1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
45 #include <linux/btrfs.h>
46 #include <linux/uaccess.h>
47 #include "ctree.h"
48 #include "disk-io.h"
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
52 #include "volumes.h"
53 #include "locking.h"
54 #include "inode-map.h"
55 #include "backref.h"
56 #include "rcu-string.h"
57 #include "send.h"
58 #include "dev-replace.h"
59 #include "props.h"
60 #include "sysfs.h"
61 #include "qgroup.h"
62 
63 #ifdef CONFIG_64BIT
64 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
65  * structures are incorrect, as the timespec structure from userspace
66  * is 4 bytes too small. We define these alternatives here to teach
67  * the kernel about the 32-bit struct packing.
68  */
69 struct btrfs_ioctl_timespec_32 {
70 	__u64 sec;
71 	__u32 nsec;
72 } __attribute__ ((__packed__));
73 
74 struct btrfs_ioctl_received_subvol_args_32 {
75 	char	uuid[BTRFS_UUID_SIZE];	/* in */
76 	__u64	stransid;		/* in */
77 	__u64	rtransid;		/* out */
78 	struct btrfs_ioctl_timespec_32 stime; /* in */
79 	struct btrfs_ioctl_timespec_32 rtime; /* out */
80 	__u64	flags;			/* in */
81 	__u64	reserved[16];		/* in */
82 } __attribute__ ((__packed__));
83 
84 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
85 				struct btrfs_ioctl_received_subvol_args_32)
86 #endif
87 
88 
89 static int btrfs_clone(struct inode *src, struct inode *inode,
90 		       u64 off, u64 olen, u64 olen_aligned, u64 destoff);
91 
92 /* Mask out flags that are inappropriate for the given type of inode. */
btrfs_mask_flags(umode_t mode,__u32 flags)93 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
94 {
95 	if (S_ISDIR(mode))
96 		return flags;
97 	else if (S_ISREG(mode))
98 		return flags & ~FS_DIRSYNC_FL;
99 	else
100 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
101 }
102 
103 /*
104  * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
105  */
btrfs_flags_to_ioctl(unsigned int flags)106 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
107 {
108 	unsigned int iflags = 0;
109 
110 	if (flags & BTRFS_INODE_SYNC)
111 		iflags |= FS_SYNC_FL;
112 	if (flags & BTRFS_INODE_IMMUTABLE)
113 		iflags |= FS_IMMUTABLE_FL;
114 	if (flags & BTRFS_INODE_APPEND)
115 		iflags |= FS_APPEND_FL;
116 	if (flags & BTRFS_INODE_NODUMP)
117 		iflags |= FS_NODUMP_FL;
118 	if (flags & BTRFS_INODE_NOATIME)
119 		iflags |= FS_NOATIME_FL;
120 	if (flags & BTRFS_INODE_DIRSYNC)
121 		iflags |= FS_DIRSYNC_FL;
122 	if (flags & BTRFS_INODE_NODATACOW)
123 		iflags |= FS_NOCOW_FL;
124 
125 	if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
126 		iflags |= FS_COMPR_FL;
127 	else if (flags & BTRFS_INODE_NOCOMPRESS)
128 		iflags |= FS_NOCOMP_FL;
129 
130 	return iflags;
131 }
132 
133 /*
134  * Update inode->i_flags based on the btrfs internal flags.
135  */
btrfs_update_iflags(struct inode * inode)136 void btrfs_update_iflags(struct inode *inode)
137 {
138 	struct btrfs_inode *ip = BTRFS_I(inode);
139 	unsigned int new_fl = 0;
140 
141 	if (ip->flags & BTRFS_INODE_SYNC)
142 		new_fl |= S_SYNC;
143 	if (ip->flags & BTRFS_INODE_IMMUTABLE)
144 		new_fl |= S_IMMUTABLE;
145 	if (ip->flags & BTRFS_INODE_APPEND)
146 		new_fl |= S_APPEND;
147 	if (ip->flags & BTRFS_INODE_NOATIME)
148 		new_fl |= S_NOATIME;
149 	if (ip->flags & BTRFS_INODE_DIRSYNC)
150 		new_fl |= S_DIRSYNC;
151 
152 	set_mask_bits(&inode->i_flags,
153 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
154 		      new_fl);
155 }
156 
157 /*
158  * Inherit flags from the parent inode.
159  *
160  * Currently only the compression flags and the cow flags are inherited.
161  */
btrfs_inherit_iflags(struct inode * inode,struct inode * dir)162 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
163 {
164 	unsigned int flags;
165 
166 	if (!dir)
167 		return;
168 
169 	flags = BTRFS_I(dir)->flags;
170 
171 	if (flags & BTRFS_INODE_NOCOMPRESS) {
172 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
173 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
174 	} else if (flags & BTRFS_INODE_COMPRESS) {
175 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
176 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
177 	}
178 
179 	if (flags & BTRFS_INODE_NODATACOW) {
180 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
181 		if (S_ISREG(inode->i_mode))
182 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
183 	}
184 
185 	btrfs_update_iflags(inode);
186 }
187 
btrfs_ioctl_getflags(struct file * file,void __user * arg)188 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
189 {
190 	struct btrfs_inode *ip = BTRFS_I(file_inode(file));
191 	unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
192 
193 	if (copy_to_user(arg, &flags, sizeof(flags)))
194 		return -EFAULT;
195 	return 0;
196 }
197 
check_flags(unsigned int flags)198 static int check_flags(unsigned int flags)
199 {
200 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
201 		      FS_NOATIME_FL | FS_NODUMP_FL | \
202 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
203 		      FS_NOCOMP_FL | FS_COMPR_FL |
204 		      FS_NOCOW_FL))
205 		return -EOPNOTSUPP;
206 
207 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
208 		return -EINVAL;
209 
210 	return 0;
211 }
212 
btrfs_ioctl_setflags(struct file * file,void __user * arg)213 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
214 {
215 	struct inode *inode = file_inode(file);
216 	struct btrfs_inode *ip = BTRFS_I(inode);
217 	struct btrfs_root *root = ip->root;
218 	struct btrfs_trans_handle *trans;
219 	unsigned int flags, oldflags;
220 	int ret;
221 	u64 ip_oldflags;
222 	unsigned int i_oldflags;
223 	umode_t mode;
224 
225 	if (!inode_owner_or_capable(inode))
226 		return -EPERM;
227 
228 	if (btrfs_root_readonly(root))
229 		return -EROFS;
230 
231 	if (copy_from_user(&flags, arg, sizeof(flags)))
232 		return -EFAULT;
233 
234 	ret = check_flags(flags);
235 	if (ret)
236 		return ret;
237 
238 	ret = mnt_want_write_file(file);
239 	if (ret)
240 		return ret;
241 
242 	mutex_lock(&inode->i_mutex);
243 
244 	ip_oldflags = ip->flags;
245 	i_oldflags = inode->i_flags;
246 	mode = inode->i_mode;
247 
248 	flags = btrfs_mask_flags(inode->i_mode, flags);
249 	oldflags = btrfs_flags_to_ioctl(ip->flags);
250 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
251 		if (!capable(CAP_LINUX_IMMUTABLE)) {
252 			ret = -EPERM;
253 			goto out_unlock;
254 		}
255 	}
256 
257 	if (flags & FS_SYNC_FL)
258 		ip->flags |= BTRFS_INODE_SYNC;
259 	else
260 		ip->flags &= ~BTRFS_INODE_SYNC;
261 	if (flags & FS_IMMUTABLE_FL)
262 		ip->flags |= BTRFS_INODE_IMMUTABLE;
263 	else
264 		ip->flags &= ~BTRFS_INODE_IMMUTABLE;
265 	if (flags & FS_APPEND_FL)
266 		ip->flags |= BTRFS_INODE_APPEND;
267 	else
268 		ip->flags &= ~BTRFS_INODE_APPEND;
269 	if (flags & FS_NODUMP_FL)
270 		ip->flags |= BTRFS_INODE_NODUMP;
271 	else
272 		ip->flags &= ~BTRFS_INODE_NODUMP;
273 	if (flags & FS_NOATIME_FL)
274 		ip->flags |= BTRFS_INODE_NOATIME;
275 	else
276 		ip->flags &= ~BTRFS_INODE_NOATIME;
277 	if (flags & FS_DIRSYNC_FL)
278 		ip->flags |= BTRFS_INODE_DIRSYNC;
279 	else
280 		ip->flags &= ~BTRFS_INODE_DIRSYNC;
281 	if (flags & FS_NOCOW_FL) {
282 		if (S_ISREG(mode)) {
283 			/*
284 			 * It's safe to turn csums off here, no extents exist.
285 			 * Otherwise we want the flag to reflect the real COW
286 			 * status of the file and will not set it.
287 			 */
288 			if (inode->i_size == 0)
289 				ip->flags |= BTRFS_INODE_NODATACOW
290 					   | BTRFS_INODE_NODATASUM;
291 		} else {
292 			ip->flags |= BTRFS_INODE_NODATACOW;
293 		}
294 	} else {
295 		/*
296 		 * Revert back under same assuptions as above
297 		 */
298 		if (S_ISREG(mode)) {
299 			if (inode->i_size == 0)
300 				ip->flags &= ~(BTRFS_INODE_NODATACOW
301 				             | BTRFS_INODE_NODATASUM);
302 		} else {
303 			ip->flags &= ~BTRFS_INODE_NODATACOW;
304 		}
305 	}
306 
307 	/*
308 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
309 	 * flag may be changed automatically if compression code won't make
310 	 * things smaller.
311 	 */
312 	if (flags & FS_NOCOMP_FL) {
313 		ip->flags &= ~BTRFS_INODE_COMPRESS;
314 		ip->flags |= BTRFS_INODE_NOCOMPRESS;
315 
316 		ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
317 		if (ret && ret != -ENODATA)
318 			goto out_drop;
319 	} else if (flags & FS_COMPR_FL) {
320 		const char *comp;
321 
322 		ip->flags |= BTRFS_INODE_COMPRESS;
323 		ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
324 
325 		if (root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
326 			comp = "lzo";
327 		else
328 			comp = "zlib";
329 		ret = btrfs_set_prop(inode, "btrfs.compression",
330 				     comp, strlen(comp), 0);
331 		if (ret)
332 			goto out_drop;
333 
334 	} else {
335 		ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
336 		if (ret && ret != -ENODATA)
337 			goto out_drop;
338 		ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
339 	}
340 
341 	trans = btrfs_start_transaction(root, 1);
342 	if (IS_ERR(trans)) {
343 		ret = PTR_ERR(trans);
344 		goto out_drop;
345 	}
346 
347 	btrfs_update_iflags(inode);
348 	inode_inc_iversion(inode);
349 	inode->i_ctime = CURRENT_TIME;
350 	ret = btrfs_update_inode(trans, root, inode);
351 
352 	btrfs_end_transaction(trans, root);
353  out_drop:
354 	if (ret) {
355 		ip->flags = ip_oldflags;
356 		inode->i_flags = i_oldflags;
357 	}
358 
359  out_unlock:
360 	mutex_unlock(&inode->i_mutex);
361 	mnt_drop_write_file(file);
362 	return ret;
363 }
364 
btrfs_ioctl_getversion(struct file * file,int __user * arg)365 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
366 {
367 	struct inode *inode = file_inode(file);
368 
369 	return put_user(inode->i_generation, arg);
370 }
371 
btrfs_ioctl_fitrim(struct file * file,void __user * arg)372 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
373 {
374 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
375 	struct btrfs_device *device;
376 	struct request_queue *q;
377 	struct fstrim_range range;
378 	u64 minlen = ULLONG_MAX;
379 	u64 num_devices = 0;
380 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
381 	int ret;
382 
383 	if (!capable(CAP_SYS_ADMIN))
384 		return -EPERM;
385 
386 	rcu_read_lock();
387 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
388 				dev_list) {
389 		if (!device->bdev)
390 			continue;
391 		q = bdev_get_queue(device->bdev);
392 		if (blk_queue_discard(q)) {
393 			num_devices++;
394 			minlen = min((u64)q->limits.discard_granularity,
395 				     minlen);
396 		}
397 	}
398 	rcu_read_unlock();
399 
400 	if (!num_devices)
401 		return -EOPNOTSUPP;
402 	if (copy_from_user(&range, arg, sizeof(range)))
403 		return -EFAULT;
404 	if (range.start > total_bytes ||
405 	    range.len < fs_info->sb->s_blocksize)
406 		return -EINVAL;
407 
408 	range.len = min(range.len, total_bytes - range.start);
409 	range.minlen = max(range.minlen, minlen);
410 	ret = btrfs_trim_fs(fs_info->tree_root, &range);
411 	if (ret < 0)
412 		return ret;
413 
414 	if (copy_to_user(arg, &range, sizeof(range)))
415 		return -EFAULT;
416 
417 	return 0;
418 }
419 
btrfs_is_empty_uuid(u8 * uuid)420 int btrfs_is_empty_uuid(u8 *uuid)
421 {
422 	int i;
423 
424 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
425 		if (uuid[i])
426 			return 0;
427 	}
428 	return 1;
429 }
430 
create_subvol(struct inode * dir,struct dentry * dentry,char * name,int namelen,u64 * async_transid,struct btrfs_qgroup_inherit * inherit)431 static noinline int create_subvol(struct inode *dir,
432 				  struct dentry *dentry,
433 				  char *name, int namelen,
434 				  u64 *async_transid,
435 				  struct btrfs_qgroup_inherit *inherit)
436 {
437 	struct btrfs_trans_handle *trans;
438 	struct btrfs_key key;
439 	struct btrfs_root_item root_item;
440 	struct btrfs_inode_item *inode_item;
441 	struct extent_buffer *leaf;
442 	struct btrfs_root *root = BTRFS_I(dir)->root;
443 	struct btrfs_root *new_root;
444 	struct btrfs_block_rsv block_rsv;
445 	struct timespec cur_time = CURRENT_TIME;
446 	struct inode *inode;
447 	int ret;
448 	int err;
449 	u64 objectid;
450 	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
451 	u64 index = 0;
452 	u64 qgroup_reserved;
453 	uuid_le new_uuid;
454 
455 	ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
456 	if (ret)
457 		return ret;
458 
459 	/*
460 	 * Don't create subvolume whose level is not zero. Or qgroup will be
461 	 * screwed up since it assume subvolme qgroup's level to be 0.
462 	 */
463 	if (btrfs_qgroup_level(objectid))
464 		return -ENOSPC;
465 
466 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
467 	/*
468 	 * The same as the snapshot creation, please see the comment
469 	 * of create_snapshot().
470 	 */
471 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
472 					       8, &qgroup_reserved, false);
473 	if (ret)
474 		return ret;
475 
476 	trans = btrfs_start_transaction(root, 0);
477 	if (IS_ERR(trans)) {
478 		ret = PTR_ERR(trans);
479 		btrfs_subvolume_release_metadata(root, &block_rsv,
480 						 qgroup_reserved);
481 		return ret;
482 	}
483 	trans->block_rsv = &block_rsv;
484 	trans->bytes_reserved = block_rsv.size;
485 
486 	ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit);
487 	if (ret)
488 		goto fail;
489 
490 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
491 	if (IS_ERR(leaf)) {
492 		ret = PTR_ERR(leaf);
493 		goto fail;
494 	}
495 
496 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
497 	btrfs_set_header_bytenr(leaf, leaf->start);
498 	btrfs_set_header_generation(leaf, trans->transid);
499 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
500 	btrfs_set_header_owner(leaf, objectid);
501 
502 	write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(),
503 			    BTRFS_FSID_SIZE);
504 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
505 			    btrfs_header_chunk_tree_uuid(leaf),
506 			    BTRFS_UUID_SIZE);
507 	btrfs_mark_buffer_dirty(leaf);
508 
509 	memset(&root_item, 0, sizeof(root_item));
510 
511 	inode_item = &root_item.inode;
512 	btrfs_set_stack_inode_generation(inode_item, 1);
513 	btrfs_set_stack_inode_size(inode_item, 3);
514 	btrfs_set_stack_inode_nlink(inode_item, 1);
515 	btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
516 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
517 
518 	btrfs_set_root_flags(&root_item, 0);
519 	btrfs_set_root_limit(&root_item, 0);
520 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
521 
522 	btrfs_set_root_bytenr(&root_item, leaf->start);
523 	btrfs_set_root_generation(&root_item, trans->transid);
524 	btrfs_set_root_level(&root_item, 0);
525 	btrfs_set_root_refs(&root_item, 1);
526 	btrfs_set_root_used(&root_item, leaf->len);
527 	btrfs_set_root_last_snapshot(&root_item, 0);
528 
529 	btrfs_set_root_generation_v2(&root_item,
530 			btrfs_root_generation(&root_item));
531 	uuid_le_gen(&new_uuid);
532 	memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE);
533 	btrfs_set_stack_timespec_sec(&root_item.otime, cur_time.tv_sec);
534 	btrfs_set_stack_timespec_nsec(&root_item.otime, cur_time.tv_nsec);
535 	root_item.ctime = root_item.otime;
536 	btrfs_set_root_ctransid(&root_item, trans->transid);
537 	btrfs_set_root_otransid(&root_item, trans->transid);
538 
539 	btrfs_tree_unlock(leaf);
540 	free_extent_buffer(leaf);
541 	leaf = NULL;
542 
543 	btrfs_set_root_dirid(&root_item, new_dirid);
544 
545 	key.objectid = objectid;
546 	key.offset = 0;
547 	key.type = BTRFS_ROOT_ITEM_KEY;
548 	ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
549 				&root_item);
550 	if (ret)
551 		goto fail;
552 
553 	key.offset = (u64)-1;
554 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
555 	if (IS_ERR(new_root)) {
556 		btrfs_abort_transaction(trans, root, PTR_ERR(new_root));
557 		ret = PTR_ERR(new_root);
558 		goto fail;
559 	}
560 
561 	btrfs_record_root_in_trans(trans, new_root);
562 
563 	ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
564 	if (ret) {
565 		/* We potentially lose an unused inode item here */
566 		btrfs_abort_transaction(trans, root, ret);
567 		goto fail;
568 	}
569 
570 	mutex_lock(&new_root->objectid_mutex);
571 	new_root->highest_objectid = new_dirid;
572 	mutex_unlock(&new_root->objectid_mutex);
573 
574 	/*
575 	 * insert the directory item
576 	 */
577 	ret = btrfs_set_inode_index(dir, &index);
578 	if (ret) {
579 		btrfs_abort_transaction(trans, root, ret);
580 		goto fail;
581 	}
582 
583 	ret = btrfs_insert_dir_item(trans, root,
584 				    name, namelen, dir, &key,
585 				    BTRFS_FT_DIR, index);
586 	if (ret) {
587 		btrfs_abort_transaction(trans, root, ret);
588 		goto fail;
589 	}
590 
591 	btrfs_i_size_write(dir, dir->i_size + namelen * 2);
592 	ret = btrfs_update_inode(trans, root, dir);
593 	BUG_ON(ret);
594 
595 	ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
596 				 objectid, root->root_key.objectid,
597 				 btrfs_ino(dir), index, name, namelen);
598 	BUG_ON(ret);
599 
600 	ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
601 				  root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
602 				  objectid);
603 	if (ret)
604 		btrfs_abort_transaction(trans, root, ret);
605 
606 fail:
607 	trans->block_rsv = NULL;
608 	trans->bytes_reserved = 0;
609 	btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
610 
611 	if (async_transid) {
612 		*async_transid = trans->transid;
613 		err = btrfs_commit_transaction_async(trans, root, 1);
614 		if (err)
615 			err = btrfs_commit_transaction(trans, root);
616 	} else {
617 		err = btrfs_commit_transaction(trans, root);
618 	}
619 	if (err && !ret)
620 		ret = err;
621 
622 	if (!ret) {
623 		inode = btrfs_lookup_dentry(dir, dentry);
624 		if (IS_ERR(inode))
625 			return PTR_ERR(inode);
626 		d_instantiate(dentry, inode);
627 	}
628 	return ret;
629 }
630 
btrfs_wait_for_no_snapshoting_writes(struct btrfs_root * root)631 static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root *root)
632 {
633 	s64 writers;
634 	DEFINE_WAIT(wait);
635 
636 	do {
637 		prepare_to_wait(&root->subv_writers->wait, &wait,
638 				TASK_UNINTERRUPTIBLE);
639 
640 		writers = percpu_counter_sum(&root->subv_writers->counter);
641 		if (writers)
642 			schedule();
643 
644 		finish_wait(&root->subv_writers->wait, &wait);
645 	} while (writers);
646 }
647 
create_snapshot(struct btrfs_root * root,struct inode * dir,struct dentry * dentry,char * name,int namelen,u64 * async_transid,bool readonly,struct btrfs_qgroup_inherit * inherit)648 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
649 			   struct dentry *dentry, char *name, int namelen,
650 			   u64 *async_transid, bool readonly,
651 			   struct btrfs_qgroup_inherit *inherit)
652 {
653 	struct inode *inode;
654 	struct btrfs_pending_snapshot *pending_snapshot;
655 	struct btrfs_trans_handle *trans;
656 	int ret;
657 
658 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
659 		return -EINVAL;
660 
661 	atomic_inc(&root->will_be_snapshoted);
662 	smp_mb__after_atomic();
663 	btrfs_wait_for_no_snapshoting_writes(root);
664 
665 	ret = btrfs_start_delalloc_inodes(root, 0);
666 	if (ret)
667 		goto out;
668 
669 	btrfs_wait_ordered_extents(root, -1);
670 
671 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
672 	if (!pending_snapshot) {
673 		ret = -ENOMEM;
674 		goto out;
675 	}
676 
677 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
678 			     BTRFS_BLOCK_RSV_TEMP);
679 	/*
680 	 * 1 - parent dir inode
681 	 * 2 - dir entries
682 	 * 1 - root item
683 	 * 2 - root ref/backref
684 	 * 1 - root of snapshot
685 	 * 1 - UUID item
686 	 */
687 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
688 					&pending_snapshot->block_rsv, 8,
689 					&pending_snapshot->qgroup_reserved,
690 					false);
691 	if (ret)
692 		goto free;
693 
694 	pending_snapshot->dentry = dentry;
695 	pending_snapshot->root = root;
696 	pending_snapshot->readonly = readonly;
697 	pending_snapshot->dir = dir;
698 	pending_snapshot->inherit = inherit;
699 
700 	trans = btrfs_start_transaction(root, 0);
701 	if (IS_ERR(trans)) {
702 		ret = PTR_ERR(trans);
703 		goto fail;
704 	}
705 
706 	spin_lock(&root->fs_info->trans_lock);
707 	list_add(&pending_snapshot->list,
708 		 &trans->transaction->pending_snapshots);
709 	spin_unlock(&root->fs_info->trans_lock);
710 	if (async_transid) {
711 		*async_transid = trans->transid;
712 		ret = btrfs_commit_transaction_async(trans,
713 				     root->fs_info->extent_root, 1);
714 		if (ret)
715 			ret = btrfs_commit_transaction(trans, root);
716 	} else {
717 		ret = btrfs_commit_transaction(trans,
718 					       root->fs_info->extent_root);
719 	}
720 	if (ret)
721 		goto fail;
722 
723 	ret = pending_snapshot->error;
724 	if (ret)
725 		goto fail;
726 
727 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
728 	if (ret)
729 		goto fail;
730 
731 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
732 	if (IS_ERR(inode)) {
733 		ret = PTR_ERR(inode);
734 		goto fail;
735 	}
736 
737 	d_instantiate(dentry, inode);
738 	ret = 0;
739 fail:
740 	btrfs_subvolume_release_metadata(BTRFS_I(dir)->root,
741 					 &pending_snapshot->block_rsv,
742 					 pending_snapshot->qgroup_reserved);
743 free:
744 	kfree(pending_snapshot);
745 out:
746 	if (atomic_dec_and_test(&root->will_be_snapshoted))
747 		wake_up_atomic_t(&root->will_be_snapshoted);
748 	return ret;
749 }
750 
751 /*  copy of may_delete in fs/namei.c()
752  *	Check whether we can remove a link victim from directory dir, check
753  *  whether the type of victim is right.
