1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
45 #include <linux/btrfs.h>
46 #include <linux/uaccess.h>
47 #include "ctree.h"
48 #include "disk-io.h"
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
52 #include "volumes.h"
53 #include "locking.h"
54 #include "inode-map.h"
55 #include "backref.h"
56 #include "rcu-string.h"
57 #include "send.h"
58 #include "dev-replace.h"
59 #include "props.h"
60 #include "sysfs.h"
61 #include "qgroup.h"
62
63 #ifdef CONFIG_64BIT
64 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
65 * structures are incorrect, as the timespec structure from userspace
66 * is 4 bytes too small. We define these alternatives here to teach
67 * the kernel about the 32-bit struct packing.
68 */
69 struct btrfs_ioctl_timespec_32 {
70 __u64 sec;
71 __u32 nsec;
72 } __attribute__ ((__packed__));
73
74 struct btrfs_ioctl_received_subvol_args_32 {
75 char uuid[BTRFS_UUID_SIZE]; /* in */
76 __u64 stransid; /* in */
77 __u64 rtransid; /* out */
78 struct btrfs_ioctl_timespec_32 stime; /* in */
79 struct btrfs_ioctl_timespec_32 rtime; /* out */
80 __u64 flags; /* in */
81 __u64 reserved[16]; /* in */
82 } __attribute__ ((__packed__));
83
84 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
85 struct btrfs_ioctl_received_subvol_args_32)
86 #endif
87
88
89 static int btrfs_clone(struct inode *src, struct inode *inode,
90 u64 off, u64 olen, u64 olen_aligned, u64 destoff);
91
92 /* Mask out flags that are inappropriate for the given type of inode. */
btrfs_mask_flags(umode_t mode,__u32 flags)93 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
94 {
95 if (S_ISDIR(mode))
96 return flags;
97 else if (S_ISREG(mode))
98 return flags & ~FS_DIRSYNC_FL;
99 else
100 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
101 }
102
103 /*
104 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
105 */
btrfs_flags_to_ioctl(unsigned int flags)106 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
107 {
108 unsigned int iflags = 0;
109
110 if (flags & BTRFS_INODE_SYNC)
111 iflags |= FS_SYNC_FL;
112 if (flags & BTRFS_INODE_IMMUTABLE)
113 iflags |= FS_IMMUTABLE_FL;
114 if (flags & BTRFS_INODE_APPEND)
115 iflags |= FS_APPEND_FL;
116 if (flags & BTRFS_INODE_NODUMP)
117 iflags |= FS_NODUMP_FL;
118 if (flags & BTRFS_INODE_NOATIME)
119 iflags |= FS_NOATIME_FL;
120 if (flags & BTRFS_INODE_DIRSYNC)
121 iflags |= FS_DIRSYNC_FL;
122 if (flags & BTRFS_INODE_NODATACOW)
123 iflags |= FS_NOCOW_FL;
124
125 if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
126 iflags |= FS_COMPR_FL;
127 else if (flags & BTRFS_INODE_NOCOMPRESS)
128 iflags |= FS_NOCOMP_FL;
129
130 return iflags;
131 }
132
133 /*
134 * Update inode->i_flags based on the btrfs internal flags.
135 */
btrfs_update_iflags(struct inode * inode)136 void btrfs_update_iflags(struct inode *inode)
137 {
138 struct btrfs_inode *ip = BTRFS_I(inode);
139 unsigned int new_fl = 0;
140
141 if (ip->flags & BTRFS_INODE_SYNC)
142 new_fl |= S_SYNC;
143 if (ip->flags & BTRFS_INODE_IMMUTABLE)
144 new_fl |= S_IMMUTABLE;
145 if (ip->flags & BTRFS_INODE_APPEND)
146 new_fl |= S_APPEND;
147 if (ip->flags & BTRFS_INODE_NOATIME)
148 new_fl |= S_NOATIME;
149 if (ip->flags & BTRFS_INODE_DIRSYNC)
150 new_fl |= S_DIRSYNC;
151
152 set_mask_bits(&inode->i_flags,
153 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
154 new_fl);
155 }
156
157 /*
158 * Inherit flags from the parent inode.
159 *
160 * Currently only the compression flags and the cow flags are inherited.
161 */
btrfs_inherit_iflags(struct inode * inode,struct inode * dir)162 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
163 {
164 unsigned int flags;
165
166 if (!dir)
167 return;
168
169 flags = BTRFS_I(dir)->flags;
170
171 if (flags & BTRFS_INODE_NOCOMPRESS) {
172 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
173 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
174 } else if (flags & BTRFS_INODE_COMPRESS) {
175 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
176 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
177 }
178
179 if (flags & BTRFS_INODE_NODATACOW) {
180 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
181 if (S_ISREG(inode->i_mode))
182 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
183 }
184
185 btrfs_update_iflags(inode);
186 }
187
btrfs_ioctl_getflags(struct file * file,void __user * arg)188 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
189 {
190 struct btrfs_inode *ip = BTRFS_I(file_inode(file));
191 unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
192
193 if (copy_to_user(arg, &flags, sizeof(flags)))
194 return -EFAULT;
195 return 0;
196 }
197
check_flags(unsigned int flags)198 static int check_flags(unsigned int flags)
199 {
200 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
201 FS_NOATIME_FL | FS_NODUMP_FL | \
202 FS_SYNC_FL | FS_DIRSYNC_FL | \
203 FS_NOCOMP_FL | FS_COMPR_FL |
204 FS_NOCOW_FL))
205 return -EOPNOTSUPP;
206
207 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
208 return -EINVAL;
209
210 return 0;
211 }
212
btrfs_ioctl_setflags(struct file * file,void __user * arg)213 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
214 {
215 struct inode *inode = file_inode(file);
216 struct btrfs_inode *ip = BTRFS_I(inode);
217 struct btrfs_root *root = ip->root;
218 struct btrfs_trans_handle *trans;
219 unsigned int flags, oldflags;
220 int ret;
221 u64 ip_oldflags;
222 unsigned int i_oldflags;
223 umode_t mode;
224
225 if (!inode_owner_or_capable(inode))
226 return -EPERM;
227
228 if (btrfs_root_readonly(root))
229 return -EROFS;
230
231 if (copy_from_user(&flags, arg, sizeof(flags)))
232 return -EFAULT;
233
234 ret = check_flags(flags);
235 if (ret)
236 return ret;
237
238 ret = mnt_want_write_file(file);
239 if (ret)
240 return ret;
241
242 mutex_lock(&inode->i_mutex);
243
244 ip_oldflags = ip->flags;
245 i_oldflags = inode->i_flags;
246 mode = inode->i_mode;
247
248 flags = btrfs_mask_flags(inode->i_mode, flags);
249 oldflags = btrfs_flags_to_ioctl(ip->flags);
250 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
251 if (!capable(CAP_LINUX_IMMUTABLE)) {
252 ret = -EPERM;
253 goto out_unlock;
254 }
255 }
256
257 if (flags & FS_SYNC_FL)
258 ip->flags |= BTRFS_INODE_SYNC;
259 else
260 ip->flags &= ~BTRFS_INODE_SYNC;
261 if (flags & FS_IMMUTABLE_FL)
262 ip->flags |= BTRFS_INODE_IMMUTABLE;
263 else
264 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
265 if (flags & FS_APPEND_FL)
266 ip->flags |= BTRFS_INODE_APPEND;
267 else
268 ip->flags &= ~BTRFS_INODE_APPEND;
269 if (flags & FS_NODUMP_FL)
270 ip->flags |= BTRFS_INODE_NODUMP;
271 else
272 ip->flags &= ~BTRFS_INODE_NODUMP;
273 if (flags & FS_NOATIME_FL)
274 ip->flags |= BTRFS_INODE_NOATIME;
275 else
276 ip->flags &= ~BTRFS_INODE_NOATIME;
277 if (flags & FS_DIRSYNC_FL)
278 ip->flags |= BTRFS_INODE_DIRSYNC;
279 else
280 ip->flags &= ~BTRFS_INODE_DIRSYNC;
281 if (flags & FS_NOCOW_FL) {
282 if (S_ISREG(mode)) {
283 /*
284 * It's safe to turn csums off here, no extents exist.
285 * Otherwise we want the flag to reflect the real COW
286 * status of the file and will not set it.
287 */
288 if (inode->i_size == 0)
289 ip->flags |= BTRFS_INODE_NODATACOW
290 | BTRFS_INODE_NODATASUM;
291 } else {
292 ip->flags |= BTRFS_INODE_NODATACOW;
293 }
294 } else {
295 /*
296 * Revert back under same assuptions as above
297 */
298 if (S_ISREG(mode)) {
299 if (inode->i_size == 0)
300 ip->flags &= ~(BTRFS_INODE_NODATACOW
301 | BTRFS_INODE_NODATASUM);
302 } else {
303 ip->flags &= ~BTRFS_INODE_NODATACOW;
304 }
305 }
306
307 /*
308 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
309 * flag may be changed automatically if compression code won't make
310 * things smaller.
311 */
312 if (flags & FS_NOCOMP_FL) {
313 ip->flags &= ~BTRFS_INODE_COMPRESS;
314 ip->flags |= BTRFS_INODE_NOCOMPRESS;
315
316 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
317 if (ret && ret != -ENODATA)
318 goto out_drop;
319 } else if (flags & FS_COMPR_FL) {
320 const char *comp;
321
322 ip->flags |= BTRFS_INODE_COMPRESS;
323 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
324
325 if (root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
326 comp = "lzo";
327 else
328 comp = "zlib";
329 ret = btrfs_set_prop(inode, "btrfs.compression",
330 comp, strlen(comp), 0);
331 if (ret)
332 goto out_drop;
333
334 } else {
335 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
336 if (ret && ret != -ENODATA)
337 goto out_drop;
338 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
339 }
340
341 trans = btrfs_start_transaction(root, 1);
342 if (IS_ERR(trans)) {
343 ret = PTR_ERR(trans);
344 goto out_drop;
345 }
346
347 btrfs_update_iflags(inode);
348 inode_inc_iversion(inode);
349 inode->i_ctime = CURRENT_TIME;
350 ret = btrfs_update_inode(trans, root, inode);
351
352 btrfs_end_transaction(trans, root);
353 out_drop:
354 if (ret) {
355 ip->flags = ip_oldflags;
356 inode->i_flags = i_oldflags;
357 }
358
359 out_unlock:
360 mutex_unlock(&inode->i_mutex);
361 mnt_drop_write_file(file);
362 return ret;
363 }
364
btrfs_ioctl_getversion(struct file * file,int __user * arg)365 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
366 {
367 struct inode *inode = file_inode(file);
368
369 return put_user(inode->i_generation, arg);
370 }
371
btrfs_ioctl_fitrim(struct file * file,void __user * arg)372 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
373 {
374 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
375 struct btrfs_device *device;
376 struct request_queue *q;
377 struct fstrim_range range;
378 u64 minlen = ULLONG_MAX;
379 u64 num_devices = 0;
380 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
381 int ret;
382
383 if (!capable(CAP_SYS_ADMIN))
384 return -EPERM;
385
386 rcu_read_lock();
387 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
388 dev_list) {
389 if (!device->bdev)
390 continue;
391 q = bdev_get_queue(device->bdev);
392 if (blk_queue_discard(q)) {
393 num_devices++;
394 minlen = min((u64)q->limits.discard_granularity,
395 minlen);
396 }
397 }
398 rcu_read_unlock();
399
400 if (!num_devices)
401 return -EOPNOTSUPP;
402 if (copy_from_user(&range, arg, sizeof(range)))
403 return -EFAULT;
404 if (range.start > total_bytes ||
405 range.len < fs_info->sb->s_blocksize)
406 return -EINVAL;
407
408 range.len = min(range.len, total_bytes - range.start);
409 range.minlen = max(range.minlen, minlen);
410 ret = btrfs_trim_fs(fs_info->tree_root, &range);
411 if (ret < 0)
412 return ret;
413
414 if (copy_to_user(arg, &range, sizeof(range)))
415 return -EFAULT;
416
417 return 0;
418 }
419
btrfs_is_empty_uuid(u8 * uuid)420 int btrfs_is_empty_uuid(u8 *uuid)
421 {
422 int i;
423
424 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
425 if (uuid[i])
426 return 0;
427 }
428 return 1;
429 }
430
create_subvol(struct inode * dir,struct dentry * dentry,char * name,int namelen,u64 * async_transid,struct btrfs_qgroup_inherit * inherit)431 static noinline int create_subvol(struct inode *dir,
432 struct dentry *dentry,
433 char *name, int namelen,
434 u64 *async_transid,
435 struct btrfs_qgroup_inherit *inherit)
436 {
437 struct btrfs_trans_handle *trans;
438 struct btrfs_key key;
439 struct btrfs_root_item root_item;
440 struct btrfs_inode_item *inode_item;
441 struct extent_buffer *leaf;
442 struct btrfs_root *root = BTRFS_I(dir)->root;
443 struct btrfs_root *new_root;
444 struct btrfs_block_rsv block_rsv;
445 struct timespec cur_time = CURRENT_TIME;
446 struct inode *inode;
447 int ret;
448 int err;
449 u64 objectid;
450 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
451 u64 index = 0;
452 u64 qgroup_reserved;
453 uuid_le new_uuid;
454
455 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
456 if (ret)
457 return ret;
458
459 /*
460 * Don't create subvolume whose level is not zero. Or qgroup will be
461 * screwed up since it assume subvolme qgroup's level to be 0.
462 */
463 if (btrfs_qgroup_level(objectid))
464 return -ENOSPC;
465
466 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
467 /*
468 * The same as the snapshot creation, please see the comment
469 * of create_snapshot().
470 */
471 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
472 8, &qgroup_reserved, false);
473 if (ret)
474 return ret;
475
476 trans = btrfs_start_transaction(root, 0);
477 if (IS_ERR(trans)) {
478 ret = PTR_ERR(trans);
479 btrfs_subvolume_release_metadata(root, &block_rsv,
480 qgroup_reserved);
481 return ret;
482 }
483 trans->block_rsv = &block_rsv;
484 trans->bytes_reserved = block_rsv.size;
485
486 ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit);
487 if (ret)
488 goto fail;
489
490 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
491 if (IS_ERR(leaf)) {
492 ret = PTR_ERR(leaf);
493 goto fail;
494 }
495
496 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
497 btrfs_set_header_bytenr(leaf, leaf->start);
498 btrfs_set_header_generation(leaf, trans->transid);
499 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
500 btrfs_set_header_owner(leaf, objectid);
501
502 write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(),
503 BTRFS_FSID_SIZE);
504 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
505 btrfs_header_chunk_tree_uuid(leaf),
506 BTRFS_UUID_SIZE);
507 btrfs_mark_buffer_dirty(leaf);
508
509 memset(&root_item, 0, sizeof(root_item));
510
511 inode_item = &root_item.inode;
512 btrfs_set_stack_inode_generation(inode_item, 1);
513 btrfs_set_stack_inode_size(inode_item, 3);
514 btrfs_set_stack_inode_nlink(inode_item, 1);
515 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
516 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
517
518 btrfs_set_root_flags(&root_item, 0);
519 btrfs_set_root_limit(&root_item, 0);
520 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
521
522 btrfs_set_root_bytenr(&root_item, leaf->start);
523 btrfs_set_root_generation(&root_item, trans->transid);
524 btrfs_set_root_level(&root_item, 0);
525 btrfs_set_root_refs(&root_item, 1);
526 btrfs_set_root_used(&root_item, leaf->len);
527 btrfs_set_root_last_snapshot(&root_item, 0);
528
529 btrfs_set_root_generation_v2(&root_item,
530 btrfs_root_generation(&root_item));
531 uuid_le_gen(&new_uuid);
532 memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE);
533 btrfs_set_stack_timespec_sec(&root_item.otime, cur_time.tv_sec);
534 btrfs_set_stack_timespec_nsec(&root_item.otime, cur_time.tv_nsec);
535 root_item.ctime = root_item.otime;
536 btrfs_set_root_ctransid(&root_item, trans->transid);
537 btrfs_set_root_otransid(&root_item, trans->transid);
538
539 btrfs_tree_unlock(leaf);
540 free_extent_buffer(leaf);
541 leaf = NULL;
542
543 btrfs_set_root_dirid(&root_item, new_dirid);
544
545 key.objectid = objectid;
546 key.offset = 0;
547 key.type = BTRFS_ROOT_ITEM_KEY;
548 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
549 &root_item);
550 if (ret)
551 goto fail;
552
553 key.offset = (u64)-1;
554 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
555 if (IS_ERR(new_root)) {
556 btrfs_abort_transaction(trans, root, PTR_ERR(new_root));
557 ret = PTR_ERR(new_root);
558 goto fail;
559 }
560
561 btrfs_record_root_in_trans(trans, new_root);
562
563 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
564 if (ret) {
565 /* We potentially lose an unused inode item here */
566 btrfs_abort_transaction(trans, root, ret);
567 goto fail;
568 }
569
570 mutex_lock(&new_root->objectid_mutex);
571 new_root->highest_objectid = new_dirid;
572 mutex_unlock(&new_root->objectid_mutex);
573
574 /*
575 * insert the directory item
576 */
577 ret = btrfs_set_inode_index(dir, &index);
578 if (ret) {
579 btrfs_abort_transaction(trans, root, ret);
580 goto fail;
581 }
582
583 ret = btrfs_insert_dir_item(trans, root,
584 name, namelen, dir, &key,
585 BTRFS_FT_DIR, index);
586 if (ret) {
587 btrfs_abort_transaction(trans, root, ret);
588 goto fail;
589 }
590
591 btrfs_i_size_write(dir, dir->i_size + namelen * 2);
592 ret = btrfs_update_inode(trans, root, dir);
593 BUG_ON(ret);
594
595 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
596 objectid, root->root_key.objectid,
597 btrfs_ino(dir), index, name, namelen);
598 BUG_ON(ret);
599
600 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
601 root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
602 objectid);
603 if (ret)
604 btrfs_abort_transaction(trans, root, ret);
605
606 fail:
607 trans->block_rsv = NULL;
608 trans->bytes_reserved = 0;
609 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
610
611 if (async_transid) {
612 *async_transid = trans->transid;
613 err = btrfs_commit_transaction_async(trans, root, 1);
614 if (err)
615 err = btrfs_commit_transaction(trans, root);
616 } else {
617 err = btrfs_commit_transaction(trans, root);
618 }
619 if (err && !ret)
620 ret = err;
621
622 if (!ret) {
623 inode = btrfs_lookup_dentry(dir, dentry);
624 if (IS_ERR(inode))
625 return PTR_ERR(inode);
626 d_instantiate(dentry, inode);
627 }
628 return ret;
629 }
630
btrfs_wait_for_no_snapshoting_writes(struct btrfs_root * root)631 static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root *root)
632 {
633 s64 writers;
634 DEFINE_WAIT(wait);
635
636 do {
637 prepare_to_wait(&root->subv_writers->wait, &wait,
638 TASK_UNINTERRUPTIBLE);
639
640 writers = percpu_counter_sum(&root->subv_writers->counter);
641 if (writers)
642 schedule();
643
644 finish_wait(&root->subv_writers->wait, &wait);
645 } while (writers);
646 }
647
create_snapshot(struct btrfs_root * root,struct inode * dir,struct dentry * dentry,char * name,int namelen,u64 * async_transid,bool readonly,struct btrfs_qgroup_inherit * inherit)648 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
649 struct dentry *dentry, char *name, int namelen,
650 u64 *async_transid, bool readonly,
651 struct btrfs_qgroup_inherit *inherit)
652 {
653 struct inode *inode;
654 struct btrfs_pending_snapshot *pending_snapshot;
655 struct btrfs_trans_handle *trans;
656 int ret;
657
658 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
659 return -EINVAL;
660
661 atomic_inc(&root->will_be_snapshoted);
662 smp_mb__after_atomic();
663 btrfs_wait_for_no_snapshoting_writes(root);
664
665 ret = btrfs_start_delalloc_inodes(root, 0);
666 if (ret)
667 goto out;
668
669 btrfs_wait_ordered_extents(root, -1);
670
671 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
672 if (!pending_snapshot) {
673 ret = -ENOMEM;
674 goto out;
675 }
676
677 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
678 BTRFS_BLOCK_RSV_TEMP);
679 /*
680 * 1 - parent dir inode
681 * 2 - dir entries
682 * 1 - root item
683 * 2 - root ref/backref
684 * 1 - root of snapshot
685 * 1 - UUID item
686 */
687 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
688 &pending_snapshot->block_rsv, 8,
689 &pending_snapshot->qgroup_reserved,
690 false);
691 if (ret)
692 goto free;
693
694 pending_snapshot->dentry = dentry;
695 pending_snapshot->root = root;
696 pending_snapshot->readonly = readonly;
697 pending_snapshot->dir = dir;
698 pending_snapshot->inherit = inherit;
699
700 trans = btrfs_start_transaction(root, 0);
701 if (IS_ERR(trans)) {
702 ret = PTR_ERR(trans);
703 goto fail;
704 }
705
706 spin_lock(&root->fs_info->trans_lock);
707 list_add(&pending_snapshot->list,
708 &trans->transaction->pending_snapshots);
709 spin_unlock(&root->fs_info->trans_lock);
710 if (async_transid) {
711 *async_transid = trans->transid;
712 ret = btrfs_commit_transaction_async(trans,
713 root->fs_info->extent_root, 1);
714 if (ret)
715 ret = btrfs_commit_transaction(trans, root);
716 } else {
717 ret = btrfs_commit_transaction(trans,
718 root->fs_info->extent_root);
719 }
720 if (ret)
721 goto fail;
722
723 ret = pending_snapshot->error;
724 if (ret)
725 goto fail;
726
727 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
728 if (ret)
729 goto fail;
730
731 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
732 if (IS_ERR(inode)) {
733 ret = PTR_ERR(inode);
734 goto fail;
735 }
736
737 d_instantiate(dentry, inode);
738 ret = 0;
739 fail:
740 btrfs_subvolume_release_metadata(BTRFS_I(dir)->root,
741 &pending_snapshot->block_rsv,
742 pending_snapshot->qgroup_reserved);
743 free:
744 kfree(pending_snapshot);
745 out:
746 if (atomic_dec_and_test(&root->will_be_snapshoted))
747 wake_up_atomic_t(&root->will_be_snapshoted);
748 return ret;
749 }
750
751 /* copy of may_delete in fs/namei.c()
752 * Check whether we can remove a link victim from directory dir, check
753 * whether the type of victim is right.
