);
2940 if (ret) { /* -ENOMEM or corruption */
2941 btrfs_abort_transaction(trans, root, ret);
2942 goto out_unlock;
2943 }
2944 ret = 0;
2945 out_unlock:
2946 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2947 ordered_extent->file_offset +
2948 ordered_extent->len - 1, &cached_state, GFP_NOFS);
2949 out:
2950 if (root != root->fs_info->tree_root)
2951 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2952 if (trans)
2953 btrfs_end_transaction(trans, root);
2954
2955 if (ret || truncated) {
2956 u64 start, end;
2957
2958 if (truncated)
2959 start = ordered_extent->file_offset + logical_len;
2960 else
2961 start = ordered_extent->file_offset;
2962 end = ordered_extent->file_offset + ordered_extent->len - 1;
2963 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2964
2965 /* Drop the cache for the part of the extent we didn't write. */
2966 btrfs_drop_extent_cache(inode, start, end, 0);
2967
2968 /*
2969 * If the ordered extent had an IOERR or something else went
2970 * wrong we need to return the space for this ordered extent
2971 * back to the allocator. We only free the extent in the
2972 * truncated case if we didn't write out the extent at all.
2973 */
2974 if ((ret || !logical_len) &&
2975 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2976 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2977 btrfs_free_reserved_extent(root, ordered_extent->start,
2978 ordered_extent->disk_len, 1);
2979 }
2980
2981
2982 /*
2983 * This needs to be done to make sure anybody waiting knows we are done
2984 * updating everything for this ordered extent.
2985 */
2986 btrfs_remove_ordered_extent(inode, ordered_extent);
2987
2988 /* for snapshot-aware defrag */
2989 if (new) {
2990 if (ret) {
2991 free_sa_defrag_extent(new);
2992 atomic_dec(&root->fs_info->defrag_running);
2993 } else {
2994 relink_file_extents(new);
2995 }
2996 }
2997
2998 /* once for us */
2999 btrfs_put_ordered_extent(ordered_extent);
3000 /* once for the tree */
3001 btrfs_put_ordered_extent(ordered_extent);
3002
3003 return ret;
3004 }
3005
finish_ordered_fn(struct btrfs_work * work)3006 static void finish_ordered_fn(struct btrfs_work *work)
3007 {
3008 struct btrfs_ordered_extent *ordered_extent;
3009 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3010 btrfs_finish_ordered_io(ordered_extent);
3011 }
3012
btrfs_writepage_end_io_hook(struct page * page,u64 start,u64 end,struct extent_state * state,int uptodate)3013 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3014 struct extent_state *state, int uptodate)
3015 {
3016 struct inode *inode = page->mapping->host;
3017 struct btrfs_root *root = BTRFS_I(inode)->root;
3018 struct btrfs_ordered_extent *ordered_extent = NULL;
3019 struct btrfs_workqueue *wq;
3020 btrfs_work_func_t func;
3021
3022 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3023
3024 ClearPagePrivate2(page);
3025 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3026 end - start + 1, uptodate))
3027 return 0;
3028
3029 if (btrfs_is_free_space_inode(inode)) {
3030 wq = root->fs_info->endio_freespace_worker;
3031 func = btrfs_freespace_write_helper;
3032 } else {
3033 wq = root->fs_info->endio_write_workers;
3034 func = btrfs_endio_write_helper;
3035 }
3036
3037 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3038 NULL);
3039 btrfs_queue_work(wq, &ordered_extent->work);
3040
3041 return 0;
3042 }
3043
__readpage_endio_check(struct inode * inode,struct btrfs_io_bio * io_bio,int icsum,struct page * page,int pgoff,u64 start,size_t len)3044 static int __readpage_endio_check(struct inode *inode,
3045 struct btrfs_io_bio *io_bio,
3046 int icsum, struct page *page,
3047 int pgoff, u64 start, size_t len)
3048 {
3049 char *kaddr;
3050 u32 csum_expected;
3051 u32 csum = ~(u32)0;
3052
3053 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3054
3055 kaddr = kmap_atomic(page);
3056 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3057 btrfs_csum_final(csum, (char *)&csum);
3058 if (csum != csum_expected)
3059 goto zeroit;
3060
3061 kunmap_atomic(kaddr);
3062 return 0;
3063 zeroit:
3064 btrfs_warn_rl(BTRFS_I(inode)->root->fs_info,
3065 "csum failed ino %llu off %llu csum %u expected csum %u",
3066 btrfs_ino(inode), start, csum, csum_expected);
3067 memset(kaddr + pgoff, 1, len);
3068 flush_dcache_page(page);
3069 kunmap_atomic(kaddr);
3070 if (csum_expected == 0)
3071 return 0;
3072 return -EIO;
3073 }
3074
3075 /*
3076 * when reads are done, we need to check csums to verify the data is correct
3077 * if there's a match, we allow the bio to finish. If not, the code in
3078 * extent_io.c will try to find good copies for us.
3079 */
btrfs_readpage_end_io_hook(struct btrfs_io_bio * io_bio,u64 phy_offset,struct page * page,u64 start,u64 end,int mirror)3080 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3081 u64 phy_offset, struct page *page,
3082 u64 start, u64 end, int mirror)
3083 {
3084 size_t offset = start - page_offset(page);
3085 struct inode *inode = page->mapping->host;
3086 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3087 struct btrfs_root *root = BTRFS_I(inode)->root;
3088
3089 if (PageChecked(page)) {
3090 ClearPageChecked(page);
3091 return 0;
3092 }
3093
3094 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3095 return 0;
3096
3097 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3098 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3099 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
3100 GFP_NOFS);
3101 return 0;
3102 }
3103
3104 phy_offset >>= inode->i_sb->s_blocksize_bits;
3105 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3106 start, (size_t)(end - start + 1));
3107 }
3108
3109 struct delayed_iput {
3110 struct list_head list;
3111 struct inode *inode;
3112 };
3113
3114 /* JDM: If this is fs-wide, why can't we add a pointer to
3115 * btrfs_inode instead and avoid the allocation? */
btrfs_add_delayed_iput(struct inode * inode)3116 void btrfs_add_delayed_iput(struct inode *inode)
3117 {
3118 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3119 struct delayed_iput *delayed;
3120
3121 if (atomic_add_unless(&inode->i_count, -1, 1))
3122 return;
3123
3124 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
3125 delayed->inode = inode;
3126
3127 spin_lock(&fs_info->delayed_iput_lock);
3128 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
3129 spin_unlock(&fs_info->delayed_iput_lock);
3130 }
3131
btrfs_run_delayed_iputs(struct btrfs_root * root)3132 void btrfs_run_delayed_iputs(struct btrfs_root *root)
3133 {
3134 LIST_HEAD(list);
3135 struct btrfs_fs_info *fs_info = root->fs_info;
3136 struct delayed_iput *delayed;
3137 int empty;
3138
3139 spin_lock(&fs_info->delayed_iput_lock);
3140 empty = list_empty(&fs_info->delayed_iputs);
3141 spin_unlock(&fs_info->delayed_iput_lock);
3142 if (empty)
3143 return;
3144
3145 spin_lock(&fs_info->delayed_iput_lock);
3146 list_splice_init(&fs_info->delayed_iputs, &list);
3147 spin_unlock(&fs_info->delayed_iput_lock);
3148
3149 while (!list_empty(&list)) {
3150 delayed = list_entry(list.next, struct delayed_iput, list);
3151 list_del(&delayed->list);
3152 iput(delayed->inode);
3153 kfree(delayed);
3154 }
3155 }
3156
3157 /*
3158 * This is called in transaction commit time. If there are no orphan
3159 * files in the subvolume, it removes orphan item and frees block_rsv
3160 * structure.
3161 */
btrfs_orphan_commit_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)3162 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3163 struct btrfs_root *root)
3164 {
3165 struct btrfs_block_rsv *block_rsv;
3166 int ret;
3167
3168 if (atomic_read(&root->orphan_inodes) ||
3169 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3170 return;
3171
3172 spin_lock(&root->orphan_lock);
3173 if (atomic_read(&root->orphan_inodes)) {
3174 spin_unlock(&root->orphan_lock);
3175 return;
3176 }
3177
3178 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3179 spin_unlock(&root->orphan_lock);
3180 return;
3181 }
3182
3183 block_rsv = root->orphan_block_rsv;
3184 root->orphan_block_rsv = NULL;
3185 spin_unlock(&root->orphan_lock);
3186
3187 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3188 btrfs_root_refs(&root->root_item) > 0) {
3189 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3190 root->root_key.objectid);
3191 if (ret)
3192 btrfs_abort_transaction(trans, root, ret);
3193 else
3194 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3195 &root->state);
3196 }
3197
3198 if (block_rsv) {
3199 WARN_ON(block_rsv->size > 0);
3200 btrfs_free_block_rsv(root, block_rsv);
3201 }
3202 }
3203
3204 /*
3205 * This creates an orphan entry for the given inode in case something goes
3206 * wrong in the middle of an unlink/truncate.
3207 *
3208 * NOTE: caller of this function should reserve 5 units of metadata for
3209 * this function.
3210 */
btrfs_orphan_add(struct btrfs_trans_handle * trans,struct inode * inode)3211 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3212 {
3213 struct btrfs_root *root = BTRFS_I(inode)->root;
3214 struct btrfs_block_rsv *block_rsv = NULL;
3215 int reserve = 0;
3216 int insert = 0;
3217 int ret;
3218
3219 if (!root->orphan_block_rsv) {
3220 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3221 if (!block_rsv)
3222 return -ENOMEM;
3223 }
3224
3225 spin_lock(&root->orphan_lock);
3226 if (!root->orphan_block_rsv) {
3227 root->orphan_block_rsv = block_rsv;
3228 } else if (block_rsv) {
3229 btrfs_free_block_rsv(root, block_rsv);
3230 block_rsv = NULL;
3231 }
3232
3233 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3234 &BTRFS_I(inode)->runtime_flags)) {
3235 #if 0
3236 /*
3237 * For proper ENOSPC handling, we should do orphan
3238 * cleanup when mounting. But this introduces backward
3239 * compatibility issue.
3240 */
3241 if (!xchg(&root->orphan_item_inserted, 1))
3242 insert = 2;
3243 else
3244 insert = 1;
3245 #endif
3246 insert = 1;
3247 atomic_inc(&root->orphan_inodes);
3248 }
3249
3250 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3251 &BTRFS_I(inode)->runtime_flags))
3252 reserve = 1;
3253 spin_unlock(&root->orphan_lock);
3254
3255 /* grab metadata reservation from transaction handle */
3256 if (reserve) {
3257 ret = btrfs_orphan_reserve_metadata(trans, inode);
3258 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
3259 }
3260
3261 /* insert an orphan item to track this unlinked/truncated file */
3262 if (insert >= 1) {
3263 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3264 if (ret) {
3265 atomic_dec(&root->orphan_inodes);
3266 if (reserve) {
3267 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3268 &BTRFS_I(inode)->runtime_flags);
3269 btrfs_orphan_release_metadata(inode);
3270 }
3271 if (ret != -EEXIST) {
3272 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3273 &BTRFS_I(inode)->runtime_flags);
3274 btrfs_abort_transaction(trans, root, ret);
3275 return ret;
3276 }
3277 }
3278 ret = 0;
3279 }
3280
3281 /* insert an orphan item to track subvolume contains orphan files */
3282 if (insert >= 2) {
3283 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3284 root->root_key.objectid);
3285 if (ret && ret != -EEXIST) {
3286 btrfs_abort_transaction(trans, root, ret);
3287 return ret;
3288 }
3289 }
3290 return 0;
3291 }
3292
3293 /*
3294 * We have done the truncate/delete so we can go ahead and remove the orphan
3295 * item for this particular inode.
3296 */
btrfs_orphan_del(struct btrfs_trans_handle * trans,struct inode * inode)3297 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3298 struct inode *inode)
3299 {
3300 struct btrfs_root *root = BTRFS_I(inode)->root;
3301 int delete_item = 0;
3302 int release_rsv = 0;
3303 int ret = 0;
3304
3305 spin_lock(&root->orphan_lock);
3306 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3307 &BTRFS_I(inode)->runtime_flags))
3308 delete_item = 1;
3309
3310 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3311 &BTRFS_I(inode)->runtime_flags))
3312 release_rsv = 1;
3313 spin_unlock(&root->orphan_lock);
3314
3315 if (delete_item) {
3316 atomic_dec(&root->orphan_inodes);
3317 if (trans)
3318 ret = btrfs_del_orphan_item(trans, root,
3319 btrfs_ino(inode));
3320 }
3321
3322 if (release_rsv)
3323 btrfs_orphan_release_metadata(inode);
3324
3325 return ret;
3326 }
3327
3328 /*
3329 * this cleans up any orphans that may be left on the list from the last use
3330 * of this root.
3331 */
btrfs_orphan_cleanup(struct btrfs_root * root)3332 int btrfs_orphan_cleanup(struct btrfs_root *root)
3333 {
3334 struct btrfs_path *path;
3335 struct extent_buffer *leaf;
3336 struct btrfs_key key, found_key;
3337 struct btrfs_trans_handle *trans;
3338 struct inode *inode;
3339 u64 last_objectid = 0;
3340 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3341
3342 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3343 return 0;
3344
3345 path = btrfs_alloc_path();
3346 if (!path) {
3347 ret = -ENOMEM;
3348 goto out;
3349 }
3350 path->reada = -1;
3351
3352 key.objectid = BTRFS_ORPHAN_OBJECTID;
3353 key.type = BTRFS_ORPHAN_ITEM_KEY;
3354 key.offset = (u64)-1;
3355
3356 while (1) {
3357 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3358 if (ret < 0)
3359 goto out;
3360
3361 /*
3362 * if ret == 0 means we found what we were searching for, which
3363 * is weird, but possible, so only screw with path if we didn't
3364 * find the key and see if we have stuff that matches
3365 */
3366 if (ret > 0) {
3367 ret = 0;
3368 if (path->slots[0] == 0)
3369 break;
3370 path->slots[0]--;
3371 }
3372
3373 /* pull out the item */
3374 leaf = path->nodes[0];
3375 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3376
3377 /* make sure the item matches what we want */
3378 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3379 break;
3380 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3381 break;
3382
3383 /* release the path since we're done with it */
3384 btrfs_release_path(path);
3385
3386 /*
3387 * this is where we are basically btrfs_lookup, without the
3388 * crossing root thing. we store the inode number in the
3389 * offset of the orphan item.
3390 */
3391
3392 if (found_key.offset == last_objectid) {
3393 btrfs_err(root->fs_info,
3394 "Error removing orphan entry, stopping orphan cleanup");
3395 ret = -EINVAL;
3396 goto out;
3397 }
3398
3399 last_objectid = found_key.offset;
3400
3401 found_key.objectid = found_key.offset;
3402 found_key.type = BTRFS_INODE_ITEM_KEY;
3403 found_key.offset = 0;
3404 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3405 ret = PTR_ERR_OR_ZERO(inode);
3406 if (ret && ret != -ESTALE)
3407 goto out;
3408
3409 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3410 struct btrfs_root *dead_root;
3411 struct btrfs_fs_info *fs_info = root->fs_info;
3412 int is_dead_root = 0;
3413
3414 /*
3415 * this is an orphan in the tree root. Currently these
3416 * could come from 2 sources:
3417 * a) a snapshot deletion in progress
3418 * b) a free space cache inode
3419 * We need to distinguish those two, as the snapshot
3420 * orphan must not get deleted.
3421 * find_dead_roots already ran before us, so if this
3422 * is a snapshot deletion, we should find the root
3423 * in the dead_roots list
3424 */
3425 spin_lock(&fs_info->trans_lock);
3426 list_for_each_entry(dead_root, &fs_info->dead_roots,
3427 root_list) {
3428 if (dead_root->root_key.objectid ==
3429 found_key.objectid) {
3430 is_dead_root = 1;
3431 break;
3432 }
3433 }
3434 spin_unlock(&fs_info->trans_lock);
3435 if (is_dead_root) {
3436 /* prevent this orphan from being found again */
3437 key.offset = found_key.objectid - 1;
3438 continue;
3439 }
3440 }
3441 /*
3442 * Inode is already gone but the orphan item is still there,
3443 * kill the orphan item.
3444 */
3445 if (ret == -ESTALE) {
3446 trans = btrfs_start_transaction(root, 1);
3447 if (IS_ERR(trans)) {
3448 ret = PTR_ERR(trans);
3449 goto out;
3450 }
3451 btrfs_debug(root->fs_info, "auto deleting %Lu",
3452 found_key.objectid);
3453 ret = btrfs_del_orphan_item(trans, root,
3454 found_key.objectid);
3455 btrfs_end_transaction(trans, root);
3456 if (ret)
3457 goto out;
3458 continue;
3459 }
3460
3461 /*
3462 * add this inode to the orphan list so btrfs_orphan_del does
3463 * the proper thing when we hit it
3464 */
3465 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3466 &BTRFS_I(inode)->runtime_flags);
3467 atomic_inc(&root->orphan_inodes);
3468
3469 /* if we have links, this was a truncate, lets do that */
3470 if (inode->i_nlink) {
3471 if (WARN_ON(!S_ISREG(inode->i_mode))) {
3472 iput(inode);
3473 continue;
3474 }
3475 nr_truncate++;
3476
3477 /* 1 for the orphan item deletion. */
3478 trans = btrfs_start_transaction(root, 1);
3479 if (IS_ERR(trans)) {
3480 iput(inode);
3481 ret = PTR_ERR(trans);
3482 goto out;
3483 }
3484 ret = btrfs_orphan_add(trans, inode);
3485 btrfs_end_transaction(trans, root);
3486 if (ret) {
3487 iput(inode);
3488 goto out;
3489 }
3490
3491 ret = btrfs_truncate(inode);
3492 if (ret)
3493 btrfs_orphan_del(NULL, inode);
3494 } else {
3495 nr_unlink++;
3496 }
3497
3498 /* this will do delete_inode and everything for us */
3499 iput(inode);
3500 if (ret)
3501 goto out;
3502 }
3503 /* release the path since we're done with it */
3504 btrfs_release_path(path);
3505
3506 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3507
3508 if (root->orphan_block_rsv)
3509 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3510 (u64)-1);
3511
3512 if (root->orphan_block_rsv ||
3513 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3514 trans = btrfs_join_transaction(root);
3515 if (!IS_ERR(trans))
3516 btrfs_end_transaction(trans, root);
3517 }
3518
3519 if (nr_unlink)
3520 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3521 if (nr_truncate)
3522 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3523
3524 out:
3525 if (ret)
3526 btrfs_err(root->fs_info,
3527 "could not do orphan cleanup %d", ret);
3528 btrfs_free_path(path);
3529 return ret;
3530 }
3531
3532 /*
3533 * very simple check to peek ahead in the leaf looking for xattrs. If we
3534 * don't find any xattrs, we know there can't be any acls.
3535 *
3536 * slot is the slot the inode is in, objectid is the objectid of the inode
3537 */
acls_after_inode_item(struct extent_buffer * leaf,int slot,u64 objectid,int * first_xattr_slot)3538 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3539 int slot, u64 objectid,
3540 int *first_xattr_slot)
3541 {
3542 u32 nritems = btrfs_header_nritems(leaf);
3543 struct btrfs_key found_key;
3544 static u64 xattr_access = 0;
3545 static u64 xattr_default = 0;
3546 int scanned = 0;
3547
3548 if (!xattr_access) {
3549 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3550 strlen(POSIX_ACL_XATTR_ACCESS));
3551 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3552 strlen(POSIX_ACL_XATTR_DEFAULT));
3553 }
3554
3555 slot++;
3556 *first_xattr_slot = -1;
3557 while (slot < nritems) {
3558 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3559
3560 /* we found a different objectid, there must not be acls */
3561 if (found_key.objectid != objectid)
3562 return 0;
3563
3564 /* we found an xattr, assume we've got an acl */
3565 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3566 if (*first_xattr_slot == -1)
3567 *first_xattr_slot = slot;
3568 if (found_key.offset == xattr_access ||
3569 found_key.offset == xattr_default)
3570 return 1;
3571 }
3572
3573 /*
3574 * we found a key greater than an xattr key, there can't
3575 * be any acls later on
3576 */
3577 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3578 return 0;
3579
3580 slot++;
3581 scanned++;
3582
3583 /*
3584 * it goes inode, inode backrefs, xattrs, extents,
3585 * so if there are a ton of hard links to an inode there can
3586 * be a lot of backrefs. Don't waste time searching too hard,
3587 * this is just an optimization
3588 */
3589 if (scanned >= 8)
3590 break;
3591 }
3592 /* we hit the end of the leaf before we found an xattr or
3593 * something larger than an xattr. We have to assume the inode
3594 * has acls
3595 */
3596 if (*first_xattr_slot == -1)
3597 *first_xattr_slot = slot;
3598 return 1;
3599 }
3600
3601 /*
3602 * read an inode from the btree into the in-memory inode
3603 */
btrfs_read_locked_inode(struct inode * inode)3604 static void btrfs_read_locked_inode(struct inode *inode)
3605 {
3606 struct btrfs_path *path;
3607 struct extent_buffer *leaf;
3608 struct btrfs_inode_item *inode_item;
3609 struct btrfs_root *root = BTRFS_I(inode)->root;
3610 struct btrfs_key location;
3611 unsigned long ptr;
3612 int maybe_acls;
3613 u32 rdev;
3614 int ret;
3615 bool filled = false;
3616 int first_xattr_slot;
3617
3618 ret = btrfs_fill_inode(inode, &rdev);
3619 if (!ret)
3620 filled = true;
3621
3622 path = btrfs_alloc_path();
3623 if (!path)
3624 goto make_bad;
3625
3626 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3627
3628 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3629 if (ret)
3630 goto make_bad;
3631
3632 leaf = path->nodes[0];
3633
3634 if (filled)
3635 goto cache_index;
3636
3637 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3638 struct btrfs_inode_item);
3639 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3640 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3641 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3642 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3643 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3644
3645 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3646 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3647
3648 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3649 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3650
3651 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3652 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3653
3654 BTRFS_I(inode)->i_otime.tv_sec =
3655 btrfs_timespec_sec(leaf, &inode_item->otime);
3656 BTRFS_I(inode)->i_otime.tv_nsec =
3657 btrfs_timespec_nsec(leaf, &inode_item->otime);
3658
3659 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3660 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3661 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3662
3663 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3664 inode->i_generation = BTRFS_I(inode)->generation;
3665 inode->i_rdev = 0;
3666 rdev = btrfs_inode_rdev(leaf, inode_item);
3667
3668 BTRFS_I(inode)->index_cnt = (u64)-1;
3669 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3670
3671 cache_index:
3672 /*
3673 * If we were modified in the current generation and evicted from memory
3674 * and then re-read we need to do a full sync since we don't have any
3675 * idea about which extents were modified before we were evicted from
3676 * cache.
3677 *
3678 * This is required for both inode re-read from disk and delayed inode
3679 * in delayed_nodes_tree.
3680 */
3681 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3682 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3683 &BTRFS_I(inode)->runtime_flags);
3684
3685 /*
3686 * We don't persist the id of the transaction where an unlink operation
3687 * against the inode was last made. So here we assume the inode might
3688 * have been evicted, and therefore the exact value of last_unlink_trans
3689 * lost, and set it to last_trans to avoid metadata inconsistencies
3690 * between the inode and its parent if the inode is fsync'ed and the log
3691 * replayed. For example, in the scenario:
3692 *
3693 * touch mydir/foo
3694 * ln mydir/foo mydir/bar
3695 * sync
3696 * unlink mydir/bar
3697 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3698 * xfs_io -c fsync mydir/foo
3699 * <power failure>
3700 * mount fs, triggers fsync log replay
3701 *
3702 * We must make sure that when we fsync our inode foo we also log its
3703 * parent inode, otherwise after log replay the parent still has the
3704 * dentry with the "bar" name but our inode foo has a link count of 1
3705 * and doesn't have an inode ref with the name "bar" anymore.
3706 *
3707 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3708 * but it guarantees correctness at the expense of ocassional full
3709 * transaction commits on fsync if our inode is a directory, or if our
3710 * inode is not a directory, logging its parent unnecessarily.
3711 */
3712 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3713
3714 path->slots[0]++;
3715 if (inode->i_nlink != 1 ||
3716 path->slots[0] >= btrfs_header_nritems(leaf))
3717 goto cache_acl;
3718
3719 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3720 if (location.objectid != btrfs_ino(inode))
3721 goto cache_acl;
3722
3723 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3724 if (location.type == BTRFS_INODE_REF_KEY) {
3725 struct btrfs_inode_ref *ref;
3726
3727 ref = (struct btrfs_inode_ref *)ptr;
3728 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3729 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3730 struct btrfs_inode_extref *extref;
3731
3732 extref = (struct btrfs_inode_extref *)ptr;
3733 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3734 extref);
3735 }
3736 cache_acl:
3737 /*
3738 * try to precache a NULL acl entry for files that don't have
3739 * any xattrs or acls
3740 */
3741 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3742 btrfs_ino(inode), &first_xattr_slot);
3743 if (first_xattr_slot != -1) {
3744 path->slots[0] = first_xattr_slot;
3745 ret = btrfs_load_inode_props(inode, path);
3746 if (ret)
3747 btrfs_err(root->fs_info,
3748 "error loading props for ino %llu (root %llu): %d",
3749 btrfs_ino(inode),
3750 root->root_key.objectid, ret);
3751 }
3752 btrfs_free_path(path);
3753
3754 if (!maybe_acls)
3755 cache_no_acl(inode);
3756
3757 switch (inode->i_mode & S_IFMT) {
3758 case S_IFREG:
3759 inode->i_mapping->a_ops = &btrfs_aops;
3760 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3761 inode->i_fop = &btrfs_file_operations;
3762 inode->i_op = &btrfs_file_inode_operations;
3763 break;
3764 case S_IFDIR:
3765 inode->i_fop = &btrfs_dir_file_operations;
3766 if (root == root->fs_info->tree_root)
3767 inode->i_op = &btrfs_dir_ro_inode_operations;
3768 else
3769 inode->i_op = &btrfs_dir_inode_operations;
3770 break;
3771 case S_IFLNK:
3772 inode->i_op = &btrfs_symlink_inode_operations;
3773 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3774 break;
3775 default:
3776 inode->i_op = &btrfs_special_inode_operations;
3777 init_special_inode(inode, inode->i_mode, rdev);
3778 break;
3779 }
3780
3781 btrfs_update_iflags(inode);
3782 return;
3783
3784 make_bad:
3785 btrfs_free_path(path);
3786 make_bad_inode(inode);
3787 }
3788
3789 /*
3790 * given a leaf and an inode, copy the inode fields into the leaf
3791 */
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode)3792 static void fill_inode_item(struct btrfs_trans_handle *trans,
3793 struct extent_buffer *leaf,
3794 struct btrfs_inode_item *item,
3795 struct inode *inode)
3796 {
3797 struct btrfs_map_token token;
3798
3799 btrfs_init_map_token(&token);
3800
3801 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3802 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3803 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3804 &token);
3805 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3806 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3807
3808 btrfs_set_token_timespec_sec(leaf, &item->atime,
3809 inode->i_atime.tv_sec, &token);
3810 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3811 inode->i_atime.tv_nsec, &token);
3812
3813 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3814 inode->i_mtime.tv_sec, &token);
3815 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3816 inode->i_mtime.tv_nsec, &token);
3817
3818 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3819 inode->i_ctime.tv_sec, &token);
3820 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3821 inode->i_ctime.tv_nsec, &token);
3822
3823 btrfs_set_token_timespec_sec(leaf, &item->otime,
3824 BTRFS_I(inode)->i_otime.tv_sec, &token);
3825 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3826 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3827
3828 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3829 &token);
3830 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3831 &token);
3832 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3833 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3834 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3835 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3836 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3837 }
3838
3839 /*
3840 * copy everything in the in-memory inode into the btree.
3841 */
btrfs_update_inode_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)3842 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3843 struct btrfs_root *root, struct inode *inode)
3844 {
3845 struct btrfs_inode_item *inode_item;
3846 struct btrfs_path *path;
3847 struct extent_buffer *leaf;
3848 int ret;
3849
3850 path = btrfs_alloc_path();
3851 if (!path)
3852 return -ENOMEM;
3853
3854 path->leave_spinning = 1;
3855 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3856 1);
3857 if (ret) {
3858 if (ret > 0)
3859 ret = -ENOENT;
3860 goto failed;
3861 }
3862
3863 leaf = path->nodes[0];
3864 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3865 struct btrfs_inode_item);
3866
3867 fill_inode_item(trans, leaf, inode_item, inode);
3868 btrfs_mark_buffer_dirty(leaf);
3869 btrfs_set_inode_last_trans(trans, inode);
3870 ret = 0;
3871 failed:
3872 btrfs_free_path(path);
3873 return ret;
3874 }
3875
3876 /*
3877 * copy everything in the in-memory inode into the btree.
