1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52
53 #ifdef CONFIG_X86
54 #include <asm/cpufeature.h>
55 #endif
56
57 static const struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61 int read_only);
62 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
63 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64 struct btrfs_root *root);
65 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
66 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
67 struct extent_io_tree *dirty_pages,
68 int mark);
69 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
70 struct extent_io_tree *pinned_extents);
71 static int btrfs_cleanup_transaction(struct btrfs_root *root);
72 static void btrfs_error_commit_super(struct btrfs_root *root);
73
74 /*
75 * btrfs_end_io_wq structs are used to do processing in task context when an IO
76 * is complete. This is used during reads to verify checksums, and it is used
77 * by writes to insert metadata for new file extents after IO is complete.
78 */
79 struct btrfs_end_io_wq {
80 struct bio *bio;
81 bio_end_io_t *end_io;
82 void *private;
83 struct btrfs_fs_info *info;
84 int error;
85 enum btrfs_wq_endio_type metadata;
86 struct list_head list;
87 struct btrfs_work work;
88 };
89
90 static struct kmem_cache *btrfs_end_io_wq_cache;
91
btrfs_end_io_wq_init(void)92 int __init btrfs_end_io_wq_init(void)
93 {
94 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
95 sizeof(struct btrfs_end_io_wq),
96 0,
97 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
98 NULL);
99 if (!btrfs_end_io_wq_cache)
100 return -ENOMEM;
101 return 0;
102 }
103
btrfs_end_io_wq_exit(void)104 void btrfs_end_io_wq_exit(void)
105 {
106 if (btrfs_end_io_wq_cache)
107 kmem_cache_destroy(btrfs_end_io_wq_cache);
108 }
109
110 /*
111 * async submit bios are used to offload expensive checksumming
112 * onto the worker threads. They checksum file and metadata bios
113 * just before they are sent down the IO stack.
114 */
115 struct async_submit_bio {
116 struct inode *inode;
117 struct bio *bio;
118 struct list_head list;
119 extent_submit_bio_hook_t *submit_bio_start;
120 extent_submit_bio_hook_t *submit_bio_done;
121 int rw;
122 int mirror_num;
123 unsigned long bio_flags;
124 /*
125 * bio_offset is optional, can be used if the pages in the bio
126 * can't tell us where in the file the bio should go
127 */
128 u64 bio_offset;
129 struct btrfs_work work;
130 int error;
131 };
132
133 /*
134 * Lockdep class keys for extent_buffer->lock's in this root. For a given
135 * eb, the lockdep key is determined by the btrfs_root it belongs to and
136 * the level the eb occupies in the tree.
137 *
138 * Different roots are used for different purposes and may nest inside each
139 * other and they require separate keysets. As lockdep keys should be
140 * static, assign keysets according to the purpose of the root as indicated
141 * by btrfs_root->objectid. This ensures that all special purpose roots
142 * have separate keysets.
143 *
144 * Lock-nesting across peer nodes is always done with the immediate parent
145 * node locked thus preventing deadlock. As lockdep doesn't know this, use
146 * subclass to avoid triggering lockdep warning in such cases.
147 *
148 * The key is set by the readpage_end_io_hook after the buffer has passed
149 * csum validation but before the pages are unlocked. It is also set by
150 * btrfs_init_new_buffer on freshly allocated blocks.
151 *
152 * We also add a check to make sure the highest level of the tree is the
153 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
154 * needs update as well.
155 */
156 #ifdef CONFIG_DEBUG_LOCK_ALLOC
157 # if BTRFS_MAX_LEVEL != 8
158 # error
159 # endif
160
161 static struct btrfs_lockdep_keyset {
162 u64 id; /* root objectid */
163 const char *name_stem; /* lock name stem */
164 char names[BTRFS_MAX_LEVEL + 1][20];
165 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
166 } btrfs_lockdep_keysets[] = {
167 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
168 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
169 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
170 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
171 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
172 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
173 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
174 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
175 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
176 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
177 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
178 { .id = 0, .name_stem = "tree" },
179 };
180
btrfs_init_lockdep(void)181 void __init btrfs_init_lockdep(void)
182 {
183 int i, j;
184
185 /* initialize lockdep class names */
186 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
187 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
188
189 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
190 snprintf(ks->names[j], sizeof(ks->names[j]),
191 "btrfs-%s-%02d", ks->name_stem, j);
192 }
193 }
194
btrfs_set_buffer_lockdep_class(u64 objectid,struct extent_buffer * eb,int level)195 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
196 int level)
197 {
198 struct btrfs_lockdep_keyset *ks;
199
200 BUG_ON(level >= ARRAY_SIZE(ks->keys));
201
202 /* find the matching keyset, id 0 is the default entry */
203 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
204 if (ks->id == objectid)
205 break;
206
207 lockdep_set_class_and_name(&eb->lock,
208 &ks->keys[level], ks->names[level]);
209 }
210
211 #endif
212
213 /*
214 * extents on the btree inode are pretty simple, there's one extent
215 * that covers the entire device
216 */
btree_get_extent(struct inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,int create)217 static struct extent_map *btree_get_extent(struct inode *inode,
218 struct page *page, size_t pg_offset, u64 start, u64 len,
219 int create)
220 {
221 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
222 struct extent_map *em;
223 int ret;
224
225 read_lock(&em_tree->lock);
226 em = lookup_extent_mapping(em_tree, start, len);
227 if (em) {
228 em->bdev =
229 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
230 read_unlock(&em_tree->lock);
231 goto out;
232 }
233 read_unlock(&em_tree->lock);
234
235 em = alloc_extent_map();
236 if (!em) {
237 em = ERR_PTR(-ENOMEM);
238 goto out;
239 }
240 em->start = 0;
241 em->len = (u64)-1;
242 em->block_len = (u64)-1;
243 em->block_start = 0;
244 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
245
246 write_lock(&em_tree->lock);
247 ret = add_extent_mapping(em_tree, em, 0);
248 if (ret == -EEXIST) {
249 free_extent_map(em);
250 em = lookup_extent_mapping(em_tree, start, len);
251 if (!em)
252 em = ERR_PTR(-EIO);
253 } else if (ret) {
254 free_extent_map(em);
255 em = ERR_PTR(ret);
256 }
257 write_unlock(&em_tree->lock);
258
259 out:
260 return em;
261 }
262
btrfs_csum_data(char * data,u32 seed,size_t len)263 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
264 {
265 return btrfs_crc32c(seed, data, len);
266 }
267
btrfs_csum_final(u32 crc,char * result)268 void btrfs_csum_final(u32 crc, char *result)
269 {
270 put_unaligned_le32(~crc, result);
271 }
272
273 /*
274 * compute the csum for a btree block, and either verify it or write it
275 * into the csum field of the block.
276 */
csum_tree_block(struct btrfs_fs_info * fs_info,struct extent_buffer * buf,int verify)277 static int csum_tree_block(struct btrfs_fs_info *fs_info,
278 struct extent_buffer *buf,
279 int verify)
280 {
281 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
282 char *result = NULL;
283 unsigned long len;
284 unsigned long cur_len;
285 unsigned long offset = BTRFS_CSUM_SIZE;
286 char *kaddr;
287 unsigned long map_start;
288 unsigned long map_len;
289 int err;
290 u32 crc = ~(u32)0;
291 unsigned long inline_result;
292
293 len = buf->len - offset;
294 while (len > 0) {
295 err = map_private_extent_buffer(buf, offset, 32,
296 &kaddr, &map_start, &map_len);
297 if (err)
298 return 1;
299 cur_len = min(len, map_len - (offset - map_start));
300 crc = btrfs_csum_data(kaddr + offset - map_start,
301 crc, cur_len);
302 len -= cur_len;
303 offset += cur_len;
304 }
305 if (csum_size > sizeof(inline_result)) {
306 result = kzalloc(csum_size, GFP_NOFS);
307 if (!result)
308 return 1;
309 } else {
310 result = (char *)&inline_result;
311 }
312
313 btrfs_csum_final(crc, result);
314
315 if (verify) {
316 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
317 u32 val;
318 u32 found = 0;
319 memcpy(&found, result, csum_size);
320
321 read_extent_buffer(buf, &val, 0, csum_size);
322 btrfs_warn_rl(fs_info,
323 "%s checksum verify failed on %llu wanted %X found %X "
324 "level %d",
325 fs_info->sb->s_id, buf->start,
326 val, found, btrfs_header_level(buf));
327 if (result != (char *)&inline_result)
328 kfree(result);
329 return 1;
330 }
331 } else {
332 write_extent_buffer(buf, result, 0, csum_size);
333 }
334 if (result != (char *)&inline_result)
335 kfree(result);
336 return 0;
337 }
338
339 /*
340 * we can't consider a given block up to date unless the transid of the
341 * block matches the transid in the parent node's pointer. This is how we
342 * detect blocks that either didn't get written at all or got written
343 * in the wrong place.
344 */
verify_parent_transid(struct extent_io_tree * io_tree,struct extent_buffer * eb,u64 parent_transid,int atomic)345 static int verify_parent_transid(struct extent_io_tree *io_tree,
346 struct extent_buffer *eb, u64 parent_transid,
347 int atomic)
348 {
349 struct extent_state *cached_state = NULL;
350 int ret;
351 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
352
353 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
354 return 0;
355
356 if (atomic)
357 return -EAGAIN;
358
359 if (need_lock) {
360 btrfs_tree_read_lock(eb);
361 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
362 }
363
364 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
365 0, &cached_state);
366 if (extent_buffer_uptodate(eb) &&
367 btrfs_header_generation(eb) == parent_transid) {
368 ret = 0;
369 goto out;
370 }
371 btrfs_err_rl(eb->fs_info,
372 "parent transid verify failed on %llu wanted %llu found %llu",
373 eb->start,
374 parent_transid, btrfs_header_generation(eb));
375 ret = 1;
376
377 /*
378 * Things reading via commit roots that don't have normal protection,
379 * like send, can have a really old block in cache that may point at a
380 * block that has been free'd and re-allocated. So don't clear uptodate
381 * if we find an eb that is under IO (dirty/writeback) because we could
382 * end up reading in the stale data and then writing it back out and
383 * making everybody very sad.
384 */
385 if (!extent_buffer_under_io(eb))
386 clear_extent_buffer_uptodate(eb);
387 out:
388 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
389 &cached_state, GFP_NOFS);
390 if (need_lock)
391 btrfs_tree_read_unlock_blocking(eb);
392 return ret;
393 }
394
395 /*
396 * Return 0 if the superblock checksum type matches the checksum value of that
397 * algorithm. Pass the raw disk superblock data.
398 */
btrfs_check_super_csum(char * raw_disk_sb)399 static int btrfs_check_super_csum(char *raw_disk_sb)
400 {
401 struct btrfs_super_block *disk_sb =
402 (struct btrfs_super_block *)raw_disk_sb;
403 u16 csum_type = btrfs_super_csum_type(disk_sb);
404 int ret = 0;
405
406 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
407 u32 crc = ~(u32)0;
408 const int csum_size = sizeof(crc);
409 char result[csum_size];
410
411 /*
412 * The super_block structure does not span the whole
413 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
414 * is filled with zeros and is included in the checkum.
415 */
416 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
417 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
418 btrfs_csum_final(crc, result);
419
420 if (memcmp(raw_disk_sb, result, csum_size))
421 ret = 1;
422 }
423
424 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
425 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
426 csum_type);
427 ret = 1;
428 }
429
430 return ret;
431 }
432
433 /*
434 * helper to read a given tree block, doing retries as required when
435 * the checksums don't match and we have alternate mirrors to try.
436 */
btree_read_extent_buffer_pages(struct btrfs_root * root,struct extent_buffer * eb,u64 start,u64 parent_transid)437 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
438 struct extent_buffer *eb,
439 u64 start, u64 parent_transid)
440 {
441 struct extent_io_tree *io_tree;
442 int failed = 0;
443 int ret;
444 int num_copies = 0;
445 int mirror_num = 0;
446 int failed_mirror = 0;
447
448 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
449 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
450 while (1) {
451 ret = read_extent_buffer_pages(io_tree, eb, start,
452 WAIT_COMPLETE,
453 btree_get_extent, mirror_num);
454 if (!ret) {
455 if (!verify_parent_transid(io_tree, eb,
456 parent_transid, 0))
457 break;
458 else
459 ret = -EIO;
460 }
461
462 /*
463 * This buffer's crc is fine, but its contents are corrupted, so
464 * there is no reason to read the other copies, they won't be
465 * any less wrong.
466 */
467 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
468 break;
469
470 num_copies = btrfs_num_copies(root->fs_info,
471 eb->start, eb->len);
472 if (num_copies == 1)
473 break;
474
475 if (!failed_mirror) {
476 failed = 1;
477 failed_mirror = eb->read_mirror;
478 }
479
480 mirror_num++;
481 if (mirror_num == failed_mirror)
482 mirror_num++;
483
484 if (mirror_num > num_copies)
485 break;
486 }
487
488 if (failed && !ret && failed_mirror)
489 repair_eb_io_failure(root, eb, failed_mirror);
490
491 return ret;
492 }
493
494 /*
495 * checksum a dirty tree block before IO. This has extra checks to make sure
496 * we only fill in the checksum field in the first page of a multi-page block
497 */
498
csum_dirty_buffer(struct btrfs_fs_info * fs_info,struct page * page)499 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
500 {
501 u64 start = page_offset(page);
502 u64 found_start;
503 struct extent_buffer *eb;
504
505 eb = (struct extent_buffer *)page->private;
506 if (page != eb->pages[0])
507 return 0;
508 found_start = btrfs_header_bytenr(eb);
509 if (WARN_ON(found_start != start || !PageUptodate(page)))
510 return 0;
511 csum_tree_block(fs_info, eb, 0);
512 return 0;
513 }
514
check_tree_block_fsid(struct btrfs_fs_info * fs_info,struct extent_buffer * eb)515 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
516 struct extent_buffer *eb)
517 {
518 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
519 u8 fsid[BTRFS_UUID_SIZE];
520 int ret = 1;
521
522 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
523 while (fs_devices) {
524 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
525 ret = 0;
526 break;
527 }
528 fs_devices = fs_devices->seed;
529 }
530 return ret;
531 }
532
533 #define CORRUPT(reason, eb, root, slot) \
534 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
535 "root=%llu, slot=%d", reason, \
536 btrfs_header_bytenr(eb), root->objectid, slot)
537
check_leaf(struct btrfs_root * root,struct extent_buffer * leaf)538 static noinline int check_leaf(struct btrfs_root *root,
539 struct extent_buffer *leaf)
540 {
541 struct btrfs_key key;
542 struct btrfs_key leaf_key;
543 u32 nritems = btrfs_header_nritems(leaf);
544 int slot;
545
546 if (nritems == 0)
547 return 0;
548
549 /* Check the 0 item */
550 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
551 BTRFS_LEAF_DATA_SIZE(root)) {
552 CORRUPT("invalid item offset size pair", leaf, root, 0);
553 return -EIO;
554 }
555
556 /*
557 * Check to make sure each items keys are in the correct order and their
558 * offsets make sense. We only have to loop through nritems-1 because
559 * we check the current slot against the next slot, which verifies the
560 * next slot's offset+size makes sense and that the current's slot
561 * offset is correct.
562 */
563 for (slot = 0; slot < nritems - 1; slot++) {
564 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
565 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
566
567 /* Make sure the keys are in the right order */
568 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
569 CORRUPT("bad key order", leaf, root, slot);
570 return -EIO;
571 }
572
573 /*
574 * Make sure the offset and ends are right, remember that the
575 * item data starts at the end of the leaf and grows towards the
576 * front.
577 */
578 if (btrfs_item_offset_nr(leaf, slot) !=
579 btrfs_item_end_nr(leaf, slot + 1)) {
580 CORRUPT("slot offset bad", leaf, root, slot);
581 return -EIO;
582 }
583
584 /*
585 * Check to make sure that we don't point outside of the leaf,
586 * just incase all the items are consistent to eachother, but
587 * all point outside of the leaf.
588 */
589 if (btrfs_item_end_nr(leaf, slot) >
590 BTRFS_LEAF_DATA_SIZE(root)) {
591 CORRUPT("slot end outside of leaf", leaf, root, slot);
592 return -EIO;
593 }
594 }
595
596 return 0;
597 }
598
btree_readpage_end_io_hook(struct btrfs_io_bio * io_bio,u64 phy_offset,struct page * page,u64 start,u64 end,int mirror)599 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
600 u64 phy_offset, struct page *page,
601 u64 start, u64 end, int mirror)
602 {
603 u64 found_start;
604 int found_level;
605 struct extent_buffer *eb;
606 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
607 int ret = 0;
608 int reads_done;
609
610 if (!page->private)
611 goto out;
612
613 eb = (struct extent_buffer *)page->private;
614
615 /* the pending IO might have been the only thing that kept this buffer
616 * in memory. Make sure we have a ref for all this other checks
617 */
618 extent_buffer_get(eb);
619
620 reads_done = atomic_dec_and_test(&eb->io_pages);
621 if (!reads_done)
622 goto err;
623
624 eb->read_mirror = mirror;
625 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
626 ret = -EIO;
627 goto err;
628 }
629
630 found_start = btrfs_header_bytenr(eb);
631 if (found_start != eb->start) {
632 btrfs_err_rl(eb->fs_info, "bad tree block start %llu %llu",
633 found_start, eb->start);
634 ret = -EIO;
635 goto err;
636 }
637 if (check_tree_block_fsid(root->fs_info, eb)) {
638 btrfs_err_rl(eb->fs_info, "bad fsid on block %llu",
639 eb->start);
640 ret = -EIO;
641 goto err;
642 }
643 found_level = btrfs_header_level(eb);
644 if (found_level >= BTRFS_MAX_LEVEL) {
645 btrfs_err(root->fs_info, "bad tree block level %d",
646 (int)btrfs_header_level(eb));
647 ret = -EIO;
648 goto err;
649 }
650
651 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
652 eb, found_level);
653
654 ret = csum_tree_block(root->fs_info, eb, 1);
655 if (ret) {
656 ret = -EIO;
657 goto err;
658 }
659
660 /*
661 * If this is a leaf block and it is corrupt, set the corrupt bit so
662 * that we don't try and read the other copies of this block, just
663 * return -EIO.