754 * 1. We can't do it if dir is read-only (done in permission())
755 * 2. We should have write and exec permissions on dir
756 * 3. We can't remove anything from append-only dir
757 * 4. We can't do anything with immutable dir (done in permission())
758 * 5. If the sticky bit on dir is set we should either
759 * a. be owner of dir, or
760 * b. be owner of victim, or
761 * c. have CAP_FOWNER capability
762 * 6. If the victim is append-only or immutable we can't do antyhing with
763 * links pointing to it.
764 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
765 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
766 * 9. We can't remove a root or mountpoint.
767 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
768 * nfs_async_unlink().
769 */
770
btrfs_may_delete(struct inode * dir,struct dentry * victim,int isdir)771 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
772 {
773 int error;
774
775 if (d_really_is_negative(victim))
776 return -ENOENT;
777
778 BUG_ON(d_inode(victim->d_parent) != dir);
779 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
780
781 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
782 if (error)
783 return error;
784 if (IS_APPEND(dir))
785 return -EPERM;
786 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
787 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
788 return -EPERM;
789 if (isdir) {
790 if (!d_is_dir(victim))
791 return -ENOTDIR;
792 if (IS_ROOT(victim))
793 return -EBUSY;
794 } else if (d_is_dir(victim))
795 return -EISDIR;
796 if (IS_DEADDIR(dir))
797 return -ENOENT;
798 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
799 return -EBUSY;
800 return 0;
801 }
802
803 /* copy of may_create in fs/namei.c() */
btrfs_may_create(struct inode * dir,struct dentry * child)804 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
805 {
806 if (d_really_is_positive(child))
807 return -EEXIST;
808 if (IS_DEADDIR(dir))
809 return -ENOENT;
810 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
811 }
812
813 /*
814 * Create a new subvolume below @parent. This is largely modeled after
815 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
816 * inside this filesystem so it's quite a bit simpler.
817 */
btrfs_mksubvol(struct path * parent,char * name,int namelen,struct btrfs_root * snap_src,u64 * async_transid,bool readonly,struct btrfs_qgroup_inherit * inherit)818 static noinline int btrfs_mksubvol(struct path *parent,
819 char *name, int namelen,
820 struct btrfs_root *snap_src,
821 u64 *async_transid, bool readonly,
822 struct btrfs_qgroup_inherit *inherit)
823 {
824 struct inode *dir = d_inode(parent->dentry);
825 struct dentry *dentry;
826 int error;
827
828 error = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
829 if (error == -EINTR)
830 return error;
831
832 dentry = lookup_one_len(name, parent->dentry, namelen);
833 error = PTR_ERR(dentry);
834 if (IS_ERR(dentry))
835 goto out_unlock;
836
837 error = -EEXIST;
838 if (d_really_is_positive(dentry))
839 goto out_dput;
840
841 error = btrfs_may_create(dir, dentry);
842 if (error)
843 goto out_dput;
844
845 /*
846 * even if this name doesn't exist, we may get hash collisions.
847 * check for them now when we can safely fail
848 */
849 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
850 dir->i_ino, name,
851 namelen);
852 if (error)
853 goto out_dput;
854
855 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
856
857 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
858 goto out_up_read;
859
860 if (snap_src) {
861 error = create_snapshot(snap_src, dir, dentry, name, namelen,
862 async_transid, readonly, inherit);
863 } else {
864 error = create_subvol(dir, dentry, name, namelen,
865 async_transid, inherit);
866 }
867 if (!error)
868 fsnotify_mkdir(dir, dentry);
869 out_up_read:
870 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
871 out_dput:
872 dput(dentry);
873 out_unlock:
874 mutex_unlock(&dir->i_mutex);
875 return error;
876 }
877
878 /*
879 * When we're defragging a range, we don't want to kick it off again
880 * if it is really just waiting for delalloc to send it down.
881 * If we find a nice big extent or delalloc range for the bytes in the
882 * file you want to defrag, we return 0 to let you know to skip this
883 * part of the file
884 */
check_defrag_in_cache(struct inode * inode,u64 offset,u32 thresh)885 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
886 {
887 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
888 struct extent_map *em = NULL;
889 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
890 u64 end;
891
892 read_lock(&em_tree->lock);
893 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
894 read_unlock(&em_tree->lock);
895
896 if (em) {
897 end = extent_map_end(em);
898 free_extent_map(em);
899 if (end - offset > thresh)
900 return 0;
901 }
902 /* if we already have a nice delalloc here, just stop */
903 thresh /= 2;
904 end = count_range_bits(io_tree, &offset, offset + thresh,
905 thresh, EXTENT_DELALLOC, 1);
906 if (end >= thresh)
907 return 0;
908 return 1;
909 }
910
911 /*
912 * helper function to walk through a file and find extents
913 * newer than a specific transid, and smaller than thresh.
914 *
915 * This is used by the defragging code to find new and small
916 * extents
917 */
find_new_extents(struct btrfs_root * root,struct inode * inode,u64 newer_than,u64 * off,u32 thresh)918 static int find_new_extents(struct btrfs_root *root,
919 struct inode *inode, u64 newer_than,
920 u64 *off, u32 thresh)
921 {
922 struct btrfs_path *path;
923 struct btrfs_key min_key;
924 struct extent_buffer *leaf;
925 struct btrfs_file_extent_item *extent;
926 int type;
927 int ret;
928 u64 ino = btrfs_ino(inode);
929
930 path = btrfs_alloc_path();
931 if (!path)
932 return -ENOMEM;
933
934 min_key.objectid = ino;
935 min_key.type = BTRFS_EXTENT_DATA_KEY;
936 min_key.offset = *off;
937
938 while (1) {
939 ret = btrfs_search_forward(root, &min_key, path, newer_than);
940 if (ret != 0)
941 goto none;
942 process_slot:
943 if (min_key.objectid != ino)
944 goto none;
945 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
946 goto none;
947
948 leaf = path->nodes[0];
949 extent = btrfs_item_ptr(leaf, path->slots[0],
950 struct btrfs_file_extent_item);
951
952 type = btrfs_file_extent_type(leaf, extent);
953 if (type == BTRFS_FILE_EXTENT_REG &&
954 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
955 check_defrag_in_cache(inode, min_key.offset, thresh)) {
956 *off = min_key.offset;
957 btrfs_free_path(path);
958 return 0;
959 }
960
961 path->slots[0]++;
962 if (path->slots[0] < btrfs_header_nritems(leaf)) {
963 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
964 goto process_slot;
965 }
966
967 if (min_key.offset == (u64)-1)
968 goto none;
969
970 min_key.offset++;
971 btrfs_release_path(path);
972 }
973 none:
974 btrfs_free_path(path);
975 return -ENOENT;
976 }
977
defrag_lookup_extent(struct inode * inode,u64 start)978 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
979 {
980 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
981 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
982 struct extent_map *em;
983 u64 len = PAGE_CACHE_SIZE;
984
985 /*
986 * hopefully we have this extent in the tree already, try without
987 * the full extent lock
988 */
989 read_lock(&em_tree->lock);
990 em = lookup_extent_mapping(em_tree, start, len);
991 read_unlock(&em_tree->lock);
992
993 if (!em) {
994 struct extent_state *cached = NULL;
995 u64 end = start + len - 1;
996
997 /* get the big lock and read metadata off disk */
998 lock_extent_bits(io_tree, start, end, 0, &cached);
999 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
1000 unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS);
1001
1002 if (IS_ERR(em))
1003 return NULL;
1004 }
1005
1006 return em;
1007 }
1008
defrag_check_next_extent(struct inode * inode,struct extent_map * em)1009 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1010 {
1011 struct extent_map *next;
1012 bool ret = true;
1013
1014 /* this is the last extent */
1015 if (em->start + em->len >= i_size_read(inode))
1016 return false;
1017
1018 next = defrag_lookup_extent(inode, em->start + em->len);
1019 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1020 ret = false;
1021 else if ((em->block_start + em->block_len == next->block_start) &&
1022 (em->block_len > 128 * 1024 && next->block_len > 128 * 1024))
1023 ret = false;
1024
1025 free_extent_map(next);
1026 return ret;
1027 }
1028
should_defrag_range(struct inode * inode,u64 start,u32 thresh,u64 * last_len,u64 * skip,u64 * defrag_end,int compress)1029 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1030 u64 *last_len, u64 *skip, u64 *defrag_end,
1031 int compress)
1032 {
1033 struct extent_map *em;
1034 int ret = 1;
1035 bool next_mergeable = true;
1036
1037 /*
1038 * make sure that once we start defragging an extent, we keep on
1039 * defragging it
1040 */
1041 if (start < *defrag_end)
1042 return 1;
1043
1044 *skip = 0;
1045
1046 em = defrag_lookup_extent(inode, start);
1047 if (!em)
1048 return 0;
1049
1050 /* this will cover holes, and inline extents */
1051 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1052 ret = 0;
1053 goto out;
1054 }
1055
1056 next_mergeable = defrag_check_next_extent(inode, em);
1057 /*
1058 * we hit a real extent, if it is big or the next extent is not a
1059 * real extent, don't bother defragging it
1060 */
1061 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1062 (em->len >= thresh || !next_mergeable))
1063 ret = 0;
1064 out:
1065 /*
1066 * last_len ends up being a counter of how many bytes we've defragged.
1067 * every time we choose not to defrag an extent, we reset *last_len
1068 * so that the next tiny extent will force a defrag.
1069 *
1070 * The end result of this is that tiny extents before a single big
1071 * extent will force at least part of that big extent to be defragged.
1072 */
1073 if (ret) {
1074 *defrag_end = extent_map_end(em);
1075 } else {
1076 *last_len = 0;
1077 *skip = extent_map_end(em);
1078 *defrag_end = 0;
1079 }
1080
1081 free_extent_map(em);
1082 return ret;
1083 }
1084
1085 /*
1086 * it doesn't do much good to defrag one or two pages
1087 * at a time. This pulls in a nice chunk of pages
1088 * to COW and defrag.
1089 *
1090 * It also makes sure the delalloc code has enough
1091 * dirty data to avoid making new small extents as part
1092 * of the defrag
1093 *
1094 * It's a good idea to start RA on this range
1095 * before calling this.
1096 */
cluster_pages_for_defrag(struct inode * inode,struct page ** pages,unsigned long start_index,unsigned long num_pages)1097 static int cluster_pages_for_defrag(struct inode *inode,
1098 struct page **pages,
1099 unsigned long start_index,
1100 unsigned long num_pages)
1101 {
1102 unsigned long file_end;
1103 u64 isize = i_size_read(inode);
1104 u64 page_start;
1105 u64 page_end;
1106 u64 page_cnt;
1107 int ret;
1108 int i;
1109 int i_done;
1110 struct btrfs_ordered_extent *ordered;
1111 struct extent_state *cached_state = NULL;
1112 struct extent_io_tree *tree;
1113 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1114
1115 file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
1116 if (!isize || start_index > file_end)
1117 return 0;
1118
1119 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1120
1121 ret = btrfs_delalloc_reserve_space(inode,
1122 page_cnt << PAGE_CACHE_SHIFT);
1123 if (ret)
1124 return ret;
1125 i_done = 0;
1126 tree = &BTRFS_I(inode)->io_tree;
1127
1128 /* step one, lock all the pages */
1129 for (i = 0; i < page_cnt; i++) {
1130 struct page *page;
1131 again:
1132 page = find_or_create_page(inode->i_mapping,
1133 start_index + i, mask);
1134 if (!page)
1135 break;
1136
1137 page_start = page_offset(page);
1138 page_end = page_start + PAGE_CACHE_SIZE - 1;
1139 while (1) {
1140 lock_extent_bits(tree, page_start, page_end,
1141 0, &cached_state);
1142 ordered = btrfs_lookup_ordered_extent(inode,
1143 page_start);
1144 unlock_extent_cached(tree, page_start, page_end,
1145 &cached_state, GFP_NOFS);
1146 if (!ordered)
1147 break;
1148
1149 unlock_page(page);
1150 btrfs_start_ordered_extent(inode, ordered, 1);
1151 btrfs_put_ordered_extent(ordered);
1152 lock_page(page);
1153 /*
1154 * we unlocked the page above, so we need check if
1155 * it was released or not.
1156 */
1157 if (page->mapping != inode->i_mapping) {
1158 unlock_page(page);
1159 page_cache_release(page);
1160 goto again;
1161 }
1162 }
1163
1164 if (!PageUptodate(page)) {
1165 btrfs_readpage(NULL, page);
1166 lock_page(page);
1167 if (!PageUptodate(page)) {
1168 unlock_page(page);
1169 page_cache_release(page);
1170 ret = -EIO;
1171 break;
1172 }
1173 }
1174
1175 if (page->mapping != inode->i_mapping) {
1176 unlock_page(page);
1177 page_cache_release(page);
1178 goto again;
1179 }
1180
1181 pages[i] = page;
1182 i_done++;
1183 }
1184 if (!i_done || ret)
1185 goto out;
1186
1187 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1188 goto out;
1189
1190 /*
1191 * so now we have a nice long stream of locked
1192 * and up to date pages, lets wait on them
1193 */
1194 for (i = 0; i < i_done; i++)
1195 wait_on_page_writeback(pages[i]);
1196
1197 page_start = page_offset(pages[0]);
1198 page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
1199
1200 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1201 page_start, page_end - 1, 0, &cached_state);
1202 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1203 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1204 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1205 &cached_state, GFP_NOFS);
1206
1207 if (i_done != page_cnt) {
1208 spin_lock(&BTRFS_I(inode)->lock);
1209 BTRFS_I(inode)->outstanding_extents++;
1210 spin_unlock(&BTRFS_I(inode)->lock);
1211 btrfs_delalloc_release_space(inode,
1212 (page_cnt - i_done) << PAGE_CACHE_SHIFT);
1213 }
1214
1215
1216 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1217 &cached_state, GFP_NOFS);
1218
1219 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1220 page_start, page_end - 1, &cached_state,
1221 GFP_NOFS);
1222
1223 for (i = 0; i < i_done; i++) {
1224 clear_page_dirty_for_io(pages[i]);
1225 ClearPageChecked(pages[i]);
1226 set_page_extent_mapped(pages[i]);
1227 set_page_dirty(pages[i]);
1228 unlock_page(pages[i]);
1229 page_cache_release(pages[i]);
1230 }
1231 return i_done;
1232 out:
1233 for (i = 0; i < i_done; i++) {
1234 unlock_page(pages[i]);
1235 page_cache_release(pages[i]);
1236 }
1237 btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT);
1238 return ret;
1239
1240 }
1241
btrfs_defrag_file(struct inode * inode,struct file * file,struct btrfs_ioctl_defrag_range_args * range,u64 newer_than,unsigned long max_to_defrag)1242 int btrfs_defrag_file(struct inode *inode, struct file *file,
1243 struct btrfs_ioctl_defrag_range_args *range,
1244 u64 newer_than, unsigned long max_to_defrag)
1245 {
1246 struct btrfs_root *root = BTRFS_I(inode)->root;
1247 struct file_ra_state *ra = NULL;
1248 unsigned long last_index;
1249 u64 isize = i_size_read(inode);
1250 u64 last_len = 0;
1251 u64 skip = 0;
1252 u64 defrag_end = 0;
1253 u64 newer_off = range->start;
1254 unsigned long i;
1255 unsigned long ra_index = 0;
1256 int ret;
1257 int defrag_count = 0;
1258 int compress_type = BTRFS_COMPRESS_ZLIB;
1259 u32 extent_thresh = range->extent_thresh;
1260 unsigned long max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
1261 unsigned long cluster = max_cluster;
1262 u64 new_align = ~((u64)128 * 1024 - 1);
1263 struct page **pages = NULL;
1264
1265 if (isize == 0)
1266 return 0;
1267
1268 if (range->start >= isize)
1269 return -EINVAL;
1270
1271 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1272 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1273 return -EINVAL;
1274 if (range->compress_type)
1275 compress_type = range->compress_type;
1276 }
1277
1278 if (extent_thresh == 0)
1279 extent_thresh = 256 * 1024;
1280
1281 /*
1282 * if we were not given a file, allocate a readahead
1283 * context
1284 */
1285 if (!file) {
1286 ra = kzalloc(sizeof(*ra), GFP_NOFS);
1287 if (!ra)
1288 return -ENOMEM;
1289 file_ra_state_init(ra, inode->i_mapping);
1290 } else {
1291 ra = &file->f_ra;
1292 }
1293
1294 pages = kmalloc_array(max_cluster, sizeof(struct page *),
1295 GFP_NOFS);
1296 if (!pages) {
1297 ret = -ENOMEM;
1298 goto out_ra;
1299 }
1300
1301 /* find the last page to defrag */
1302 if (range->start + range->len > range->start) {
1303 last_index = min_t(u64, isize - 1,
1304 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1305 } else {
1306 last_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1307 }
1308
1309 if (newer_than) {
1310 ret = find_new_extents(root, inode, newer_than,
1311 &newer_off, 64 * 1024);
1312 if (!ret) {
1313 range->start = newer_off;
1314 /*
1315 * we always align our defrag to help keep
1316 * the extents in the file evenly spaced
1317 */
1318 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1319 } else
1320 goto out_ra;
1321 } else {
1322 i = range->start >> PAGE_CACHE_SHIFT;
1323 }
1324 if (!max_to_defrag)
1325 max_to_defrag = last_index + 1;
1326
1327 /*
1328 * make writeback starts from i, so the defrag range can be
1329 * written sequentially.