3878 */
btrfs_update_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)3879 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3880 struct btrfs_root *root, struct inode *inode)
3881 {
3882 int ret;
3883
3884 /*
3885 * If the inode is a free space inode, we can deadlock during commit
3886 * if we put it into the delayed code.
3887 *
3888 * The data relocation inode should also be directly updated
3889 * without delay
3890 */
3891 if (!btrfs_is_free_space_inode(inode)
3892 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3893 && !root->fs_info->log_root_recovering) {
3894 btrfs_update_root_times(trans, root);
3895
3896 ret = btrfs_delayed_update_inode(trans, root, inode);
3897 if (!ret)
3898 btrfs_set_inode_last_trans(trans, inode);
3899 return ret;
3900 }
3901
3902 return btrfs_update_inode_item(trans, root, inode);
3903 }
3904
btrfs_update_inode_fallback(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)3905 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3906 struct btrfs_root *root,
3907 struct inode *inode)
3908 {
3909 int ret;
3910
3911 ret = btrfs_update_inode(trans, root, inode);
3912 if (ret == -ENOSPC)
3913 return btrfs_update_inode_item(trans, root, inode);
3914 return ret;
3915 }
3916
3917 /*
3918 * unlink helper that gets used here in inode.c and in the tree logging
3919 * recovery code. It remove a link in a directory with a given name, and
3920 * also drops the back refs in the inode to the directory
3921 */
__btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,struct inode * inode,const char * name,int name_len)3922 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3923 struct btrfs_root *root,
3924 struct inode *dir, struct inode *inode,
3925 const char *name, int name_len)
3926 {
3927 struct btrfs_path *path;
3928 int ret = 0;
3929 struct extent_buffer *leaf;
3930 struct btrfs_dir_item *di;
3931 struct btrfs_key key;
3932 u64 index;
3933 u64 ino = btrfs_ino(inode);
3934 u64 dir_ino = btrfs_ino(dir);
3935
3936 path = btrfs_alloc_path();
3937 if (!path) {
3938 ret = -ENOMEM;
3939 goto out;
3940 }
3941
3942 path->leave_spinning = 1;
3943 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3944 name, name_len, -1);
3945 if (IS_ERR(di)) {
3946 ret = PTR_ERR(di);
3947 goto err;
3948 }
3949 if (!di) {
3950 ret = -ENOENT;
3951 goto err;
3952 }
3953 leaf = path->nodes[0];
3954 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3955 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3956 if (ret)
3957 goto err;
3958 btrfs_release_path(path);
3959
3960 /*
3961 * If we don't have dir index, we have to get it by looking up
3962 * the inode ref, since we get the inode ref, remove it directly,
3963 * it is unnecessary to do delayed deletion.
3964 *
3965 * But if we have dir index, needn't search inode ref to get it.
3966 * Since the inode ref is close to the inode item, it is better
3967 * that we delay to delete it, and just do this deletion when
3968 * we update the inode item.
3969 */
3970 if (BTRFS_I(inode)->dir_index) {
3971 ret = btrfs_delayed_delete_inode_ref(inode);
3972 if (!ret) {
3973 index = BTRFS_I(inode)->dir_index;
3974 goto skip_backref;
3975 }
3976 }
3977
3978 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3979 dir_ino, &index);
3980 if (ret) {
3981 btrfs_info(root->fs_info,
3982 "failed to delete reference to %.*s, inode %llu parent %llu",
3983 name_len, name, ino, dir_ino);
3984 btrfs_abort_transaction(trans, root, ret);
3985 goto err;
3986 }
3987 skip_backref:
3988 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3989 if (ret) {
3990 btrfs_abort_transaction(trans, root, ret);
3991 goto err;
3992 }
3993
3994 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
3995 inode, dir_ino);
3996 if (ret != 0 && ret != -ENOENT) {
3997 btrfs_abort_transaction(trans, root, ret);
3998 goto err;
3999 }
4000
4001 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
4002 dir, index);
4003 if (ret == -ENOENT)
4004 ret = 0;
4005 else if (ret)
4006 btrfs_abort_transaction(trans, root, ret);
4007 err:
4008 btrfs_free_path(path);
4009 if (ret)
4010 goto out;
4011
4012 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4013 inode_inc_iversion(inode);
4014 inode_inc_iversion(dir);
4015 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
4016 ret = btrfs_update_inode(trans, root, dir);
4017 out:
4018 return ret;
4019 }
4020
btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,struct inode * inode,const char * name,int name_len)4021 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4022 struct btrfs_root *root,
4023 struct inode *dir, struct inode *inode,
4024 const char *name, int name_len)
4025 {
4026 int ret;
4027 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4028 if (!ret) {
4029 drop_nlink(inode);
4030 ret = btrfs_update_inode(trans, root, inode);
4031 }
4032 return ret;
4033 }
4034
4035 /*
4036 * helper to start transaction for unlink and rmdir.
4037 *
4038 * unlink and rmdir are special in btrfs, they do not always free space, so
4039 * if we cannot make our reservations the normal way try and see if there is
4040 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4041 * allow the unlink to occur.
4042 */
__unlink_start_trans(struct inode * dir)4043 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4044 {
4045 struct btrfs_root *root = BTRFS_I(dir)->root;
4046
4047 /*
4048 * 1 for the possible orphan item
4049 * 1 for the dir item
4050 * 1 for the dir index
4051 * 1 for the inode ref
4052 * 1 for the inode
4053 */
4054 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4055 }
4056
btrfs_unlink(struct inode * dir,struct dentry * dentry)4057 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4058 {
4059 struct btrfs_root *root = BTRFS_I(dir)->root;
4060 struct btrfs_trans_handle *trans;
4061 struct inode *inode = d_inode(dentry);
4062 int ret;
4063
4064 trans = __unlink_start_trans(dir);
4065 if (IS_ERR(trans))
4066 return PTR_ERR(trans);
4067
4068 btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
4069
4070 ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4071 dentry->d_name.name, dentry->d_name.len);
4072 if (ret)
4073 goto out;
4074
4075 if (inode->i_nlink == 0) {
4076 ret = btrfs_orphan_add(trans, inode);
4077 if (ret)
4078 goto out;
4079 }
4080
4081 out:
4082 btrfs_end_transaction(trans, root);
4083 btrfs_btree_balance_dirty(root);
4084 return ret;
4085 }
4086
btrfs_unlink_subvol(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,u64 objectid,const char * name,int name_len)4087 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4088 struct btrfs_root *root,
4089 struct inode *dir, u64 objectid,
4090 const char *name, int name_len)
4091 {
4092 struct btrfs_path *path;
4093 struct extent_buffer *leaf;
4094 struct btrfs_dir_item *di;
4095 struct btrfs_key key;
4096 u64 index;
4097 int ret;
4098 u64 dir_ino = btrfs_ino(dir);
4099
4100 path = btrfs_alloc_path();
4101 if (!path)
4102 return -ENOMEM;
4103
4104 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4105 name, name_len, -1);
4106 if (IS_ERR_OR_NULL(di)) {
4107 if (!di)
4108 ret = -ENOENT;
4109 else
4110 ret = PTR_ERR(di);
4111 goto out;
4112 }
4113
4114 leaf = path->nodes[0];
4115 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4116 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4117 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4118 if (ret) {
4119 btrfs_abort_transaction(trans, root, ret);
4120 goto out;
4121 }
4122 btrfs_release_path(path);
4123
4124 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4125 objectid, root->root_key.objectid,
4126 dir_ino, &index, name, name_len);
4127 if (ret < 0) {
4128 if (ret != -ENOENT) {
4129 btrfs_abort_transaction(trans, root, ret);
4130 goto out;
4131 }
4132 di = btrfs_search_dir_index_item(root, path, dir_ino,
4133 name, name_len);
4134 if (IS_ERR_OR_NULL(di)) {
4135 if (!di)
4136 ret = -ENOENT;
4137 else
4138 ret = PTR_ERR(di);
4139 btrfs_abort_transaction(trans, root, ret);
4140 goto out;
4141 }
4142
4143 leaf = path->nodes[0];
4144 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4145 btrfs_release_path(path);
4146 index = key.offset;
4147 }
4148 btrfs_release_path(path);
4149
4150 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4151 if (ret) {
4152 btrfs_abort_transaction(trans, root, ret);
4153 goto out;
4154 }
4155
4156 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4157 inode_inc_iversion(dir);
4158 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
4159 ret = btrfs_update_inode_fallback(trans, root, dir);
4160 if (ret)
4161 btrfs_abort_transaction(trans, root, ret);
4162 out:
4163 btrfs_free_path(path);
4164 return ret;
4165 }
4166
btrfs_rmdir(struct inode * dir,struct dentry * dentry)4167 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4168 {
4169 struct inode *inode = d_inode(dentry);
4170 int err = 0;
4171 struct btrfs_root *root = BTRFS_I(dir)->root;
4172 struct btrfs_trans_handle *trans;
4173
4174 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4175 return -ENOTEMPTY;
4176 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4177 return -EPERM;
4178
4179 trans = __unlink_start_trans(dir);
4180 if (IS_ERR(trans))
4181 return PTR_ERR(trans);
4182
4183 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4184 err = btrfs_unlink_subvol(trans, root, dir,
4185 BTRFS_I(inode)->location.objectid,
4186 dentry->d_name.name,
4187 dentry->d_name.len);
4188 goto out;
4189 }
4190
4191 err = btrfs_orphan_add(trans, inode);
4192 if (err)
4193 goto out;
4194
4195 /* now the directory is empty */
4196 err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4197 dentry->d_name.name, dentry->d_name.len);
4198 if (!err)
4199 btrfs_i_size_write(inode, 0);
4200 out:
4201 btrfs_end_transaction(trans, root);
4202 btrfs_btree_balance_dirty(root);
4203
4204 return err;
4205 }
4206
truncate_space_check(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytes_deleted)4207 static int truncate_space_check(struct btrfs_trans_handle *trans,
4208 struct btrfs_root *root,
4209 u64 bytes_deleted)
4210 {
4211 int ret;
4212
4213 bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted);
4214 ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv,
4215 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4216 if (!ret)
4217 trans->bytes_reserved += bytes_deleted;
4218 return ret;
4219
4220 }
4221
truncate_inline_extent(struct inode * inode,struct btrfs_path * path,struct btrfs_key * found_key,const u64 item_end,const u64 new_size)4222 static int truncate_inline_extent(struct inode *inode,
4223 struct btrfs_path *path,
4224 struct btrfs_key *found_key,
4225 const u64 item_end,
4226 const u64 new_size)
4227 {
4228 struct extent_buffer *leaf = path->nodes[0];
4229 int slot = path->slots[0];
4230 struct btrfs_file_extent_item *fi;
4231 u32 size = (u32)(new_size - found_key->offset);
4232 struct btrfs_root *root = BTRFS_I(inode)->root;
4233
4234 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4235
4236 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4237 loff_t offset = new_size;
4238 loff_t page_end = ALIGN(offset, PAGE_CACHE_SIZE);
4239
4240 /*
4241 * Zero out the remaining of the last page of our inline extent,
4242 * instead of directly truncating our inline extent here - that
4243 * would be much more complex (decompressing all the data, then
4244 * compressing the truncated data, which might be bigger than
4245 * the size of the inline extent, resize the extent, etc).
4246 * We release the path because to get the page we might need to
4247 * read the extent item from disk (data not in the page cache).
4248 */
4249 btrfs_release_path(path);
4250 return btrfs_truncate_page(inode, offset, page_end - offset, 0);
4251 }
4252
4253 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4254 size = btrfs_file_extent_calc_inline_size(size);
4255 btrfs_truncate_item(root, path, size, 1);
4256
4257 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4258 inode_sub_bytes(inode, item_end + 1 - new_size);
4259
4260 return 0;
4261 }
4262
4263 /*
4264 * this can truncate away extent items, csum items and directory items.
4265 * It starts at a high offset and removes keys until it can't find
4266 * any higher than new_size
4267 *
4268 * csum items that cross the new i_size are truncated to the new size
4269 * as well.
4270 *
4271 * min_type is the minimum key type to truncate down to. If set to 0, this
4272 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4273 */
btrfs_truncate_inode_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,u64 new_size,u32 min_type)4274 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4275 struct btrfs_root *root,
4276 struct inode *inode,
4277 u64 new_size, u32 min_type)
4278 {
4279 struct btrfs_path *path;
4280 struct extent_buffer *leaf;
4281 struct btrfs_file_extent_item *fi;
4282 struct btrfs_key key;
4283 struct btrfs_key found_key;
4284 u64 extent_start = 0;
4285 u64 extent_num_bytes = 0;
4286 u64 extent_offset = 0;
4287 u64 item_end = 0;
4288 u64 last_size = new_size;
4289 u32 found_type = (u8)-1;
4290 int found_extent;
4291 int del_item;
4292 int pending_del_nr = 0;
4293 int pending_del_slot = 0;
4294 int extent_type = -1;
4295 int ret;
4296 int err = 0;
4297 u64 ino = btrfs_ino(inode);
4298 u64 bytes_deleted = 0;
4299 bool be_nice = 0;
4300 bool should_throttle = 0;
4301 bool should_end = 0;
4302
4303 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4304
4305 /*
4306 * for non-free space inodes and ref cows, we want to back off from
4307 * time to time
4308 */
4309 if (!btrfs_is_free_space_inode(inode) &&
4310 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4311 be_nice = 1;
4312
4313 path = btrfs_alloc_path();
4314 if (!path)
4315 return -ENOMEM;
4316 path->reada = -1;
4317
4318 /*
4319 * We want to drop from the next block forward in case this new size is
4320 * not block aligned since we will be keeping the last block of the
4321 * extent just the way it is.
4322 */
4323 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4324 root == root->fs_info->tree_root)
4325 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4326 root->sectorsize), (u64)-1, 0);
4327
4328 /*
4329 * This function is also used to drop the items in the log tree before
4330 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4331 * it is used to drop the loged items. So we shouldn't kill the delayed
4332 * items.
4333 */
4334 if (min_type == 0 && root == BTRFS_I(inode)->root)
4335 btrfs_kill_delayed_inode_items(inode);
4336
4337 key.objectid = ino;
4338 key.offset = (u64)-1;
4339 key.type = (u8)-1;
4340
4341 search_again:
4342 /*
4343 * with a 16K leaf size and 128MB extents, you can actually queue
4344 * up a huge file in a single leaf. Most of the time that
4345 * bytes_deleted is > 0, it will be huge by the time we get here
4346 */
4347 if (be_nice && bytes_deleted > 32 * 1024 * 1024) {
4348 if (btrfs_should_end_transaction(trans, root)) {
4349 err = -EAGAIN;
4350 goto error;
4351 }
4352 }
4353
4354
4355 path->leave_spinning = 1;
4356 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4357 if (ret < 0) {
4358 err = ret;
4359 goto out;
4360 }
4361
4362 if (ret > 0) {
4363 /* there are no items in the tree for us to truncate, we're
4364 * done
4365 */
4366 if (path->slots[0] == 0)
4367 goto out;
4368 path->slots[0]--;
4369 }
4370
4371 while (1) {
4372 fi = NULL;
4373 leaf = path->nodes[0];
4374 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4375 found_type = found_key.type;
4376
4377 if (found_key.objectid != ino)
4378 break;
4379
4380 if (found_type < min_type)
4381 break;
4382
4383 item_end = found_key.offset;
4384 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4385 fi = btrfs_item_ptr(leaf, path->slots[0],
4386 struct btrfs_file_extent_item);
4387 extent_type = btrfs_file_extent_type(leaf, fi);
4388 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4389 item_end +=
4390 btrfs_file_extent_num_bytes(leaf, fi);
4391 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4392 item_end += btrfs_file_extent_inline_len(leaf,
4393 path->slots[0], fi);
4394 }
4395 item_end--;
4396 }
4397 if (found_type > min_type) {
4398 del_item = 1;
4399 } else {
4400 if (item_end < new_size)
4401 break;
4402 if (found_key.offset >= new_size)
4403 del_item = 1;
4404 else
4405 del_item = 0;
4406 }
4407 found_extent = 0;
4408 /* FIXME, shrink the extent if the ref count is only 1 */
4409 if (found_type != BTRFS_EXTENT_DATA_KEY)
4410 goto delete;
4411
4412 if (del_item)
4413 last_size = found_key.offset;
4414 else
4415 last_size = new_size;
4416
4417 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4418 u64 num_dec;
4419 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4420 if (!del_item) {
4421 u64 orig_num_bytes =
4422 btrfs_file_extent_num_bytes(leaf, fi);
4423 extent_num_bytes = ALIGN(new_size -
4424 found_key.offset,
4425 root->sectorsize);
4426 btrfs_set_file_extent_num_bytes(leaf, fi,
4427 extent_num_bytes);
4428 num_dec = (orig_num_bytes -
4429 extent_num_bytes);
4430 if (test_bit(BTRFS_ROOT_REF_COWS,
4431 &root->state) &&
4432 extent_start != 0)
4433 inode_sub_bytes(inode, num_dec);
4434 btrfs_mark_buffer_dirty(leaf);
4435 } else {
4436 extent_num_bytes =
4437 btrfs_file_extent_disk_num_bytes(leaf,
4438 fi);
4439 extent_offset = found_key.offset -
4440 btrfs_file_extent_offset(leaf, fi);
4441
4442 /* FIXME blocksize != 4096 */
4443 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4444 if (extent_start != 0) {
4445 found_extent = 1;
4446 if (test_bit(BTRFS_ROOT_REF_COWS,
4447 &root->state))
4448 inode_sub_bytes(inode, num_dec);
4449 }
4450 }
4451 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4452 /*
4453 * we can't truncate inline items that have had
4454 * special encodings
4455 */
4456 if (!del_item &&
4457 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4458 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4459
4460 /*
4461 * Need to release path in order to truncate a
4462 * compressed extent. So delete any accumulated
4463 * extent items so far.
4464 */
4465 if (btrfs_file_extent_compression(leaf, fi) !=
4466 BTRFS_COMPRESS_NONE && pending_del_nr) {
4467 err = btrfs_del_items(trans, root, path,
4468 pending_del_slot,
4469 pending_del_nr);
4470 if (err) {
4471 btrfs_abort_transaction(trans,
4472 root,
4473 err);
4474 goto error;
4475 }
4476 pending_del_nr = 0;
4477 }
4478
4479 err = truncate_inline_extent(inode, path,
4480 &found_key,
4481 item_end,
4482 new_size);
4483 if (err) {
4484 btrfs_abort_transaction(trans,
4485 root, err);
4486 goto error;
4487 }
4488 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4489 &root->state)) {
4490 inode_sub_bytes(inode, item_end + 1 - new_size);
4491 }
4492 }
4493 delete:
4494 if (del_item) {
4495 if (!pending_del_nr) {
4496 /* no pending yet, add ourselves */
4497 pending_del_slot = path->slots[0];
4498 pending_del_nr = 1;
4499 } else if (pending_del_nr &&
4500 path->slots[0] + 1 == pending_del_slot) {
4501 /* hop on the pending chunk */
4502 pending_del_nr++;
4503 pending_del_slot = path->slots[0];
4504 } else {
4505 BUG();
4506 }
4507 } else {
4508 break;
4509 }
4510 should_throttle = 0;
4511
4512 if (found_extent &&
4513 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4514 root == root->fs_info->tree_root)) {
4515 btrfs_set_path_blocking(path);
4516 bytes_deleted += extent_num_bytes;
4517 ret = btrfs_free_extent(trans, root, extent_start,
4518 extent_num_bytes, 0,
4519 btrfs_header_owner(leaf),
4520 ino, extent_offset);
4521 BUG_ON(ret);
4522 if (btrfs_should_throttle_delayed_refs(trans, root))
4523 btrfs_async_run_delayed_refs(root,
4524 trans->delayed_ref_updates * 2, 0);
4525 if (be_nice) {
4526 if (truncate_space_check(trans, root,
4527 extent_num_bytes)) {
4528 should_end = 1;
4529 }
4530 if (btrfs_should_throttle_delayed_refs(trans,
4531 root)) {
4532 should_throttle = 1;
4533 }
4534 }
4535 }
4536
4537 if (found_type == BTRFS_INODE_ITEM_KEY)
4538 break;
4539
4540 if (path->slots[0] == 0 ||
4541 path->slots[0] != pending_del_slot ||
4542 should_throttle || should_end) {
4543 if (pending_del_nr) {
4544 ret = btrfs_del_items(trans, root, path,
4545 pending_del_slot,
4546 pending_del_nr);
4547 if (ret) {
4548 btrfs_abort_transaction(trans,
4549 root, ret);
4550 goto error;
4551 }
4552 pending_del_nr = 0;
4553 }
4554 btrfs_release_path(path);
4555 if (should_throttle) {
4556 unsigned long updates = trans->delayed_ref_updates;
4557 if (updates) {
4558 trans->delayed_ref_updates = 0;
4559 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4560 if (ret && !err)
4561 err = ret;
4562 }
4563 }
4564 /*
4565 * if we failed to refill our space rsv, bail out
4566 * and let the transaction restart
4567 */
4568 if (should_end) {
4569 err = -EAGAIN;
4570 goto error;
4571 }
4572 goto search_again;
4573 } else {
4574 path->slots[0]--;
4575 }
4576 }
4577 out:
4578 if (pending_del_nr) {
4579 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4580 pending_del_nr);
4581 if (ret)
4582 btrfs_abort_transaction(trans, root, ret);
4583 }
4584 error:
4585 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4586 btrfs_ordered_update_i_size(inode, last_size, NULL);
4587
4588 btrfs_free_path(path);
4589
4590 if (be_nice && bytes_deleted > 32 * 1024 * 1024) {
4591 unsigned long updates = trans->delayed_ref_updates;
4592 if (updates) {
4593 trans->delayed_ref_updates = 0;
4594 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4595 if (ret && !err)
4596 err = ret;
4597 }
4598 }
4599 return err;
4600 }
4601
4602 /*
4603 * btrfs_truncate_page - read, zero a chunk and write a page
4604 * @inode - inode that we're zeroing
4605 * @from - the offset to start zeroing
4606 * @len - the length to zero, 0 to zero the entire range respective to the
4607 * offset
4608 * @front - zero up to the offset instead of from the offset on
4609 *
4610 * This will find the page for the "from" offset and cow the page and zero the
4611 * part we want to zero. This is used with truncate and hole punching.
4612 */
btrfs_truncate_page(struct inode * inode,loff_t from,loff_t len,int front)4613 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4614 int front)
4615 {
4616 struct address_space *mapping = inode->i_mapping;
4617 struct btrfs_root *root = BTRFS_I(inode)->root;
4618 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4619 struct btrfs_ordered_extent *ordered;
4620 struct extent_state *cached_state = NULL;
4621 char *kaddr;
4622 u32 blocksize = root->sectorsize;
4623 pgoff_t index = from >> PAGE_CACHE_SHIFT;
4624 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4625 struct page *page;
4626 gfp_t mask = btrfs_alloc_write_mask(mapping);
4627 int ret = 0;
4628 u64 page_start;
4629 u64 page_end;
4630
4631 if ((offset & (blocksize - 1)) == 0 &&
4632 (!len || ((len & (blocksize - 1)) == 0)))
4633 goto out;
4634 ret = btrfs_delalloc_reserve_space(inode,
4635 round_down(from, PAGE_CACHE_SIZE), PAGE_CACHE_SIZE);
4636 if (ret)
4637 goto out;
4638
4639 again:
4640 page = find_or_create_page(mapping, index, mask);
4641 if (!page) {
4642 btrfs_delalloc_release_space(inode,
4643 round_down(from, PAGE_CACHE_SIZE),
4644 PAGE_CACHE_SIZE);
4645 ret = -ENOMEM;
4646 goto out;
4647 }
4648
4649 page_start = page_offset(page);
4650 page_end = page_start + PAGE_CACHE_SIZE - 1;
4651
4652 if (!PageUptodate(page)) {
4653 ret = btrfs_readpage(NULL, page);
4654 lock_page(page);
4655 if (page->mapping != mapping) {
4656 unlock_page(page);
4657 page_cache_release(page);
4658 goto again;
4659 }
4660 if (!PageUptodate(page)) {
4661 ret = -EIO;
4662 goto out_unlock;
4663 }
4664 }
4665 wait_on_page_writeback(page);
4666
4667 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
4668 set_page_extent_mapped(page);
4669
4670 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4671 if (ordered) {
4672 unlock_extent_cached(io_tree, page_start, page_end,
4673 &cached_state, GFP_NOFS);
4674 unlock_page(page);
4675 page_cache_release(page);
4676 btrfs_start_ordered_extent(inode, ordered, 1);
4677 btrfs_put_ordered_extent(ordered);
4678 goto again;
4679 }
4680
4681 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
4682 EXTENT_DIRTY | EXTENT_DELALLOC |
4683 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4684 0, 0, &cached_state, GFP_NOFS);
4685
4686 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4687 &cached_state);
4688 if (ret) {
4689 unlock_extent_cached(io_tree, page_start, page_end,
4690 &cached_state, GFP_NOFS);
4691 goto out_unlock;
4692 }
4693
4694 if (offset != PAGE_CACHE_SIZE) {
4695 if (!len)
4696 len = PAGE_CACHE_SIZE - offset;
4697 kaddr = kmap(page);
4698 if (front)
4699 memset(kaddr, 0, offset);
4700 else
4701 memset(kaddr + offset, 0, len);
4702 flush_dcache_page(page);
4703 kunmap(page);
4704 }
4705 ClearPageChecked(page);
4706 set_page_dirty(page);
4707 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4708 GFP_NOFS);
4709
4710 out_unlock:
4711 if (ret)
4712 btrfs_delalloc_release_space(inode, page_start,
4713 PAGE_CACHE_SIZE);
4714 unlock_page(page);
4715 page_cache_release(page);
4716 out:
4717 return ret;
4718 }
4719
maybe_insert_hole(struct btrfs_root * root,struct inode * inode,u64 offset,u64 len)4720 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4721 u64 offset, u64 len)
4722 {
4723 struct btrfs_trans_handle *trans;
4724 int ret;
4725
4726 /*
4727 * Still need to make sure the inode looks like it's been updated so
4728 * that any holes get logged if we fsync.
4729 */
4730 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4731 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4732 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4733 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4734 return 0;
4735 }
4736
4737 /*
4738 * 1 - for the one we're dropping
4739 * 1 - for the one we're adding
4740 * 1 - for updating the inode.
4741 */
4742 trans = btrfs_start_transaction(root, 3);
4743 if (IS_ERR(trans))
4744 return PTR_ERR(trans);
4745
4746 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4747 if (ret) {
4748 btrfs_abort_transaction(trans, root, ret);
4749 btrfs_end_transaction(trans, root);
4750 return ret;
4751 }
4752
4753 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4754 0, 0, len, 0, len, 0, 0, 0);
4755 if (ret)
4756 btrfs_abort_transaction(trans, root, ret);
4757 else
4758 btrfs_update_inode(trans, root, inode);
4759 btrfs_end_transaction(trans, root);
4760 return ret;
4761 }
4762
4763 /*
4764 * This function puts in dummy file extents for the area we're creating a hole
4765 * for. So if we are truncating this file to a larger size we need to insert
4766 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4767 * the range between oldsize and size
4768 */
btrfs_cont_expand(struct inode * inode,loff_t oldsize,loff_t size)4769 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4770 {
4771 struct btrfs_root *root = BTRFS_I(inode)->root;
4772 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4773 struct extent_map *em = NULL;
4774 struct extent_state *cached_state = NULL;
4775 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4776 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4777 u64 block_end = ALIGN(size, root->sectorsize);
4778 u64 last_byte;
4779 u64 cur_offset;
4780 u64 hole_size;
4781 int err = 0;
4782
4783 /*
4784 * If our size started in the middle of a page we need to zero out the
4785 * rest of the page before we expand the i_size, otherwise we could
4786 * expose stale data.