664 */
665 if (found_level == 0 && check_leaf(root, eb)) {
666 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
667 ret = -EIO;
668 }
669
670 if (!ret)
671 set_extent_buffer_uptodate(eb);
672 err:
673 if (reads_done &&
674 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
675 btree_readahead_hook(root, eb, eb->start, ret);
676
677 if (ret) {
678 /*
679 * our io error hook is going to dec the io pages
680 * again, we have to make sure it has something
681 * to decrement
682 */
683 atomic_inc(&eb->io_pages);
684 clear_extent_buffer_uptodate(eb);
685 }
686 free_extent_buffer(eb);
687 out:
688 return ret;
689 }
690
btree_io_failed_hook(struct page * page,int failed_mirror)691 static int btree_io_failed_hook(struct page *page, int failed_mirror)
692 {
693 struct extent_buffer *eb;
694 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
695
696 eb = (struct extent_buffer *)page->private;
697 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
698 eb->read_mirror = failed_mirror;
699 atomic_dec(&eb->io_pages);
700 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
701 btree_readahead_hook(root, eb, eb->start, -EIO);
702 return -EIO; /* we fixed nothing */
703 }
704
end_workqueue_bio(struct bio * bio)705 static void end_workqueue_bio(struct bio *bio)
706 {
707 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
708 struct btrfs_fs_info *fs_info;
709 struct btrfs_workqueue *wq;
710 btrfs_work_func_t func;
711
712 fs_info = end_io_wq->info;
713 end_io_wq->error = bio->bi_error;
714
715 if (bio->bi_rw & REQ_WRITE) {
716 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
717 wq = fs_info->endio_meta_write_workers;
718 func = btrfs_endio_meta_write_helper;
719 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
720 wq = fs_info->endio_freespace_worker;
721 func = btrfs_freespace_write_helper;
722 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
723 wq = fs_info->endio_raid56_workers;
724 func = btrfs_endio_raid56_helper;
725 } else {
726 wq = fs_info->endio_write_workers;
727 func = btrfs_endio_write_helper;
728 }
729 } else {
730 if (unlikely(end_io_wq->metadata ==
731 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
732 wq = fs_info->endio_repair_workers;
733 func = btrfs_endio_repair_helper;
734 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
735 wq = fs_info->endio_raid56_workers;
736 func = btrfs_endio_raid56_helper;
737 } else if (end_io_wq->metadata) {
738 wq = fs_info->endio_meta_workers;
739 func = btrfs_endio_meta_helper;
740 } else {
741 wq = fs_info->endio_workers;
742 func = btrfs_endio_helper;
743 }
744 }
745
746 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
747 btrfs_queue_work(wq, &end_io_wq->work);
748 }
749
btrfs_bio_wq_end_io(struct btrfs_fs_info * info,struct bio * bio,enum btrfs_wq_endio_type metadata)750 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
751 enum btrfs_wq_endio_type metadata)
752 {
753 struct btrfs_end_io_wq *end_io_wq;
754
755 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
756 if (!end_io_wq)
757 return -ENOMEM;
758
759 end_io_wq->private = bio->bi_private;
760 end_io_wq->end_io = bio->bi_end_io;
761 end_io_wq->info = info;
762 end_io_wq->error = 0;
763 end_io_wq->bio = bio;
764 end_io_wq->metadata = metadata;
765
766 bio->bi_private = end_io_wq;
767 bio->bi_end_io = end_workqueue_bio;
768 return 0;
769 }
770
btrfs_async_submit_limit(struct btrfs_fs_info * info)771 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
772 {
773 unsigned long limit = min_t(unsigned long,
774 info->thread_pool_size,
775 info->fs_devices->open_devices);
776 return 256 * limit;
777 }
778
run_one_async_start(struct btrfs_work * work)779 static void run_one_async_start(struct btrfs_work *work)
780 {
781 struct async_submit_bio *async;
782 int ret;
783
784 async = container_of(work, struct async_submit_bio, work);
785 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
786 async->mirror_num, async->bio_flags,
787 async->bio_offset);
788 if (ret)
789 async->error = ret;
790 }
791
run_one_async_done(struct btrfs_work * work)792 static void run_one_async_done(struct btrfs_work *work)
793 {
794 struct btrfs_fs_info *fs_info;
795 struct async_submit_bio *async;
796 int limit;
797
798 async = container_of(work, struct async_submit_bio, work);
799 fs_info = BTRFS_I(async->inode)->root->fs_info;
800
801 limit = btrfs_async_submit_limit(fs_info);
802 limit = limit * 2 / 3;
803
804 /*
805 * atomic_dec_return implies a barrier for waitqueue_active
806 */
807 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
808 waitqueue_active(&fs_info->async_submit_wait))
809 wake_up(&fs_info->async_submit_wait);
810
811 /* If an error occured we just want to clean up the bio and move on */
812 if (async->error) {
813 async->bio->bi_error = async->error;
814 bio_endio(async->bio);
815 return;
816 }
817
818 async->submit_bio_done(async->inode, async->rw, async->bio,
819 async->mirror_num, async->bio_flags,
820 async->bio_offset);
821 }
822
run_one_async_free(struct btrfs_work * work)823 static void run_one_async_free(struct btrfs_work *work)
824 {
825 struct async_submit_bio *async;
826
827 async = container_of(work, struct async_submit_bio, work);
828 kfree(async);
829 }
830
btrfs_wq_submit_bio(struct btrfs_fs_info * fs_info,struct inode * inode,int rw,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset,extent_submit_bio_hook_t * submit_bio_start,extent_submit_bio_hook_t * submit_bio_done)831 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
832 int rw, struct bio *bio, int mirror_num,
833 unsigned long bio_flags,
834 u64 bio_offset,
835 extent_submit_bio_hook_t *submit_bio_start,
836 extent_submit_bio_hook_t *submit_bio_done)
837 {
838 struct async_submit_bio *async;
839
840 async = kmalloc(sizeof(*async), GFP_NOFS);
841 if (!async)
842 return -ENOMEM;
843
844 async->inode = inode;
845 async->rw = rw;
846 async->bio = bio;
847 async->mirror_num = mirror_num;
848 async->submit_bio_start = submit_bio_start;
849 async->submit_bio_done = submit_bio_done;
850
851 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
852 run_one_async_done, run_one_async_free);
853
854 async->bio_flags = bio_flags;
855 async->bio_offset = bio_offset;
856
857 async->error = 0;
858
859 atomic_inc(&fs_info->nr_async_submits);
860
861 if (rw & REQ_SYNC)
862 btrfs_set_work_high_priority(&async->work);
863
864 btrfs_queue_work(fs_info->workers, &async->work);
865
866 while (atomic_read(&fs_info->async_submit_draining) &&
867 atomic_read(&fs_info->nr_async_submits)) {
868 wait_event(fs_info->async_submit_wait,
869 (atomic_read(&fs_info->nr_async_submits) == 0));
870 }
871
872 return 0;
873 }
874
btree_csum_one_bio(struct bio * bio)875 static int btree_csum_one_bio(struct bio *bio)
876 {
877 struct bio_vec *bvec;
878 struct btrfs_root *root;
879 int i, ret = 0;
880
881 bio_for_each_segment_all(bvec, bio, i) {
882 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
883 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
884 if (ret)
885 break;
886 }
887
888 return ret;
889 }
890
__btree_submit_bio_start(struct inode * inode,int rw,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset)891 static int __btree_submit_bio_start(struct inode *inode, int rw,
892 struct bio *bio, int mirror_num,
893 unsigned long bio_flags,
894 u64 bio_offset)
895 {
896 /*
897 * when we're called for a write, we're already in the async
898 * submission context. Just jump into btrfs_map_bio
899 */
900 return btree_csum_one_bio(bio);
901 }
902
__btree_submit_bio_done(struct inode * inode,int rw,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset)903 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
904 int mirror_num, unsigned long bio_flags,
905 u64 bio_offset)
906 {
907 int ret;
908
909 /*
910 * when we're called for a write, we're already in the async
911 * submission context. Just jump into btrfs_map_bio
912 */
913 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
914 if (ret) {
915 bio->bi_error = ret;
916 bio_endio(bio);
917 }
918 return ret;
919 }
920
check_async_write(struct inode * inode,unsigned long bio_flags)921 static int check_async_write(struct inode *inode, unsigned long bio_flags)
922 {
923 if (bio_flags & EXTENT_BIO_TREE_LOG)
924 return 0;
925 #ifdef CONFIG_X86
926 if (cpu_has_xmm4_2)
927 return 0;
928 #endif
929 return 1;
930 }
931
btree_submit_bio_hook(struct inode * inode,int rw,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset)932 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
933 int mirror_num, unsigned long bio_flags,
934 u64 bio_offset)
935 {
936 int async = check_async_write(inode, bio_flags);
937 int ret;
938
939 if (!(rw & REQ_WRITE)) {
940 /*
941 * called for a read, do the setup so that checksum validation
942 * can happen in the async kernel threads
943 */
944 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
945 bio, BTRFS_WQ_ENDIO_METADATA);
946 if (ret)
947 goto out_w_error;
948 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
949 mirror_num, 0);
950 } else if (!async) {
951 ret = btree_csum_one_bio(bio);
952 if (ret)
953 goto out_w_error;
954 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
955 mirror_num, 0);
956 } else {
957 /*
958 * kthread helpers are used to submit writes so that
959 * checksumming can happen in parallel across all CPUs
960 */
961 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
962 inode, rw, bio, mirror_num, 0,
963 bio_offset,
964 __btree_submit_bio_start,
965 __btree_submit_bio_done);
966 }
967
968 if (ret)
969 goto out_w_error;
970 return 0;
971
972 out_w_error:
973 bio->bi_error = ret;
974 bio_endio(bio);
975 return ret;
976 }
977
978 #ifdef CONFIG_MIGRATION
btree_migratepage(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)979 static int btree_migratepage(struct address_space *mapping,
980 struct page *newpage, struct page *page,
981 enum migrate_mode mode)
982 {
983 /*
984 * we can't safely write a btree page from here,
985 * we haven't done the locking hook
986 */
987 if (PageDirty(page))
988 return -EAGAIN;
989 /*
990 * Buffers may be managed in a filesystem specific way.
991 * We must have no buffers or drop them.
992 */
993 if (page_has_private(page) &&
994 !try_to_release_page(page, GFP_KERNEL))
995 return -EAGAIN;
996 return migrate_page(mapping, newpage, page, mode);
997 }
998 #endif
999
1000
btree_writepages(struct address_space * mapping,struct writeback_control * wbc)1001 static int btree_writepages(struct address_space *mapping,
1002 struct writeback_control *wbc)
1003 {
1004 struct btrfs_fs_info *fs_info;
1005 int ret;
1006
1007 if (wbc->sync_mode == WB_SYNC_NONE) {
1008
1009 if (wbc->for_kupdate)
1010 return 0;
1011
1012 fs_info = BTRFS_I(mapping->host)->root->fs_info;
1013 /* this is a bit racy, but that's ok */
1014 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1015 BTRFS_DIRTY_METADATA_THRESH);
1016 if (ret < 0)
1017 return 0;
1018 }
1019 return btree_write_cache_pages(mapping, wbc);
1020 }
1021
btree_readpage(struct file * file,struct page * page)1022 static int btree_readpage(struct file *file, struct page *page)
1023 {
1024 struct extent_io_tree *tree;
1025 tree = &BTRFS_I(page->mapping->host)->io_tree;
1026 return extent_read_full_page(tree, page, btree_get_extent, 0);
1027 }
1028
btree_releasepage(struct page * page,gfp_t gfp_flags)1029 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1030 {
1031 if (PageWriteback(page) || PageDirty(page))
1032 return 0;
1033
1034 return try_release_extent_buffer(page);
1035 }
1036
btree_invalidatepage(struct page * page,unsigned int offset,unsigned int length)1037 static void btree_invalidatepage(struct page *page, unsigned int offset,
1038 unsigned int length)
1039 {
1040 struct extent_io_tree *tree;
1041 tree = &BTRFS_I(page->mapping->host)->io_tree;
1042 extent_invalidatepage(tree, page, offset);
1043 btree_releasepage(page, GFP_NOFS);
1044 if (PagePrivate(page)) {
1045 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1046 "page private not zero on page %llu",
1047 (unsigned long long)page_offset(page));
1048 ClearPagePrivate(page);
1049 set_page_private(page, 0);
1050 page_cache_release(page);
1051 }
1052 }
1053
btree_set_page_dirty(struct page * page)1054 static int btree_set_page_dirty(struct page *page)
1055 {
1056 #ifdef DEBUG
1057 struct extent_buffer *eb;
1058
1059 BUG_ON(!PagePrivate(page));
1060 eb = (struct extent_buffer *)page->private;
1061 BUG_ON(!eb);
1062 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1063 BUG_ON(!atomic_read(&eb->refs));
1064 btrfs_assert_tree_locked(eb);
1065 #endif
1066 return __set_page_dirty_nobuffers(page);
1067 }
1068
1069 static const struct address_space_operations btree_aops = {
1070 .readpage = btree_readpage,
1071 .writepages = btree_writepages,
1072 .releasepage = btree_releasepage,
1073 .invalidatepage = btree_invalidatepage,
1074 #ifdef CONFIG_MIGRATION
1075 .migratepage = btree_migratepage,
1076 #endif
1077 .set_page_dirty = btree_set_page_dirty,
1078 };
1079
readahead_tree_block(struct btrfs_root * root,u64 bytenr)1080 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1081 {
1082 struct extent_buffer *buf = NULL;
1083 struct inode *btree_inode = root->fs_info->btree_inode;
1084
1085 buf = btrfs_find_create_tree_block(root, bytenr);
1086 if (!buf)
1087 return;
1088 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1089 buf, 0, WAIT_NONE, btree_get_extent, 0);
1090 free_extent_buffer(buf);
1091 }
1092
reada_tree_block_flagged(struct btrfs_root * root,u64 bytenr,int mirror_num,struct extent_buffer ** eb)1093 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1094 int mirror_num, struct extent_buffer **eb)
1095 {
1096 struct extent_buffer *buf = NULL;
1097 struct inode *btree_inode = root->fs_info->btree_inode;
1098 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1099 int ret;
1100
1101 buf = btrfs_find_create_tree_block(root, bytenr);
1102 if (!buf)
1103 return 0;
1104
1105 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1106
1107 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1108 btree_get_extent, mirror_num);
1109 if (ret) {
1110 free_extent_buffer(buf);
1111 return ret;
1112 }
1113
1114 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1115 free_extent_buffer(buf);
1116 return -EIO;
1117 } else if (extent_buffer_uptodate(buf)) {
1118 *eb = buf;
1119 } else {
1120 free_extent_buffer(buf);
1121 }
1122 return 0;
1123 }
1124
btrfs_find_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr)1125 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1126 u64 bytenr)
1127 {
1128 return find_extent_buffer(fs_info, bytenr);
1129 }
1130
btrfs_find_create_tree_block(struct btrfs_root * root,u64 bytenr)1131 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1132 u64 bytenr)
1133 {
1134 if (btrfs_test_is_dummy_root(root))
1135 return alloc_test_extent_buffer(root->fs_info, bytenr);
1136 return alloc_extent_buffer(root->fs_info, bytenr);
1137 }
1138
1139
btrfs_write_tree_block(struct extent_buffer * buf)1140 int btrfs_write_tree_block(struct extent_buffer *buf)
1141 {
1142 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1143 buf->start + buf->len - 1);
1144 }
1145
btrfs_wait_tree_block_writeback(struct extent_buffer * buf)1146 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1147 {
1148 return filemap_fdatawait_range(buf->pages[0]->mapping,
1149 buf->start, buf->start + buf->len - 1);
1150 }
1151
read_tree_block(struct btrfs_root * root,u64 bytenr,u64 parent_transid)1152 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1153 u64 parent_transid)
1154 {
1155 struct extent_buffer *buf = NULL;
1156 int ret;
1157
1158 buf = btrfs_find_create_tree_block(root, bytenr);
1159 if (!buf)
1160 return ERR_PTR(-ENOMEM);
1161
1162 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1163 if (ret) {
1164 free_extent_buffer(buf);
1165 return ERR_PTR(ret);
1166 }
1167 return buf;
1168
1169 }
1170
clean_tree_block(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,struct extent_buffer * buf)1171 void clean_tree_block(struct btrfs_trans_handle *trans,
1172 struct btrfs_fs_info *fs_info,
1173 struct extent_buffer *buf)
1174 {
1175 if (btrfs_header_generation(buf) ==
1176 fs_info->running_transaction->transid) {
1177 btrfs_assert_tree_locked(buf);
1178
1179 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1180 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1181 -buf->len,
1182 fs_info->dirty_metadata_batch);
1183 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1184 btrfs_set_lock_blocking(buf);
1185 clear_extent_buffer_dirty(buf);
1186 }
1187 }
1188 }
1189
btrfs_alloc_subvolume_writers(void)1190 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1191 {
1192 struct btrfs_subvolume_writers *writers;
1193 int ret;
1194
1195 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1196 if (!writers)
1197 return ERR_PTR(-ENOMEM);
1198
1199 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1200 if (ret < 0) {
1201 kfree(writers);
1202 return ERR_PTR(ret);
1203 }
1204
1205 init_waitqueue_head(&writers->wait);
1206 return writers;
1207 }
1208
1209 static void
btrfs_free_subvolume_writers(struct btrfs_subvolume_writers * writers)1210 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1211 {
1212 percpu_counter_destroy(&writers->counter);
1213 kfree(writers);
1214 }
1215
__setup_root(u32 nodesize,u32 sectorsize,u32 stripesize,struct btrfs_root * root,struct btrfs_fs_info * fs_info,u64 objectid)1216 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1217 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1218 u64 objectid)
1219 {
1220 root->node = NULL;
1221 root->commit_root = NULL;
1222 root->sectorsize = sectorsize;
1223 root->nodesize = nodesize;