1330 */
1331 if (i < inode->i_mapping->writeback_index)
1332 inode->i_mapping->writeback_index = i;
1333
1334 while (i <= last_index && defrag_count < max_to_defrag &&
1335 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_CACHE_SIZE))) {
1336 /*
1337 * make sure we stop running if someone unmounts
1338 * the FS
1339 */
1340 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1341 break;
1342
1343 if (btrfs_defrag_cancelled(root->fs_info)) {
1344 printk(KERN_DEBUG "BTRFS: defrag_file cancelled\n");
1345 ret = -EAGAIN;
1346 break;
1347 }
1348
1349 if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1350 extent_thresh, &last_len, &skip,
1351 &defrag_end, range->flags &
1352 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1353 unsigned long next;
1354 /*
1355 * the should_defrag function tells us how much to skip
1356 * bump our counter by the suggested amount
1357 */
1358 next = DIV_ROUND_UP(skip, PAGE_CACHE_SIZE);
1359 i = max(i + 1, next);
1360 continue;
1361 }
1362
1363 if (!newer_than) {
1364 cluster = (PAGE_CACHE_ALIGN(defrag_end) >>
1365 PAGE_CACHE_SHIFT) - i;
1366 cluster = min(cluster, max_cluster);
1367 } else {
1368 cluster = max_cluster;
1369 }
1370
1371 if (i + cluster > ra_index) {
1372 ra_index = max(i, ra_index);
1373 btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1374 cluster);
1375 ra_index += max_cluster;
1376 }
1377
1378 mutex_lock(&inode->i_mutex);
1379 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1380 BTRFS_I(inode)->force_compress = compress_type;
1381 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1382 if (ret < 0) {
1383 mutex_unlock(&inode->i_mutex);
1384 goto out_ra;
1385 }
1386
1387 defrag_count += ret;
1388 balance_dirty_pages_ratelimited(inode->i_mapping);
1389 mutex_unlock(&inode->i_mutex);
1390
1391 if (newer_than) {
1392 if (newer_off == (u64)-1)
1393 break;
1394
1395 if (ret > 0)
1396 i += ret;
1397
1398 newer_off = max(newer_off + 1,
1399 (u64)i << PAGE_CACHE_SHIFT);
1400
1401 ret = find_new_extents(root, inode,
1402 newer_than, &newer_off,
1403 64 * 1024);
1404 if (!ret) {
1405 range->start = newer_off;
1406 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1407 } else {
1408 break;
1409 }
1410 } else {
1411 if (ret > 0) {
1412 i += ret;
1413 last_len += ret << PAGE_CACHE_SHIFT;
1414 } else {
1415 i++;
1416 last_len = 0;
1417 }
1418 }
1419 }
1420
1421 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1422 filemap_flush(inode->i_mapping);
1423 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1424 &BTRFS_I(inode)->runtime_flags))
1425 filemap_flush(inode->i_mapping);
1426 }
1427
1428 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1429 /* the filemap_flush will queue IO into the worker threads, but
1430 * we have to make sure the IO is actually started and that
1431 * ordered extents get created before we return
1432 */
1433 atomic_inc(&root->fs_info->async_submit_draining);
1434 while (atomic_read(&root->fs_info->nr_async_submits) ||
1435 atomic_read(&root->fs_info->async_delalloc_pages)) {
1436 wait_event(root->fs_info->async_submit_wait,
1437 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1438 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1439 }
1440 atomic_dec(&root->fs_info->async_submit_draining);
1441 }
1442
1443 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1444 btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
1445 }
1446
1447 ret = defrag_count;
1448
1449 out_ra:
1450 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1451 mutex_lock(&inode->i_mutex);
1452 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1453 mutex_unlock(&inode->i_mutex);
1454 }
1455 if (!file)
1456 kfree(ra);
1457 kfree(pages);
1458 return ret;
1459 }
1460
btrfs_ioctl_resize(struct file * file,void __user * arg)1461 static noinline int btrfs_ioctl_resize(struct file *file,
1462 void __user *arg)
1463 {
1464 u64 new_size;
1465 u64 old_size;
1466 u64 devid = 1;
1467 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1468 struct btrfs_ioctl_vol_args *vol_args;
1469 struct btrfs_trans_handle *trans;
1470 struct btrfs_device *device = NULL;
1471 char *sizestr;
1472 char *retptr;
1473 char *devstr = NULL;
1474 int ret = 0;
1475 int mod = 0;
1476
1477 if (!capable(CAP_SYS_ADMIN))
1478 return -EPERM;
1479
1480 ret = mnt_want_write_file(file);
1481 if (ret)
1482 return ret;
1483
1484 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
1485 1)) {
1486 mnt_drop_write_file(file);
1487 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1488 }
1489
1490 mutex_lock(&root->fs_info->volume_mutex);
1491 vol_args = memdup_user(arg, sizeof(*vol_args));
1492 if (IS_ERR(vol_args)) {
1493 ret = PTR_ERR(vol_args);
1494 goto out;
1495 }
1496
1497 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1498
1499 sizestr = vol_args->name;
1500 devstr = strchr(sizestr, ':');
1501 if (devstr) {
1502 sizestr = devstr + 1;
1503 *devstr = '\0';
1504 devstr = vol_args->name;
1505 ret = kstrtoull(devstr, 10, &devid);
1506 if (ret)
1507 goto out_free;
1508 if (!devid) {
1509 ret = -EINVAL;
1510 goto out_free;
1511 }
1512 btrfs_info(root->fs_info, "resizing devid %llu", devid);
1513 }
1514
1515 device = btrfs_find_device(root->fs_info, devid, NULL, NULL);
1516 if (!device) {
1517 btrfs_info(root->fs_info, "resizer unable to find device %llu",
1518 devid);
1519 ret = -ENODEV;
1520 goto out_free;
1521 }
1522
1523 if (!device->writeable) {
1524 btrfs_info(root->fs_info,
1525 "resizer unable to apply on readonly device %llu",
1526 devid);
1527 ret = -EPERM;
1528 goto out_free;
1529 }
1530
1531 if (!strcmp(sizestr, "max"))
1532 new_size = device->bdev->bd_inode->i_size;
1533 else {
1534 if (sizestr[0] == '-') {
1535 mod = -1;
1536 sizestr++;
1537 } else if (sizestr[0] == '+') {
1538 mod = 1;
1539 sizestr++;
1540 }
1541 new_size = memparse(sizestr, &retptr);
1542 if (*retptr != '\0' || new_size == 0) {
1543 ret = -EINVAL;
1544 goto out_free;
1545 }
1546 }
1547
1548 if (device->is_tgtdev_for_dev_replace) {
1549 ret = -EPERM;
1550 goto out_free;
1551 }
1552
1553 old_size = btrfs_device_get_total_bytes(device);
1554
1555 if (mod < 0) {
1556 if (new_size > old_size) {
1557 ret = -EINVAL;
1558 goto out_free;
1559 }
1560 new_size = old_size - new_size;
1561 } else if (mod > 0) {
1562 if (new_size > ULLONG_MAX - old_size) {
1563 ret = -ERANGE;
1564 goto out_free;
1565 }
1566 new_size = old_size + new_size;
1567 }
1568
1569 if (new_size < 256 * 1024 * 1024) {
1570 ret = -EINVAL;
1571 goto out_free;
1572 }
1573 if (new_size > device->bdev->bd_inode->i_size) {
1574 ret = -EFBIG;
1575 goto out_free;
1576 }
1577
1578 new_size = div_u64(new_size, root->sectorsize);
1579 new_size *= root->sectorsize;
1580
1581 printk_in_rcu(KERN_INFO "BTRFS: new size for %s is %llu\n",
1582 rcu_str_deref(device->name), new_size);
1583
1584 if (new_size > old_size) {
1585 trans = btrfs_start_transaction(root, 0);
1586 if (IS_ERR(trans)) {
1587 ret = PTR_ERR(trans);
1588 goto out_free;
1589 }
1590 ret = btrfs_grow_device(trans, device, new_size);
1591 btrfs_commit_transaction(trans, root);
1592 } else if (new_size < old_size) {
1593 ret = btrfs_shrink_device(device, new_size);
1594 } /* equal, nothing need to do */
1595
1596 out_free:
1597 kfree(vol_args);
1598 out:
1599 mutex_unlock(&root->fs_info->volume_mutex);
1600 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
1601 mnt_drop_write_file(file);
1602 return ret;
1603 }
1604
btrfs_ioctl_snap_create_transid(struct file * file,char * name,unsigned long fd,int subvol,u64 * transid,bool readonly,struct btrfs_qgroup_inherit * inherit)1605 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1606 char *name, unsigned long fd, int subvol,
1607 u64 *transid, bool readonly,
1608 struct btrfs_qgroup_inherit *inherit)
1609 {
1610 int namelen;
1611 int ret = 0;
1612
1613 ret = mnt_want_write_file(file);
1614 if (ret)
1615 goto out;
1616
1617 namelen = strlen(name);
1618 if (strchr(name, '/')) {
1619 ret = -EINVAL;
1620 goto out_drop_write;
1621 }
1622
1623 if (name[0] == '.' &&
1624 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1625 ret = -EEXIST;
1626 goto out_drop_write;
1627 }
1628
1629 if (subvol) {
1630 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1631 NULL, transid, readonly, inherit);
1632 } else {
1633 struct fd src = fdget(fd);
1634 struct inode *src_inode;
1635 if (!src.file) {
1636 ret = -EINVAL;
1637 goto out_drop_write;
1638 }
1639
1640 src_inode = file_inode(src.file);
1641 if (src_inode->i_sb != file_inode(file)->i_sb) {
1642 btrfs_info(BTRFS_I(src_inode)->root->fs_info,
1643 "Snapshot src from another FS");
1644 ret = -EXDEV;
1645 } else if (!inode_owner_or_capable(src_inode)) {
1646 /*
1647 * Subvolume creation is not restricted, but snapshots
1648 * are limited to own subvolumes only
1649 */
1650 ret = -EPERM;
1651 } else {
1652 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1653 BTRFS_I(src_inode)->root,
1654 transid, readonly, inherit);
1655 }
1656 fdput(src);
1657 }
1658 out_drop_write:
1659 mnt_drop_write_file(file);
1660 out:
1661 return ret;
1662 }
1663
btrfs_ioctl_snap_create(struct file * file,void __user * arg,int subvol)1664 static noinline int btrfs_ioctl_snap_create(struct file *file,
1665 void __user *arg, int subvol)
1666 {
1667 struct btrfs_ioctl_vol_args *vol_args;
1668 int ret;
1669
1670 vol_args = memdup_user(arg, sizeof(*vol_args));
1671 if (IS_ERR(vol_args))
1672 return PTR_ERR(vol_args);
1673 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1674
1675 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1676 vol_args->fd, subvol,
1677 NULL, false, NULL);
1678
1679 kfree(vol_args);
1680 return ret;
1681 }
1682
btrfs_ioctl_snap_create_v2(struct file * file,void __user * arg,int subvol)1683 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1684 void __user *arg, int subvol)
1685 {
1686 struct btrfs_ioctl_vol_args_v2 *vol_args;
1687 int ret;
1688 u64 transid = 0;
1689 u64 *ptr = NULL;
1690 bool readonly = false;
1691 struct btrfs_qgroup_inherit *inherit = NULL;
1692
1693 vol_args = memdup_user(arg, sizeof(*vol_args));
1694 if (IS_ERR(vol_args))
1695 return PTR_ERR(vol_args);
1696 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1697
1698 if (vol_args->flags &
1699 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1700 BTRFS_SUBVOL_QGROUP_INHERIT)) {
1701 ret = -EOPNOTSUPP;
1702 goto free_args;
1703 }
1704
1705 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1706 ptr = &transid;
1707 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1708 readonly = true;
1709 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1710 if (vol_args->size > PAGE_CACHE_SIZE) {
1711 ret = -EINVAL;
1712 goto free_args;
1713 }
1714 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1715 if (IS_ERR(inherit)) {
1716 ret = PTR_ERR(inherit);
1717 goto free_args;
1718 }
1719 }
1720
1721 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1722 vol_args->fd, subvol, ptr,
1723 readonly, inherit);
1724 if (ret)
1725 goto free_inherit;
1726
1727 if (ptr && copy_to_user(arg +
1728 offsetof(struct btrfs_ioctl_vol_args_v2,
1729 transid),
1730 ptr, sizeof(*ptr)))
1731 ret = -EFAULT;
1732
1733 free_inherit:
1734 kfree(inherit);
1735 free_args:
1736 kfree(vol_args);
1737 return ret;
1738 }
1739
btrfs_ioctl_subvol_getflags(struct file * file,void __user * arg)1740 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1741 void __user *arg)
1742 {
1743 struct inode *inode = file_inode(file);
1744 struct btrfs_root *root = BTRFS_I(inode)->root;
1745 int ret = 0;
1746 u64 flags = 0;
1747
1748 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1749 return -EINVAL;
1750
1751 down_read(&root->fs_info->subvol_sem);
1752 if (btrfs_root_readonly(root))
1753 flags |= BTRFS_SUBVOL_RDONLY;
1754 up_read(&root->fs_info->subvol_sem);
1755
1756 if (copy_to_user(arg, &flags, sizeof(flags)))
1757 ret = -EFAULT;
1758
1759 return ret;
1760 }
1761
btrfs_ioctl_subvol_setflags(struct file * file,void __user * arg)1762 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1763 void __user *arg)
1764 {
1765 struct inode *inode = file_inode(file);
1766 struct btrfs_root *root = BTRFS_I(inode)->root;
1767 struct btrfs_trans_handle *trans;
1768 u64 root_flags;
1769 u64 flags;
1770 int ret = 0;
1771
1772 if (!inode_owner_or_capable(inode))
1773 return -EPERM;
1774
1775 ret = mnt_want_write_file(file);
1776 if (ret)
1777 goto out;
1778
1779 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1780 ret = -EINVAL;
1781 goto out_drop_write;
1782 }
1783
1784 if (copy_from_user(&flags, arg, sizeof(flags))) {
1785 ret = -EFAULT;
1786 goto out_drop_write;
1787 }
1788
1789 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1790 ret = -EINVAL;
1791 goto out_drop_write;
1792 }
1793
1794 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1795 ret = -EOPNOTSUPP;
1796 goto out_drop_write;
1797 }
1798
1799 down_write(&root->fs_info->subvol_sem);
1800
1801 /* nothing to do */
1802 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1803 goto out_drop_sem;
1804
1805 root_flags = btrfs_root_flags(&root->root_item);
1806 if (flags & BTRFS_SUBVOL_RDONLY) {
1807 btrfs_set_root_flags(&root->root_item,
1808 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1809 } else {
1810 /*
1811 * Block RO -> RW transition if this subvolume is involved in
1812 * send
1813 */
1814 spin_lock(&root->root_item_lock);
1815 if (root->send_in_progress == 0) {
1816 btrfs_set_root_flags(&root->root_item,
1817 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1818 spin_unlock(&root->root_item_lock);
1819 } else {
1820 spin_unlock(&root->root_item_lock);
1821 btrfs_warn(root->fs_info,
1822 "Attempt to set subvolume %llu read-write during send",
1823 root->root_key.objectid);
1824 ret = -EPERM;
1825 goto out_drop_sem;
1826 }
1827 }
1828
1829 trans = btrfs_start_transaction(root, 1);
1830 if (IS_ERR(trans)) {
1831 ret = PTR_ERR(trans);
1832 goto out_reset;
1833 }
1834
1835 ret = btrfs_update_root(trans, root->fs_info->tree_root,
1836 &root->root_key, &root->root_item);
1837
1838 btrfs_commit_transaction(trans, root);
1839 out_reset:
1840 if (ret)
1841 btrfs_set_root_flags(&root->root_item, root_flags);
1842 out_drop_sem:
1843 up_write(&root->fs_info->subvol_sem);
1844 out_drop_write:
1845 mnt_drop_write_file(file);
1846 out:
1847 return ret;
1848 }
1849
1850 /*
1851 * helper to check if the subvolume references other subvolumes
1852 */
may_destroy_subvol(struct btrfs_root * root)1853 static noinline int may_destroy_subvol(struct btrfs_root *root)
1854 {
1855 struct btrfs_path *path;
1856 struct btrfs_dir_item *di;
1857 struct btrfs_key key;
1858 u64 dir_id;
1859 int ret;
1860
1861 path = btrfs_alloc_path();
1862 if (!path)
1863 return -ENOMEM;
1864
1865 /* Make sure this root isn't set as the default subvol */
1866 dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
1867 di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path,
1868 dir_id, "default", 7, 0);
1869 if (di && !IS_ERR(di)) {
1870 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1871 if (key.objectid == root->root_key.objectid) {
1872 ret = -EPERM;
1873 btrfs_err(root->fs_info, "deleting default subvolume "
1874 "%llu is not allowed", key.objectid);
1875 goto out;
1876 }
1877 btrfs_release_path(path);
1878 }
1879
1880 key.objectid = root->root_key.objectid;
1881 key.type = BTRFS_ROOT_REF_KEY;
1882 key.offset = (u64)-1;
1883
1884 ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1885 &key, path, 0, 0);
1886 if (ret < 0)
1887 goto out;
1888 BUG_ON(ret == 0);
1889
1890 ret = 0;
1891 if (path->slots[0] > 0) {
1892 path->slots[0]--;
1893 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1894 if (key.objectid == root->root_key.objectid &&
1895 key.type == BTRFS_ROOT_REF_KEY)
1896 ret = -ENOTEMPTY;
1897 }
1898 out:
1899 btrfs_free_path(path);
1900 return ret;
1901 }
1902
key_in_sk(struct btrfs_key * key,struct btrfs_ioctl_search_key * sk)1903 static noinline int key_in_sk(struct btrfs_key *key,
1904 struct btrfs_ioctl_search_key *sk)
1905 {
1906 struct btrfs_key test;
1907 int ret;
1908
1909 test.objectid = sk->min_objectid;
1910 test.type = sk->min_type;
1911 test.offset = sk->min_offset;
1912
1913 ret = btrfs_comp_cpu_keys(key, &test);
1914 if (ret < 0)
1915 return 0;
1916
1917 test.objectid = sk->max_objectid;
1918 test.type = sk->max_type;
1919 test.offset = sk->max_offset;
1920
1921 ret = btrfs_comp_cpu_keys(key, &test);
1922 if (ret > 0)
1923 return 0;
1924 return 1;
1925 }
1926
copy_to_sk(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key,struct btrfs_ioctl_search_key * sk,size_t * buf_size,char __user * ubuf,unsigned long * sk_offset,int * num_found)1927 static noinline int copy_to_sk(struct btrfs_root *root,
1928 struct btrfs_path *path,
1929 struct btrfs_key *key,
1930 struct btrfs_ioctl_search_key *sk,
1931 size_t *buf_size,
1932 char __user *ubuf,
1933 unsigned long *sk_offset,
1934 int *num_found)
1935 {
1936 u64 found_transid;
1937 struct extent_buffer *leaf;
1938 struct btrfs_ioctl_search_header sh;
1939 unsigned long item_off;
1940 unsigned long item_len;
1941 int nritems;
1942 int i;
1943 int slot;
1944 int ret = 0;
1945
1946 leaf = path->nodes[0];
1947 slot = path->slots[0];
1948 nritems = btrfs_header_nritems(leaf);
1949
1950 if (btrfs_header_generation(leaf) > sk->max_transid) {
1951 i = nritems;
1952 goto advance_key;
1953 }
1954 found_transid = btrfs_header_generation(leaf);
1955
1956 for (i = slot; i < nritems; i++) {
1957 item_off = btrfs_item_ptr_offset(leaf, i);
1958 item_len = btrfs_item_size_nr(leaf, i);
1959
1960 btrfs_item_key_to_cpu(leaf, key, i);
1961 if (!key_in_sk(key, sk))
1962 continue;
1963
1964 if (sizeof(sh) + item_len > *buf_size) {
1965 if (*num_found) {
1966 ret = 1;
1967 goto out;
1968 }
1969
1970 /*
1971 * return one empty item back for v1, which does not
1972 * handle -EOVERFLOW
1973 */
1974
1975 *buf_size = sizeof(sh) + item_len;
1976 item_len = 0;
1977 ret = -EOVERFLOW;
1978 }
1979
1980 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1981 ret = 1;
1982 goto out;
1983 }
1984
1985 sh.objectid = key->objectid;
1986 sh.offset = key->offset;
1987 sh.type = key->type;
1988 sh.len = item_len;
1989 sh.transid = found_transid;
1990
1991 /* copy search result header */
1992 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
1993 ret = -EFAULT;
1994 goto out;
1995 }
1996
1997 *sk_offset += sizeof(sh);
1998
1999 if (item_len) {
2000 char __user *up = ubuf + *sk_offset;
2001 /* copy the item */
2002 if (read_extent_buffer_to_user(leaf, up,
2003 item_off, item_len)) {
2004 ret = -EFAULT;
2005 goto out;
2006 }
2007
2008 *sk_offset += item_len;
2009 }
2010 (*num_found)++;
2011
2012 if (ret) /* -EOVERFLOW from above */
2013 goto out;
2014
2015 if (*num_found >= sk->nr_items) {
2016 ret = 1;
2017 goto out;
2018 }
2019 }
2020 advance_key:
2021 ret = 0;
2022 if (key->offset < (u64)-1 && key->offset < sk->max_offset)
2023 key->offset++;
2024 else if (key->type < (u8)-1 && key->type < sk->max_type) {
2025 key->offset = 0;
2026 key->type++;
2027 } else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
2028 key->offset = 0;
2029 key->type = 0;
2030 key->objectid++;
2031 } else
2032 ret = 1;
2033 out:
2034 /*
2035 * 0: all items from this leaf copied, continue with next
2036 * 1: * more items can be copied, but unused buffer is too small
2037 * * all items were found
2038 * Either way, it will stops the loop which iterates to the next
2039 * leaf
2040 * -EOVERFLOW: item was to large for buffer
2041 * -EFAULT: could not copy extent buffer back to userspace
2042 */
2043 return ret;
2044 }
2045
search_ioctl(struct inode * inode,struct btrfs_ioctl_search_key * sk,size_t * buf_size,char __user * ubuf)2046 static noinline int search_ioctl(struct inode *inode,
2047 struct btrfs_ioctl_search_key *sk,
2048 size_t *buf_size,
2049 char __user *ubuf)
2050 {
2051 struct btrfs_root *root;
2052 struct btrfs_key key;
2053 struct btrfs_path *path;
2054 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
2055 int ret;
2056 int num_found = 0;
2057 unsigned long sk_offset = 0;
2058
2059 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2060 *buf_size = sizeof(struct btrfs_ioctl_search_header);
2061 return -EOVERFLOW;
2062 }
2063
2064 path = btrfs_alloc_path();
2065 if (!path)
2066 return -ENOMEM;
2067
2068 if (sk->tree_id == 0) {
2069 /* search the root of the inode that was passed */
2070 root = BTRFS_I(inode)->root;
2071 } else {
2072 key.objectid = sk->tree_id;
2073 key.type = BTRFS_ROOT_ITEM_KEY;
2074 key.offset = (u64)-1;
2075 root = btrfs_read_fs_root_no_name(info, &key);
2076 if (IS_ERR(root)) {
2077 printk(KERN_ERR "BTRFS: could not find root %llu\n",
2078 sk->tree_id);
2079 btrfs_free_path(path);
2080 return -ENOENT;
2081 }
2082 }
2083
2084 key.objectid = sk->min_objectid;
2085 key.type = sk->min_type;
2086 key.offset = sk->min_offset;
2087
2088 while (1) {
2089 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2090 if (ret != 0) {
2091 if (ret > 0)
2092 ret = 0;
2093 goto err;
2094 }
2095 ret = copy_to_sk(root, path, &key, sk, buf_size, ubuf,
2096 &sk_offset, &num_found);
2097 btrfs_release_path(path);
2098 if (ret)
2099 break;
2100
2101 }
2102 if (ret > 0)
2103 ret = 0;
2104 err:
2105 sk->nr_items = num_found;
2106 btrfs_free_path(path);
2107 return ret;
2108 }
2109
btrfs_ioctl_tree_search(struct file * file,void __user * argp)2110 static noinline int btrfs_ioctl_tree_search(struct file *file,
2111 void __user *argp)
2112 {
2113 struct btrfs_ioctl_search_args __user *uargs;
2114 struct btrfs_ioctl_search_key sk;
2115 struct inode *inode;
2116 int ret;
2117 size_t buf_size;
2118
2119 if (!capable(CAP_SYS_ADMIN))
2120 return -EPERM;
2121
2122 uargs = (struct btrfs_ioctl_search_args __user *)argp;
2123
2124 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2125 return -EFAULT;
2126
2127 buf_size = sizeof(uargs->buf);
2128
2129 inode = file_inode(file);
2130 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2131
2132 /*
2133 * In the origin implementation an overflow is handled by returning a
2134 * search header with a len of zero, so reset ret.
2135 */
2136 if (ret == -EOVERFLOW)
2137 ret = 0;
2138
2139 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2140 ret = -EFAULT;
2141 return ret;
2142 }
2143
btrfs_ioctl_tree_search_v2(struct file * file,void __user * argp)2144 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2145 void __user *argp)
2146 {
2147 struct btrfs_ioctl_search_args_v2 __user *uarg;
2148 struct btrfs_ioctl_search_args_v2 args;
2149 struct inode *inode;
2150 int ret;
2151 size_t buf_size;
2152 const size_t buf_limit = 16 * 1024 * 1024;
2153
2154 if (!capable(CAP_SYS_ADMIN))
2155 return -EPERM;
2156
2157 /* copy search header and buffer size */
2158 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2159 if (copy_from_user(&args, uarg, sizeof(args)))
2160 return -EFAULT;
2161
2162 buf_size = args.buf_size;
2163
2164 if (buf_size < sizeof(struct btrfs_ioctl_search_header))
2165 return -EOVERFLOW;
2166
2167 /* limit result size to 16MB */
2168 if (buf_size > buf_limit)
2169 buf_size = buf_limit;
2170
2171 inode = file_inode(file);
2172 ret = search_ioctl(inode, &args.key, &buf_size,
2173 (char *)(&uarg->buf[0]));
2174 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2175 ret = -EFAULT;
2176 else if (ret == -EOVERFLOW &&
2177 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2178 ret = -EFAULT;
2179
2180 return ret;
2181 }
2182
2183 /*
2184 * Search INODE_REFs to identify path name of 'dirid' directory
2185 * in a 'tree_id' tree. and sets path name to 'name'.