4787 */
4788 err = btrfs_truncate_page(inode, oldsize, 0, 0);
4789 if (err)
4790 return err;
4791
4792 if (size <= hole_start)
4793 return 0;
4794
4795 while (1) {
4796 struct btrfs_ordered_extent *ordered;
4797
4798 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
4799 &cached_state);
4800 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4801 block_end - hole_start);
4802 if (!ordered)
4803 break;
4804 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4805 &cached_state, GFP_NOFS);
4806 btrfs_start_ordered_extent(inode, ordered, 1);
4807 btrfs_put_ordered_extent(ordered);
4808 }
4809
4810 cur_offset = hole_start;
4811 while (1) {
4812 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4813 block_end - cur_offset, 0);
4814 if (IS_ERR(em)) {
4815 err = PTR_ERR(em);
4816 em = NULL;
4817 break;
4818 }
4819 last_byte = min(extent_map_end(em), block_end);
4820 last_byte = ALIGN(last_byte , root->sectorsize);
4821 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4822 struct extent_map *hole_em;
4823 hole_size = last_byte - cur_offset;
4824
4825 err = maybe_insert_hole(root, inode, cur_offset,
4826 hole_size);
4827 if (err)
4828 break;
4829 btrfs_drop_extent_cache(inode, cur_offset,
4830 cur_offset + hole_size - 1, 0);
4831 hole_em = alloc_extent_map();
4832 if (!hole_em) {
4833 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4834 &BTRFS_I(inode)->runtime_flags);
4835 goto next;
4836 }
4837 hole_em->start = cur_offset;
4838 hole_em->len = hole_size;
4839 hole_em->orig_start = cur_offset;
4840
4841 hole_em->block_start = EXTENT_MAP_HOLE;
4842 hole_em->block_len = 0;
4843 hole_em->orig_block_len = 0;
4844 hole_em->ram_bytes = hole_size;
4845 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4846 hole_em->compress_type = BTRFS_COMPRESS_NONE;
4847 hole_em->generation = root->fs_info->generation;
4848
4849 while (1) {
4850 write_lock(&em_tree->lock);
4851 err = add_extent_mapping(em_tree, hole_em, 1);
4852 write_unlock(&em_tree->lock);
4853 if (err != -EEXIST)
4854 break;
4855 btrfs_drop_extent_cache(inode, cur_offset,
4856 cur_offset +
4857 hole_size - 1, 0);
4858 }
4859 free_extent_map(hole_em);
4860 }
4861 next:
4862 free_extent_map(em);
4863 em = NULL;
4864 cur_offset = last_byte;
4865 if (cur_offset >= block_end)
4866 break;
4867 }
4868 free_extent_map(em);
4869 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4870 GFP_NOFS);
4871 return err;
4872 }
4873
wait_snapshoting_atomic_t(atomic_t * a)4874 static int wait_snapshoting_atomic_t(atomic_t *a)
4875 {
4876 schedule();
4877 return 0;
4878 }
4879
wait_for_snapshot_creation(struct btrfs_root * root)4880 static void wait_for_snapshot_creation(struct btrfs_root *root)
4881 {
4882 while (true) {
4883 int ret;
4884
4885 ret = btrfs_start_write_no_snapshoting(root);
4886 if (ret)
4887 break;
4888 wait_on_atomic_t(&root->will_be_snapshoted,
4889 wait_snapshoting_atomic_t,
4890 TASK_UNINTERRUPTIBLE);
4891 }
4892 }
4893
btrfs_setsize(struct inode * inode,struct iattr * attr)4894 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4895 {
4896 struct btrfs_root *root = BTRFS_I(inode)->root;
4897 struct btrfs_trans_handle *trans;
4898 loff_t oldsize = i_size_read(inode);
4899 loff_t newsize = attr->ia_size;
4900 int mask = attr->ia_valid;
4901 int ret;
4902
4903 /*
4904 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4905 * special case where we need to update the times despite not having
4906 * these flags set. For all other operations the VFS set these flags
4907 * explicitly if it wants a timestamp update.
4908 */
4909 if (newsize != oldsize) {
4910 inode_inc_iversion(inode);
4911 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4912 inode->i_ctime = inode->i_mtime =
4913 current_fs_time(inode->i_sb);
4914 }
4915
4916 if (newsize > oldsize) {
4917 truncate_pagecache(inode, newsize);
4918 /*
4919 * Don't do an expanding truncate while snapshoting is ongoing.
4920 * This is to ensure the snapshot captures a fully consistent
4921 * state of this file - if the snapshot captures this expanding
4922 * truncation, it must capture all writes that happened before
4923 * this truncation.
4924 */
4925 wait_for_snapshot_creation(root);
4926 ret = btrfs_cont_expand(inode, oldsize, newsize);
4927 if (ret) {
4928 btrfs_end_write_no_snapshoting(root);
4929 return ret;
4930 }
4931
4932 trans = btrfs_start_transaction(root, 1);
4933 if (IS_ERR(trans)) {
4934 btrfs_end_write_no_snapshoting(root);
4935 return PTR_ERR(trans);
4936 }
4937
4938 i_size_write(inode, newsize);
4939 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4940 ret = btrfs_update_inode(trans, root, inode);
4941 btrfs_end_write_no_snapshoting(root);
4942 btrfs_end_transaction(trans, root);
4943 } else {
4944
4945 /*
4946 * We're truncating a file that used to have good data down to
4947 * zero. Make sure it gets into the ordered flush list so that
4948 * any new writes get down to disk quickly.
4949 */
4950 if (newsize == 0)
4951 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4952 &BTRFS_I(inode)->runtime_flags);
4953
4954 /*
4955 * 1 for the orphan item we're going to add
4956 * 1 for the orphan item deletion.
4957 */
4958 trans = btrfs_start_transaction(root, 2);
4959 if (IS_ERR(trans))
4960 return PTR_ERR(trans);
4961
4962 /*
4963 * We need to do this in case we fail at _any_ point during the
4964 * actual truncate. Once we do the truncate_setsize we could
4965 * invalidate pages which forces any outstanding ordered io to
4966 * be instantly completed which will give us extents that need
4967 * to be truncated. If we fail to get an orphan inode down we
4968 * could have left over extents that were never meant to live,
4969 * so we need to garuntee from this point on that everything
4970 * will be consistent.
4971 */
4972 ret = btrfs_orphan_add(trans, inode);
4973 btrfs_end_transaction(trans, root);
4974 if (ret)
4975 return ret;
4976
4977 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4978 truncate_setsize(inode, newsize);
4979
4980 /* Disable nonlocked read DIO to avoid the end less truncate */
4981 btrfs_inode_block_unlocked_dio(inode);
4982 inode_dio_wait(inode);
4983 btrfs_inode_resume_unlocked_dio(inode);
4984
4985 ret = btrfs_truncate(inode);
4986 if (ret && inode->i_nlink) {
4987 int err;
4988
4989 /*
4990 * failed to truncate, disk_i_size is only adjusted down
4991 * as we remove extents, so it should represent the true
4992 * size of the inode, so reset the in memory size and
4993 * delete our orphan entry.
4994 */
4995 trans = btrfs_join_transaction(root);
4996 if (IS_ERR(trans)) {
4997 btrfs_orphan_del(NULL, inode);
4998 return ret;
4999 }
5000 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5001 err = btrfs_orphan_del(trans, inode);
5002 if (err)
5003 btrfs_abort_transaction(trans, root, err);
5004 btrfs_end_transaction(trans, root);
5005 }
5006 }
5007
5008 return ret;
5009 }
5010
btrfs_setattr(struct dentry * dentry,struct iattr * attr)5011 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5012 {
5013 struct inode *inode = d_inode(dentry);
5014 struct btrfs_root *root = BTRFS_I(inode)->root;
5015 int err;
5016
5017 if (btrfs_root_readonly(root))
5018 return -EROFS;
5019
5020 err = inode_change_ok(inode, attr);
5021 if (err)
5022 return err;
5023
5024 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5025 err = btrfs_setsize(inode, attr);
5026 if (err)
5027 return err;
5028 }
5029
5030 if (attr->ia_valid) {
5031 setattr_copy(inode, attr);
5032 inode_inc_iversion(inode);
5033 err = btrfs_dirty_inode(inode);
5034
5035 if (!err && attr->ia_valid & ATTR_MODE)
5036 err = posix_acl_chmod(inode, inode->i_mode);
5037 }
5038
5039 return err;
5040 }
5041
5042 /*
5043 * While truncating the inode pages during eviction, we get the VFS calling
5044 * btrfs_invalidatepage() against each page of the inode. This is slow because
5045 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5046 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5047 * extent_state structures over and over, wasting lots of time.
5048 *
5049 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5050 * those expensive operations on a per page basis and do only the ordered io
5051 * finishing, while we release here the extent_map and extent_state structures,
5052 * without the excessive merging and splitting.
5053 */
evict_inode_truncate_pages(struct inode * inode)5054 static void evict_inode_truncate_pages(struct inode *inode)
5055 {
5056 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5057 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5058 struct rb_node *node;
5059
5060 ASSERT(inode->i_state & I_FREEING);
5061 truncate_inode_pages_final(&inode->i_data);
5062
5063 write_lock(&map_tree->lock);
5064 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5065 struct extent_map *em;
5066
5067 node = rb_first(&map_tree->map);
5068 em = rb_entry(node, struct extent_map, rb_node);
5069 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5070 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5071 remove_extent_mapping(map_tree, em);
5072 free_extent_map(em);
5073 if (need_resched()) {
5074 write_unlock(&map_tree->lock);
5075 cond_resched();
5076 write_lock(&map_tree->lock);
5077 }
5078 }
5079 write_unlock(&map_tree->lock);
5080
5081 /*
5082 * Keep looping until we have no more ranges in the io tree.
5083 * We can have ongoing bios started by readpages (called from readahead)
5084 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5085 * still in progress (unlocked the pages in the bio but did not yet
5086 * unlocked the ranges in the io tree). Therefore this means some
5087 * ranges can still be locked and eviction started because before
5088 * submitting those bios, which are executed by a separate task (work
5089 * queue kthread), inode references (inode->i_count) were not taken
5090 * (which would be dropped in the end io callback of each bio).
5091 * Therefore here we effectively end up waiting for those bios and
5092 * anyone else holding locked ranges without having bumped the inode's
5093 * reference count - if we don't do it, when they access the inode's
5094 * io_tree to unlock a range it may be too late, leading to an
5095 * use-after-free issue.
5096 */
5097 spin_lock(&io_tree->lock);
5098 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5099 struct extent_state *state;
5100 struct extent_state *cached_state = NULL;
5101 u64 start;
5102 u64 end;
5103
5104 node = rb_first(&io_tree->state);
5105 state = rb_entry(node, struct extent_state, rb_node);
5106 start = state->start;
5107 end = state->end;
5108 spin_unlock(&io_tree->lock);
5109
5110 lock_extent_bits(io_tree, start, end, 0, &cached_state);
5111
5112 /*
5113 * If still has DELALLOC flag, the extent didn't reach disk,
5114 * and its reserved space won't be freed by delayed_ref.
5115 * So we need to free its reserved space here.
5116 * (Refer to comment in btrfs_invalidatepage, case 2)
5117 *
5118 * Note, end is the bytenr of last byte, so we need + 1 here.
5119 */
5120 if (state->state & EXTENT_DELALLOC)
5121 btrfs_qgroup_free_data(inode, start, end - start + 1);
5122
5123 clear_extent_bit(io_tree, start, end,
5124 EXTENT_LOCKED | EXTENT_DIRTY |
5125 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5126 EXTENT_DEFRAG, 1, 1,
5127 &cached_state, GFP_NOFS);
5128
5129 cond_resched();
5130 spin_lock(&io_tree->lock);
5131 }
5132 spin_unlock(&io_tree->lock);
5133 }
5134
btrfs_evict_inode(struct inode * inode)5135 void btrfs_evict_inode(struct inode *inode)
5136 {
5137 struct btrfs_trans_handle *trans;
5138 struct btrfs_root *root = BTRFS_I(inode)->root;
5139 struct btrfs_block_rsv *rsv, *global_rsv;
5140 int steal_from_global = 0;
5141 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
5142 int ret;
5143
5144 trace_btrfs_inode_evict(inode);
5145
5146 evict_inode_truncate_pages(inode);
5147
5148 if (inode->i_nlink &&
5149 ((btrfs_root_refs(&root->root_item) != 0 &&
5150 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5151 btrfs_is_free_space_inode(inode)))
5152 goto no_delete;
5153
5154 if (is_bad_inode(inode)) {
5155 btrfs_orphan_del(NULL, inode);
5156 goto no_delete;
5157 }
5158 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5159 if (!special_file(inode->i_mode))
5160 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5161
5162 btrfs_free_io_failure_record(inode, 0, (u64)-1);
5163
5164 if (root->fs_info->log_root_recovering) {
5165 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
5166 &BTRFS_I(inode)->runtime_flags));
5167 goto no_delete;
5168 }
5169
5170 if (inode->i_nlink > 0) {
5171 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5172 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5173 goto no_delete;
5174 }
5175
5176 ret = btrfs_commit_inode_delayed_inode(inode);
5177 if (ret) {
5178 btrfs_orphan_del(NULL, inode);
5179 goto no_delete;
5180 }
5181
5182 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
5183 if (!rsv) {
5184 btrfs_orphan_del(NULL, inode);
5185 goto no_delete;
5186 }
5187 rsv->size = min_size;
5188 rsv->failfast = 1;
5189 global_rsv = &root->fs_info->global_block_rsv;
5190
5191 btrfs_i_size_write(inode, 0);
5192
5193 /*
5194 * This is a bit simpler than btrfs_truncate since we've already
5195 * reserved our space for our orphan item in the unlink, so we just
5196 * need to reserve some slack space in case we add bytes and update
5197 * inode item when doing the truncate.
5198 */
5199 while (1) {
5200 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5201 BTRFS_RESERVE_FLUSH_LIMIT);
5202
5203 /*
5204 * Try and steal from the global reserve since we will
5205 * likely not use this space anyway, we want to try as
5206 * hard as possible to get this to work.
5207 */
5208 if (ret)
5209 steal_from_global++;
5210 else
5211 steal_from_global = 0;
5212 ret = 0;
5213
5214 /*
5215 * steal_from_global == 0: we reserved stuff, hooray!
5216 * steal_from_global == 1: we didn't reserve stuff, boo!
5217 * steal_from_global == 2: we've committed, still not a lot of
5218 * room but maybe we'll have room in the global reserve this
5219 * time.
5220 * steal_from_global == 3: abandon all hope!
5221 */
5222 if (steal_from_global > 2) {
5223 btrfs_warn(root->fs_info,
5224 "Could not get space for a delete, will truncate on mount %d",
5225 ret);
5226 btrfs_orphan_del(NULL, inode);
5227 btrfs_free_block_rsv(root, rsv);
5228 goto no_delete;
5229 }
5230
5231 trans = btrfs_join_transaction(root);
5232 if (IS_ERR(trans)) {
5233 btrfs_orphan_del(NULL, inode);
5234 btrfs_free_block_rsv(root, rsv);
5235 goto no_delete;
5236 }
5237
5238 /*
5239 * We can't just steal from the global reserve, we need tomake
5240 * sure there is room to do it, if not we need to commit and try
5241 * again.
5242 */
5243 if (steal_from_global) {
5244 if (!btrfs_check_space_for_delayed_refs(trans, root))
5245 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5246 min_size);
5247 else
5248 ret = -ENOSPC;
5249 }
5250
5251 /*
5252 * Couldn't steal from the global reserve, we have too much
5253 * pending stuff built up, commit the transaction and try it
5254 * again.
5255 */
5256 if (ret) {
5257 ret = btrfs_commit_transaction(trans, root);
5258 if (ret) {
5259 btrfs_orphan_del(NULL, inode);
5260 btrfs_free_block_rsv(root, rsv);
5261 goto no_delete;
5262 }
5263 continue;
5264 } else {
5265 steal_from_global = 0;
5266 }
5267
5268 trans->block_rsv = rsv;
5269
5270 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5271 if (ret != -ENOSPC && ret != -EAGAIN)
5272 break;
5273
5274 trans->block_rsv = &root->fs_info->trans_block_rsv;
5275 btrfs_end_transaction(trans, root);
5276 trans = NULL;
5277 btrfs_btree_balance_dirty(root);
5278 }
5279
5280 btrfs_free_block_rsv(root, rsv);
5281
5282 /*
5283 * Errors here aren't a big deal, it just means we leave orphan items
5284 * in the tree. They will be cleaned up on the next mount.
5285 */
5286 if (ret == 0) {
5287 trans->block_rsv = root->orphan_block_rsv;
5288 btrfs_orphan_del(trans, inode);
5289 } else {
5290 btrfs_orphan_del(NULL, inode);
5291 }
5292
5293 trans->block_rsv = &root->fs_info->trans_block_rsv;
5294 if (!(root == root->fs_info->tree_root ||
5295 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5296 btrfs_return_ino(root, btrfs_ino(inode));
5297
5298 btrfs_end_transaction(trans, root);
5299 btrfs_btree_balance_dirty(root);
5300 no_delete:
5301 btrfs_remove_delayed_node(inode);
5302 clear_inode(inode);
5303 return;
5304 }
5305
5306 /*
5307 * this returns the key found in the dir entry in the location pointer.
5308 * If no dir entries were found, location->objectid is 0.
5309 */
btrfs_inode_by_name(struct inode * dir,struct dentry * dentry,struct btrfs_key * location)5310 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5311 struct btrfs_key *location)
5312 {
5313 const char *name = dentry->d_name.name;
5314 int namelen = dentry->d_name.len;
5315 struct btrfs_dir_item *di;
5316 struct btrfs_path *path;
5317 struct btrfs_root *root = BTRFS_I(dir)->root;
5318 int ret = 0;
5319
5320 path = btrfs_alloc_path();
5321 if (!path)
5322 return -ENOMEM;
5323
5324 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
5325 namelen, 0);
5326 if (IS_ERR(di))
5327 ret = PTR_ERR(di);
5328
5329 if (IS_ERR_OR_NULL(di))
5330 goto out_err;
5331
5332 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5333 out:
5334 btrfs_free_path(path);
5335 return ret;
5336 out_err:
5337 location->objectid = 0;
5338 goto out;
5339 }
5340
5341 /*
5342 * when we hit a tree root in a directory, the btrfs part of the inode
5343 * needs to be changed to reflect the root directory of the tree root. This
5344 * is kind of like crossing a mount point.
5345 */
fixup_tree_root_location(struct btrfs_root * root,struct inode * dir,struct dentry * dentry,struct btrfs_key * location,struct btrfs_root ** sub_root)5346 static int fixup_tree_root_location(struct btrfs_root *root,
5347 struct inode *dir,
5348 struct dentry *dentry,
5349 struct btrfs_key *location,
5350 struct btrfs_root **sub_root)
5351 {
5352 struct btrfs_path *path;
5353 struct btrfs_root *new_root;
5354 struct btrfs_root_ref *ref;
5355 struct extent_buffer *leaf;
5356 struct btrfs_key key;
5357 int ret;
5358 int err = 0;
5359
5360 path = btrfs_alloc_path();
5361 if (!path) {
5362 err = -ENOMEM;
5363 goto out;
5364 }
5365
5366 err = -ENOENT;
5367 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5368 key.type = BTRFS_ROOT_REF_KEY;
5369 key.offset = location->objectid;
5370
5371 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5372 0, 0);
5373 if (ret) {
5374 if (ret < 0)
5375 err = ret;
5376 goto out;
5377 }
5378
5379 leaf = path->nodes[0];
5380 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5381 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5382 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5383 goto out;
5384
5385 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5386 (unsigned long)(ref + 1),
5387 dentry->d_name.len);
5388 if (ret)
5389 goto out;
5390
5391 btrfs_release_path(path);
5392
5393 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5394 if (IS_ERR(new_root)) {
5395 err = PTR_ERR(new_root);
5396 goto out;
5397 }
5398
5399 *sub_root = new_root;
5400 location->objectid = btrfs_root_dirid(&new_root->root_item);
5401 location->type = BTRFS_INODE_ITEM_KEY;
5402 location->offset = 0;
5403 err = 0;
5404 out:
5405 btrfs_free_path(path);
5406 return err;
5407 }
5408
inode_tree_add(struct inode * inode)5409 static void inode_tree_add(struct inode *inode)
5410 {
5411 struct btrfs_root *root = BTRFS_I(inode)->root;
5412 struct btrfs_inode *entry;
5413 struct rb_node **p;
5414 struct rb_node *parent;
5415 struct rb_node *new = &BTRFS_I(inode)->rb_node;
5416 u64 ino = btrfs_ino(inode);
5417
5418 if (inode_unhashed(inode))
5419 return;
5420 parent = NULL;
5421 spin_lock(&root->inode_lock);
5422 p = &root->inode_tree.rb_node;
5423 while (*p) {
5424 parent = *p;
5425 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5426
5427 if (ino < btrfs_ino(&entry->vfs_inode))
5428 p = &parent->rb_left;
5429 else if (ino > btrfs_ino(&entry->vfs_inode))
5430 p = &parent->rb_right;
5431 else {
5432 WARN_ON(!(entry->vfs_inode.i_state &
5433 (I_WILL_FREE | I_FREEING)));
5434 rb_replace_node(parent, new, &root->inode_tree);
5435 RB_CLEAR_NODE(parent);
5436 spin_unlock(&root->inode_lock);
5437 return;
5438 }
5439 }
5440 rb_link_node(new, parent, p);
5441 rb_insert_color(new, &root->inode_tree);
5442 spin_unlock(&root->inode_lock);
5443 }
5444
inode_tree_del(struct inode * inode)5445 static void inode_tree_del(struct inode *inode)
5446 {
5447 struct btrfs_root *root = BTRFS_I(inode)->root;
5448 int empty = 0;
5449
5450 spin_lock(&root->inode_lock);
5451 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5452 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5453 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5454 empty = RB_EMPTY_ROOT(&root->inode_tree);
5455 }
5456 spin_unlock(&root->inode_lock);
5457
5458 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5459 synchronize_srcu(&root->fs_info->subvol_srcu);
5460 spin_lock(&root->inode_lock);
5461 empty = RB_EMPTY_ROOT(&root->inode_tree);
5462 spin_unlock(&root->inode_lock);
5463 if (empty)
5464 btrfs_add_dead_root(root);
5465 }
5466 }
5467
btrfs_invalidate_inodes(struct btrfs_root * root)5468 void btrfs_invalidate_inodes(struct btrfs_root *root)
5469 {
5470 struct rb_node *node;
5471 struct rb_node *prev;
5472 struct btrfs_inode *entry;
5473 struct inode *inode;
5474 u64 objectid = 0;
5475
5476 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5477 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5478
5479 spin_lock(&root->inode_lock);
5480 again:
5481 node = root->inode_tree.rb_node;
5482 prev = NULL;
5483 while (node) {
5484 prev = node;
5485 entry = rb_entry(node, struct btrfs_inode, rb_node);
5486
5487 if (objectid < btrfs_ino(&entry->vfs_inode))
5488 node = node->rb_left;
5489 else if (objectid > btrfs_ino(&entry->vfs_inode))
5490 node = node->rb_right;
5491 else
5492 break;
5493 }
5494 if (!node) {
5495 while (prev) {
5496 entry = rb_entry(prev, struct btrfs_inode, rb_node);
5497 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
5498 node = prev;
5499 break;
5500 }
5501 prev = rb_next(prev);
5502 }
5503 }
5504 while (node) {
5505 entry = rb_entry(node, struct btrfs_inode, rb_node);
5506 objectid = btrfs_ino(&entry->vfs_inode) + 1;
5507 inode = igrab(&entry->vfs_inode);
5508 if (inode) {
5509 spin_unlock(&root->inode_lock);
5510 if (atomic_read(&inode->i_count) > 1)
5511 d_prune_aliases(inode);
5512 /*
5513 * btrfs_drop_inode will have it removed from
5514 * the inode cache when its usage count
5515 * hits zero.
5516 */
5517 iput(inode);
5518 cond_resched();
5519 spin_lock(&root->inode_lock);
5520 goto again;
5521 }
5522
5523 if (cond_resched_lock(&root->inode_lock))
5524 goto again;
5525
5526 node = rb_next(node);
5527 }
5528 spin_unlock(&root->inode_lock);
5529 }
5530
btrfs_init_locked_inode(struct inode * inode,void * p)5531 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5532 {
5533 struct btrfs_iget_args *args = p;
5534 inode->i_ino = args->location->objectid;
5535 memcpy(&BTRFS_I(inode)->location, args->location,
5536 sizeof(*args->location));
5537 BTRFS_I(inode)->root = args->root;
5538 return 0;
5539 }
5540
btrfs_find_actor(struct inode * inode,void * opaque)5541 static int btrfs_find_actor(struct inode *inode, void *opaque)
5542 {
5543 struct btrfs_iget_args *args = opaque;
5544 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5545 args->root == BTRFS_I(inode)->root;
5546 }
5547
btrfs_iget_locked(struct super_block * s,struct btrfs_key * location,struct btrfs_root * root)5548 static struct inode *btrfs_iget_locked(struct super_block *s,
5549 struct btrfs_key *location,
5550 struct btrfs_root *root)
5551 {
5552 struct inode *inode;
5553 struct btrfs_iget_args args;
5554 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5555
5556 args.location = location;
5557 args.root = root;
5558
5559 inode = iget5_locked(s, hashval, btrfs_find_actor,
5560 btrfs_init_locked_inode,
5561 (void *)&args);
5562 return inode;
5563 }
5564
5565 /* Get an inode object given its location and corresponding root.
5566 * Returns in *is_new if the inode was read from disk
5567 */
btrfs_iget(struct super_block * s,struct btrfs_key * location,struct btrfs_root * root,int * new)5568 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5569 struct btrfs_root *root, int *new)
5570 {
5571 struct inode *inode;
5572
5573 inode = btrfs_iget_locked(s, location, root);
5574 if (!inode)
5575 return ERR_PTR(-ENOMEM);
5576
5577 if (inode->i_state & I_NEW) {
5578 btrfs_read_locked_inode(inode);
5579 if (!is_bad_inode(inode)) {
5580 inode_tree_add(inode);
5581 unlock_new_inode(inode);
5582 if (new)
5583 *new = 1;
5584 } else {
5585 unlock_new_inode(inode);
5586 iput(inode);
5587 inode = ERR_PTR(-ESTALE);
5588 }
5589 }
5590
5591 return inode;
5592 }
5593
new_simple_dir(struct super_block * s,struct btrfs_key * key,struct btrfs_root * root)5594 static struct inode *new_simple_dir(struct super_block *s,
5595 struct btrfs_key *key,
5596 struct btrfs_root *root)
5597 {
5598 struct inode *inode = new_inode(s);
5599
5600 if (!inode)
5601 return ERR_PTR(-ENOMEM);
5602
5603 BTRFS_I(inode)->root = root;
5604 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5605 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5606
5607 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5608 inode->i_op = &btrfs_dir_ro_inode_operations;
5609 inode->i_fop = &simple_dir_operations;
5610 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5611 inode->i_mtime = CURRENT_TIME;
5612 inode->i_atime = inode->i_mtime;
5613 inode->i_ctime = inode->i_mtime;
5614 BTRFS_I(inode)->i_otime = inode->i_mtime;
5615
5616 return inode;
5617 }
5618
btrfs_lookup_dentry(struct inode * dir,struct dentry * dentry)5619 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5620 {
5621 struct inode *inode;
5622 struct btrfs_root *root = BTRFS_I(dir)->root;
5623 struct btrfs_root *sub_root = root;
5624 struct btrfs_key location;
5625 int index;
5626 int ret = 0;
5627
5628 if (dentry->d_name.len > BTRFS_NAME_LEN)
5629 return ERR_PTR(-ENAMETOOLONG);
5630
5631 ret = btrfs_inode_by_name(dir, dentry, &location);
5632 if (ret < 0)
5633 return ERR_PTR(ret);
5634
5635 if (location.objectid == 0)
5636 return ERR_PTR(-ENOENT);
5637
5638 if (location.type == BTRFS_INODE_ITEM_KEY) {
5639 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5640 return inode;
5641 }
5642
5643 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5644
5645 index = srcu_read_lock(&root->fs_info->subvol_srcu);
5646 ret = fixup_tree_root_location(root, dir, dentry,
5647 &location, &sub_root);
5648 if (ret < 0) {
5649 if (ret != -ENOENT)
5650 inode = ERR_PTR(ret);
5651 else
5652 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5653 } else {
5654 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5655 }
5656 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5657
5658 if (!IS_ERR(inode) && root != sub_root) {
5659 down_read(&root->fs_info->cleanup_work_sem);
5660 if (!(inode->i_sb->s_flags & MS_RDONLY))
5661 ret = btrfs_orphan_cleanup(sub_root);
5662 up_read(&root->fs_info->cleanup_work_sem);
5663 if (ret) {
5664 iput(inode);
5665 inode = ERR_PTR(ret);
5666 }
5667 }
5668
5669 return inode;
5670 }
5671
btrfs_dentry_delete(const struct dentry * dentry)5672 static int btrfs_dentry_delete(const struct dentry *dentry)
5673 {
5674 struct btrfs_root *root;
5675 struct inode *inode = d_inode(dentry);
5676
5677 if (!inode && !IS_ROOT(dentry))
5678 inode = d_inode(dentry->d_parent);
5679
5680 if (inode) {
5681 root = BTRFS_I(inode)->root;
5682 if (btrfs_root_refs(&root->root_item) == 0)
5683 return 1;
5684
5685 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5686 return 1;
5687 }
5688 return 0;
5689 }
5690
btrfs_dentry_release(struct dentry * dentry)5691 static void btrfs_dentry_release(struct dentry *dentry)
5692 {
5693 kfree(dentry->d_fsdata);
5694 }
5695
btrfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)5696 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5697 unsigned int flags)
5698 {
5699 struct inode *inode;
5700
5701 inode = btrfs_lookup_dentry(dir, dentry);
5702 if (IS_ERR(inode)) {
5703 if (PTR_ERR(inode) == -ENOENT)
5704 inode = NULL;
5705 else
5706 return ERR_CAST(inode);
5707 }
5708
5709 return d_splice_alias(inode, dentry);
5710 }
5711
5712 unsigned char btrfs_filetype_table[] = {
5713 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5714 };
5715
btrfs_real_readdir(struct file * file,struct dir_context * ctx)5716 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5717 {
5718 struct inode *inode = file_inode(file);
5719 struct btrfs_root *root = BTRFS_I(inode)->root;
5720 struct btrfs_item *item;
5721 struct btrfs_dir_item *di;
5722 struct btrfs_key key;
5723 struct btrfs_key found_key;
5724 struct btrfs_path *path;
5725 struct list_head ins_list;
5726 struct list_head del_list;
5727 int ret;
5728 struct extent_buffer *leaf;
5729 int slot;
5730 unsigned char d_type;
5731 int over = 0;
5732 u32 di_cur;
5733 u32 di_total;
5734 u32 di_len;
5735 int key_type = BTRFS_DIR_INDEX_KEY;
5736 char tmp_name[32];
5737 char *name_ptr;
5738 int name_len;
5739 int is_curr = 0; /* ctx->pos points to the current index? */
5740 bool emitted;
5741
5742 /* FIXME, use a real flag for deciding about the key type */
5743 if (root->fs_info->tree_root == root)
5744 key_type = BTRFS_DIR_ITEM_KEY;
5745
5746 if (!dir_emit_dots(file, ctx))
5747 return 0;
5748
5749 path = btrfs_alloc_path();
5750 if (!path)
5751 return -ENOMEM;
5752
5753 path->reada = 1;
5754
5755 if (key_type == BTRFS_DIR_INDEX_KEY) {
5756 INIT_LIST_HEAD(&ins_list);
5757 INIT_LIST_HEAD(&del_list);
5758 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5759 }
5760
5761 key.type = key_type;
5762 key.offset = ctx->pos;
5763 key.objectid = btrfs_ino(inode);
5764
5765 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5766 if (ret < 0)
5767 goto err;
5768
5769 emitted = false;
5770 while (1) {
5771 leaf = path->nodes[0];
5772 slot = path->slots[0];
5773 if (slot >= btrfs_header_nritems(leaf)) {
5774 ret = btrfs_next_leaf(root, path);
5775 if (ret < 0)
5776 goto err;
5777 else if (ret > 0)
5778 break;
5779 continue;
5780 }
5781
5782 item = btrfs_item_nr(slot);
5783 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5784
5785 if (found_key.objectid != key.objectid)
5786 break;
5787 if (found_key.type != key_type)
5788 break;
5789 if (found_key.offset < ctx->pos)
5790 goto next;
5791 if (key_type == BTRFS_DIR_INDEX_KEY &&
5792 btrfs_should_delete_dir_index(&del_list,
5793 found_key.offset))
5794 goto next;
5795
5796 ctx->pos = found_key.offset;
5797 is_curr = 1;
5798
5799 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5800 di_cur = 0;
5801 di_total = btrfs_item_size(leaf, item);
5802
5803 while (di_cur < di_total) {
5804 struct btrfs_key location;
5805
5806 if (verify_dir_item(root, leaf, di))
5807 break;
5808
5809 name_len = btrfs_dir_name_len(leaf, di);
5810 if (name_len <= sizeof(tmp_name)) {
5811 name_ptr = tmp_name;
5812 } else {
5813 name_ptr = kmalloc(name_len, GFP_NOFS);
5814 if (!name_ptr) {
5815 ret = -ENOMEM;
5816 goto err;
5817 }
5818 }
5819 read_extent_buffer(leaf, name_ptr,
5820 (unsigned long)(di + 1), name_len);
5821
5822 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5823 btrfs_dir_item_key_to_cpu(leaf, di, &location);
5824
5825
5826 /* is this a reference to our own snapshot? If so
5827 * skip it.