754  *  1. We can't do it if dir is read-only (done in permission())
755  *  2. We should have write and exec permissions on dir
756  *  3. We can't remove anything from append-only dir
757  *  4. We can't do anything with immutable dir (done in permission())
758  *  5. If the sticky bit on dir is set we should either
759  *	a. be owner of dir, or
760  *	b. be owner of victim, or
761  *	c. have CAP_FOWNER capability
762  *  6. If the victim is append-only or immutable we can't do antyhing with
763  *     links pointing to it.
764  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
765  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
766  *  9. We can't remove a root or mountpoint.
767  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
768  *     nfs_async_unlink().
769  */
770 
btrfs_may_delete(struct inode * dir,struct dentry * victim,int isdir)771 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
772 {
773 	int error;
774 
775 	if (d_really_is_negative(victim))
776 		return -ENOENT;
777 
778 	BUG_ON(d_inode(victim->d_parent) != dir);
779 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
780 
781 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
782 	if (error)
783 		return error;
784 	if (IS_APPEND(dir))
785 		return -EPERM;
786 	if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
787 	    IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
788 		return -EPERM;
789 	if (isdir) {
790 		if (!d_is_dir(victim))
791 			return -ENOTDIR;
792 		if (IS_ROOT(victim))
793 			return -EBUSY;
794 	} else if (d_is_dir(victim))
795 		return -EISDIR;
796 	if (IS_DEADDIR(dir))
797 		return -ENOENT;
798 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
799 		return -EBUSY;
800 	return 0;
801 }
802 
803 /* copy of may_create in fs/namei.c() */
btrfs_may_create(struct inode * dir,struct dentry * child)804 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
805 {
806 	if (d_really_is_positive(child))
807 		return -EEXIST;
808 	if (IS_DEADDIR(dir))
809 		return -ENOENT;
810 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
811 }
812 
813 /*
814  * Create a new subvolume below @parent.  This is largely modeled after
815  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
816  * inside this filesystem so it's quite a bit simpler.
817  */
btrfs_mksubvol(struct path * parent,char * name,int namelen,struct btrfs_root * snap_src,u64 * async_transid,bool readonly,struct btrfs_qgroup_inherit * inherit)818 static noinline int btrfs_mksubvol(struct path *parent,
819 				   char *name, int namelen,
820 				   struct btrfs_root *snap_src,
821 				   u64 *async_transid, bool readonly,
822 				   struct btrfs_qgroup_inherit *inherit)
823 {
824 	struct inode *dir  = d_inode(parent->dentry);
825 	struct dentry *dentry;
826 	int error;
827 
828 	error = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
829 	if (error == -EINTR)
830 		return error;
831 
832 	dentry = lookup_one_len(name, parent->dentry, namelen);
833 	error = PTR_ERR(dentry);
834 	if (IS_ERR(dentry))
835 		goto out_unlock;
836 
837 	error = -EEXIST;
838 	if (d_really_is_positive(dentry))
839 		goto out_dput;
840 
841 	error = btrfs_may_create(dir, dentry);
842 	if (error)
843 		goto out_dput;
844 
845 	/*
846 	 * even if this name doesn't exist, we may get hash collisions.
847 	 * check for them now when we can safely fail
848 	 */
849 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
850 					       dir->i_ino, name,
851 					       namelen);
852 	if (error)
853 		goto out_dput;
854 
855 	down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
856 
857 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
858 		goto out_up_read;
859 
860 	if (snap_src) {
861 		error = create_snapshot(snap_src, dir, dentry, name, namelen,
862 					async_transid, readonly, inherit);
863 	} else {
864 		error = create_subvol(dir, dentry, name, namelen,
865 				      async_transid, inherit);
866 	}
867 	if (!error)
868 		fsnotify_mkdir(dir, dentry);
869 out_up_read:
870 	up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
871 out_dput:
872 	dput(dentry);
873 out_unlock:
874 	mutex_unlock(&dir->i_mutex);
875 	return error;
876 }
877 
878 /*
879  * When we're defragging a range, we don't want to kick it off again
880  * if it is really just waiting for delalloc to send it down.
881  * If we find a nice big extent or delalloc range for the bytes in the
882  * file you want to defrag, we return 0 to let you know to skip this
883  * part of the file
884  */
check_defrag_in_cache(struct inode * inode,u64 offset,u32 thresh)885 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
886 {
887 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
888 	struct extent_map *em = NULL;
889 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
890 	u64 end;
891 
892 	read_lock(&em_tree->lock);
893 	em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
894 	read_unlock(&em_tree->lock);
895 
896 	if (em) {
897 		end = extent_map_end(em);
898 		free_extent_map(em);
899 		if (end - offset > thresh)
900 			return 0;
901 	}
902 	/* if we already have a nice delalloc here, just stop */
903 	thresh /= 2;
904 	end = count_range_bits(io_tree, &offset, offset + thresh,
905 			       thresh, EXTENT_DELALLOC, 1);
906 	if (end >= thresh)
907 		return 0;
908 	return 1;
909 }
910 
911 /*
912  * helper function to walk through a file and find extents
913  * newer than a specific transid, and smaller than thresh.
914  *
915  * This is used by the defragging code to find new and small
916  * extents
917  */
find_new_extents(struct btrfs_root * root,struct inode * inode,u64 newer_than,u64 * off,u32 thresh)918 static int find_new_extents(struct btrfs_root *root,
919 			    struct inode *inode, u64 newer_than,
920 			    u64 *off, u32 thresh)
921 {
922 	struct btrfs_path *path;
923 	struct btrfs_key min_key;
924 	struct extent_buffer *leaf;
925 	struct btrfs_file_extent_item *extent;
926 	int type;
927 	int ret;
928 	u64 ino = btrfs_ino(inode);
929 
930 	path = btrfs_alloc_path();
931 	if (!path)
932 		return -ENOMEM;
933 
934 	min_key.objectid = ino;
935 	min_key.type = BTRFS_EXTENT_DATA_KEY;
936 	min_key.offset = *off;
937 
938 	while (1) {
939 		ret = btrfs_search_forward(root, &min_key, path, newer_than);
940 		if (ret != 0)
941 			goto none;
942 process_slot:
943 		if (min_key.objectid != ino)
944 			goto none;
945 		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
946 			goto none;
947 
948 		leaf = path->nodes[0];
949 		extent = btrfs_item_ptr(leaf, path->slots[0],
950 					struct btrfs_file_extent_item);
951 
952 		type = btrfs_file_extent_type(leaf, extent);
953 		if (type == BTRFS_FILE_EXTENT_REG &&
954 		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
955 		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
956 			*off = min_key.offset;
957 			btrfs_free_path(path);
958 			return 0;
959 		}
960 
961 		path->slots[0]++;
962 		if (path->slots[0] < btrfs_header_nritems(leaf)) {
963 			btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
964 			goto process_slot;
965 		}
966 
967 		if (min_key.offset == (u64)-1)
968 			goto none;
969 
970 		min_key.offset++;
971 		btrfs_release_path(path);
972 	}
973 none:
974 	btrfs_free_path(path);
975 	return -ENOENT;
976 }
977 
defrag_lookup_extent(struct inode * inode,u64 start)978 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
979 {
980 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
981 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
982 	struct extent_map *em;
983 	u64 len = PAGE_CACHE_SIZE;
984 
985 	/*
986 	 * hopefully we have this extent in the tree already, try without
987 	 * the full extent lock
988 	 */
989 	read_lock(&em_tree->lock);
990 	em = lookup_extent_mapping(em_tree, start, len);
991 	read_unlock(&em_tree->lock);
992 
993 	if (!em) {
994 		struct extent_state *cached = NULL;
995 		u64 end = start + len - 1;
996 
997 		/* get the big lock and read metadata off disk */
998 		lock_extent_bits(io_tree, start, end, 0, &cached);
999 		em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
1000 		unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS);
1001 
1002 		if (IS_ERR(em))
1003 			return NULL;
1004 	}
1005 
1006 	return em;
1007 }
1008 
defrag_check_next_extent(struct inode * inode,struct extent_map * em)1009 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1010 {
1011 	struct extent_map *next;
1012 	bool ret = true;
1013 
1014 	/* this is the last extent */
1015 	if (em->start + em->len >= i_size_read(inode))
1016 		return false;
1017 
1018 	next = defrag_lookup_extent(inode, em->start + em->len);
1019 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1020 		ret = false;
1021 	else if ((em->block_start + em->block_len == next->block_start) &&
1022 		 (em->block_len > 128 * 1024 && next->block_len > 128 * 1024))
1023 		ret = false;
1024 
1025 	free_extent_map(next);
1026 	return ret;
1027 }
1028 
should_defrag_range(struct inode * inode,u64 start,u32 thresh,u64 * last_len,u64 * skip,u64 * defrag_end,int compress)1029 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1030 			       u64 *last_len, u64 *skip, u64 *defrag_end,
1031 			       int compress)
1032 {
1033 	struct extent_map *em;
1034 	int ret = 1;
1035 	bool next_mergeable = true;
1036 
1037 	/*
1038 	 * make sure that once we start defragging an extent, we keep on
1039 	 * defragging it
1040 	 */
1041 	if (start < *defrag_end)
1042 		return 1;
1043 
1044 	*skip = 0;
1045 
1046 	em = defrag_lookup_extent(inode, start);
1047 	if (!em)
1048 		return 0;
1049 
1050 	/* this will cover holes, and inline extents */
1051 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1052 		ret = 0;
1053 		goto out;
1054 	}
1055 
1056 	next_mergeable = defrag_check_next_extent(inode, em);
1057 	/*
1058 	 * we hit a real extent, if it is big or the next extent is not a
1059 	 * real extent, don't bother defragging it
1060 	 */
1061 	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1062 	    (em->len >= thresh || !next_mergeable))
1063 		ret = 0;
1064 out:
1065 	/*
1066 	 * last_len ends up being a counter of how many bytes we've defragged.
1067 	 * every time we choose not to defrag an extent, we reset *last_len
1068 	 * so that the next tiny extent will force a defrag.
1069 	 *
1070 	 * The end result of this is that tiny extents before a single big
1071 	 * extent will force at least part of that big extent to be defragged.
1072 	 */
1073 	if (ret) {
1074 		*defrag_end = extent_map_end(em);
1075 	} else {
1076 		*last_len = 0;
1077 		*skip = extent_map_end(em);
1078 		*defrag_end = 0;
1079 	}
1080 
1081 	free_extent_map(em);
1082 	return ret;
1083 }
1084 
1085 /*
1086  * it doesn't do much good to defrag one or two pages
1087  * at a time.  This pulls in a nice chunk of pages
1088  * to COW and defrag.
1089  *
1090  * It also makes sure the delalloc code has enough
1091  * dirty data to avoid making new small extents as part
1092  * of the defrag
1093  *
1094  * It's a good idea to start RA on this range
1095  * before calling this.
1096  */
cluster_pages_for_defrag(struct inode * inode,struct page ** pages,unsigned long start_index,unsigned long num_pages)1097 static int cluster_pages_for_defrag(struct inode *inode,
1098 				    struct page **pages,
1099 				    unsigned long start_index,
1100 				    unsigned long num_pages)
1101 {
1102 	unsigned long file_end;
1103 	u64 isize = i_size_read(inode);
1104 	u64 page_start;
1105 	u64 page_end;
1106 	u64 page_cnt;
1107 	int ret;
1108 	int i;
1109 	int i_done;
1110 	struct btrfs_ordered_extent *ordered;
1111 	struct extent_state *cached_state = NULL;
1112 	struct extent_io_tree *tree;
1113 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1114 
1115 	file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
1116 	if (!isize || start_index > file_end)
1117 		return 0;
1118 
1119 	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1120 
1121 	ret = btrfs_delalloc_reserve_space(inode,
1122 					   page_cnt << PAGE_CACHE_SHIFT);
1123 	if (ret)
1124 		return ret;
1125 	i_done = 0;
1126 	tree = &BTRFS_I(inode)->io_tree;
1127 
1128 	/* step one, lock all the pages */
1129 	for (i = 0; i < page_cnt; i++) {
1130 		struct page *page;
1131 again:
1132 		page = find_or_create_page(inode->i_mapping,
1133 					   start_index + i, mask);
1134 		if (!page)
1135 			break;
1136 
1137 		page_start = page_offset(page);
1138 		page_end = page_start + PAGE_CACHE_SIZE - 1;
1139 		while (1) {
1140 			lock_extent_bits(tree, page_start, page_end,
1141 					 0, &cached_state);
1142 			ordered = btrfs_lookup_ordered_extent(inode,
1143 							      page_start);
1144 			unlock_extent_cached(tree, page_start, page_end,
1145 					     &cached_state, GFP_NOFS);
1146 			if (!ordered)
1147 				break;
1148 
1149 			unlock_page(page);
1150 			btrfs_start_ordered_extent(inode, ordered, 1);
1151 			btrfs_put_ordered_extent(ordered);
1152 			lock_page(page);
1153 			/*
1154 			 * we unlocked the page above, so we need check if
1155 			 * it was released or not.
1156 			 */
1157 			if (page->mapping != inode->i_mapping) {
1158 				unlock_page(page);
1159 				page_cache_release(page);
1160 				goto again;
1161 			}
1162 		}
1163 
1164 		if (!PageUptodate(page)) {
1165 			btrfs_readpage(NULL, page);
1166 			lock_page(page);
1167 			if (!PageUptodate(page)) {
1168 				unlock_page(page);
1169 				page_cache_release(page);
1170 				ret = -EIO;
1171 				break;
1172 			}
1173 		}
1174 
1175 		if (page->mapping != inode->i_mapping) {
1176 			unlock_page(page);
1177 			page_cache_release(page);
1178 			goto again;
1179 		}
1180 
1181 		pages[i] = page;
1182 		i_done++;
1183 	}
1184 	if (!i_done || ret)
1185 		goto out;
1186 
1187 	if (!(inode->i_sb->s_flags & MS_ACTIVE))
1188 		goto out;
1189 
1190 	/*
1191 	 * so now we have a nice long stream of locked
1192 	 * and up to date pages, lets wait on them
1193 	 */
1194 	for (i = 0; i < i_done; i++)
1195 		wait_on_page_writeback(pages[i]);
1196 
1197 	page_start = page_offset(pages[0]);
1198 	page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
1199 
1200 	lock_extent_bits(&BTRFS_I(inode)->io_tree,
1201 			 page_start, page_end - 1, 0, &cached_state);
1202 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1203 			  page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1204 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1205 			  &cached_state, GFP_NOFS);
1206 
1207 	if (i_done != page_cnt) {
1208 		spin_lock(&BTRFS_I(inode)->lock);
1209 		BTRFS_I(inode)->outstanding_extents++;
1210 		spin_unlock(&BTRFS_I(inode)->lock);
1211 		btrfs_delalloc_release_space(inode,
1212 				     (page_cnt - i_done) << PAGE_CACHE_SHIFT);
1213 	}
1214 
1215 
1216 	set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1217 			  &cached_state, GFP_NOFS);
1218 
1219 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1220 			     page_start, page_end - 1, &cached_state,
1221 			     GFP_NOFS);
1222 
1223 	for (i = 0; i < i_done; i++) {
1224 		clear_page_dirty_for_io(pages[i]);
1225 		ClearPageChecked(pages[i]);
1226 		set_page_extent_mapped(pages[i]);
1227 		set_page_dirty(pages[i]);
1228 		unlock_page(pages[i]);
1229 		page_cache_release(pages[i]);
1230 	}
1231 	return i_done;
1232 out:
1233 	for (i = 0; i < i_done; i++) {
1234 		unlock_page(pages[i]);
1235 		page_cache_release(pages[i]);
1236 	}
1237 	btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT);
1238 	return ret;
1239 
1240 }
1241 
btrfs_defrag_file(struct inode * inode,struct file * file,struct btrfs_ioctl_defrag_range_args * range,u64 newer_than,unsigned long max_to_defrag)1242 int btrfs_defrag_file(struct inode *inode, struct file *file,
1243 		      struct btrfs_ioctl_defrag_range_args *range,
1244 		      u64 newer_than, unsigned long max_to_defrag)
1245 {
1246 	struct btrfs_root *root = BTRFS_I(inode)->root;
1247 	struct file_ra_state *ra = NULL;
1248 	unsigned long last_index;
1249 	u64 isize = i_size_read(inode);
1250 	u64 last_len = 0;
1251 	u64 skip = 0;
1252 	u64 defrag_end = 0;
1253 	u64 newer_off = range->start;
1254 	unsigned long i;
1255 	unsigned long ra_index = 0;
1256 	int ret;
1257 	int defrag_count = 0;
1258 	int compress_type = BTRFS_COMPRESS_ZLIB;
1259 	u32 extent_thresh = range->extent_thresh;
1260 	unsigned long max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
1261 	unsigned long cluster = max_cluster;
1262 	u64 new_align = ~((u64)128 * 1024 - 1);
1263 	struct page **pages = NULL;
1264 
1265 	if (isize == 0)
1266 		return 0;
1267 
1268 	if (range->start >= isize)
1269 		return -EINVAL;
1270 
1271 	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1272 		if (range->compress_type > BTRFS_COMPRESS_TYPES)
1273 			return -EINVAL;
1274 		if (range->compress_type)
1275 			compress_type = range->compress_type;
1276 	}
1277 
1278 	if (extent_thresh == 0)
1279 		extent_thresh = 256 * 1024;
1280 
1281 	/*
1282 	 * if we were not given a file, allocate a readahead
1283 	 * context
1284 	 */
1285 	if (!file) {
1286 		ra = kzalloc(sizeof(*ra), GFP_NOFS);
1287 		if (!ra)
1288 			return -ENOMEM;
1289 		file_ra_state_init(ra, inode->i_mapping);
1290 	} else {
1291 		ra = &file->f_ra;
1292 	}
1293 
1294 	pages = kmalloc_array(max_cluster, sizeof(struct page *),
1295 			GFP_NOFS);
1296 	if (!pages) {
1297 		ret = -ENOMEM;
1298 		goto out_ra;
1299 	}
1300 
1301 	/* find the last page to defrag */
1302 	if (range->start + range->len > range->start) {
1303 		last_index = min_t(u64, isize - 1,
1304 			 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1305 	} else {
1306 		last_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1307 	}
1308 
1309 	if (newer_than) {
1310 		ret = find_new_extents(root, inode, newer_than,
1311 				       &newer_off, 64 * 1024);
1312 		if (!ret) {
1313 			range->start = newer_off;
1314 			/*
1315 			 * we always align our defrag to help keep
1316 			 * the extents in the file evenly spaced
1317 			 */
1318 			i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1319 		} else
1320 			goto out_ra;
1321 	} else {
1322 		i = range->start >> PAGE_CACHE_SHIFT;
1323 	}
1324 	if (!max_to_defrag)
1325 		max_to_defrag = last_index + 1;
1326 
1327 	/*
1328 	 * make writeback starts from i, so the defrag range can be
1329 	 * written sequentially.