2186 */
btrfs_search_path_in_tree(struct btrfs_fs_info * info,u64 tree_id,u64 dirid,char * name)2187 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2188 u64 tree_id, u64 dirid, char *name)
2189 {
2190 struct btrfs_root *root;
2191 struct btrfs_key key;
2192 char *ptr;
2193 int ret = -1;
2194 int slot;
2195 int len;
2196 int total_len = 0;
2197 struct btrfs_inode_ref *iref;
2198 struct extent_buffer *l;
2199 struct btrfs_path *path;
2200
2201 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2202 name[0]='\0';
2203 return 0;
2204 }
2205
2206 path = btrfs_alloc_path();
2207 if (!path)
2208 return -ENOMEM;
2209
2210 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
2211
2212 key.objectid = tree_id;
2213 key.type = BTRFS_ROOT_ITEM_KEY;
2214 key.offset = (u64)-1;
2215 root = btrfs_read_fs_root_no_name(info, &key);
2216 if (IS_ERR(root)) {
2217 printk(KERN_ERR "BTRFS: could not find root %llu\n", tree_id);
2218 ret = -ENOENT;
2219 goto out;
2220 }
2221
2222 key.objectid = dirid;
2223 key.type = BTRFS_INODE_REF_KEY;
2224 key.offset = (u64)-1;
2225
2226 while (1) {
2227 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2228 if (ret < 0)
2229 goto out;
2230 else if (ret > 0) {
2231 ret = btrfs_previous_item(root, path, dirid,
2232 BTRFS_INODE_REF_KEY);
2233 if (ret < 0)
2234 goto out;
2235 else if (ret > 0) {
2236 ret = -ENOENT;
2237 goto out;
2238 }
2239 }
2240
2241 l = path->nodes[0];
2242 slot = path->slots[0];
2243 btrfs_item_key_to_cpu(l, &key, slot);
2244
2245 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2246 len = btrfs_inode_ref_name_len(l, iref);
2247 ptr -= len + 1;
2248 total_len += len + 1;
2249 if (ptr < name) {
2250 ret = -ENAMETOOLONG;
2251 goto out;
2252 }
2253
2254 *(ptr + len) = '/';
2255 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2256
2257 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2258 break;
2259
2260 btrfs_release_path(path);
2261 key.objectid = key.offset;
2262 key.offset = (u64)-1;
2263 dirid = key.objectid;
2264 }
2265 memmove(name, ptr, total_len);
2266 name[total_len] = '\0';
2267 ret = 0;
2268 out:
2269 btrfs_free_path(path);
2270 return ret;
2271 }
2272
btrfs_ioctl_ino_lookup(struct file * file,void __user * argp)2273 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2274 void __user *argp)
2275 {
2276 struct btrfs_ioctl_ino_lookup_args *args;
2277 struct inode *inode;
2278 int ret;
2279
2280 if (!capable(CAP_SYS_ADMIN))
2281 return -EPERM;
2282
2283 args = memdup_user(argp, sizeof(*args));
2284 if (IS_ERR(args))
2285 return PTR_ERR(args);
2286
2287 inode = file_inode(file);
2288
2289 if (args->treeid == 0)
2290 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2291
2292 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2293 args->treeid, args->objectid,
2294 args->name);
2295
2296 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2297 ret = -EFAULT;
2298
2299 kfree(args);
2300 return ret;
2301 }
2302
btrfs_ioctl_snap_destroy(struct file * file,void __user * arg)2303 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2304 void __user *arg)
2305 {
2306 struct dentry *parent = file->f_path.dentry;
2307 struct dentry *dentry;
2308 struct inode *dir = d_inode(parent);
2309 struct inode *inode;
2310 struct btrfs_root *root = BTRFS_I(dir)->root;
2311 struct btrfs_root *dest = NULL;
2312 struct btrfs_ioctl_vol_args *vol_args;
2313 struct btrfs_trans_handle *trans;
2314 struct btrfs_block_rsv block_rsv;
2315 u64 root_flags;
2316 u64 qgroup_reserved;
2317 int namelen;
2318 int ret;
2319 int err = 0;
2320
2321 vol_args = memdup_user(arg, sizeof(*vol_args));
2322 if (IS_ERR(vol_args))
2323 return PTR_ERR(vol_args);
2324
2325 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2326 namelen = strlen(vol_args->name);
2327 if (strchr(vol_args->name, '/') ||
2328 strncmp(vol_args->name, "..", namelen) == 0) {
2329 err = -EINVAL;
2330 goto out;
2331 }
2332
2333 err = mnt_want_write_file(file);
2334 if (err)
2335 goto out;
2336
2337
2338 err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
2339 if (err == -EINTR)
2340 goto out_drop_write;
2341 dentry = lookup_one_len(vol_args->name, parent, namelen);
2342 if (IS_ERR(dentry)) {
2343 err = PTR_ERR(dentry);
2344 goto out_unlock_dir;
2345 }
2346
2347 if (d_really_is_negative(dentry)) {
2348 err = -ENOENT;
2349 goto out_dput;
2350 }
2351
2352 inode = d_inode(dentry);
2353 dest = BTRFS_I(inode)->root;
2354 if (!capable(CAP_SYS_ADMIN)) {
2355 /*
2356 * Regular user. Only allow this with a special mount
2357 * option, when the user has write+exec access to the
2358 * subvol root, and when rmdir(2) would have been
2359 * allowed.
2360 *
2361 * Note that this is _not_ check that the subvol is
2362 * empty or doesn't contain data that we wouldn't
2363 * otherwise be able to delete.
2364 *
2365 * Users who want to delete empty subvols should try
2366 * rmdir(2).
2367 */
2368 err = -EPERM;
2369 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
2370 goto out_dput;
2371
2372 /*
2373 * Do not allow deletion if the parent dir is the same
2374 * as the dir to be deleted. That means the ioctl
2375 * must be called on the dentry referencing the root
2376 * of the subvol, not a random directory contained
2377 * within it.
2378 */
2379 err = -EINVAL;
2380 if (root == dest)
2381 goto out_dput;
2382
2383 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2384 if (err)
2385 goto out_dput;
2386 }
2387
2388 /* check if subvolume may be deleted by a user */
2389 err = btrfs_may_delete(dir, dentry, 1);
2390 if (err)
2391 goto out_dput;
2392
2393 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2394 err = -EINVAL;
2395 goto out_dput;
2396 }
2397
2398 mutex_lock(&inode->i_mutex);
2399
2400 /*
2401 * Don't allow to delete a subvolume with send in progress. This is
2402 * inside the i_mutex so the error handling that has to drop the bit
2403 * again is not run concurrently.
2404 */
2405 spin_lock(&dest->root_item_lock);
2406 root_flags = btrfs_root_flags(&dest->root_item);
2407 if (dest->send_in_progress == 0) {
2408 btrfs_set_root_flags(&dest->root_item,
2409 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
2410 spin_unlock(&dest->root_item_lock);
2411 } else {
2412 spin_unlock(&dest->root_item_lock);
2413 btrfs_warn(root->fs_info,
2414 "Attempt to delete subvolume %llu during send",
2415 dest->root_key.objectid);
2416 err = -EPERM;
2417 goto out_unlock_inode;
2418 }
2419
2420 down_write(&root->fs_info->subvol_sem);
2421
2422 err = may_destroy_subvol(dest);
2423 if (err)
2424 goto out_up_write;
2425
2426 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2427 /*
2428 * One for dir inode, two for dir entries, two for root
2429 * ref/backref.
2430 */
2431 err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2432 5, &qgroup_reserved, true);
2433 if (err)
2434 goto out_up_write;
2435
2436 trans = btrfs_start_transaction(root, 0);
2437 if (IS_ERR(trans)) {
2438 err = PTR_ERR(trans);
2439 goto out_release;
2440 }
2441 trans->block_rsv = &block_rsv;
2442 trans->bytes_reserved = block_rsv.size;
2443
2444 ret = btrfs_unlink_subvol(trans, root, dir,
2445 dest->root_key.objectid,
2446 dentry->d_name.name,
2447 dentry->d_name.len);
2448 if (ret) {
2449 err = ret;
2450 btrfs_abort_transaction(trans, root, ret);
2451 goto out_end_trans;
2452 }
2453
2454 btrfs_record_root_in_trans(trans, dest);
2455
2456 memset(&dest->root_item.drop_progress, 0,
2457 sizeof(dest->root_item.drop_progress));
2458 dest->root_item.drop_level = 0;
2459 btrfs_set_root_refs(&dest->root_item, 0);
2460
2461 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
2462 ret = btrfs_insert_orphan_item(trans,
2463 root->fs_info->tree_root,
2464 dest->root_key.objectid);
2465 if (ret) {
2466 btrfs_abort_transaction(trans, root, ret);
2467 err = ret;
2468 goto out_end_trans;
2469 }
2470 }
2471
2472 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2473 dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
2474 dest->root_key.objectid);
2475 if (ret && ret != -ENOENT) {
2476 btrfs_abort_transaction(trans, root, ret);
2477 err = ret;
2478 goto out_end_trans;
2479 }
2480 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2481 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2482 dest->root_item.received_uuid,
2483 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2484 dest->root_key.objectid);
2485 if (ret && ret != -ENOENT) {
2486 btrfs_abort_transaction(trans, root, ret);
2487 err = ret;
2488 goto out_end_trans;
2489 }
2490 }
2491
2492 out_end_trans:
2493 trans->block_rsv = NULL;
2494 trans->bytes_reserved = 0;
2495 ret = btrfs_end_transaction(trans, root);
2496 if (ret && !err)
2497 err = ret;
2498 inode->i_flags |= S_DEAD;
2499 out_release:
2500 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
2501 out_up_write:
2502 up_write(&root->fs_info->subvol_sem);
2503 if (err) {
2504 spin_lock(&dest->root_item_lock);
2505 root_flags = btrfs_root_flags(&dest->root_item);
2506 btrfs_set_root_flags(&dest->root_item,
2507 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
2508 spin_unlock(&dest->root_item_lock);
2509 }
2510 out_unlock_inode:
2511 mutex_unlock(&inode->i_mutex);
2512 if (!err) {
2513 d_invalidate(dentry);
2514 btrfs_invalidate_inodes(dest);
2515 d_delete(dentry);
2516 ASSERT(dest->send_in_progress == 0);
2517
2518 /* the last ref */
2519 if (dest->ino_cache_inode) {
2520 iput(dest->ino_cache_inode);
2521 dest->ino_cache_inode = NULL;
2522 }
2523 }
2524 out_dput:
2525 dput(dentry);
2526 out_unlock_dir:
2527 mutex_unlock(&dir->i_mutex);
2528 out_drop_write:
2529 mnt_drop_write_file(file);
2530 out:
2531 kfree(vol_args);
2532 return err;
2533 }
2534
btrfs_ioctl_defrag(struct file * file,void __user * argp)2535 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2536 {
2537 struct inode *inode = file_inode(file);
2538 struct btrfs_root *root = BTRFS_I(inode)->root;
2539 struct btrfs_ioctl_defrag_range_args *range;
2540 int ret;
2541
2542 ret = mnt_want_write_file(file);
2543 if (ret)
2544 return ret;
2545
2546 if (btrfs_root_readonly(root)) {
2547 ret = -EROFS;
2548 goto out;
2549 }
2550
2551 switch (inode->i_mode & S_IFMT) {
2552 case S_IFDIR:
2553 if (!capable(CAP_SYS_ADMIN)) {
2554 ret = -EPERM;
2555 goto out;
2556 }
2557 ret = btrfs_defrag_root(root);
2558 if (ret)
2559 goto out;
2560 ret = btrfs_defrag_root(root->fs_info->extent_root);
2561 break;
2562 case S_IFREG:
2563 if (!(file->f_mode & FMODE_WRITE)) {
2564 ret = -EINVAL;
2565 goto out;
2566 }
2567
2568 range = kzalloc(sizeof(*range), GFP_KERNEL);
2569 if (!range) {
2570 ret = -ENOMEM;
2571 goto out;
2572 }
2573
2574 if (argp) {
2575 if (copy_from_user(range, argp,
2576 sizeof(*range))) {
2577 ret = -EFAULT;
2578 kfree(range);
2579 goto out;
2580 }
2581 /* compression requires us to start the IO */
2582 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2583 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2584 range->extent_thresh = (u32)-1;
2585 }
2586 } else {
2587 /* the rest are all set to zero by kzalloc */
2588 range->len = (u64)-1;
2589 }
2590 ret = btrfs_defrag_file(file_inode(file), file,
2591 range, 0, 0);
2592 if (ret > 0)
2593 ret = 0;
2594 kfree(range);
2595 break;
2596 default:
2597 ret = -EINVAL;
2598 }
2599 out:
2600 mnt_drop_write_file(file);
2601 return ret;
2602 }
2603
btrfs_ioctl_add_dev(struct btrfs_root * root,void __user * arg)2604 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2605 {
2606 struct btrfs_ioctl_vol_args *vol_args;
2607 int ret;
2608
2609 if (!capable(CAP_SYS_ADMIN))
2610 return -EPERM;
2611
2612 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2613 1)) {
2614 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2615 }
2616
2617 mutex_lock(&root->fs_info->volume_mutex);
2618 vol_args = memdup_user(arg, sizeof(*vol_args));
2619 if (IS_ERR(vol_args)) {
2620 ret = PTR_ERR(vol_args);
2621 goto out;
2622 }
2623
2624 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2625 ret = btrfs_init_new_device(root, vol_args->name);
2626
2627 if (!ret)
2628 btrfs_info(root->fs_info, "disk added %s",vol_args->name);
2629
2630 kfree(vol_args);
2631 out:
2632 mutex_unlock(&root->fs_info->volume_mutex);
2633 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2634 return ret;
2635 }
2636
btrfs_ioctl_rm_dev(struct file * file,void __user * arg)2637 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2638 {
2639 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2640 struct btrfs_ioctl_vol_args *vol_args;
2641 int ret;
2642
2643 if (!capable(CAP_SYS_ADMIN))
2644 return -EPERM;
2645
2646 ret = mnt_want_write_file(file);
2647 if (ret)
2648 return ret;
2649
2650 vol_args = memdup_user(arg, sizeof(*vol_args));
2651 if (IS_ERR(vol_args)) {
2652 ret = PTR_ERR(vol_args);
2653 goto err_drop;
2654 }
2655
2656 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2657
2658 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2659 1)) {
2660 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2661 goto out;
2662 }
2663
2664 mutex_lock(&root->fs_info->volume_mutex);
2665 ret = btrfs_rm_device(root, vol_args->name);
2666 mutex_unlock(&root->fs_info->volume_mutex);
2667 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2668
2669 if (!ret)
2670 btrfs_info(root->fs_info, "disk deleted %s",vol_args->name);
2671
2672 out:
2673 kfree(vol_args);
2674 err_drop:
2675 mnt_drop_write_file(file);
2676 return ret;
2677 }
2678
btrfs_ioctl_fs_info(struct btrfs_root * root,void __user * arg)2679 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2680 {
2681 struct btrfs_ioctl_fs_info_args *fi_args;
2682 struct btrfs_device *device;
2683 struct btrfs_device *next;
2684 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2685 int ret = 0;
2686
2687 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2688 if (!fi_args)
2689 return -ENOMEM;
2690
2691 mutex_lock(&fs_devices->device_list_mutex);
2692 fi_args->num_devices = fs_devices->num_devices;
2693 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2694
2695 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2696 if (device->devid > fi_args->max_id)
2697 fi_args->max_id = device->devid;
2698 }
2699 mutex_unlock(&fs_devices->device_list_mutex);
2700
2701 fi_args->nodesize = root->fs_info->super_copy->nodesize;
2702 fi_args->sectorsize = root->fs_info->super_copy->sectorsize;
2703 fi_args->clone_alignment = root->fs_info->super_copy->sectorsize;
2704
2705 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2706 ret = -EFAULT;
2707
2708 kfree(fi_args);
2709 return ret;
2710 }
2711
btrfs_ioctl_dev_info(struct btrfs_root * root,void __user * arg)2712 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2713 {
2714 struct btrfs_ioctl_dev_info_args *di_args;
2715 struct btrfs_device *dev;
2716 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2717 int ret = 0;
2718 char *s_uuid = NULL;
2719
2720 di_args = memdup_user(arg, sizeof(*di_args));
2721 if (IS_ERR(di_args))
2722 return PTR_ERR(di_args);
2723
2724 if (!btrfs_is_empty_uuid(di_args->uuid))
2725 s_uuid = di_args->uuid;
2726
2727 mutex_lock(&fs_devices->device_list_mutex);
2728 dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL);
2729
2730 if (!dev) {
2731 ret = -ENODEV;
2732 goto out;
2733 }
2734
2735 di_args->devid = dev->devid;
2736 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2737 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2738 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2739 if (dev->name) {
2740 struct rcu_string *name;
2741
2742 rcu_read_lock();
2743 name = rcu_dereference(dev->name);
2744 strncpy(di_args->path, name->str, sizeof(di_args->path));
2745 rcu_read_unlock();
2746 di_args->path[sizeof(di_args->path) - 1] = 0;
2747 } else {
2748 di_args->path[0] = '\0';
2749 }
2750
2751 out:
2752 mutex_unlock(&fs_devices->device_list_mutex);
2753 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2754 ret = -EFAULT;
2755
2756 kfree(di_args);
2757 return ret;
2758 }
2759
extent_same_get_page(struct inode * inode,u64 off)2760 static struct page *extent_same_get_page(struct inode *inode, u64 off)
2761 {
2762 struct page *page;
2763 pgoff_t index;
2764 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2765
2766 index = off >> PAGE_CACHE_SHIFT;
2767
2768 page = grab_cache_page(inode->i_mapping, index);
2769 if (!page)
2770 return NULL;
2771
2772 if (!PageUptodate(page)) {
2773 if (extent_read_full_page_nolock(tree, page, btrfs_get_extent,
2774 0))
2775 return NULL;
2776 lock_page(page);
2777 if (!PageUptodate(page)) {
2778 unlock_page(page);
2779 page_cache_release(page);
2780 return NULL;
2781 }
2782 }
2783 unlock_page(page);
2784
2785 return page;
2786 }
2787
lock_extent_range(struct inode * inode,u64 off,u64 len)2788 static inline void lock_extent_range(struct inode *inode, u64 off, u64 len)
2789 {
2790 /* do any pending delalloc/csum calc on src, one way or
2791 another, and lock file content */
2792 while (1) {
2793 struct btrfs_ordered_extent *ordered;
2794 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2795 ordered = btrfs_lookup_first_ordered_extent(inode,
2796 off + len - 1);
2797 if ((!ordered ||
2798 ordered->file_offset + ordered->len <= off ||
2799 ordered->file_offset >= off + len) &&
2800 !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2801 off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
2802 if (ordered)
2803 btrfs_put_ordered_extent(ordered);
2804 break;
2805 }
2806 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2807 if (ordered)
2808 btrfs_put_ordered_extent(ordered);
2809 btrfs_wait_ordered_range(inode, off, len);
2810 }
2811 }
2812
btrfs_double_unlock(struct inode * inode1,u64 loff1,struct inode * inode2,u64 loff2,u64 len)2813 static void btrfs_double_unlock(struct inode *inode1, u64 loff1,
2814 struct inode *inode2, u64 loff2, u64 len)
2815 {
2816 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2817 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2818
2819 mutex_unlock(&inode1->i_mutex);
2820 mutex_unlock(&inode2->i_mutex);
2821 }
2822
btrfs_double_lock(struct inode * inode1,u64 loff1,struct inode * inode2,u64 loff2,u64 len)2823 static void btrfs_double_lock(struct inode *inode1, u64 loff1,
2824 struct inode *inode2, u64 loff2, u64 len)
2825 {
2826 if (inode1 < inode2) {
2827 swap(inode1, inode2);
2828 swap(loff1, loff2);
2829 }
2830
2831 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT);
2832 lock_extent_range(inode1, loff1, len);
2833 if (inode1 != inode2) {
2834 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD);
2835 lock_extent_range(inode2, loff2, len);
2836 }
2837 }
2838
btrfs_cmp_data(struct inode * src,u64 loff,struct inode * dst,u64 dst_loff,u64 len)2839 static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst,
2840 u64 dst_loff, u64 len)
2841 {
2842 int ret = 0;
2843 struct page *src_page, *dst_page;
2844 unsigned int cmp_len = PAGE_CACHE_SIZE;
2845 void *addr, *dst_addr;
2846
2847 while (len) {
2848 if (len < PAGE_CACHE_SIZE)
2849 cmp_len = len;
2850
2851 src_page = extent_same_get_page(src, loff);
2852 if (!src_page)
2853 return -EINVAL;
2854 dst_page = extent_same_get_page(dst, dst_loff);
2855 if (!dst_page) {
2856 page_cache_release(src_page);
2857 return -EINVAL;
2858 }
2859 addr = kmap_atomic(src_page);
2860 dst_addr = kmap_atomic(dst_page);
2861
2862 flush_dcache_page(src_page);
2863 flush_dcache_page(dst_page);
2864
2865 if (memcmp(addr, dst_addr, cmp_len))
2866 ret = BTRFS_SAME_DATA_DIFFERS;
2867
2868 kunmap_atomic(addr);
2869 kunmap_atomic(dst_addr);
2870 page_cache_release(src_page);
2871 page_cache_release(dst_page);
2872
2873 if (ret)
2874 break;
2875
2876 loff += cmp_len;
2877 dst_loff += cmp_len;
2878 len -= cmp_len;
2879 }
2880
2881 return ret;
2882 }
2883
extent_same_check_offsets(struct inode * inode,u64 off,u64 len)2884 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 len)
2885 {
2886 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
2887
2888 if (off + len > inode->i_size || off + len < off)
2889 return -EINVAL;
2890 /* Check that we are block aligned - btrfs_clone() requires this */
2891 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
2892 return -EINVAL;
2893
2894 return 0;
2895 }
2896
btrfs_extent_same(struct inode * src,u64 loff,u64 len,struct inode * dst,u64 dst_loff)2897 static int btrfs_extent_same(struct inode *src, u64 loff, u64 len,
2898 struct inode *dst, u64 dst_loff)
2899 {
2900 int ret;
2901
2902 /*
2903 * btrfs_clone() can't handle extents in the same file
2904 * yet. Once that works, we can drop this check and replace it
2905 * with a check for the same inode, but overlapping extents.