1224 root->stripesize = stripesize;
1225 root->state = 0;
1226 root->orphan_cleanup_state = 0;
1227
1228 root->objectid = objectid;
1229 root->last_trans = 0;
1230 root->highest_objectid = 0;
1231 root->nr_delalloc_inodes = 0;
1232 root->nr_ordered_extents = 0;
1233 root->name = NULL;
1234 root->inode_tree = RB_ROOT;
1235 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1236 root->block_rsv = NULL;
1237 root->orphan_block_rsv = NULL;
1238
1239 INIT_LIST_HEAD(&root->dirty_list);
1240 INIT_LIST_HEAD(&root->root_list);
1241 INIT_LIST_HEAD(&root->delalloc_inodes);
1242 INIT_LIST_HEAD(&root->delalloc_root);
1243 INIT_LIST_HEAD(&root->ordered_extents);
1244 INIT_LIST_HEAD(&root->ordered_root);
1245 INIT_LIST_HEAD(&root->logged_list[0]);
1246 INIT_LIST_HEAD(&root->logged_list[1]);
1247 spin_lock_init(&root->orphan_lock);
1248 spin_lock_init(&root->inode_lock);
1249 spin_lock_init(&root->delalloc_lock);
1250 spin_lock_init(&root->ordered_extent_lock);
1251 spin_lock_init(&root->accounting_lock);
1252 spin_lock_init(&root->log_extents_lock[0]);
1253 spin_lock_init(&root->log_extents_lock[1]);
1254 mutex_init(&root->objectid_mutex);
1255 mutex_init(&root->log_mutex);
1256 mutex_init(&root->ordered_extent_mutex);
1257 mutex_init(&root->delalloc_mutex);
1258 init_waitqueue_head(&root->log_writer_wait);
1259 init_waitqueue_head(&root->log_commit_wait[0]);
1260 init_waitqueue_head(&root->log_commit_wait[1]);
1261 INIT_LIST_HEAD(&root->log_ctxs[0]);
1262 INIT_LIST_HEAD(&root->log_ctxs[1]);
1263 atomic_set(&root->log_commit[0], 0);
1264 atomic_set(&root->log_commit[1], 0);
1265 atomic_set(&root->log_writers, 0);
1266 atomic_set(&root->log_batch, 0);
1267 atomic_set(&root->orphan_inodes, 0);
1268 atomic_set(&root->refs, 1);
1269 atomic_set(&root->will_be_snapshoted, 0);
1270 atomic_set(&root->qgroup_meta_rsv, 0);
1271 root->log_transid = 0;
1272 root->log_transid_committed = -1;
1273 root->last_log_commit = 0;
1274 if (fs_info)
1275 extent_io_tree_init(&root->dirty_log_pages,
1276 fs_info->btree_inode->i_mapping);
1277
1278 memset(&root->root_key, 0, sizeof(root->root_key));
1279 memset(&root->root_item, 0, sizeof(root->root_item));
1280 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1281 if (fs_info)
1282 root->defrag_trans_start = fs_info->generation;
1283 else
1284 root->defrag_trans_start = 0;
1285 root->root_key.objectid = objectid;
1286 root->anon_dev = 0;
1287
1288 spin_lock_init(&root->root_item_lock);
1289 }
1290
btrfs_alloc_root(struct btrfs_fs_info * fs_info)1291 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1292 {
1293 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1294 if (root)
1295 root->fs_info = fs_info;
1296 return root;
1297 }
1298
1299 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1300 /* Should only be used by the testing infrastructure */
btrfs_alloc_dummy_root(void)1301 struct btrfs_root *btrfs_alloc_dummy_root(void)
1302 {
1303 struct btrfs_root *root;
1304
1305 root = btrfs_alloc_root(NULL);
1306 if (!root)
1307 return ERR_PTR(-ENOMEM);
1308 __setup_root(4096, 4096, 4096, root, NULL, 1);
1309 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1310 root->alloc_bytenr = 0;
1311
1312 return root;
1313 }
1314 #endif
1315
btrfs_create_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 objectid)1316 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1317 struct btrfs_fs_info *fs_info,
1318 u64 objectid)
1319 {
1320 struct extent_buffer *leaf;
1321 struct btrfs_root *tree_root = fs_info->tree_root;
1322 struct btrfs_root *root;
1323 struct btrfs_key key;
1324 int ret = 0;
1325 uuid_le uuid;
1326
1327 root = btrfs_alloc_root(fs_info);
1328 if (!root)
1329 return ERR_PTR(-ENOMEM);
1330
1331 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1332 tree_root->stripesize, root, fs_info, objectid);
1333 root->root_key.objectid = objectid;
1334 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1335 root->root_key.offset = 0;
1336
1337 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1338 if (IS_ERR(leaf)) {
1339 ret = PTR_ERR(leaf);
1340 leaf = NULL;
1341 goto fail;
1342 }
1343
1344 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1345 btrfs_set_header_bytenr(leaf, leaf->start);
1346 btrfs_set_header_generation(leaf, trans->transid);
1347 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1348 btrfs_set_header_owner(leaf, objectid);
1349 root->node = leaf;
1350
1351 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1352 BTRFS_FSID_SIZE);
1353 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1354 btrfs_header_chunk_tree_uuid(leaf),
1355 BTRFS_UUID_SIZE);
1356 btrfs_mark_buffer_dirty(leaf);
1357
1358 root->commit_root = btrfs_root_node(root);
1359 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1360
1361 root->root_item.flags = 0;
1362 root->root_item.byte_limit = 0;
1363 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1364 btrfs_set_root_generation(&root->root_item, trans->transid);
1365 btrfs_set_root_level(&root->root_item, 0);
1366 btrfs_set_root_refs(&root->root_item, 1);
1367 btrfs_set_root_used(&root->root_item, leaf->len);
1368 btrfs_set_root_last_snapshot(&root->root_item, 0);
1369 btrfs_set_root_dirid(&root->root_item, 0);
1370 uuid_le_gen(&uuid);
1371 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1372 root->root_item.drop_level = 0;
1373
1374 key.objectid = objectid;
1375 key.type = BTRFS_ROOT_ITEM_KEY;
1376 key.offset = 0;
1377 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1378 if (ret)
1379 goto fail;
1380
1381 btrfs_tree_unlock(leaf);
1382
1383 return root;
1384
1385 fail:
1386 if (leaf) {
1387 btrfs_tree_unlock(leaf);
1388 free_extent_buffer(root->commit_root);
1389 free_extent_buffer(leaf);
1390 }
1391 kfree(root);
1392
1393 return ERR_PTR(ret);
1394 }
1395
alloc_log_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1396 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1397 struct btrfs_fs_info *fs_info)
1398 {
1399 struct btrfs_root *root;
1400 struct btrfs_root *tree_root = fs_info->tree_root;
1401 struct extent_buffer *leaf;
1402
1403 root = btrfs_alloc_root(fs_info);
1404 if (!root)
1405 return ERR_PTR(-ENOMEM);
1406
1407 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1408 tree_root->stripesize, root, fs_info,
1409 BTRFS_TREE_LOG_OBJECTID);
1410
1411 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1412 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1413 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1414
1415 /*
1416 * DON'T set REF_COWS for log trees
1417 *
1418 * log trees do not get reference counted because they go away
1419 * before a real commit is actually done. They do store pointers
1420 * to file data extents, and those reference counts still get
1421 * updated (along with back refs to the log tree).
1422 */
1423
1424 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1425 NULL, 0, 0, 0);
1426 if (IS_ERR(leaf)) {
1427 kfree(root);
1428 return ERR_CAST(leaf);
1429 }
1430
1431 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1432 btrfs_set_header_bytenr(leaf, leaf->start);
1433 btrfs_set_header_generation(leaf, trans->transid);
1434 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1435 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1436 root->node = leaf;
1437
1438 write_extent_buffer(root->node, root->fs_info->fsid,
1439 btrfs_header_fsid(), BTRFS_FSID_SIZE);
1440 btrfs_mark_buffer_dirty(root->node);
1441 btrfs_tree_unlock(root->node);
1442 return root;
1443 }
1444
btrfs_init_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1445 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1446 struct btrfs_fs_info *fs_info)
1447 {
1448 struct btrfs_root *log_root;
1449
1450 log_root = alloc_log_tree(trans, fs_info);
1451 if (IS_ERR(log_root))
1452 return PTR_ERR(log_root);
1453 WARN_ON(fs_info->log_root_tree);
1454 fs_info->log_root_tree = log_root;
1455 return 0;
1456 }
1457
btrfs_add_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root)1458 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1459 struct btrfs_root *root)
1460 {
1461 struct btrfs_root *log_root;
1462 struct btrfs_inode_item *inode_item;
1463
1464 log_root = alloc_log_tree(trans, root->fs_info);
1465 if (IS_ERR(log_root))
1466 return PTR_ERR(log_root);
1467
1468 log_root->last_trans = trans->transid;
1469 log_root->root_key.offset = root->root_key.objectid;
1470
1471 inode_item = &log_root->root_item.inode;
1472 btrfs_set_stack_inode_generation(inode_item, 1);
1473 btrfs_set_stack_inode_size(inode_item, 3);
1474 btrfs_set_stack_inode_nlink(inode_item, 1);
1475 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1476 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1477
1478 btrfs_set_root_node(&log_root->root_item, log_root->node);
1479
1480 WARN_ON(root->log_root);
1481 root->log_root = log_root;
1482 root->log_transid = 0;
1483 root->log_transid_committed = -1;
1484 root->last_log_commit = 0;
1485 return 0;
1486 }
1487
btrfs_read_tree_root(struct btrfs_root * tree_root,struct btrfs_key * key)1488 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1489 struct btrfs_key *key)
1490 {
1491 struct btrfs_root *root;
1492 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1493 struct btrfs_path *path;
1494 u64 generation;
1495 int ret;
1496
1497 path = btrfs_alloc_path();
1498 if (!path)
1499 return ERR_PTR(-ENOMEM);
1500
1501 root = btrfs_alloc_root(fs_info);
1502 if (!root) {
1503 ret = -ENOMEM;
1504 goto alloc_fail;
1505 }
1506
1507 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1508 tree_root->stripesize, root, fs_info, key->objectid);
1509
1510 ret = btrfs_find_root(tree_root, key, path,
1511 &root->root_item, &root->root_key);
1512 if (ret) {
1513 if (ret > 0)
1514 ret = -ENOENT;
1515 goto find_fail;
1516 }
1517
1518 generation = btrfs_root_generation(&root->root_item);
1519 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1520 generation);
1521 if (IS_ERR(root->node)) {
1522 ret = PTR_ERR(root->node);
1523 goto find_fail;
1524 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1525 ret = -EIO;
1526 free_extent_buffer(root->node);
1527 goto find_fail;
1528 }
1529 root->commit_root = btrfs_root_node(root);
1530 out:
1531 btrfs_free_path(path);
1532 return root;
1533
1534 find_fail:
1535 kfree(root);
1536 alloc_fail:
1537 root = ERR_PTR(ret);
1538 goto out;
1539 }
1540
btrfs_read_fs_root(struct btrfs_root * tree_root,struct btrfs_key * location)1541 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1542 struct btrfs_key *location)
1543 {
1544 struct btrfs_root *root;
1545
1546 root = btrfs_read_tree_root(tree_root, location);
1547 if (IS_ERR(root))
1548 return root;
1549
1550 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1551 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1552 btrfs_check_and_init_root_item(&root->root_item);
1553 }
1554
1555 return root;
1556 }
1557
btrfs_init_fs_root(struct btrfs_root * root)1558 int btrfs_init_fs_root(struct btrfs_root *root)
1559 {
1560 int ret;
1561 struct btrfs_subvolume_writers *writers;
1562
1563 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1564 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1565 GFP_NOFS);
1566 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1567 ret = -ENOMEM;
1568 goto fail;
1569 }
1570
1571 writers = btrfs_alloc_subvolume_writers();
1572 if (IS_ERR(writers)) {
1573 ret = PTR_ERR(writers);
1574 goto fail;
1575 }
1576 root->subv_writers = writers;
1577
1578 btrfs_init_free_ino_ctl(root);
1579 spin_lock_init(&root->ino_cache_lock);
1580 init_waitqueue_head(&root->ino_cache_wait);
1581
1582 ret = get_anon_bdev(&root->anon_dev);
1583 if (ret)
1584 goto free_writers;
1585
1586 mutex_lock(&root->objectid_mutex);
1587 ret = btrfs_find_highest_objectid(root,
1588 &root->highest_objectid);
1589 if (ret) {
1590 mutex_unlock(&root->objectid_mutex);
1591 goto free_root_dev;
1592 }
1593
1594 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1595
1596 mutex_unlock(&root->objectid_mutex);
1597
1598 return 0;
1599
1600 free_root_dev:
1601 free_anon_bdev(root->anon_dev);
1602 free_writers:
1603 btrfs_free_subvolume_writers(root->subv_writers);
1604 fail:
1605 kfree(root->free_ino_ctl);
1606 kfree(root->free_ino_pinned);
1607 return ret;
1608 }
1609
btrfs_lookup_fs_root(struct btrfs_fs_info * fs_info,u64 root_id)1610 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1611 u64 root_id)
1612 {
1613 struct btrfs_root *root;
1614
1615 spin_lock(&fs_info->fs_roots_radix_lock);
1616 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1617 (unsigned long)root_id);
1618 spin_unlock(&fs_info->fs_roots_radix_lock);
1619 return root;
1620 }
1621
btrfs_insert_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)1622 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1623 struct btrfs_root *root)
1624 {
1625 int ret;
1626
1627 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1628 if (ret)
1629 return ret;
1630
1631 spin_lock(&fs_info->fs_roots_radix_lock);
1632 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1633 (unsigned long)root->root_key.objectid,
1634 root);
1635 if (ret == 0)
1636 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1637 spin_unlock(&fs_info->fs_roots_radix_lock);
1638 radix_tree_preload_end();
1639
1640 return ret;
1641 }
1642
btrfs_get_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_key * location,bool check_ref)1643 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1644 struct btrfs_key *location,
1645 bool check_ref)
1646 {
1647 struct btrfs_root *root;
1648 struct btrfs_path *path;
1649 struct btrfs_key key;
1650 int ret;
1651
1652 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1653 return fs_info->tree_root;
1654 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1655 return fs_info->extent_root;
1656 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1657 return fs_info->chunk_root;
1658 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1659 return fs_info->dev_root;
1660 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1661 return fs_info->csum_root;
1662 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1663 return fs_info->quota_root ? fs_info->quota_root :
1664 ERR_PTR(-ENOENT);
1665 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1666 return fs_info->uuid_root ? fs_info->uuid_root :
1667 ERR_PTR(-ENOENT);
1668 again:
1669 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1670 if (root) {
1671 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1672 return ERR_PTR(-ENOENT);
1673 return root;
1674 }
1675
1676 root = btrfs_read_fs_root(fs_info->tree_root, location);
1677 if (IS_ERR(root))
1678 return root;
1679
1680 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1681 ret = -ENOENT;
1682 goto fail;
1683 }
1684
1685 ret = btrfs_init_fs_root(root);
1686 if (ret)
1687 goto fail;
1688
1689 path = btrfs_alloc_path();
1690 if (!path) {
1691 ret = -ENOMEM;
1692 goto fail;
1693 }
1694 key.objectid = BTRFS_ORPHAN_OBJECTID;
1695 key.type = BTRFS_ORPHAN_ITEM_KEY;
1696 key.offset = location->objectid;
1697
1698 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1699 btrfs_free_path(path);
1700 if (ret < 0)
1701 goto fail;
1702 if (ret == 0)
1703 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1704
1705 ret = btrfs_insert_fs_root(fs_info, root);
1706 if (ret) {
1707 if (ret == -EEXIST) {
1708 free_fs_root(root);
1709 goto again;
1710 }
1711 goto fail;
1712 }
1713 return root;
1714 fail:
1715 free_fs_root(root);
1716 return ERR_PTR(ret);
1717 }
1718
btrfs_congested_fn(void * congested_data,int bdi_bits)1719 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1720 {
1721 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1722 int ret = 0;
1723 struct btrfs_device *device;
1724 struct backing_dev_info *bdi;
1725
1726 rcu_read_lock();
1727 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1728 if (!device->bdev)
1729 continue;
1730 bdi = blk_get_backing_dev_info(device->bdev);
1731 if (bdi_congested(bdi, bdi_bits)) {
1732 ret = 1;
1733 break;
1734 }
1735 }
1736 rcu_read_unlock();
1737 return ret;
1738 }
1739
setup_bdi(struct btrfs_fs_info * info,struct backing_dev_info * bdi)1740 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1741 {
1742 int err;
1743
1744 err = bdi_setup_and_register(bdi, "btrfs");
1745 if (err)
1746 return err;
1747
1748 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE;
1749 bdi->congested_fn = btrfs_congested_fn;
1750 bdi->congested_data = info;
1751 bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1752 return 0;
1753 }
1754
1755 /*
1756 * called by the kthread helper functions to finally call the bio end_io
1757 * functions. This is where read checksum verification actually happens
1758 */
end_workqueue_fn(struct btrfs_work * work)1759 static void end_workqueue_fn(struct btrfs_work *work)
1760 {
1761 struct bio *bio;
1762 struct btrfs_end_io_wq *end_io_wq;
1763
1764 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1765 bio = end_io_wq->bio;
1766
1767 bio->bi_error = end_io_wq->error;
1768 bio->bi_private = end_io_wq->private;
1769 bio->bi_end_io = end_io_wq->end_io;
1770 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1771 bio_endio(bio);
1772 }
1773
cleaner_kthread(void * arg)1774 static int cleaner_kthread(void *arg)
1775 {
1776 struct btrfs_root *root = arg;
1777 int again;
1778 struct btrfs_trans_handle *trans;
1779
1780 do {
1781 again = 0;
1782
1783 /* Make the cleaner go to sleep early. */
1784 if (btrfs_need_cleaner_sleep(root))
1785 goto sleep;
1786
1787 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1788 goto sleep;
1789
1790 /*
1791 * Avoid the problem that we change the status of the fs
1792 * during the above check and trylock.