1330 	 */
1331 	if (i < inode->i_mapping->writeback_index)
1332 		inode->i_mapping->writeback_index = i;
1333 
1334 	while (i <= last_index && defrag_count < max_to_defrag &&
1335 	       (i < DIV_ROUND_UP(i_size_read(inode), PAGE_CACHE_SIZE))) {
1336 		/*
1337 		 * make sure we stop running if someone unmounts
1338 		 * the FS
1339 		 */
1340 		if (!(inode->i_sb->s_flags & MS_ACTIVE))
1341 			break;
1342 
1343 		if (btrfs_defrag_cancelled(root->fs_info)) {
1344 			printk(KERN_DEBUG "BTRFS: defrag_file cancelled\n");
1345 			ret = -EAGAIN;
1346 			break;
1347 		}
1348 
1349 		if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1350 					 extent_thresh, &last_len, &skip,
1351 					 &defrag_end, range->flags &
1352 					 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1353 			unsigned long next;
1354 			/*
1355 			 * the should_defrag function tells us how much to skip
1356 			 * bump our counter by the suggested amount
1357 			 */
1358 			next = DIV_ROUND_UP(skip, PAGE_CACHE_SIZE);
1359 			i = max(i + 1, next);
1360 			continue;
1361 		}
1362 
1363 		if (!newer_than) {
1364 			cluster = (PAGE_CACHE_ALIGN(defrag_end) >>
1365 				   PAGE_CACHE_SHIFT) - i;
1366 			cluster = min(cluster, max_cluster);
1367 		} else {
1368 			cluster = max_cluster;
1369 		}
1370 
1371 		if (i + cluster > ra_index) {
1372 			ra_index = max(i, ra_index);
1373 			btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1374 				       cluster);
1375 			ra_index += max_cluster;
1376 		}
1377 
1378 		mutex_lock(&inode->i_mutex);
1379 		if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1380 			BTRFS_I(inode)->force_compress = compress_type;
1381 		ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1382 		if (ret < 0) {
1383 			mutex_unlock(&inode->i_mutex);
1384 			goto out_ra;
1385 		}
1386 
1387 		defrag_count += ret;
1388 		balance_dirty_pages_ratelimited(inode->i_mapping);
1389 		mutex_unlock(&inode->i_mutex);
1390 
1391 		if (newer_than) {
1392 			if (newer_off == (u64)-1)
1393 				break;
1394 
1395 			if (ret > 0)
1396 				i += ret;
1397 
1398 			newer_off = max(newer_off + 1,
1399 					(u64)i << PAGE_CACHE_SHIFT);
1400 
1401 			ret = find_new_extents(root, inode,
1402 					       newer_than, &newer_off,
1403 					       64 * 1024);
1404 			if (!ret) {
1405 				range->start = newer_off;
1406 				i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1407 			} else {
1408 				break;
1409 			}
1410 		} else {
1411 			if (ret > 0) {
1412 				i += ret;
1413 				last_len += ret << PAGE_CACHE_SHIFT;
1414 			} else {
1415 				i++;
1416 				last_len = 0;
1417 			}
1418 		}
1419 	}
1420 
1421 	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1422 		filemap_flush(inode->i_mapping);
1423 		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1424 			     &BTRFS_I(inode)->runtime_flags))
1425 			filemap_flush(inode->i_mapping);
1426 	}
1427 
1428 	if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1429 		/* the filemap_flush will queue IO into the worker threads, but
1430 		 * we have to make sure the IO is actually started and that
1431 		 * ordered extents get created before we return
1432 		 */
1433 		atomic_inc(&root->fs_info->async_submit_draining);
1434 		while (atomic_read(&root->fs_info->nr_async_submits) ||
1435 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1436 			wait_event(root->fs_info->async_submit_wait,
1437 			   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1438 			    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1439 		}
1440 		atomic_dec(&root->fs_info->async_submit_draining);
1441 	}
1442 
1443 	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1444 		btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
1445 	}
1446 
1447 	ret = defrag_count;
1448 
1449 out_ra:
1450 	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1451 		mutex_lock(&inode->i_mutex);
1452 		BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1453 		mutex_unlock(&inode->i_mutex);
1454 	}
1455 	if (!file)
1456 		kfree(ra);
1457 	kfree(pages);
1458 	return ret;
1459 }
1460 
btrfs_ioctl_resize(struct file * file,void __user * arg)1461 static noinline int btrfs_ioctl_resize(struct file *file,
1462 					void __user *arg)
1463 {
1464 	u64 new_size;
1465 	u64 old_size;
1466 	u64 devid = 1;
1467 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1468 	struct btrfs_ioctl_vol_args *vol_args;
1469 	struct btrfs_trans_handle *trans;
1470 	struct btrfs_device *device = NULL;
1471 	char *sizestr;
1472 	char *retptr;
1473 	char *devstr = NULL;
1474 	int ret = 0;
1475 	int mod = 0;
1476 
1477 	if (!capable(CAP_SYS_ADMIN))
1478 		return -EPERM;
1479 
1480 	ret = mnt_want_write_file(file);
1481 	if (ret)
1482 		return ret;
1483 
1484 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
1485 			1)) {
1486 		mnt_drop_write_file(file);
1487 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1488 	}
1489 
1490 	mutex_lock(&root->fs_info->volume_mutex);
1491 	vol_args = memdup_user(arg, sizeof(*vol_args));
1492 	if (IS_ERR(vol_args)) {
1493 		ret = PTR_ERR(vol_args);
1494 		goto out;
1495 	}
1496 
1497 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1498 
1499 	sizestr = vol_args->name;
1500 	devstr = strchr(sizestr, ':');
1501 	if (devstr) {
1502 		sizestr = devstr + 1;
1503 		*devstr = '\0';
1504 		devstr = vol_args->name;
1505 		ret = kstrtoull(devstr, 10, &devid);
1506 		if (ret)
1507 			goto out_free;
1508 		if (!devid) {
1509 			ret = -EINVAL;
1510 			goto out_free;
1511 		}
1512 		btrfs_info(root->fs_info, "resizing devid %llu", devid);
1513 	}
1514 
1515 	device = btrfs_find_device(root->fs_info, devid, NULL, NULL);
1516 	if (!device) {
1517 		btrfs_info(root->fs_info, "resizer unable to find device %llu",
1518 		       devid);
1519 		ret = -ENODEV;
1520 		goto out_free;
1521 	}
1522 
1523 	if (!device->writeable) {
1524 		btrfs_info(root->fs_info,
1525 			   "resizer unable to apply on readonly device %llu",
1526 		       devid);
1527 		ret = -EPERM;
1528 		goto out_free;
1529 	}
1530 
1531 	if (!strcmp(sizestr, "max"))
1532 		new_size = device->bdev->bd_inode->i_size;
1533 	else {
1534 		if (sizestr[0] == '-') {
1535 			mod = -1;
1536 			sizestr++;
1537 		} else if (sizestr[0] == '+') {
1538 			mod = 1;
1539 			sizestr++;
1540 		}
1541 		new_size = memparse(sizestr, &retptr);
1542 		if (*retptr != '\0' || new_size == 0) {
1543 			ret = -EINVAL;
1544 			goto out_free;
1545 		}
1546 	}
1547 
1548 	if (device->is_tgtdev_for_dev_replace) {
1549 		ret = -EPERM;
1550 		goto out_free;
1551 	}
1552 
1553 	old_size = btrfs_device_get_total_bytes(device);
1554 
1555 	if (mod < 0) {
1556 		if (new_size > old_size) {
1557 			ret = -EINVAL;
1558 			goto out_free;
1559 		}
1560 		new_size = old_size - new_size;
1561 	} else if (mod > 0) {
1562 		if (new_size > ULLONG_MAX - old_size) {
1563 			ret = -ERANGE;
1564 			goto out_free;
1565 		}
1566 		new_size = old_size + new_size;
1567 	}
1568 
1569 	if (new_size < 256 * 1024 * 1024) {
1570 		ret = -EINVAL;
1571 		goto out_free;
1572 	}
1573 	if (new_size > device->bdev->bd_inode->i_size) {
1574 		ret = -EFBIG;
1575 		goto out_free;
1576 	}
1577 
1578 	new_size = div_u64(new_size, root->sectorsize);
1579 	new_size *= root->sectorsize;
1580 
1581 	printk_in_rcu(KERN_INFO "BTRFS: new size for %s is %llu\n",
1582 		      rcu_str_deref(device->name), new_size);
1583 
1584 	if (new_size > old_size) {
1585 		trans = btrfs_start_transaction(root, 0);
1586 		if (IS_ERR(trans)) {
1587 			ret = PTR_ERR(trans);
1588 			goto out_free;
1589 		}
1590 		ret = btrfs_grow_device(trans, device, new_size);
1591 		btrfs_commit_transaction(trans, root);
1592 	} else if (new_size < old_size) {
1593 		ret = btrfs_shrink_device(device, new_size);
1594 	} /* equal, nothing need to do */
1595 
1596 out_free:
1597 	kfree(vol_args);
1598 out:
1599 	mutex_unlock(&root->fs_info->volume_mutex);
1600 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
1601 	mnt_drop_write_file(file);
1602 	return ret;
1603 }
1604 
btrfs_ioctl_snap_create_transid(struct file * file,char * name,unsigned long fd,int subvol,u64 * transid,bool readonly,struct btrfs_qgroup_inherit * inherit)1605 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1606 				char *name, unsigned long fd, int subvol,
1607 				u64 *transid, bool readonly,
1608 				struct btrfs_qgroup_inherit *inherit)
1609 {
1610 	int namelen;
1611 	int ret = 0;
1612 
1613 	ret = mnt_want_write_file(file);
1614 	if (ret)
1615 		goto out;
1616 
1617 	namelen = strlen(name);
1618 	if (strchr(name, '/')) {
1619 		ret = -EINVAL;
1620 		goto out_drop_write;
1621 	}
1622 
1623 	if (name[0] == '.' &&
1624 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1625 		ret = -EEXIST;
1626 		goto out_drop_write;
1627 	}
1628 
1629 	if (subvol) {
1630 		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1631 				     NULL, transid, readonly, inherit);
1632 	} else {
1633 		struct fd src = fdget(fd);
1634 		struct inode *src_inode;
1635 		if (!src.file) {
1636 			ret = -EINVAL;
1637 			goto out_drop_write;
1638 		}
1639 
1640 		src_inode = file_inode(src.file);
1641 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1642 			btrfs_info(BTRFS_I(src_inode)->root->fs_info,
1643 				   "Snapshot src from another FS");
1644 			ret = -EXDEV;
1645 		} else if (!inode_owner_or_capable(src_inode)) {
1646 			/*
1647 			 * Subvolume creation is not restricted, but snapshots
1648 			 * are limited to own subvolumes only
1649 			 */
1650 			ret = -EPERM;
1651 		} else {
1652 			ret = btrfs_mksubvol(&file->f_path, name, namelen,
1653 					     BTRFS_I(src_inode)->root,
1654 					     transid, readonly, inherit);
1655 		}
1656 		fdput(src);
1657 	}
1658 out_drop_write:
1659 	mnt_drop_write_file(file);
1660 out:
1661 	return ret;
1662 }
1663 
btrfs_ioctl_snap_create(struct file * file,void __user * arg,int subvol)1664 static noinline int btrfs_ioctl_snap_create(struct file *file,
1665 					    void __user *arg, int subvol)
1666 {
1667 	struct btrfs_ioctl_vol_args *vol_args;
1668 	int ret;
1669 
1670 	vol_args = memdup_user(arg, sizeof(*vol_args));
1671 	if (IS_ERR(vol_args))
1672 		return PTR_ERR(vol_args);
1673 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1674 
1675 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1676 					      vol_args->fd, subvol,
1677 					      NULL, false, NULL);
1678 
1679 	kfree(vol_args);
1680 	return ret;
1681 }
1682 
btrfs_ioctl_snap_create_v2(struct file * file,void __user * arg,int subvol)1683 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1684 					       void __user *arg, int subvol)
1685 {
1686 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1687 	int ret;
1688 	u64 transid = 0;
1689 	u64 *ptr = NULL;
1690 	bool readonly = false;
1691 	struct btrfs_qgroup_inherit *inherit = NULL;
1692 
1693 	vol_args = memdup_user(arg, sizeof(*vol_args));
1694 	if (IS_ERR(vol_args))
1695 		return PTR_ERR(vol_args);
1696 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1697 
1698 	if (vol_args->flags &
1699 	    ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1700 	      BTRFS_SUBVOL_QGROUP_INHERIT)) {
1701 		ret = -EOPNOTSUPP;
1702 		goto free_args;
1703 	}
1704 
1705 	if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1706 		ptr = &transid;
1707 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1708 		readonly = true;
1709 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1710 		if (vol_args->size > PAGE_CACHE_SIZE) {
1711 			ret = -EINVAL;
1712 			goto free_args;
1713 		}
1714 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1715 		if (IS_ERR(inherit)) {
1716 			ret = PTR_ERR(inherit);
1717 			goto free_args;
1718 		}
1719 	}
1720 
1721 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1722 					      vol_args->fd, subvol, ptr,
1723 					      readonly, inherit);
1724 	if (ret)
1725 		goto free_inherit;
1726 
1727 	if (ptr && copy_to_user(arg +
1728 				offsetof(struct btrfs_ioctl_vol_args_v2,
1729 					transid),
1730 				ptr, sizeof(*ptr)))
1731 		ret = -EFAULT;
1732 
1733 free_inherit:
1734 	kfree(inherit);
1735 free_args:
1736 	kfree(vol_args);
1737 	return ret;
1738 }
1739 
btrfs_ioctl_subvol_getflags(struct file * file,void __user * arg)1740 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1741 						void __user *arg)
1742 {
1743 	struct inode *inode = file_inode(file);
1744 	struct btrfs_root *root = BTRFS_I(inode)->root;
1745 	int ret = 0;
1746 	u64 flags = 0;
1747 
1748 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1749 		return -EINVAL;
1750 
1751 	down_read(&root->fs_info->subvol_sem);
1752 	if (btrfs_root_readonly(root))
1753 		flags |= BTRFS_SUBVOL_RDONLY;
1754 	up_read(&root->fs_info->subvol_sem);
1755 
1756 	if (copy_to_user(arg, &flags, sizeof(flags)))
1757 		ret = -EFAULT;
1758 
1759 	return ret;
1760 }
1761 
btrfs_ioctl_subvol_setflags(struct file * file,void __user * arg)1762 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1763 					      void __user *arg)
1764 {
1765 	struct inode *inode = file_inode(file);
1766 	struct btrfs_root *root = BTRFS_I(inode)->root;
1767 	struct btrfs_trans_handle *trans;
1768 	u64 root_flags;
1769 	u64 flags;
1770 	int ret = 0;
1771 
1772 	if (!inode_owner_or_capable(inode))
1773 		return -EPERM;
1774 
1775 	ret = mnt_want_write_file(file);
1776 	if (ret)
1777 		goto out;
1778 
1779 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1780 		ret = -EINVAL;
1781 		goto out_drop_write;
1782 	}
1783 
1784 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1785 		ret = -EFAULT;
1786 		goto out_drop_write;
1787 	}
1788 
1789 	if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1790 		ret = -EINVAL;
1791 		goto out_drop_write;
1792 	}
1793 
1794 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1795 		ret = -EOPNOTSUPP;
1796 		goto out_drop_write;
1797 	}
1798 
1799 	down_write(&root->fs_info->subvol_sem);
1800 
1801 	/* nothing to do */
1802 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1803 		goto out_drop_sem;
1804 
1805 	root_flags = btrfs_root_flags(&root->root_item);
1806 	if (flags & BTRFS_SUBVOL_RDONLY) {
1807 		btrfs_set_root_flags(&root->root_item,
1808 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1809 	} else {
1810 		/*
1811 		 * Block RO -> RW transition if this subvolume is involved in
1812 		 * send
1813 		 */
1814 		spin_lock(&root->root_item_lock);
1815 		if (root->send_in_progress == 0) {
1816 			btrfs_set_root_flags(&root->root_item,
1817 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1818 			spin_unlock(&root->root_item_lock);
1819 		} else {
1820 			spin_unlock(&root->root_item_lock);
1821 			btrfs_warn(root->fs_info,
1822 			"Attempt to set subvolume %llu read-write during send",
1823 					root->root_key.objectid);
1824 			ret = -EPERM;
1825 			goto out_drop_sem;
1826 		}
1827 	}
1828 
1829 	trans = btrfs_start_transaction(root, 1);
1830 	if (IS_ERR(trans)) {
1831 		ret = PTR_ERR(trans);
1832 		goto out_reset;
1833 	}
1834 
1835 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1836 				&root->root_key, &root->root_item);
1837 
1838 	btrfs_commit_transaction(trans, root);
1839 out_reset:
1840 	if (ret)
1841 		btrfs_set_root_flags(&root->root_item, root_flags);
1842 out_drop_sem:
1843 	up_write(&root->fs_info->subvol_sem);
1844 out_drop_write:
1845 	mnt_drop_write_file(file);
1846 out:
1847 	return ret;
1848 }
1849 
1850 /*
1851  * helper to check if the subvolume references other subvolumes
1852  */
may_destroy_subvol(struct btrfs_root * root)1853 static noinline int may_destroy_subvol(struct btrfs_root *root)
1854 {
1855 	struct btrfs_path *path;
1856 	struct btrfs_dir_item *di;
1857 	struct btrfs_key key;
1858 	u64 dir_id;
1859 	int ret;
1860 
1861 	path = btrfs_alloc_path();
1862 	if (!path)
1863 		return -ENOMEM;
1864 
1865 	/* Make sure this root isn't set as the default subvol */
1866 	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
1867 	di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path,
1868 				   dir_id, "default", 7, 0);
1869 	if (di && !IS_ERR(di)) {
1870 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1871 		if (key.objectid == root->root_key.objectid) {
1872 			ret = -EPERM;
1873 			btrfs_err(root->fs_info, "deleting default subvolume "
1874 				  "%llu is not allowed", key.objectid);
1875 			goto out;
1876 		}
1877 		btrfs_release_path(path);
1878 	}
1879 
1880 	key.objectid = root->root_key.objectid;
1881 	key.type = BTRFS_ROOT_REF_KEY;
1882 	key.offset = (u64)-1;
1883 
1884 	ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1885 				&key, path, 0, 0);
1886 	if (ret < 0)
1887 		goto out;
1888 	BUG_ON(ret == 0);
1889 
1890 	ret = 0;
1891 	if (path->slots[0] > 0) {
1892 		path->slots[0]--;
1893 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1894 		if (key.objectid == root->root_key.objectid &&
1895 		    key.type == BTRFS_ROOT_REF_KEY)
1896 			ret = -ENOTEMPTY;
1897 	}
1898 out:
1899 	btrfs_free_path(path);
1900 	return ret;
1901 }
1902 
key_in_sk(struct btrfs_key * key,struct btrfs_ioctl_search_key * sk)1903 static noinline int key_in_sk(struct btrfs_key *key,
1904 			      struct btrfs_ioctl_search_key *sk)
1905 {
1906 	struct btrfs_key test;
1907 	int ret;
1908 
1909 	test.objectid = sk->min_objectid;
1910 	test.type = sk->min_type;
1911 	test.offset = sk->min_offset;
1912 
1913 	ret = btrfs_comp_cpu_keys(key, &test);
1914 	if (ret < 0)
1915 		return 0;
1916 
1917 	test.objectid = sk->max_objectid;
1918 	test.type = sk->max_type;
1919 	test.offset = sk->max_offset;
1920 
1921 	ret = btrfs_comp_cpu_keys(key, &test);
1922 	if (ret > 0)
1923 		return 0;
1924 	return 1;
1925 }
1926 
copy_to_sk(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key,struct btrfs_ioctl_search_key * sk,size_t * buf_size,char __user * ubuf,unsigned long * sk_offset,int * num_found)1927 static noinline int copy_to_sk(struct btrfs_root *root,
1928 			       struct btrfs_path *path,
1929 			       struct btrfs_key *key,
1930 			       struct btrfs_ioctl_search_key *sk,
1931 			       size_t *buf_size,
1932 			       char __user *ubuf,
1933 			       unsigned long *sk_offset,
1934 			       int *num_found)
1935 {
1936 	u64 found_transid;
1937 	struct extent_buffer *leaf;
1938 	struct btrfs_ioctl_search_header sh;
1939 	unsigned long item_off;
1940 	unsigned long item_len;
1941 	int nritems;
1942 	int i;
1943 	int slot;
1944 	int ret = 0;
1945 
1946 	leaf = path->nodes[0];
1947 	slot = path->slots[0];
1948 	nritems = btrfs_header_nritems(leaf);
1949 
1950 	if (btrfs_header_generation(leaf) > sk->max_transid) {
1951 		i = nritems;
1952 		goto advance_key;
1953 	}
1954 	found_transid = btrfs_header_generation(leaf);
1955 
1956 	for (i = slot; i < nritems; i++) {
1957 		item_off = btrfs_item_ptr_offset(leaf, i);
1958 		item_len = btrfs_item_size_nr(leaf, i);
1959 
1960 		btrfs_item_key_to_cpu(leaf, key, i);
1961 		if (!key_in_sk(key, sk))
1962 			continue;
1963 
1964 		if (sizeof(sh) + item_len > *buf_size) {
1965 			if (*num_found) {
1966 				ret = 1;
1967 				goto out;
1968 			}
1969 
1970 			/*
1971 			 * return one empty item back for v1, which does not
1972 			 * handle -EOVERFLOW
1973 			 */
1974 
1975 			*buf_size = sizeof(sh) + item_len;
1976 			item_len = 0;
1977 			ret = -EOVERFLOW;
1978 		}
1979 
1980 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1981 			ret = 1;
1982 			goto out;
1983 		}
1984 
1985 		sh.objectid = key->objectid;
1986 		sh.offset = key->offset;
1987 		sh.type = key->type;
1988 		sh.len = item_len;
1989 		sh.transid = found_transid;
1990 
1991 		/* copy search result header */
1992 		if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
1993 			ret = -EFAULT;
1994 			goto out;
1995 		}
1996 
1997 		*sk_offset += sizeof(sh);
1998 
1999 		if (item_len) {
2000 			char __user *up = ubuf + *sk_offset;
2001 			/* copy the item */
2002 			if (read_extent_buffer_to_user(leaf, up,
2003 						       item_off, item_len)) {
2004 				ret = -EFAULT;
2005 				goto out;
2006 			}
2007 
2008 			*sk_offset += item_len;
2009 		}
2010 		(*num_found)++;
2011 
2012 		if (ret) /* -EOVERFLOW from above */
2013 			goto out;
2014 
2015 		if (*num_found >= sk->nr_items) {
2016 			ret = 1;
2017 			goto out;
2018 		}
2019 	}
2020 advance_key:
2021 	ret = 0;
2022 	if (key->offset < (u64)-1 && key->offset < sk->max_offset)
2023 		key->offset++;
2024 	else if (key->type < (u8)-1 && key->type < sk->max_type) {
2025 		key->offset = 0;
2026 		key->type++;
2027 	} else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
2028 		key->offset = 0;
2029 		key->type = 0;
2030 		key->objectid++;
2031 	} else
2032 		ret = 1;
2033 out:
2034 	/*
2035 	 *  0: all items from this leaf copied, continue with next
2036 	 *  1: * more items can be copied, but unused buffer is too small
2037 	 *     * all items were found
2038 	 *     Either way, it will stops the loop which iterates to the next
2039 	 *     leaf
2040 	 *  -EOVERFLOW: item was to large for buffer
2041 	 *  -EFAULT: could not copy extent buffer back to userspace
2042 	 */
2043 	return ret;
2044 }
2045 
search_ioctl(struct inode * inode,struct btrfs_ioctl_search_key * sk,size_t * buf_size,char __user * ubuf)2046 static noinline int search_ioctl(struct inode *inode,
2047 				 struct btrfs_ioctl_search_key *sk,
2048 				 size_t *buf_size,
2049 				 char __user *ubuf)
2050 {
2051 	struct btrfs_root *root;
2052 	struct btrfs_key key;
2053 	struct btrfs_path *path;
2054 	struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
2055 	int ret;
2056 	int num_found = 0;
2057 	unsigned long sk_offset = 0;
2058 
2059 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2060 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2061 		return -EOVERFLOW;
2062 	}
2063 
2064 	path = btrfs_alloc_path();
2065 	if (!path)
2066 		return -ENOMEM;
2067 
2068 	if (sk->tree_id == 0) {
2069 		/* search the root of the inode that was passed */
2070 		root = BTRFS_I(inode)->root;
2071 	} else {
2072 		key.objectid = sk->tree_id;
2073 		key.type = BTRFS_ROOT_ITEM_KEY;
2074 		key.offset = (u64)-1;
2075 		root = btrfs_read_fs_root_no_name(info, &key);
2076 		if (IS_ERR(root)) {
2077 			printk(KERN_ERR "BTRFS: could not find root %llu\n",
2078 			       sk->tree_id);
2079 			btrfs_free_path(path);
2080 			return -ENOENT;
2081 		}
2082 	}
2083 
2084 	key.objectid = sk->min_objectid;
2085 	key.type = sk->min_type;
2086 	key.offset = sk->min_offset;
2087 
2088 	while (1) {
2089 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2090 		if (ret != 0) {
2091 			if (ret > 0)
2092 				ret = 0;
2093 			goto err;
2094 		}
2095 		ret = copy_to_sk(root, path, &key, sk, buf_size, ubuf,
2096 				 &sk_offset, &num_found);
2097 		btrfs_release_path(path);
2098 		if (ret)
2099 			break;
2100 
2101 	}
2102 	if (ret > 0)
2103 		ret = 0;
2104 err:
2105 	sk->nr_items = num_found;
2106 	btrfs_free_path(path);
2107 	return ret;
2108 }
2109 
btrfs_ioctl_tree_search(struct file * file,void __user * argp)2110 static noinline int btrfs_ioctl_tree_search(struct file *file,
2111 					   void __user *argp)
2112 {
2113 	struct btrfs_ioctl_search_args __user *uargs;
2114 	struct btrfs_ioctl_search_key sk;
2115 	struct inode *inode;
2116 	int ret;
2117 	size_t buf_size;
2118 
2119 	if (!capable(CAP_SYS_ADMIN))
2120 		return -EPERM;
2121 
2122 	uargs = (struct btrfs_ioctl_search_args __user *)argp;
2123 
2124 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2125 		return -EFAULT;
2126 
2127 	buf_size = sizeof(uargs->buf);
2128 
2129 	inode = file_inode(file);
2130 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2131 
2132 	/*
2133 	 * In the origin implementation an overflow is handled by returning a
2134 	 * search header with a len of zero, so reset ret.