2906 */
2907 if (src == dst)
2908 return -EINVAL;
2909
2910 if (len == 0)
2911 return 0;
2912
2913 btrfs_double_lock(src, loff, dst, dst_loff, len);
2914
2915 ret = extent_same_check_offsets(src, loff, len);
2916 if (ret)
2917 goto out_unlock;
2918
2919 ret = extent_same_check_offsets(dst, dst_loff, len);
2920 if (ret)
2921 goto out_unlock;
2922
2923 /* don't make the dst file partly checksummed */
2924 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
2925 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
2926 ret = -EINVAL;
2927 goto out_unlock;
2928 }
2929
2930 ret = btrfs_cmp_data(src, loff, dst, dst_loff, len);
2931 if (ret == 0)
2932 ret = btrfs_clone(src, dst, loff, len, len, dst_loff);
2933
2934 out_unlock:
2935 btrfs_double_unlock(src, loff, dst, dst_loff, len);
2936
2937 return ret;
2938 }
2939
2940 #define BTRFS_MAX_DEDUPE_LEN (16 * 1024 * 1024)
2941
btrfs_ioctl_file_extent_same(struct file * file,struct btrfs_ioctl_same_args __user * argp)2942 static long btrfs_ioctl_file_extent_same(struct file *file,
2943 struct btrfs_ioctl_same_args __user *argp)
2944 {
2945 struct btrfs_ioctl_same_args *same = NULL;
2946 struct btrfs_ioctl_same_extent_info *info;
2947 struct inode *src = file_inode(file);
2948 u64 off;
2949 u64 len;
2950 int i;
2951 int ret;
2952 unsigned long size;
2953 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
2954 bool is_admin = capable(CAP_SYS_ADMIN);
2955 u16 count;
2956
2957 if (!(file->f_mode & FMODE_READ))
2958 return -EINVAL;
2959
2960 ret = mnt_want_write_file(file);
2961 if (ret)
2962 return ret;
2963
2964 if (get_user(count, &argp->dest_count)) {
2965 ret = -EFAULT;
2966 goto out;
2967 }
2968
2969 size = offsetof(struct btrfs_ioctl_same_args __user, info[count]);
2970
2971 same = memdup_user(argp, size);
2972
2973 if (IS_ERR(same)) {
2974 ret = PTR_ERR(same);
2975 same = NULL;
2976 goto out;
2977 }
2978
2979 off = same->logical_offset;
2980 len = same->length;
2981
2982 /*
2983 * Limit the total length we will dedupe for each operation.
2984 * This is intended to bound the total time spent in this
2985 * ioctl to something sane.
2986 */
2987 if (len > BTRFS_MAX_DEDUPE_LEN)
2988 len = BTRFS_MAX_DEDUPE_LEN;
2989
2990 if (WARN_ON_ONCE(bs < PAGE_CACHE_SIZE)) {
2991 /*
2992 * Btrfs does not support blocksize < page_size. As a
2993 * result, btrfs_cmp_data() won't correctly handle
2994 * this situation without an update.
2995 */
2996 ret = -EINVAL;
2997 goto out;
2998 }
2999
3000 ret = -EISDIR;
3001 if (S_ISDIR(src->i_mode))
3002 goto out;
3003
3004 ret = -EACCES;
3005 if (!S_ISREG(src->i_mode))
3006 goto out;
3007
3008 /* pre-format output fields to sane values */
3009 for (i = 0; i < count; i++) {
3010 same->info[i].bytes_deduped = 0ULL;
3011 same->info[i].status = 0;
3012 }
3013
3014 for (i = 0, info = same->info; i < count; i++, info++) {
3015 struct inode *dst;
3016 struct fd dst_file = fdget(info->fd);
3017 if (!dst_file.file) {
3018 info->status = -EBADF;
3019 continue;
3020 }
3021 dst = file_inode(dst_file.file);
3022
3023 if (!(is_admin || (dst_file.file->f_mode & FMODE_WRITE))) {
3024 info->status = -EINVAL;
3025 } else if (file->f_path.mnt != dst_file.file->f_path.mnt) {
3026 info->status = -EXDEV;
3027 } else if (S_ISDIR(dst->i_mode)) {
3028 info->status = -EISDIR;
3029 } else if (!S_ISREG(dst->i_mode)) {
3030 info->status = -EACCES;
3031 } else {
3032 info->status = btrfs_extent_same(src, off, len, dst,
3033 info->logical_offset);
3034 if (info->status == 0)
3035 info->bytes_deduped += len;
3036 }
3037 fdput(dst_file);
3038 }
3039
3040 ret = copy_to_user(argp, same, size);
3041 if (ret)
3042 ret = -EFAULT;
3043
3044 out:
3045 mnt_drop_write_file(file);
3046 kfree(same);
3047 return ret;
3048 }
3049
3050 /* Helper to check and see if this root currently has a ref on the given disk
3051 * bytenr. If it does then we need to update the quota for this root. This
3052 * doesn't do anything if quotas aren't enabled.
3053 */
check_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 disko)3054 static int check_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3055 u64 disko)
3056 {
3057 struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
3058 struct ulist *roots;
3059 struct ulist_iterator uiter;
3060 struct ulist_node *root_node = NULL;
3061 int ret;
3062
3063 if (!root->fs_info->quota_enabled)
3064 return 1;
3065
3066 btrfs_get_tree_mod_seq(root->fs_info, &tree_mod_seq_elem);
3067 ret = btrfs_find_all_roots(trans, root->fs_info, disko,
3068 tree_mod_seq_elem.seq, &roots);
3069 if (ret < 0)
3070 goto out;
3071 ret = 0;
3072 ULIST_ITER_INIT(&uiter);
3073 while ((root_node = ulist_next(roots, &uiter))) {
3074 if (root_node->val == root->objectid) {
3075 ret = 1;
3076 break;
3077 }
3078 }
3079 ulist_free(roots);
3080 out:
3081 btrfs_put_tree_mod_seq(root->fs_info, &tree_mod_seq_elem);
3082 return ret;
3083 }
3084
clone_finish_inode_update(struct btrfs_trans_handle * trans,struct inode * inode,u64 endoff,const u64 destoff,const u64 olen)3085 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3086 struct inode *inode,
3087 u64 endoff,
3088 const u64 destoff,
3089 const u64 olen)
3090 {
3091 struct btrfs_root *root = BTRFS_I(inode)->root;
3092 int ret;
3093
3094 inode_inc_iversion(inode);
3095 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
3096 /*
3097 * We round up to the block size at eof when determining which
3098 * extents to clone above, but shouldn't round up the file size.
3099 */
3100 if (endoff > destoff + olen)
3101 endoff = destoff + olen;
3102 if (endoff > inode->i_size)
3103 btrfs_i_size_write(inode, endoff);
3104
3105 ret = btrfs_update_inode(trans, root, inode);
3106 if (ret) {
3107 btrfs_abort_transaction(trans, root, ret);
3108 btrfs_end_transaction(trans, root);
3109 goto out;
3110 }
3111 ret = btrfs_end_transaction(trans, root);
3112 out:
3113 return ret;
3114 }
3115
clone_update_extent_map(struct inode * inode,const struct btrfs_trans_handle * trans,const struct btrfs_path * path,const u64 hole_offset,const u64 hole_len)3116 static void clone_update_extent_map(struct inode *inode,
3117 const struct btrfs_trans_handle *trans,
3118 const struct btrfs_path *path,
3119 const u64 hole_offset,
3120 const u64 hole_len)
3121 {
3122 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3123 struct extent_map *em;
3124 int ret;
3125
3126 em = alloc_extent_map();
3127 if (!em) {
3128 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3129 &BTRFS_I(inode)->runtime_flags);
3130 return;
3131 }
3132
3133 if (path) {
3134 struct btrfs_file_extent_item *fi;
3135
3136 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3137 struct btrfs_file_extent_item);
3138 btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3139 em->generation = -1;
3140 if (btrfs_file_extent_type(path->nodes[0], fi) ==
3141 BTRFS_FILE_EXTENT_INLINE)
3142 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3143 &BTRFS_I(inode)->runtime_flags);
3144 } else {
3145 em->start = hole_offset;
3146 em->len = hole_len;
3147 em->ram_bytes = em->len;
3148 em->orig_start = hole_offset;
3149 em->block_start = EXTENT_MAP_HOLE;
3150 em->block_len = 0;
3151 em->orig_block_len = 0;
3152 em->compress_type = BTRFS_COMPRESS_NONE;
3153 em->generation = trans->transid;
3154 }
3155
3156 while (1) {
3157 write_lock(&em_tree->lock);
3158 ret = add_extent_mapping(em_tree, em, 1);
3159 write_unlock(&em_tree->lock);
3160 if (ret != -EEXIST) {
3161 free_extent_map(em);
3162 break;
3163 }
3164 btrfs_drop_extent_cache(inode, em->start,
3165 em->start + em->len - 1, 0);
3166 }
3167
3168 if (ret)
3169 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3170 &BTRFS_I(inode)->runtime_flags);
3171 }
3172
3173 /*
3174 * Make sure we do not end up inserting an inline extent into a file that has
3175 * already other (non-inline) extents. If a file has an inline extent it can
3176 * not have any other extents and the (single) inline extent must start at the
3177 * file offset 0. Failing to respect these rules will lead to file corruption,
3178 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3179 *
3180 * We can have extents that have been already written to disk or we can have
3181 * dirty ranges still in delalloc, in which case the extent maps and items are
3182 * created only when we run delalloc, and the delalloc ranges might fall outside
3183 * the range we are currently locking in the inode's io tree. So we check the
3184 * inode's i_size because of that (i_size updates are done while holding the
3185 * i_mutex, which we are holding here).
3186 * We also check to see if the inode has a size not greater than "datal" but has
3187 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3188 * protected against such concurrent fallocate calls by the i_mutex).
3189 *
3190 * If the file has no extents but a size greater than datal, do not allow the
3191 * copy because we would need turn the inline extent into a non-inline one (even
3192 * with NO_HOLES enabled). If we find our destination inode only has one inline
3193 * extent, just overwrite it with the source inline extent if its size is less
3194 * than the source extent's size, or we could copy the source inline extent's
3195 * data into the destination inode's inline extent if the later is greater then
3196 * the former.
3197 */
clone_copy_inline_extent(struct inode * src,struct inode * dst,struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_key * new_key,const u64 drop_start,const u64 datal,const u64 skip,const u64 size,char * inline_data)3198 static int clone_copy_inline_extent(struct inode *src,
3199 struct inode *dst,
3200 struct btrfs_trans_handle *trans,
3201 struct btrfs_path *path,
3202 struct btrfs_key *new_key,
3203 const u64 drop_start,
3204 const u64 datal,
3205 const u64 skip,
3206 const u64 size,
3207 char *inline_data)
3208 {
3209 struct btrfs_root *root = BTRFS_I(dst)->root;
3210 const u64 aligned_end = ALIGN(new_key->offset + datal,
3211 root->sectorsize);
3212 int ret;
3213 struct btrfs_key key;
3214
3215 if (new_key->offset > 0)
3216 return -EOPNOTSUPP;
3217
3218 key.objectid = btrfs_ino(dst);
3219 key.type = BTRFS_EXTENT_DATA_KEY;
3220 key.offset = 0;
3221 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3222 if (ret < 0) {
3223 return ret;
3224 } else if (ret > 0) {
3225 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3226 ret = btrfs_next_leaf(root, path);
3227 if (ret < 0)
3228 return ret;
3229 else if (ret > 0)
3230 goto copy_inline_extent;
3231 }
3232 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3233 if (key.objectid == btrfs_ino(dst) &&
3234 key.type == BTRFS_EXTENT_DATA_KEY) {
3235 ASSERT(key.offset > 0);
3236 return -EOPNOTSUPP;
3237 }
3238 } else if (i_size_read(dst) <= datal) {
3239 struct btrfs_file_extent_item *ei;
3240 u64 ext_len;
3241
3242 /*
3243 * If the file size is <= datal, make sure there are no other
3244 * extents following (can happen do to an fallocate call with
3245 * the flag FALLOC_FL_KEEP_SIZE).
3246 */
3247 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3248 struct btrfs_file_extent_item);
3249 /*
3250 * If it's an inline extent, it can not have other extents
3251 * following it.
3252 */
3253 if (btrfs_file_extent_type(path->nodes[0], ei) ==
3254 BTRFS_FILE_EXTENT_INLINE)
3255 goto copy_inline_extent;
3256
3257 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3258 if (ext_len > aligned_end)
3259 return -EOPNOTSUPP;
3260
3261 ret = btrfs_next_item(root, path);
3262 if (ret < 0) {
3263 return ret;
3264 } else if (ret == 0) {
3265 btrfs_item_key_to_cpu(path->nodes[0], &key,
3266 path->slots[0]);
3267 if (key.objectid == btrfs_ino(dst) &&
3268 key.type == BTRFS_EXTENT_DATA_KEY)
3269 return -EOPNOTSUPP;
3270 }
3271 }
3272
3273 copy_inline_extent:
3274 /*
3275 * We have no extent items, or we have an extent at offset 0 which may
3276 * or may not be inlined. All these cases are dealt the same way.
3277 */
3278 if (i_size_read(dst) > datal) {
3279 /*
3280 * If the destination inode has an inline extent...
3281 * This would require copying the data from the source inline
3282 * extent into the beginning of the destination's inline extent.
3283 * But this is really complex, both extents can be compressed
3284 * or just one of them, which would require decompressing and
3285 * re-compressing data (which could increase the new compressed
3286 * size, not allowing the compressed data to fit anymore in an
3287 * inline extent).
3288 * So just don't support this case for now (it should be rare,
3289 * we are not really saving space when cloning inline extents).
3290 */
3291 return -EOPNOTSUPP;
3292 }
3293
3294 btrfs_release_path(path);
3295 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3296 if (ret)
3297 return ret;
3298 ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3299 if (ret)
3300 return ret;
3301
3302 if (skip) {
3303 const u32 start = btrfs_file_extent_calc_inline_size(0);
3304
3305 memmove(inline_data + start, inline_data + start + skip, datal);
3306 }
3307
3308 write_extent_buffer(path->nodes[0], inline_data,
3309 btrfs_item_ptr_offset(path->nodes[0],
3310 path->slots[0]),
3311 size);
3312 inode_add_bytes(dst, datal);
3313
3314 return 0;
3315 }
3316
3317 /**
3318 * btrfs_clone() - clone a range from inode file to another
3319 *
3320 * @src: Inode to clone from
3321 * @inode: Inode to clone to
3322 * @off: Offset within source to start clone from
3323 * @olen: Original length, passed by user, of range to clone
3324 * @olen_aligned: Block-aligned value of olen, extent_same uses
3325 * identical values here
3326 * @destoff: Offset within @inode to start clone
3327 */
btrfs_clone(struct inode * src,struct inode * inode,const u64 off,const u64 olen,const u64 olen_aligned,const u64 destoff)3328 static int btrfs_clone(struct inode *src, struct inode *inode,
3329 const u64 off, const u64 olen, const u64 olen_aligned,
3330 const u64 destoff)
3331 {
3332 struct btrfs_root *root = BTRFS_I(inode)->root;
3333 struct btrfs_path *path = NULL;
3334 struct extent_buffer *leaf;
3335 struct btrfs_trans_handle *trans;
3336 char *buf = NULL;
3337 struct btrfs_key key;
3338 u32 nritems;
3339 int slot;
3340 int ret;
3341 int no_quota;
3342 const u64 len = olen_aligned;
3343 u64 last_disko = 0;
3344 u64 last_dest_end = destoff;
3345
3346 ret = -ENOMEM;
3347 buf = vmalloc(root->nodesize);
3348 if (!buf)
3349 return ret;
3350
3351 path = btrfs_alloc_path();
3352 if (!path) {
3353 vfree(buf);
3354 return ret;
3355 }
3356
3357 path->reada = 2;
3358 /* clone data */
3359 key.objectid = btrfs_ino(src);
3360 key.type = BTRFS_EXTENT_DATA_KEY;
3361 key.offset = off;
3362
3363 while (1) {
3364 u64 next_key_min_offset = key.offset + 1;
3365
3366 /*
3367 * note the key will change type as we walk through the
3368 * tree.
3369 */
3370 path->leave_spinning = 1;
3371 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3372 0, 0);
3373 if (ret < 0)
3374 goto out;
3375 /*
3376 * First search, if no extent item that starts at offset off was
3377 * found but the previous item is an extent item, it's possible
3378 * it might overlap our target range, therefore process it.
3379 */
3380 if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3381 btrfs_item_key_to_cpu(path->nodes[0], &key,
3382 path->slots[0] - 1);
3383 if (key.type == BTRFS_EXTENT_DATA_KEY)
3384 path->slots[0]--;
3385 }
3386
3387 nritems = btrfs_header_nritems(path->nodes[0]);
3388 process_slot:
3389 no_quota = 1;
3390 if (path->slots[0] >= nritems) {
3391 ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3392 if (ret < 0)
3393 goto out;
3394 if (ret > 0)
3395 break;
3396 nritems = btrfs_header_nritems(path->nodes[0]);
3397 }
3398 leaf = path->nodes[0];
3399 slot = path->slots[0];
3400
3401 btrfs_item_key_to_cpu(leaf, &key, slot);
3402 if (key.type > BTRFS_EXTENT_DATA_KEY ||
3403 key.objectid != btrfs_ino(src))
3404 break;
3405
3406 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3407 struct btrfs_file_extent_item *extent;
3408 int type;
3409 u32 size;
3410 struct btrfs_key new_key;
3411 u64 disko = 0, diskl = 0;
3412 u64 datao = 0, datal = 0;
3413 u8 comp;
3414 u64 drop_start;
3415
3416 extent = btrfs_item_ptr(leaf, slot,
3417 struct btrfs_file_extent_item);
3418 comp = btrfs_file_extent_compression(leaf, extent);
3419 type = btrfs_file_extent_type(leaf, extent);
3420 if (type == BTRFS_FILE_EXTENT_REG ||
3421 type == BTRFS_FILE_EXTENT_PREALLOC) {
3422 disko = btrfs_file_extent_disk_bytenr(leaf,
3423 extent);
3424 diskl = btrfs_file_extent_disk_num_bytes(leaf,
3425 extent);
3426 datao = btrfs_file_extent_offset(leaf, extent);
3427 datal = btrfs_file_extent_num_bytes(leaf,
3428 extent);
3429 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3430 /* take upper bound, may be compressed */
3431 datal = btrfs_file_extent_ram_bytes(leaf,
3432 extent);
3433 }
3434
3435 /*
3436 * The first search might have left us at an extent
3437 * item that ends before our target range's start, can
3438 * happen if we have holes and NO_HOLES feature enabled.
3439 */
3440 if (key.offset + datal <= off) {
3441 path->slots[0]++;
3442 goto process_slot;
3443 } else if (key.offset >= off + len) {
3444 break;
3445 }
3446 next_key_min_offset = key.offset + datal;
3447 size = btrfs_item_size_nr(leaf, slot);
3448 read_extent_buffer(leaf, buf,
3449 btrfs_item_ptr_offset(leaf, slot),
3450 size);
3451
3452 btrfs_release_path(path);
3453 path->leave_spinning = 0;
3454
3455 memcpy(&new_key, &key, sizeof(new_key));
3456 new_key.objectid = btrfs_ino(inode);
3457 if (off <= key.offset)
3458 new_key.offset = key.offset + destoff - off;
3459 else
3460 new_key.offset = destoff;
3461
3462 /*
3463 * Deal with a hole that doesn't have an extent item
3464 * that represents it (NO_HOLES feature enabled).
3465 * This hole is either in the middle of the cloning
3466 * range or at the beginning (fully overlaps it or
3467 * partially overlaps it).
3468 */
3469 if (new_key.offset != last_dest_end)
3470 drop_start = last_dest_end;
3471 else
3472 drop_start = new_key.offset;
3473
3474 /*
3475 * 1 - adjusting old extent (we may have to split it)
3476 * 1 - add new extent
3477 * 1 - inode update
3478 */
3479 trans = btrfs_start_transaction(root, 3);
3480 if (IS_ERR(trans)) {
3481 ret = PTR_ERR(trans);
3482 goto out;
3483 }
3484
3485 if (type == BTRFS_FILE_EXTENT_REG ||
3486 type == BTRFS_FILE_EXTENT_PREALLOC) {
3487 /*
3488 * a | --- range to clone ---| b
3489 * | ------------- extent ------------- |
3490 */
3491
3492 /* subtract range b */
3493 if (key.offset + datal > off + len)
3494 datal = off + len - key.offset;
3495
3496 /* subtract range a */
3497 if (off > key.offset) {
3498 datao += off - key.offset;
3499 datal -= off - key.offset;
3500 }
3501
3502 ret = btrfs_drop_extents(trans, root, inode,
3503 drop_start,
3504 new_key.offset + datal,
3505 1);
3506 if (ret) {
3507 if (ret != -EOPNOTSUPP)
3508 btrfs_abort_transaction(trans,
3509 root, ret);
3510 btrfs_end_transaction(trans, root);
3511 goto out;
3512 }
3513
3514 ret = btrfs_insert_empty_item(trans, root, path,
3515 &new_key, size);
3516 if (ret) {
3517 btrfs_abort_transaction(trans, root,
3518 ret);
3519 btrfs_end_transaction(trans, root);
3520 goto out;
3521 }
3522
3523 leaf = path->nodes[0];
3524 slot = path->slots[0];
3525 write_extent_buffer(leaf, buf,
3526 btrfs_item_ptr_offset(leaf, slot),
3527 size);
3528
3529 extent = btrfs_item_ptr(leaf, slot,
3530 struct btrfs_file_extent_item);
3531
3532 /* disko == 0 means it's a hole */
3533 if (!disko)
3534 datao = 0;
3535
3536 btrfs_set_file_extent_offset(leaf, extent,
3537 datao);
3538 btrfs_set_file_extent_num_bytes(leaf, extent,
3539 datal);
3540
3541 /*
3542 * We need to look up the roots that point at
3543 * this bytenr and see if the new root does. If
3544 * it does not we need to make sure we update
3545 * quotas appropriately.