5828 *
5829 * In contrast to old kernels, we insert the snapshot's
5830 * dir item and dir index after it has been created, so
5831 * we won't find a reference to our own snapshot. We
5832 * still keep the following code for backward
5833 * compatibility.
5834 */
5835 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5836 location.objectid == root->root_key.objectid) {
5837 over = 0;
5838 goto skip;
5839 }
5840 over = !dir_emit(ctx, name_ptr, name_len,
5841 location.objectid, d_type);
5842
5843 skip:
5844 if (name_ptr != tmp_name)
5845 kfree(name_ptr);
5846
5847 if (over)
5848 goto nopos;
5849 emitted = true;
5850 di_len = btrfs_dir_name_len(leaf, di) +
5851 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5852 di_cur += di_len;
5853 di = (struct btrfs_dir_item *)((char *)di + di_len);
5854 }
5855 next:
5856 path->slots[0]++;
5857 }
5858
5859 if (key_type == BTRFS_DIR_INDEX_KEY) {
5860 if (is_curr)
5861 ctx->pos++;
5862 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list, &emitted);
5863 if (ret)
5864 goto nopos;
5865 }
5866
5867 /*
5868 * If we haven't emitted any dir entry, we must not touch ctx->pos as
5869 * it was was set to the termination value in previous call. We assume
5870 * that "." and ".." were emitted if we reach this point and set the
5871 * termination value as well for an empty directory.
5872 */
5873 if (ctx->pos > 2 && !emitted)
5874 goto nopos;
5875
5876 /* Reached end of directory/root. Bump pos past the last item. */
5877 ctx->pos++;
5878
5879 /*
5880 * Stop new entries from being returned after we return the last
5881 * entry.
5882 *
5883 * New directory entries are assigned a strictly increasing
5884 * offset. This means that new entries created during readdir
5885 * are *guaranteed* to be seen in the future by that readdir.
5886 * This has broken buggy programs which operate on names as
5887 * they're returned by readdir. Until we re-use freed offsets
5888 * we have this hack to stop new entries from being returned
5889 * under the assumption that they'll never reach this huge
5890 * offset.
5891 *
5892 * This is being careful not to overflow 32bit loff_t unless the
5893 * last entry requires it because doing so has broken 32bit apps
5894 * in the past.
5895 */
5896 if (key_type == BTRFS_DIR_INDEX_KEY) {
5897 if (ctx->pos >= INT_MAX)
5898 ctx->pos = LLONG_MAX;
5899 else
5900 ctx->pos = INT_MAX;
5901 }
5902 nopos:
5903 ret = 0;
5904 err:
5905 if (key_type == BTRFS_DIR_INDEX_KEY)
5906 btrfs_put_delayed_items(&ins_list, &del_list);
5907 btrfs_free_path(path);
5908 return ret;
5909 }
5910
btrfs_write_inode(struct inode * inode,struct writeback_control * wbc)5911 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5912 {
5913 struct btrfs_root *root = BTRFS_I(inode)->root;
5914 struct btrfs_trans_handle *trans;
5915 int ret = 0;
5916 bool nolock = false;
5917
5918 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5919 return 0;
5920
5921 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5922 nolock = true;
5923
5924 if (wbc->sync_mode == WB_SYNC_ALL) {
5925 if (nolock)
5926 trans = btrfs_join_transaction_nolock(root);
5927 else
5928 trans = btrfs_join_transaction(root);
5929 if (IS_ERR(trans))
5930 return PTR_ERR(trans);
5931 ret = btrfs_commit_transaction(trans, root);
5932 }
5933 return ret;
5934 }
5935
5936 /*
5937 * This is somewhat expensive, updating the tree every time the
5938 * inode changes. But, it is most likely to find the inode in cache.
5939 * FIXME, needs more benchmarking...there are no reasons other than performance
5940 * to keep or drop this code.
5941 */
btrfs_dirty_inode(struct inode * inode)5942 static int btrfs_dirty_inode(struct inode *inode)
5943 {
5944 struct btrfs_root *root = BTRFS_I(inode)->root;
5945 struct btrfs_trans_handle *trans;
5946 int ret;
5947
5948 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5949 return 0;
5950
5951 trans = btrfs_join_transaction(root);
5952 if (IS_ERR(trans))
5953 return PTR_ERR(trans);
5954
5955 ret = btrfs_update_inode(trans, root, inode);
5956 if (ret && ret == -ENOSPC) {
5957 /* whoops, lets try again with the full transaction */
5958 btrfs_end_transaction(trans, root);
5959 trans = btrfs_start_transaction(root, 1);
5960 if (IS_ERR(trans))
5961 return PTR_ERR(trans);
5962
5963 ret = btrfs_update_inode(trans, root, inode);
5964 }
5965 btrfs_end_transaction(trans, root);
5966 if (BTRFS_I(inode)->delayed_node)
5967 btrfs_balance_delayed_items(root);
5968
5969 return ret;
5970 }
5971
5972 /*
5973 * This is a copy of file_update_time. We need this so we can return error on
5974 * ENOSPC for updating the inode in the case of file write and mmap writes.
5975 */
btrfs_update_time(struct inode * inode,struct timespec * now,int flags)5976 static int btrfs_update_time(struct inode *inode, struct timespec *now,
5977 int flags)
5978 {
5979 struct btrfs_root *root = BTRFS_I(inode)->root;
5980
5981 if (btrfs_root_readonly(root))
5982 return -EROFS;
5983
5984 if (flags & S_VERSION)
5985 inode_inc_iversion(inode);
5986 if (flags & S_CTIME)
5987 inode->i_ctime = *now;
5988 if (flags & S_MTIME)
5989 inode->i_mtime = *now;
5990 if (flags & S_ATIME)
5991 inode->i_atime = *now;
5992 return btrfs_dirty_inode(inode);
5993 }
5994
5995 /*
5996 * find the highest existing sequence number in a directory
5997 * and then set the in-memory index_cnt variable to reflect
5998 * free sequence numbers
5999 */
btrfs_set_inode_index_count(struct inode * inode)6000 static int btrfs_set_inode_index_count(struct inode *inode)
6001 {
6002 struct btrfs_root *root = BTRFS_I(inode)->root;
6003 struct btrfs_key key, found_key;
6004 struct btrfs_path *path;
6005 struct extent_buffer *leaf;
6006 int ret;
6007
6008 key.objectid = btrfs_ino(inode);
6009 key.type = BTRFS_DIR_INDEX_KEY;
6010 key.offset = (u64)-1;
6011
6012 path = btrfs_alloc_path();
6013 if (!path)
6014 return -ENOMEM;
6015
6016 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6017 if (ret < 0)
6018 goto out;
6019 /* FIXME: we should be able to handle this */
6020 if (ret == 0)
6021 goto out;
6022 ret = 0;
6023
6024 /*
6025 * MAGIC NUMBER EXPLANATION:
6026 * since we search a directory based on f_pos we have to start at 2
6027 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6028 * else has to start at 2
6029 */
6030 if (path->slots[0] == 0) {
6031 BTRFS_I(inode)->index_cnt = 2;
6032 goto out;
6033 }
6034
6035 path->slots[0]--;
6036
6037 leaf = path->nodes[0];
6038 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6039
6040 if (found_key.objectid != btrfs_ino(inode) ||
6041 found_key.type != BTRFS_DIR_INDEX_KEY) {
6042 BTRFS_I(inode)->index_cnt = 2;
6043 goto out;
6044 }
6045
6046 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
6047 out:
6048 btrfs_free_path(path);
6049 return ret;
6050 }
6051
6052 /*
6053 * helper to find a free sequence number in a given directory. This current
6054 * code is very simple, later versions will do smarter things in the btree
6055 */
btrfs_set_inode_index(struct inode * dir,u64 * index)6056 int btrfs_set_inode_index(struct inode *dir, u64 *index)
6057 {
6058 int ret = 0;
6059
6060 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
6061 ret = btrfs_inode_delayed_dir_index_count(dir);
6062 if (ret) {
6063 ret = btrfs_set_inode_index_count(dir);
6064 if (ret)
6065 return ret;
6066 }
6067 }
6068
6069 *index = BTRFS_I(dir)->index_cnt;
6070 BTRFS_I(dir)->index_cnt++;
6071
6072 return ret;
6073 }
6074
btrfs_insert_inode_locked(struct inode * inode)6075 static int btrfs_insert_inode_locked(struct inode *inode)
6076 {
6077 struct btrfs_iget_args args;
6078 args.location = &BTRFS_I(inode)->location;
6079 args.root = BTRFS_I(inode)->root;
6080
6081 return insert_inode_locked4(inode,
6082 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6083 btrfs_find_actor, &args);
6084 }
6085
btrfs_new_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,const char * name,int name_len,u64 ref_objectid,u64 objectid,umode_t mode,u64 * index)6086 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6087 struct btrfs_root *root,
6088 struct inode *dir,
6089 const char *name, int name_len,
6090 u64 ref_objectid, u64 objectid,
6091 umode_t mode, u64 *index)
6092 {
6093 struct inode *inode;
6094 struct btrfs_inode_item *inode_item;
6095 struct btrfs_key *location;
6096 struct btrfs_path *path;
6097 struct btrfs_inode_ref *ref;
6098 struct btrfs_key key[2];
6099 u32 sizes[2];
6100 int nitems = name ? 2 : 1;
6101 unsigned long ptr;
6102 int ret;
6103
6104 path = btrfs_alloc_path();
6105 if (!path)
6106 return ERR_PTR(-ENOMEM);
6107
6108 inode = new_inode(root->fs_info->sb);
6109 if (!inode) {
6110 btrfs_free_path(path);
6111 return ERR_PTR(-ENOMEM);
6112 }
6113
6114 /*
6115 * O_TMPFILE, set link count to 0, so that after this point,
6116 * we fill in an inode item with the correct link count.
6117 */
6118 if (!name)
6119 set_nlink(inode, 0);
6120
6121 /*
6122 * we have to initialize this early, so we can reclaim the inode
6123 * number if we fail afterwards in this function.
6124 */
6125 inode->i_ino = objectid;
6126
6127 if (dir && name) {
6128 trace_btrfs_inode_request(dir);
6129
6130 ret = btrfs_set_inode_index(dir, index);
6131 if (ret) {
6132 btrfs_free_path(path);
6133 iput(inode);
6134 return ERR_PTR(ret);
6135 }
6136 } else if (dir) {
6137 *index = 0;
6138 }
6139 /*
6140 * index_cnt is ignored for everything but a dir,
6141 * btrfs_get_inode_index_count has an explanation for the magic
6142 * number
6143 */
6144 BTRFS_I(inode)->index_cnt = 2;
6145 BTRFS_I(inode)->dir_index = *index;
6146 BTRFS_I(inode)->root = root;
6147 BTRFS_I(inode)->generation = trans->transid;
6148 inode->i_generation = BTRFS_I(inode)->generation;
6149
6150 /*
6151 * We could have gotten an inode number from somebody who was fsynced
6152 * and then removed in this same transaction, so let's just set full
6153 * sync since it will be a full sync anyway and this will blow away the
6154 * old info in the log.
6155 */
6156 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6157
6158 key[0].objectid = objectid;
6159 key[0].type = BTRFS_INODE_ITEM_KEY;
6160 key[0].offset = 0;
6161
6162 sizes[0] = sizeof(struct btrfs_inode_item);
6163
6164 if (name) {
6165 /*
6166 * Start new inodes with an inode_ref. This is slightly more
6167 * efficient for small numbers of hard links since they will
6168 * be packed into one item. Extended refs will kick in if we
6169 * add more hard links than can fit in the ref item.
6170 */
6171 key[1].objectid = objectid;
6172 key[1].type = BTRFS_INODE_REF_KEY;
6173 key[1].offset = ref_objectid;
6174
6175 sizes[1] = name_len + sizeof(*ref);
6176 }
6177
6178 location = &BTRFS_I(inode)->location;
6179 location->objectid = objectid;
6180 location->offset = 0;
6181 location->type = BTRFS_INODE_ITEM_KEY;
6182
6183 ret = btrfs_insert_inode_locked(inode);
6184 if (ret < 0)
6185 goto fail;
6186
6187 path->leave_spinning = 1;
6188 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6189 if (ret != 0)
6190 goto fail_unlock;
6191
6192 inode_init_owner(inode, dir, mode);
6193 inode_set_bytes(inode, 0);
6194
6195 inode->i_mtime = CURRENT_TIME;
6196 inode->i_atime = inode->i_mtime;
6197 inode->i_ctime = inode->i_mtime;
6198 BTRFS_I(inode)->i_otime = inode->i_mtime;
6199
6200 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6201 struct btrfs_inode_item);
6202 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
6203 sizeof(*inode_item));
6204 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6205
6206 if (name) {
6207 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6208 struct btrfs_inode_ref);
6209 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6210 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6211 ptr = (unsigned long)(ref + 1);
6212 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6213 }
6214
6215 btrfs_mark_buffer_dirty(path->nodes[0]);
6216 btrfs_free_path(path);
6217
6218 btrfs_inherit_iflags(inode, dir);
6219
6220 if (S_ISREG(mode)) {
6221 if (btrfs_test_opt(root, NODATASUM))
6222 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6223 if (btrfs_test_opt(root, NODATACOW))
6224 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6225 BTRFS_INODE_NODATASUM;
6226 }
6227
6228 inode_tree_add(inode);
6229
6230 trace_btrfs_inode_new(inode);
6231 btrfs_set_inode_last_trans(trans, inode);
6232
6233 btrfs_update_root_times(trans, root);
6234
6235 ret = btrfs_inode_inherit_props(trans, inode, dir);
6236 if (ret)
6237 btrfs_err(root->fs_info,
6238 "error inheriting props for ino %llu (root %llu): %d",
6239 btrfs_ino(inode), root->root_key.objectid, ret);
6240
6241 return inode;
6242
6243 fail_unlock:
6244 unlock_new_inode(inode);
6245 fail:
6246 if (dir && name)
6247 BTRFS_I(dir)->index_cnt--;
6248 btrfs_free_path(path);
6249 iput(inode);
6250 return ERR_PTR(ret);
6251 }
6252
btrfs_inode_type(struct inode * inode)6253 static inline u8 btrfs_inode_type(struct inode *inode)
6254 {
6255 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6256 }
6257
6258 /*
6259 * utility function to add 'inode' into 'parent_inode' with
6260 * a give name and a given sequence number.
6261 * if 'add_backref' is true, also insert a backref from the
6262 * inode to the parent directory.
6263 */
btrfs_add_link(struct btrfs_trans_handle * trans,struct inode * parent_inode,struct inode * inode,const char * name,int name_len,int add_backref,u64 index)6264 int btrfs_add_link(struct btrfs_trans_handle *trans,
6265 struct inode *parent_inode, struct inode *inode,
6266 const char *name, int name_len, int add_backref, u64 index)
6267 {
6268 int ret = 0;
6269 struct btrfs_key key;
6270 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
6271 u64 ino = btrfs_ino(inode);
6272 u64 parent_ino = btrfs_ino(parent_inode);
6273
6274 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6275 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6276 } else {
6277 key.objectid = ino;
6278 key.type = BTRFS_INODE_ITEM_KEY;
6279 key.offset = 0;
6280 }
6281
6282 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6283 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6284 key.objectid, root->root_key.objectid,
6285 parent_ino, index, name, name_len);
6286 } else if (add_backref) {
6287 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6288 parent_ino, index);
6289 }
6290
6291 /* Nothing to clean up yet */
6292 if (ret)
6293 return ret;
6294
6295 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6296 parent_inode, &key,
6297 btrfs_inode_type(inode), index);
6298 if (ret == -EEXIST || ret == -EOVERFLOW)
6299 goto fail_dir_item;
6300 else if (ret) {
6301 btrfs_abort_transaction(trans, root, ret);
6302 return ret;
6303 }
6304
6305 btrfs_i_size_write(parent_inode, parent_inode->i_size +
6306 name_len * 2);
6307 inode_inc_iversion(parent_inode);
6308 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
6309 ret = btrfs_update_inode(trans, root, parent_inode);
6310 if (ret)
6311 btrfs_abort_transaction(trans, root, ret);
6312 return ret;
6313
6314 fail_dir_item:
6315 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6316 u64 local_index;
6317 int err;
6318 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6319 key.objectid, root->root_key.objectid,
6320 parent_ino, &local_index, name, name_len);
6321
6322 } else if (add_backref) {
6323 u64 local_index;
6324 int err;
6325
6326 err = btrfs_del_inode_ref(trans, root, name, name_len,
6327 ino, parent_ino, &local_index);
6328 }
6329 return ret;
6330 }
6331
btrfs_add_nondir(struct btrfs_trans_handle * trans,struct inode * dir,struct dentry * dentry,struct inode * inode,int backref,u64 index)6332 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6333 struct inode *dir, struct dentry *dentry,
6334 struct inode *inode, int backref, u64 index)
6335 {
6336 int err = btrfs_add_link(trans, dir, inode,
6337 dentry->d_name.name, dentry->d_name.len,
6338 backref, index);
6339 if (err > 0)
6340 err = -EEXIST;
6341 return err;
6342 }
6343
btrfs_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)6344 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6345 umode_t mode, dev_t rdev)
6346 {
6347 struct btrfs_trans_handle *trans;
6348 struct btrfs_root *root = BTRFS_I(dir)->root;
6349 struct inode *inode = NULL;
6350 int err;
6351 int drop_inode = 0;
6352 u64 objectid;
6353 u64 index = 0;
6354
6355 /*
6356 * 2 for inode item and ref
6357 * 2 for dir items
6358 * 1 for xattr if selinux is on
6359 */
6360 trans = btrfs_start_transaction(root, 5);
6361 if (IS_ERR(trans))
6362 return PTR_ERR(trans);
6363
6364 err = btrfs_find_free_ino(root, &objectid);
6365 if (err)
6366 goto out_unlock;
6367
6368 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6369 dentry->d_name.len, btrfs_ino(dir), objectid,
6370 mode, &index);
6371 if (IS_ERR(inode)) {
6372 err = PTR_ERR(inode);
6373 goto out_unlock;
6374 }
6375
6376 /*
6377 * If the active LSM wants to access the inode during
6378 * d_instantiate it needs these. Smack checks to see
6379 * if the filesystem supports xattrs by looking at the
6380 * ops vector.
6381 */
6382 inode->i_op = &btrfs_special_inode_operations;
6383 init_special_inode(inode, inode->i_mode, rdev);
6384
6385 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6386 if (err)
6387 goto out_unlock_inode;
6388
6389 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6390 if (err) {
6391 goto out_unlock_inode;
6392 } else {
6393 btrfs_update_inode(trans, root, inode);
6394 unlock_new_inode(inode);
6395 d_instantiate(dentry, inode);
6396 }
6397
6398 out_unlock:
6399 btrfs_end_transaction(trans, root);
6400 btrfs_balance_delayed_items(root);
6401 btrfs_btree_balance_dirty(root);
6402 if (drop_inode) {
6403 inode_dec_link_count(inode);
6404 iput(inode);
6405 }
6406 return err;
6407
6408 out_unlock_inode:
6409 drop_inode = 1;
6410 unlock_new_inode(inode);
6411 goto out_unlock;
6412
6413 }
6414
btrfs_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)6415 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6416 umode_t mode, bool excl)
6417 {
6418 struct btrfs_trans_handle *trans;
6419 struct btrfs_root *root = BTRFS_I(dir)->root;
6420 struct inode *inode = NULL;
6421 int drop_inode_on_err = 0;
6422 int err;
6423 u64 objectid;
6424 u64 index = 0;
6425
6426 /*
6427 * 2 for inode item and ref
6428 * 2 for dir items
6429 * 1 for xattr if selinux is on
6430 */
6431 trans = btrfs_start_transaction(root, 5);
6432 if (IS_ERR(trans))
6433 return PTR_ERR(trans);
6434
6435 err = btrfs_find_free_ino(root, &objectid);
6436 if (err)
6437 goto out_unlock;
6438
6439 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6440 dentry->d_name.len, btrfs_ino(dir), objectid,
6441 mode, &index);
6442 if (IS_ERR(inode)) {
6443 err = PTR_ERR(inode);
6444 goto out_unlock;
6445 }
6446 drop_inode_on_err = 1;
6447 /*
6448 * If the active LSM wants to access the inode during
6449 * d_instantiate it needs these. Smack checks to see
6450 * if the filesystem supports xattrs by looking at the
6451 * ops vector.
6452 */
6453 inode->i_fop = &btrfs_file_operations;
6454 inode->i_op = &btrfs_file_inode_operations;
6455 inode->i_mapping->a_ops = &btrfs_aops;
6456
6457 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6458 if (err)
6459 goto out_unlock_inode;
6460
6461 err = btrfs_update_inode(trans, root, inode);
6462 if (err)
6463 goto out_unlock_inode;
6464
6465 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6466 if (err)
6467 goto out_unlock_inode;
6468
6469 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6470 unlock_new_inode(inode);
6471 d_instantiate(dentry, inode);
6472
6473 out_unlock:
6474 btrfs_end_transaction(trans, root);
6475 if (err && drop_inode_on_err) {
6476 inode_dec_link_count(inode);
6477 iput(inode);
6478 }
6479 btrfs_balance_delayed_items(root);
6480 btrfs_btree_balance_dirty(root);
6481 return err;
6482
6483 out_unlock_inode:
6484 unlock_new_inode(inode);
6485 goto out_unlock;
6486
6487 }
6488
btrfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)6489 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6490 struct dentry *dentry)
6491 {
6492 struct btrfs_trans_handle *trans = NULL;
6493 struct btrfs_root *root = BTRFS_I(dir)->root;
6494 struct inode *inode = d_inode(old_dentry);
6495 u64 index;
6496 int err;
6497 int drop_inode = 0;
6498
6499 /* do not allow sys_link's with other subvols of the same device */
6500 if (root->objectid != BTRFS_I(inode)->root->objectid)
6501 return -EXDEV;
6502
6503 if (inode->i_nlink >= BTRFS_LINK_MAX)
6504 return -EMLINK;
6505
6506 err = btrfs_set_inode_index(dir, &index);
6507 if (err)
6508 goto fail;
6509
6510 /*
6511 * 2 items for inode and inode ref
6512 * 2 items for dir items
6513 * 1 item for parent inode
6514 */
6515 trans = btrfs_start_transaction(root, 5);
6516 if (IS_ERR(trans)) {
6517 err = PTR_ERR(trans);
6518 trans = NULL;
6519 goto fail;
6520 }
6521
6522 /* There are several dir indexes for this inode, clear the cache. */
6523 BTRFS_I(inode)->dir_index = 0ULL;
6524 inc_nlink(inode);
6525 inode_inc_iversion(inode);
6526 inode->i_ctime = CURRENT_TIME;
6527 ihold(inode);
6528 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6529
6530 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
6531
6532 if (err) {
6533 drop_inode = 1;
6534 } else {
6535 struct dentry *parent = dentry->d_parent;
6536 err = btrfs_update_inode(trans, root, inode);
6537 if (err)
6538 goto fail;
6539 if (inode->i_nlink == 1) {
6540 /*
6541 * If new hard link count is 1, it's a file created
6542 * with open(2) O_TMPFILE flag.
6543 */
6544 err = btrfs_orphan_del(trans, inode);
6545 if (err)
6546 goto fail;
6547 }
6548 d_instantiate(dentry, inode);
6549 btrfs_log_new_name(trans, inode, NULL, parent);
6550 }
6551
6552 btrfs_balance_delayed_items(root);
6553 fail:
6554 if (trans)
6555 btrfs_end_transaction(trans, root);
6556 if (drop_inode) {
6557 inode_dec_link_count(inode);
6558 iput(inode);
6559 }
6560 btrfs_btree_balance_dirty(root);
6561 return err;
6562 }
6563
btrfs_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)6564 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6565 {
6566 struct inode *inode = NULL;
6567 struct btrfs_trans_handle *trans;
6568 struct btrfs_root *root = BTRFS_I(dir)->root;
6569 int err = 0;
6570 int drop_on_err = 0;
6571 u64 objectid = 0;
6572 u64 index = 0;
6573
6574 /*
6575 * 2 items for inode and ref
6576 * 2 items for dir items
6577 * 1 for xattr if selinux is on
6578 */
6579 trans = btrfs_start_transaction(root, 5);
6580 if (IS_ERR(trans))
6581 return PTR_ERR(trans);
6582
6583 err = btrfs_find_free_ino(root, &objectid);
6584 if (err)
6585 goto out_fail;
6586
6587 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6588 dentry->d_name.len, btrfs_ino(dir), objectid,
6589 S_IFDIR | mode, &index);
6590 if (IS_ERR(inode)) {
6591 err = PTR_ERR(inode);
6592 goto out_fail;
6593 }
6594
6595 drop_on_err = 1;
6596 /* these must be set before we unlock the inode */
6597 inode->i_op = &btrfs_dir_inode_operations;
6598 inode->i_fop = &btrfs_dir_file_operations;
6599
6600 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6601 if (err)
6602 goto out_fail_inode;
6603
6604 btrfs_i_size_write(inode, 0);
6605 err = btrfs_update_inode(trans, root, inode);
6606 if (err)
6607 goto out_fail_inode;
6608
6609 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6610 dentry->d_name.len, 0, index);
6611 if (err)
6612 goto out_fail_inode;
6613
6614 d_instantiate(dentry, inode);
6615 /*
6616 * mkdir is special. We're unlocking after we call d_instantiate
6617 * to avoid a race with nfsd calling d_instantiate.