1793 */
1794 if (btrfs_need_cleaner_sleep(root)) {
1795 mutex_unlock(&root->fs_info->cleaner_mutex);
1796 goto sleep;
1797 }
1798
1799 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
1800 btrfs_run_delayed_iputs(root);
1801 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
1802
1803 again = btrfs_clean_one_deleted_snapshot(root);
1804 mutex_unlock(&root->fs_info->cleaner_mutex);
1805
1806 /*
1807 * The defragger has dealt with the R/O remount and umount,
1808 * needn't do anything special here.
1809 */
1810 btrfs_run_defrag_inodes(root->fs_info);
1811
1812 /*
1813 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1814 * with relocation (btrfs_relocate_chunk) and relocation
1815 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1816 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1817 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1818 * unused block groups.
1819 */
1820 btrfs_delete_unused_bgs(root->fs_info);
1821 sleep:
1822 if (!try_to_freeze() && !again) {
1823 set_current_state(TASK_INTERRUPTIBLE);
1824 if (!kthread_should_stop())
1825 schedule();
1826 __set_current_state(TASK_RUNNING);
1827 }
1828 } while (!kthread_should_stop());
1829
1830 /*
1831 * Transaction kthread is stopped before us and wakes us up.
1832 * However we might have started a new transaction and COWed some
1833 * tree blocks when deleting unused block groups for example. So
1834 * make sure we commit the transaction we started to have a clean
1835 * shutdown when evicting the btree inode - if it has dirty pages
1836 * when we do the final iput() on it, eviction will trigger a
1837 * writeback for it which will fail with null pointer dereferences
1838 * since work queues and other resources were already released and
1839 * destroyed by the time the iput/eviction/writeback is made.
1840 */
1841 trans = btrfs_attach_transaction(root);
1842 if (IS_ERR(trans)) {
1843 if (PTR_ERR(trans) != -ENOENT)
1844 btrfs_err(root->fs_info,
1845 "cleaner transaction attach returned %ld",
1846 PTR_ERR(trans));
1847 } else {
1848 int ret;
1849
1850 ret = btrfs_commit_transaction(trans, root);
1851 if (ret)
1852 btrfs_err(root->fs_info,
1853 "cleaner open transaction commit returned %d",
1854 ret);
1855 }
1856
1857 return 0;
1858 }
1859
transaction_kthread(void * arg)1860 static int transaction_kthread(void *arg)
1861 {
1862 struct btrfs_root *root = arg;
1863 struct btrfs_trans_handle *trans;
1864 struct btrfs_transaction *cur;
1865 u64 transid;
1866 unsigned long now;
1867 unsigned long delay;
1868 bool cannot_commit;
1869
1870 do {
1871 cannot_commit = false;
1872 delay = HZ * root->fs_info->commit_interval;
1873 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1874
1875 spin_lock(&root->fs_info->trans_lock);
1876 cur = root->fs_info->running_transaction;
1877 if (!cur) {
1878 spin_unlock(&root->fs_info->trans_lock);
1879 goto sleep;
1880 }
1881
1882 now = get_seconds();
1883 if (cur->state < TRANS_STATE_BLOCKED &&
1884 (now < cur->start_time ||
1885 now - cur->start_time < root->fs_info->commit_interval)) {
1886 spin_unlock(&root->fs_info->trans_lock);
1887 delay = HZ * 5;
1888 goto sleep;
1889 }
1890 transid = cur->transid;
1891 spin_unlock(&root->fs_info->trans_lock);
1892
1893 /* If the file system is aborted, this will always fail. */
1894 trans = btrfs_attach_transaction(root);
1895 if (IS_ERR(trans)) {
1896 if (PTR_ERR(trans) != -ENOENT)
1897 cannot_commit = true;
1898 goto sleep;
1899 }
1900 if (transid == trans->transid) {
1901 btrfs_commit_transaction(trans, root);
1902 } else {
1903 btrfs_end_transaction(trans, root);
1904 }
1905 sleep:
1906 wake_up_process(root->fs_info->cleaner_kthread);
1907 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1908
1909 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1910 &root->fs_info->fs_state)))
1911 btrfs_cleanup_transaction(root);
1912 if (!try_to_freeze()) {
1913 set_current_state(TASK_INTERRUPTIBLE);
1914 if (!kthread_should_stop() &&
1915 (!btrfs_transaction_blocked(root->fs_info) ||
1916 cannot_commit))
1917 schedule_timeout(delay);
1918 __set_current_state(TASK_RUNNING);
1919 }
1920 } while (!kthread_should_stop());
1921 return 0;
1922 }
1923
1924 /*
1925 * this will find the highest generation in the array of
1926 * root backups. The index of the highest array is returned,
1927 * or -1 if we can't find anything.
1928 *
1929 * We check to make sure the array is valid by comparing the
1930 * generation of the latest root in the array with the generation
1931 * in the super block. If they don't match we pitch it.
1932 */
find_newest_super_backup(struct btrfs_fs_info * info,u64 newest_gen)1933 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1934 {
1935 u64 cur;
1936 int newest_index = -1;
1937 struct btrfs_root_backup *root_backup;
1938 int i;
1939
1940 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1941 root_backup = info->super_copy->super_roots + i;
1942 cur = btrfs_backup_tree_root_gen(root_backup);
1943 if (cur == newest_gen)
1944 newest_index = i;
1945 }
1946
1947 /* check to see if we actually wrapped around */
1948 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1949 root_backup = info->super_copy->super_roots;
1950 cur = btrfs_backup_tree_root_gen(root_backup);
1951 if (cur == newest_gen)
1952 newest_index = 0;
1953 }
1954 return newest_index;
1955 }
1956
1957
1958 /*
1959 * find the oldest backup so we know where to store new entries
1960 * in the backup array. This will set the backup_root_index
1961 * field in the fs_info struct
1962 */
find_oldest_super_backup(struct btrfs_fs_info * info,u64 newest_gen)1963 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1964 u64 newest_gen)
1965 {
1966 int newest_index = -1;
1967
1968 newest_index = find_newest_super_backup(info, newest_gen);
1969 /* if there was garbage in there, just move along */
1970 if (newest_index == -1) {
1971 info->backup_root_index = 0;
1972 } else {
1973 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1974 }
1975 }
1976
1977 /*
1978 * copy all the root pointers into the super backup array.
1979 * this will bump the backup pointer by one when it is
1980 * done
1981 */
backup_super_roots(struct btrfs_fs_info * info)1982 static void backup_super_roots(struct btrfs_fs_info *info)
1983 {
1984 int next_backup;
1985 struct btrfs_root_backup *root_backup;
1986 int last_backup;
1987
1988 next_backup = info->backup_root_index;
1989 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1990 BTRFS_NUM_BACKUP_ROOTS;
1991
1992 /*
1993 * just overwrite the last backup if we're at the same generation
1994 * this happens only at umount
1995 */
1996 root_backup = info->super_for_commit->super_roots + last_backup;
1997 if (btrfs_backup_tree_root_gen(root_backup) ==
1998 btrfs_header_generation(info->tree_root->node))
1999 next_backup = last_backup;
2000
2001 root_backup = info->super_for_commit->super_roots + next_backup;
2002
2003 /*
2004 * make sure all of our padding and empty slots get zero filled
2005 * regardless of which ones we use today
2006 */
2007 memset(root_backup, 0, sizeof(*root_backup));
2008
2009 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2010
2011 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2012 btrfs_set_backup_tree_root_gen(root_backup,
2013 btrfs_header_generation(info->tree_root->node));
2014
2015 btrfs_set_backup_tree_root_level(root_backup,
2016 btrfs_header_level(info->tree_root->node));
2017
2018 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2019 btrfs_set_backup_chunk_root_gen(root_backup,
2020 btrfs_header_generation(info->chunk_root->node));
2021 btrfs_set_backup_chunk_root_level(root_backup,
2022 btrfs_header_level(info->chunk_root->node));
2023
2024 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2025 btrfs_set_backup_extent_root_gen(root_backup,
2026 btrfs_header_generation(info->extent_root->node));
2027 btrfs_set_backup_extent_root_level(root_backup,
2028 btrfs_header_level(info->extent_root->node));
2029
2030 /*
2031 * we might commit during log recovery, which happens before we set
2032 * the fs_root. Make sure it is valid before we fill it in.
2033 */
2034 if (info->fs_root && info->fs_root->node) {
2035 btrfs_set_backup_fs_root(root_backup,
2036 info->fs_root->node->start);
2037 btrfs_set_backup_fs_root_gen(root_backup,
2038 btrfs_header_generation(info->fs_root->node));
2039 btrfs_set_backup_fs_root_level(root_backup,
2040 btrfs_header_level(info->fs_root->node));
2041 }
2042
2043 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2044 btrfs_set_backup_dev_root_gen(root_backup,
2045 btrfs_header_generation(info->dev_root->node));
2046 btrfs_set_backup_dev_root_level(root_backup,
2047 btrfs_header_level(info->dev_root->node));
2048
2049 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2050 btrfs_set_backup_csum_root_gen(root_backup,
2051 btrfs_header_generation(info->csum_root->node));
2052 btrfs_set_backup_csum_root_level(root_backup,
2053 btrfs_header_level(info->csum_root->node));
2054
2055 btrfs_set_backup_total_bytes(root_backup,
2056 btrfs_super_total_bytes(info->super_copy));
2057 btrfs_set_backup_bytes_used(root_backup,
2058 btrfs_super_bytes_used(info->super_copy));
2059 btrfs_set_backup_num_devices(root_backup,
2060 btrfs_super_num_devices(info->super_copy));
2061
2062 /*
2063 * if we don't copy this out to the super_copy, it won't get remembered
2064 * for the next commit
2065 */
2066 memcpy(&info->super_copy->super_roots,
2067 &info->super_for_commit->super_roots,
2068 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2069 }
2070
2071 /*
2072 * this copies info out of the root backup array and back into
2073 * the in-memory super block. It is meant to help iterate through
2074 * the array, so you send it the number of backups you've already
2075 * tried and the last backup index you used.
2076 *
2077 * this returns -1 when it has tried all the backups
2078 */
next_root_backup(struct btrfs_fs_info * info,struct btrfs_super_block * super,int * num_backups_tried,int * backup_index)2079 static noinline int next_root_backup(struct btrfs_fs_info *info,
2080 struct btrfs_super_block *super,
2081 int *num_backups_tried, int *backup_index)
2082 {
2083 struct btrfs_root_backup *root_backup;
2084 int newest = *backup_index;
2085
2086 if (*num_backups_tried == 0) {
2087 u64 gen = btrfs_super_generation(super);
2088
2089 newest = find_newest_super_backup(info, gen);
2090 if (newest == -1)
2091 return -1;
2092
2093 *backup_index = newest;
2094 *num_backups_tried = 1;
2095 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2096 /* we've tried all the backups, all done */
2097 return -1;
2098 } else {
2099 /* jump to the next oldest backup */
2100 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2101 BTRFS_NUM_BACKUP_ROOTS;
2102 *backup_index = newest;
2103 *num_backups_tried += 1;
2104 }
2105 root_backup = super->super_roots + newest;
2106
2107 btrfs_set_super_generation(super,
2108 btrfs_backup_tree_root_gen(root_backup));
2109 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2110 btrfs_set_super_root_level(super,
2111 btrfs_backup_tree_root_level(root_backup));
2112 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2113
2114 /*
2115 * fixme: the total bytes and num_devices need to match or we should
2116 * need a fsck
2117 */
2118 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2119 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2120 return 0;
2121 }
2122
2123 /* helper to cleanup workers */
btrfs_stop_all_workers(struct btrfs_fs_info * fs_info)2124 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2125 {
2126 btrfs_destroy_workqueue(fs_info->fixup_workers);
2127 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2128 btrfs_destroy_workqueue(fs_info->workers);
2129 btrfs_destroy_workqueue(fs_info->endio_workers);
2130 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2131 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2132 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2133 btrfs_destroy_workqueue(fs_info->rmw_workers);
2134 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2135 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2136 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2137 btrfs_destroy_workqueue(fs_info->submit_workers);
2138 btrfs_destroy_workqueue(fs_info->delayed_workers);
2139 btrfs_destroy_workqueue(fs_info->caching_workers);
2140 btrfs_destroy_workqueue(fs_info->readahead_workers);
2141 btrfs_destroy_workqueue(fs_info->flush_workers);
2142 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2143 btrfs_destroy_workqueue(fs_info->extent_workers);
2144 }
2145
free_root_extent_buffers(struct btrfs_root * root)2146 static void free_root_extent_buffers(struct btrfs_root *root)
2147 {
2148 if (root) {
2149 free_extent_buffer(root->node);
2150 free_extent_buffer(root->commit_root);
2151 root->node = NULL;
2152 root->commit_root = NULL;
2153 }
2154 }
2155
2156 /* helper to cleanup tree roots */
free_root_pointers(struct btrfs_fs_info * info,int chunk_root)2157 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2158 {
2159 free_root_extent_buffers(info->tree_root);
2160
2161 free_root_extent_buffers(info->dev_root);
2162 free_root_extent_buffers(info->extent_root);
2163 free_root_extent_buffers(info->csum_root);
2164 free_root_extent_buffers(info->quota_root);
2165 free_root_extent_buffers(info->uuid_root);
2166 if (chunk_root)
2167 free_root_extent_buffers(info->chunk_root);
2168 }
2169
btrfs_free_fs_roots(struct btrfs_fs_info * fs_info)2170 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2171 {
2172 int ret;
2173 struct btrfs_root *gang[8];
2174 int i;
2175
2176 while (!list_empty(&fs_info->dead_roots)) {
2177 gang[0] = list_entry(fs_info->dead_roots.next,
2178 struct btrfs_root, root_list);
2179 list_del(&gang[0]->root_list);
2180
2181 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2182 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2183 } else {
2184 free_extent_buffer(gang[0]->node);
2185 free_extent_buffer(gang[0]->commit_root);
2186 btrfs_put_fs_root(gang[0]);
2187 }
2188 }
2189
2190 while (1) {
2191 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2192 (void **)gang, 0,
2193 ARRAY_SIZE(gang));
2194 if (!ret)
2195 break;
2196 for (i = 0; i < ret; i++)
2197 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2198 }
2199
2200 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2201 btrfs_free_log_root_tree(NULL, fs_info);
2202 btrfs_destroy_pinned_extent(fs_info->tree_root,
2203 fs_info->pinned_extents);
2204 }
2205 }
2206
btrfs_init_scrub(struct btrfs_fs_info * fs_info)2207 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2208 {
2209 mutex_init(&fs_info->scrub_lock);
2210 atomic_set(&fs_info->scrubs_running, 0);
2211 atomic_set(&fs_info->scrub_pause_req, 0);
2212 atomic_set(&fs_info->scrubs_paused, 0);
2213 atomic_set(&fs_info->scrub_cancel_req, 0);
2214 init_waitqueue_head(&fs_info->scrub_pause_wait);
2215 fs_info->scrub_workers_refcnt = 0;
2216 }
2217
btrfs_init_balance(struct btrfs_fs_info * fs_info)2218 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2219 {
2220 spin_lock_init(&fs_info->balance_lock);
2221 mutex_init(&fs_info->balance_mutex);
2222 atomic_set(&fs_info->balance_running, 0);
2223 atomic_set(&fs_info->balance_pause_req, 0);
2224 atomic_set(&fs_info->balance_cancel_req, 0);
2225 fs_info->balance_ctl = NULL;
2226 init_waitqueue_head(&fs_info->balance_wait_q);
2227 }
2228
btrfs_init_btree_inode(struct btrfs_fs_info * fs_info,struct btrfs_root * tree_root)2229 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2230 struct btrfs_root *tree_root)
2231 {
2232 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2233 set_nlink(fs_info->btree_inode, 1);
2234 /*
2235 * we set the i_size on the btree inode to the max possible int.