3546 */
3547 if (disko && root != BTRFS_I(src)->root &&
3548 disko != last_disko) {
3549 no_quota = check_ref(trans, root,
3550 disko);
3551 if (no_quota < 0) {
3552 btrfs_abort_transaction(trans,
3553 root,
3554 ret);
3555 btrfs_end_transaction(trans,
3556 root);
3557 ret = no_quota;
3558 goto out;
3559 }
3560 }
3561
3562 if (disko) {
3563 inode_add_bytes(inode, datal);
3564 ret = btrfs_inc_extent_ref(trans, root,
3565 disko, diskl, 0,
3566 root->root_key.objectid,
3567 btrfs_ino(inode),
3568 new_key.offset - datao,
3569 no_quota);
3570 if (ret) {
3571 btrfs_abort_transaction(trans,
3572 root,
3573 ret);
3574 btrfs_end_transaction(trans,
3575 root);
3576 goto out;
3577
3578 }
3579 }
3580 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3581 u64 skip = 0;
3582 u64 trim = 0;
3583
3584 if (off > key.offset) {
3585 skip = off - key.offset;
3586 new_key.offset += skip;
3587 }
3588
3589 if (key.offset + datal > off + len)
3590 trim = key.offset + datal - (off + len);
3591
3592 if (comp && (skip || trim)) {
3593 ret = -EINVAL;
3594 btrfs_end_transaction(trans, root);
3595 goto out;
3596 }
3597 size -= skip + trim;
3598 datal -= skip + trim;
3599
3600 ret = clone_copy_inline_extent(src, inode,
3601 trans, path,
3602 &new_key,
3603 drop_start,
3604 datal,
3605 skip, size, buf);
3606 if (ret) {
3607 if (ret != -EOPNOTSUPP)
3608 btrfs_abort_transaction(trans,
3609 root,
3610 ret);
3611 btrfs_end_transaction(trans, root);
3612 goto out;
3613 }
3614 leaf = path->nodes[0];
3615 slot = path->slots[0];
3616 }
3617
3618 /* If we have an implicit hole (NO_HOLES feature). */
3619 if (drop_start < new_key.offset)
3620 clone_update_extent_map(inode, trans,
3621 NULL, drop_start,
3622 new_key.offset - drop_start);
3623
3624 clone_update_extent_map(inode, trans, path, 0, 0);
3625
3626 btrfs_mark_buffer_dirty(leaf);
3627 btrfs_release_path(path);
3628
3629 last_dest_end = ALIGN(new_key.offset + datal,
3630 root->sectorsize);
3631 ret = clone_finish_inode_update(trans, inode,
3632 last_dest_end,
3633 destoff, olen);
3634 if (ret)
3635 goto out;
3636 if (new_key.offset + datal >= destoff + len)
3637 break;
3638 }
3639 btrfs_release_path(path);
3640 key.offset = next_key_min_offset;
3641 }
3642 ret = 0;
3643
3644 if (last_dest_end < destoff + len) {
3645 /*
3646 * We have an implicit hole (NO_HOLES feature is enabled) that
3647 * fully or partially overlaps our cloning range at its end.
3648 */
3649 btrfs_release_path(path);
3650
3651 /*
3652 * 1 - remove extent(s)
3653 * 1 - inode update
3654 */
3655 trans = btrfs_start_transaction(root, 2);
3656 if (IS_ERR(trans)) {
3657 ret = PTR_ERR(trans);
3658 goto out;
3659 }
3660 ret = btrfs_drop_extents(trans, root, inode,
3661 last_dest_end, destoff + len, 1);
3662 if (ret) {
3663 if (ret != -EOPNOTSUPP)
3664 btrfs_abort_transaction(trans, root, ret);
3665 btrfs_end_transaction(trans, root);
3666 goto out;
3667 }
3668 clone_update_extent_map(inode, trans, NULL, last_dest_end,
3669 destoff + len - last_dest_end);
3670 ret = clone_finish_inode_update(trans, inode, destoff + len,
3671 destoff, olen);
3672 }
3673
3674 out:
3675 btrfs_free_path(path);
3676 vfree(buf);
3677 return ret;
3678 }
3679
btrfs_ioctl_clone(struct file * file,unsigned long srcfd,u64 off,u64 olen,u64 destoff)3680 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
3681 u64 off, u64 olen, u64 destoff)
3682 {
3683 struct inode *inode = file_inode(file);
3684 struct btrfs_root *root = BTRFS_I(inode)->root;
3685 struct fd src_file;
3686 struct inode *src;
3687 int ret;
3688 u64 len = olen;
3689 u64 bs = root->fs_info->sb->s_blocksize;
3690 int same_inode = 0;
3691
3692 /*
3693 * TODO:
3694 * - split compressed inline extents. annoying: we need to
3695 * decompress into destination's address_space (the file offset
3696 * may change, so source mapping won't do), then recompress (or
3697 * otherwise reinsert) a subrange.
3698 *
3699 * - split destination inode's inline extents. The inline extents can
3700 * be either compressed or non-compressed.
3701 */
3702
3703 /* the destination must be opened for writing */
3704 if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
3705 return -EINVAL;
3706
3707 if (btrfs_root_readonly(root))
3708 return -EROFS;
3709
3710 ret = mnt_want_write_file(file);
3711 if (ret)
3712 return ret;
3713
3714 src_file = fdget(srcfd);
3715 if (!src_file.file) {
3716 ret = -EBADF;
3717 goto out_drop_write;
3718 }
3719
3720 ret = -EXDEV;
3721 if (src_file.file->f_path.mnt != file->f_path.mnt)
3722 goto out_fput;
3723
3724 src = file_inode(src_file.file);
3725
3726 ret = -EINVAL;
3727 if (src == inode)
3728 same_inode = 1;
3729
3730 /* the src must be open for reading */
3731 if (!(src_file.file->f_mode & FMODE_READ))
3732 goto out_fput;
3733
3734 /* don't make the dst file partly checksummed */
3735 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3736 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3737 goto out_fput;
3738
3739 ret = -EISDIR;
3740 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3741 goto out_fput;
3742
3743 ret = -EXDEV;
3744 if (src->i_sb != inode->i_sb)
3745 goto out_fput;
3746
3747 if (!same_inode) {
3748 if (inode < src) {
3749 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
3750 mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
3751 } else {
3752 mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
3753 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
3754 }
3755 } else {
3756 mutex_lock(&src->i_mutex);
3757 }
3758
3759 /* determine range to clone */
3760 ret = -EINVAL;
3761 if (off + len > src->i_size || off + len < off)
3762 goto out_unlock;
3763 if (len == 0)
3764 olen = len = src->i_size - off;
3765 /* if we extend to eof, continue to block boundary */
3766 if (off + len == src->i_size)
3767 len = ALIGN(src->i_size, bs) - off;
3768
3769 if (len == 0) {
3770 ret = 0;
3771 goto out_unlock;
3772 }
3773
3774 /* verify the end result is block aligned */
3775 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3776 !IS_ALIGNED(destoff, bs))
3777 goto out_unlock;
3778
3779 /* verify if ranges are overlapped within the same file */
3780 if (same_inode) {
3781 if (destoff + len > off && destoff < off + len)
3782 goto out_unlock;
3783 }
3784
3785 if (destoff > inode->i_size) {
3786 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3787 if (ret)
3788 goto out_unlock;
3789 }
3790
3791 /*
3792 * Lock the target range too. Right after we replace the file extent
3793 * items in the fs tree (which now point to the cloned data), we might
3794 * have a worker replace them with extent items relative to a write
3795 * operation that was issued before this clone operation (i.e. confront
3796 * with inode.c:btrfs_finish_ordered_io).
3797 */
3798 if (same_inode) {
3799 u64 lock_start = min_t(u64, off, destoff);
3800 u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
3801
3802 lock_extent_range(src, lock_start, lock_len);
3803 } else {
3804 lock_extent_range(src, off, len);
3805 lock_extent_range(inode, destoff, len);
3806 }
3807
3808 ret = btrfs_clone(src, inode, off, olen, len, destoff);
3809
3810 if (same_inode) {
3811 u64 lock_start = min_t(u64, off, destoff);
3812 u64 lock_end = max_t(u64, off, destoff) + len - 1;
3813
3814 unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
3815 } else {
3816 unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1);
3817 unlock_extent(&BTRFS_I(inode)->io_tree, destoff,
3818 destoff + len - 1);
3819 }
3820 /*
3821 * Truncate page cache pages so that future reads will see the cloned
3822 * data immediately and not the previous data.
3823 */
3824 truncate_inode_pages_range(&inode->i_data, destoff,
3825 PAGE_CACHE_ALIGN(destoff + len) - 1);
3826 out_unlock:
3827 if (!same_inode) {
3828 if (inode < src) {
3829 mutex_unlock(&src->i_mutex);
3830 mutex_unlock(&inode->i_mutex);
3831 } else {
3832 mutex_unlock(&inode->i_mutex);
3833 mutex_unlock(&src->i_mutex);
3834 }
3835 } else {
3836 mutex_unlock(&src->i_mutex);
3837 }
3838 out_fput:
3839 fdput(src_file);
3840 out_drop_write:
3841 mnt_drop_write_file(file);
3842 return ret;
3843 }
3844
btrfs_ioctl_clone_range(struct file * file,void __user * argp)3845 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
3846 {
3847 struct btrfs_ioctl_clone_range_args args;
3848
3849 if (copy_from_user(&args, argp, sizeof(args)))
3850 return -EFAULT;
3851 return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
3852 args.src_length, args.dest_offset);
3853 }
3854
3855 /*
3856 * there are many ways the trans_start and trans_end ioctls can lead
3857 * to deadlocks. They should only be used by applications that
3858 * basically own the machine, and have a very in depth understanding
3859 * of all the possible deadlocks and enospc problems.
3860 */
btrfs_ioctl_trans_start(struct file * file)3861 static long btrfs_ioctl_trans_start(struct file *file)
3862 {
3863 struct inode *inode = file_inode(file);
3864 struct btrfs_root *root = BTRFS_I(inode)->root;
3865 struct btrfs_trans_handle *trans;
3866 int ret;
3867
3868 ret = -EPERM;
3869 if (!capable(CAP_SYS_ADMIN))
3870 goto out;
3871
3872 ret = -EINPROGRESS;
3873 if (file->private_data)
3874 goto out;
3875
3876 ret = -EROFS;
3877 if (btrfs_root_readonly(root))
3878 goto out;
3879
3880 ret = mnt_want_write_file(file);
3881 if (ret)
3882 goto out;
3883
3884 atomic_inc(&root->fs_info->open_ioctl_trans);
3885
3886 ret = -ENOMEM;
3887 trans = btrfs_start_ioctl_transaction(root);
3888 if (IS_ERR(trans))
3889 goto out_drop;
3890
3891 file->private_data = trans;
3892 return 0;
3893
3894 out_drop:
3895 atomic_dec(&root->fs_info->open_ioctl_trans);
3896 mnt_drop_write_file(file);
3897 out:
3898 return ret;
3899 }
3900
btrfs_ioctl_default_subvol(struct file * file,void __user * argp)3901 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3902 {
3903 struct inode *inode = file_inode(file);
3904 struct btrfs_root *root = BTRFS_I(inode)->root;
3905 struct btrfs_root *new_root;
3906 struct btrfs_dir_item *di;
3907 struct btrfs_trans_handle *trans;
3908 struct btrfs_path *path;
3909 struct btrfs_key location;
3910 struct btrfs_disk_key disk_key;
3911 u64 objectid = 0;
3912 u64 dir_id;
3913 int ret;
3914
3915 if (!capable(CAP_SYS_ADMIN))
3916 return -EPERM;
3917
3918 ret = mnt_want_write_file(file);
3919 if (ret)
3920 return ret;
3921
3922 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3923 ret = -EFAULT;
3924 goto out;
3925 }
3926
3927 if (!objectid)
3928 objectid = BTRFS_FS_TREE_OBJECTID;
3929
3930 location.objectid = objectid;
3931 location.type = BTRFS_ROOT_ITEM_KEY;
3932 location.offset = (u64)-1;
3933
3934 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
3935 if (IS_ERR(new_root)) {
3936 ret = PTR_ERR(new_root);
3937 goto out;
3938 }
3939
3940 path = btrfs_alloc_path();
3941 if (!path) {
3942 ret = -ENOMEM;
3943 goto out;
3944 }
3945 path->leave_spinning = 1;
3946
3947 trans = btrfs_start_transaction(root, 1);
3948 if (IS_ERR(trans)) {
3949 btrfs_free_path(path);
3950 ret = PTR_ERR(trans);
3951 goto out;
3952 }
3953
3954 dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
3955 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
3956 dir_id, "default", 7, 1);
3957 if (IS_ERR_OR_NULL(di)) {
3958 btrfs_free_path(path);
3959 btrfs_end_transaction(trans, root);
3960 btrfs_err(new_root->fs_info, "Umm, you don't have the default dir"
3961 "item, this isn't going to work");
3962 ret = -ENOENT;
3963 goto out;
3964 }
3965
3966 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3967 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3968 btrfs_mark_buffer_dirty(path->nodes[0]);
3969 btrfs_free_path(path);
3970
3971 btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL);
3972 btrfs_end_transaction(trans, root);
3973 out:
3974 mnt_drop_write_file(file);
3975 return ret;
3976 }
3977
btrfs_get_block_group_info(struct list_head * groups_list,struct btrfs_ioctl_space_info * space)3978 void btrfs_get_block_group_info(struct list_head *groups_list,
3979 struct btrfs_ioctl_space_info *space)
3980 {
3981 struct btrfs_block_group_cache *block_group;
3982
3983 space->total_bytes = 0;
3984 space->used_bytes = 0;
3985 space->flags = 0;
3986 list_for_each_entry(block_group, groups_list, list) {
3987 space->flags = block_group->flags;
3988 space->total_bytes += block_group->key.offset;
3989 space->used_bytes +=
3990 btrfs_block_group_used(&block_group->item);
3991 }
3992 }
3993
btrfs_ioctl_space_info(struct btrfs_root * root,void __user * arg)3994 static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
3995 {
3996 struct btrfs_ioctl_space_args space_args;
3997 struct btrfs_ioctl_space_info space;
3998 struct btrfs_ioctl_space_info *dest;
3999 struct btrfs_ioctl_space_info *dest_orig;
4000 struct btrfs_ioctl_space_info __user *user_dest;
4001 struct btrfs_space_info *info;
4002 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
4003 BTRFS_BLOCK_GROUP_SYSTEM,
4004 BTRFS_BLOCK_GROUP_METADATA,
4005 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
4006 int num_types = 4;
4007 int alloc_size;
4008 int ret = 0;
4009 u64 slot_count = 0;
4010 int i, c;
4011
4012 if (copy_from_user(&space_args,
4013 (struct btrfs_ioctl_space_args __user *)arg,
4014 sizeof(space_args)))
4015 return -EFAULT;
4016
4017 for (i = 0; i < num_types; i++) {
4018 struct btrfs_space_info *tmp;
4019
4020 info = NULL;
4021 rcu_read_lock();
4022 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
4023 list) {
4024 if (tmp->flags == types[i]) {
4025 info = tmp;
4026 break;
4027 }
4028 }
4029 rcu_read_unlock();
4030
4031 if (!info)
4032 continue;
4033
4034 down_read(&info->groups_sem);
4035 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4036 if (!list_empty(&info->block_groups[c]))
4037 slot_count++;
4038 }
4039 up_read(&info->groups_sem);
4040 }
4041
4042 /*
4043 * Global block reserve, exported as a space_info
4044 */
4045 slot_count++;
4046
4047 /* space_slots == 0 means they are asking for a count */
4048 if (space_args.space_slots == 0) {
4049 space_args.total_spaces = slot_count;
4050 goto out;
4051 }
4052
4053 slot_count = min_t(u64, space_args.space_slots, slot_count);
4054
4055 alloc_size = sizeof(*dest) * slot_count;
4056
4057 /* we generally have at most 6 or so space infos, one for each raid
4058 * level. So, a whole page should be more than enough for everyone
4059 */
4060 if (alloc_size > PAGE_CACHE_SIZE)
4061 return -ENOMEM;
4062
4063 space_args.total_spaces = 0;
4064 dest = kmalloc(alloc_size, GFP_NOFS);
4065 if (!dest)
4066 return -ENOMEM;
4067 dest_orig = dest;
4068
4069 /* now we have a buffer to copy into */
4070 for (i = 0; i < num_types; i++) {
4071 struct btrfs_space_info *tmp;
4072
4073 if (!slot_count)
4074 break;
4075
4076 info = NULL;
4077 rcu_read_lock();
4078 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
4079 list) {
4080 if (tmp->flags == types[i]) {
4081 info = tmp;
4082 break;
4083 }
4084 }
4085 rcu_read_unlock();
4086
4087 if (!info)
4088 continue;
4089 down_read(&info->groups_sem);
4090 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4091 if (!list_empty(&info->block_groups[c])) {
4092 btrfs_get_block_group_info(
4093 &info->block_groups[c], &space);
4094 memcpy(dest, &space, sizeof(space));
4095 dest++;
4096 space_args.total_spaces++;
4097 slot_count--;
4098 }
4099 if (!slot_count)
4100 break;
4101 }
4102 up_read(&info->groups_sem);
4103 }
4104
4105 /*
4106 * Add global block reserve
4107 */
4108 if (slot_count) {
4109 struct btrfs_block_rsv *block_rsv = &root->fs_info->global_block_rsv;
4110
4111 spin_lock(&block_rsv->lock);
4112 space.total_bytes = block_rsv->size;
4113 space.used_bytes = block_rsv->size - block_rsv->reserved;
4114 spin_unlock(&block_rsv->lock);
4115 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4116 memcpy(dest, &space, sizeof(space));
4117 space_args.total_spaces++;
4118 }
4119
4120 user_dest = (struct btrfs_ioctl_space_info __user *)
4121 (arg + sizeof(struct btrfs_ioctl_space_args));
4122
4123 if (copy_to_user(user_dest, dest_orig, alloc_size))
4124 ret = -EFAULT;
4125
4126 kfree(dest_orig);
4127 out:
4128 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4129 ret = -EFAULT;
4130
4131 return ret;
4132 }
4133
4134 /*
4135 * there are many ways the trans_start and trans_end ioctls can lead
4136 * to deadlocks. They should only be used by applications that
4137 * basically own the machine, and have a very in depth understanding
4138 * of all the possible deadlocks and enospc problems.