6618 */
6619 unlock_new_inode(inode);
6620 drop_on_err = 0;
6621
6622 out_fail:
6623 btrfs_end_transaction(trans, root);
6624 if (drop_on_err) {
6625 inode_dec_link_count(inode);
6626 iput(inode);
6627 }
6628 btrfs_balance_delayed_items(root);
6629 btrfs_btree_balance_dirty(root);
6630 return err;
6631
6632 out_fail_inode:
6633 unlock_new_inode(inode);
6634 goto out_fail;
6635 }
6636
6637 /* Find next extent map of a given extent map, caller needs to ensure locks */
next_extent_map(struct extent_map * em)6638 static struct extent_map *next_extent_map(struct extent_map *em)
6639 {
6640 struct rb_node *next;
6641
6642 next = rb_next(&em->rb_node);
6643 if (!next)
6644 return NULL;
6645 return container_of(next, struct extent_map, rb_node);
6646 }
6647
prev_extent_map(struct extent_map * em)6648 static struct extent_map *prev_extent_map(struct extent_map *em)
6649 {
6650 struct rb_node *prev;
6651
6652 prev = rb_prev(&em->rb_node);
6653 if (!prev)
6654 return NULL;
6655 return container_of(prev, struct extent_map, rb_node);
6656 }
6657
6658 /* helper for btfs_get_extent. Given an existing extent in the tree,
6659 * the existing extent is the nearest extent to map_start,
6660 * and an extent that you want to insert, deal with overlap and insert
6661 * the best fitted new extent into the tree.
6662 */
merge_extent_mapping(struct extent_map_tree * em_tree,struct extent_map * existing,struct extent_map * em,u64 map_start)6663 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6664 struct extent_map *existing,
6665 struct extent_map *em,
6666 u64 map_start)
6667 {
6668 struct extent_map *prev;
6669 struct extent_map *next;
6670 u64 start;
6671 u64 end;
6672 u64 start_diff;
6673
6674 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6675
6676 if (existing->start > map_start) {
6677 next = existing;
6678 prev = prev_extent_map(next);
6679 } else {
6680 prev = existing;
6681 next = next_extent_map(prev);
6682 }
6683
6684 start = prev ? extent_map_end(prev) : em->start;
6685 start = max_t(u64, start, em->start);
6686 end = next ? next->start : extent_map_end(em);
6687 end = min_t(u64, end, extent_map_end(em));
6688 start_diff = start - em->start;
6689 em->start = start;
6690 em->len = end - start;
6691 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6692 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6693 em->block_start += start_diff;
6694 em->block_len -= start_diff;
6695 }
6696 return add_extent_mapping(em_tree, em, 0);
6697 }
6698
uncompress_inline(struct btrfs_path * path,struct inode * inode,struct page * page,size_t pg_offset,u64 extent_offset,struct btrfs_file_extent_item * item)6699 static noinline int uncompress_inline(struct btrfs_path *path,
6700 struct inode *inode, struct page *page,
6701 size_t pg_offset, u64 extent_offset,
6702 struct btrfs_file_extent_item *item)
6703 {
6704 int ret;
6705 struct extent_buffer *leaf = path->nodes[0];
6706 char *tmp;
6707 size_t max_size;
6708 unsigned long inline_size;
6709 unsigned long ptr;
6710 int compress_type;
6711
6712 WARN_ON(pg_offset != 0);
6713 compress_type = btrfs_file_extent_compression(leaf, item);
6714 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6715 inline_size = btrfs_file_extent_inline_item_len(leaf,
6716 btrfs_item_nr(path->slots[0]));
6717 tmp = kmalloc(inline_size, GFP_NOFS);
6718 if (!tmp)
6719 return -ENOMEM;
6720 ptr = btrfs_file_extent_inline_start(item);
6721
6722 read_extent_buffer(leaf, tmp, ptr, inline_size);
6723
6724 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
6725 ret = btrfs_decompress(compress_type, tmp, page,
6726 extent_offset, inline_size, max_size);
6727 kfree(tmp);
6728 return ret;
6729 }
6730
6731 /*
6732 * a bit scary, this does extent mapping from logical file offset to the disk.
6733 * the ugly parts come from merging extents from the disk with the in-ram
6734 * representation. This gets more complex because of the data=ordered code,
6735 * where the in-ram extents might be locked pending data=ordered completion.
6736 *
6737 * This also copies inline extents directly into the page.
6738 */
6739
btrfs_get_extent(struct inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,int create)6740 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6741 size_t pg_offset, u64 start, u64 len,
6742 int create)
6743 {
6744 int ret;
6745 int err = 0;
6746 u64 extent_start = 0;
6747 u64 extent_end = 0;
6748 u64 objectid = btrfs_ino(inode);
6749 u32 found_type;
6750 struct btrfs_path *path = NULL;
6751 struct btrfs_root *root = BTRFS_I(inode)->root;
6752 struct btrfs_file_extent_item *item;
6753 struct extent_buffer *leaf;
6754 struct btrfs_key found_key;
6755 struct extent_map *em = NULL;
6756 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6757 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6758 struct btrfs_trans_handle *trans = NULL;
6759 const bool new_inline = !page || create;
6760
6761 again:
6762 read_lock(&em_tree->lock);
6763 em = lookup_extent_mapping(em_tree, start, len);
6764 if (em)
6765 em->bdev = root->fs_info->fs_devices->latest_bdev;
6766 read_unlock(&em_tree->lock);
6767
6768 if (em) {
6769 if (em->start > start || em->start + em->len <= start)
6770 free_extent_map(em);
6771 else if (em->block_start == EXTENT_MAP_INLINE && page)
6772 free_extent_map(em);
6773 else
6774 goto out;
6775 }
6776 em = alloc_extent_map();
6777 if (!em) {
6778 err = -ENOMEM;
6779 goto out;
6780 }
6781 em->bdev = root->fs_info->fs_devices->latest_bdev;
6782 em->start = EXTENT_MAP_HOLE;
6783 em->orig_start = EXTENT_MAP_HOLE;
6784 em->len = (u64)-1;
6785 em->block_len = (u64)-1;
6786
6787 if (!path) {
6788 path = btrfs_alloc_path();
6789 if (!path) {
6790 err = -ENOMEM;
6791 goto out;
6792 }
6793 /*
6794 * Chances are we'll be called again, so go ahead and do
6795 * readahead
6796 */
6797 path->reada = 1;
6798 }
6799
6800 ret = btrfs_lookup_file_extent(trans, root, path,
6801 objectid, start, trans != NULL);
6802 if (ret < 0) {
6803 err = ret;
6804 goto out;
6805 }
6806
6807 if (ret != 0) {
6808 if (path->slots[0] == 0)
6809 goto not_found;
6810 path->slots[0]--;
6811 }
6812
6813 leaf = path->nodes[0];
6814 item = btrfs_item_ptr(leaf, path->slots[0],
6815 struct btrfs_file_extent_item);
6816 /* are we inside the extent that was found? */
6817 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6818 found_type = found_key.type;
6819 if (found_key.objectid != objectid ||
6820 found_type != BTRFS_EXTENT_DATA_KEY) {
6821 /*
6822 * If we backup past the first extent we want to move forward
6823 * and see if there is an extent in front of us, otherwise we'll
6824 * say there is a hole for our whole search range which can
6825 * cause problems.
6826 */
6827 extent_end = start;
6828 goto next;
6829 }
6830
6831 found_type = btrfs_file_extent_type(leaf, item);
6832 extent_start = found_key.offset;
6833 if (found_type == BTRFS_FILE_EXTENT_REG ||
6834 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6835 extent_end = extent_start +
6836 btrfs_file_extent_num_bytes(leaf, item);
6837 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6838 size_t size;
6839 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6840 extent_end = ALIGN(extent_start + size, root->sectorsize);
6841 }
6842 next:
6843 if (start >= extent_end) {
6844 path->slots[0]++;
6845 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6846 ret = btrfs_next_leaf(root, path);
6847 if (ret < 0) {
6848 err = ret;
6849 goto out;
6850 }
6851 if (ret > 0)
6852 goto not_found;
6853 leaf = path->nodes[0];
6854 }
6855 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6856 if (found_key.objectid != objectid ||
6857 found_key.type != BTRFS_EXTENT_DATA_KEY)
6858 goto not_found;
6859 if (start + len <= found_key.offset)
6860 goto not_found;
6861 if (start > found_key.offset)
6862 goto next;
6863 em->start = start;
6864 em->orig_start = start;
6865 em->len = found_key.offset - start;
6866 goto not_found_em;
6867 }
6868
6869 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6870
6871 if (found_type == BTRFS_FILE_EXTENT_REG ||
6872 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6873 goto insert;
6874 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6875 unsigned long ptr;
6876 char *map;
6877 size_t size;
6878 size_t extent_offset;
6879 size_t copy_size;
6880
6881 if (new_inline)
6882 goto out;
6883
6884 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6885 extent_offset = page_offset(page) + pg_offset - extent_start;
6886 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
6887 size - extent_offset);
6888 em->start = extent_start + extent_offset;
6889 em->len = ALIGN(copy_size, root->sectorsize);
6890 em->orig_block_len = em->len;
6891 em->orig_start = em->start;
6892 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6893 if (create == 0 && !PageUptodate(page)) {
6894 if (btrfs_file_extent_compression(leaf, item) !=
6895 BTRFS_COMPRESS_NONE) {
6896 ret = uncompress_inline(path, inode, page,
6897 pg_offset,
6898 extent_offset, item);
6899 if (ret) {
6900 err = ret;
6901 goto out;
6902 }
6903 } else {
6904 map = kmap(page);
6905 read_extent_buffer(leaf, map + pg_offset, ptr,
6906 copy_size);
6907 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6908 memset(map + pg_offset + copy_size, 0,
6909 PAGE_CACHE_SIZE - pg_offset -
6910 copy_size);
6911 }
6912 kunmap(page);
6913 }
6914 flush_dcache_page(page);
6915 } else if (create && PageUptodate(page)) {
6916 BUG();
6917 if (!trans) {
6918 kunmap(page);
6919 free_extent_map(em);
6920 em = NULL;
6921
6922 btrfs_release_path(path);
6923 trans = btrfs_join_transaction(root);
6924
6925 if (IS_ERR(trans))
6926 return ERR_CAST(trans);
6927 goto again;
6928 }
6929 map = kmap(page);
6930 write_extent_buffer(leaf, map + pg_offset, ptr,
6931 copy_size);
6932 kunmap(page);
6933 btrfs_mark_buffer_dirty(leaf);
6934 }
6935 set_extent_uptodate(io_tree, em->start,
6936 extent_map_end(em) - 1, NULL, GFP_NOFS);
6937 goto insert;
6938 }
6939 not_found:
6940 em->start = start;
6941 em->orig_start = start;
6942 em->len = len;
6943 not_found_em:
6944 em->block_start = EXTENT_MAP_HOLE;
6945 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6946 insert:
6947 btrfs_release_path(path);
6948 if (em->start > start || extent_map_end(em) <= start) {
6949 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6950 em->start, em->len, start, len);
6951 err = -EIO;
6952 goto out;
6953 }
6954
6955 err = 0;
6956 write_lock(&em_tree->lock);
6957 ret = add_extent_mapping(em_tree, em, 0);
6958 /* it is possible that someone inserted the extent into the tree
6959 * while we had the lock dropped. It is also possible that
6960 * an overlapping map exists in the tree
6961 */
6962 if (ret == -EEXIST) {
6963 struct extent_map *existing;
6964
6965 ret = 0;
6966
6967 existing = search_extent_mapping(em_tree, start, len);
6968 /*
6969 * existing will always be non-NULL, since there must be
6970 * extent causing the -EEXIST.
6971 */
6972 if (start >= extent_map_end(existing) ||
6973 start <= existing->start) {
6974 /*
6975 * The existing extent map is the one nearest to
6976 * the [start, start + len) range which overlaps
6977 */
6978 err = merge_extent_mapping(em_tree, existing,
6979 em, start);
6980 free_extent_map(existing);
6981 if (err) {
6982 free_extent_map(em);
6983 em = NULL;
6984 }
6985 } else {
6986 free_extent_map(em);
6987 em = existing;
6988 err = 0;
6989 }
6990 }
6991 write_unlock(&em_tree->lock);
6992 out:
6993
6994 trace_btrfs_get_extent(root, em);
6995
6996 btrfs_free_path(path);
6997 if (trans) {
6998 ret = btrfs_end_transaction(trans, root);
6999 if (!err)
7000 err = ret;
7001 }
7002 if (err) {
7003 free_extent_map(em);
7004 return ERR_PTR(err);
7005 }
7006 BUG_ON(!em); /* Error is always set */
7007 return em;
7008 }
7009
btrfs_get_extent_fiemap(struct inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,int create)7010 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
7011 size_t pg_offset, u64 start, u64 len,
7012 int create)
7013 {
7014 struct extent_map *em;
7015 struct extent_map *hole_em = NULL;
7016 u64 range_start = start;
7017 u64 end;
7018 u64 found;
7019 u64 found_end;
7020 int err = 0;
7021
7022 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7023 if (IS_ERR(em))
7024 return em;
7025 if (em) {
7026 /*
7027 * if our em maps to
7028 * - a hole or
7029 * - a pre-alloc extent,
7030 * there might actually be delalloc bytes behind it.
7031 */
7032 if (em->block_start != EXTENT_MAP_HOLE &&
7033 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7034 return em;
7035 else
7036 hole_em = em;
7037 }
7038
7039 /* check to see if we've wrapped (len == -1 or similar) */
7040 end = start + len;
7041 if (end < start)
7042 end = (u64)-1;
7043 else
7044 end -= 1;
7045
7046 em = NULL;
7047
7048 /* ok, we didn't find anything, lets look for delalloc */
7049 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
7050 end, len, EXTENT_DELALLOC, 1);
7051 found_end = range_start + found;
7052 if (found_end < range_start)
7053 found_end = (u64)-1;
7054
7055 /*
7056 * we didn't find anything useful, return
7057 * the original results from get_extent()
7058 */
7059 if (range_start > end || found_end <= start) {
7060 em = hole_em;
7061 hole_em = NULL;
7062 goto out;
7063 }
7064
7065 /* adjust the range_start to make sure it doesn't
7066 * go backwards from the start they passed in
7067 */
7068 range_start = max(start, range_start);
7069 found = found_end - range_start;
7070
7071 if (found > 0) {
7072 u64 hole_start = start;
7073 u64 hole_len = len;
7074
7075 em = alloc_extent_map();
7076 if (!em) {
7077 err = -ENOMEM;
7078 goto out;
7079 }
7080 /*
7081 * when btrfs_get_extent can't find anything it
7082 * returns one huge hole
7083 *
7084 * make sure what it found really fits our range, and
7085 * adjust to make sure it is based on the start from
7086 * the caller
7087 */
7088 if (hole_em) {
7089 u64 calc_end = extent_map_end(hole_em);
7090
7091 if (calc_end <= start || (hole_em->start > end)) {
7092 free_extent_map(hole_em);
7093 hole_em = NULL;
7094 } else {
7095 hole_start = max(hole_em->start, start);
7096 hole_len = calc_end - hole_start;
7097 }
7098 }
7099 em->bdev = NULL;
7100 if (hole_em && range_start > hole_start) {
7101 /* our hole starts before our delalloc, so we
7102 * have to return just the parts of the hole
7103 * that go until the delalloc starts
7104 */
7105 em->len = min(hole_len,
7106 range_start - hole_start);
7107 em->start = hole_start;
7108 em->orig_start = hole_start;
7109 /*
7110 * don't adjust block start at all,
7111 * it is fixed at EXTENT_MAP_HOLE
7112 */
7113 em->block_start = hole_em->block_start;
7114 em->block_len = hole_len;
7115 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7116 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7117 } else {
7118 em->start = range_start;
7119 em->len = found;
7120 em->orig_start = range_start;
7121 em->block_start = EXTENT_MAP_DELALLOC;
7122 em->block_len = found;
7123 }
7124 } else if (hole_em) {
7125 return hole_em;
7126 }
7127 out:
7128
7129 free_extent_map(hole_em);
7130 if (err) {
7131 free_extent_map(em);
7132 return ERR_PTR(err);
7133 }
7134 return em;
7135 }
7136
btrfs_new_extent_direct(struct inode * inode,u64 start,u64 len)7137 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7138 u64 start, u64 len)
7139 {
7140 struct btrfs_root *root = BTRFS_I(inode)->root;
7141 struct extent_map *em;
7142 struct btrfs_key ins;
7143 u64 alloc_hint;
7144 int ret;
7145
7146 alloc_hint = get_extent_allocation_hint(inode, start, len);
7147 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
7148 alloc_hint, &ins, 1, 1);
7149 if (ret)
7150 return ERR_PTR(ret);
7151
7152 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
7153 ins.offset, ins.offset, ins.offset, 0);
7154 if (IS_ERR(em)) {
7155 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
7156 return em;
7157 }
7158
7159 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
7160 ins.offset, ins.offset, 0);
7161 if (ret) {
7162 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
7163 free_extent_map(em);
7164 return ERR_PTR(ret);
7165 }
7166
7167 return em;
7168 }
7169
7170 /*
7171 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7172 * block must be cow'd
7173 */
can_nocow_extent(struct inode * inode,u64 offset,u64 * len,u64 * orig_start,u64 * orig_block_len,u64 * ram_bytes)7174 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7175 u64 *orig_start, u64 *orig_block_len,
7176 u64 *ram_bytes)
7177 {
7178 struct btrfs_trans_handle *trans;
7179 struct btrfs_path *path;
7180 int ret;
7181 struct extent_buffer *leaf;
7182 struct btrfs_root *root = BTRFS_I(inode)->root;
7183 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7184 struct btrfs_file_extent_item *fi;
7185 struct btrfs_key key;
7186 u64 disk_bytenr;
7187 u64 backref_offset;
7188 u64 extent_end;
7189 u64 num_bytes;
7190 int slot;
7191 int found_type;
7192 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7193
7194 path = btrfs_alloc_path();
7195 if (!path)
7196 return -ENOMEM;
7197
7198 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
7199 offset, 0);
7200 if (ret < 0)
7201 goto out;
7202
7203 slot = path->slots[0];
7204 if (ret == 1) {
7205 if (slot == 0) {
7206 /* can't find the item, must cow */
7207 ret = 0;
7208 goto out;
7209 }
7210 slot--;
7211 }
7212 ret = 0;
7213 leaf = path->nodes[0];
7214 btrfs_item_key_to_cpu(leaf, &key, slot);
7215 if (key.objectid != btrfs_ino(inode) ||
7216 key.type != BTRFS_EXTENT_DATA_KEY) {
7217 /* not our file or wrong item type, must cow */
7218 goto out;
7219 }
7220
7221 if (key.offset > offset) {
7222 /* Wrong offset, must cow */
7223 goto out;
7224 }
7225
7226 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7227 found_type = btrfs_file_extent_type(leaf, fi);
7228 if (found_type != BTRFS_FILE_EXTENT_REG &&
7229 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7230 /* not a regular extent, must cow */
7231 goto out;
7232 }
7233
7234 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7235 goto out;
7236
7237 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7238 if (extent_end <= offset)
7239 goto out;
7240
7241 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7242 if (disk_bytenr == 0)
7243 goto out;
7244
7245 if (btrfs_file_extent_compression(leaf, fi) ||
7246 btrfs_file_extent_encryption(leaf, fi) ||
7247 btrfs_file_extent_other_encoding(leaf, fi))
7248 goto out;
7249
7250 backref_offset = btrfs_file_extent_offset(leaf, fi);
7251
7252 if (orig_start) {
7253 *orig_start = key.offset - backref_offset;
7254 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7255 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7256 }
7257
7258 if (btrfs_extent_readonly(root, disk_bytenr))
7259 goto out;
7260
7261 num_bytes = min(offset + *len, extent_end) - offset;
7262 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7263 u64 range_end;
7264
7265 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7266 ret = test_range_bit(io_tree, offset, range_end,
7267 EXTENT_DELALLOC, 0, NULL);
7268 if (ret) {
7269 ret = -EAGAIN;
7270 goto out;
7271 }
7272 }
7273
7274 btrfs_release_path(path);
7275
7276 /*
7277 * look for other files referencing this extent, if we
7278 * find any we must cow
7279 */
7280 trans = btrfs_join_transaction(root);
7281 if (IS_ERR(trans)) {
7282 ret = 0;
7283 goto out;
7284 }
7285
7286 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7287 key.offset - backref_offset, disk_bytenr);
7288 btrfs_end_transaction(trans, root);
7289 if (ret) {
7290 ret = 0;
7291 goto out;
7292 }
7293
7294 /*
7295 * adjust disk_bytenr and num_bytes to cover just the bytes
7296 * in this extent we are about to write. If there
7297 * are any csums in that range we have to cow in order
7298 * to keep the csums correct
7299 */
7300 disk_bytenr += backref_offset;
7301 disk_bytenr += offset - key.offset;
7302 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7303 goto out;
7304 /*
7305 * all of the above have passed, it is safe to overwrite this extent
7306 * without cow
7307 */
7308 *len = num_bytes;
7309 ret = 1;
7310 out:
7311 btrfs_free_path(path);
7312 return ret;
7313 }
7314
btrfs_page_exists_in_range(struct inode * inode,loff_t start,loff_t end)7315 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7316 {
7317 struct radix_tree_root *root = &inode->i_mapping->page_tree;
7318 int found = false;
7319 void **pagep = NULL;
7320 struct page *page = NULL;
7321 int start_idx;
7322 int end_idx;
7323
7324 start_idx = start >> PAGE_CACHE_SHIFT;
7325
7326 /*
7327 * end is the last byte in the last page. end == start is legal
7328 */
7329 end_idx = end >> PAGE_CACHE_SHIFT;
7330
7331 rcu_read_lock();
7332
7333 /* Most of the code in this while loop is lifted from
7334 * find_get_page. It's been modified to begin searching from a
7335 * page and return just the first page found in that range. If the
7336 * found idx is less than or equal to the end idx then we know that
7337 * a page exists. If no pages are found or if those pages are
7338 * outside of the range then we're fine (yay!) */
7339 while (page == NULL &&
7340 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7341 page = radix_tree_deref_slot(pagep);
7342 if (unlikely(!page))
7343 break;
7344
7345 if (radix_tree_exception(page)) {
7346 if (radix_tree_deref_retry(page)) {
7347 page = NULL;
7348 continue;
7349 }
7350 /*
7351 * Otherwise, shmem/tmpfs must be storing a swap entry
7352 * here as an exceptional entry: so return it without
7353 * attempting to raise page count.
7354 */
7355 page = NULL;
7356 break; /* TODO: Is this relevant for this use case? */
7357 }
7358
7359 if (!page_cache_get_speculative(page)) {
7360 page = NULL;
7361 continue;
7362 }
7363
7364 /*
7365 * Has the page moved?
7366 * This is part of the lockless pagecache protocol. See
7367 * include/linux/pagemap.h for details.
7368 */
7369 if (unlikely(page != *pagep)) {
7370 page_cache_release(page);
7371 page = NULL;
7372 }
7373 }
7374
7375 if (page) {
7376 if (page->index <= end_idx)
7377 found = true;
7378 page_cache_release(page);
7379 }
7380
7381 rcu_read_unlock();
7382 return found;
7383 }
7384
lock_extent_direct(struct inode * inode,u64 lockstart,u64 lockend,struct extent_state ** cached_state,int writing)7385 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7386 struct extent_state **cached_state, int writing)
7387 {
7388 struct btrfs_ordered_extent *ordered;
7389 int ret = 0;
7390
7391 while (1) {
7392 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7393 0, cached_state);
7394 /*
7395 * We're concerned with the entire range that we're going to be
7396 * doing DIO to, so we need to make sure theres no ordered
7397 * extents in this range.
7398 */
7399 ordered = btrfs_lookup_ordered_range(inode, lockstart,
7400 lockend - lockstart + 1);
7401
7402 /*
7403 * We need to make sure there are no buffered pages in this
7404 * range either, we could have raced between the invalidate in
7405 * generic_file_direct_write and locking the extent. The
7406 * invalidate needs to happen so that reads after a write do not
7407 * get stale data.
7408 */
7409 if (!ordered &&
7410 (!writing ||
7411 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7412 break;
7413
7414 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7415 cached_state, GFP_NOFS);
7416
7417 if (ordered) {
7418 btrfs_start_ordered_extent(inode, ordered, 1);
7419 btrfs_put_ordered_extent(ordered);
7420 } else {
7421 /* Screw you mmap */
7422 ret = btrfs_fdatawrite_range(inode, lockstart, lockend);
7423 if (ret)
7424 break;
7425 ret = filemap_fdatawait_range(inode->i_mapping,
7426 lockstart,
7427 lockend);
7428 if (ret)
7429 break;
7430
7431 /*
7432 * If we found a page that couldn't be invalidated just
7433 * fall back to buffered.
7434 */
7435 ret = invalidate_inode_pages2_range(inode->i_mapping,
7436 lockstart >> PAGE_CACHE_SHIFT,
7437 lockend >> PAGE_CACHE_SHIFT);
7438 if (ret)
7439 break;
7440 }
7441
7442 cond_resched();
7443 }
7444
7445 return ret;
7446 }
7447
create_pinned_em(struct inode * inode,u64 start,u64 len,u64 orig_start,u64 block_start,u64 block_len,u64 orig_block_len,u64 ram_bytes,int type)7448 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7449 u64 len, u64 orig_start,
7450 u64 block_start, u64 block_len,
7451 u64 orig_block_len, u64 ram_bytes,
7452 int type)
7453 {
7454 struct extent_map_tree *em_tree;
7455 struct extent_map *em;
7456 struct btrfs_root *root = BTRFS_I(inode)->root;
7457 int ret;
7458
7459 em_tree = &BTRFS_I(inode)->extent_tree;
7460 em = alloc_extent_map();
7461 if (!em)
7462 return ERR_PTR(-ENOMEM);
7463
7464 em->start = start;
7465 em->orig_start = orig_start;
7466 em->mod_start = start;
7467 em->mod_len = len;
7468 em->len = len;
7469 em->block_len = block_len;
7470 em->block_start = block_start;
7471 em->bdev = root->fs_info->fs_devices->latest_bdev;
7472 em->orig_block_len = orig_block_len;
7473 em->ram_bytes = ram_bytes;
7474 em->generation = -1;
7475 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7476 if (type == BTRFS_ORDERED_PREALLOC)
7477 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7478
7479 do {
7480 btrfs_drop_extent_cache(inode, em->start,
7481 em->start + em->len - 1, 0);
7482 write_lock(&em_tree->lock);
7483 ret = add_extent_mapping(em_tree, em, 1);
7484 write_unlock(&em_tree->lock);
7485 } while (ret == -EEXIST);
7486
7487 if (ret) {
7488 free_extent_map(em);
7489 return ERR_PTR(ret);
7490 }
7491
7492 return em;
7493 }
7494
7495 struct btrfs_dio_data {
7496 u64 outstanding_extents;
7497 u64 reserve;
7498 };
7499
adjust_dio_outstanding_extents(struct inode * inode,struct btrfs_dio_data * dio_data,const u64 len)7500 static void adjust_dio_outstanding_extents(struct inode *inode,
7501 struct btrfs_dio_data *dio_data,
7502 const u64 len)
7503 {
7504 unsigned num_extents;
7505
7506 num_extents = (unsigned) div64_u64(len + BTRFS_MAX_EXTENT_SIZE - 1,
7507 BTRFS_MAX_EXTENT_SIZE);
7508 /*
7509 * If we have an outstanding_extents count still set then we're
7510 * within our reservation, otherwise we need to adjust our inode
7511 * counter appropriately.
7512 */
7513 if (dio_data->outstanding_extents) {
7514 dio_data->outstanding_extents -= num_extents;
7515 } else {
7516 spin_lock(&BTRFS_I(inode)->lock);
7517 BTRFS_I(inode)->outstanding_extents += num_extents;
7518 spin_unlock(&BTRFS_I(inode)->lock);
7519 }
7520 }
7521
btrfs_get_blocks_direct(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)7522 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7523 struct buffer_head *bh_result, int create)
7524 {
7525 struct extent_map *em;
7526 struct btrfs_root *root = BTRFS_I(inode)->root;
7527 struct extent_state *cached_state = NULL;
7528 struct btrfs_dio_data *dio_data = NULL;
7529 u64 start = iblock << inode->i_blkbits;
7530 u64 lockstart, lockend;
7531 u64 len = bh_result->b_size;
7532 int unlock_bits = EXTENT_LOCKED;
7533 int ret = 0;
7534
7535 if (create)
7536 unlock_bits |= EXTENT_DIRTY;
7537 else
7538 len = min_t(u64, len, root->sectorsize);
7539
7540 lockstart = start;
7541 lockend = start + len - 1;
7542
7543 if (current->journal_info) {
7544 /*
7545 * Need to pull our outstanding extents and set journal_info to NULL so
7546 * that anything that needs to check if there's a transction doesn't get
7547 * confused.