2236 * the real end of the address space is determined by all of
2237 * the devices in the system
2238 */
2239 fs_info->btree_inode->i_size = OFFSET_MAX;
2240 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2241
2242 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2243 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2244 fs_info->btree_inode->i_mapping);
2245 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2246 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2247
2248 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2249
2250 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2251 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2252 sizeof(struct btrfs_key));
2253 set_bit(BTRFS_INODE_DUMMY,
2254 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2255 btrfs_insert_inode_hash(fs_info->btree_inode);
2256 }
2257
btrfs_init_dev_replace_locks(struct btrfs_fs_info * fs_info)2258 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2259 {
2260 fs_info->dev_replace.lock_owner = 0;
2261 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2262 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2263 mutex_init(&fs_info->dev_replace.lock_management_lock);
2264 mutex_init(&fs_info->dev_replace.lock);
2265 init_waitqueue_head(&fs_info->replace_wait);
2266 }
2267
btrfs_init_qgroup(struct btrfs_fs_info * fs_info)2268 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2269 {
2270 spin_lock_init(&fs_info->qgroup_lock);
2271 mutex_init(&fs_info->qgroup_ioctl_lock);
2272 fs_info->qgroup_tree = RB_ROOT;
2273 fs_info->qgroup_op_tree = RB_ROOT;
2274 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2275 fs_info->qgroup_seq = 1;
2276 fs_info->quota_enabled = 0;
2277 fs_info->pending_quota_state = 0;
2278 fs_info->qgroup_ulist = NULL;
2279 mutex_init(&fs_info->qgroup_rescan_lock);
2280 }
2281
btrfs_init_workqueues(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2282 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2283 struct btrfs_fs_devices *fs_devices)
2284 {
2285 int max_active = fs_info->thread_pool_size;
2286 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2287
2288 fs_info->workers =
2289 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2290 max_active, 16);
2291
2292 fs_info->delalloc_workers =
2293 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2294
2295 fs_info->flush_workers =
2296 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2297
2298 fs_info->caching_workers =
2299 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2300
2301 /*
2302 * a higher idle thresh on the submit workers makes it much more
2303 * likely that bios will be send down in a sane order to the
2304 * devices
2305 */
2306 fs_info->submit_workers =
2307 btrfs_alloc_workqueue("submit", flags,
2308 min_t(u64, fs_devices->num_devices,
2309 max_active), 64);
2310
2311 fs_info->fixup_workers =
2312 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2313
2314 /*
2315 * endios are largely parallel and should have a very
2316 * low idle thresh
2317 */
2318 fs_info->endio_workers =
2319 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2320 fs_info->endio_meta_workers =
2321 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2322 fs_info->endio_meta_write_workers =
2323 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2324 fs_info->endio_raid56_workers =
2325 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2326 fs_info->endio_repair_workers =
2327 btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2328 fs_info->rmw_workers =
2329 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2330 fs_info->endio_write_workers =
2331 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2332 fs_info->endio_freespace_worker =
2333 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2334 fs_info->delayed_workers =
2335 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2336 fs_info->readahead_workers =
2337 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2338 fs_info->qgroup_rescan_workers =
2339 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2340 fs_info->extent_workers =
2341 btrfs_alloc_workqueue("extent-refs", flags,
2342 min_t(u64, fs_devices->num_devices,
2343 max_active), 8);
2344
2345 if (!(fs_info->workers && fs_info->delalloc_workers &&
2346 fs_info->submit_workers && fs_info->flush_workers &&
2347 fs_info->endio_workers && fs_info->endio_meta_workers &&
2348 fs_info->endio_meta_write_workers &&
2349 fs_info->endio_repair_workers &&
2350 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2351 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2352 fs_info->caching_workers && fs_info->readahead_workers &&
2353 fs_info->fixup_workers && fs_info->delayed_workers &&
2354 fs_info->extent_workers &&
2355 fs_info->qgroup_rescan_workers)) {
2356 return -ENOMEM;
2357 }
2358
2359 return 0;
2360 }
2361
btrfs_replay_log(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2362 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2363 struct btrfs_fs_devices *fs_devices)
2364 {
2365 int ret;
2366 struct btrfs_root *tree_root = fs_info->tree_root;
2367 struct btrfs_root *log_tree_root;
2368 struct btrfs_super_block *disk_super = fs_info->super_copy;
2369 u64 bytenr = btrfs_super_log_root(disk_super);
2370
2371 if (fs_devices->rw_devices == 0) {
2372 btrfs_warn(fs_info, "log replay required on RO media");
2373 return -EIO;
2374 }
2375
2376 log_tree_root = btrfs_alloc_root(fs_info);
2377 if (!log_tree_root)
2378 return -ENOMEM;
2379
2380 __setup_root(tree_root->nodesize, tree_root->sectorsize,
2381 tree_root->stripesize, log_tree_root, fs_info,
2382 BTRFS_TREE_LOG_OBJECTID);
2383
2384 log_tree_root->node = read_tree_block(tree_root, bytenr,
2385 fs_info->generation + 1);
2386 if (IS_ERR(log_tree_root->node)) {
2387 btrfs_warn(fs_info, "failed to read log tree");
2388 ret = PTR_ERR(log_tree_root->node);
2389 kfree(log_tree_root);
2390 return ret;
2391 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2392 btrfs_err(fs_info, "failed to read log tree");
2393 free_extent_buffer(log_tree_root->node);
2394 kfree(log_tree_root);
2395 return -EIO;
2396 }
2397 /* returns with log_tree_root freed on success */
2398 ret = btrfs_recover_log_trees(log_tree_root);
2399 if (ret) {
2400 btrfs_std_error(tree_root->fs_info, ret,
2401 "Failed to recover log tree");
2402 free_extent_buffer(log_tree_root->node);
2403 kfree(log_tree_root);
2404 return ret;
2405 }
2406
2407 if (fs_info->sb->s_flags & MS_RDONLY) {
2408 ret = btrfs_commit_super(tree_root);
2409 if (ret)
2410 return ret;
2411 }
2412
2413 return 0;
2414 }
2415
btrfs_read_roots(struct btrfs_fs_info * fs_info,struct btrfs_root * tree_root)2416 static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2417 struct btrfs_root *tree_root)
2418 {
2419 struct btrfs_root *root;
2420 struct btrfs_key location;
2421 int ret;
2422
2423 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2424 location.type = BTRFS_ROOT_ITEM_KEY;
2425 location.offset = 0;
2426
2427 root = btrfs_read_tree_root(tree_root, &location);
2428 if (IS_ERR(root))
2429 return PTR_ERR(root);
2430 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2431 fs_info->extent_root = root;
2432
2433 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2434 root = btrfs_read_tree_root(tree_root, &location);
2435 if (IS_ERR(root))
2436 return PTR_ERR(root);
2437 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2438 fs_info->dev_root = root;
2439 btrfs_init_devices_late(fs_info);
2440
2441 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2442 root = btrfs_read_tree_root(tree_root, &location);
2443 if (IS_ERR(root))
2444 return PTR_ERR(root);
2445 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2446 fs_info->csum_root = root;
2447
2448 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2449 root = btrfs_read_tree_root(tree_root, &location);
2450 if (!IS_ERR(root)) {
2451 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2452 fs_info->quota_enabled = 1;
2453 fs_info->pending_quota_state = 1;
2454 fs_info->quota_root = root;
2455 }
2456
2457 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2458 root = btrfs_read_tree_root(tree_root, &location);
2459 if (IS_ERR(root)) {
2460 ret = PTR_ERR(root);
2461 if (ret != -ENOENT)
2462 return ret;
2463 } else {
2464 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2465 fs_info->uuid_root = root;
2466 }
2467
2468 return 0;
2469 }
2470
open_ctree(struct super_block * sb,struct btrfs_fs_devices * fs_devices,char * options)2471 int open_ctree(struct super_block *sb,
2472 struct btrfs_fs_devices *fs_devices,
2473 char *options)
2474 {
2475 u32 sectorsize;
2476 u32 nodesize;
2477 u32 stripesize;
2478 u64 generation;
2479 u64 features;
2480 struct btrfs_key location;
2481 struct buffer_head *bh;
2482 struct btrfs_super_block *disk_super;
2483 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2484 struct btrfs_root *tree_root;
2485 struct btrfs_root *chunk_root;
2486 int ret;
2487 int err = -EINVAL;
2488 int num_backups_tried = 0;
2489 int backup_index = 0;
2490 int max_active;
2491
2492 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2493 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2494 if (!tree_root || !chunk_root) {
2495 err = -ENOMEM;
2496 goto fail;
2497 }
2498
2499 ret = init_srcu_struct(&fs_info->subvol_srcu);
2500 if (ret) {
2501 err = ret;
2502 goto fail;
2503 }
2504
2505 ret = setup_bdi(fs_info, &fs_info->bdi);
2506 if (ret) {
2507 err = ret;
2508 goto fail_srcu;
2509 }
2510
2511 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2512 if (ret) {
2513 err = ret;
2514 goto fail_bdi;
2515 }
2516 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2517 (1 + ilog2(nr_cpu_ids));
2518
2519 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2520 if (ret) {
2521 err = ret;
2522 goto fail_dirty_metadata_bytes;
2523 }
2524
2525 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2526 if (ret) {
2527 err = ret;
2528 goto fail_delalloc_bytes;
2529 }
2530
2531 fs_info->btree_inode = new_inode(sb);
2532 if (!fs_info->btree_inode) {
2533 err = -ENOMEM;
2534 goto fail_bio_counter;
2535 }
2536
2537 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2538
2539 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2540 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2541 INIT_LIST_HEAD(&fs_info->trans_list);
2542 INIT_LIST_HEAD(&fs_info->dead_roots);
2543 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2544 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2545 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2546 spin_lock_init(&fs_info->delalloc_root_lock);
2547 spin_lock_init(&fs_info->trans_lock);
2548 spin_lock_init(&fs_info->fs_roots_radix_lock);
2549 spin_lock_init(&fs_info->delayed_iput_lock);
2550 spin_lock_init(&fs_info->defrag_inodes_lock);
2551 spin_lock_init(&fs_info->free_chunk_lock);
2552 spin_lock_init(&fs_info->tree_mod_seq_lock);
2553 spin_lock_init(&fs_info->super_lock);
2554 spin_lock_init(&fs_info->qgroup_op_lock);
2555 spin_lock_init(&fs_info->buffer_lock);
2556 spin_lock_init(&fs_info->unused_bgs_lock);
2557 rwlock_init(&fs_info->tree_mod_log_lock);
2558 mutex_init(&fs_info->unused_bg_unpin_mutex);
2559 mutex_init(&fs_info->delete_unused_bgs_mutex);
2560 mutex_init(&fs_info->reloc_mutex);
2561 mutex_init(&fs_info->delalloc_root_mutex);
2562 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2563 seqlock_init(&fs_info->profiles_lock);
2564
2565 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2566 INIT_LIST_HEAD(&fs_info->space_info);
2567 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2568 INIT_LIST_HEAD(&fs_info->unused_bgs);
2569 btrfs_mapping_init(&fs_info->mapping_tree);
2570 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2571 BTRFS_BLOCK_RSV_GLOBAL);
2572 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2573 BTRFS_BLOCK_RSV_DELALLOC);
2574 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2575 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2576 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2577 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2578 BTRFS_BLOCK_RSV_DELOPS);
2579 atomic_set(&fs_info->nr_async_submits, 0);
2580 atomic_set(&fs_info->async_delalloc_pages, 0);
2581 atomic_set(&fs_info->async_submit_draining, 0);
2582 atomic_set(&fs_info->nr_async_bios, 0);
2583 atomic_set(&fs_info->defrag_running, 0);
2584 atomic_set(&fs_info->qgroup_op_seq, 0);
2585 atomic64_set(&fs_info->tree_mod_seq, 0);
2586 fs_info->sb = sb;
2587 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2588 fs_info->metadata_ratio = 0;
2589 fs_info->defrag_inodes = RB_ROOT;
2590 fs_info->free_chunk_space = 0;
2591 fs_info->tree_mod_log = RB_ROOT;
2592 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2593 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2594 /* readahead state */
2595 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2596 spin_lock_init(&fs_info->reada_lock);
2597
2598 fs_info->thread_pool_size = min_t(unsigned long,
2599 num_online_cpus() + 2, 8);
2600
2601 INIT_LIST_HEAD(&fs_info->ordered_roots);
2602 spin_lock_init(&fs_info->ordered_root_lock);
2603 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2604 GFP_NOFS);
2605 if (!fs_info->delayed_root) {
2606 err = -ENOMEM;
2607 goto fail_iput;
2608 }
2609 btrfs_init_delayed_root(fs_info->delayed_root);
2610
2611 btrfs_init_scrub(fs_info);
2612 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2613 fs_info->check_integrity_print_mask = 0;
2614 #endif
2615 btrfs_init_balance(fs_info);
2616 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2617
2618 sb->s_blocksize = 4096;
2619 sb->s_blocksize_bits = blksize_bits(4096);
2620 sb->s_bdi = &fs_info->bdi;
2621
2622 btrfs_init_btree_inode(fs_info, tree_root);
2623
2624 spin_lock_init(&fs_info->block_group_cache_lock);
2625 fs_info->block_group_cache_tree = RB_ROOT;
2626 fs_info->first_logical_byte = (u64)-1;
2627
2628 extent_io_tree_init(&fs_info->freed_extents[0],
2629 fs_info->btree_inode->i_mapping);
2630 extent_io_tree_init(&fs_info->freed_extents[1],
2631 fs_info->btree_inode->i_mapping);
2632 fs_info->pinned_extents = &fs_info->freed_extents[0];
2633 fs_info->do_barriers = 1;
2634
2635
2636 mutex_init(&fs_info->ordered_operations_mutex);
2637 mutex_init(&fs_info->tree_log_mutex);
2638 mutex_init(&fs_info->chunk_mutex);
2639 mutex_init(&fs_info->transaction_kthread_mutex);
2640 mutex_init(&fs_info->cleaner_mutex);
2641 mutex_init(&fs_info->volume_mutex);
2642 mutex_init(&fs_info->ro_block_group_mutex);
2643 init_rwsem(&fs_info->commit_root_sem);
2644 init_rwsem(&fs_info->cleanup_work_sem);
2645 init_rwsem(&fs_info->subvol_sem);
2646 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2647
2648 btrfs_init_dev_replace_locks(fs_info);
2649 btrfs_init_qgroup(fs_info);
2650
2651 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2652 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2653
2654 init_waitqueue_head(&fs_info->transaction_throttle);
2655 init_waitqueue_head(&fs_info->transaction_wait);
2656 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2657 init_waitqueue_head(&fs_info->async_submit_wait);
2658
2659 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2660
2661 ret = btrfs_alloc_stripe_hash_table(fs_info);
2662 if (ret) {
2663 err = ret;
2664 goto fail_alloc;
2665 }
2666
2667 __setup_root(4096, 4096, 4096, tree_root,
2668 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2669
2670 invalidate_bdev(fs_devices->latest_bdev);
2671
2672 /*
2673 * Read super block and check the signature bytes only
2674 */
2675 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2676 if (IS_ERR(bh)) {
2677 err = PTR_ERR(bh);
2678 goto fail_alloc;
2679 }
2680
2681 /*
2682 * We want to check superblock checksum, the type is stored inside.
2683 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2684 */
2685 if (btrfs_check_super_csum(bh->b_data)) {
2686 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2687 err = -EINVAL;
2688 brelse(bh);
2689 goto fail_alloc;
2690 }
2691
2692 /*
2693 * super_copy is zeroed at allocation time and we never touch the
2694 * following bytes up to INFO_SIZE, the checksum is calculated from
2695 * the whole block of INFO_SIZE
2696 */
2697 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2698 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2699 sizeof(*fs_info->super_for_commit));
2700 brelse(bh);
2701
2702 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2703
2704 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2705 if (ret) {
2706 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2707 err = -EINVAL;
2708 goto fail_alloc;
2709 }
2710
2711 disk_super = fs_info->super_copy;
2712 if (!btrfs_super_root(disk_super))
2713 goto fail_alloc;
2714
2715 /* check FS state, whether FS is broken. */
2716 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2717 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2718
2719 /*
2720 * run through our array of backup supers and setup
2721 * our ring pointer to the oldest one
2722 */
2723 generation = btrfs_super_generation(disk_super);
2724 find_oldest_super_backup(fs_info, generation);
2725
2726 /*
2727 * In the long term, we'll store the compression type in the super
2728 * block, and it'll be used for per file compression control.
2729 */
2730 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2731
2732 ret = btrfs_parse_options(tree_root, options);
2733 if (ret) {
2734 err = ret;
2735 goto fail_alloc;
2736 }
2737
2738 features = btrfs_super_incompat_flags(disk_super) &
2739 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2740 if (features) {
2741 printk(KERN_ERR "BTRFS: couldn't mount because of "
2742 "unsupported optional features (%Lx).\n",
2743 features);
2744 err = -EINVAL;
2745 goto fail_alloc;
2746 }
2747
2748 /*
2749 * Leafsize and nodesize were always equal, this is only a sanity check.
2750 */
2751 if (le32_to_cpu(disk_super->__unused_leafsize) !=
2752 btrfs_super_nodesize(disk_super)) {
2753 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2754 "blocksizes don't match. node %d leaf %d\n",
2755 btrfs_super_nodesize(disk_super),
2756 le32_to_cpu(disk_super->__unused_leafsize));
2757 err = -EINVAL;
2758 goto fail_alloc;
2759 }
2760 if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2761 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2762 "blocksize (%d) was too large\n",
2763 btrfs_super_nodesize(disk_super));
2764 err = -EINVAL;
2765 goto fail_alloc;
2766 }
2767
2768 features = btrfs_super_incompat_flags(disk_super);
2769 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2770 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2771 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2772
2773 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2774 printk(KERN_INFO "BTRFS: has skinny extents\n");
2775
2776 /*
2777 * flag our filesystem as having big metadata blocks if
2778 * they are bigger than the page size
2779 */
2780 if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
2781 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2782 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2783 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2784 }
2785
2786 nodesize = btrfs_super_nodesize(disk_super);
2787 sectorsize = btrfs_super_sectorsize(disk_super);
2788 stripesize = btrfs_super_stripesize(disk_super);
2789 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2790 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2791
2792 /*
2793 * mixed block groups end up with duplicate but slightly offset
2794 * extent buffers for the same range. It leads to corruptions
2795 */
2796 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2797 (sectorsize != nodesize)) {
2798 printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
2799 "are not allowed for mixed block groups on %s\n",
2800 sb->s_id);
2801 goto fail_alloc;
2802 }
2803
2804 /*
2805 * Needn't use the lock because there is no other task which will
2806 * update the flag.