4139 */
btrfs_ioctl_trans_end(struct file * file)4140 long btrfs_ioctl_trans_end(struct file *file)
4141 {
4142 struct inode *inode = file_inode(file);
4143 struct btrfs_root *root = BTRFS_I(inode)->root;
4144 struct btrfs_trans_handle *trans;
4145
4146 trans = file->private_data;
4147 if (!trans)
4148 return -EINVAL;
4149 file->private_data = NULL;
4150
4151 btrfs_end_transaction(trans, root);
4152
4153 atomic_dec(&root->fs_info->open_ioctl_trans);
4154
4155 mnt_drop_write_file(file);
4156 return 0;
4157 }
4158
btrfs_ioctl_start_sync(struct btrfs_root * root,void __user * argp)4159 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4160 void __user *argp)
4161 {
4162 struct btrfs_trans_handle *trans;
4163 u64 transid;
4164 int ret;
4165
4166 trans = btrfs_attach_transaction_barrier(root);
4167 if (IS_ERR(trans)) {
4168 if (PTR_ERR(trans) != -ENOENT)
4169 return PTR_ERR(trans);
4170
4171 /* No running transaction, don't bother */
4172 transid = root->fs_info->last_trans_committed;
4173 goto out;
4174 }
4175 transid = trans->transid;
4176 ret = btrfs_commit_transaction_async(trans, root, 0);
4177 if (ret) {
4178 btrfs_end_transaction(trans, root);
4179 return ret;
4180 }
4181 out:
4182 if (argp)
4183 if (copy_to_user(argp, &transid, sizeof(transid)))
4184 return -EFAULT;
4185 return 0;
4186 }
4187
btrfs_ioctl_wait_sync(struct btrfs_root * root,void __user * argp)4188 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root,
4189 void __user *argp)
4190 {
4191 u64 transid;
4192
4193 if (argp) {
4194 if (copy_from_user(&transid, argp, sizeof(transid)))
4195 return -EFAULT;
4196 } else {
4197 transid = 0; /* current trans */
4198 }
4199 return btrfs_wait_for_commit(root, transid);
4200 }
4201
btrfs_ioctl_scrub(struct file * file,void __user * arg)4202 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4203 {
4204 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4205 struct btrfs_ioctl_scrub_args *sa;
4206 int ret;
4207
4208 if (!capable(CAP_SYS_ADMIN))
4209 return -EPERM;
4210
4211 sa = memdup_user(arg, sizeof(*sa));
4212 if (IS_ERR(sa))
4213 return PTR_ERR(sa);
4214
4215 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4216 ret = mnt_want_write_file(file);
4217 if (ret)
4218 goto out;
4219 }
4220
4221 ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end,
4222 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4223 0);
4224
4225 if (copy_to_user(arg, sa, sizeof(*sa)))
4226 ret = -EFAULT;
4227
4228 if (!(sa->flags & BTRFS_SCRUB_READONLY))
4229 mnt_drop_write_file(file);
4230 out:
4231 kfree(sa);
4232 return ret;
4233 }
4234
btrfs_ioctl_scrub_cancel(struct btrfs_root * root,void __user * arg)4235 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
4236 {
4237 if (!capable(CAP_SYS_ADMIN))
4238 return -EPERM;
4239
4240 return btrfs_scrub_cancel(root->fs_info);
4241 }
4242
btrfs_ioctl_scrub_progress(struct btrfs_root * root,void __user * arg)4243 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
4244 void __user *arg)
4245 {
4246 struct btrfs_ioctl_scrub_args *sa;
4247 int ret;
4248
4249 if (!capable(CAP_SYS_ADMIN))
4250 return -EPERM;
4251
4252 sa = memdup_user(arg, sizeof(*sa));
4253 if (IS_ERR(sa))
4254 return PTR_ERR(sa);
4255
4256 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
4257
4258 if (copy_to_user(arg, sa, sizeof(*sa)))
4259 ret = -EFAULT;
4260
4261 kfree(sa);
4262 return ret;
4263 }
4264
btrfs_ioctl_get_dev_stats(struct btrfs_root * root,void __user * arg)4265 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
4266 void __user *arg)
4267 {
4268 struct btrfs_ioctl_get_dev_stats *sa;
4269 int ret;
4270
4271 sa = memdup_user(arg, sizeof(*sa));
4272 if (IS_ERR(sa))
4273 return PTR_ERR(sa);
4274
4275 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4276 kfree(sa);
4277 return -EPERM;
4278 }
4279
4280 ret = btrfs_get_dev_stats(root, sa);
4281
4282 if (copy_to_user(arg, sa, sizeof(*sa)))
4283 ret = -EFAULT;
4284
4285 kfree(sa);
4286 return ret;
4287 }
4288
btrfs_ioctl_dev_replace(struct btrfs_root * root,void __user * arg)4289 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg)
4290 {
4291 struct btrfs_ioctl_dev_replace_args *p;
4292 int ret;
4293
4294 if (!capable(CAP_SYS_ADMIN))
4295 return -EPERM;
4296
4297 p = memdup_user(arg, sizeof(*p));
4298 if (IS_ERR(p))
4299 return PTR_ERR(p);
4300
4301 switch (p->cmd) {
4302 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4303 if (root->fs_info->sb->s_flags & MS_RDONLY) {
4304 ret = -EROFS;
4305 goto out;
4306 }
4307 if (atomic_xchg(
4308 &root->fs_info->mutually_exclusive_operation_running,
4309 1)) {
4310 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4311 } else {
4312 ret = btrfs_dev_replace_start(root, p);
4313 atomic_set(
4314 &root->fs_info->mutually_exclusive_operation_running,
4315 0);
4316 }
4317 break;
4318 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4319 btrfs_dev_replace_status(root->fs_info, p);
4320 ret = 0;
4321 break;
4322 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4323 ret = btrfs_dev_replace_cancel(root->fs_info, p);
4324 break;
4325 default:
4326 ret = -EINVAL;
4327 break;
4328 }
4329
4330 if (copy_to_user(arg, p, sizeof(*p)))
4331 ret = -EFAULT;
4332 out:
4333 kfree(p);
4334 return ret;
4335 }
4336
btrfs_ioctl_ino_to_path(struct btrfs_root * root,void __user * arg)4337 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4338 {
4339 int ret = 0;
4340 int i;
4341 u64 rel_ptr;
4342 int size;
4343 struct btrfs_ioctl_ino_path_args *ipa = NULL;
4344 struct inode_fs_paths *ipath = NULL;
4345 struct btrfs_path *path;
4346
4347 if (!capable(CAP_DAC_READ_SEARCH))
4348 return -EPERM;
4349
4350 path = btrfs_alloc_path();
4351 if (!path) {
4352 ret = -ENOMEM;
4353 goto out;
4354 }
4355
4356 ipa = memdup_user(arg, sizeof(*ipa));
4357 if (IS_ERR(ipa)) {
4358 ret = PTR_ERR(ipa);
4359 ipa = NULL;
4360 goto out;
4361 }
4362
4363 size = min_t(u32, ipa->size, 4096);
4364 ipath = init_ipath(size, root, path);
4365 if (IS_ERR(ipath)) {
4366 ret = PTR_ERR(ipath);
4367 ipath = NULL;
4368 goto out;
4369 }
4370
4371 ret = paths_from_inode(ipa->inum, ipath);
4372 if (ret < 0)
4373 goto out;
4374
4375 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4376 rel_ptr = ipath->fspath->val[i] -
4377 (u64)(unsigned long)ipath->fspath->val;
4378 ipath->fspath->val[i] = rel_ptr;
4379 }
4380
4381 ret = copy_to_user((void *)(unsigned long)ipa->fspath,
4382 (void *)(unsigned long)ipath->fspath, size);
4383 if (ret) {
4384 ret = -EFAULT;
4385 goto out;
4386 }
4387
4388 out:
4389 btrfs_free_path(path);
4390 free_ipath(ipath);
4391 kfree(ipa);
4392
4393 return ret;
4394 }
4395
build_ino_list(u64 inum,u64 offset,u64 root,void * ctx)4396 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4397 {
4398 struct btrfs_data_container *inodes = ctx;
4399 const size_t c = 3 * sizeof(u64);
4400
4401 if (inodes->bytes_left >= c) {
4402 inodes->bytes_left -= c;
4403 inodes->val[inodes->elem_cnt] = inum;
4404 inodes->val[inodes->elem_cnt + 1] = offset;
4405 inodes->val[inodes->elem_cnt + 2] = root;
4406 inodes->elem_cnt += 3;
4407 } else {
4408 inodes->bytes_missing += c - inodes->bytes_left;
4409 inodes->bytes_left = 0;
4410 inodes->elem_missed += 3;
4411 }
4412
4413 return 0;
4414 }
4415
btrfs_ioctl_logical_to_ino(struct btrfs_root * root,void __user * arg)4416 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
4417 void __user *arg)
4418 {
4419 int ret = 0;
4420 int size;
4421 struct btrfs_ioctl_logical_ino_args *loi;
4422 struct btrfs_data_container *inodes = NULL;
4423 struct btrfs_path *path = NULL;
4424
4425 if (!capable(CAP_SYS_ADMIN))
4426 return -EPERM;
4427
4428 loi = memdup_user(arg, sizeof(*loi));
4429 if (IS_ERR(loi)) {
4430 ret = PTR_ERR(loi);
4431 loi = NULL;
4432 goto out;
4433 }
4434
4435 path = btrfs_alloc_path();
4436 if (!path) {
4437 ret = -ENOMEM;
4438 goto out;
4439 }
4440
4441 size = min_t(u32, loi->size, 64 * 1024);
4442 inodes = init_data_container(size);
4443 if (IS_ERR(inodes)) {
4444 ret = PTR_ERR(inodes);
4445 inodes = NULL;
4446 goto out;
4447 }
4448
4449 ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path,
4450 build_ino_list, inodes);
4451 if (ret == -EINVAL)
4452 ret = -ENOENT;
4453 if (ret < 0)
4454 goto out;
4455
4456 ret = copy_to_user((void *)(unsigned long)loi->inodes,
4457 (void *)(unsigned long)inodes, size);
4458 if (ret)
4459 ret = -EFAULT;
4460
4461 out:
4462 btrfs_free_path(path);
4463 vfree(inodes);
4464 kfree(loi);
4465
4466 return ret;
4467 }
4468
update_ioctl_balance_args(struct btrfs_fs_info * fs_info,int lock,struct btrfs_ioctl_balance_args * bargs)4469 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
4470 struct btrfs_ioctl_balance_args *bargs)
4471 {
4472 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4473
4474 bargs->flags = bctl->flags;
4475
4476 if (atomic_read(&fs_info->balance_running))
4477 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4478 if (atomic_read(&fs_info->balance_pause_req))
4479 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4480 if (atomic_read(&fs_info->balance_cancel_req))
4481 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4482
4483 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4484 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4485 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4486
4487 if (lock) {
4488 spin_lock(&fs_info->balance_lock);
4489 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4490 spin_unlock(&fs_info->balance_lock);
4491 } else {
4492 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4493 }
4494 }
4495
btrfs_ioctl_balance(struct file * file,void __user * arg)4496 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4497 {
4498 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4499 struct btrfs_fs_info *fs_info = root->fs_info;
4500 struct btrfs_ioctl_balance_args *bargs;
4501 struct btrfs_balance_control *bctl;
4502 bool need_unlock; /* for mut. excl. ops lock */
4503 int ret;
4504
4505 if (!capable(CAP_SYS_ADMIN))
4506 return -EPERM;
4507
4508 ret = mnt_want_write_file(file);
4509 if (ret)
4510 return ret;
4511
4512 again:
4513 if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
4514 mutex_lock(&fs_info->volume_mutex);
4515 mutex_lock(&fs_info->balance_mutex);
4516 need_unlock = true;
4517 goto locked;
4518 }
4519
4520 /*
4521 * mut. excl. ops lock is locked. Three possibilites:
4522 * (1) some other op is running
4523 * (2) balance is running
4524 * (3) balance is paused -- special case (think resume)
4525 */
4526 mutex_lock(&fs_info->balance_mutex);
4527 if (fs_info->balance_ctl) {
4528 /* this is either (2) or (3) */
4529 if (!atomic_read(&fs_info->balance_running)) {
4530 mutex_unlock(&fs_info->balance_mutex);
4531 if (!mutex_trylock(&fs_info->volume_mutex))
4532 goto again;
4533 mutex_lock(&fs_info->balance_mutex);
4534
4535 if (fs_info->balance_ctl &&
4536 !atomic_read(&fs_info->balance_running)) {
4537 /* this is (3) */
4538 need_unlock = false;
4539 goto locked;
4540 }
4541
4542 mutex_unlock(&fs_info->balance_mutex);
4543 mutex_unlock(&fs_info->volume_mutex);
4544 goto again;
4545 } else {
4546 /* this is (2) */
4547 mutex_unlock(&fs_info->balance_mutex);
4548 ret = -EINPROGRESS;
4549 goto out;
4550 }
4551 } else {
4552 /* this is (1) */
4553 mutex_unlock(&fs_info->balance_mutex);
4554 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4555 goto out;
4556 }
4557
4558 locked:
4559 BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running));
4560
4561 if (arg) {
4562 bargs = memdup_user(arg, sizeof(*bargs));
4563 if (IS_ERR(bargs)) {
4564 ret = PTR_ERR(bargs);
4565 goto out_unlock;
4566 }
4567
4568 if (bargs->flags & BTRFS_BALANCE_RESUME) {
4569 if (!fs_info->balance_ctl) {
4570 ret = -ENOTCONN;
4571 goto out_bargs;
4572 }
4573
4574 bctl = fs_info->balance_ctl;
4575 spin_lock(&fs_info->balance_lock);
4576 bctl->flags |= BTRFS_BALANCE_RESUME;
4577 spin_unlock(&fs_info->balance_lock);
4578
4579 goto do_balance;
4580 }
4581 } else {
4582 bargs = NULL;
4583 }
4584
4585 if (fs_info->balance_ctl) {
4586 ret = -EINPROGRESS;
4587 goto out_bargs;
4588 }
4589
4590 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4591 if (!bctl) {
4592 ret = -ENOMEM;
4593 goto out_bargs;
4594 }
4595
4596 bctl->fs_info = fs_info;
4597 if (arg) {
4598 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4599 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4600 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4601
4602 bctl->flags = bargs->flags;
4603 } else {
4604 /* balance everything - no filters */
4605 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4606 }
4607
4608 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4609 ret = -EINVAL;
4610 goto out_bctl;
4611 }
4612
4613 do_balance:
4614 /*
4615 * Ownership of bctl and mutually_exclusive_operation_running
4616 * goes to to btrfs_balance. bctl is freed in __cancel_balance,
4617 * or, if restriper was paused all the way until unmount, in
4618 * free_fs_info. mutually_exclusive_operation_running is
4619 * cleared in __cancel_balance.
4620 */
4621 need_unlock = false;
4622
4623 ret = btrfs_balance(bctl, bargs);
4624 bctl = NULL;
4625
4626 if (arg) {
4627 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4628 ret = -EFAULT;
4629 }
4630
4631 out_bctl:
4632 kfree(bctl);
4633 out_bargs:
4634 kfree(bargs);
4635 out_unlock:
4636 mutex_unlock(&fs_info->balance_mutex);
4637 mutex_unlock(&fs_info->volume_mutex);
4638 if (need_unlock)
4639 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
4640 out:
4641 mnt_drop_write_file(file);
4642 return ret;
4643 }
4644
btrfs_ioctl_balance_ctl(struct btrfs_root * root,int cmd)4645 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
4646 {
4647 if (!capable(CAP_SYS_ADMIN))
4648 return -EPERM;
4649
4650 switch (cmd) {
4651 case BTRFS_BALANCE_CTL_PAUSE:
4652 return btrfs_pause_balance(root->fs_info);
4653 case BTRFS_BALANCE_CTL_CANCEL:
4654 return btrfs_cancel_balance(root->fs_info);
4655 }
4656
4657 return -EINVAL;
4658 }
4659
btrfs_ioctl_balance_progress(struct btrfs_root * root,void __user * arg)4660 static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
4661 void __user *arg)
4662 {
4663 struct btrfs_fs_info *fs_info = root->fs_info;
4664 struct btrfs_ioctl_balance_args *bargs;
4665 int ret = 0;
4666
4667 if (!capable(CAP_SYS_ADMIN))
4668 return -EPERM;
4669
4670 mutex_lock(&fs_info->balance_mutex);
4671 if (!fs_info->balance_ctl) {
4672 ret = -ENOTCONN;
4673 goto out;
4674 }
4675
4676 bargs = kzalloc(sizeof(*bargs), GFP_NOFS);
4677 if (!bargs) {
4678 ret = -ENOMEM;
4679 goto out;
4680 }
4681
4682 update_ioctl_balance_args(fs_info, 1, bargs);
4683
4684 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4685 ret = -EFAULT;
4686
4687 kfree(bargs);
4688 out:
4689 mutex_unlock(&fs_info->balance_mutex);
4690 return ret;
4691 }
4692
btrfs_ioctl_quota_ctl(struct file * file,void __user * arg)4693 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4694 {
4695 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4696 struct btrfs_ioctl_quota_ctl_args *sa;
4697 struct btrfs_trans_handle *trans = NULL;
4698 int ret;
4699 int err;
4700
4701 if (!capable(CAP_SYS_ADMIN))
4702 return -EPERM;
4703
4704 ret = mnt_want_write_file(file);
4705 if (ret)
4706 return ret;
4707
4708 sa = memdup_user(arg, sizeof(*sa));
4709 if (IS_ERR(sa)) {
4710 ret = PTR_ERR(sa);
4711 goto drop_write;
4712 }
4713
4714 down_write(&root->fs_info->subvol_sem);
4715 trans = btrfs_start_transaction(root->fs_info->tree_root, 2);
4716 if (IS_ERR(trans)) {
4717 ret = PTR_ERR(trans);
4718 goto out;
4719 }
4720
4721 switch (sa->cmd) {
4722 case BTRFS_QUOTA_CTL_ENABLE:
4723 ret = btrfs_quota_enable(trans, root->fs_info);
4724 break;
4725 case BTRFS_QUOTA_CTL_DISABLE:
4726 ret = btrfs_quota_disable(trans, root->fs_info);
4727 break;
4728 default:
4729 ret = -EINVAL;
4730 break;
4731 }
4732
4733 err = btrfs_commit_transaction(trans, root->fs_info->tree_root);
4734 if (err && !ret)
4735 ret = err;
4736 out:
4737 kfree(sa);
4738 up_write(&root->fs_info->subvol_sem);
4739 drop_write:
4740 mnt_drop_write_file(file);
4741 return ret;
4742 }
4743
btrfs_ioctl_qgroup_assign(struct file * file,void __user * arg)4744 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4745 {
4746 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4747 struct btrfs_ioctl_qgroup_assign_args *sa;
4748 struct btrfs_trans_handle *trans;
4749 int ret;
4750 int err;
4751
4752 if (!capable(CAP_SYS_ADMIN))
4753 return -EPERM;
4754
4755 ret = mnt_want_write_file(file);
4756 if (ret)
4757 return ret;
4758
4759 sa = memdup_user(arg, sizeof(*sa));
4760 if (IS_ERR(sa)) {
4761 ret = PTR_ERR(sa);
4762 goto drop_write;
4763 }
4764
4765 trans = btrfs_join_transaction(root);
4766 if (IS_ERR(trans)) {
4767 ret = PTR_ERR(trans);
4768 goto out;
4769 }
4770
4771 /* FIXME: check if the IDs really exist */
4772 if (sa->assign) {
4773 ret = btrfs_add_qgroup_relation(trans, root->fs_info,
4774 sa->src, sa->dst);
4775 } else {
4776 ret = btrfs_del_qgroup_relation(trans, root->fs_info,
4777 sa->src, sa->dst);
4778 }
4779
4780 /* update qgroup status and info */
4781 err = btrfs_run_qgroups(trans, root->fs_info);
4782 if (err < 0)
4783 btrfs_error(root->fs_info, ret,
4784 "failed to update qgroup status and info\n");
4785 err = btrfs_end_transaction(trans, root);
4786 if (err && !ret)
4787 ret = err;
4788
4789 out:
4790 kfree(sa);
4791 drop_write:
4792 mnt_drop_write_file(file);
4793 return ret;
4794 }
4795
btrfs_ioctl_qgroup_create(struct file * file,void __user * arg)4796 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4797 {
4798 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4799 struct btrfs_ioctl_qgroup_create_args *sa;
4800 struct btrfs_trans_handle *trans;
4801 int ret;
4802 int err;
4803
4804 if (!capable(CAP_SYS_ADMIN))
4805 return -EPERM;
4806
4807 ret = mnt_want_write_file(file);
4808 if (ret)
4809 return ret;
4810
4811 sa = memdup_user(arg, sizeof(*sa));
4812 if (IS_ERR(sa)) {
4813 ret = PTR_ERR(sa);
4814 goto drop_write;
4815 }
4816
4817 if (!sa->qgroupid) {
4818 ret = -EINVAL;
4819 goto out;
4820 }
4821
4822 trans = btrfs_join_transaction(root);
4823 if (IS_ERR(trans)) {
4824 ret = PTR_ERR(trans);
4825 goto out;
4826 }
4827
4828 /* FIXME: check if the IDs really exist */
4829 if (sa->create) {
4830 ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid);
4831 } else {
4832 ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid);
4833 }
4834
4835 err = btrfs_end_transaction(trans, root);
4836 if (err && !ret)
4837 ret = err;
4838
4839 out:
4840 kfree(sa);
4841 drop_write:
4842 mnt_drop_write_file(file);
4843 return ret;
4844 }
4845
btrfs_ioctl_qgroup_limit(struct file * file,void __user * arg)4846 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4847 {
4848 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4849 struct btrfs_ioctl_qgroup_limit_args *sa;
4850 struct btrfs_trans_handle *trans;
4851 int ret;
4852 int err;
4853 u64 qgroupid;
4854
4855 if (!capable(CAP_SYS_ADMIN))
4856 return -EPERM;
4857
4858 ret = mnt_want_write_file(file);
4859 if (ret)
4860 return ret;
4861
4862 sa = memdup_user(arg, sizeof(*sa));
4863 if (IS_ERR(sa)) {
4864 ret = PTR_ERR(sa);
4865 goto drop_write;
4866 }
4867
4868 trans = btrfs_join_transaction(root);
4869 if (IS_ERR(trans)) {
4870 ret = PTR_ERR(trans);
4871 goto out;
4872 }
4873
4874 qgroupid = sa->qgroupid;
4875 if (!qgroupid) {
4876 /* take the current subvol as qgroup */
4877 qgroupid = root->root_key.objectid;
4878 }
4879
4880 /* FIXME: check if the IDs really exist */
4881 ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim);
4882
4883 err = btrfs_end_transaction(trans, root);
4884 if (err && !ret)
4885 ret = err;
4886
4887 out:
4888 kfree(sa);
4889 drop_write:
4890 mnt_drop_write_file(file);
4891 return ret;
4892 }
4893
btrfs_ioctl_quota_rescan(struct file * file,void __user * arg)4894 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4895 {
4896 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4897 struct btrfs_ioctl_quota_rescan_args *qsa;