7548 */
7549 dio_data = current->journal_info;
7550 current->journal_info = NULL;
7551 }
7552
7553 /*
7554 * If this errors out it's because we couldn't invalidate pagecache for
7555 * this range and we need to fallback to buffered.
7556 */
7557 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7558 create)) {
7559 ret = -ENOTBLK;
7560 goto err;
7561 }
7562
7563 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7564 if (IS_ERR(em)) {
7565 ret = PTR_ERR(em);
7566 goto unlock_err;
7567 }
7568
7569 /*
7570 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7571 * io. INLINE is special, and we could probably kludge it in here, but
7572 * it's still buffered so for safety lets just fall back to the generic
7573 * buffered path.
7574 *
7575 * For COMPRESSED we _have_ to read the entire extent in so we can
7576 * decompress it, so there will be buffering required no matter what we
7577 * do, so go ahead and fallback to buffered.
7578 *
7579 * We return -ENOTBLK because thats what makes DIO go ahead and go back
7580 * to buffered IO. Don't blame me, this is the price we pay for using
7581 * the generic code.
7582 */
7583 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7584 em->block_start == EXTENT_MAP_INLINE) {
7585 free_extent_map(em);
7586 ret = -ENOTBLK;
7587 goto unlock_err;
7588 }
7589
7590 /* Just a good old fashioned hole, return */
7591 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7592 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7593 free_extent_map(em);
7594 goto unlock_err;
7595 }
7596
7597 /*
7598 * We don't allocate a new extent in the following cases
7599 *
7600 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7601 * existing extent.
7602 * 2) The extent is marked as PREALLOC. We're good to go here and can
7603 * just use the extent.
7604 *
7605 */
7606 if (!create) {
7607 len = min(len, em->len - (start - em->start));
7608 lockstart = start + len;
7609 goto unlock;
7610 }
7611
7612 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7613 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7614 em->block_start != EXTENT_MAP_HOLE)) {
7615 int type;
7616 u64 block_start, orig_start, orig_block_len, ram_bytes;
7617
7618 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7619 type = BTRFS_ORDERED_PREALLOC;
7620 else
7621 type = BTRFS_ORDERED_NOCOW;
7622 len = min(len, em->len - (start - em->start));
7623 block_start = em->block_start + (start - em->start);
7624
7625 if (can_nocow_extent(inode, start, &len, &orig_start,
7626 &orig_block_len, &ram_bytes) == 1) {
7627 if (type == BTRFS_ORDERED_PREALLOC) {
7628 free_extent_map(em);
7629 em = create_pinned_em(inode, start, len,
7630 orig_start,
7631 block_start, len,
7632 orig_block_len,
7633 ram_bytes, type);
7634 if (IS_ERR(em)) {
7635 ret = PTR_ERR(em);
7636 goto unlock_err;
7637 }
7638 }
7639
7640 ret = btrfs_add_ordered_extent_dio(inode, start,
7641 block_start, len, len, type);
7642 if (ret) {
7643 free_extent_map(em);
7644 goto unlock_err;
7645 }
7646 goto unlock;
7647 }
7648 }
7649
7650 /*
7651 * this will cow the extent, reset the len in case we changed
7652 * it above
7653 */
7654 len = bh_result->b_size;
7655 free_extent_map(em);
7656 em = btrfs_new_extent_direct(inode, start, len);
7657 if (IS_ERR(em)) {
7658 ret = PTR_ERR(em);
7659 goto unlock_err;
7660 }
7661 len = min(len, em->len - (start - em->start));
7662 unlock:
7663 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7664 inode->i_blkbits;
7665 bh_result->b_size = len;
7666 bh_result->b_bdev = em->bdev;
7667 set_buffer_mapped(bh_result);
7668 if (create) {
7669 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7670 set_buffer_new(bh_result);
7671
7672 /*
7673 * Need to update the i_size under the extent lock so buffered
7674 * readers will get the updated i_size when we unlock.
7675 */
7676 if (start + len > i_size_read(inode))
7677 i_size_write(inode, start + len);
7678
7679 adjust_dio_outstanding_extents(inode, dio_data, len);
7680 btrfs_free_reserved_data_space(inode, start, len);
7681 WARN_ON(dio_data->reserve < len);
7682 dio_data->reserve -= len;
7683 current->journal_info = dio_data;
7684 }
7685
7686 /*
7687 * In the case of write we need to clear and unlock the entire range,
7688 * in the case of read we need to unlock only the end area that we
7689 * aren't using if there is any left over space.
7690 */
7691 if (lockstart < lockend) {
7692 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7693 lockend, unlock_bits, 1, 0,
7694 &cached_state, GFP_NOFS);
7695 } else {
7696 free_extent_state(cached_state);
7697 }
7698
7699 free_extent_map(em);
7700
7701 return 0;
7702
7703 unlock_err:
7704 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7705 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7706 err:
7707 if (dio_data)
7708 current->journal_info = dio_data;
7709 /*
7710 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7711 * write less data then expected, so that we don't underflow our inode's
7712 * outstanding extents counter.
7713 */
7714 if (create && dio_data)
7715 adjust_dio_outstanding_extents(inode, dio_data, len);
7716
7717 return ret;
7718 }
7719
submit_dio_repair_bio(struct inode * inode,struct bio * bio,int rw,int mirror_num)7720 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7721 int rw, int mirror_num)
7722 {
7723 struct btrfs_root *root = BTRFS_I(inode)->root;
7724 int ret;
7725
7726 BUG_ON(rw & REQ_WRITE);
7727
7728 bio_get(bio);
7729
7730 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7731 BTRFS_WQ_ENDIO_DIO_REPAIR);
7732 if (ret)
7733 goto err;
7734
7735 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7736 err:
7737 bio_put(bio);
7738 return ret;
7739 }
7740
btrfs_check_dio_repairable(struct inode * inode,struct bio * failed_bio,struct io_failure_record * failrec,int failed_mirror)7741 static int btrfs_check_dio_repairable(struct inode *inode,
7742 struct bio *failed_bio,
7743 struct io_failure_record *failrec,
7744 int failed_mirror)
7745 {
7746 int num_copies;
7747
7748 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7749 failrec->logical, failrec->len);
7750 if (num_copies == 1) {
7751 /*
7752 * we only have a single copy of the data, so don't bother with
7753 * all the retry and error correction code that follows. no
7754 * matter what the error is, it is very likely to persist.
7755 */
7756 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7757 num_copies, failrec->this_mirror, failed_mirror);
7758 return 0;
7759 }
7760
7761 failrec->failed_mirror = failed_mirror;
7762 failrec->this_mirror++;
7763 if (failrec->this_mirror == failed_mirror)
7764 failrec->this_mirror++;
7765
7766 if (failrec->this_mirror > num_copies) {
7767 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7768 num_copies, failrec->this_mirror, failed_mirror);
7769 return 0;
7770 }
7771
7772 return 1;
7773 }
7774
dio_read_error(struct inode * inode,struct bio * failed_bio,struct page * page,u64 start,u64 end,int failed_mirror,bio_end_io_t * repair_endio,void * repair_arg)7775 static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7776 struct page *page, u64 start, u64 end,
7777 int failed_mirror, bio_end_io_t *repair_endio,
7778 void *repair_arg)
7779 {
7780 struct io_failure_record *failrec;
7781 struct bio *bio;
7782 int isector;
7783 int read_mode;
7784 int ret;
7785
7786 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7787
7788 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7789 if (ret)
7790 return ret;
7791
7792 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7793 failed_mirror);
7794 if (!ret) {
7795 free_io_failure(inode, failrec);
7796 return -EIO;
7797 }
7798
7799 if (failed_bio->bi_vcnt > 1)
7800 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7801 else
7802 read_mode = READ_SYNC;
7803
7804 isector = start - btrfs_io_bio(failed_bio)->logical;
7805 isector >>= inode->i_sb->s_blocksize_bits;
7806 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7807 0, isector, repair_endio, repair_arg);
7808 if (!bio) {
7809 free_io_failure(inode, failrec);
7810 return -EIO;
7811 }
7812
7813 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7814 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7815 read_mode, failrec->this_mirror, failrec->in_validation);
7816
7817 ret = submit_dio_repair_bio(inode, bio, read_mode,
7818 failrec->this_mirror);
7819 if (ret) {
7820 free_io_failure(inode, failrec);
7821 bio_put(bio);
7822 }
7823
7824 return ret;
7825 }
7826
7827 struct btrfs_retry_complete {
7828 struct completion done;
7829 struct inode *inode;
7830 u64 start;
7831 int uptodate;
7832 };
7833
btrfs_retry_endio_nocsum(struct bio * bio)7834 static void btrfs_retry_endio_nocsum(struct bio *bio)
7835 {
7836 struct btrfs_retry_complete *done = bio->bi_private;
7837 struct bio_vec *bvec;
7838 int i;
7839
7840 if (bio->bi_error)
7841 goto end;
7842
7843 done->uptodate = 1;
7844 bio_for_each_segment_all(bvec, bio, i)
7845 clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7846 end:
7847 complete(&done->done);
7848 bio_put(bio);
7849 }
7850
__btrfs_correct_data_nocsum(struct inode * inode,struct btrfs_io_bio * io_bio)7851 static int __btrfs_correct_data_nocsum(struct inode *inode,
7852 struct btrfs_io_bio *io_bio)
7853 {
7854 struct bio_vec *bvec;
7855 struct btrfs_retry_complete done;
7856 u64 start;
7857 int i;
7858 int ret;
7859
7860 start = io_bio->logical;
7861 done.inode = inode;
7862
7863 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7864 try_again:
7865 done.uptodate = 0;
7866 done.start = start;
7867 init_completion(&done.done);
7868
7869 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7870 start + bvec->bv_len - 1,
7871 io_bio->mirror_num,
7872 btrfs_retry_endio_nocsum, &done);
7873 if (ret)
7874 return ret;
7875
7876 wait_for_completion(&done.done);
7877
7878 if (!done.uptodate) {
7879 /* We might have another mirror, so try again */
7880 goto try_again;
7881 }
7882
7883 start += bvec->bv_len;
7884 }
7885
7886 return 0;
7887 }
7888
btrfs_retry_endio(struct bio * bio)7889 static void btrfs_retry_endio(struct bio *bio)
7890 {
7891 struct btrfs_retry_complete *done = bio->bi_private;
7892 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7893 struct bio_vec *bvec;
7894 int uptodate;
7895 int ret;
7896 int i;
7897
7898 if (bio->bi_error)
7899 goto end;
7900
7901 uptodate = 1;
7902 bio_for_each_segment_all(bvec, bio, i) {
7903 ret = __readpage_endio_check(done->inode, io_bio, i,
7904 bvec->bv_page, 0,
7905 done->start, bvec->bv_len);
7906 if (!ret)
7907 clean_io_failure(done->inode, done->start,
7908 bvec->bv_page, 0);
7909 else
7910 uptodate = 0;
7911 }
7912
7913 done->uptodate = uptodate;
7914 end:
7915 complete(&done->done);
7916 bio_put(bio);
7917 }
7918
__btrfs_subio_endio_read(struct inode * inode,struct btrfs_io_bio * io_bio,int err)7919 static int __btrfs_subio_endio_read(struct inode *inode,
7920 struct btrfs_io_bio *io_bio, int err)
7921 {
7922 struct bio_vec *bvec;
7923 struct btrfs_retry_complete done;
7924 u64 start;
7925 u64 offset = 0;
7926 int i;
7927 int ret;
7928
7929 err = 0;
7930 start = io_bio->logical;
7931 done.inode = inode;
7932
7933 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7934 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7935 0, start, bvec->bv_len);
7936 if (likely(!ret))
7937 goto next;
7938 try_again:
7939 done.uptodate = 0;
7940 done.start = start;
7941 init_completion(&done.done);
7942
7943 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7944 start + bvec->bv_len - 1,
7945 io_bio->mirror_num,
7946 btrfs_retry_endio, &done);
7947 if (ret) {
7948 err = ret;
7949 goto next;
7950 }
7951
7952 wait_for_completion(&done.done);
7953
7954 if (!done.uptodate) {
7955 /* We might have another mirror, so try again */
7956 goto try_again;
7957 }
7958 next:
7959 offset += bvec->bv_len;
7960 start += bvec->bv_len;
7961 }
7962
7963 return err;
7964 }
7965
btrfs_subio_endio_read(struct inode * inode,struct btrfs_io_bio * io_bio,int err)7966 static int btrfs_subio_endio_read(struct inode *inode,
7967 struct btrfs_io_bio *io_bio, int err)
7968 {
7969 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7970
7971 if (skip_csum) {
7972 if (unlikely(err))
7973 return __btrfs_correct_data_nocsum(inode, io_bio);
7974 else
7975 return 0;
7976 } else {
7977 return __btrfs_subio_endio_read(inode, io_bio, err);
7978 }
7979 }
7980
btrfs_endio_direct_read(struct bio * bio)7981 static void btrfs_endio_direct_read(struct bio *bio)
7982 {
7983 struct btrfs_dio_private *dip = bio->bi_private;
7984 struct inode *inode = dip->inode;
7985 struct bio *dio_bio;
7986 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7987 int err = bio->bi_error;
7988
7989 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
7990 err = btrfs_subio_endio_read(inode, io_bio, err);
7991
7992 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
7993 dip->logical_offset + dip->bytes - 1);
7994 dio_bio = dip->dio_bio;
7995
7996 kfree(dip);
7997
7998 dio_bio->bi_error = bio->bi_error;
7999 dio_end_io(dio_bio, bio->bi_error);
8000
8001 if (io_bio->end_io)
8002 io_bio->end_io(io_bio, err);
8003 bio_put(bio);
8004 }
8005
btrfs_endio_direct_write(struct bio * bio)8006 static void btrfs_endio_direct_write(struct bio *bio)
8007 {
8008 struct btrfs_dio_private *dip = bio->bi_private;
8009 struct inode *inode = dip->inode;
8010 struct btrfs_root *root = BTRFS_I(inode)->root;
8011 struct btrfs_ordered_extent *ordered = NULL;
8012 u64 ordered_offset = dip->logical_offset;
8013 u64 ordered_bytes = dip->bytes;
8014 struct bio *dio_bio;
8015 int ret;
8016
8017 again:
8018 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8019 &ordered_offset,
8020 ordered_bytes,
8021 !bio->bi_error);
8022 if (!ret)
8023 goto out_test;
8024
8025 btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
8026 finish_ordered_fn, NULL, NULL);
8027 btrfs_queue_work(root->fs_info->endio_write_workers,
8028 &ordered->work);
8029 out_test:
8030 /*
8031 * our bio might span multiple ordered extents. If we haven't
8032 * completed the accounting for the whole dio, go back and try again
8033 */
8034 if (ordered_offset < dip->logical_offset + dip->bytes) {
8035 ordered_bytes = dip->logical_offset + dip->bytes -
8036 ordered_offset;
8037 ordered = NULL;
8038 goto again;
8039 }
8040 dio_bio = dip->dio_bio;
8041
8042 kfree(dip);
8043
8044 dio_bio->bi_error = bio->bi_error;
8045 dio_end_io(dio_bio, bio->bi_error);
8046 bio_put(bio);
8047 }
8048
__btrfs_submit_bio_start_direct_io(struct inode * inode,int rw,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 offset)8049 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
8050 struct bio *bio, int mirror_num,
8051 unsigned long bio_flags, u64 offset)
8052 {
8053 int ret;
8054 struct btrfs_root *root = BTRFS_I(inode)->root;
8055 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
8056 BUG_ON(ret); /* -ENOMEM */
8057 return 0;
8058 }
8059
btrfs_end_dio_bio(struct bio * bio)8060 static void btrfs_end_dio_bio(struct bio *bio)
8061 {
8062 struct btrfs_dio_private *dip = bio->bi_private;
8063 int err = bio->bi_error;
8064
8065 if (err)
8066 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8067 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
8068 btrfs_ino(dip->inode), bio->bi_rw,
8069 (unsigned long long)bio->bi_iter.bi_sector,
8070 bio->bi_iter.bi_size, err);
8071
8072 if (dip->subio_endio)
8073 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8074
8075 if (err) {
8076 dip->errors = 1;
8077
8078 /*
8079 * before atomic variable goto zero, we must make sure
8080 * dip->errors is perceived to be set.
8081 */
8082 smp_mb__before_atomic();
8083 }
8084
8085 /* if there are more bios still pending for this dio, just exit */
8086 if (!atomic_dec_and_test(&dip->pending_bios))
8087 goto out;
8088
8089 if (dip->errors) {
8090 bio_io_error(dip->orig_bio);
8091 } else {
8092 dip->dio_bio->bi_error = 0;
8093 bio_endio(dip->orig_bio);
8094 }
8095 out:
8096 bio_put(bio);
8097 }
8098
btrfs_dio_bio_alloc(struct block_device * bdev,u64 first_sector,gfp_t gfp_flags)8099 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8100 u64 first_sector, gfp_t gfp_flags)
8101 {
8102 struct bio *bio;
8103 bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
8104 if (bio)
8105 bio_associate_current(bio);
8106 return bio;
8107 }
8108
btrfs_lookup_and_bind_dio_csum(struct btrfs_root * root,struct inode * inode,struct btrfs_dio_private * dip,struct bio * bio,u64 file_offset)8109 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
8110 struct inode *inode,
8111 struct btrfs_dio_private *dip,
8112 struct bio *bio,
8113 u64 file_offset)
8114 {
8115 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8116 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8117 int ret;
8118
8119 /*
8120 * We load all the csum data we need when we submit
8121 * the first bio to reduce the csum tree search and
8122 * contention.
8123 */
8124 if (dip->logical_offset == file_offset) {
8125 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
8126 file_offset);
8127 if (ret)
8128 return ret;
8129 }
8130
8131 if (bio == dip->orig_bio)
8132 return 0;
8133
8134 file_offset -= dip->logical_offset;
8135 file_offset >>= inode->i_sb->s_blocksize_bits;
8136 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8137
8138 return 0;
8139 }
8140
__btrfs_submit_dio_bio(struct bio * bio,struct inode * inode,int rw,u64 file_offset,int skip_sum,int async_submit)8141 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8142 int rw, u64 file_offset, int skip_sum,
8143 int async_submit)
8144 {
8145 struct btrfs_dio_private *dip = bio->bi_private;
8146 int write = rw & REQ_WRITE;
8147 struct btrfs_root *root = BTRFS_I(inode)->root;
8148 int ret;
8149
8150 if (async_submit)
8151 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8152
8153 bio_get(bio);
8154
8155 if (!write) {
8156 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
8157 BTRFS_WQ_ENDIO_DATA);
8158 if (ret)
8159 goto err;
8160 }
8161
8162 if (skip_sum)
8163 goto map;
8164
8165 if (write && async_submit) {
8166 ret = btrfs_wq_submit_bio(root->fs_info,
8167 inode, rw, bio, 0, 0,
8168 file_offset,
8169 __btrfs_submit_bio_start_direct_io,
8170 __btrfs_submit_bio_done);
8171 goto err;
8172 } else if (write) {
8173 /*
8174 * If we aren't doing async submit, calculate the csum of the
8175 * bio now.
8176 */
8177 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
8178 if (ret)
8179 goto err;
8180 } else {
8181 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
8182 file_offset);
8183 if (ret)
8184 goto err;
8185 }
8186 map:
8187 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
8188 err:
8189 bio_put(bio);
8190 return ret;
8191 }
8192
btrfs_submit_direct_hook(int rw,struct btrfs_dio_private * dip,int skip_sum)8193 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
8194 int skip_sum)
8195 {
8196 struct inode *inode = dip->inode;
8197 struct btrfs_root *root = BTRFS_I(inode)->root;
8198 struct bio *bio;
8199 struct bio *orig_bio = dip->orig_bio;
8200 struct bio_vec *bvec = orig_bio->bi_io_vec;
8201 u64 start_sector = orig_bio->bi_iter.bi_sector;
8202 u64 file_offset = dip->logical_offset;
8203 u64 submit_len = 0;
8204 u64 map_length;
8205 int nr_pages = 0;
8206 int ret;
8207 int async_submit = 0;
8208
8209 map_length = orig_bio->bi_iter.bi_size;
8210 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
8211 &map_length, NULL, 0);
8212 if (ret)
8213 return -EIO;
8214
8215 if (map_length >= orig_bio->bi_iter.bi_size) {
8216 bio = orig_bio;
8217 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8218 goto submit;
8219 }
8220
8221 /* async crcs make it difficult to collect full stripe writes. */
8222 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8223 async_submit = 0;
8224 else
8225 async_submit = 1;
8226
8227 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8228 if (!bio)
8229 return -ENOMEM;
8230
8231 bio->bi_private = dip;
8232 bio->bi_end_io = btrfs_end_dio_bio;
8233 btrfs_io_bio(bio)->logical = file_offset;
8234 atomic_inc(&dip->pending_bios);
8235
8236 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
8237 if (map_length < submit_len + bvec->bv_len ||
8238 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
8239 bvec->bv_offset) < bvec->bv_len) {
8240 /*
8241 * inc the count before we submit the bio so
8242 * we know the end IO handler won't happen before
8243 * we inc the count. Otherwise, the dip might get freed
8244 * before we're done setting it up
8245 */
8246 atomic_inc(&dip->pending_bios);
8247 ret = __btrfs_submit_dio_bio(bio, inode, rw,
8248 file_offset, skip_sum,
8249 async_submit);
8250 if (ret) {
8251 bio_put(bio);
8252 atomic_dec(&dip->pending_bios);
8253 goto out_err;
8254 }
8255
8256 start_sector += submit_len >> 9;
8257 file_offset += submit_len;
8258
8259 submit_len = 0;
8260 nr_pages = 0;
8261
8262 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8263 start_sector, GFP_NOFS);
8264 if (!bio)
8265 goto out_err;
8266 bio->bi_private = dip;
8267 bio->bi_end_io = btrfs_end_dio_bio;
8268 btrfs_io_bio(bio)->logical = file_offset;
8269
8270 map_length = orig_bio->bi_iter.bi_size;
8271 ret = btrfs_map_block(root->fs_info, rw,
8272 start_sector << 9,
8273 &map_length, NULL, 0);
8274 if (ret) {
8275 bio_put(bio);
8276 goto out_err;
8277 }
8278 } else {
8279 submit_len += bvec->bv_len;
8280 nr_pages++;
8281 bvec++;
8282 }
8283 }
8284
8285 submit:
8286 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
8287 async_submit);
8288 if (!ret)
8289 return 0;
8290
8291 bio_put(bio);
8292 out_err:
8293 dip->errors = 1;
8294 /*
8295 * before atomic variable goto zero, we must
8296 * make sure dip->errors is perceived to be set.
8297 */
8298 smp_mb__before_atomic();
8299 if (atomic_dec_and_test(&dip->pending_bios))
8300 bio_io_error(dip->orig_bio);
8301
8302 /* bio_end_io() will handle error, so we needn't return it */
8303 return 0;
8304 }
8305
btrfs_submit_direct(int rw,struct bio * dio_bio,struct inode * inode,loff_t file_offset)8306 static void btrfs_submit_direct(int rw, struct bio *dio_bio,
8307 struct inode *inode, loff_t file_offset)
8308 {
8309 struct btrfs_dio_private *dip = NULL;
8310 struct bio *io_bio = NULL;
8311 struct btrfs_io_bio *btrfs_bio;
8312 int skip_sum;
8313 int write = rw & REQ_WRITE;
8314 int ret = 0;
8315
8316 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8317
8318 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
8319 if (!io_bio) {
8320 ret = -ENOMEM;
8321 goto free_ordered;
8322 }
8323
8324 dip = kzalloc(sizeof(*dip), GFP_NOFS);
8325 if (!dip) {
8326 ret = -ENOMEM;
8327 goto free_ordered;
8328 }
8329
8330 dip->private = dio_bio->bi_private;
8331 dip->inode = inode;
8332 dip->logical_offset = file_offset;
8333 dip->bytes = dio_bio->bi_iter.bi_size;
8334 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8335 io_bio->bi_private = dip;
8336 dip->orig_bio = io_bio;
8337 dip->dio_bio = dio_bio;
8338 atomic_set(&dip->pending_bios, 0);
8339 btrfs_bio = btrfs_io_bio(io_bio);
8340 btrfs_bio->logical = file_offset;
8341
8342 if (write) {
8343 io_bio->bi_end_io = btrfs_endio_direct_write;
8344 } else {
8345 io_bio->bi_end_io = btrfs_endio_direct_read;
8346 dip->subio_endio = btrfs_subio_endio_read;
8347 }
8348
8349 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
8350 if (!ret)
8351 return;
8352
8353 if (btrfs_bio->end_io)
8354 btrfs_bio->end_io(btrfs_bio, ret);
8355
8356 free_ordered:
8357 /*
8358 * If we arrived here it means either we failed to submit the dip
8359 * or we either failed to clone the dio_bio or failed to allocate the
8360 * dip. If we cloned the dio_bio and allocated the dip, we can just
8361 * call bio_endio against our io_bio so that we get proper resource
8362 * cleanup if we fail to submit the dip, otherwise, we must do the
8363 * same as btrfs_endio_direct_[write|read] because we can't call these
8364 * callbacks - they require an allocated dip and a clone of dio_bio.
8365 */
8366 if (io_bio && dip) {
8367 io_bio->bi_error = -EIO;
8368 bio_endio(io_bio);
8369 /*
8370 * The end io callbacks free our dip, do the final put on io_bio
8371 * and all the cleanup and final put for dio_bio (through
8372 * dio_end_io()).
8373 */
8374 dip = NULL;
8375 io_bio = NULL;
8376 } else {
8377 if (write) {
8378 struct btrfs_ordered_extent *ordered;
8379
8380 ordered = btrfs_lookup_ordered_extent(inode,
8381 file_offset);
8382 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
8383 /*
8384 * Decrements our ref on the ordered extent and removes
8385 * the ordered extent from the inode's ordered tree,
8386 * doing all the proper resource cleanup such as for the
8387 * reserved space and waking up any waiters for this
8388 * ordered extent (through btrfs_remove_ordered_extent).
8389 */
8390 btrfs_finish_ordered_io(ordered);
8391 } else {
8392 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8393 file_offset + dio_bio->bi_iter.bi_size - 1);
8394 }
8395 dio_bio->bi_error = -EIO;
8396 /*
8397 * Releases and cleans up our dio_bio, no need to bio_put()
8398 * nor bio_endio()/bio_io_error() against dio_bio.
8399 */
8400 dio_end_io(dio_bio, ret);
8401 }
8402 if (io_bio)
8403 bio_put(io_bio);
8404 kfree(dip);
8405 }
8406
check_direct_IO(struct btrfs_root * root,struct kiocb * iocb,const struct iov_iter * iter,loff_t offset)8407 static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb,
8408 const struct iov_iter *iter, loff_t offset)
8409 {
8410 int seg;
8411 int i;
8412 unsigned blocksize_mask = root->sectorsize - 1;
8413 ssize_t retval = -EINVAL;
8414
8415 if (offset & blocksize_mask)
8416 goto out;
8417
8418 if (iov_iter_alignment(iter) & blocksize_mask)
8419 goto out;
8420
8421 /* If this is a write we don't need to check anymore */
8422 if (iov_iter_rw(iter) == WRITE)
8423 return 0;
8424 /*
8425 * Check to make sure we don't have duplicate iov_base's in this
8426 * iovec, if so return EINVAL, otherwise we'll get csum errors
8427 * when reading back.
8428 */
8429 for (seg = 0; seg < iter->nr_segs; seg++) {
8430 for (i = seg + 1; i < iter->nr_segs; i++) {
8431 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8432 goto out;
8433 }
8434 }
8435 retval = 0;
8436 out:
8437 return retval;
8438 }
8439
btrfs_direct_IO(struct kiocb * iocb,struct iov_iter * iter,loff_t offset)8440 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
8441 loff_t offset)
8442 {
8443 struct file *file = iocb->ki_filp;
8444 struct inode *inode = file->f_mapping->host;
8445 struct btrfs_root *root = BTRFS_I(inode)->root;
8446 struct btrfs_dio_data dio_data = { 0 };
8447 size_t count = 0;
8448 int flags = 0;
8449 bool wakeup = true;
8450 bool relock = false;
8451 ssize_t ret;
8452
8453 if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset))
8454 return 0;
8455
8456 inode_dio_begin(inode);
8457 smp_mb__after_atomic();
8458
8459 /*
8460 * The generic stuff only does filemap_write_and_wait_range, which
8461 * isn't enough if we've written compressed pages to this area, so
8462 * we need to flush the dirty pages again to make absolutely sure
8463 * that any outstanding dirty pages are on disk.