2135 	 */
2136 	if (ret == -EOVERFLOW)
2137 		ret = 0;
2138 
2139 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2140 		ret = -EFAULT;
2141 	return ret;
2142 }
2143 
btrfs_ioctl_tree_search_v2(struct file * file,void __user * argp)2144 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2145 					       void __user *argp)
2146 {
2147 	struct btrfs_ioctl_search_args_v2 __user *uarg;
2148 	struct btrfs_ioctl_search_args_v2 args;
2149 	struct inode *inode;
2150 	int ret;
2151 	size_t buf_size;
2152 	const size_t buf_limit = 16 * 1024 * 1024;
2153 
2154 	if (!capable(CAP_SYS_ADMIN))
2155 		return -EPERM;
2156 
2157 	/* copy search header and buffer size */
2158 	uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2159 	if (copy_from_user(&args, uarg, sizeof(args)))
2160 		return -EFAULT;
2161 
2162 	buf_size = args.buf_size;
2163 
2164 	if (buf_size < sizeof(struct btrfs_ioctl_search_header))
2165 		return -EOVERFLOW;
2166 
2167 	/* limit result size to 16MB */
2168 	if (buf_size > buf_limit)
2169 		buf_size = buf_limit;
2170 
2171 	inode = file_inode(file);
2172 	ret = search_ioctl(inode, &args.key, &buf_size,
2173 			   (char *)(&uarg->buf[0]));
2174 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2175 		ret = -EFAULT;
2176 	else if (ret == -EOVERFLOW &&
2177 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2178 		ret = -EFAULT;
2179 
2180 	return ret;
2181 }
2182 
2183 /*
2184  * Search INODE_REFs to identify path name of 'dirid' directory
2185  * in a 'tree_id' tree. and sets path name to 'name'.
2186  */
btrfs_search_path_in_tree(struct btrfs_fs_info * info,u64 tree_id,u64 dirid,char * name)2187 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2188 				u64 tree_id, u64 dirid, char *name)
2189 {
2190 	struct btrfs_root *root;
2191 	struct btrfs_key key;
2192 	char *ptr;
2193 	int ret = -1;
2194 	int slot;
2195 	int len;
2196 	int total_len = 0;
2197 	struct btrfs_inode_ref *iref;
2198 	struct extent_buffer *l;
2199 	struct btrfs_path *path;
2200 
2201 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2202 		name[0]='\0';
2203 		return 0;
2204 	}
2205 
2206 	path = btrfs_alloc_path();
2207 	if (!path)
2208 		return -ENOMEM;
2209 
2210 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
2211 
2212 	key.objectid = tree_id;
2213 	key.type = BTRFS_ROOT_ITEM_KEY;
2214 	key.offset = (u64)-1;
2215 	root = btrfs_read_fs_root_no_name(info, &key);
2216 	if (IS_ERR(root)) {
2217 		printk(KERN_ERR "BTRFS: could not find root %llu\n", tree_id);
2218 		ret = -ENOENT;
2219 		goto out;
2220 	}
2221 
2222 	key.objectid = dirid;
2223 	key.type = BTRFS_INODE_REF_KEY;
2224 	key.offset = (u64)-1;
2225 
2226 	while (1) {
2227 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2228 		if (ret < 0)
2229 			goto out;
2230 		else if (ret > 0) {
2231 			ret = btrfs_previous_item(root, path, dirid,
2232 						  BTRFS_INODE_REF_KEY);
2233 			if (ret < 0)
2234 				goto out;
2235 			else if (ret > 0) {
2236 				ret = -ENOENT;
2237 				goto out;
2238 			}
2239 		}
2240 
2241 		l = path->nodes[0];
2242 		slot = path->slots[0];
2243 		btrfs_item_key_to_cpu(l, &key, slot);
2244 
2245 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2246 		len = btrfs_inode_ref_name_len(l, iref);
2247 		ptr -= len + 1;
2248 		total_len += len + 1;
2249 		if (ptr < name) {
2250 			ret = -ENAMETOOLONG;
2251 			goto out;
2252 		}
2253 
2254 		*(ptr + len) = '/';
2255 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2256 
2257 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2258 			break;
2259 
2260 		btrfs_release_path(path);
2261 		key.objectid = key.offset;
2262 		key.offset = (u64)-1;
2263 		dirid = key.objectid;
2264 	}
2265 	memmove(name, ptr, total_len);
2266 	name[total_len] = '\0';
2267 	ret = 0;
2268 out:
2269 	btrfs_free_path(path);
2270 	return ret;
2271 }
2272 
btrfs_ioctl_ino_lookup(struct file * file,void __user * argp)2273 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2274 					   void __user *argp)
2275 {
2276 	 struct btrfs_ioctl_ino_lookup_args *args;
2277 	 struct inode *inode;
2278 	 int ret;
2279 
2280 	if (!capable(CAP_SYS_ADMIN))
2281 		return -EPERM;
2282 
2283 	args = memdup_user(argp, sizeof(*args));
2284 	if (IS_ERR(args))
2285 		return PTR_ERR(args);
2286 
2287 	inode = file_inode(file);
2288 
2289 	if (args->treeid == 0)
2290 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2291 
2292 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2293 					args->treeid, args->objectid,
2294 					args->name);
2295 
2296 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2297 		ret = -EFAULT;
2298 
2299 	kfree(args);
2300 	return ret;
2301 }
2302 
btrfs_ioctl_snap_destroy(struct file * file,void __user * arg)2303 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2304 					     void __user *arg)
2305 {
2306 	struct dentry *parent = file->f_path.dentry;
2307 	struct dentry *dentry;
2308 	struct inode *dir = d_inode(parent);
2309 	struct inode *inode;
2310 	struct btrfs_root *root = BTRFS_I(dir)->root;
2311 	struct btrfs_root *dest = NULL;
2312 	struct btrfs_ioctl_vol_args *vol_args;
2313 	struct btrfs_trans_handle *trans;
2314 	struct btrfs_block_rsv block_rsv;
2315 	u64 root_flags;
2316 	u64 qgroup_reserved;
2317 	int namelen;
2318 	int ret;
2319 	int err = 0;
2320 
2321 	vol_args = memdup_user(arg, sizeof(*vol_args));
2322 	if (IS_ERR(vol_args))
2323 		return PTR_ERR(vol_args);
2324 
2325 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2326 	namelen = strlen(vol_args->name);
2327 	if (strchr(vol_args->name, '/') ||
2328 	    strncmp(vol_args->name, "..", namelen) == 0) {
2329 		err = -EINVAL;
2330 		goto out;
2331 	}
2332 
2333 	err = mnt_want_write_file(file);
2334 	if (err)
2335 		goto out;
2336 
2337 
2338 	err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
2339 	if (err == -EINTR)
2340 		goto out_drop_write;
2341 	dentry = lookup_one_len(vol_args->name, parent, namelen);
2342 	if (IS_ERR(dentry)) {
2343 		err = PTR_ERR(dentry);
2344 		goto out_unlock_dir;
2345 	}
2346 
2347 	if (d_really_is_negative(dentry)) {
2348 		err = -ENOENT;
2349 		goto out_dput;
2350 	}
2351 
2352 	inode = d_inode(dentry);
2353 	dest = BTRFS_I(inode)->root;
2354 	if (!capable(CAP_SYS_ADMIN)) {
2355 		/*
2356 		 * Regular user.  Only allow this with a special mount
2357 		 * option, when the user has write+exec access to the
2358 		 * subvol root, and when rmdir(2) would have been
2359 		 * allowed.
2360 		 *
2361 		 * Note that this is _not_ check that the subvol is
2362 		 * empty or doesn't contain data that we wouldn't
2363 		 * otherwise be able to delete.
2364 		 *
2365 		 * Users who want to delete empty subvols should try
2366 		 * rmdir(2).
2367 		 */
2368 		err = -EPERM;
2369 		if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
2370 			goto out_dput;
2371 
2372 		/*
2373 		 * Do not allow deletion if the parent dir is the same
2374 		 * as the dir to be deleted.  That means the ioctl
2375 		 * must be called on the dentry referencing the root
2376 		 * of the subvol, not a random directory contained
2377 		 * within it.
2378 		 */
2379 		err = -EINVAL;
2380 		if (root == dest)
2381 			goto out_dput;
2382 
2383 		err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2384 		if (err)
2385 			goto out_dput;
2386 	}
2387 
2388 	/* check if subvolume may be deleted by a user */
2389 	err = btrfs_may_delete(dir, dentry, 1);
2390 	if (err)
2391 		goto out_dput;
2392 
2393 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2394 		err = -EINVAL;
2395 		goto out_dput;
2396 	}
2397 
2398 	mutex_lock(&inode->i_mutex);
2399 
2400 	/*
2401 	 * Don't allow to delete a subvolume with send in progress. This is
2402 	 * inside the i_mutex so the error handling that has to drop the bit
2403 	 * again is not run concurrently.
2404 	 */
2405 	spin_lock(&dest->root_item_lock);
2406 	root_flags = btrfs_root_flags(&dest->root_item);
2407 	if (dest->send_in_progress == 0) {
2408 		btrfs_set_root_flags(&dest->root_item,
2409 				root_flags | BTRFS_ROOT_SUBVOL_DEAD);
2410 		spin_unlock(&dest->root_item_lock);
2411 	} else {
2412 		spin_unlock(&dest->root_item_lock);
2413 		btrfs_warn(root->fs_info,
2414 			"Attempt to delete subvolume %llu during send",
2415 			dest->root_key.objectid);
2416 		err = -EPERM;
2417 		goto out_unlock_inode;
2418 	}
2419 
2420 	down_write(&root->fs_info->subvol_sem);
2421 
2422 	err = may_destroy_subvol(dest);
2423 	if (err)
2424 		goto out_up_write;
2425 
2426 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2427 	/*
2428 	 * One for dir inode, two for dir entries, two for root
2429 	 * ref/backref.