4898 int ret;
4899
4900 if (!capable(CAP_SYS_ADMIN))
4901 return -EPERM;
4902
4903 ret = mnt_want_write_file(file);
4904 if (ret)
4905 return ret;
4906
4907 qsa = memdup_user(arg, sizeof(*qsa));
4908 if (IS_ERR(qsa)) {
4909 ret = PTR_ERR(qsa);
4910 goto drop_write;
4911 }
4912
4913 if (qsa->flags) {
4914 ret = -EINVAL;
4915 goto out;
4916 }
4917
4918 ret = btrfs_qgroup_rescan(root->fs_info);
4919
4920 out:
4921 kfree(qsa);
4922 drop_write:
4923 mnt_drop_write_file(file);
4924 return ret;
4925 }
4926
btrfs_ioctl_quota_rescan_status(struct file * file,void __user * arg)4927 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
4928 {
4929 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4930 struct btrfs_ioctl_quota_rescan_args *qsa;
4931 int ret = 0;
4932
4933 if (!capable(CAP_SYS_ADMIN))
4934 return -EPERM;
4935
4936 qsa = kzalloc(sizeof(*qsa), GFP_NOFS);
4937 if (!qsa)
4938 return -ENOMEM;
4939
4940 if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4941 qsa->flags = 1;
4942 qsa->progress = root->fs_info->qgroup_rescan_progress.objectid;
4943 }
4944
4945 if (copy_to_user(arg, qsa, sizeof(*qsa)))
4946 ret = -EFAULT;
4947
4948 kfree(qsa);
4949 return ret;
4950 }
4951
btrfs_ioctl_quota_rescan_wait(struct file * file,void __user * arg)4952 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
4953 {
4954 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4955
4956 if (!capable(CAP_SYS_ADMIN))
4957 return -EPERM;
4958
4959 return btrfs_qgroup_wait_for_completion(root->fs_info);
4960 }
4961
_btrfs_ioctl_set_received_subvol(struct file * file,struct btrfs_ioctl_received_subvol_args * sa)4962 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4963 struct btrfs_ioctl_received_subvol_args *sa)
4964 {
4965 struct inode *inode = file_inode(file);
4966 struct btrfs_root *root = BTRFS_I(inode)->root;
4967 struct btrfs_root_item *root_item = &root->root_item;
4968 struct btrfs_trans_handle *trans;
4969 struct timespec ct = CURRENT_TIME;
4970 int ret = 0;
4971 int received_uuid_changed;
4972
4973 if (!inode_owner_or_capable(inode))
4974 return -EPERM;
4975
4976 ret = mnt_want_write_file(file);
4977 if (ret < 0)
4978 return ret;
4979
4980 down_write(&root->fs_info->subvol_sem);
4981
4982 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
4983 ret = -EINVAL;
4984 goto out;
4985 }
4986
4987 if (btrfs_root_readonly(root)) {
4988 ret = -EROFS;
4989 goto out;
4990 }
4991
4992 /*
4993 * 1 - root item
4994 * 2 - uuid items (received uuid + subvol uuid)
4995 */
4996 trans = btrfs_start_transaction(root, 3);
4997 if (IS_ERR(trans)) {
4998 ret = PTR_ERR(trans);
4999 trans = NULL;
5000 goto out;
5001 }
5002
5003 sa->rtransid = trans->transid;
5004 sa->rtime.sec = ct.tv_sec;
5005 sa->rtime.nsec = ct.tv_nsec;
5006
5007 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5008 BTRFS_UUID_SIZE);
5009 if (received_uuid_changed &&
5010 !btrfs_is_empty_uuid(root_item->received_uuid))
5011 btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
5012 root_item->received_uuid,
5013 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5014 root->root_key.objectid);
5015 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5016 btrfs_set_root_stransid(root_item, sa->stransid);
5017 btrfs_set_root_rtransid(root_item, sa->rtransid);
5018 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5019 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5020 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5021 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5022
5023 ret = btrfs_update_root(trans, root->fs_info->tree_root,
5024 &root->root_key, &root->root_item);
5025 if (ret < 0) {
5026 btrfs_end_transaction(trans, root);
5027 goto out;
5028 }
5029 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5030 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
5031 sa->uuid,
5032 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5033 root->root_key.objectid);
5034 if (ret < 0 && ret != -EEXIST) {
5035 btrfs_abort_transaction(trans, root, ret);
5036 goto out;
5037 }
5038 }
5039 ret = btrfs_commit_transaction(trans, root);
5040 if (ret < 0) {
5041 btrfs_abort_transaction(trans, root, ret);
5042 goto out;
5043 }
5044
5045 out:
5046 up_write(&root->fs_info->subvol_sem);
5047 mnt_drop_write_file(file);
5048 return ret;
5049 }
5050
5051 #ifdef CONFIG_64BIT
btrfs_ioctl_set_received_subvol_32(struct file * file,void __user * arg)5052 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5053 void __user *arg)
5054 {
5055 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5056 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5057 int ret = 0;
5058
5059 args32 = memdup_user(arg, sizeof(*args32));
5060 if (IS_ERR(args32)) {
5061 ret = PTR_ERR(args32);
5062 args32 = NULL;
5063 goto out;
5064 }
5065
5066 args64 = kmalloc(sizeof(*args64), GFP_NOFS);
5067 if (!args64) {
5068 ret = -ENOMEM;
5069 goto out;
5070 }
5071
5072 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5073 args64->stransid = args32->stransid;
5074 args64->rtransid = args32->rtransid;
5075 args64->stime.sec = args32->stime.sec;
5076 args64->stime.nsec = args32->stime.nsec;
5077 args64->rtime.sec = args32->rtime.sec;
5078 args64->rtime.nsec = args32->rtime.nsec;
5079 args64->flags = args32->flags;
5080
5081 ret = _btrfs_ioctl_set_received_subvol(file, args64);
5082 if (ret)
5083 goto out;
5084
5085 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5086 args32->stransid = args64->stransid;
5087 args32->rtransid = args64->rtransid;
5088 args32->stime.sec = args64->stime.sec;
5089 args32->stime.nsec = args64->stime.nsec;
5090 args32->rtime.sec = args64->rtime.sec;
5091 args32->rtime.nsec = args64->rtime.nsec;
5092 args32->flags = args64->flags;
5093
5094 ret = copy_to_user(arg, args32, sizeof(*args32));
5095 if (ret)
5096 ret = -EFAULT;
5097
5098 out:
5099 kfree(args32);
5100 kfree(args64);
5101 return ret;
5102 }
5103 #endif
5104
btrfs_ioctl_set_received_subvol(struct file * file,void __user * arg)5105 static long btrfs_ioctl_set_received_subvol(struct file *file,
5106 void __user *arg)
5107 {
5108 struct btrfs_ioctl_received_subvol_args *sa = NULL;
5109 int ret = 0;
5110
5111 sa = memdup_user(arg, sizeof(*sa));
5112 if (IS_ERR(sa)) {
5113 ret = PTR_ERR(sa);
5114 sa = NULL;
5115 goto out;
5116 }
5117
5118 ret = _btrfs_ioctl_set_received_subvol(file, sa);
5119
5120 if (ret)
5121 goto out;
5122
5123 ret = copy_to_user(arg, sa, sizeof(*sa));
5124 if (ret)
5125 ret = -EFAULT;
5126
5127 out:
5128 kfree(sa);
5129 return ret;
5130 }
5131
btrfs_ioctl_get_fslabel(struct file * file,void __user * arg)5132 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5133 {
5134 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5135 size_t len;
5136 int ret;
5137 char label[BTRFS_LABEL_SIZE];
5138
5139 spin_lock(&root->fs_info->super_lock);
5140 memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5141 spin_unlock(&root->fs_info->super_lock);
5142
5143 len = strnlen(label, BTRFS_LABEL_SIZE);
5144
5145 if (len == BTRFS_LABEL_SIZE) {
5146 btrfs_warn(root->fs_info,
5147 "label is too long, return the first %zu bytes", --len);
5148 }
5149
5150 ret = copy_to_user(arg, label, len);
5151
5152 return ret ? -EFAULT : 0;
5153 }
5154
btrfs_ioctl_set_fslabel(struct file * file,void __user * arg)5155 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5156 {
5157 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5158 struct btrfs_super_block *super_block = root->fs_info->super_copy;
5159 struct btrfs_trans_handle *trans;
5160 char label[BTRFS_LABEL_SIZE];
5161 int ret;
5162
5163 if (!capable(CAP_SYS_ADMIN))
5164 return -EPERM;
5165
5166 if (copy_from_user(label, arg, sizeof(label)))
5167 return -EFAULT;
5168
5169 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5170 btrfs_err(root->fs_info, "unable to set label with more than %d bytes",
5171 BTRFS_LABEL_SIZE - 1);
5172 return -EINVAL;
5173 }
5174
5175 ret = mnt_want_write_file(file);
5176 if (ret)
5177 return ret;
5178
5179 trans = btrfs_start_transaction(root, 0);
5180 if (IS_ERR(trans)) {
5181 ret = PTR_ERR(trans);
5182 goto out_unlock;
5183 }
5184
5185 spin_lock(&root->fs_info->super_lock);
5186 strcpy(super_block->label, label);
5187 spin_unlock(&root->fs_info->super_lock);
5188 ret = btrfs_commit_transaction(trans, root);
5189
5190 out_unlock:
5191 mnt_drop_write_file(file);
5192 return ret;
5193 }
5194
5195 #define INIT_FEATURE_FLAGS(suffix) \
5196 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5197 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5198 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5199
btrfs_ioctl_get_supported_features(struct file * file,void __user * arg)5200 static int btrfs_ioctl_get_supported_features(struct file *file,
5201 void __user *arg)
5202 {
5203 static struct btrfs_ioctl_feature_flags features[3] = {
5204 INIT_FEATURE_FLAGS(SUPP),
5205 INIT_FEATURE_FLAGS(SAFE_SET),
5206 INIT_FEATURE_FLAGS(SAFE_CLEAR)
5207 };
5208
5209 if (copy_to_user(arg, &features, sizeof(features)))
5210 return -EFAULT;
5211
5212 return 0;
5213 }
5214
btrfs_ioctl_get_features(struct file * file,void __user * arg)5215 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5216 {
5217 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5218 struct btrfs_super_block *super_block = root->fs_info->super_copy;
5219 struct btrfs_ioctl_feature_flags features;
5220
5221 features.compat_flags = btrfs_super_compat_flags(super_block);
5222 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5223 features.incompat_flags = btrfs_super_incompat_flags(super_block);
5224
5225 if (copy_to_user(arg, &features, sizeof(features)))
5226 return -EFAULT;
5227
5228 return 0;
5229 }
5230
check_feature_bits(struct btrfs_root * root,enum btrfs_feature_set set,u64 change_mask,u64 flags,u64 supported_flags,u64 safe_set,u64 safe_clear)5231 static int check_feature_bits(struct btrfs_root *root,
5232 enum btrfs_feature_set set,
5233 u64 change_mask, u64 flags, u64 supported_flags,
5234 u64 safe_set, u64 safe_clear)
5235 {
5236 const char *type = btrfs_feature_set_names[set];
5237 char *names;
5238 u64 disallowed, unsupported;
5239 u64 set_mask = flags & change_mask;
5240 u64 clear_mask = ~flags & change_mask;
5241
5242 unsupported = set_mask & ~supported_flags;
5243 if (unsupported) {
5244 names = btrfs_printable_features(set, unsupported);
5245 if (names) {
5246 btrfs_warn(root->fs_info,
5247 "this kernel does not support the %s feature bit%s",
5248 names, strchr(names, ',') ? "s" : "");
5249 kfree(names);
5250 } else
5251 btrfs_warn(root->fs_info,
5252 "this kernel does not support %s bits 0x%llx",
5253 type, unsupported);
5254 return -EOPNOTSUPP;
5255 }
5256
5257 disallowed = set_mask & ~safe_set;
5258 if (disallowed) {
5259 names = btrfs_printable_features(set, disallowed);
5260 if (names) {
5261 btrfs_warn(root->fs_info,
5262 "can't set the %s feature bit%s while mounted",
5263 names, strchr(names, ',') ? "s" : "");
5264 kfree(names);
5265 } else
5266 btrfs_warn(root->fs_info,
5267 "can't set %s bits 0x%llx while mounted",
5268 type, disallowed);
5269 return -EPERM;
5270 }
5271
5272 disallowed = clear_mask & ~safe_clear;
5273 if (disallowed) {
5274 names = btrfs_printable_features(set, disallowed);
5275 if (names) {
5276 btrfs_warn(root->fs_info,
5277 "can't clear the %s feature bit%s while mounted",
5278 names, strchr(names, ',') ? "s" : "");
5279 kfree(names);
5280 } else
5281 btrfs_warn(root->fs_info,
5282 "can't clear %s bits 0x%llx while mounted",
5283 type, disallowed);
5284 return -EPERM;
5285 }
5286
5287 return 0;
5288 }
5289
5290 #define check_feature(root, change_mask, flags, mask_base) \
5291 check_feature_bits(root, FEAT_##mask_base, change_mask, flags, \
5292 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
5293 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
5294 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5295
btrfs_ioctl_set_features(struct file * file,void __user * arg)5296 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5297 {
5298 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5299 struct btrfs_super_block *super_block = root->fs_info->super_copy;
5300 struct btrfs_ioctl_feature_flags flags[2];
5301 struct btrfs_trans_handle *trans;
5302 u64 newflags;
5303 int ret;
5304
5305 if (!capable(CAP_SYS_ADMIN))
5306 return -EPERM;
5307
5308 if (copy_from_user(flags, arg, sizeof(flags)))
5309 return -EFAULT;
5310
5311 /* Nothing to do */
5312 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5313 !flags[0].incompat_flags)
5314 return 0;
5315
5316 ret = check_feature(root, flags[0].compat_flags,
5317 flags[1].compat_flags, COMPAT);
5318 if (ret)
5319 return ret;
5320
5321 ret = check_feature(root, flags[0].compat_ro_flags,
5322 flags[1].compat_ro_flags, COMPAT_RO);
5323 if (ret)
5324 return ret;
5325
5326 ret = check_feature(root, flags[0].incompat_flags,
5327 flags[1].incompat_flags, INCOMPAT);
5328 if (ret)
5329 return ret;
5330
5331 trans = btrfs_start_transaction(root, 0);
5332 if (IS_ERR(trans))
5333 return PTR_ERR(trans);
5334
5335 spin_lock(&root->fs_info->super_lock);
5336 newflags = btrfs_super_compat_flags(super_block);
5337 newflags |= flags[0].compat_flags & flags[1].compat_flags;
5338 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5339 btrfs_set_super_compat_flags(super_block, newflags);
5340
5341 newflags = btrfs_super_compat_ro_flags(super_block);
5342 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5343 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5344 btrfs_set_super_compat_ro_flags(super_block, newflags);
5345
5346 newflags = btrfs_super_incompat_flags(super_block);
5347 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5348 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5349 btrfs_set_super_incompat_flags(super_block, newflags);
5350 spin_unlock(&root->fs_info->super_lock);
5351
5352 return btrfs_commit_transaction(trans, root);
5353 }
5354
btrfs_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5355 long btrfs_ioctl(struct file *file, unsigned int
5356 cmd, unsigned long arg)
5357 {
5358 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5359 void __user *argp = (void __user *)arg;
5360
5361 switch (cmd) {
5362 case FS_IOC_GETFLAGS:
5363 return btrfs_ioctl_getflags(file, argp);
5364 case FS_IOC_SETFLAGS:
5365 return btrfs_ioctl_setflags(file, argp);
5366 case FS_IOC_GETVERSION:
5367 return btrfs_ioctl_getversion(file, argp);
5368 case FITRIM:
5369 return btrfs_ioctl_fitrim(file, argp);
5370 case BTRFS_IOC_SNAP_CREATE:
5371 return btrfs_ioctl_snap_create(file, argp, 0);
5372 case BTRFS_IOC_SNAP_CREATE_V2:
5373 return btrfs_ioctl_snap_create_v2(file, argp, 0);
5374 case BTRFS_IOC_SUBVOL_CREATE:
5375 return btrfs_ioctl_snap_create(file, argp, 1);
5376 case BTRFS_IOC_SUBVOL_CREATE_V2:
5377 return btrfs_ioctl_snap_create_v2(file, argp, 1);
5378 case BTRFS_IOC_SNAP_DESTROY:
5379 return btrfs_ioctl_snap_destroy(file, argp);
5380 case BTRFS_IOC_SUBVOL_GETFLAGS:
5381 return btrfs_ioctl_subvol_getflags(file, argp);
5382 case BTRFS_IOC_SUBVOL_SETFLAGS:
5383 return btrfs_ioctl_subvol_setflags(file, argp);
5384 case BTRFS_IOC_DEFAULT_SUBVOL:
5385 return btrfs_ioctl_default_subvol(file, argp);
5386 case BTRFS_IOC_DEFRAG:
5387 return btrfs_ioctl_defrag(file, NULL);
5388 case BTRFS_IOC_DEFRAG_RANGE:
5389 return btrfs_ioctl_defrag(file, argp);
5390 case BTRFS_IOC_RESIZE:
5391 return btrfs_ioctl_resize(file, argp);
5392 case BTRFS_IOC_ADD_DEV:
5393 return btrfs_ioctl_add_dev(root, argp);
5394 case BTRFS_IOC_RM_DEV:
5395 return btrfs_ioctl_rm_dev(file, argp);
5396 case BTRFS_IOC_FS_INFO:
5397 return btrfs_ioctl_fs_info(root, argp);
5398 case BTRFS_IOC_DEV_INFO:
5399 return btrfs_ioctl_dev_info(root, argp);
5400 case BTRFS_IOC_BALANCE:
5401 return btrfs_ioctl_balance(file, NULL);
5402 case BTRFS_IOC_CLONE:
5403 return btrfs_ioctl_clone(file, arg, 0, 0, 0);
5404 case BTRFS_IOC_CLONE_RANGE:
5405 return btrfs_ioctl_clone_range(file, argp);
5406 case BTRFS_IOC_TRANS_START:
5407 return btrfs_ioctl_trans_start(file);
5408 case BTRFS_IOC_TRANS_END:
5409 return btrfs_ioctl_trans_end(file);
5410 case BTRFS_IOC_TREE_SEARCH:
5411 return btrfs_ioctl_tree_search(file, argp);
5412 case BTRFS_IOC_TREE_SEARCH_V2:
5413 return btrfs_ioctl_tree_search_v2(file, argp);
5414 case BTRFS_IOC_INO_LOOKUP:
5415 return btrfs_ioctl_ino_lookup(file, argp);
5416 case BTRFS_IOC_INO_PATHS:
5417 return btrfs_ioctl_ino_to_path(root, argp);
5418 case BTRFS_IOC_LOGICAL_INO:
5419 return btrfs_ioctl_logical_to_ino(root, argp);
5420 case BTRFS_IOC_SPACE_INFO:
5421 return btrfs_ioctl_space_info(root, argp);
5422 case BTRFS_IOC_SYNC: {
5423 int ret;
5424
5425 ret = btrfs_start_delalloc_roots(root->fs_info, 0, -1);
5426 if (ret)
5427 return ret;
5428 ret = btrfs_sync_fs(file_inode(file)->i_sb, 1);
5429 /*
5430 * The transaction thread may want to do more work,
5431 * namely it pokes the cleaner ktread that will start
5432 * processing uncleaned subvols.
5433 */
5434 wake_up_process(root->fs_info->transaction_kthread);
5435 return ret;
5436 }
5437 case BTRFS_IOC_START_SYNC:
5438 return btrfs_ioctl_start_sync(root, argp);
5439 case BTRFS_IOC_WAIT_SYNC:
5440 return btrfs_ioctl_wait_sync(root, argp);
5441 case BTRFS_IOC_SCRUB:
5442 return btrfs_ioctl_scrub(file, argp);
5443 case BTRFS_IOC_SCRUB_CANCEL:
5444 return btrfs_ioctl_scrub_cancel(root, argp);
5445 case BTRFS_IOC_SCRUB_PROGRESS:
5446 return btrfs_ioctl_scrub_progress(root, argp);
5447 case BTRFS_IOC_BALANCE_V2:
5448 return btrfs_ioctl_balance(file, argp);
5449 case BTRFS_IOC_BALANCE_CTL:
5450 return btrfs_ioctl_balance_ctl(root, arg);
5451 case BTRFS_IOC_BALANCE_PROGRESS:
5452 return btrfs_ioctl_balance_progress(root, argp);
5453 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5454 return btrfs_ioctl_set_received_subvol(file, argp);
5455 #ifdef CONFIG_64BIT
5456 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5457 return btrfs_ioctl_set_received_subvol_32(file, argp);
5458 #endif
5459 case BTRFS_IOC_SEND:
5460 return btrfs_ioctl_send(file, argp);
5461 case BTRFS_IOC_GET_DEV_STATS:
5462 return btrfs_ioctl_get_dev_stats(root, argp);
5463 case BTRFS_IOC_QUOTA_CTL:
5464 return btrfs_ioctl_quota_ctl(file, argp);
5465 case BTRFS_IOC_QGROUP_ASSIGN:
5466 return btrfs_ioctl_qgroup_assign(file, argp);
5467 case BTRFS_IOC_QGROUP_CREATE:
5468 return btrfs_ioctl_qgroup_create(file, argp);
5469 case BTRFS_IOC_QGROUP_LIMIT:
5470 return btrfs_ioctl_qgroup_limit(file, argp);
5471 case BTRFS_IOC_QUOTA_RESCAN:
5472 return btrfs_ioctl_quota_rescan(file, argp);
5473 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5474 return btrfs_ioctl_quota_rescan_status(file, argp);
5475 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5476 return btrfs_ioctl_quota_rescan_wait(file, argp);
5477 case BTRFS_IOC_DEV_REPLACE:
5478 return btrfs_ioctl_dev_replace(root, argp);
5479 case BTRFS_IOC_GET_FSLABEL:
5480 return btrfs_ioctl_get_fslabel(file, argp);
5481 case BTRFS_IOC_SET_FSLABEL:
5482 return btrfs_ioctl_set_fslabel(file, argp);
5483 case BTRFS_IOC_FILE_EXTENT_SAME:
5484 return btrfs_ioctl_file_extent_same(file, argp);
5485 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5486 return btrfs_ioctl_get_supported_features(file, argp);
5487 case BTRFS_IOC_GET_FEATURES:
5488 return btrfs_ioctl_get_features(file, argp);
5489 case BTRFS_IOC_SET_FEATURES:
5490 return btrfs_ioctl_set_features(file, argp);
5491 }
5492
5493 return -ENOTTY;
5494 }
5495
5496 #ifdef CONFIG_COMPAT
btrfs_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5497 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5498 {
5499 switch (cmd) {
5500 case FS_IOC32_GETFLAGS:
5501 cmd = FS_IOC_GETFLAGS;
5502 break;
5503 case FS_IOC32_SETFLAGS:
5504 cmd = FS_IOC_SETFLAGS;
5505 break;
5506 case FS_IOC32_GETVERSION:
5507 cmd = FS_IOC_GETVERSION;
5508 break;
5509 default:
5510 return -ENOIOCTLCMD;
5511 }
5512
5513 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5514 }
5515 #endif
5516