8464 */
8465 count = iov_iter_count(iter);
8466 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8467 &BTRFS_I(inode)->runtime_flags))
8468 filemap_fdatawrite_range(inode->i_mapping, offset,
8469 offset + count - 1);
8470
8471 if (iov_iter_rw(iter) == WRITE) {
8472 /*
8473 * If the write DIO is beyond the EOF, we need update
8474 * the isize, but it is protected by i_mutex. So we can
8475 * not unlock the i_mutex at this case.
8476 */
8477 if (offset + count <= inode->i_size) {
8478 mutex_unlock(&inode->i_mutex);
8479 relock = true;
8480 }
8481 ret = btrfs_delalloc_reserve_space(inode, offset, count);
8482 if (ret)
8483 goto out;
8484 dio_data.outstanding_extents = div64_u64(count +
8485 BTRFS_MAX_EXTENT_SIZE - 1,
8486 BTRFS_MAX_EXTENT_SIZE);
8487
8488 /*
8489 * We need to know how many extents we reserved so that we can
8490 * do the accounting properly if we go over the number we
8491 * originally calculated. Abuse current->journal_info for this.
8492 */
8493 dio_data.reserve = round_up(count, root->sectorsize);
8494 current->journal_info = &dio_data;
8495 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8496 &BTRFS_I(inode)->runtime_flags)) {
8497 inode_dio_end(inode);
8498 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8499 wakeup = false;
8500 }
8501
8502 ret = __blockdev_direct_IO(iocb, inode,
8503 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
8504 iter, offset, btrfs_get_blocks_direct, NULL,
8505 btrfs_submit_direct, flags);
8506 if (iov_iter_rw(iter) == WRITE) {
8507 current->journal_info = NULL;
8508 if (ret < 0 && ret != -EIOCBQUEUED) {
8509 if (dio_data.reserve)
8510 btrfs_delalloc_release_space(inode, offset,
8511 dio_data.reserve);
8512 } else if (ret >= 0 && (size_t)ret < count)
8513 btrfs_delalloc_release_space(inode, offset,
8514 count - (size_t)ret);
8515 }
8516 out:
8517 if (wakeup)
8518 inode_dio_end(inode);
8519 if (relock)
8520 mutex_lock(&inode->i_mutex);
8521
8522 return ret;
8523 }
8524
8525 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8526
btrfs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,__u64 start,__u64 len)8527 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8528 __u64 start, __u64 len)
8529 {
8530 int ret;
8531
8532 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8533 if (ret)
8534 return ret;
8535
8536 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8537 }
8538
btrfs_readpage(struct file * file,struct page * page)8539 int btrfs_readpage(struct file *file, struct page *page)
8540 {
8541 struct extent_io_tree *tree;
8542 tree = &BTRFS_I(page->mapping->host)->io_tree;
8543 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8544 }
8545
btrfs_writepage(struct page * page,struct writeback_control * wbc)8546 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8547 {
8548 struct extent_io_tree *tree;
8549 struct inode *inode = page->mapping->host;
8550 int ret;
8551
8552 if (current->flags & PF_MEMALLOC) {
8553 redirty_page_for_writepage(wbc, page);
8554 unlock_page(page);
8555 return 0;
8556 }
8557
8558 /*
8559 * If we are under memory pressure we will call this directly from the
8560 * VM, we need to make sure we have the inode referenced for the ordered
8561 * extent. If not just return like we didn't do anything.
8562 */
8563 if (!igrab(inode)) {
8564 redirty_page_for_writepage(wbc, page);
8565 return AOP_WRITEPAGE_ACTIVATE;
8566 }
8567 tree = &BTRFS_I(page->mapping->host)->io_tree;
8568 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8569 btrfs_add_delayed_iput(inode);
8570 return ret;
8571 }
8572
btrfs_writepages(struct address_space * mapping,struct writeback_control * wbc)8573 static int btrfs_writepages(struct address_space *mapping,
8574 struct writeback_control *wbc)
8575 {
8576 struct extent_io_tree *tree;
8577
8578 tree = &BTRFS_I(mapping->host)->io_tree;
8579 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8580 }
8581
8582 static int
btrfs_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)8583 btrfs_readpages(struct file *file, struct address_space *mapping,
8584 struct list_head *pages, unsigned nr_pages)
8585 {
8586 struct extent_io_tree *tree;
8587 tree = &BTRFS_I(mapping->host)->io_tree;
8588 return extent_readpages(tree, mapping, pages, nr_pages,
8589 btrfs_get_extent);
8590 }
__btrfs_releasepage(struct page * page,gfp_t gfp_flags)8591 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8592 {
8593 struct extent_io_tree *tree;
8594 struct extent_map_tree *map;
8595 int ret;
8596
8597 tree = &BTRFS_I(page->mapping->host)->io_tree;
8598 map = &BTRFS_I(page->mapping->host)->extent_tree;
8599 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8600 if (ret == 1) {
8601 ClearPagePrivate(page);
8602 set_page_private(page, 0);
8603 page_cache_release(page);
8604 }
8605 return ret;
8606 }
8607
btrfs_releasepage(struct page * page,gfp_t gfp_flags)8608 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8609 {
8610 if (PageWriteback(page) || PageDirty(page))
8611 return 0;
8612 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
8613 }
8614
btrfs_invalidatepage(struct page * page,unsigned int offset,unsigned int length)8615 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8616 unsigned int length)
8617 {
8618 struct inode *inode = page->mapping->host;
8619 struct extent_io_tree *tree;
8620 struct btrfs_ordered_extent *ordered;
8621 struct extent_state *cached_state = NULL;
8622 u64 page_start = page_offset(page);
8623 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
8624 int inode_evicting = inode->i_state & I_FREEING;
8625
8626 /*
8627 * we have the page locked, so new writeback can't start,
8628 * and the dirty bit won't be cleared while we are here.
8629 *
8630 * Wait for IO on this page so that we can safely clear
8631 * the PagePrivate2 bit and do ordered accounting
8632 */
8633 wait_on_page_writeback(page);
8634
8635 tree = &BTRFS_I(inode)->io_tree;
8636 if (offset) {
8637 btrfs_releasepage(page, GFP_NOFS);
8638 return;
8639 }
8640
8641 if (!inode_evicting)
8642 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
8643 ordered = btrfs_lookup_ordered_extent(inode, page_start);
8644 if (ordered) {
8645 /*
8646 * IO on this page will never be started, so we need
8647 * to account for any ordered extents now
8648 */
8649 if (!inode_evicting)
8650 clear_extent_bit(tree, page_start, page_end,
8651 EXTENT_DIRTY | EXTENT_DELALLOC |
8652 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8653 EXTENT_DEFRAG, 1, 0, &cached_state,
8654 GFP_NOFS);
8655 /*
8656 * whoever cleared the private bit is responsible
8657 * for the finish_ordered_io
8658 */
8659 if (TestClearPagePrivate2(page)) {
8660 struct btrfs_ordered_inode_tree *tree;
8661 u64 new_len;
8662
8663 tree = &BTRFS_I(inode)->ordered_tree;
8664
8665 spin_lock_irq(&tree->lock);
8666 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8667 new_len = page_start - ordered->file_offset;
8668 if (new_len < ordered->truncated_len)
8669 ordered->truncated_len = new_len;
8670 spin_unlock_irq(&tree->lock);
8671
8672 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8673 page_start,
8674 PAGE_CACHE_SIZE, 1))
8675 btrfs_finish_ordered_io(ordered);
8676 }
8677 btrfs_put_ordered_extent(ordered);
8678 if (!inode_evicting) {
8679 cached_state = NULL;
8680 lock_extent_bits(tree, page_start, page_end, 0,
8681 &cached_state);
8682 }
8683 }
8684
8685 /*
8686 * Qgroup reserved space handler
8687 * Page here will be either
8688 * 1) Already written to disk
8689 * In this case, its reserved space is released from data rsv map
8690 * and will be freed by delayed_ref handler finally.
8691 * So even we call qgroup_free_data(), it won't decrease reserved
8692 * space.
8693 * 2) Not written to disk
8694 * This means the reserved space should be freed here.
8695 */
8696 btrfs_qgroup_free_data(inode, page_start, PAGE_CACHE_SIZE);
8697 if (!inode_evicting) {
8698 clear_extent_bit(tree, page_start, page_end,
8699 EXTENT_LOCKED | EXTENT_DIRTY |
8700 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8701 EXTENT_DEFRAG, 1, 1,
8702 &cached_state, GFP_NOFS);
8703
8704 __btrfs_releasepage(page, GFP_NOFS);
8705 }
8706
8707 ClearPageChecked(page);
8708 if (PagePrivate(page)) {
8709 ClearPagePrivate(page);
8710 set_page_private(page, 0);
8711 page_cache_release(page);
8712 }
8713 }
8714
8715 /*
8716 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8717 * called from a page fault handler when a page is first dirtied. Hence we must
8718 * be careful to check for EOF conditions here. We set the page up correctly
8719 * for a written page which means we get ENOSPC checking when writing into
8720 * holes and correct delalloc and unwritten extent mapping on filesystems that
8721 * support these features.
8722 *
8723 * We are not allowed to take the i_mutex here so we have to play games to
8724 * protect against truncate races as the page could now be beyond EOF. Because
8725 * vmtruncate() writes the inode size before removing pages, once we have the
8726 * page lock we can determine safely if the page is beyond EOF. If it is not
8727 * beyond EOF, then the page is guaranteed safe against truncation until we
8728 * unlock the page.
8729 */
btrfs_page_mkwrite(struct vm_area_struct * vma,struct vm_fault * vmf)8730 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
8731 {
8732 struct page *page = vmf->page;
8733 struct inode *inode = file_inode(vma->vm_file);
8734 struct btrfs_root *root = BTRFS_I(inode)->root;
8735 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8736 struct btrfs_ordered_extent *ordered;
8737 struct extent_state *cached_state = NULL;
8738 char *kaddr;
8739 unsigned long zero_start;
8740 loff_t size;
8741 int ret;
8742 int reserved = 0;
8743 u64 page_start;
8744 u64 page_end;
8745
8746 sb_start_pagefault(inode->i_sb);
8747 page_start = page_offset(page);
8748 page_end = page_start + PAGE_CACHE_SIZE - 1;
8749
8750 ret = btrfs_delalloc_reserve_space(inode, page_start,
8751 PAGE_CACHE_SIZE);
8752 if (!ret) {
8753 ret = file_update_time(vma->vm_file);
8754 reserved = 1;
8755 }
8756 if (ret) {
8757 if (ret == -ENOMEM)
8758 ret = VM_FAULT_OOM;
8759 else /* -ENOSPC, -EIO, etc */
8760 ret = VM_FAULT_SIGBUS;
8761 if (reserved)
8762 goto out;
8763 goto out_noreserve;
8764 }
8765
8766 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8767 again:
8768 lock_page(page);
8769 size = i_size_read(inode);
8770
8771 if ((page->mapping != inode->i_mapping) ||
8772 (page_start >= size)) {
8773 /* page got truncated out from underneath us */
8774 goto out_unlock;
8775 }
8776 wait_on_page_writeback(page);
8777
8778 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
8779 set_page_extent_mapped(page);
8780
8781 /*
8782 * we can't set the delalloc bits if there are pending ordered
8783 * extents. Drop our locks and wait for them to finish
8784 */
8785 ordered = btrfs_lookup_ordered_extent(inode, page_start);
8786 if (ordered) {
8787 unlock_extent_cached(io_tree, page_start, page_end,
8788 &cached_state, GFP_NOFS);
8789 unlock_page(page);
8790 btrfs_start_ordered_extent(inode, ordered, 1);
8791 btrfs_put_ordered_extent(ordered);
8792 goto again;
8793 }
8794
8795 /*
8796 * XXX - page_mkwrite gets called every time the page is dirtied, even
8797 * if it was already dirty, so for space accounting reasons we need to
8798 * clear any delalloc bits for the range we are fixing to save. There
8799 * is probably a better way to do this, but for now keep consistent with
8800 * prepare_pages in the normal write path.
8801 */
8802 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
8803 EXTENT_DIRTY | EXTENT_DELALLOC |
8804 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
8805 0, 0, &cached_state, GFP_NOFS);
8806
8807 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
8808 &cached_state);
8809 if (ret) {
8810 unlock_extent_cached(io_tree, page_start, page_end,
8811 &cached_state, GFP_NOFS);
8812 ret = VM_FAULT_SIGBUS;
8813 goto out_unlock;
8814 }
8815 ret = 0;
8816
8817 /* page is wholly or partially inside EOF */
8818 if (page_start + PAGE_CACHE_SIZE > size)
8819 zero_start = size & ~PAGE_CACHE_MASK;
8820 else
8821 zero_start = PAGE_CACHE_SIZE;
8822
8823 if (zero_start != PAGE_CACHE_SIZE) {
8824 kaddr = kmap(page);
8825 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
8826 flush_dcache_page(page);
8827 kunmap(page);
8828 }
8829 ClearPageChecked(page);
8830 set_page_dirty(page);
8831 SetPageUptodate(page);
8832
8833 BTRFS_I(inode)->last_trans = root->fs_info->generation;
8834 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8835 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8836
8837 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
8838
8839 out_unlock:
8840 if (!ret) {
8841 sb_end_pagefault(inode->i_sb);
8842 return VM_FAULT_LOCKED;
8843 }
8844 unlock_page(page);
8845 out:
8846 btrfs_delalloc_release_space(inode, page_start, PAGE_CACHE_SIZE);
8847 out_noreserve:
8848 sb_end_pagefault(inode->i_sb);
8849 return ret;
8850 }
8851
btrfs_truncate(struct inode * inode)8852 static int btrfs_truncate(struct inode *inode)
8853 {
8854 struct btrfs_root *root = BTRFS_I(inode)->root;
8855 struct btrfs_block_rsv *rsv;
8856 int ret = 0;
8857 int err = 0;
8858 struct btrfs_trans_handle *trans;
8859 u64 mask = root->sectorsize - 1;
8860 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
8861
8862 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8863 (u64)-1);
8864 if (ret)
8865 return ret;
8866
8867 /*
8868 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
8869 * 3 things going on here
8870 *
8871 * 1) We need to reserve space for our orphan item and the space to
8872 * delete our orphan item. Lord knows we don't want to have a dangling
8873 * orphan item because we didn't reserve space to remove it.
8874 *
8875 * 2) We need to reserve space to update our inode.
8876 *
8877 * 3) We need to have something to cache all the space that is going to
8878 * be free'd up by the truncate operation, but also have some slack
8879 * space reserved in case it uses space during the truncate (thank you
8880 * very much snapshotting).
8881 *
8882 * And we need these to all be seperate. The fact is we can use alot of
8883 * space doing the truncate, and we have no earthly idea how much space
8884 * we will use, so we need the truncate reservation to be seperate so it
8885 * doesn't end up using space reserved for updating the inode or
8886 * removing the orphan item. We also need to be able to stop the
8887 * transaction and start a new one, which means we need to be able to
8888 * update the inode several times, and we have no idea of knowing how
8889 * many times that will be, so we can't just reserve 1 item for the
8890 * entirety of the opration, so that has to be done seperately as well.
8891 * Then there is the orphan item, which does indeed need to be held on
8892 * to for the whole operation, and we need nobody to touch this reserved
8893 * space except the orphan code.
8894 *
8895 * So that leaves us with
8896 *
8897 * 1) root->orphan_block_rsv - for the orphan deletion.
8898 * 2) rsv - for the truncate reservation, which we will steal from the
8899 * transaction reservation.
8900 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
8901 * updating the inode.
8902 */
8903 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
8904 if (!rsv)
8905 return -ENOMEM;
8906 rsv->size = min_size;
8907 rsv->failfast = 1;
8908
8909 /*
8910 * 1 for the truncate slack space
8911 * 1 for updating the inode.
8912 */
8913 trans = btrfs_start_transaction(root, 2);
8914 if (IS_ERR(trans)) {
8915 err = PTR_ERR(trans);
8916 goto out;
8917 }
8918
8919 /* Migrate the slack space for the truncate to our reserve */
8920 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
8921 min_size);
8922 BUG_ON(ret);
8923
8924 /*
8925 * So if we truncate and then write and fsync we normally would just
8926 * write the extents that changed, which is a problem if we need to
8927 * first truncate that entire inode. So set this flag so we write out
8928 * all of the extents in the inode to the sync log so we're completely
8929 * safe.
8930 */
8931 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
8932 trans->block_rsv = rsv;
8933
8934 while (1) {
8935 ret = btrfs_truncate_inode_items(trans, root, inode,
8936 inode->i_size,
8937 BTRFS_EXTENT_DATA_KEY);
8938 if (ret != -ENOSPC && ret != -EAGAIN) {
8939 err = ret;
8940 break;
8941 }
8942
8943 trans->block_rsv = &root->fs_info->trans_block_rsv;
8944 ret = btrfs_update_inode(trans, root, inode);
8945 if (ret) {
8946 err = ret;
8947 break;
8948 }
8949
8950 btrfs_end_transaction(trans, root);
8951 btrfs_btree_balance_dirty(root);
8952
8953 trans = btrfs_start_transaction(root, 2);
8954 if (IS_ERR(trans)) {
8955 ret = err = PTR_ERR(trans);
8956 trans = NULL;
8957 break;
8958 }
8959
8960 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
8961 rsv, min_size);
8962 BUG_ON(ret); /* shouldn't happen */
8963 trans->block_rsv = rsv;
8964 }
8965
8966 if (ret == 0 && inode->i_nlink > 0) {
8967 trans->block_rsv = root->orphan_block_rsv;
8968 ret = btrfs_orphan_del(trans, inode);
8969 if (ret)
8970 err = ret;
8971 }
8972
8973 if (trans) {
8974 trans->block_rsv = &root->fs_info->trans_block_rsv;
8975 ret = btrfs_update_inode(trans, root, inode);
8976 if (ret && !err)
8977 err = ret;
8978
8979 ret = btrfs_end_transaction(trans, root);
8980 btrfs_btree_balance_dirty(root);
8981 }
8982
8983 out:
8984 btrfs_free_block_rsv(root, rsv);
8985
8986 if (ret && !err)
8987 err = ret;
8988
8989 return err;
8990 }
8991
8992 /*
8993 * create a new subvolume directory/inode (helper for the ioctl).
8994 */
btrfs_create_subvol_root(struct btrfs_trans_handle * trans,struct btrfs_root * new_root,struct btrfs_root * parent_root,u64 new_dirid)8995 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
8996 struct btrfs_root *new_root,
8997 struct btrfs_root *parent_root,
8998 u64 new_dirid)
8999 {
9000 struct inode *inode;
9001 int err;
9002 u64 index = 0;
9003
9004 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9005 new_dirid, new_dirid,
9006 S_IFDIR | (~current_umask() & S_IRWXUGO),
9007 &index);
9008 if (IS_ERR(inode))
9009 return PTR_ERR(inode);
9010 inode->i_op = &btrfs_dir_inode_operations;
9011 inode->i_fop = &btrfs_dir_file_operations;
9012
9013 set_nlink(inode, 1);
9014 btrfs_i_size_write(inode, 0);
9015 unlock_new_inode(inode);
9016
9017 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9018 if (err)
9019 btrfs_err(new_root->fs_info,
9020 "error inheriting subvolume %llu properties: %d",
9021 new_root->root_key.objectid, err);
9022
9023 err = btrfs_update_inode(trans, new_root, inode);
9024
9025 iput(inode);
9026 return err;
9027 }
9028
btrfs_alloc_inode(struct super_block * sb)9029 struct inode *btrfs_alloc_inode(struct super_block *sb)
9030 {
9031 struct btrfs_inode *ei;
9032 struct inode *inode;
9033
9034 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9035 if (!ei)
9036 return NULL;
9037
9038 ei->root = NULL;
9039 ei->generation = 0;
9040 ei->last_trans = 0;
9041 ei->last_sub_trans = 0;
9042 ei->logged_trans = 0;
9043 ei->delalloc_bytes = 0;
9044 ei->defrag_bytes = 0;
9045 ei->disk_i_size = 0;
9046 ei->flags = 0;
9047 ei->csum_bytes = 0;
9048 ei->index_cnt = (u64)-1;
9049 ei->dir_index = 0;
9050 ei->last_unlink_trans = 0;
9051 ei->last_log_commit = 0;
9052
9053 spin_lock_init(&ei->lock);
9054 ei->outstanding_extents = 0;
9055 ei->reserved_extents = 0;
9056
9057 ei->runtime_flags = 0;
9058 ei->force_compress = BTRFS_COMPRESS_NONE;
9059
9060 ei->delayed_node = NULL;
9061
9062 ei->i_otime.tv_sec = 0;
9063 ei->i_otime.tv_nsec = 0;
9064
9065 inode = &ei->vfs_inode;
9066 extent_map_tree_init(&ei->extent_tree);
9067 extent_io_tree_init(&ei->io_tree, &inode->i_data);
9068 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
9069 ei->io_tree.track_uptodate = 1;
9070 ei->io_failure_tree.track_uptodate = 1;
9071 atomic_set(&ei->sync_writers, 0);
9072 mutex_init(&ei->log_mutex);
9073 mutex_init(&ei->delalloc_mutex);
9074 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9075 INIT_LIST_HEAD(&ei->delalloc_inodes);
9076 RB_CLEAR_NODE(&ei->rb_node);
9077
9078 return inode;
9079 }
9080
9081 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
btrfs_test_destroy_inode(struct inode * inode)9082 void btrfs_test_destroy_inode(struct inode *inode)
9083 {
9084 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9085 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9086 }
9087 #endif
9088
btrfs_i_callback(struct rcu_head * head)9089 static void btrfs_i_callback(struct rcu_head *head)
9090 {
9091 struct inode *inode = container_of(head, struct inode, i_rcu);
9092 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9093 }
9094
btrfs_destroy_inode(struct inode * inode)9095 void btrfs_destroy_inode(struct inode *inode)
9096 {
9097 struct btrfs_ordered_extent *ordered;
9098 struct btrfs_root *root = BTRFS_I(inode)->root;
9099
9100 WARN_ON(!hlist_empty(&inode->i_dentry));
9101 WARN_ON(inode->i_data.nrpages);
9102 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9103 WARN_ON(BTRFS_I(inode)->reserved_extents);
9104 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9105 WARN_ON(BTRFS_I(inode)->csum_bytes);
9106 WARN_ON(BTRFS_I(inode)->defrag_bytes);
9107
9108 /*
9109 * This can happen where we create an inode, but somebody else also
9110 * created the same inode and we need to destroy the one we already
9111 * created.
9112 */
9113 if (!root)
9114 goto free;
9115
9116 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9117 &BTRFS_I(inode)->runtime_flags)) {
9118 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
9119 btrfs_ino(inode));
9120 atomic_dec(&root->orphan_inodes);
9121 }
9122
9123 while (1) {
9124 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9125 if (!ordered)
9126 break;
9127 else {
9128 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
9129 ordered->file_offset, ordered->len);
9130 btrfs_remove_ordered_extent(inode, ordered);
9131 btrfs_put_ordered_extent(ordered);
9132 btrfs_put_ordered_extent(ordered);
9133 }
9134 }
9135 btrfs_qgroup_check_reserved_leak(inode);
9136 inode_tree_del(inode);
9137 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9138 free:
9139 call_rcu(&inode->i_rcu, btrfs_i_callback);
9140 }
9141
btrfs_drop_inode(struct inode * inode)9142 int btrfs_drop_inode(struct inode *inode)
9143 {
9144 struct btrfs_root *root = BTRFS_I(inode)->root;
9145
9146 if (root == NULL)
9147 return 1;
9148
9149 /* the snap/subvol tree is on deleting */
9150 if (btrfs_root_refs(&root->root_item) == 0)
9151 return 1;
9152 else
9153 return generic_drop_inode(inode);
9154 }
9155
init_once(void * foo)9156 static void init_once(void *foo)
9157 {
9158 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9159
9160 inode_init_once(&ei->vfs_inode);
9161 }
9162
btrfs_destroy_cachep(void)9163 void btrfs_destroy_cachep(void)
9164 {
9165 /*
9166 * Make sure all delayed rcu free inodes are flushed before we
9167 * destroy cache.
9168 */
9169 rcu_barrier();
9170 if (btrfs_inode_cachep)
9171 kmem_cache_destroy(btrfs_inode_cachep);
9172 if (btrfs_trans_handle_cachep)
9173 kmem_cache_destroy(btrfs_trans_handle_cachep);
9174 if (btrfs_transaction_cachep)
9175 kmem_cache_destroy(btrfs_transaction_cachep);
9176 if (btrfs_path_cachep)
9177 kmem_cache_destroy(btrfs_path_cachep);
9178 if (btrfs_free_space_cachep)
9179 kmem_cache_destroy(btrfs_free_space_cachep);
9180 if (btrfs_delalloc_work_cachep)
9181 kmem_cache_destroy(btrfs_delalloc_work_cachep);
9182 }
9183
btrfs_init_cachep(void)9184 int btrfs_init_cachep(void)
9185 {
9186 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9187 sizeof(struct btrfs_inode), 0,
9188 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
9189 if (!btrfs_inode_cachep)
9190 goto fail;
9191
9192 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9193 sizeof(struct btrfs_trans_handle), 0,
9194 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9195 if (!btrfs_trans_handle_cachep)
9196 goto fail;
9197
9198 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9199 sizeof(struct btrfs_transaction), 0,
9200 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9201 if (!btrfs_transaction_cachep)
9202 goto fail;
9203
9204 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9205 sizeof(struct btrfs_path), 0,
9206 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9207 if (!btrfs_path_cachep)
9208 goto fail;
9209
9210 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9211 sizeof(struct btrfs_free_space), 0,
9212 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9213 if (!btrfs_free_space_cachep)
9214 goto fail;
9215
9216 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
9217 sizeof(struct btrfs_delalloc_work), 0,
9218 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
9219 NULL);
9220 if (!btrfs_delalloc_work_cachep)
9221 goto fail;
9222
9223 return 0;
9224 fail:
9225 btrfs_destroy_cachep();
9226 return -ENOMEM;
9227 }
9228
btrfs_getattr(struct vfsmount * mnt,struct dentry * dentry,struct kstat * stat)9229 static int btrfs_getattr(struct vfsmount *mnt,
9230 struct dentry *dentry, struct kstat *stat)
9231 {
9232 u64 delalloc_bytes;
9233 struct inode *inode = d_inode(dentry);
9234 u32 blocksize = inode->i_sb->s_blocksize;
9235
9236 generic_fillattr(inode, stat);
9237 stat->dev = BTRFS_I(inode)->root->anon_dev;
9238 stat->blksize = PAGE_CACHE_SIZE;
9239
9240 spin_lock(&BTRFS_I(inode)->lock);
9241 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9242 spin_unlock(&BTRFS_I(inode)->lock);
9243 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9244 ALIGN(delalloc_bytes, blocksize)) >> 9;
9245 return 0;
9246 }
9247
btrfs_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)9248 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9249 struct inode *new_dir, struct dentry *new_dentry)
9250 {
9251 struct btrfs_trans_handle *trans;
9252 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9253 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9254 struct inode *new_inode = d_inode(new_dentry);
9255 struct inode *old_inode = d_inode(old_dentry);
9256 struct timespec ctime = CURRENT_TIME;
9257 u64 index = 0;
9258 u64 root_objectid;
9259 int ret;
9260 u64 old_ino = btrfs_ino(old_inode);
9261
9262 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9263 return -EPERM;
9264
9265 /* we only allow rename subvolume link between subvolumes */
9266 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9267 return -EXDEV;
9268
9269 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9270 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
9271 return -ENOTEMPTY;
9272
9273 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9274 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9275 return -ENOTEMPTY;
9276
9277
9278 /* check for collisions, even if the name isn't there */
9279 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9280 new_dentry->d_name.name,
9281 new_dentry->d_name.len);
9282
9283 if (ret) {
9284 if (ret == -EEXIST) {
9285 /* we shouldn't get
9286 * eexist without a new_inode */
9287 if (WARN_ON(!new_inode)) {
9288 return ret;
9289 }
9290 } else {
9291 /* maybe -EOVERFLOW */
9292 return ret;
9293 }
9294 }
9295 ret = 0;
9296
9297 /*
9298 * we're using rename to replace one file with another. Start IO on it
9299 * now so we don't add too much work to the end of the transaction
9300 */
9301 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9302 filemap_flush(old_inode->i_mapping);
9303
9304 /* close the racy window with snapshot create/destroy ioctl */
9305 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9306 down_read(&root->fs_info->subvol_sem);
9307 /*
9308 * We want to reserve the absolute worst case amount of items. So if
9309 * both inodes are subvols and we need to unlink them then that would
9310 * require 4 item modifications, but if they are both normal inodes it
9311 * would require 5 item modifications, so we'll assume their normal
9312 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9313 * should cover the worst case number of items we'll modify.