2430 	 */
2431 	err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2432 					       5, &qgroup_reserved, true);
2433 	if (err)
2434 		goto out_up_write;
2435 
2436 	trans = btrfs_start_transaction(root, 0);
2437 	if (IS_ERR(trans)) {
2438 		err = PTR_ERR(trans);
2439 		goto out_release;
2440 	}
2441 	trans->block_rsv = &block_rsv;
2442 	trans->bytes_reserved = block_rsv.size;
2443 
2444 	ret = btrfs_unlink_subvol(trans, root, dir,
2445 				dest->root_key.objectid,
2446 				dentry->d_name.name,
2447 				dentry->d_name.len);
2448 	if (ret) {
2449 		err = ret;
2450 		btrfs_abort_transaction(trans, root, ret);
2451 		goto out_end_trans;
2452 	}
2453 
2454 	btrfs_record_root_in_trans(trans, dest);
2455 
2456 	memset(&dest->root_item.drop_progress, 0,
2457 		sizeof(dest->root_item.drop_progress));
2458 	dest->root_item.drop_level = 0;
2459 	btrfs_set_root_refs(&dest->root_item, 0);
2460 
2461 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
2462 		ret = btrfs_insert_orphan_item(trans,
2463 					root->fs_info->tree_root,
2464 					dest->root_key.objectid);
2465 		if (ret) {
2466 			btrfs_abort_transaction(trans, root, ret);
2467 			err = ret;
2468 			goto out_end_trans;
2469 		}
2470 	}
2471 
2472 	ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2473 				  dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
2474 				  dest->root_key.objectid);
2475 	if (ret && ret != -ENOENT) {
2476 		btrfs_abort_transaction(trans, root, ret);
2477 		err = ret;
2478 		goto out_end_trans;
2479 	}
2480 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2481 		ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2482 					  dest->root_item.received_uuid,
2483 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2484 					  dest->root_key.objectid);
2485 		if (ret && ret != -ENOENT) {
2486 			btrfs_abort_transaction(trans, root, ret);
2487 			err = ret;
2488 			goto out_end_trans;
2489 		}
2490 	}
2491 
2492 out_end_trans:
2493 	trans->block_rsv = NULL;
2494 	trans->bytes_reserved = 0;
2495 	ret = btrfs_end_transaction(trans, root);
2496 	if (ret && !err)
2497 		err = ret;
2498 	inode->i_flags |= S_DEAD;
2499 out_release:
2500 	btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
2501 out_up_write:
2502 	up_write(&root->fs_info->subvol_sem);
2503 	if (err) {
2504 		spin_lock(&dest->root_item_lock);
2505 		root_flags = btrfs_root_flags(&dest->root_item);
2506 		btrfs_set_root_flags(&dest->root_item,
2507 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
2508 		spin_unlock(&dest->root_item_lock);
2509 	}
2510 out_unlock_inode:
2511 	mutex_unlock(&inode->i_mutex);
2512 	if (!err) {
2513 		d_invalidate(dentry);
2514 		btrfs_invalidate_inodes(dest);
2515 		d_delete(dentry);
2516 		ASSERT(dest->send_in_progress == 0);
2517 
2518 		/* the last ref */
2519 		if (dest->ino_cache_inode) {
2520 			iput(dest->ino_cache_inode);
2521 			dest->ino_cache_inode = NULL;
2522 		}
2523 	}
2524 out_dput:
2525 	dput(dentry);
2526 out_unlock_dir:
2527 	mutex_unlock(&dir->i_mutex);
2528 out_drop_write:
2529 	mnt_drop_write_file(file);
2530 out:
2531 	kfree(vol_args);
2532 	return err;
2533 }
2534 
btrfs_ioctl_defrag(struct file * file,void __user * argp)2535 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2536 {
2537 	struct inode *inode = file_inode(file);
2538 	struct btrfs_root *root = BTRFS_I(inode)->root;
2539 	struct btrfs_ioctl_defrag_range_args *range;
2540 	int ret;
2541 
2542 	ret = mnt_want_write_file(file);
2543 	if (ret)
2544 		return ret;
2545 
2546 	if (btrfs_root_readonly(root)) {
2547 		ret = -EROFS;
2548 		goto out;
2549 	}
2550 
2551 	switch (inode->i_mode & S_IFMT) {
2552 	case S_IFDIR:
2553 		if (!capable(CAP_SYS_ADMIN)) {
2554 			ret = -EPERM;
2555 			goto out;
2556 		}
2557 		ret = btrfs_defrag_root(root);
2558 		if (ret)
2559 			goto out;
2560 		ret = btrfs_defrag_root(root->fs_info->extent_root);
2561 		break;
2562 	case S_IFREG:
2563 		if (!(file->f_mode & FMODE_WRITE)) {
2564 			ret = -EINVAL;
2565 			goto out;
2566 		}
2567 
2568 		range = kzalloc(sizeof(*range), GFP_KERNEL);
2569 		if (!range) {
2570 			ret = -ENOMEM;
2571 			goto out;
2572 		}
2573 
2574 		if (argp) {
2575 			if (copy_from_user(range, argp,
2576 					   sizeof(*range))) {
2577 				ret = -EFAULT;
2578 				kfree(range);
2579 				goto out;
2580 			}
2581 			/* compression requires us to start the IO */
2582 			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2583 				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2584 				range->extent_thresh = (u32)-1;
2585 			}
2586 		} else {
2587 			/* the rest are all set to zero by kzalloc */
2588 			range->len = (u64)-1;
2589 		}
2590 		ret = btrfs_defrag_file(file_inode(file), file,
2591 					range, 0, 0);
2592 		if (ret > 0)
2593 			ret = 0;
2594 		kfree(range);
2595 		break;
2596 	default:
2597 		ret = -EINVAL;
2598 	}
2599 out:
2600 	mnt_drop_write_file(file);
2601 	return ret;
2602 }
2603 
btrfs_ioctl_add_dev(struct btrfs_root * root,void __user * arg)2604 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2605 {
2606 	struct btrfs_ioctl_vol_args *vol_args;
2607 	int ret;
2608 
2609 	if (!capable(CAP_SYS_ADMIN))
2610 		return -EPERM;
2611 
2612 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2613 			1)) {
2614 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2615 	}
2616 
2617 	mutex_lock(&root->fs_info->volume_mutex);
2618 	vol_args = memdup_user(arg, sizeof(*vol_args));
2619 	if (IS_ERR(vol_args)) {
2620 		ret = PTR_ERR(vol_args);
2621 		goto out;
2622 	}
2623 
2624 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2625 	ret = btrfs_init_new_device(root, vol_args->name);
2626 
2627 	if (!ret)
2628 		btrfs_info(root->fs_info, "disk added %s",vol_args->name);
2629 
2630 	kfree(vol_args);
2631 out:
2632 	mutex_unlock(&root->fs_info->volume_mutex);
2633 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2634 	return ret;
2635 }
2636 
btrfs_ioctl_rm_dev(struct file * file,void __user * arg)2637 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2638 {
2639 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2640 	struct btrfs_ioctl_vol_args *vol_args;
2641 	int ret;
2642 
2643 	if (!capable(CAP_SYS_ADMIN))
2644 		return -EPERM;
2645 
2646 	ret = mnt_want_write_file(file);
2647 	if (ret)
2648 		return ret;
2649 
2650 	vol_args = memdup_user(arg, sizeof(*vol_args));
2651 	if (IS_ERR(vol_args)) {
2652 		ret = PTR_ERR(vol_args);
2653 		goto err_drop;
2654 	}
2655 
2656 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2657 
2658 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2659 			1)) {
2660 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2661 		goto out;
2662 	}
2663 
2664 	mutex_lock(&root->fs_info->volume_mutex);
2665 	ret = btrfs_rm_device(root, vol_args->name);
2666 	mutex_unlock(&root->fs_info->volume_mutex);
2667 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2668 
2669 	if (!ret)
2670 		btrfs_info(root->fs_info, "disk deleted %s",vol_args->name);
2671 
2672 out:
2673 	kfree(vol_args);
2674 err_drop:
2675 	mnt_drop_write_file(file);
2676 	return ret;
2677 }
2678 
btrfs_ioctl_fs_info(struct btrfs_root * root,void __user * arg)2679 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2680 {
2681 	struct btrfs_ioctl_fs_info_args *fi_args;
2682 	struct btrfs_device *device;
2683 	struct btrfs_device *next;
2684 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2685 	int ret = 0;
2686 
2687 	fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2688 	if (!fi_args)
2689 		return -ENOMEM;
2690 
2691 	mutex_lock(&fs_devices->device_list_mutex);
2692 	fi_args->num_devices = fs_devices->num_devices;
2693 	memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2694 
2695 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2696 		if (device->devid > fi_args->max_id)
2697 			fi_args->max_id = device->devid;
2698 	}
2699 	mutex_unlock(&fs_devices->device_list_mutex);
2700 
2701 	fi_args->nodesize = root->fs_info->super_copy->nodesize;
2702 	fi_args->sectorsize = root->fs_info->super_copy->sectorsize;
2703 	fi_args->clone_alignment = root->fs_info->super_copy->sectorsize;
2704 
2705 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2706 		ret = -EFAULT;
2707 
2708 	kfree(fi_args);
2709 	return ret;
2710 }
2711 
btrfs_ioctl_dev_info(struct btrfs_root * root,void __user * arg)2712 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2713 {
2714 	struct btrfs_ioctl_dev_info_args *di_args;
2715 	struct btrfs_device *dev;
2716 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2717 	int ret = 0;
2718 	char *s_uuid = NULL;
2719 
2720 	di_args = memdup_user(arg, sizeof(*di_args));
2721 	if (IS_ERR(di_args))
2722 		return PTR_ERR(di_args);
2723 
2724 	if (!btrfs_is_empty_uuid(di_args->uuid))
2725 		s_uuid = di_args->uuid;
2726 
2727 	mutex_lock(&fs_devices->device_list_mutex);
2728 	dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL);
2729 
2730 	if (!dev) {
2731 		ret = -ENODEV;
2732 		goto out;
2733 	}
2734 
2735 	di_args->devid = dev->devid;
2736 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2737 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2738 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2739 	if (dev->name) {
2740 		struct rcu_string *name;
2741 
2742 		rcu_read_lock();
2743 		name = rcu_dereference(dev->name);
2744 		strncpy(di_args->path, name->str, sizeof(di_args->path));
2745 		rcu_read_unlock();
2746 		di_args->path[sizeof(di_args->path) - 1] = 0;
2747 	} else {
2748 		di_args->path[0] = '\0';
2749 	}
2750 
2751 out:
2752 	mutex_unlock(&fs_devices->device_list_mutex);
2753 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2754 		ret = -EFAULT;
2755 
2756 	kfree(di_args);
2757 	return ret;
2758 }
2759 
extent_same_get_page(struct inode * inode,u64 off)2760 static struct page *extent_same_get_page(struct inode *inode, u64 off)
2761 {
2762 	struct page *page;
2763 	pgoff_t index;
2764 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2765 
2766 	index = off >> PAGE_CACHE_SHIFT;
2767 
2768 	page = grab_cache_page(inode->i_mapping, index);
2769 	if (!page)
2770 		return NULL;
2771 
2772 	if (!PageUptodate(page)) {
2773 		if (extent_read_full_page_nolock(tree, page, btrfs_get_extent,
2774 						 0))
2775 			return NULL;
2776 		lock_page(page);
2777 		if (!PageUptodate(page)) {
2778 			unlock_page(page);
2779 			page_cache_release(page);
2780 			return NULL;
2781 		}
2782 	}
2783 	unlock_page(page);
2784 
2785 	return page;
2786 }
2787 
lock_extent_range(struct inode * inode,u64 off,u64 len)2788 static inline void lock_extent_range(struct inode *inode, u64 off, u64 len)
2789 {
2790 	/* do any pending delalloc/csum calc on src, one way or
2791 	   another, and lock file content */
2792 	while (1) {
2793 		struct btrfs_ordered_extent *ordered;
2794 		lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2795 		ordered = btrfs_lookup_first_ordered_extent(inode,
2796 							    off + len - 1);
2797 		if ((!ordered ||
2798 		     ordered->file_offset + ordered->len <= off ||
2799 		     ordered->file_offset >= off + len) &&
2800 		    !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2801 				    off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
2802 			if (ordered)
2803 				btrfs_put_ordered_extent(ordered);
2804 			break;
2805 		}
2806 		unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2807 		if (ordered)
2808 			btrfs_put_ordered_extent(ordered);
2809 		btrfs_wait_ordered_range(inode, off, len);
2810 	}
2811 }
2812 
btrfs_double_unlock(struct inode * inode1,u64 loff1,struct inode * inode2,u64 loff2,u64 len)2813 static void btrfs_double_unlock(struct inode *inode1, u64 loff1,
2814 				struct inode *inode2, u64 loff2, u64 len)
2815 {
2816 	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2817 	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2818 
2819 	mutex_unlock(&inode1->i_mutex);
2820 	mutex_unlock(&inode2->i_mutex);
2821 }
2822 
btrfs_double_lock(struct inode * inode1,u64 loff1,struct inode * inode2,u64 loff2,u64 len)2823 static void btrfs_double_lock(struct inode *inode1, u64 loff1,
2824 			      struct inode *inode2, u64 loff2, u64 len)
2825 {
2826 	if (inode1 < inode2) {
2827 		swap(inode1, inode2);
2828 		swap(loff1, loff2);
2829 	}
2830 
2831 	mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT);
2832 	lock_extent_range(inode1, loff1, len);
2833 	if (inode1 != inode2) {
2834 		mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD);
2835 		lock_extent_range(inode2, loff2, len);
2836 	}
2837 }
2838 
btrfs_cmp_data(struct inode * src,u64 loff,struct inode * dst,u64 dst_loff,u64 len)2839 static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst,
2840 			  u64 dst_loff, u64 len)
2841 {
2842 	int ret = 0;
2843 	struct page *src_page, *dst_page;
2844 	unsigned int cmp_len = PAGE_CACHE_SIZE;
2845 	void *addr, *dst_addr;
2846 
2847 	while (len) {
2848 		if (len < PAGE_CACHE_SIZE)
2849 			cmp_len = len;
2850 
2851 		src_page = extent_same_get_page(src, loff);
2852 		if (!src_page)
2853 			return -EINVAL;
2854 		dst_page = extent_same_get_page(dst, dst_loff);
2855 		if (!dst_page) {
2856 			page_cache_release(src_page);
2857 			return -EINVAL;
2858 		}
2859 		addr = kmap_atomic(src_page);
2860 		dst_addr = kmap_atomic(dst_page);
2861 
2862 		flush_dcache_page(src_page);
2863 		flush_dcache_page(dst_page);
2864 
2865 		if (memcmp(addr, dst_addr, cmp_len))
2866 			ret = BTRFS_SAME_DATA_DIFFERS;
2867 
2868 		kunmap_atomic(addr);
2869 		kunmap_atomic(dst_addr);
2870 		page_cache_release(src_page);
2871 		page_cache_release(dst_page);
2872 
2873 		if (ret)
2874 			break;
2875 
2876 		loff += cmp_len;
2877 		dst_loff += cmp_len;
2878 		len -= cmp_len;
2879 	}
2880 
2881 	return ret;
2882 }
2883 
extent_same_check_offsets(struct inode * inode,u64 off,u64 len)2884 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 len)
2885 {
2886 	u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
2887 
2888 	if (off + len > inode->i_size || off + len < off)
2889 		return -EINVAL;
2890 	/* Check that we are block aligned - btrfs_clone() requires this */
2891 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
2892 		return -EINVAL;
2893 
2894 	return 0;
2895 }
2896 
btrfs_extent_same(struct inode * src,u64 loff,u64 len,struct inode * dst,u64 dst_loff)2897 static int btrfs_extent_same(struct inode *src, u64 loff, u64 len,
2898 			     struct inode *dst, u64 dst_loff)
2899 {
2900 	int ret;
2901 
2902 	/*
2903 	 * btrfs_clone() can't handle extents in the same file
2904 	 * yet. Once that works, we can drop this check and replace it
2905 	 * with a check for the same inode, but overlapping extents.
2906 	 */
2907 	if (src == dst)
2908 		return -EINVAL;
2909 
2910 	if (len == 0)
2911 		return 0;
2912 
2913 	btrfs_double_lock(src, loff, dst, dst_loff, len);
2914 
2915 	ret = extent_same_check_offsets(src, loff, len);
2916 	if (ret)
2917 		goto out_unlock;
2918 
2919 	ret = extent_same_check_offsets(dst, dst_loff, len);
2920 	if (ret)
2921 		goto out_unlock;
2922 
2923 	/* don't make the dst file partly checksummed */
2924 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
2925 	    (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
2926 		ret = -EINVAL;
2927 		goto out_unlock;
2928 	}
2929 
2930 	ret = btrfs_cmp_data(src, loff, dst, dst_loff, len);
2931 	if (ret == 0)
2932 		ret = btrfs_clone(src, dst, loff, len, len, dst_loff);
2933 
2934 out_unlock:
2935 	btrfs_double_unlock(src, loff, dst, dst_loff, len);
2936 
2937 	return ret;
2938 }
2939 
2940 #define BTRFS_MAX_DEDUPE_LEN	(16 * 1024 * 1024)
2941 
btrfs_ioctl_file_extent_same(struct file * file,struct btrfs_ioctl_same_args __user * argp)2942 static long btrfs_ioctl_file_extent_same(struct file *file,
2943 			struct btrfs_ioctl_same_args __user *argp)
2944 {
2945 	struct btrfs_ioctl_same_args *same = NULL;
2946 	struct btrfs_ioctl_same_extent_info *info;
2947 	struct inode *src = file_inode(file);
2948 	u64 off;
2949 	u64 len;
2950 	int i;
2951 	int ret;
2952 	unsigned long size;
2953 	u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
2954 	bool is_admin = capable(CAP_SYS_ADMIN);
2955 	u16 count;
2956 
2957 	if (!(file->f_mode & FMODE_READ))
2958 		return -EINVAL;
2959 
2960 	ret = mnt_want_write_file(file);
2961 	if (ret)
2962 		return ret;
2963 
2964 	if (get_user(count, &argp->dest_count)) {
2965 		ret = -EFAULT;
2966 		goto out;
2967 	}
2968 
2969 	size = offsetof(struct btrfs_ioctl_same_args __user, info[count]);
2970 
2971 	same = memdup_user(argp, size);
2972 
2973 	if (IS_ERR(same)) {
2974 		ret = PTR_ERR(same);
2975 		same = NULL;
2976 		goto out;
2977 	}
2978 
2979 	off = same->logical_offset;
2980 	len = same->length;
2981 
2982 	/*
2983 	 * Limit the total length we will dedupe for each operation.
2984 	 * This is intended to bound the total time spent in this
2985 	 * ioctl to something sane.
2986 	 */
2987 	if (len > BTRFS_MAX_DEDUPE_LEN)
2988 		len = BTRFS_MAX_DEDUPE_LEN;
2989 
2990 	if (WARN_ON_ONCE(bs < PAGE_CACHE_SIZE)) {
2991 		/*
2992 		 * Btrfs does not support blocksize < page_size. As a
2993 		 * result, btrfs_cmp_data() won't correctly handle
2994 		 * this situation without an update.
2995 		 */
2996 		ret = -EINVAL;
2997 		goto out;
2998 	}
2999 
3000 	ret = -EISDIR;
3001 	if (S_ISDIR(src->i_mode))
3002 		goto out;
3003 
3004 	ret = -EACCES;
3005 	if (!S_ISREG(src->i_mode))
3006 		goto out;
3007 
3008 	/* pre-format output fields to sane values */
3009 	for (i = 0; i < count; i++) {
3010 		same->info[i].bytes_deduped = 0ULL;
3011 		same->info[i].status = 0;
3012 	}
3013 
3014 	for (i = 0, info = same->info; i < count; i++, info++) {
3015 		struct inode *dst;
3016 		struct fd dst_file = fdget(info->fd);
3017 		if (!dst_file.file) {
3018 			info->status = -EBADF;
3019 			continue;
3020 		}
3021 		dst = file_inode(dst_file.file);
3022 
3023 		if (!(is_admin || (dst_file.file->f_mode & FMODE_WRITE))) {
3024 			info->status = -EINVAL;
3025 		} else if (file->f_path.mnt != dst_file.file->f_path.mnt) {
3026 			info->status = -EXDEV;
3027 		} else if (S_ISDIR(dst->i_mode)) {
3028 			info->status = -EISDIR;
3029 		} else if (!S_ISREG(dst->i_mode)) {
3030 			info->status = -EACCES;
3031 		} else {
3032 			info->status = btrfs_extent_same(src, off, len, dst,
3033 							info->logical_offset);
3034 			if (info->status == 0)
3035 				info->bytes_deduped += len;
3036 		}
3037 		fdput(dst_file);
3038 	}
3039 
3040 	ret = copy_to_user(argp, same, size);
3041 	if (ret)
3042 		ret = -EFAULT;
3043 
3044 out:
3045 	mnt_drop_write_file(file);
3046 	kfree(same);
3047 	return ret;
3048 }
3049 
3050 /* Helper to check and see if this root currently has a ref on the given disk
3051  * bytenr.  If it does then we need to update the quota for this root.  This
3052  * doesn't do anything if quotas aren't enabled.
3053  */
check_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 disko)3054 static int check_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3055 		     u64 disko)
3056 {
3057 	struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
3058 	struct ulist *roots;
3059 	struct ulist_iterator uiter;
3060 	struct ulist_node *root_node = NULL;
3061 	int ret;
3062 
3063 	if (!root->fs_info->quota_enabled)
3064 		return 1;
3065 
3066 	btrfs_get_tree_mod_seq(root->fs_info, &tree_mod_seq_elem);
3067 	ret = btrfs_find_all_roots(trans, root->fs_info, disko,
3068 				   tree_mod_seq_elem.seq, &roots);
3069 	if (ret < 0)
3070 		goto out;
3071 	ret = 0;
3072 	ULIST_ITER_INIT(&uiter);
3073 	while ((root_node = ulist_next(roots, &uiter))) {
3074 		if (root_node->val == root->objectid) {
3075 			ret = 1;
3076 			break;
3077 		}
3078 	}
3079 	ulist_free(roots);
3080 out:
3081 	btrfs_put_tree_mod_seq(root->fs_info, &tree_mod_seq_elem);
3082 	return ret;
3083 }
3084 
clone_finish_inode_update(struct btrfs_trans_handle * trans,struct inode * inode,u64 endoff,const u64 destoff,const u64 olen)3085 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3086 				     struct inode *inode,
3087 				     u64 endoff,
3088 				     const u64 destoff,
3089 				     const u64 olen)
3090 {
3091 	struct btrfs_root *root = BTRFS_I(inode)->root;
3092 	int ret;
3093 
3094 	inode_inc_iversion(inode);
3095 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
3096 	/*
3097 	 * We round up to the block size at eof when determining which
3098 	 * extents to clone above, but shouldn't round up the file size.
3099 	 */
3100 	if (endoff > destoff + olen)
3101 		endoff = destoff + olen;
3102 	if (endoff > inode->i_size)
3103 		btrfs_i_size_write(inode, endoff);
3104 
3105 	ret = btrfs_update_inode(trans, root, inode);
3106 	if (ret) {
3107 		btrfs_abort_transaction(trans, root, ret);
3108 		btrfs_end_transaction(trans, root);
3109 		goto out;
3110 	}
3111 	ret = btrfs_end_transaction(trans, root);
3112 out:
3113 	return ret;
3114 }
3115 
clone_update_extent_map(struct inode * inode,const struct btrfs_trans_handle * trans,const struct btrfs_path * path,const u64 hole_offset,const u64 hole_len)3116 static void clone_update_extent_map(struct inode *inode,
3117 				    const struct btrfs_trans_handle *trans,
3118 				    const struct btrfs_path *path,
3119 				    const u64 hole_offset,
3120 				    const u64 hole_len)
3121 {
3122 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3123 	struct extent_map *em;
3124 	int ret;
3125 
3126 	em = alloc_extent_map();
3127 	if (!em) {
3128 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3129 			&BTRFS_I(inode)->runtime_flags);
3130 		return;
3131 	}
3132 
3133 	if (path) {
3134 		struct btrfs_file_extent_item *fi;
3135 
3136 		fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3137 				    struct btrfs_file_extent_item);
3138 		btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3139 		em->generation = -1;
3140 		if (btrfs_file_extent_type(path->nodes[0], fi) ==
3141 		    BTRFS_FILE_EXTENT_INLINE)
3142 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3143 				&BTRFS_I(inode)->runtime_flags);
3144 	} else {
3145 		em->start = hole_offset;
3146 		em->len = hole_len;
3147 		em->ram_bytes = em->len;
3148 		em->orig_start = hole_offset;
3149 		em->block_start = EXTENT_MAP_HOLE;
3150 		em->block_len = 0;
3151 		em->orig_block_len = 0;
3152 		em->compress_type = BTRFS_COMPRESS_NONE;
3153 		em->generation = trans->transid;
3154 	}
3155 
3156 	while (1) {
3157 		write_lock(&em_tree->lock);
3158 		ret = add_extent_mapping(em_tree, em, 1);
3159 		write_unlock(&em_tree->lock);
3160 		if (ret != -EEXIST) {
3161 			free_extent_map(em);
3162 			break;
3163 		}
3164 		btrfs_drop_extent_cache(inode, em->start,
3165 					em->start + em->len - 1, 0);
3166 	}
3167 
3168 	if (ret)
3169 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3170 			&BTRFS_I(inode)->runtime_flags);
3171 }
3172 
3173 /*
3174  * Make sure we do not end up inserting an inline extent into a file that has
3175  * already other (non-inline) extents. If a file has an inline extent it can
3176  * not have any other extents and the (single) inline extent must start at the
3177  * file offset 0. Failing to respect these rules will lead to file corruption,
3178  * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3179  *
3180  * We can have extents that have been already written to disk or we can have
3181  * dirty ranges still in delalloc, in which case the extent maps and items are
3182  * created only when we run delalloc, and the delalloc ranges might fall outside
3183  * the range we are currently locking in the inode's io tree. So we check the
3184  * inode's i_size because of that (i_size updates are done while holding the
3185  * i_mutex, which we are holding here).
3186  * We also check to see if the inode has a size not greater than "datal" but has
3187  * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3188  * protected against such concurrent fallocate calls by the i_mutex).
3189  *
3190  * If the file has no extents but a size greater than datal, do not allow the
3191  * copy because we would need turn the inline extent into a non-inline one (even
3192  * with NO_HOLES enabled). If we find our destination inode only has one inline
3193  * extent, just overwrite it with the source inline extent if its size is less
3194  * than the source extent's size, or we could copy the source inline extent's
3195  * data into the destination inode's inline extent if the later is greater then
3196  * the former.
3197  */
clone_copy_inline_extent(struct inode * src,struct inode * dst,struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_key * new_key,const u64 drop_start,const u64 datal,const u64 skip,const u64 size,char * inline_data)3198 static int clone_copy_inline_extent(struct inode *src,
3199 				    struct inode *dst,
3200 				    struct btrfs_trans_handle *trans,
3201 				    struct btrfs_path *path,
3202 				    struct btrfs_key *new_key,
3203 				    const u64 drop_start,
3204 				    const u64 datal,
3205 				    const u64 skip,
3206 				    const u64 size,
3207 				    char *inline_data)
3208 {
3209 	struct btrfs_root *root = BTRFS_I(dst)->root;
3210 	const u64 aligned_end = ALIGN(new_key->offset + datal,
3211 				      root->sectorsize);
3212 	int ret;
3213 	struct btrfs_key key;
3214 
3215 	if (new_key->offset > 0)
3216 		return -EOPNOTSUPP;
3217 
3218 	key.objectid = btrfs_ino(dst);
3219 	key.type = BTRFS_EXTENT_DATA_KEY;
3220 	key.offset = 0;
3221 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3222 	if (ret < 0) {
3223 		return ret;
3224 	} else if (ret > 0) {
3225 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3226 			ret = btrfs_next_leaf(root, path);
3227 			if (ret < 0)
3228 				return ret;
3229 			else if (ret > 0)
3230 				goto copy_inline_extent;
3231 		}
3232 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3233 		if (key.objectid == btrfs_ino(dst) &&
3234 		    key.type == BTRFS_EXTENT_DATA_KEY) {
3235 			ASSERT(key.offset > 0);
3236 			return -EOPNOTSUPP;
3237 		}
3238 	} else if (i_size_read(dst) <= datal) {
3239 		struct btrfs_file_extent_item *ei;
3240 		u64 ext_len;
3241 
3242 		/*
3243 		 * If the file size is <= datal, make sure there are no other
3244 		 * extents following (can happen do to an fallocate call with
3245 		 * the flag FALLOC_FL_KEEP_SIZE).