2807 */
2808 btrfs_set_super_incompat_flags(disk_super, features);
2809
2810 features = btrfs_super_compat_ro_flags(disk_super) &
2811 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2812 if (!(sb->s_flags & MS_RDONLY) && features) {
2813 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2814 "unsupported option features (%Lx).\n",
2815 features);
2816 err = -EINVAL;
2817 goto fail_alloc;
2818 }
2819
2820 max_active = fs_info->thread_pool_size;
2821
2822 ret = btrfs_init_workqueues(fs_info, fs_devices);
2823 if (ret) {
2824 err = ret;
2825 goto fail_sb_buffer;
2826 }
2827
2828 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2829 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2830 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2831
2832 tree_root->nodesize = nodesize;
2833 tree_root->sectorsize = sectorsize;
2834 tree_root->stripesize = stripesize;
2835
2836 sb->s_blocksize = sectorsize;
2837 sb->s_blocksize_bits = blksize_bits(sectorsize);
2838
2839 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2840 printk(KERN_ERR "BTRFS: valid FS not found on %s\n", sb->s_id);
2841 goto fail_sb_buffer;
2842 }
2843
2844 if (sectorsize != PAGE_SIZE) {
2845 printk(KERN_ERR "BTRFS: incompatible sector size (%lu) "
2846 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2847 goto fail_sb_buffer;
2848 }
2849
2850 mutex_lock(&fs_info->chunk_mutex);
2851 ret = btrfs_read_sys_array(tree_root);
2852 mutex_unlock(&fs_info->chunk_mutex);
2853 if (ret) {
2854 printk(KERN_ERR "BTRFS: failed to read the system "
2855 "array on %s\n", sb->s_id);
2856 goto fail_sb_buffer;
2857 }
2858
2859 generation = btrfs_super_chunk_root_generation(disk_super);
2860
2861 __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2862 fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2863
2864 chunk_root->node = read_tree_block(chunk_root,
2865 btrfs_super_chunk_root(disk_super),
2866 generation);
2867 if (IS_ERR(chunk_root->node) ||
2868 !extent_buffer_uptodate(chunk_root->node)) {
2869 printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
2870 sb->s_id);
2871 if (!IS_ERR(chunk_root->node))
2872 free_extent_buffer(chunk_root->node);
2873 chunk_root->node = NULL;
2874 goto fail_tree_roots;
2875 }
2876 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2877 chunk_root->commit_root = btrfs_root_node(chunk_root);
2878
2879 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2880 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2881
2882 ret = btrfs_read_chunk_tree(chunk_root);
2883 if (ret) {
2884 printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
2885 sb->s_id);
2886 goto fail_tree_roots;
2887 }
2888
2889 /*
2890 * keep the device that is marked to be the target device for the
2891 * dev_replace procedure
2892 */
2893 btrfs_close_extra_devices(fs_devices, 0);
2894
2895 if (!fs_devices->latest_bdev) {
2896 printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
2897 sb->s_id);
2898 goto fail_tree_roots;
2899 }
2900
2901 retry_root_backup:
2902 generation = btrfs_super_generation(disk_super);
2903
2904 tree_root->node = read_tree_block(tree_root,
2905 btrfs_super_root(disk_super),
2906 generation);
2907 if (IS_ERR(tree_root->node) ||
2908 !extent_buffer_uptodate(tree_root->node)) {
2909 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2910 sb->s_id);
2911 if (!IS_ERR(tree_root->node))
2912 free_extent_buffer(tree_root->node);
2913 tree_root->node = NULL;
2914 goto recovery_tree_root;
2915 }
2916
2917 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2918 tree_root->commit_root = btrfs_root_node(tree_root);
2919 btrfs_set_root_refs(&tree_root->root_item, 1);
2920
2921 mutex_lock(&tree_root->objectid_mutex);
2922 ret = btrfs_find_highest_objectid(tree_root,
2923 &tree_root->highest_objectid);
2924 if (ret) {
2925 mutex_unlock(&tree_root->objectid_mutex);
2926 goto recovery_tree_root;
2927 }
2928
2929 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2930
2931 mutex_unlock(&tree_root->objectid_mutex);
2932
2933 ret = btrfs_read_roots(fs_info, tree_root);
2934 if (ret)
2935 goto recovery_tree_root;
2936
2937 fs_info->generation = generation;
2938 fs_info->last_trans_committed = generation;
2939
2940 ret = btrfs_recover_balance(fs_info);
2941 if (ret) {
2942 printk(KERN_ERR "BTRFS: failed to recover balance\n");
2943 goto fail_block_groups;
2944 }
2945
2946 ret = btrfs_init_dev_stats(fs_info);
2947 if (ret) {
2948 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2949 ret);
2950 goto fail_block_groups;
2951 }
2952
2953 ret = btrfs_init_dev_replace(fs_info);
2954 if (ret) {
2955 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2956 goto fail_block_groups;
2957 }
2958
2959 btrfs_close_extra_devices(fs_devices, 1);
2960
2961 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2962 if (ret) {
2963 pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret);
2964 goto fail_block_groups;
2965 }
2966
2967 ret = btrfs_sysfs_add_device(fs_devices);
2968 if (ret) {
2969 pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret);
2970 goto fail_fsdev_sysfs;
2971 }
2972
2973 ret = btrfs_sysfs_add_mounted(fs_info);
2974 if (ret) {
2975 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2976 goto fail_fsdev_sysfs;
2977 }
2978
2979 ret = btrfs_init_space_info(fs_info);
2980 if (ret) {
2981 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2982 goto fail_sysfs;
2983 }
2984
2985 ret = btrfs_read_block_groups(fs_info->extent_root);
2986 if (ret) {
2987 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2988 goto fail_sysfs;
2989 }
2990 fs_info->num_tolerated_disk_barrier_failures =
2991 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2992 if (fs_info->fs_devices->missing_devices >
2993 fs_info->num_tolerated_disk_barrier_failures &&
2994 !(sb->s_flags & MS_RDONLY)) {
2995 pr_warn("BTRFS: missing devices(%llu) exceeds the limit(%d), writeable mount is not allowed\n",
2996 fs_info->fs_devices->missing_devices,
2997 fs_info->num_tolerated_disk_barrier_failures);
2998 goto fail_sysfs;
2999 }
3000
3001 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3002 "btrfs-cleaner");
3003 if (IS_ERR(fs_info->cleaner_kthread))
3004 goto fail_sysfs;
3005
3006 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3007 tree_root,
3008 "btrfs-transaction");
3009 if (IS_ERR(fs_info->transaction_kthread))
3010 goto fail_cleaner;
3011
3012 if (!btrfs_test_opt(tree_root, SSD) &&
3013 !btrfs_test_opt(tree_root, NOSSD) &&
3014 !fs_info->fs_devices->rotating) {
3015 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
3016 "mode\n");
3017 btrfs_set_opt(fs_info->mount_opt, SSD);
3018 }
3019
3020 /*
3021 * Mount does not set all options immediatelly, we can do it now and do
3022 * not have to wait for transaction commit
3023 */
3024 btrfs_apply_pending_changes(fs_info);
3025
3026 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3027 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
3028 ret = btrfsic_mount(tree_root, fs_devices,
3029 btrfs_test_opt(tree_root,
3030 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3031 1 : 0,
3032 fs_info->check_integrity_print_mask);
3033 if (ret)
3034 printk(KERN_WARNING "BTRFS: failed to initialize"
3035 " integrity check module %s\n", sb->s_id);
3036 }
3037 #endif
3038 ret = btrfs_read_qgroup_config(fs_info);
3039 if (ret)
3040 goto fail_trans_kthread;
3041
3042 /* do not make disk changes in broken FS */
3043 if (btrfs_super_log_root(disk_super) != 0) {
3044 ret = btrfs_replay_log(fs_info, fs_devices);
3045 if (ret) {
3046 err = ret;
3047 goto fail_qgroup;
3048 }
3049 }
3050
3051 ret = btrfs_find_orphan_roots(tree_root);
3052 if (ret)
3053 goto fail_qgroup;
3054
3055 if (!(sb->s_flags & MS_RDONLY)) {
3056 ret = btrfs_cleanup_fs_roots(fs_info);
3057 if (ret)
3058 goto fail_qgroup;
3059
3060 mutex_lock(&fs_info->cleaner_mutex);
3061 ret = btrfs_recover_relocation(tree_root);
3062 mutex_unlock(&fs_info->cleaner_mutex);
3063 if (ret < 0) {
3064 printk(KERN_WARNING
3065 "BTRFS: failed to recover relocation\n");
3066 err = -EINVAL;
3067 goto fail_qgroup;
3068 }
3069 }
3070
3071 location.objectid = BTRFS_FS_TREE_OBJECTID;
3072 location.type = BTRFS_ROOT_ITEM_KEY;
3073 location.offset = 0;
3074
3075 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3076 if (IS_ERR(fs_info->fs_root)) {
3077 err = PTR_ERR(fs_info->fs_root);
3078 goto fail_qgroup;
3079 }
3080
3081 if (sb->s_flags & MS_RDONLY)
3082 return 0;
3083
3084 down_read(&fs_info->cleanup_work_sem);
3085 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3086 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3087 up_read(&fs_info->cleanup_work_sem);
3088 close_ctree(tree_root);
3089 return ret;
3090 }
3091 up_read(&fs_info->cleanup_work_sem);
3092
3093 ret = btrfs_resume_balance_async(fs_info);
3094 if (ret) {
3095 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
3096 close_ctree(tree_root);
3097 return ret;
3098 }
3099
3100 ret = btrfs_resume_dev_replace_async(fs_info);
3101 if (ret) {
3102 pr_warn("BTRFS: failed to resume dev_replace\n");
3103 close_ctree(tree_root);
3104 return ret;
3105 }
3106
3107 btrfs_qgroup_rescan_resume(fs_info);
3108
3109 if (!fs_info->uuid_root) {
3110 pr_info("BTRFS: creating UUID tree\n");
3111 ret = btrfs_create_uuid_tree(fs_info);
3112 if (ret) {
3113 pr_warn("BTRFS: failed to create the UUID tree %d\n",
3114 ret);
3115 close_ctree(tree_root);
3116 return ret;
3117 }
3118 } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3119 fs_info->generation !=
3120 btrfs_super_uuid_tree_generation(disk_super)) {
3121 pr_info("BTRFS: checking UUID tree\n");
3122 ret = btrfs_check_uuid_tree(fs_info);
3123 if (ret) {
3124 pr_warn("BTRFS: failed to check the UUID tree %d\n",
3125 ret);
3126 close_ctree(tree_root);
3127 return ret;
3128 }
3129 } else {
3130 fs_info->update_uuid_tree_gen = 1;
3131 }
3132
3133 fs_info->open = 1;
3134
3135 return 0;
3136
3137 fail_qgroup:
3138 btrfs_free_qgroup_config(fs_info);
3139 fail_trans_kthread:
3140 kthread_stop(fs_info->transaction_kthread);
3141 btrfs_cleanup_transaction(fs_info->tree_root);
3142 btrfs_free_fs_roots(fs_info);
3143 fail_cleaner:
3144 kthread_stop(fs_info->cleaner_kthread);
3145
3146 /*
3147 * make sure we're done with the btree inode before we stop our
3148 * kthreads
3149 */
3150 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3151
3152 fail_sysfs:
3153 btrfs_sysfs_remove_mounted(fs_info);
3154
3155 fail_fsdev_sysfs:
3156 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3157
3158 fail_block_groups:
3159 btrfs_put_block_group_cache(fs_info);
3160 btrfs_free_block_groups(fs_info);
3161
3162 fail_tree_roots:
3163 free_root_pointers(fs_info, 1);
3164 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3165
3166 fail_sb_buffer:
3167 btrfs_stop_all_workers(fs_info);
3168 fail_alloc:
3169 fail_iput:
3170 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3171
3172 iput(fs_info->btree_inode);
3173 fail_bio_counter:
3174 percpu_counter_destroy(&fs_info->bio_counter);
3175 fail_delalloc_bytes:
3176 percpu_counter_destroy(&fs_info->delalloc_bytes);
3177 fail_dirty_metadata_bytes:
3178 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3179 fail_bdi:
3180 bdi_destroy(&fs_info->bdi);
3181 fail_srcu:
3182 cleanup_srcu_struct(&fs_info->subvol_srcu);
3183 fail:
3184 btrfs_free_stripe_hash_table(fs_info);
3185 btrfs_close_devices(fs_info->fs_devices);
3186 return err;
3187
3188 recovery_tree_root:
3189 if (!btrfs_test_opt(tree_root, RECOVERY))
3190 goto fail_tree_roots;
3191
3192 free_root_pointers(fs_info, 0);
3193
3194 /* don't use the log in recovery mode, it won't be valid */
3195 btrfs_set_super_log_root(disk_super, 0);
3196
3197 /* we can't trust the free space cache either */
3198 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3199
3200 ret = next_root_backup(fs_info, fs_info->super_copy,
3201 &num_backups_tried, &backup_index);
3202 if (ret == -1)
3203 goto fail_block_groups;
3204 goto retry_root_backup;
3205 }
3206
btrfs_end_buffer_write_sync(struct buffer_head * bh,int uptodate)3207 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3208 {
3209 if (uptodate) {
3210 set_buffer_uptodate(bh);
3211 } else {
3212 struct btrfs_device *device = (struct btrfs_device *)
3213 bh->b_private;
3214
3215 btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3216 "lost page write due to IO error on %s",
3217 rcu_str_deref(device->name));
3218 /* note, we dont' set_buffer_write_io_error because we have
3219 * our own ways of dealing with the IO errors
3220 */
3221 clear_buffer_uptodate(bh);
3222 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3223 }
3224 unlock_buffer(bh);
3225 put_bh(bh);
3226 }
3227
btrfs_read_dev_one_super(struct block_device * bdev,int copy_num,struct buffer_head ** bh_ret)3228 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3229 struct buffer_head **bh_ret)
3230 {
3231 struct buffer_head *bh;
3232 struct btrfs_super_block *super;
3233 u64 bytenr;
3234
3235 bytenr = btrfs_sb_offset(copy_num);
3236 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3237 return -EINVAL;
3238
3239 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3240 /*
3241 * If we fail to read from the underlying devices, as of now
3242 * the best option we have is to mark it EIO.
3243 */
3244 if (!bh)
3245 return -EIO;
3246
3247 super = (struct btrfs_super_block *)bh->b_data;
3248 if (btrfs_super_bytenr(super) != bytenr ||
3249 btrfs_super_magic(super) != BTRFS_MAGIC) {
3250 brelse(bh);
3251 return -EINVAL;
3252 }
3253
3254 *bh_ret = bh;
3255 return 0;
3256 }
3257
3258
btrfs_read_dev_super(struct block_device * bdev)3259 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3260 {
3261 struct buffer_head *bh;
3262 struct buffer_head *latest = NULL;
3263 struct btrfs_super_block *super;
3264 int i;
3265 u64 transid = 0;
3266 int ret = -EINVAL;
3267
3268 /* we would like to check all the supers, but that would make
3269 * a btrfs mount succeed after a mkfs from a different FS.
3270 * So, we need to add a special mount option to scan for
3271 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3272 */
3273 for (i = 0; i < 1; i++) {
3274 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3275 if (ret)
3276 continue;
3277
3278 super = (struct btrfs_super_block *)bh->b_data;
3279
3280 if (!latest || btrfs_super_generation(super) > transid) {
3281 brelse(latest);
3282 latest = bh;
3283 transid = btrfs_super_generation(super);
3284 } else {
3285 brelse(bh);
3286 }
3287 }
3288
3289 if (!latest)
3290 return ERR_PTR(ret);
3291
3292 return latest;
3293 }
3294
3295 /*
3296 * this should be called twice, once with wait == 0 and
3297 * once with wait == 1. When wait == 0 is done, all the buffer heads
3298 * we write are pinned.
3299 *
3300 * They are released when wait == 1 is done.
3301 * max_mirrors must be the same for both runs, and it indicates how
3302 * many supers on this one device should be written.
3303 *
3304 * max_mirrors == 0 means to write them all.
3305 */
write_dev_supers(struct btrfs_device * device,struct btrfs_super_block * sb,int do_barriers,int wait,int max_mirrors)3306 static int write_dev_supers(struct btrfs_device *device,
3307 struct btrfs_super_block *sb,
3308 int do_barriers, int wait, int max_mirrors)
3309 {
3310 struct buffer_head *bh;
3311 int i;
3312 int ret;
3313 int errors = 0;
3314 u32 crc;
3315 u64 bytenr;
3316
3317 if (max_mirrors == 0)
3318 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3319
3320 for (i = 0; i < max_mirrors; i++) {
3321 bytenr = btrfs_sb_offset(i);
3322 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3323 device->commit_total_bytes)
3324 break;
3325
3326 if (wait) {
3327 bh = __find_get_block(device->bdev, bytenr / 4096,
3328 BTRFS_SUPER_INFO_SIZE);
3329 if (!bh) {
3330 errors++;
3331 continue;
3332 }
3333 wait_on_buffer(bh);
3334 if (!buffer_uptodate(bh))
3335 errors++;
3336
3337 /* drop our reference */
3338 brelse(bh);
3339
3340 /* drop the reference from the wait == 0 run */
3341 brelse(bh);
3342 continue;
3343 } else {
3344 btrfs_set_super_bytenr(sb, bytenr);
3345
3346 crc = ~(u32)0;
3347 crc = btrfs_csum_data((char *)sb +
3348 BTRFS_CSUM_SIZE, crc,
3349 BTRFS_SUPER_INFO_SIZE -
3350 BTRFS_CSUM_SIZE);
3351 btrfs_csum_final(crc, sb->csum);
3352
3353 /*
3354 * one reference for us, and we leave it for the
3355 * caller
3356 */
3357 bh = __getblk(device->bdev, bytenr / 4096,
3358 BTRFS_SUPER_INFO_SIZE);
3359 if (!bh) {
3360 btrfs_err(device->dev_root->fs_info,
3361 "couldn't get super buffer head for bytenr %llu",
3362 bytenr);
3363 errors++;
3364 continue;
3365 }
3366
3367 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3368
3369 /* one reference for submit_bh */
3370 get_bh(bh);
3371
3372 set_buffer_uptodate(bh);
3373 lock_buffer(bh);
3374 bh->b_end_io = btrfs_end_buffer_write_sync;
3375 bh->b_private = device;
3376 }
3377
3378 /*
3379 * we fua the first super. The others we allow
3380 * to go down lazy.