9314 */
9315 trans = btrfs_start_transaction(root, 11);
9316 if (IS_ERR(trans)) {
9317 ret = PTR_ERR(trans);
9318 goto out_notrans;
9319 }
9320
9321 if (dest != root)
9322 btrfs_record_root_in_trans(trans, dest);
9323
9324 ret = btrfs_set_inode_index(new_dir, &index);
9325 if (ret)
9326 goto out_fail;
9327
9328 BTRFS_I(old_inode)->dir_index = 0ULL;
9329 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9330 /* force full log commit if subvolume involved. */
9331 btrfs_set_log_full_commit(root->fs_info, trans);
9332 } else {
9333 ret = btrfs_insert_inode_ref(trans, dest,
9334 new_dentry->d_name.name,
9335 new_dentry->d_name.len,
9336 old_ino,
9337 btrfs_ino(new_dir), index);
9338 if (ret)
9339 goto out_fail;
9340 /*
9341 * this is an ugly little race, but the rename is required
9342 * to make sure that if we crash, the inode is either at the
9343 * old name or the new one. pinning the log transaction lets
9344 * us make sure we don't allow a log commit to come in after
9345 * we unlink the name but before we add the new name back in.
9346 */
9347 btrfs_pin_log_trans(root);
9348 }
9349
9350 inode_inc_iversion(old_dir);
9351 inode_inc_iversion(new_dir);
9352 inode_inc_iversion(old_inode);
9353 old_dir->i_ctime = old_dir->i_mtime = ctime;
9354 new_dir->i_ctime = new_dir->i_mtime = ctime;
9355 old_inode->i_ctime = ctime;
9356
9357 if (old_dentry->d_parent != new_dentry->d_parent)
9358 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9359
9360 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9361 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9362 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9363 old_dentry->d_name.name,
9364 old_dentry->d_name.len);
9365 } else {
9366 ret = __btrfs_unlink_inode(trans, root, old_dir,
9367 d_inode(old_dentry),
9368 old_dentry->d_name.name,
9369 old_dentry->d_name.len);
9370 if (!ret)
9371 ret = btrfs_update_inode(trans, root, old_inode);
9372 }
9373 if (ret) {
9374 btrfs_abort_transaction(trans, root, ret);
9375 goto out_fail;
9376 }
9377
9378 if (new_inode) {
9379 inode_inc_iversion(new_inode);
9380 new_inode->i_ctime = CURRENT_TIME;
9381 if (unlikely(btrfs_ino(new_inode) ==
9382 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9383 root_objectid = BTRFS_I(new_inode)->location.objectid;
9384 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9385 root_objectid,
9386 new_dentry->d_name.name,
9387 new_dentry->d_name.len);
9388 BUG_ON(new_inode->i_nlink == 0);
9389 } else {
9390 ret = btrfs_unlink_inode(trans, dest, new_dir,
9391 d_inode(new_dentry),
9392 new_dentry->d_name.name,
9393 new_dentry->d_name.len);
9394 }
9395 if (!ret && new_inode->i_nlink == 0)
9396 ret = btrfs_orphan_add(trans, d_inode(new_dentry));
9397 if (ret) {
9398 btrfs_abort_transaction(trans, root, ret);
9399 goto out_fail;
9400 }
9401 }
9402
9403 ret = btrfs_add_link(trans, new_dir, old_inode,
9404 new_dentry->d_name.name,
9405 new_dentry->d_name.len, 0, index);
9406 if (ret) {
9407 btrfs_abort_transaction(trans, root, ret);
9408 goto out_fail;
9409 }
9410
9411 if (old_inode->i_nlink == 1)
9412 BTRFS_I(old_inode)->dir_index = index;
9413
9414 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
9415 struct dentry *parent = new_dentry->d_parent;
9416 btrfs_log_new_name(trans, old_inode, old_dir, parent);
9417 btrfs_end_log_trans(root);
9418 }
9419 out_fail:
9420 btrfs_end_transaction(trans, root);
9421 out_notrans:
9422 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9423 up_read(&root->fs_info->subvol_sem);
9424
9425 return ret;
9426 }
9427
btrfs_rename2(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)9428 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9429 struct inode *new_dir, struct dentry *new_dentry,
9430 unsigned int flags)
9431 {
9432 if (flags & ~RENAME_NOREPLACE)
9433 return -EINVAL;
9434
9435 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry);
9436 }
9437
btrfs_run_delalloc_work(struct btrfs_work * work)9438 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9439 {
9440 struct btrfs_delalloc_work *delalloc_work;
9441 struct inode *inode;
9442
9443 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9444 work);
9445 inode = delalloc_work->inode;
9446 if (delalloc_work->wait) {
9447 btrfs_wait_ordered_range(inode, 0, (u64)-1);
9448 } else {
9449 filemap_flush(inode->i_mapping);
9450 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9451 &BTRFS_I(inode)->runtime_flags))
9452 filemap_flush(inode->i_mapping);
9453 }
9454
9455 if (delalloc_work->delay_iput)
9456 btrfs_add_delayed_iput(inode);
9457 else
9458 iput(inode);
9459 complete(&delalloc_work->completion);
9460 }
9461
btrfs_alloc_delalloc_work(struct inode * inode,int wait,int delay_iput)9462 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
9463 int wait, int delay_iput)
9464 {
9465 struct btrfs_delalloc_work *work;
9466
9467 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
9468 if (!work)
9469 return NULL;
9470
9471 init_completion(&work->completion);
9472 INIT_LIST_HEAD(&work->list);
9473 work->inode = inode;
9474 work->wait = wait;
9475 work->delay_iput = delay_iput;
9476 WARN_ON_ONCE(!inode);
9477 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9478 btrfs_run_delalloc_work, NULL, NULL);
9479
9480 return work;
9481 }
9482
btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work * work)9483 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9484 {
9485 wait_for_completion(&work->completion);
9486 kmem_cache_free(btrfs_delalloc_work_cachep, work);
9487 }
9488
9489 /*
9490 * some fairly slow code that needs optimization. This walks the list
9491 * of all the inodes with pending delalloc and forces them to disk.
9492 */
__start_delalloc_inodes(struct btrfs_root * root,int delay_iput,int nr)9493 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9494 int nr)
9495 {
9496 struct btrfs_inode *binode;
9497 struct inode *inode;
9498 struct btrfs_delalloc_work *work, *next;
9499 struct list_head works;
9500 struct list_head splice;
9501 int ret = 0;
9502
9503 INIT_LIST_HEAD(&works);
9504 INIT_LIST_HEAD(&splice);
9505
9506 mutex_lock(&root->delalloc_mutex);
9507 spin_lock(&root->delalloc_lock);
9508 list_splice_init(&root->delalloc_inodes, &splice);
9509 while (!list_empty(&splice)) {
9510 binode = list_entry(splice.next, struct btrfs_inode,
9511 delalloc_inodes);
9512
9513 list_move_tail(&binode->delalloc_inodes,
9514 &root->delalloc_inodes);
9515 inode = igrab(&binode->vfs_inode);
9516 if (!inode) {
9517 cond_resched_lock(&root->delalloc_lock);
9518 continue;
9519 }
9520 spin_unlock(&root->delalloc_lock);
9521
9522 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
9523 if (!work) {
9524 if (delay_iput)
9525 btrfs_add_delayed_iput(inode);
9526 else
9527 iput(inode);
9528 ret = -ENOMEM;
9529 goto out;
9530 }
9531 list_add_tail(&work->list, &works);
9532 btrfs_queue_work(root->fs_info->flush_workers,
9533 &work->work);
9534 ret++;
9535 if (nr != -1 && ret >= nr)
9536 goto out;
9537 cond_resched();
9538 spin_lock(&root->delalloc_lock);
9539 }
9540 spin_unlock(&root->delalloc_lock);
9541
9542 out:
9543 list_for_each_entry_safe(work, next, &works, list) {
9544 list_del_init(&work->list);
9545 btrfs_wait_and_free_delalloc_work(work);
9546 }
9547
9548 if (!list_empty_careful(&splice)) {
9549 spin_lock(&root->delalloc_lock);
9550 list_splice_tail(&splice, &root->delalloc_inodes);
9551 spin_unlock(&root->delalloc_lock);
9552 }
9553 mutex_unlock(&root->delalloc_mutex);
9554 return ret;
9555 }
9556
btrfs_start_delalloc_inodes(struct btrfs_root * root,int delay_iput)9557 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
9558 {
9559 int ret;
9560
9561 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
9562 return -EROFS;
9563
9564 ret = __start_delalloc_inodes(root, delay_iput, -1);
9565 if (ret > 0)
9566 ret = 0;
9567 /*
9568 * the filemap_flush will queue IO into the worker threads, but
9569 * we have to make sure the IO is actually started and that
9570 * ordered extents get created before we return
9571 */
9572 atomic_inc(&root->fs_info->async_submit_draining);
9573 while (atomic_read(&root->fs_info->nr_async_submits) ||
9574 atomic_read(&root->fs_info->async_delalloc_pages)) {
9575 wait_event(root->fs_info->async_submit_wait,
9576 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
9577 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
9578 }
9579 atomic_dec(&root->fs_info->async_submit_draining);
9580 return ret;
9581 }
9582
btrfs_start_delalloc_roots(struct btrfs_fs_info * fs_info,int delay_iput,int nr)9583 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
9584 int nr)
9585 {
9586 struct btrfs_root *root;
9587 struct list_head splice;
9588 int ret;
9589
9590 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9591 return -EROFS;
9592
9593 INIT_LIST_HEAD(&splice);
9594
9595 mutex_lock(&fs_info->delalloc_root_mutex);
9596 spin_lock(&fs_info->delalloc_root_lock);
9597 list_splice_init(&fs_info->delalloc_roots, &splice);
9598 while (!list_empty(&splice) && nr) {
9599 root = list_first_entry(&splice, struct btrfs_root,
9600 delalloc_root);
9601 root = btrfs_grab_fs_root(root);
9602 BUG_ON(!root);
9603 list_move_tail(&root->delalloc_root,
9604 &fs_info->delalloc_roots);
9605 spin_unlock(&fs_info->delalloc_root_lock);
9606
9607 ret = __start_delalloc_inodes(root, delay_iput, nr);
9608 btrfs_put_fs_root(root);
9609 if (ret < 0)
9610 goto out;
9611
9612 if (nr != -1) {
9613 nr -= ret;
9614 WARN_ON(nr < 0);
9615 }
9616 spin_lock(&fs_info->delalloc_root_lock);
9617 }
9618 spin_unlock(&fs_info->delalloc_root_lock);
9619
9620 ret = 0;
9621 atomic_inc(&fs_info->async_submit_draining);
9622 while (atomic_read(&fs_info->nr_async_submits) ||
9623 atomic_read(&fs_info->async_delalloc_pages)) {
9624 wait_event(fs_info->async_submit_wait,
9625 (atomic_read(&fs_info->nr_async_submits) == 0 &&
9626 atomic_read(&fs_info->async_delalloc_pages) == 0));
9627 }
9628 atomic_dec(&fs_info->async_submit_draining);
9629 out:
9630 if (!list_empty_careful(&splice)) {
9631 spin_lock(&fs_info->delalloc_root_lock);
9632 list_splice_tail(&splice, &fs_info->delalloc_roots);
9633 spin_unlock(&fs_info->delalloc_root_lock);
9634 }
9635 mutex_unlock(&fs_info->delalloc_root_mutex);
9636 return ret;
9637 }
9638
btrfs_symlink(struct inode * dir,struct dentry * dentry,const char * symname)9639 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9640 const char *symname)
9641 {
9642 struct btrfs_trans_handle *trans;
9643 struct btrfs_root *root = BTRFS_I(dir)->root;
9644 struct btrfs_path *path;
9645 struct btrfs_key key;
9646 struct inode *inode = NULL;
9647 int err;
9648 int drop_inode = 0;
9649 u64 objectid;
9650 u64 index = 0;
9651 int name_len;
9652 int datasize;
9653 unsigned long ptr;
9654 struct btrfs_file_extent_item *ei;
9655 struct extent_buffer *leaf;
9656
9657 name_len = strlen(symname);
9658 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
9659 return -ENAMETOOLONG;
9660
9661 /*
9662 * 2 items for inode item and ref
9663 * 2 items for dir items
9664 * 1 item for updating parent inode item
9665 * 1 item for the inline extent item
9666 * 1 item for xattr if selinux is on
9667 */
9668 trans = btrfs_start_transaction(root, 7);
9669 if (IS_ERR(trans))
9670 return PTR_ERR(trans);
9671
9672 err = btrfs_find_free_ino(root, &objectid);
9673 if (err)
9674 goto out_unlock;
9675
9676 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9677 dentry->d_name.len, btrfs_ino(dir), objectid,
9678 S_IFLNK|S_IRWXUGO, &index);
9679 if (IS_ERR(inode)) {
9680 err = PTR_ERR(inode);
9681 goto out_unlock;
9682 }
9683
9684 /*
9685 * If the active LSM wants to access the inode during
9686 * d_instantiate it needs these. Smack checks to see
9687 * if the filesystem supports xattrs by looking at the
9688 * ops vector.
9689 */
9690 inode->i_fop = &btrfs_file_operations;
9691 inode->i_op = &btrfs_file_inode_operations;
9692 inode->i_mapping->a_ops = &btrfs_aops;
9693 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9694
9695 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9696 if (err)
9697 goto out_unlock_inode;
9698
9699 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
9700 if (err)
9701 goto out_unlock_inode;
9702
9703 path = btrfs_alloc_path();
9704 if (!path) {
9705 err = -ENOMEM;
9706 goto out_unlock_inode;
9707 }
9708 key.objectid = btrfs_ino(inode);
9709 key.offset = 0;
9710 key.type = BTRFS_EXTENT_DATA_KEY;
9711 datasize = btrfs_file_extent_calc_inline_size(name_len);
9712 err = btrfs_insert_empty_item(trans, root, path, &key,
9713 datasize);
9714 if (err) {
9715 btrfs_free_path(path);
9716 goto out_unlock_inode;
9717 }
9718 leaf = path->nodes[0];
9719 ei = btrfs_item_ptr(leaf, path->slots[0],
9720 struct btrfs_file_extent_item);
9721 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9722 btrfs_set_file_extent_type(leaf, ei,
9723 BTRFS_FILE_EXTENT_INLINE);
9724 btrfs_set_file_extent_encryption(leaf, ei, 0);
9725 btrfs_set_file_extent_compression(leaf, ei, 0);
9726 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9727 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9728
9729 ptr = btrfs_file_extent_inline_start(ei);
9730 write_extent_buffer(leaf, symname, ptr, name_len);
9731 btrfs_mark_buffer_dirty(leaf);
9732 btrfs_free_path(path);
9733
9734 inode->i_op = &btrfs_symlink_inode_operations;
9735 inode->i_mapping->a_ops = &btrfs_symlink_aops;
9736 inode_set_bytes(inode, name_len);
9737 btrfs_i_size_write(inode, name_len);
9738 err = btrfs_update_inode(trans, root, inode);
9739 if (err) {
9740 drop_inode = 1;
9741 goto out_unlock_inode;
9742 }
9743
9744 unlock_new_inode(inode);
9745 d_instantiate(dentry, inode);
9746
9747 out_unlock:
9748 btrfs_end_transaction(trans, root);
9749 if (drop_inode) {
9750 inode_dec_link_count(inode);
9751 iput(inode);
9752 }
9753 btrfs_btree_balance_dirty(root);
9754 return err;
9755
9756 out_unlock_inode:
9757 drop_inode = 1;
9758 unlock_new_inode(inode);
9759 goto out_unlock;
9760 }
9761
__btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint,struct btrfs_trans_handle * trans)9762 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9763 u64 start, u64 num_bytes, u64 min_size,
9764 loff_t actual_len, u64 *alloc_hint,
9765 struct btrfs_trans_handle *trans)
9766 {
9767 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9768 struct extent_map *em;
9769 struct btrfs_root *root = BTRFS_I(inode)->root;
9770 struct btrfs_key ins;
9771 u64 cur_offset = start;
9772 u64 i_size;
9773 u64 cur_bytes;
9774 u64 last_alloc = (u64)-1;
9775 int ret = 0;
9776 bool own_trans = true;
9777
9778 if (trans)
9779 own_trans = false;
9780 while (num_bytes > 0) {
9781 if (own_trans) {
9782 trans = btrfs_start_transaction(root, 3);
9783 if (IS_ERR(trans)) {
9784 ret = PTR_ERR(trans);
9785 break;
9786 }
9787 }
9788
9789 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
9790 cur_bytes = max(cur_bytes, min_size);
9791 /*
9792 * If we are severely fragmented we could end up with really
9793 * small allocations, so if the allocator is returning small
9794 * chunks lets make its job easier by only searching for those
9795 * sized chunks.
9796 */
9797 cur_bytes = min(cur_bytes, last_alloc);
9798 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
9799 *alloc_hint, &ins, 1, 0);
9800 if (ret) {
9801 if (own_trans)
9802 btrfs_end_transaction(trans, root);
9803 break;
9804 }
9805
9806 last_alloc = ins.offset;
9807 ret = insert_reserved_file_extent(trans, inode,
9808 cur_offset, ins.objectid,
9809 ins.offset, ins.offset,
9810 ins.offset, 0, 0, 0,
9811 BTRFS_FILE_EXTENT_PREALLOC);
9812 if (ret) {
9813 btrfs_free_reserved_extent(root, ins.objectid,
9814 ins.offset, 0);
9815 btrfs_abort_transaction(trans, root, ret);
9816 if (own_trans)
9817 btrfs_end_transaction(trans, root);
9818 break;
9819 }
9820
9821 btrfs_drop_extent_cache(inode, cur_offset,
9822 cur_offset + ins.offset -1, 0);
9823
9824 em = alloc_extent_map();
9825 if (!em) {
9826 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9827 &BTRFS_I(inode)->runtime_flags);
9828 goto next;
9829 }
9830
9831 em->start = cur_offset;
9832 em->orig_start = cur_offset;
9833 em->len = ins.offset;
9834 em->block_start = ins.objectid;
9835 em->block_len = ins.offset;
9836 em->orig_block_len = ins.offset;
9837 em->ram_bytes = ins.offset;
9838 em->bdev = root->fs_info->fs_devices->latest_bdev;
9839 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9840 em->generation = trans->transid;
9841
9842 while (1) {
9843 write_lock(&em_tree->lock);
9844 ret = add_extent_mapping(em_tree, em, 1);
9845 write_unlock(&em_tree->lock);
9846 if (ret != -EEXIST)
9847 break;
9848 btrfs_drop_extent_cache(inode, cur_offset,
9849 cur_offset + ins.offset - 1,
9850 0);
9851 }
9852 free_extent_map(em);
9853 next:
9854 num_bytes -= ins.offset;
9855 cur_offset += ins.offset;
9856 *alloc_hint = ins.objectid + ins.offset;
9857
9858 inode_inc_iversion(inode);
9859 inode->i_ctime = CURRENT_TIME;
9860 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9861 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9862 (actual_len > inode->i_size) &&
9863 (cur_offset > inode->i_size)) {
9864 if (cur_offset > actual_len)
9865 i_size = actual_len;
9866 else
9867 i_size = cur_offset;
9868 i_size_write(inode, i_size);
9869 btrfs_ordered_update_i_size(inode, i_size, NULL);
9870 }
9871
9872 ret = btrfs_update_inode(trans, root, inode);
9873
9874 if (ret) {
9875 btrfs_abort_transaction(trans, root, ret);
9876 if (own_trans)
9877 btrfs_end_transaction(trans, root);
9878 break;
9879 }
9880
9881 if (own_trans)
9882 btrfs_end_transaction(trans, root);
9883 }
9884 return ret;
9885 }
9886
btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)9887 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9888 u64 start, u64 num_bytes, u64 min_size,
9889 loff_t actual_len, u64 *alloc_hint)
9890 {
9891 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9892 min_size, actual_len, alloc_hint,
9893 NULL);
9894 }
9895
btrfs_prealloc_file_range_trans(struct inode * inode,struct btrfs_trans_handle * trans,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)9896 int btrfs_prealloc_file_range_trans(struct inode *inode,
9897 struct btrfs_trans_handle *trans, int mode,
9898 u64 start, u64 num_bytes, u64 min_size,
9899 loff_t actual_len, u64 *alloc_hint)
9900 {
9901 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9902 min_size, actual_len, alloc_hint, trans);
9903 }
9904
btrfs_set_page_dirty(struct page * page)9905 static int btrfs_set_page_dirty(struct page *page)
9906 {
9907 return __set_page_dirty_nobuffers(page);
9908 }
9909
btrfs_permission(struct inode * inode,int mask)9910 static int btrfs_permission(struct inode *inode, int mask)
9911 {
9912 struct btrfs_root *root = BTRFS_I(inode)->root;
9913 umode_t mode = inode->i_mode;
9914
9915 if (mask & MAY_WRITE &&
9916 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9917 if (btrfs_root_readonly(root))
9918 return -EROFS;
9919 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9920 return -EACCES;
9921 }
9922 return generic_permission(inode, mask);
9923 }
9924
btrfs_tmpfile(struct inode * dir,struct dentry * dentry,umode_t mode)9925 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9926 {
9927 struct btrfs_trans_handle *trans;
9928 struct btrfs_root *root = BTRFS_I(dir)->root;
9929 struct inode *inode = NULL;
9930 u64 objectid;
9931 u64 index;
9932 int ret = 0;
9933
9934 /*
9935 * 5 units required for adding orphan entry
9936 */
9937 trans = btrfs_start_transaction(root, 5);
9938 if (IS_ERR(trans))
9939 return PTR_ERR(trans);
9940
9941 ret = btrfs_find_free_ino(root, &objectid);
9942 if (ret)
9943 goto out;
9944
9945 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
9946 btrfs_ino(dir), objectid, mode, &index);
9947 if (IS_ERR(inode)) {
9948 ret = PTR_ERR(inode);
9949 inode = NULL;
9950 goto out;
9951 }
9952
9953 inode->i_fop = &btrfs_file_operations;
9954 inode->i_op = &btrfs_file_inode_operations;
9955
9956 inode->i_mapping->a_ops = &btrfs_aops;
9957 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9958
9959 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9960 if (ret)
9961 goto out_inode;
9962
9963 ret = btrfs_update_inode(trans, root, inode);
9964 if (ret)
9965 goto out_inode;
9966 ret = btrfs_orphan_add(trans, inode);
9967 if (ret)
9968 goto out_inode;
9969
9970 /*
9971 * We set number of links to 0 in btrfs_new_inode(), and here we set
9972 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9973 * through:
9974 *
9975 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9976 */
9977 set_nlink(inode, 1);
9978 unlock_new_inode(inode);
9979 d_tmpfile(dentry, inode);
9980 mark_inode_dirty(inode);
9981
9982 out:
9983 btrfs_end_transaction(trans, root);
9984 if (ret)
9985 iput(inode);
9986 btrfs_balance_delayed_items(root);
9987 btrfs_btree_balance_dirty(root);
9988 return ret;
9989
9990 out_inode:
9991 unlock_new_inode(inode);
9992 goto out;
9993
9994 }
9995
9996 /* Inspired by filemap_check_errors() */
btrfs_inode_check_errors(struct inode * inode)9997 int btrfs_inode_check_errors(struct inode *inode)
9998 {
9999 int ret = 0;
10000
10001 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
10002 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
10003 ret = -ENOSPC;
10004 if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
10005 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
10006 ret = -EIO;
10007
10008 return ret;
10009 }
10010
10011 static const struct inode_operations btrfs_dir_inode_operations = {
10012 .getattr = btrfs_getattr,
10013 .lookup = btrfs_lookup,
10014 .create = btrfs_create,
10015 .unlink = btrfs_unlink,
10016 .link = btrfs_link,
10017 .mkdir = btrfs_mkdir,
10018 .rmdir = btrfs_rmdir,
10019 .rename2 = btrfs_rename2,
10020 .symlink = btrfs_symlink,
10021 .setattr = btrfs_setattr,
10022 .mknod = btrfs_mknod,
10023 .setxattr = btrfs_setxattr,
10024 .getxattr = btrfs_getxattr,
10025 .listxattr = btrfs_listxattr,
10026 .removexattr = btrfs_removexattr,
10027 .permission = btrfs_permission,
10028 .get_acl = btrfs_get_acl,
10029 .set_acl = btrfs_set_acl,
10030 .update_time = btrfs_update_time,
10031 .tmpfile = btrfs_tmpfile,
10032 };
10033 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10034 .lookup = btrfs_lookup,
10035 .permission = btrfs_permission,
10036 .get_acl = btrfs_get_acl,
10037 .set_acl = btrfs_set_acl,
10038 .update_time = btrfs_update_time,
10039 };
10040
10041 static const struct file_operations btrfs_dir_file_operations = {
10042 .llseek = generic_file_llseek,
10043 .read = generic_read_dir,
10044 .iterate = btrfs_real_readdir,
10045 .unlocked_ioctl = btrfs_ioctl,
10046 #ifdef CONFIG_COMPAT
10047 .compat_ioctl = btrfs_ioctl,
10048 #endif
10049 .release = btrfs_release_file,
10050 .fsync = btrfs_sync_file,
10051 };
10052
10053 static struct extent_io_ops btrfs_extent_io_ops = {
10054 .fill_delalloc = run_delalloc_range,
10055 .submit_bio_hook = btrfs_submit_bio_hook,
10056 .merge_bio_hook = btrfs_merge_bio_hook,
10057 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
10058 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
10059 .writepage_start_hook = btrfs_writepage_start_hook,
10060 .set_bit_hook = btrfs_set_bit_hook,
10061 .clear_bit_hook = btrfs_clear_bit_hook,
10062 .merge_extent_hook = btrfs_merge_extent_hook,
10063 .split_extent_hook = btrfs_split_extent_hook,
10064 };
10065
10066 /*
10067 * btrfs doesn't support the bmap operation because swapfiles
10068 * use bmap to make a mapping of extents in the file. They assume
10069 * these extents won't change over the life of the file and they
10070 * use the bmap result to do IO directly to the drive.
10071 *
10072 * the btrfs bmap call would return logical addresses that aren't
10073 * suitable for IO and they also will change frequently as COW
10074 * operations happen. So, swapfile + btrfs == corruption.
10075 *
10076 * For now we're avoiding this by dropping bmap.
10077 */
10078 static const struct address_space_operations btrfs_aops = {
10079 .readpage = btrfs_readpage,
10080 .writepage = btrfs_writepage,
10081 .writepages = btrfs_writepages,
10082 .readpages = btrfs_readpages,
10083 .direct_IO = btrfs_direct_IO,
10084 .invalidatepage = btrfs_invalidatepage,
10085 .releasepage = btrfs_releasepage,
10086 .set_page_dirty = btrfs_set_page_dirty,
10087 .error_remove_page = generic_error_remove_page,
10088 };
10089
10090 static const struct address_space_operations btrfs_symlink_aops = {
10091 .readpage = btrfs_readpage,
10092 .writepage = btrfs_writepage,
10093 .invalidatepage = btrfs_invalidatepage,
10094 .releasepage = btrfs_releasepage,
10095 };
10096
10097 static const struct inode_operations btrfs_file_inode_operations = {
10098 .getattr = btrfs_getattr,
10099 .setattr = btrfs_setattr,
10100 .setxattr = btrfs_setxattr,
10101 .getxattr = btrfs_getxattr,
10102 .listxattr = btrfs_listxattr,
10103 .removexattr = btrfs_removexattr,
10104 .permission = btrfs_permission,
10105 .fiemap = btrfs_fiemap,
10106 .get_acl = btrfs_get_acl,
10107 .set_acl = btrfs_set_acl,
10108 .update_time = btrfs_update_time,
10109 };
10110 static const struct inode_operations btrfs_special_inode_operations = {
10111 .getattr = btrfs_getattr,
10112 .setattr = btrfs_setattr,
10113 .permission = btrfs_permission,
10114 .setxattr = btrfs_setxattr,
10115 .getxattr = btrfs_getxattr,
10116 .listxattr = btrfs_listxattr,
10117 .removexattr = btrfs_removexattr,
10118 .get_acl = btrfs_get_acl,
10119 .set_acl = btrfs_set_acl,
10120 .update_time = btrfs_update_time,
10121 };
10122 static const struct inode_operations btrfs_symlink_inode_operations = {
10123 .readlink = generic_readlink,
10124 .follow_link = page_follow_link_light,
10125 .put_link = page_put_link,
10126 .getattr = btrfs_getattr,
10127 .setattr = btrfs_setattr,
10128 .permission = btrfs_permission,
10129 .setxattr = btrfs_setxattr,
10130 .getxattr = btrfs_getxattr,
10131 .listxattr = btrfs_listxattr,
10132 .removexattr = btrfs_removexattr,
10133 .update_time = btrfs_update_time,
10134 };
10135
10136 const struct dentry_operations btrfs_dentry_operations = {
10137 .d_delete = btrfs_dentry_delete,
10138 .d_release = btrfs_dentry_release,
10139 };
10140