3246 		 */
3247 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3248 				    struct btrfs_file_extent_item);
3249 		/*
3250 		 * If it's an inline extent, it can not have other extents
3251 		 * following it.
3252 		 */
3253 		if (btrfs_file_extent_type(path->nodes[0], ei) ==
3254 		    BTRFS_FILE_EXTENT_INLINE)
3255 			goto copy_inline_extent;
3256 
3257 		ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3258 		if (ext_len > aligned_end)
3259 			return -EOPNOTSUPP;
3260 
3261 		ret = btrfs_next_item(root, path);
3262 		if (ret < 0) {
3263 			return ret;
3264 		} else if (ret == 0) {
3265 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3266 					      path->slots[0]);
3267 			if (key.objectid == btrfs_ino(dst) &&
3268 			    key.type == BTRFS_EXTENT_DATA_KEY)
3269 				return -EOPNOTSUPP;
3270 		}
3271 	}
3272 
3273 copy_inline_extent:
3274 	/*
3275 	 * We have no extent items, or we have an extent at offset 0 which may
3276 	 * or may not be inlined. All these cases are dealt the same way.
3277 	 */
3278 	if (i_size_read(dst) > datal) {
3279 		/*
3280 		 * If the destination inode has an inline extent...
3281 		 * This would require copying the data from the source inline
3282 		 * extent into the beginning of the destination's inline extent.
3283 		 * But this is really complex, both extents can be compressed
3284 		 * or just one of them, which would require decompressing and
3285 		 * re-compressing data (which could increase the new compressed
3286 		 * size, not allowing the compressed data to fit anymore in an
3287 		 * inline extent).
3288 		 * So just don't support this case for now (it should be rare,
3289 		 * we are not really saving space when cloning inline extents).
3290 		 */
3291 		return -EOPNOTSUPP;
3292 	}
3293 
3294 	btrfs_release_path(path);
3295 	ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3296 	if (ret)
3297 		return ret;
3298 	ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3299 	if (ret)
3300 		return ret;
3301 
3302 	if (skip) {
3303 		const u32 start = btrfs_file_extent_calc_inline_size(0);
3304 
3305 		memmove(inline_data + start, inline_data + start + skip, datal);
3306 	}
3307 
3308 	write_extent_buffer(path->nodes[0], inline_data,
3309 			    btrfs_item_ptr_offset(path->nodes[0],
3310 						  path->slots[0]),
3311 			    size);
3312 	inode_add_bytes(dst, datal);
3313 
3314 	return 0;
3315 }
3316 
3317 /**
3318  * btrfs_clone() - clone a range from inode file to another
3319  *
3320  * @src: Inode to clone from
3321  * @inode: Inode to clone to
3322  * @off: Offset within source to start clone from
3323  * @olen: Original length, passed by user, of range to clone
3324  * @olen_aligned: Block-aligned value of olen, extent_same uses
3325  *               identical values here
3326  * @destoff: Offset within @inode to start clone
3327  */
btrfs_clone(struct inode * src,struct inode * inode,const u64 off,const u64 olen,const u64 olen_aligned,const u64 destoff)3328 static int btrfs_clone(struct inode *src, struct inode *inode,
3329 		       const u64 off, const u64 olen, const u64 olen_aligned,
3330 		       const u64 destoff)
3331 {
3332 	struct btrfs_root *root = BTRFS_I(inode)->root;
3333 	struct btrfs_path *path = NULL;
3334 	struct extent_buffer *leaf;
3335 	struct btrfs_trans_handle *trans;
3336 	char *buf = NULL;
3337 	struct btrfs_key key;
3338 	u32 nritems;
3339 	int slot;
3340 	int ret;
3341 	int no_quota;
3342 	const u64 len = olen_aligned;
3343 	u64 last_disko = 0;
3344 	u64 last_dest_end = destoff;
3345 
3346 	ret = -ENOMEM;
3347 	buf = vmalloc(root->nodesize);
3348 	if (!buf)
3349 		return ret;
3350 
3351 	path = btrfs_alloc_path();
3352 	if (!path) {
3353 		vfree(buf);
3354 		return ret;
3355 	}
3356 
3357 	path->reada = 2;
3358 	/* clone data */
3359 	key.objectid = btrfs_ino(src);
3360 	key.type = BTRFS_EXTENT_DATA_KEY;
3361 	key.offset = off;
3362 
3363 	while (1) {
3364 		u64 next_key_min_offset = key.offset + 1;
3365 
3366 		/*
3367 		 * note the key will change type as we walk through the
3368 		 * tree.
3369 		 */
3370 		path->leave_spinning = 1;
3371 		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3372 				0, 0);
3373 		if (ret < 0)
3374 			goto out;
3375 		/*
3376 		 * First search, if no extent item that starts at offset off was
3377 		 * found but the previous item is an extent item, it's possible
3378 		 * it might overlap our target range, therefore process it.
3379 		 */
3380 		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3381 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3382 					      path->slots[0] - 1);
3383 			if (key.type == BTRFS_EXTENT_DATA_KEY)
3384 				path->slots[0]--;
3385 		}
3386 
3387 		nritems = btrfs_header_nritems(path->nodes[0]);
3388 process_slot:
3389 		no_quota = 1;
3390 		if (path->slots[0] >= nritems) {
3391 			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3392 			if (ret < 0)
3393 				goto out;
3394 			if (ret > 0)
3395 				break;
3396 			nritems = btrfs_header_nritems(path->nodes[0]);
3397 		}
3398 		leaf = path->nodes[0];
3399 		slot = path->slots[0];
3400 
3401 		btrfs_item_key_to_cpu(leaf, &key, slot);
3402 		if (key.type > BTRFS_EXTENT_DATA_KEY ||
3403 		    key.objectid != btrfs_ino(src))
3404 			break;
3405 
3406 		if (key.type == BTRFS_EXTENT_DATA_KEY) {
3407 			struct btrfs_file_extent_item *extent;
3408 			int type;
3409 			u32 size;
3410 			struct btrfs_key new_key;
3411 			u64 disko = 0, diskl = 0;
3412 			u64 datao = 0, datal = 0;
3413 			u8 comp;
3414 			u64 drop_start;
3415 
3416 			extent = btrfs_item_ptr(leaf, slot,
3417 						struct btrfs_file_extent_item);
3418 			comp = btrfs_file_extent_compression(leaf, extent);
3419 			type = btrfs_file_extent_type(leaf, extent);
3420 			if (type == BTRFS_FILE_EXTENT_REG ||
3421 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3422 				disko = btrfs_file_extent_disk_bytenr(leaf,
3423 								      extent);
3424 				diskl = btrfs_file_extent_disk_num_bytes(leaf,
3425 								 extent);
3426 				datao = btrfs_file_extent_offset(leaf, extent);
3427 				datal = btrfs_file_extent_num_bytes(leaf,
3428 								    extent);
3429 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3430 				/* take upper bound, may be compressed */
3431 				datal = btrfs_file_extent_ram_bytes(leaf,
3432 								    extent);
3433 			}
3434 
3435 			/*
3436 			 * The first search might have left us at an extent
3437 			 * item that ends before our target range's start, can
3438 			 * happen if we have holes and NO_HOLES feature enabled.
3439 			 */
3440 			if (key.offset + datal <= off) {
3441 				path->slots[0]++;
3442 				goto process_slot;
3443 			} else if (key.offset >= off + len) {
3444 				break;
3445 			}
3446 			next_key_min_offset = key.offset + datal;
3447 			size = btrfs_item_size_nr(leaf, slot);
3448 			read_extent_buffer(leaf, buf,
3449 					   btrfs_item_ptr_offset(leaf, slot),
3450 					   size);
3451 
3452 			btrfs_release_path(path);
3453 			path->leave_spinning = 0;
3454 
3455 			memcpy(&new_key, &key, sizeof(new_key));
3456 			new_key.objectid = btrfs_ino(inode);
3457 			if (off <= key.offset)
3458 				new_key.offset = key.offset + destoff - off;
3459 			else
3460 				new_key.offset = destoff;
3461 
3462 			/*
3463 			 * Deal with a hole that doesn't have an extent item
3464 			 * that represents it (NO_HOLES feature enabled).
3465 			 * This hole is either in the middle of the cloning
3466 			 * range or at the beginning (fully overlaps it or
3467 			 * partially overlaps it).
3468 			 */
3469 			if (new_key.offset != last_dest_end)
3470 				drop_start = last_dest_end;
3471 			else
3472 				drop_start = new_key.offset;
3473 
3474 			/*
3475 			 * 1 - adjusting old extent (we may have to split it)
3476 			 * 1 - add new extent
3477 			 * 1 - inode update
3478 			 */
3479 			trans = btrfs_start_transaction(root, 3);
3480 			if (IS_ERR(trans)) {
3481 				ret = PTR_ERR(trans);
3482 				goto out;
3483 			}
3484 
3485 			if (type == BTRFS_FILE_EXTENT_REG ||
3486 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3487 				/*
3488 				 *    a  | --- range to clone ---|  b
3489 				 * | ------------- extent ------------- |
3490 				 */
3491 
3492 				/* subtract range b */
3493 				if (key.offset + datal > off + len)
3494 					datal = off + len - key.offset;
3495 
3496 				/* subtract range a */
3497 				if (off > key.offset) {
3498 					datao += off - key.offset;
3499 					datal -= off - key.offset;
3500 				}
3501 
3502 				ret = btrfs_drop_extents(trans, root, inode,
3503 							 drop_start,
3504 							 new_key.offset + datal,
3505 							 1);
3506 				if (ret) {
3507 					if (ret != -EOPNOTSUPP)
3508 						btrfs_abort_transaction(trans,
3509 								root, ret);
3510 					btrfs_end_transaction(trans, root);
3511 					goto out;
3512 				}
3513 
3514 				ret = btrfs_insert_empty_item(trans, root, path,
3515 							      &new_key, size);
3516 				if (ret) {
3517 					btrfs_abort_transaction(trans, root,
3518 								ret);
3519 					btrfs_end_transaction(trans, root);
3520 					goto out;
3521 				}
3522 
3523 				leaf = path->nodes[0];
3524 				slot = path->slots[0];
3525 				write_extent_buffer(leaf, buf,
3526 					    btrfs_item_ptr_offset(leaf, slot),
3527 					    size);
3528 
3529 				extent = btrfs_item_ptr(leaf, slot,
3530 						struct btrfs_file_extent_item);
3531 
3532 				/* disko == 0 means it's a hole */
3533 				if (!disko)
3534 					datao = 0;
3535 
3536 				btrfs_set_file_extent_offset(leaf, extent,
3537 							     datao);
3538 				btrfs_set_file_extent_num_bytes(leaf, extent,
3539 								datal);
3540 
3541 				/*
3542 				 * We need to look up the roots that point at
3543 				 * this bytenr and see if the new root does.  If
3544 				 * it does not we need to make sure we update
3545 				 * quotas appropriately.
3546 				 */
3547 				if (disko && root != BTRFS_I(src)->root &&
3548 				    disko != last_disko) {
3549 					no_quota = check_ref(trans, root,
3550 							     disko);
3551 					if (no_quota < 0) {
3552 						btrfs_abort_transaction(trans,
3553 									root,
3554 									ret);
3555 						btrfs_end_transaction(trans,
3556 								      root);
3557 						ret = no_quota;
3558 						goto out;
3559 					}
3560 				}
3561 
3562 				if (disko) {
3563 					inode_add_bytes(inode, datal);
3564 					ret = btrfs_inc_extent_ref(trans, root,
3565 							disko, diskl, 0,
3566 							root->root_key.objectid,
3567 							btrfs_ino(inode),
3568 							new_key.offset - datao,
3569 							no_quota);
3570 					if (ret) {
3571 						btrfs_abort_transaction(trans,
3572 									root,
3573 									ret);
3574 						btrfs_end_transaction(trans,
3575 								      root);
3576 						goto out;
3577 
3578 					}
3579 				}
3580 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3581 				u64 skip = 0;
3582 				u64 trim = 0;
3583 
3584 				if (off > key.offset) {
3585 					skip = off - key.offset;
3586 					new_key.offset += skip;
3587 				}
3588 
3589 				if (key.offset + datal > off + len)
3590 					trim = key.offset + datal - (off + len);
3591 
3592 				if (comp && (skip || trim)) {
3593 					ret = -EINVAL;
3594 					btrfs_end_transaction(trans, root);
3595 					goto out;
3596 				}
3597 				size -= skip + trim;
3598 				datal -= skip + trim;
3599 
3600 				ret = clone_copy_inline_extent(src, inode,
3601 							       trans, path,
3602 							       &new_key,
3603 							       drop_start,
3604 							       datal,
3605 							       skip, size, buf);
3606 				if (ret) {
3607 					if (ret != -EOPNOTSUPP)
3608 						btrfs_abort_transaction(trans,
3609 									root,
3610 									ret);
3611 					btrfs_end_transaction(trans, root);
3612 					goto out;
3613 				}
3614 				leaf = path->nodes[0];
3615 				slot = path->slots[0];
3616 			}
3617 
3618 			/* If we have an implicit hole (NO_HOLES feature). */
3619 			if (drop_start < new_key.offset)
3620 				clone_update_extent_map(inode, trans,
3621 						NULL, drop_start,
3622 						new_key.offset - drop_start);
3623 
3624 			clone_update_extent_map(inode, trans, path, 0, 0);
3625 
3626 			btrfs_mark_buffer_dirty(leaf);
3627 			btrfs_release_path(path);
3628 
3629 			last_dest_end = ALIGN(new_key.offset + datal,
3630 					      root->sectorsize);
3631 			ret = clone_finish_inode_update(trans, inode,
3632 							last_dest_end,
3633 							destoff, olen);
3634 			if (ret)
3635 				goto out;
3636 			if (new_key.offset + datal >= destoff + len)
3637 				break;
3638 		}
3639 		btrfs_release_path(path);
3640 		key.offset = next_key_min_offset;
3641 	}
3642 	ret = 0;
3643 
3644 	if (last_dest_end < destoff + len) {
3645 		/*
3646 		 * We have an implicit hole (NO_HOLES feature is enabled) that
3647 		 * fully or partially overlaps our cloning range at its end.
3648 		 */
3649 		btrfs_release_path(path);
3650 
3651 		/*
3652 		 * 1 - remove extent(s)
3653 		 * 1 - inode update
3654 		 */
3655 		trans = btrfs_start_transaction(root, 2);
3656 		if (IS_ERR(trans)) {
3657 			ret = PTR_ERR(trans);
3658 			goto out;
3659 		}
3660 		ret = btrfs_drop_extents(trans, root, inode,
3661 					 last_dest_end, destoff + len, 1);
3662 		if (ret) {
3663 			if (ret != -EOPNOTSUPP)
3664 				btrfs_abort_transaction(trans, root, ret);
3665 			btrfs_end_transaction(trans, root);
3666 			goto out;
3667 		}
3668 		clone_update_extent_map(inode, trans, NULL, last_dest_end,
3669 					destoff + len - last_dest_end);
3670 		ret = clone_finish_inode_update(trans, inode, destoff + len,
3671 						destoff, olen);
3672 	}
3673 
3674 out:
3675 	btrfs_free_path(path);
3676 	vfree(buf);
3677 	return ret;
3678 }
3679 
btrfs_ioctl_clone(struct file * file,unsigned long srcfd,u64 off,u64 olen,u64 destoff)3680 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
3681 				       u64 off, u64 olen, u64 destoff)
3682 {
3683 	struct inode *inode = file_inode(file);
3684 	struct btrfs_root *root = BTRFS_I(inode)->root;
3685 	struct fd src_file;
3686 	struct inode *src;
3687 	int ret;
3688 	u64 len = olen;
3689 	u64 bs = root->fs_info->sb->s_blocksize;
3690 	int same_inode = 0;
3691 
3692 	/*
3693 	 * TODO:
3694 	 * - split compressed inline extents.  annoying: we need to
3695 	 *   decompress into destination's address_space (the file offset
3696 	 *   may change, so source mapping won't do), then recompress (or
3697 	 *   otherwise reinsert) a subrange.
3698 	 *
3699 	 * - split destination inode's inline extents.  The inline extents can
3700 	 *   be either compressed or non-compressed.
3701 	 */
3702 
3703 	/* the destination must be opened for writing */
3704 	if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
3705 		return -EINVAL;
3706 
3707 	if (btrfs_root_readonly(root))
3708 		return -EROFS;
3709 
3710 	ret = mnt_want_write_file(file);
3711 	if (ret)
3712 		return ret;
3713 
3714 	src_file = fdget(srcfd);
3715 	if (!src_file.file) {
3716 		ret = -EBADF;
3717 		goto out_drop_write;
3718 	}
3719 
3720 	ret = -EXDEV;
3721 	if (src_file.file->f_path.mnt != file->f_path.mnt)
3722 		goto out_fput;
3723 
3724 	src = file_inode(src_file.file);
3725 
3726 	ret = -EINVAL;
3727 	if (src == inode)
3728 		same_inode = 1;
3729 
3730 	/* the src must be open for reading */
3731 	if (!(src_file.file->f_mode & FMODE_READ))
3732 		goto out_fput;
3733 
3734 	/* don't make the dst file partly checksummed */
3735 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3736 	    (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3737 		goto out_fput;
3738 
3739 	ret = -EISDIR;
3740 	if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3741 		goto out_fput;
3742 
3743 	ret = -EXDEV;
3744 	if (src->i_sb != inode->i_sb)
3745 		goto out_fput;
3746 
3747 	if (!same_inode) {
3748 		if (inode < src) {
3749 			mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
3750 			mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
3751 		} else {
3752 			mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
3753 			mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
3754 		}
3755 	} else {
3756 		mutex_lock(&src->i_mutex);
3757 	}
3758 
3759 	/* determine range to clone */
3760 	ret = -EINVAL;
3761 	if (off + len > src->i_size || off + len < off)
3762 		goto out_unlock;
3763 	if (len == 0)
3764 		olen = len = src->i_size - off;
3765 	/* if we extend to eof, continue to block boundary */
3766 	if (off + len == src->i_size)
3767 		len = ALIGN(src->i_size, bs) - off;
3768 
3769 	if (len == 0) {
3770 		ret = 0;
3771 		goto out_unlock;
3772 	}
3773 
3774 	/* verify the end result is block aligned */
3775 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3776 	    !IS_ALIGNED(destoff, bs))
3777 		goto out_unlock;
3778 
3779 	/* verify if ranges are overlapped within the same file */
3780 	if (same_inode) {
3781 		if (destoff + len > off && destoff < off + len)
3782 			goto out_unlock;
3783 	}
3784 
3785 	if (destoff > inode->i_size) {
3786 		ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3787 		if (ret)
3788 			goto out_unlock;
3789 	}
3790 
3791 	/*
3792 	 * Lock the target range too. Right after we replace the file extent
3793 	 * items in the fs tree (which now point to the cloned data), we might
3794 	 * have a worker replace them with extent items relative to a write
3795 	 * operation that was issued before this clone operation (i.e. confront
3796 	 * with inode.c:btrfs_finish_ordered_io).
3797 	 */
3798 	if (same_inode) {
3799 		u64 lock_start = min_t(u64, off, destoff);
3800 		u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
3801 
3802 		lock_extent_range(src, lock_start, lock_len);
3803 	} else {
3804 		lock_extent_range(src, off, len);
3805 		lock_extent_range(inode, destoff, len);
3806 	}
3807 
3808 	ret = btrfs_clone(src, inode, off, olen, len, destoff);
3809 
3810 	if (same_inode) {
3811 		u64 lock_start = min_t(u64, off, destoff);
3812 		u64 lock_end = max_t(u64, off, destoff) + len - 1;
3813 
3814 		unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
3815 	} else {
3816 		unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1);
3817 		unlock_extent(&BTRFS_I(inode)->io_tree, destoff,
3818 			      destoff + len - 1);
3819 	}
3820 	/*
3821 	 * Truncate page cache pages so that future reads will see the cloned
3822 	 * data immediately and not the previous data.