3381 */
3382 if (i == 0)
3383 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3384 else
3385 ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3386 if (ret)
3387 errors++;
3388 }
3389 return errors < i ? 0 : -1;
3390 }
3391
3392 /*
3393 * endio for the write_dev_flush, this will wake anyone waiting
3394 * for the barrier when it is done
3395 */
btrfs_end_empty_barrier(struct bio * bio)3396 static void btrfs_end_empty_barrier(struct bio *bio)
3397 {
3398 if (bio->bi_private)
3399 complete(bio->bi_private);
3400 bio_put(bio);
3401 }
3402
3403 /*
3404 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3405 * sent down. With wait == 1, it waits for the previous flush.
3406 *
3407 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3408 * capable
3409 */
write_dev_flush(struct btrfs_device * device,int wait)3410 static int write_dev_flush(struct btrfs_device *device, int wait)
3411 {
3412 struct bio *bio;
3413 int ret = 0;
3414
3415 if (device->nobarriers)
3416 return 0;
3417
3418 if (wait) {
3419 bio = device->flush_bio;
3420 if (!bio)
3421 return 0;
3422
3423 wait_for_completion(&device->flush_wait);
3424
3425 if (bio->bi_error) {
3426 ret = bio->bi_error;
3427 btrfs_dev_stat_inc_and_print(device,
3428 BTRFS_DEV_STAT_FLUSH_ERRS);
3429 }
3430
3431 /* drop the reference from the wait == 0 run */
3432 bio_put(bio);
3433 device->flush_bio = NULL;
3434
3435 return ret;
3436 }
3437
3438 /*
3439 * one reference for us, and we leave it for the
3440 * caller
3441 */
3442 device->flush_bio = NULL;
3443 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3444 if (!bio)
3445 return -ENOMEM;
3446
3447 bio->bi_end_io = btrfs_end_empty_barrier;
3448 bio->bi_bdev = device->bdev;
3449 init_completion(&device->flush_wait);
3450 bio->bi_private = &device->flush_wait;
3451 device->flush_bio = bio;
3452
3453 bio_get(bio);
3454 btrfsic_submit_bio(WRITE_FLUSH, bio);
3455
3456 return 0;
3457 }
3458
3459 /*
3460 * send an empty flush down to each device in parallel,
3461 * then wait for them
3462 */
barrier_all_devices(struct btrfs_fs_info * info)3463 static int barrier_all_devices(struct btrfs_fs_info *info)
3464 {
3465 struct list_head *head;
3466 struct btrfs_device *dev;
3467 int errors_send = 0;
3468 int errors_wait = 0;
3469 int ret;
3470
3471 /* send down all the barriers */
3472 head = &info->fs_devices->devices;
3473 list_for_each_entry_rcu(dev, head, dev_list) {
3474 if (dev->missing)
3475 continue;
3476 if (!dev->bdev) {
3477 errors_send++;
3478 continue;
3479 }
3480 if (!dev->in_fs_metadata || !dev->writeable)
3481 continue;
3482
3483 ret = write_dev_flush(dev, 0);
3484 if (ret)
3485 errors_send++;
3486 }
3487
3488 /* wait for all the barriers */
3489 list_for_each_entry_rcu(dev, head, dev_list) {
3490 if (dev->missing)
3491 continue;
3492 if (!dev->bdev) {
3493 errors_wait++;
3494 continue;
3495 }
3496 if (!dev->in_fs_metadata || !dev->writeable)
3497 continue;
3498
3499 ret = write_dev_flush(dev, 1);
3500 if (ret)
3501 errors_wait++;
3502 }
3503 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3504 errors_wait > info->num_tolerated_disk_barrier_failures)
3505 return -EIO;
3506 return 0;
3507 }
3508
btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)3509 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3510 {
3511 int raid_type;
3512 int min_tolerated = INT_MAX;
3513
3514 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3515 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3516 min_tolerated = min(min_tolerated,
3517 btrfs_raid_array[BTRFS_RAID_SINGLE].
3518 tolerated_failures);
3519
3520 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3521 if (raid_type == BTRFS_RAID_SINGLE)
3522 continue;
3523 if (!(flags & btrfs_raid_group[raid_type]))
3524 continue;
3525 min_tolerated = min(min_tolerated,
3526 btrfs_raid_array[raid_type].
3527 tolerated_failures);
3528 }
3529
3530 if (min_tolerated == INT_MAX) {
3531 pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
3532 min_tolerated = 0;
3533 }
3534
3535 return min_tolerated;
3536 }
3537
btrfs_calc_num_tolerated_disk_barrier_failures(struct btrfs_fs_info * fs_info)3538 int btrfs_calc_num_tolerated_disk_barrier_failures(
3539 struct btrfs_fs_info *fs_info)
3540 {
3541 struct btrfs_ioctl_space_info space;
3542 struct btrfs_space_info *sinfo;
3543 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3544 BTRFS_BLOCK_GROUP_SYSTEM,
3545 BTRFS_BLOCK_GROUP_METADATA,
3546 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3547 int i;
3548 int c;
3549 int num_tolerated_disk_barrier_failures =
3550 (int)fs_info->fs_devices->num_devices;
3551
3552 for (i = 0; i < ARRAY_SIZE(types); i++) {
3553 struct btrfs_space_info *tmp;
3554
3555 sinfo = NULL;
3556 rcu_read_lock();
3557 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3558 if (tmp->flags == types[i]) {
3559 sinfo = tmp;
3560 break;
3561 }
3562 }
3563 rcu_read_unlock();
3564
3565 if (!sinfo)
3566 continue;
3567
3568 down_read(&sinfo->groups_sem);
3569 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3570 u64 flags;
3571
3572 if (list_empty(&sinfo->block_groups[c]))
3573 continue;
3574
3575 btrfs_get_block_group_info(&sinfo->block_groups[c],
3576 &space);
3577 if (space.total_bytes == 0 || space.used_bytes == 0)
3578 continue;
3579 flags = space.flags;
3580
3581 num_tolerated_disk_barrier_failures = min(
3582 num_tolerated_disk_barrier_failures,
3583 btrfs_get_num_tolerated_disk_barrier_failures(
3584 flags));
3585 }
3586 up_read(&sinfo->groups_sem);
3587 }
3588
3589 return num_tolerated_disk_barrier_failures;
3590 }
3591
write_all_supers(struct btrfs_root * root,int max_mirrors)3592 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3593 {
3594 struct list_head *head;
3595 struct btrfs_device *dev;
3596 struct btrfs_super_block *sb;
3597 struct btrfs_dev_item *dev_item;
3598 int ret;
3599 int do_barriers;
3600 int max_errors;
3601 int total_errors = 0;
3602 u64 flags;
3603
3604 do_barriers = !btrfs_test_opt(root, NOBARRIER);
3605 backup_super_roots(root->fs_info);
3606
3607 sb = root->fs_info->super_for_commit;
3608 dev_item = &sb->dev_item;
3609
3610 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3611 head = &root->fs_info->fs_devices->devices;
3612 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3613
3614 if (do_barriers) {
3615 ret = barrier_all_devices(root->fs_info);
3616 if (ret) {
3617 mutex_unlock(
3618 &root->fs_info->fs_devices->device_list_mutex);
3619 btrfs_std_error(root->fs_info, ret,
3620 "errors while submitting device barriers.");
3621 return ret;
3622 }
3623 }
3624
3625 list_for_each_entry_rcu(dev, head, dev_list) {
3626 if (!dev->bdev) {
3627 total_errors++;
3628 continue;
3629 }
3630 if (!dev->in_fs_metadata || !dev->writeable)
3631 continue;
3632
3633 btrfs_set_stack_device_generation(dev_item, 0);
3634 btrfs_set_stack_device_type(dev_item, dev->type);
3635 btrfs_set_stack_device_id(dev_item, dev->devid);
3636 btrfs_set_stack_device_total_bytes(dev_item,
3637 dev->commit_total_bytes);
3638 btrfs_set_stack_device_bytes_used(dev_item,
3639 dev->commit_bytes_used);
3640 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3641 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3642 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3643 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3644 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3645
3646 flags = btrfs_super_flags(sb);
3647 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3648
3649 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3650 if (ret)
3651 total_errors++;
3652 }
3653 if (total_errors > max_errors) {
3654 btrfs_err(root->fs_info, "%d errors while writing supers",
3655 total_errors);
3656 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3657
3658 /* FUA is masked off if unsupported and can't be the reason */
3659 btrfs_std_error(root->fs_info, -EIO,
3660 "%d errors while writing supers", total_errors);
3661 return -EIO;
3662 }
3663
3664 total_errors = 0;
3665 list_for_each_entry_rcu(dev, head, dev_list) {
3666 if (!dev->bdev)
3667 continue;
3668 if (!dev->in_fs_metadata || !dev->writeable)
3669 continue;
3670
3671 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3672 if (ret)
3673 total_errors++;
3674 }
3675 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3676 if (total_errors > max_errors) {
3677 btrfs_std_error(root->fs_info, -EIO,
3678 "%d errors while writing supers", total_errors);
3679 return -EIO;
3680 }
3681 return 0;
3682 }
3683
write_ctree_super(struct btrfs_trans_handle * trans,struct btrfs_root * root,int max_mirrors)3684 int write_ctree_super(struct btrfs_trans_handle *trans,
3685 struct btrfs_root *root, int max_mirrors)
3686 {
3687 return write_all_supers(root, max_mirrors);
3688 }
3689
3690 /* Drop a fs root from the radix tree and free it. */
btrfs_drop_and_free_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)3691 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3692 struct btrfs_root *root)
3693 {
3694 spin_lock(&fs_info->fs_roots_radix_lock);
3695 radix_tree_delete(&fs_info->fs_roots_radix,
3696 (unsigned long)root->root_key.objectid);
3697 spin_unlock(&fs_info->fs_roots_radix_lock);
3698
3699 if (btrfs_root_refs(&root->root_item) == 0)
3700 synchronize_srcu(&fs_info->subvol_srcu);
3701
3702 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3703 btrfs_free_log(NULL, root);
3704
3705 if (root->free_ino_pinned)
3706 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3707 if (root->free_ino_ctl)
3708 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3709 free_fs_root(root);
3710 }
3711
free_fs_root(struct btrfs_root * root)3712 static void free_fs_root(struct btrfs_root *root)
3713 {
3714 iput(root->ino_cache_inode);
3715 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3716 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3717 root->orphan_block_rsv = NULL;
3718 if (root->anon_dev)
3719 free_anon_bdev(root->anon_dev);
3720 if (root->subv_writers)
3721 btrfs_free_subvolume_writers(root->subv_writers);
3722 free_extent_buffer(root->node);
3723 free_extent_buffer(root->commit_root);
3724 kfree(root->free_ino_ctl);
3725 kfree(root->free_ino_pinned);
3726 kfree(root->name);
3727 btrfs_put_fs_root(root);
3728 }
3729
btrfs_free_fs_root(struct btrfs_root * root)3730 void btrfs_free_fs_root(struct btrfs_root *root)
3731 {
3732 free_fs_root(root);
3733 }
3734
btrfs_cleanup_fs_roots(struct btrfs_fs_info * fs_info)3735 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3736 {
3737 u64 root_objectid = 0;
3738 struct btrfs_root *gang[8];
3739 int i = 0;
3740 int err = 0;
3741 unsigned int ret = 0;
3742 int index;
3743
3744 while (1) {
3745 index = srcu_read_lock(&fs_info->subvol_srcu);
3746 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3747 (void **)gang, root_objectid,
3748 ARRAY_SIZE(gang));
3749 if (!ret) {
3750 srcu_read_unlock(&fs_info->subvol_srcu, index);
3751 break;
3752 }
3753 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3754
3755 for (i = 0; i < ret; i++) {
3756 /* Avoid to grab roots in dead_roots */
3757 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3758 gang[i] = NULL;
3759 continue;
3760 }
3761 /* grab all the search result for later use */
3762 gang[i] = btrfs_grab_fs_root(gang[i]);
3763 }
3764 srcu_read_unlock(&fs_info->subvol_srcu, index);
3765
3766 for (i = 0; i < ret; i++) {
3767 if (!gang[i])
3768 continue;
3769 root_objectid = gang[i]->root_key.objectid;
3770 err = btrfs_orphan_cleanup(gang[i]);
3771 if (err)
3772 break;
3773 btrfs_put_fs_root(gang[i]);
3774 }
3775 root_objectid++;
3776 }
3777
3778 /* release the uncleaned roots due to error */
3779 for (; i < ret; i++) {
3780 if (gang[i])
3781 btrfs_put_fs_root(gang[i]);
3782 }
3783 return err;
3784 }
3785
btrfs_commit_super(struct btrfs_root * root)3786 int btrfs_commit_super(struct btrfs_root *root)
3787 {
3788 struct btrfs_trans_handle *trans;
3789
3790 mutex_lock(&root->fs_info->cleaner_mutex);
3791 btrfs_run_delayed_iputs(root);
3792 mutex_unlock(&root->fs_info->cleaner_mutex);
3793 wake_up_process(root->fs_info->cleaner_kthread);
3794
3795 /* wait until ongoing cleanup work done */
3796 down_write(&root->fs_info->cleanup_work_sem);
3797 up_write(&root->fs_info->cleanup_work_sem);
3798
3799 trans = btrfs_join_transaction(root);
3800 if (IS_ERR(trans))
3801 return PTR_ERR(trans);
3802 return btrfs_commit_transaction(trans, root);
3803 }
3804
close_ctree(struct btrfs_root * root)3805 void close_ctree(struct btrfs_root *root)
3806 {
3807 struct btrfs_fs_info *fs_info = root->fs_info;
3808 int ret;
3809
3810 fs_info->closing = 1;
3811 smp_mb();
3812
3813 /* wait for the qgroup rescan worker to stop */
3814 btrfs_qgroup_wait_for_completion(fs_info);
3815
3816 /* wait for the uuid_scan task to finish */
3817 down(&fs_info->uuid_tree_rescan_sem);
3818 /* avoid complains from lockdep et al., set sem back to initial state */
3819 up(&fs_info->uuid_tree_rescan_sem);
3820
3821 /* pause restriper - we want to resume on mount */
3822 btrfs_pause_balance(fs_info);
3823
3824 btrfs_dev_replace_suspend_for_unmount(fs_info);
3825
3826 btrfs_scrub_cancel(fs_info);
3827
3828 /* wait for any defraggers to finish */
3829 wait_event(fs_info->transaction_wait,
3830 (atomic_read(&fs_info->defrag_running) == 0));
3831
3832 /* clear out the rbtree of defraggable inodes */
3833 btrfs_cleanup_defrag_inodes(fs_info);
3834
3835 cancel_work_sync(&fs_info->async_reclaim_work);
3836
3837 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3838 /*
3839 * If the cleaner thread is stopped and there are
3840 * block groups queued for removal, the deletion will be
3841 * skipped when we quit the cleaner thread.
3842 */
3843 btrfs_delete_unused_bgs(root->fs_info);
3844
3845 ret = btrfs_commit_super(root);
3846 if (ret)
3847 btrfs_err(fs_info, "commit super ret %d", ret);
3848 }
3849
3850 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3851 btrfs_error_commit_super(root);
3852
3853 kthread_stop(fs_info->transaction_kthread);
3854 kthread_stop(fs_info->cleaner_kthread);
3855
3856 fs_info->closing = 2;
3857 smp_mb();
3858
3859 btrfs_free_qgroup_config(fs_info);
3860
3861 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3862 btrfs_info(fs_info, "at unmount delalloc count %lld",
3863 percpu_counter_sum(&fs_info->delalloc_bytes));
3864 }
3865
3866 btrfs_sysfs_remove_mounted(fs_info);
3867 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3868
3869 btrfs_free_fs_roots(fs_info);
3870
3871 btrfs_put_block_group_cache(fs_info);
3872
3873 btrfs_free_block_groups(fs_info);
3874
3875 /*
3876 * we must make sure there is not any read request to
3877 * submit after we stopping all workers.
3878 */
3879 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3880 btrfs_stop_all_workers(fs_info);
3881
3882 fs_info->open = 0;
3883 free_root_pointers(fs_info, 1);
3884
3885 iput(fs_info->btree_inode);
3886
3887 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3888 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3889 btrfsic_unmount(root, fs_info->fs_devices);
3890 #endif
3891
3892 btrfs_close_devices(fs_info->fs_devices);
3893 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3894
3895 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3896 percpu_counter_destroy(&fs_info->delalloc_bytes);
3897 percpu_counter_destroy(&fs_info->bio_counter);
3898 bdi_destroy(&fs_info->bdi);
3899 cleanup_srcu_struct(&fs_info->subvol_srcu);
3900
3901 btrfs_free_stripe_hash_table(fs_info);
3902
3903 __btrfs_free_block_rsv(root->orphan_block_rsv);
3904 root->orphan_block_rsv = NULL;
3905
3906 lock_chunks(root);
3907 while (!list_empty(&fs_info->pinned_chunks)) {
3908 struct extent_map *em;
3909
3910 em = list_first_entry(&fs_info->pinned_chunks,
3911 struct extent_map, list);
3912 list_del_init(&em->list);
3913 free_extent_map(em);
3914 }
3915 unlock_chunks(root);
3916 }
3917
btrfs_buffer_uptodate(struct extent_buffer * buf,u64 parent_transid,int atomic)3918 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3919 int atomic)
3920 {
3921 int ret;
3922 struct inode *btree_inode = buf->pages[0]->mapping->host;
3923
3924 ret = extent_buffer_uptodate(buf);
3925 if (!ret)
3926 return ret;
3927
3928 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3929 parent_transid, atomic);
3930 if (ret == -EAGAIN)
3931 return ret;
3932 return !ret;
3933 }
3934
btrfs_set_buffer_uptodate(struct extent_buffer * buf)3935 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3936 {
3937 return set_extent_buffer_uptodate(buf);
3938 }
3939
btrfs_mark_buffer_dirty(struct extent_buffer * buf)3940 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3941 {
3942 struct btrfs_root *root;
3943 u64 transid = btrfs_header_generation(buf);
3944 int was_dirty;
3945
3946 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3947 /*
3948 * This is a fast path so only do this check if we have sanity tests
3949 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3950 * outside of the sanity tests.