3823 	 */
3824 	truncate_inode_pages_range(&inode->i_data, destoff,
3825 				   PAGE_CACHE_ALIGN(destoff + len) - 1);
3826 out_unlock:
3827 	if (!same_inode) {
3828 		if (inode < src) {
3829 			mutex_unlock(&src->i_mutex);
3830 			mutex_unlock(&inode->i_mutex);
3831 		} else {
3832 			mutex_unlock(&inode->i_mutex);
3833 			mutex_unlock(&src->i_mutex);
3834 		}
3835 	} else {
3836 		mutex_unlock(&src->i_mutex);
3837 	}
3838 out_fput:
3839 	fdput(src_file);
3840 out_drop_write:
3841 	mnt_drop_write_file(file);
3842 	return ret;
3843 }
3844 
btrfs_ioctl_clone_range(struct file * file,void __user * argp)3845 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
3846 {
3847 	struct btrfs_ioctl_clone_range_args args;
3848 
3849 	if (copy_from_user(&args, argp, sizeof(args)))
3850 		return -EFAULT;
3851 	return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
3852 				 args.src_length, args.dest_offset);
3853 }
3854 
3855 /*
3856  * there are many ways the trans_start and trans_end ioctls can lead
3857  * to deadlocks.  They should only be used by applications that
3858  * basically own the machine, and have a very in depth understanding
3859  * of all the possible deadlocks and enospc problems.
3860  */
btrfs_ioctl_trans_start(struct file * file)3861 static long btrfs_ioctl_trans_start(struct file *file)
3862 {
3863 	struct inode *inode = file_inode(file);
3864 	struct btrfs_root *root = BTRFS_I(inode)->root;
3865 	struct btrfs_trans_handle *trans;
3866 	int ret;
3867 
3868 	ret = -EPERM;
3869 	if (!capable(CAP_SYS_ADMIN))
3870 		goto out;
3871 
3872 	ret = -EINPROGRESS;
3873 	if (file->private_data)
3874 		goto out;
3875 
3876 	ret = -EROFS;
3877 	if (btrfs_root_readonly(root))
3878 		goto out;
3879 
3880 	ret = mnt_want_write_file(file);
3881 	if (ret)
3882 		goto out;
3883 
3884 	atomic_inc(&root->fs_info->open_ioctl_trans);
3885 
3886 	ret = -ENOMEM;
3887 	trans = btrfs_start_ioctl_transaction(root);
3888 	if (IS_ERR(trans))
3889 		goto out_drop;
3890 
3891 	file->private_data = trans;
3892 	return 0;
3893 
3894 out_drop:
3895 	atomic_dec(&root->fs_info->open_ioctl_trans);
3896 	mnt_drop_write_file(file);
3897 out:
3898 	return ret;
3899 }
3900 
btrfs_ioctl_default_subvol(struct file * file,void __user * argp)3901 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3902 {
3903 	struct inode *inode = file_inode(file);
3904 	struct btrfs_root *root = BTRFS_I(inode)->root;
3905 	struct btrfs_root *new_root;
3906 	struct btrfs_dir_item *di;
3907 	struct btrfs_trans_handle *trans;
3908 	struct btrfs_path *path;
3909 	struct btrfs_key location;
3910 	struct btrfs_disk_key disk_key;
3911 	u64 objectid = 0;
3912 	u64 dir_id;
3913 	int ret;
3914 
3915 	if (!capable(CAP_SYS_ADMIN))
3916 		return -EPERM;
3917 
3918 	ret = mnt_want_write_file(file);
3919 	if (ret)
3920 		return ret;
3921 
3922 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3923 		ret = -EFAULT;
3924 		goto out;
3925 	}
3926 
3927 	if (!objectid)
3928 		objectid = BTRFS_FS_TREE_OBJECTID;
3929 
3930 	location.objectid = objectid;
3931 	location.type = BTRFS_ROOT_ITEM_KEY;
3932 	location.offset = (u64)-1;
3933 
3934 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
3935 	if (IS_ERR(new_root)) {
3936 		ret = PTR_ERR(new_root);
3937 		goto out;
3938 	}
3939 
3940 	path = btrfs_alloc_path();
3941 	if (!path) {
3942 		ret = -ENOMEM;
3943 		goto out;
3944 	}
3945 	path->leave_spinning = 1;
3946 
3947 	trans = btrfs_start_transaction(root, 1);
3948 	if (IS_ERR(trans)) {
3949 		btrfs_free_path(path);
3950 		ret = PTR_ERR(trans);
3951 		goto out;
3952 	}
3953 
3954 	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
3955 	di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
3956 				   dir_id, "default", 7, 1);
3957 	if (IS_ERR_OR_NULL(di)) {
3958 		btrfs_free_path(path);
3959 		btrfs_end_transaction(trans, root);
3960 		btrfs_err(new_root->fs_info, "Umm, you don't have the default dir"
3961 			   "item, this isn't going to work");
3962 		ret = -ENOENT;
3963 		goto out;
3964 	}
3965 
3966 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3967 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3968 	btrfs_mark_buffer_dirty(path->nodes[0]);
3969 	btrfs_free_path(path);
3970 
3971 	btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL);
3972 	btrfs_end_transaction(trans, root);
3973 out:
3974 	mnt_drop_write_file(file);
3975 	return ret;
3976 }
3977 
btrfs_get_block_group_info(struct list_head * groups_list,struct btrfs_ioctl_space_info * space)3978 void btrfs_get_block_group_info(struct list_head *groups_list,
3979 				struct btrfs_ioctl_space_info *space)
3980 {
3981 	struct btrfs_block_group_cache *block_group;
3982 
3983 	space->total_bytes = 0;
3984 	space->used_bytes = 0;
3985 	space->flags = 0;
3986 	list_for_each_entry(block_group, groups_list, list) {
3987 		space->flags = block_group->flags;
3988 		space->total_bytes += block_group->key.offset;
3989 		space->used_bytes +=
3990 			btrfs_block_group_used(&block_group->item);
3991 	}
3992 }
3993 
btrfs_ioctl_space_info(struct btrfs_root * root,void __user * arg)3994 static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
3995 {
3996 	struct btrfs_ioctl_space_args space_args;
3997 	struct btrfs_ioctl_space_info space;
3998 	struct btrfs_ioctl_space_info *dest;
3999 	struct btrfs_ioctl_space_info *dest_orig;
4000 	struct btrfs_ioctl_space_info __user *user_dest;
4001 	struct btrfs_space_info *info;
4002 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
4003 		       BTRFS_BLOCK_GROUP_SYSTEM,
4004 		       BTRFS_BLOCK_GROUP_METADATA,
4005 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
4006 	int num_types = 4;
4007 	int alloc_size;
4008 	int ret = 0;
4009 	u64 slot_count = 0;
4010 	int i, c;
4011 
4012 	if (copy_from_user(&space_args,
4013 			   (struct btrfs_ioctl_space_args __user *)arg,
4014 			   sizeof(space_args)))
4015 		return -EFAULT;
4016 
4017 	for (i = 0; i < num_types; i++) {
4018 		struct btrfs_space_info *tmp;
4019 
4020 		info = NULL;
4021 		rcu_read_lock();
4022 		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
4023 					list) {
4024 			if (tmp->flags == types[i]) {
4025 				info = tmp;
4026 				break;
4027 			}
4028 		}
4029 		rcu_read_unlock();
4030 
4031 		if (!info)
4032 			continue;
4033 
4034 		down_read(&info->groups_sem);
4035 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4036 			if (!list_empty(&info->block_groups[c]))
4037 				slot_count++;
4038 		}
4039 		up_read(&info->groups_sem);
4040 	}
4041 
4042 	/*
4043 	 * Global block reserve, exported as a space_info
4044 	 */
4045 	slot_count++;
4046 
4047 	/* space_slots == 0 means they are asking for a count */
4048 	if (space_args.space_slots == 0) {
4049 		space_args.total_spaces = slot_count;
4050 		goto out;
4051 	}
4052 
4053 	slot_count = min_t(u64, space_args.space_slots, slot_count);
4054 
4055 	alloc_size = sizeof(*dest) * slot_count;
4056 
4057 	/* we generally have at most 6 or so space infos, one for each raid
4058 	 * level.  So, a whole page should be more than enough for everyone
4059 	 */
4060 	if (alloc_size > PAGE_CACHE_SIZE)
4061 		return -ENOMEM;
4062 
4063 	space_args.total_spaces = 0;
4064 	dest = kmalloc(alloc_size, GFP_NOFS);
4065 	if (!dest)
4066 		return -ENOMEM;
4067 	dest_orig = dest;
4068 
4069 	/* now we have a buffer to copy into */
4070 	for (i = 0; i < num_types; i++) {
4071 		struct btrfs_space_info *tmp;
4072 
4073 		if (!slot_count)
4074 			break;
4075 
4076 		info = NULL;
4077 		rcu_read_lock();
4078 		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
4079 					list) {
4080 			if (tmp->flags == types[i]) {
4081 				info = tmp;
4082 				break;
4083 			}
4084 		}
4085 		rcu_read_unlock();
4086 
4087 		if (!info)
4088 			continue;
4089 		down_read(&info->groups_sem);
4090 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4091 			if (!list_empty(&info->block_groups[c])) {
4092 				btrfs_get_block_group_info(
4093 					&info->block_groups[c], &space);
4094 				memcpy(dest, &space, sizeof(space));
4095 				dest++;
4096 				space_args.total_spaces++;
4097 				slot_count--;
4098 			}
4099 			if (!slot_count)
4100 				break;
4101 		}
4102 		up_read(&info->groups_sem);
4103 	}
4104 
4105 	/*
4106 	 * Add global block reserve
4107 	 */
4108 	if (slot_count) {
4109 		struct btrfs_block_rsv *block_rsv = &root->fs_info->global_block_rsv;
4110 
4111 		spin_lock(&block_rsv->lock);
4112 		space.total_bytes = block_rsv->size;
4113 		space.used_bytes = block_rsv->size - block_rsv->reserved;
4114 		spin_unlock(&block_rsv->lock);
4115 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4116 		memcpy(dest, &space, sizeof(space));
4117 		space_args.total_spaces++;
4118 	}
4119 
4120 	user_dest = (struct btrfs_ioctl_space_info __user *)
4121 		(arg + sizeof(struct btrfs_ioctl_space_args));
4122 
4123 	if (copy_to_user(user_dest, dest_orig, alloc_size))
4124 		ret = -EFAULT;
4125 
4126 	kfree(dest_orig);
4127 out:
4128 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4129 		ret = -EFAULT;
4130 
4131 	return ret;
4132 }
4133 
4134 /*
4135  * there are many ways the trans_start and trans_end ioctls can lead
4136  * to deadlocks.  They should only be used by applications that
4137  * basically own the machine, and have a very in depth understanding
4138  * of all the possible deadlocks and enospc problems.
4139  */
btrfs_ioctl_trans_end(struct file * file)4140 long btrfs_ioctl_trans_end(struct file *file)
4141 {
4142 	struct inode *inode = file_inode(file);
4143 	struct btrfs_root *root = BTRFS_I(inode)->root;
4144 	struct btrfs_trans_handle *trans;
4145 
4146 	trans = file->private_data;
4147 	if (!trans)
4148 		return -EINVAL;
4149 	file->private_data = NULL;
4150 
4151 	btrfs_end_transaction(trans, root);
4152 
4153 	atomic_dec(&root->fs_info->open_ioctl_trans);
4154 
4155 	mnt_drop_write_file(file);
4156 	return 0;
4157 }
4158 
btrfs_ioctl_start_sync(struct btrfs_root * root,void __user * argp)4159 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4160 					    void __user *argp)
4161 {
4162 	struct btrfs_trans_handle *trans;
4163 	u64 transid;
4164 	int ret;
4165 
4166 	trans = btrfs_attach_transaction_barrier(root);
4167 	if (IS_ERR(trans)) {
4168 		if (PTR_ERR(trans) != -ENOENT)
4169 			return PTR_ERR(trans);
4170 
4171 		/* No running transaction, don't bother */
4172 		transid = root->fs_info->last_trans_committed;
4173 		goto out;
4174 	}
4175 	transid = trans->transid;
4176 	ret = btrfs_commit_transaction_async(trans, root, 0);
4177 	if (ret) {
4178 		btrfs_end_transaction(trans, root);
4179 		return ret;
4180 	}
4181 out:
4182 	if (argp)
4183 		if (copy_to_user(argp, &transid, sizeof(transid)))
4184 			return -EFAULT;
4185 	return 0;
4186 }
4187 
btrfs_ioctl_wait_sync(struct btrfs_root * root,void __user * argp)4188 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root,
4189 					   void __user *argp)
4190 {
4191 	u64 transid;
4192 
4193 	if (argp) {
4194 		if (copy_from_user(&transid, argp, sizeof(transid)))
4195 			return -EFAULT;
4196 	} else {
4197 		transid = 0;  /* current trans */
4198 	}
4199 	return btrfs_wait_for_commit(root, transid);
4200 }
4201 
btrfs_ioctl_scrub(struct file * file,void __user * arg)4202 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4203 {
4204 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4205 	struct btrfs_ioctl_scrub_args *sa;
4206 	int ret;
4207 
4208 	if (!capable(CAP_SYS_ADMIN))
4209 		return -EPERM;
4210 
4211 	sa = memdup_user(arg, sizeof(*sa));
4212 	if (IS_ERR(sa))
4213 		return PTR_ERR(sa);
4214 
4215 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4216 		ret = mnt_want_write_file(file);
4217 		if (ret)
4218 			goto out;
4219 	}
4220 
4221 	ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end,
4222 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4223 			      0);
4224 
4225 	if (copy_to_user(arg, sa, sizeof(*sa)))
4226 		ret = -EFAULT;
4227 
4228 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
4229 		mnt_drop_write_file(file);
4230 out:
4231 	kfree(sa);
4232 	return ret;
4233 }
4234 
btrfs_ioctl_scrub_cancel(struct btrfs_root * root,void __user * arg)4235 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
4236 {
4237 	if (!capable(CAP_SYS_ADMIN))
4238 		return -EPERM;
4239 
4240 	return btrfs_scrub_cancel(root->fs_info);
4241 }
4242 
btrfs_ioctl_scrub_progress(struct btrfs_root * root,void __user * arg)4243 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
4244 				       void __user *arg)
4245 {
4246 	struct btrfs_ioctl_scrub_args *sa;
4247 	int ret;
4248 
4249 	if (!capable(CAP_SYS_ADMIN))
4250 		return -EPERM;
4251 
4252 	sa = memdup_user(arg, sizeof(*sa));
4253 	if (IS_ERR(sa))
4254 		return PTR_ERR(sa);
4255 
4256 	ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
4257 
4258 	if (copy_to_user(arg, sa, sizeof(*sa)))
4259 		ret = -EFAULT;
4260 
4261 	kfree(sa);
4262 	return ret;
4263 }
4264 
btrfs_ioctl_get_dev_stats(struct btrfs_root * root,void __user * arg)4265 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
4266 				      void __user *arg)
4267 {
4268 	struct btrfs_ioctl_get_dev_stats *sa;
4269 	int ret;
4270 
4271 	sa = memdup_user(arg, sizeof(*sa));
4272 	if (IS_ERR(sa))
4273 		return PTR_ERR(sa);
4274 
4275 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4276 		kfree(sa);
4277 		return -EPERM;
4278 	}
4279 
4280 	ret = btrfs_get_dev_stats(root, sa);
4281 
4282 	if (copy_to_user(arg, sa, sizeof(*sa)))
4283 		ret = -EFAULT;
4284 
4285 	kfree(sa);
4286 	return ret;
4287 }
4288 
btrfs_ioctl_dev_replace(struct btrfs_root * root,void __user * arg)4289 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg)
4290 {
4291 	struct btrfs_ioctl_dev_replace_args *p;
4292 	int ret;
4293 
4294 	if (!capable(CAP_SYS_ADMIN))
4295 		return -EPERM;
4296 
4297 	p = memdup_user(arg, sizeof(*p));
4298 	if (IS_ERR(p))
4299 		return PTR_ERR(p);
4300 
4301 	switch (p->cmd) {
4302 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4303 		if (root->fs_info->sb->s_flags & MS_RDONLY) {
4304 			ret = -EROFS;
4305 			goto out;
4306 		}
4307 		if (atomic_xchg(
4308 			&root->fs_info->mutually_exclusive_operation_running,
4309 			1)) {
4310 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4311 		} else {
4312 			ret = btrfs_dev_replace_start(root, p);
4313 			atomic_set(
4314 			 &root->fs_info->mutually_exclusive_operation_running,
4315 			 0);
4316 		}
4317 		break;
4318 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4319 		btrfs_dev_replace_status(root->fs_info, p);
4320 		ret = 0;
4321 		break;
4322 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4323 		ret = btrfs_dev_replace_cancel(root->fs_info, p);
4324 		break;
4325 	default:
4326 		ret = -EINVAL;
4327 		break;
4328 	}
4329 
4330 	if (copy_to_user(arg, p, sizeof(*p)))
4331 		ret = -EFAULT;
4332 out:
4333 	kfree(p);
4334 	return ret;
4335 }
4336 
btrfs_ioctl_ino_to_path(struct btrfs_root * root,void __user * arg)4337 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4338 {
4339 	int ret = 0;
4340 	int i;
4341 	u64 rel_ptr;
4342 	int size;
4343 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
4344 	struct inode_fs_paths *ipath = NULL;
4345 	struct btrfs_path *path;
4346 
4347 	if (!capable(CAP_DAC_READ_SEARCH))
4348 		return -EPERM;
4349 
4350 	path = btrfs_alloc_path();
4351 	if (!path) {
4352 		ret = -ENOMEM;
4353 		goto out;
4354 	}
4355 
4356 	ipa = memdup_user(arg, sizeof(*ipa));
4357 	if (IS_ERR(ipa)) {
4358 		ret = PTR_ERR(ipa);
4359 		ipa = NULL;
4360 		goto out;
4361 	}
4362 
4363 	size = min_t(u32, ipa->size, 4096);
4364 	ipath = init_ipath(size, root, path);
4365 	if (IS_ERR(ipath)) {
4366 		ret = PTR_ERR(ipath);
4367 		ipath = NULL;
4368 		goto out;
4369 	}
4370 
4371 	ret = paths_from_inode(ipa->inum, ipath);
4372 	if (ret < 0)
4373 		goto out;
4374 
4375 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4376 		rel_ptr = ipath->fspath->val[i] -
4377 			  (u64)(unsigned long)ipath->fspath->val;
4378 		ipath->fspath->val[i] = rel_ptr;
4379 	}
4380 
4381 	ret = copy_to_user((void *)(unsigned long)ipa->fspath,
4382 			   (void *)(unsigned long)ipath->fspath, size);
4383 	if (ret) {
4384 		ret = -EFAULT;
4385 		goto out;
4386 	}
4387 
4388 out:
4389 	btrfs_free_path(path);
4390 	free_ipath(ipath);
4391 	kfree(ipa);
4392 
4393 	return ret;
4394 }
4395 
build_ino_list(u64 inum,u64 offset,u64 root,void * ctx)4396 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4397 {
4398 	struct btrfs_data_container *inodes = ctx;
4399 	const size_t c = 3 * sizeof(u64);
4400 
4401 	if (inodes->bytes_left >= c) {
4402 		inodes->bytes_left -= c;
4403 		inodes->val[inodes->elem_cnt] = inum;
4404 		inodes->val[inodes->elem_cnt + 1] = offset;
4405 		inodes->val[inodes->elem_cnt + 2] = root;
4406 		inodes->elem_cnt += 3;
4407 	} else {
4408 		inodes->bytes_missing += c - inodes->bytes_left;
4409 		inodes->bytes_left = 0;
4410 		inodes->elem_missed += 3;
4411 	}
4412 
4413 	return 0;
4414 }
4415 
btrfs_ioctl_logical_to_ino(struct btrfs_root * root,void __user * arg)4416 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
4417 					void __user *arg)
4418 {
4419 	int ret = 0;
4420 	int size;
4421 	struct btrfs_ioctl_logical_ino_args *loi;
4422 	struct btrfs_data_container *inodes = NULL;
4423 	struct btrfs_path *path = NULL;
4424 
4425 	if (!capable(CAP_SYS_ADMIN))
4426 		return -EPERM;
4427 
4428 	loi = memdup_user(arg, sizeof(*loi));
4429 	if (IS_ERR(loi)) {
4430 		ret = PTR_ERR(loi);
4431 		loi = NULL;
4432 		goto out;
4433 	}
4434 
4435 	path = btrfs_alloc_path();
4436 	if (!path) {
4437 		ret = -ENOMEM;
4438 		goto out;
4439 	}
4440 
4441 	size = min_t(u32, loi->size, 64 * 1024);
4442 	inodes = init_data_container(size);
4443 	if (IS_ERR(inodes)) {
4444 		ret = PTR_ERR(inodes);
4445 		inodes = NULL;
4446 		goto out;
4447 	}
4448 
4449 	ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path,
4450 					  build_ino_list, inodes);
4451 	if (ret == -EINVAL)
4452 		ret = -ENOENT;
4453 	if (ret < 0)
4454 		goto out;
4455 
4456 	ret = copy_to_user((void *)(unsigned long)loi->inodes,
4457 			   (void *)(unsigned long)inodes, size);
4458 	if (ret)
4459 		ret = -EFAULT;
4460 
4461 out:
4462 	btrfs_free_path(path);
4463 	vfree(inodes);
4464 	kfree(loi);
4465 
4466 	return ret;
4467 }
4468 
update_ioctl_balance_args(struct btrfs_fs_info * fs_info,int lock,struct btrfs_ioctl_balance_args * bargs)4469 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
4470 			       struct btrfs_ioctl_balance_args *bargs)
4471 {
4472 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4473 
4474 	bargs->flags = bctl->flags;
4475 
4476 	if (atomic_read(&fs_info->balance_running))
4477 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4478 	if (atomic_read(&fs_info->balance_pause_req))
4479 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4480 	if (atomic_read(&fs_info->balance_cancel_req))
4481 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4482 
4483 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4484 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4485 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4486 
4487 	if (lock) {
4488 		spin_lock(&fs_info->balance_lock);
4489 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4490 		spin_unlock(&fs_info->balance_lock);
4491 	} else {
4492 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4493 	}
4494 }
4495 
btrfs_ioctl_balance(struct file * file,void __user * arg)4496 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4497 {
4498 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4499 	struct btrfs_fs_info *fs_info = root->fs_info;
4500 	struct btrfs_ioctl_balance_args *bargs;
4501 	struct btrfs_balance_control *bctl;
4502 	bool need_unlock; /* for mut. excl. ops lock */
4503 	int ret;
4504 
4505 	if (!capable(CAP_SYS_ADMIN))
4506 		return -EPERM;
4507 
4508 	ret = mnt_want_write_file(file);
4509 	if (ret)
4510 		return ret;
4511 
4512 again:
4513 	if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
4514 		mutex_lock(&fs_info->volume_mutex);
4515 		mutex_lock(&fs_info->balance_mutex);
4516 		need_unlock = true;
4517 		goto locked;
4518 	}
4519 
4520 	/*
4521 	 * mut. excl. ops lock is locked.  Three possibilites:
4522 	 *   (1) some other op is running
4523 	 *   (2) balance is running
4524 	 *   (3) balance is paused -- special case (think resume)
4525 	 */
4526 	mutex_lock(&fs_info->balance_mutex);
4527 	if (fs_info->balance_ctl) {
4528 		/* this is either (2) or (3) */
4529 		if (!atomic_read(&fs_info->balance_running)) {
4530 			mutex_unlock(&fs_info->balance_mutex);
4531 			if (!mutex_trylock(&fs_info->volume_mutex))
4532 				goto again;
4533 			mutex_lock(&fs_info->balance_mutex);
4534 
4535 			if (fs_info->balance_ctl &&
4536 			    !atomic_read(&fs_info->balance_running)) {
4537 				/* this is (3) */
4538 				need_unlock = false;
4539 				goto locked;
4540 			}
4541 
4542 			mutex_unlock(&fs_info->balance_mutex);
4543 			mutex_unlock(&fs_info->volume_mutex);
4544 			goto again;
4545 		} else {
4546 			/* this is (2) */
4547 			mutex_unlock(&fs_info->balance_mutex);
4548 			ret = -EINPROGRESS;
4549 			goto out;
4550 		}
4551 	} else {
4552 		/* this is (1) */
4553 		mutex_unlock(&fs_info->balance_mutex);
4554 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4555 		goto out;
4556 	}
4557 
4558 locked:
4559 	BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running));
4560 
4561 	if (arg) {
4562 		bargs = memdup_user(arg, sizeof(*bargs));
4563 		if (IS_ERR(bargs)) {
4564 			ret = PTR_ERR(bargs);
4565 			goto out_unlock;
4566 		}
4567 
4568 		if (bargs->flags & BTRFS_BALANCE_RESUME) {
4569 			if (!fs_info->balance_ctl) {
4570 				ret = -ENOTCONN;
4571 				goto out_bargs;
4572 			}
4573 
4574 			bctl = fs_info->balance_ctl;
4575 			spin_lock(&fs_info->balance_lock);
4576 			bctl->flags |= BTRFS_BALANCE_RESUME;
4577 			spin_unlock(&fs_info->balance_lock);
4578 
4579 			goto do_balance;
4580 		}
4581 	} else {
4582 		bargs = NULL;
4583 	}
4584 
4585 	if (fs_info->balance_ctl) {
4586 		ret = -EINPROGRESS;
4587 		goto out_bargs;
4588 	}
4589 
4590 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4591 	if (!bctl) {
4592 		ret = -ENOMEM;
4593 		goto out_bargs;
4594 	}
4595 
4596 	bctl->fs_info = fs_info;
4597 	if (arg) {
4598 		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4599 		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4600 		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4601 
4602 		bctl->flags = bargs->flags;
4603 	} else {
4604 		/* balance everything - no filters */
4605 		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4606 	}
4607 
4608 	if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4609 		ret = -EINVAL;
4610 		goto out_bctl;
4611 	}
4612 
4613 do_balance:
4614 	/*
4615 	 * Ownership of bctl and mutually_exclusive_operation_running
4616 	 * goes to to btrfs_balance.  bctl is freed in __cancel_balance,
4617 	 * or, if restriper was paused all the way until unmount, in
4618 	 * free_fs_info.  mutually_exclusive_operation_running is
4619 	 * cleared in __cancel_balance.