3951 */
3952 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3953 return;
3954 #endif
3955 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3956 btrfs_assert_tree_locked(buf);
3957 if (transid != root->fs_info->generation)
3958 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3959 "found %llu running %llu\n",
3960 buf->start, transid, root->fs_info->generation);
3961 was_dirty = set_extent_buffer_dirty(buf);
3962 if (!was_dirty)
3963 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3964 buf->len,
3965 root->fs_info->dirty_metadata_batch);
3966 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3967 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3968 btrfs_print_leaf(root, buf);
3969 ASSERT(0);
3970 }
3971 #endif
3972 }
3973
__btrfs_btree_balance_dirty(struct btrfs_root * root,int flush_delayed)3974 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3975 int flush_delayed)
3976 {
3977 /*
3978 * looks as though older kernels can get into trouble with
3979 * this code, they end up stuck in balance_dirty_pages forever
3980 */
3981 int ret;
3982
3983 if (current->flags & PF_MEMALLOC)
3984 return;
3985
3986 if (flush_delayed)
3987 btrfs_balance_delayed_items(root);
3988
3989 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3990 BTRFS_DIRTY_METADATA_THRESH);
3991 if (ret > 0) {
3992 balance_dirty_pages_ratelimited(
3993 root->fs_info->btree_inode->i_mapping);
3994 }
3995 return;
3996 }
3997
btrfs_btree_balance_dirty(struct btrfs_root * root)3998 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3999 {
4000 __btrfs_btree_balance_dirty(root, 1);
4001 }
4002
btrfs_btree_balance_dirty_nodelay(struct btrfs_root * root)4003 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
4004 {
4005 __btrfs_btree_balance_dirty(root, 0);
4006 }
4007
btrfs_read_buffer(struct extent_buffer * buf,u64 parent_transid)4008 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
4009 {
4010 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4011 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
4012 }
4013
btrfs_check_super_valid(struct btrfs_fs_info * fs_info,int read_only)4014 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
4015 int read_only)
4016 {
4017 struct btrfs_super_block *sb = fs_info->super_copy;
4018 int ret = 0;
4019
4020 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4021 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
4022 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4023 ret = -EINVAL;
4024 }
4025 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4026 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
4027 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4028 ret = -EINVAL;
4029 }
4030 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4031 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
4032 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4033 ret = -EINVAL;
4034 }
4035
4036 /*
4037 * The common minimum, we don't know if we can trust the nodesize/sectorsize
4038 * items yet, they'll be verified later. Issue just a warning.
4039 */
4040 if (!IS_ALIGNED(btrfs_super_root(sb), 4096))
4041 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
4042 btrfs_super_root(sb));
4043 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096))
4044 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
4045 btrfs_super_chunk_root(sb));
4046 if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096))
4047 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
4048 btrfs_super_log_root(sb));
4049
4050 /*
4051 * Check the lower bound, the alignment and other constraints are
4052 * checked later.
4053 */
4054 if (btrfs_super_nodesize(sb) < 4096) {
4055 printk(KERN_ERR "BTRFS: nodesize too small: %u < 4096\n",
4056 btrfs_super_nodesize(sb));
4057 ret = -EINVAL;
4058 }
4059 if (btrfs_super_sectorsize(sb) < 4096) {
4060 printk(KERN_ERR "BTRFS: sectorsize too small: %u < 4096\n",
4061 btrfs_super_sectorsize(sb));
4062 ret = -EINVAL;
4063 }
4064
4065 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4066 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
4067 fs_info->fsid, sb->dev_item.fsid);
4068 ret = -EINVAL;
4069 }
4070
4071 /*
4072 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4073 * done later
4074 */
4075 if (btrfs_super_num_devices(sb) > (1UL << 31))
4076 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
4077 btrfs_super_num_devices(sb));
4078 if (btrfs_super_num_devices(sb) == 0) {
4079 printk(KERN_ERR "BTRFS: number of devices is 0\n");
4080 ret = -EINVAL;
4081 }
4082
4083 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4084 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
4085 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4086 ret = -EINVAL;
4087 }
4088
4089 /*
4090 * Obvious sys_chunk_array corruptions, it must hold at least one key
4091 * and one chunk
4092 */
4093 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4094 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4095 btrfs_super_sys_array_size(sb),
4096 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4097 ret = -EINVAL;
4098 }
4099 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4100 + sizeof(struct btrfs_chunk)) {
4101 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
4102 btrfs_super_sys_array_size(sb),
4103 sizeof(struct btrfs_disk_key)
4104 + sizeof(struct btrfs_chunk));
4105 ret = -EINVAL;
4106 }
4107
4108 /*
4109 * The generation is a global counter, we'll trust it more than the others
4110 * but it's still possible that it's the one that's wrong.
4111 */
4112 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4113 printk(KERN_WARNING
4114 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
4115 btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4116 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4117 && btrfs_super_cache_generation(sb) != (u64)-1)
4118 printk(KERN_WARNING
4119 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
4120 btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
4121
4122 return ret;
4123 }
4124
btrfs_error_commit_super(struct btrfs_root * root)4125 static void btrfs_error_commit_super(struct btrfs_root *root)
4126 {
4127 mutex_lock(&root->fs_info->cleaner_mutex);
4128 btrfs_run_delayed_iputs(root);
4129 mutex_unlock(&root->fs_info->cleaner_mutex);
4130
4131 down_write(&root->fs_info->cleanup_work_sem);
4132 up_write(&root->fs_info->cleanup_work_sem);
4133
4134 /* cleanup FS via transaction */
4135 btrfs_cleanup_transaction(root);
4136 }
4137
btrfs_destroy_ordered_extents(struct btrfs_root * root)4138 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4139 {
4140 struct btrfs_ordered_extent *ordered;
4141
4142 spin_lock(&root->ordered_extent_lock);
4143 /*
4144 * This will just short circuit the ordered completion stuff which will
4145 * make sure the ordered extent gets properly cleaned up.
4146 */
4147 list_for_each_entry(ordered, &root->ordered_extents,
4148 root_extent_list)
4149 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4150 spin_unlock(&root->ordered_extent_lock);
4151 }
4152
btrfs_destroy_all_ordered_extents(struct btrfs_fs_info * fs_info)4153 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4154 {
4155 struct btrfs_root *root;
4156 struct list_head splice;
4157
4158 INIT_LIST_HEAD(&splice);
4159
4160 spin_lock(&fs_info->ordered_root_lock);
4161 list_splice_init(&fs_info->ordered_roots, &splice);
4162 while (!list_empty(&splice)) {
4163 root = list_first_entry(&splice, struct btrfs_root,
4164 ordered_root);
4165 list_move_tail(&root->ordered_root,
4166 &fs_info->ordered_roots);
4167
4168 spin_unlock(&fs_info->ordered_root_lock);
4169 btrfs_destroy_ordered_extents(root);
4170
4171 cond_resched();
4172 spin_lock(&fs_info->ordered_root_lock);
4173 }
4174 spin_unlock(&fs_info->ordered_root_lock);
4175 }
4176
btrfs_destroy_delayed_refs(struct btrfs_transaction * trans,struct btrfs_root * root)4177 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4178 struct btrfs_root *root)
4179 {
4180 struct rb_node *node;
4181 struct btrfs_delayed_ref_root *delayed_refs;
4182 struct btrfs_delayed_ref_node *ref;
4183 int ret = 0;
4184
4185 delayed_refs = &trans->delayed_refs;
4186
4187 spin_lock(&delayed_refs->lock);
4188 if (atomic_read(&delayed_refs->num_entries) == 0) {
4189 spin_unlock(&delayed_refs->lock);
4190 btrfs_info(root->fs_info, "delayed_refs has NO entry");
4191 return ret;
4192 }
4193
4194 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4195 struct btrfs_delayed_ref_head *head;
4196 struct btrfs_delayed_ref_node *tmp;
4197 bool pin_bytes = false;
4198
4199 head = rb_entry(node, struct btrfs_delayed_ref_head,
4200 href_node);
4201 if (!mutex_trylock(&head->mutex)) {
4202 atomic_inc(&head->node.refs);
4203 spin_unlock(&delayed_refs->lock);
4204
4205 mutex_lock(&head->mutex);
4206 mutex_unlock(&head->mutex);
4207 btrfs_put_delayed_ref(&head->node);
4208 spin_lock(&delayed_refs->lock);
4209 continue;
4210 }
4211 spin_lock(&head->lock);
4212 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4213 list) {
4214 ref->in_tree = 0;
4215 list_del(&ref->list);
4216 atomic_dec(&delayed_refs->num_entries);
4217 btrfs_put_delayed_ref(ref);
4218 }
4219 if (head->must_insert_reserved)
4220 pin_bytes = true;
4221 btrfs_free_delayed_extent_op(head->extent_op);
4222 delayed_refs->num_heads--;
4223 if (head->processing == 0)
4224 delayed_refs->num_heads_ready--;
4225 atomic_dec(&delayed_refs->num_entries);
4226 head->node.in_tree = 0;
4227 rb_erase(&head->href_node, &delayed_refs->href_root);
4228 spin_unlock(&head->lock);
4229 spin_unlock(&delayed_refs->lock);
4230 mutex_unlock(&head->mutex);
4231
4232 if (pin_bytes)
4233 btrfs_pin_extent(root, head->node.bytenr,
4234 head->node.num_bytes, 1);
4235 btrfs_put_delayed_ref(&head->node);
4236 cond_resched();
4237 spin_lock(&delayed_refs->lock);
4238 }
4239
4240 spin_unlock(&delayed_refs->lock);
4241
4242 return ret;
4243 }
4244
btrfs_destroy_delalloc_inodes(struct btrfs_root * root)4245 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4246 {
4247 struct btrfs_inode *btrfs_inode;
4248 struct list_head splice;
4249
4250 INIT_LIST_HEAD(&splice);
4251
4252 spin_lock(&root->delalloc_lock);
4253 list_splice_init(&root->delalloc_inodes, &splice);
4254
4255 while (!list_empty(&splice)) {
4256 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4257 delalloc_inodes);
4258
4259 list_del_init(&btrfs_inode->delalloc_inodes);
4260 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4261 &btrfs_inode->runtime_flags);
4262 spin_unlock(&root->delalloc_lock);
4263
4264 btrfs_invalidate_inodes(btrfs_inode->root);
4265
4266 spin_lock(&root->delalloc_lock);
4267 }
4268
4269 spin_unlock(&root->delalloc_lock);
4270 }
4271
btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info * fs_info)4272 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4273 {
4274 struct btrfs_root *root;
4275 struct list_head splice;
4276
4277 INIT_LIST_HEAD(&splice);
4278
4279 spin_lock(&fs_info->delalloc_root_lock);
4280 list_splice_init(&fs_info->delalloc_roots, &splice);
4281 while (!list_empty(&splice)) {
4282 root = list_first_entry(&splice, struct btrfs_root,
4283 delalloc_root);
4284 list_del_init(&root->delalloc_root);
4285 root = btrfs_grab_fs_root(root);
4286 BUG_ON(!root);
4287 spin_unlock(&fs_info->delalloc_root_lock);
4288
4289 btrfs_destroy_delalloc_inodes(root);
4290 btrfs_put_fs_root(root);
4291
4292 spin_lock(&fs_info->delalloc_root_lock);
4293 }
4294 spin_unlock(&fs_info->delalloc_root_lock);
4295 }
4296
btrfs_destroy_marked_extents(struct btrfs_root * root,struct extent_io_tree * dirty_pages,int mark)4297 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4298 struct extent_io_tree *dirty_pages,
4299 int mark)
4300 {
4301 int ret;
4302 struct extent_buffer *eb;
4303 u64 start = 0;
4304 u64 end;
4305
4306 while (1) {
4307 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4308 mark, NULL);
4309 if (ret)
4310 break;
4311
4312 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4313 while (start <= end) {
4314 eb = btrfs_find_tree_block(root->fs_info, start);
4315 start += root->nodesize;
4316 if (!eb)
4317 continue;
4318 wait_on_extent_buffer_writeback(eb);
4319
4320 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4321 &eb->bflags))
4322 clear_extent_buffer_dirty(eb);
4323 free_extent_buffer_stale(eb);
4324 }
4325 }
4326
4327 return ret;
4328 }
4329
btrfs_destroy_pinned_extent(struct btrfs_root * root,struct extent_io_tree * pinned_extents)4330 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4331 struct extent_io_tree *pinned_extents)
4332 {
4333 struct extent_io_tree *unpin;
4334 u64 start;
4335 u64 end;
4336 int ret;
4337 bool loop = true;
4338
4339 unpin = pinned_extents;
4340 again:
4341 while (1) {
4342 ret = find_first_extent_bit(unpin, 0, &start, &end,
4343 EXTENT_DIRTY, NULL);
4344 if (ret)
4345 break;
4346
4347 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4348 btrfs_error_unpin_extent_range(root, start, end);
4349 cond_resched();
4350 }
4351
4352 if (loop) {
4353 if (unpin == &root->fs_info->freed_extents[0])
4354 unpin = &root->fs_info->freed_extents[1];
4355 else
4356 unpin = &root->fs_info->freed_extents[0];
4357 loop = false;
4358 goto again;
4359 }
4360
4361 return 0;
4362 }
4363
btrfs_cleanup_one_transaction(struct btrfs_transaction * cur_trans,struct btrfs_root * root)4364 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4365 struct btrfs_root *root)
4366 {
4367 btrfs_destroy_delayed_refs(cur_trans, root);
4368
4369 cur_trans->state = TRANS_STATE_COMMIT_START;
4370 wake_up(&root->fs_info->transaction_blocked_wait);
4371
4372 cur_trans->state = TRANS_STATE_UNBLOCKED;
4373 wake_up(&root->fs_info->transaction_wait);
4374
4375 btrfs_destroy_delayed_inodes(root);
4376 btrfs_assert_delayed_root_empty(root);
4377
4378 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4379 EXTENT_DIRTY);
4380 btrfs_destroy_pinned_extent(root,
4381 root->fs_info->pinned_extents);
4382
4383 cur_trans->state =TRANS_STATE_COMPLETED;
4384 wake_up(&cur_trans->commit_wait);
4385
4386 /*
4387 memset(cur_trans, 0, sizeof(*cur_trans));
4388 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4389 */
4390 }
4391
btrfs_cleanup_transaction(struct btrfs_root * root)4392 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4393 {
4394 struct btrfs_transaction *t;
4395
4396 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4397
4398 spin_lock(&root->fs_info->trans_lock);
4399 while (!list_empty(&root->fs_info->trans_list)) {
4400 t = list_first_entry(&root->fs_info->trans_list,
4401 struct btrfs_transaction, list);
4402 if (t->state >= TRANS_STATE_COMMIT_START) {
4403 atomic_inc(&t->use_count);
4404 spin_unlock(&root->fs_info->trans_lock);
4405 btrfs_wait_for_commit(root, t->transid);
4406 btrfs_put_transaction(t);
4407 spin_lock(&root->fs_info->trans_lock);
4408 continue;
4409 }
4410 if (t == root->fs_info->running_transaction) {
4411 t->state = TRANS_STATE_COMMIT_DOING;
4412 spin_unlock(&root->fs_info->trans_lock);
4413 /*
4414 * We wait for 0 num_writers since we don't hold a trans
4415 * handle open currently for this transaction.
4416 */
4417 wait_event(t->writer_wait,
4418 atomic_read(&t->num_writers) == 0);
4419 } else {
4420 spin_unlock(&root->fs_info->trans_lock);
4421 }
4422 btrfs_cleanup_one_transaction(t, root);
4423
4424 spin_lock(&root->fs_info->trans_lock);
4425 if (t == root->fs_info->running_transaction)
4426 root->fs_info->running_transaction = NULL;
4427 list_del_init(&t->list);
4428 spin_unlock(&root->fs_info->trans_lock);
4429
4430 btrfs_put_transaction(t);
4431 trace_btrfs_transaction_commit(root);
4432 spin_lock(&root->fs_info->trans_lock);
4433 }
4434 spin_unlock(&root->fs_info->trans_lock);
4435 btrfs_destroy_all_ordered_extents(root->fs_info);
4436 btrfs_destroy_delayed_inodes(root);
4437 btrfs_assert_delayed_root_empty(root);
4438 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4439 btrfs_destroy_all_delalloc_inodes(root->fs_info);
4440 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4441
4442 return 0;
4443 }
4444
4445 static const struct extent_io_ops btree_extent_io_ops = {
4446 .readpage_end_io_hook = btree_readpage_end_io_hook,
4447 .readpage_io_failed_hook = btree_io_failed_hook,
4448 .submit_bio_hook = btree_submit_bio_hook,
4449 /* note we're sharing with inode.c for the merge bio hook */
4450 .merge_bio_hook = btrfs_merge_bio_hook,
4451 };
4452