4620 	 */
4621 	need_unlock = false;
4622 
4623 	ret = btrfs_balance(bctl, bargs);
4624 	bctl = NULL;
4625 
4626 	if (arg) {
4627 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4628 			ret = -EFAULT;
4629 	}
4630 
4631 out_bctl:
4632 	kfree(bctl);
4633 out_bargs:
4634 	kfree(bargs);
4635 out_unlock:
4636 	mutex_unlock(&fs_info->balance_mutex);
4637 	mutex_unlock(&fs_info->volume_mutex);
4638 	if (need_unlock)
4639 		atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
4640 out:
4641 	mnt_drop_write_file(file);
4642 	return ret;
4643 }
4644 
btrfs_ioctl_balance_ctl(struct btrfs_root * root,int cmd)4645 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
4646 {
4647 	if (!capable(CAP_SYS_ADMIN))
4648 		return -EPERM;
4649 
4650 	switch (cmd) {
4651 	case BTRFS_BALANCE_CTL_PAUSE:
4652 		return btrfs_pause_balance(root->fs_info);
4653 	case BTRFS_BALANCE_CTL_CANCEL:
4654 		return btrfs_cancel_balance(root->fs_info);
4655 	}
4656 
4657 	return -EINVAL;
4658 }
4659 
btrfs_ioctl_balance_progress(struct btrfs_root * root,void __user * arg)4660 static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
4661 					 void __user *arg)
4662 {
4663 	struct btrfs_fs_info *fs_info = root->fs_info;
4664 	struct btrfs_ioctl_balance_args *bargs;
4665 	int ret = 0;
4666 
4667 	if (!capable(CAP_SYS_ADMIN))
4668 		return -EPERM;
4669 
4670 	mutex_lock(&fs_info->balance_mutex);
4671 	if (!fs_info->balance_ctl) {
4672 		ret = -ENOTCONN;
4673 		goto out;
4674 	}
4675 
4676 	bargs = kzalloc(sizeof(*bargs), GFP_NOFS);
4677 	if (!bargs) {
4678 		ret = -ENOMEM;
4679 		goto out;
4680 	}
4681 
4682 	update_ioctl_balance_args(fs_info, 1, bargs);
4683 
4684 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4685 		ret = -EFAULT;
4686 
4687 	kfree(bargs);
4688 out:
4689 	mutex_unlock(&fs_info->balance_mutex);
4690 	return ret;
4691 }
4692 
btrfs_ioctl_quota_ctl(struct file * file,void __user * arg)4693 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4694 {
4695 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4696 	struct btrfs_ioctl_quota_ctl_args *sa;
4697 	struct btrfs_trans_handle *trans = NULL;
4698 	int ret;
4699 	int err;
4700 
4701 	if (!capable(CAP_SYS_ADMIN))
4702 		return -EPERM;
4703 
4704 	ret = mnt_want_write_file(file);
4705 	if (ret)
4706 		return ret;
4707 
4708 	sa = memdup_user(arg, sizeof(*sa));
4709 	if (IS_ERR(sa)) {
4710 		ret = PTR_ERR(sa);
4711 		goto drop_write;
4712 	}
4713 
4714 	down_write(&root->fs_info->subvol_sem);
4715 	trans = btrfs_start_transaction(root->fs_info->tree_root, 2);
4716 	if (IS_ERR(trans)) {
4717 		ret = PTR_ERR(trans);
4718 		goto out;
4719 	}
4720 
4721 	switch (sa->cmd) {
4722 	case BTRFS_QUOTA_CTL_ENABLE:
4723 		ret = btrfs_quota_enable(trans, root->fs_info);
4724 		break;
4725 	case BTRFS_QUOTA_CTL_DISABLE:
4726 		ret = btrfs_quota_disable(trans, root->fs_info);
4727 		break;
4728 	default:
4729 		ret = -EINVAL;
4730 		break;
4731 	}
4732 
4733 	err = btrfs_commit_transaction(trans, root->fs_info->tree_root);
4734 	if (err && !ret)
4735 		ret = err;
4736 out:
4737 	kfree(sa);
4738 	up_write(&root->fs_info->subvol_sem);
4739 drop_write:
4740 	mnt_drop_write_file(file);
4741 	return ret;
4742 }
4743 
btrfs_ioctl_qgroup_assign(struct file * file,void __user * arg)4744 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4745 {
4746 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4747 	struct btrfs_ioctl_qgroup_assign_args *sa;
4748 	struct btrfs_trans_handle *trans;
4749 	int ret;
4750 	int err;
4751 
4752 	if (!capable(CAP_SYS_ADMIN))
4753 		return -EPERM;
4754 
4755 	ret = mnt_want_write_file(file);
4756 	if (ret)
4757 		return ret;
4758 
4759 	sa = memdup_user(arg, sizeof(*sa));
4760 	if (IS_ERR(sa)) {
4761 		ret = PTR_ERR(sa);
4762 		goto drop_write;
4763 	}
4764 
4765 	trans = btrfs_join_transaction(root);
4766 	if (IS_ERR(trans)) {
4767 		ret = PTR_ERR(trans);
4768 		goto out;
4769 	}
4770 
4771 	/* FIXME: check if the IDs really exist */
4772 	if (sa->assign) {
4773 		ret = btrfs_add_qgroup_relation(trans, root->fs_info,
4774 						sa->src, sa->dst);
4775 	} else {
4776 		ret = btrfs_del_qgroup_relation(trans, root->fs_info,
4777 						sa->src, sa->dst);
4778 	}
4779 
4780 	/* update qgroup status and info */
4781 	err = btrfs_run_qgroups(trans, root->fs_info);
4782 	if (err < 0)
4783 		btrfs_error(root->fs_info, ret,
4784 			    "failed to update qgroup status and info\n");
4785 	err = btrfs_end_transaction(trans, root);
4786 	if (err && !ret)
4787 		ret = err;
4788 
4789 out:
4790 	kfree(sa);
4791 drop_write:
4792 	mnt_drop_write_file(file);
4793 	return ret;
4794 }
4795 
btrfs_ioctl_qgroup_create(struct file * file,void __user * arg)4796 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4797 {
4798 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4799 	struct btrfs_ioctl_qgroup_create_args *sa;
4800 	struct btrfs_trans_handle *trans;
4801 	int ret;
4802 	int err;
4803 
4804 	if (!capable(CAP_SYS_ADMIN))
4805 		return -EPERM;
4806 
4807 	ret = mnt_want_write_file(file);
4808 	if (ret)
4809 		return ret;
4810 
4811 	sa = memdup_user(arg, sizeof(*sa));
4812 	if (IS_ERR(sa)) {
4813 		ret = PTR_ERR(sa);
4814 		goto drop_write;
4815 	}
4816 
4817 	if (!sa->qgroupid) {
4818 		ret = -EINVAL;
4819 		goto out;
4820 	}
4821 
4822 	trans = btrfs_join_transaction(root);
4823 	if (IS_ERR(trans)) {
4824 		ret = PTR_ERR(trans);
4825 		goto out;
4826 	}
4827 
4828 	/* FIXME: check if the IDs really exist */
4829 	if (sa->create) {
4830 		ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid);
4831 	} else {
4832 		ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid);
4833 	}
4834 
4835 	err = btrfs_end_transaction(trans, root);
4836 	if (err && !ret)
4837 		ret = err;
4838 
4839 out:
4840 	kfree(sa);
4841 drop_write:
4842 	mnt_drop_write_file(file);
4843 	return ret;
4844 }
4845 
btrfs_ioctl_qgroup_limit(struct file * file,void __user * arg)4846 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4847 {
4848 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4849 	struct btrfs_ioctl_qgroup_limit_args *sa;
4850 	struct btrfs_trans_handle *trans;
4851 	int ret;
4852 	int err;
4853 	u64 qgroupid;
4854 
4855 	if (!capable(CAP_SYS_ADMIN))
4856 		return -EPERM;
4857 
4858 	ret = mnt_want_write_file(file);
4859 	if (ret)
4860 		return ret;
4861 
4862 	sa = memdup_user(arg, sizeof(*sa));
4863 	if (IS_ERR(sa)) {
4864 		ret = PTR_ERR(sa);
4865 		goto drop_write;
4866 	}
4867 
4868 	trans = btrfs_join_transaction(root);
4869 	if (IS_ERR(trans)) {
4870 		ret = PTR_ERR(trans);
4871 		goto out;
4872 	}
4873 
4874 	qgroupid = sa->qgroupid;
4875 	if (!qgroupid) {
4876 		/* take the current subvol as qgroup */
4877 		qgroupid = root->root_key.objectid;
4878 	}
4879 
4880 	/* FIXME: check if the IDs really exist */
4881 	ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim);
4882 
4883 	err = btrfs_end_transaction(trans, root);
4884 	if (err && !ret)
4885 		ret = err;
4886 
4887 out:
4888 	kfree(sa);
4889 drop_write:
4890 	mnt_drop_write_file(file);
4891 	return ret;
4892 }
4893 
btrfs_ioctl_quota_rescan(struct file * file,void __user * arg)4894 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4895 {
4896 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4897 	struct btrfs_ioctl_quota_rescan_args *qsa;
4898 	int ret;
4899 
4900 	if (!capable(CAP_SYS_ADMIN))
4901 		return -EPERM;
4902 
4903 	ret = mnt_want_write_file(file);
4904 	if (ret)
4905 		return ret;
4906 
4907 	qsa = memdup_user(arg, sizeof(*qsa));
4908 	if (IS_ERR(qsa)) {
4909 		ret = PTR_ERR(qsa);
4910 		goto drop_write;
4911 	}
4912 
4913 	if (qsa->flags) {
4914 		ret = -EINVAL;
4915 		goto out;
4916 	}
4917 
4918 	ret = btrfs_qgroup_rescan(root->fs_info);
4919 
4920 out:
4921 	kfree(qsa);
4922 drop_write:
4923 	mnt_drop_write_file(file);
4924 	return ret;
4925 }
4926 
btrfs_ioctl_quota_rescan_status(struct file * file,void __user * arg)4927 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
4928 {
4929 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4930 	struct btrfs_ioctl_quota_rescan_args *qsa;
4931 	int ret = 0;
4932 
4933 	if (!capable(CAP_SYS_ADMIN))
4934 		return -EPERM;
4935 
4936 	qsa = kzalloc(sizeof(*qsa), GFP_NOFS);
4937 	if (!qsa)
4938 		return -ENOMEM;
4939 
4940 	if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4941 		qsa->flags = 1;
4942 		qsa->progress = root->fs_info->qgroup_rescan_progress.objectid;
4943 	}
4944 
4945 	if (copy_to_user(arg, qsa, sizeof(*qsa)))
4946 		ret = -EFAULT;
4947 
4948 	kfree(qsa);
4949 	return ret;
4950 }
4951 
btrfs_ioctl_quota_rescan_wait(struct file * file,void __user * arg)4952 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
4953 {
4954 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4955 
4956 	if (!capable(CAP_SYS_ADMIN))
4957 		return -EPERM;
4958 
4959 	return btrfs_qgroup_wait_for_completion(root->fs_info);
4960 }
4961 
_btrfs_ioctl_set_received_subvol(struct file * file,struct btrfs_ioctl_received_subvol_args * sa)4962 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4963 					    struct btrfs_ioctl_received_subvol_args *sa)
4964 {
4965 	struct inode *inode = file_inode(file);
4966 	struct btrfs_root *root = BTRFS_I(inode)->root;
4967 	struct btrfs_root_item *root_item = &root->root_item;
4968 	struct btrfs_trans_handle *trans;
4969 	struct timespec ct = CURRENT_TIME;
4970 	int ret = 0;
4971 	int received_uuid_changed;
4972 
4973 	if (!inode_owner_or_capable(inode))
4974 		return -EPERM;
4975 
4976 	ret = mnt_want_write_file(file);
4977 	if (ret < 0)
4978 		return ret;
4979 
4980 	down_write(&root->fs_info->subvol_sem);
4981 
4982 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
4983 		ret = -EINVAL;
4984 		goto out;
4985 	}
4986 
4987 	if (btrfs_root_readonly(root)) {
4988 		ret = -EROFS;
4989 		goto out;
4990 	}
4991 
4992 	/*
4993 	 * 1 - root item
4994 	 * 2 - uuid items (received uuid + subvol uuid)
4995 	 */
4996 	trans = btrfs_start_transaction(root, 3);
4997 	if (IS_ERR(trans)) {
4998 		ret = PTR_ERR(trans);
4999 		trans = NULL;
5000 		goto out;
5001 	}
5002 
5003 	sa->rtransid = trans->transid;
5004 	sa->rtime.sec = ct.tv_sec;
5005 	sa->rtime.nsec = ct.tv_nsec;
5006 
5007 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5008 				       BTRFS_UUID_SIZE);
5009 	if (received_uuid_changed &&
5010 	    !btrfs_is_empty_uuid(root_item->received_uuid))
5011 		btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
5012 				    root_item->received_uuid,
5013 				    BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5014 				    root->root_key.objectid);
5015 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5016 	btrfs_set_root_stransid(root_item, sa->stransid);
5017 	btrfs_set_root_rtransid(root_item, sa->rtransid);
5018 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5019 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5020 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5021 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5022 
5023 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
5024 				&root->root_key, &root->root_item);
5025 	if (ret < 0) {
5026 		btrfs_end_transaction(trans, root);
5027 		goto out;
5028 	}
5029 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5030 		ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
5031 					  sa->uuid,
5032 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5033 					  root->root_key.objectid);
5034 		if (ret < 0 && ret != -EEXIST) {
5035 			btrfs_abort_transaction(trans, root, ret);
5036 			goto out;
5037 		}
5038 	}
5039 	ret = btrfs_commit_transaction(trans, root);
5040 	if (ret < 0) {
5041 		btrfs_abort_transaction(trans, root, ret);
5042 		goto out;
5043 	}
5044 
5045 out:
5046 	up_write(&root->fs_info->subvol_sem);
5047 	mnt_drop_write_file(file);
5048 	return ret;
5049 }
5050 
5051 #ifdef CONFIG_64BIT
btrfs_ioctl_set_received_subvol_32(struct file * file,void __user * arg)5052 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5053 						void __user *arg)
5054 {
5055 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5056 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5057 	int ret = 0;
5058 
5059 	args32 = memdup_user(arg, sizeof(*args32));
5060 	if (IS_ERR(args32)) {
5061 		ret = PTR_ERR(args32);
5062 		args32 = NULL;
5063 		goto out;
5064 	}
5065 
5066 	args64 = kmalloc(sizeof(*args64), GFP_NOFS);
5067 	if (!args64) {
5068 		ret = -ENOMEM;
5069 		goto out;
5070 	}
5071 
5072 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5073 	args64->stransid = args32->stransid;
5074 	args64->rtransid = args32->rtransid;
5075 	args64->stime.sec = args32->stime.sec;
5076 	args64->stime.nsec = args32->stime.nsec;
5077 	args64->rtime.sec = args32->rtime.sec;
5078 	args64->rtime.nsec = args32->rtime.nsec;
5079 	args64->flags = args32->flags;
5080 
5081 	ret = _btrfs_ioctl_set_received_subvol(file, args64);
5082 	if (ret)
5083 		goto out;
5084 
5085 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5086 	args32->stransid = args64->stransid;
5087 	args32->rtransid = args64->rtransid;
5088 	args32->stime.sec = args64->stime.sec;
5089 	args32->stime.nsec = args64->stime.nsec;
5090 	args32->rtime.sec = args64->rtime.sec;
5091 	args32->rtime.nsec = args64->rtime.nsec;
5092 	args32->flags = args64->flags;
5093 
5094 	ret = copy_to_user(arg, args32, sizeof(*args32));
5095 	if (ret)
5096 		ret = -EFAULT;
5097 
5098 out:
5099 	kfree(args32);
5100 	kfree(args64);
5101 	return ret;
5102 }
5103 #endif
5104 
btrfs_ioctl_set_received_subvol(struct file * file,void __user * arg)5105 static long btrfs_ioctl_set_received_subvol(struct file *file,
5106 					    void __user *arg)
5107 {
5108 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
5109 	int ret = 0;
5110 
5111 	sa = memdup_user(arg, sizeof(*sa));
5112 	if (IS_ERR(sa)) {
5113 		ret = PTR_ERR(sa);
5114 		sa = NULL;
5115 		goto out;
5116 	}
5117 
5118 	ret = _btrfs_ioctl_set_received_subvol(file, sa);
5119 
5120 	if (ret)
5121 		goto out;
5122 
5123 	ret = copy_to_user(arg, sa, sizeof(*sa));
5124 	if (ret)
5125 		ret = -EFAULT;
5126 
5127 out:
5128 	kfree(sa);
5129 	return ret;
5130 }
5131 
btrfs_ioctl_get_fslabel(struct file * file,void __user * arg)5132 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5133 {
5134 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5135 	size_t len;
5136 	int ret;
5137 	char label[BTRFS_LABEL_SIZE];
5138 
5139 	spin_lock(&root->fs_info->super_lock);
5140 	memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5141 	spin_unlock(&root->fs_info->super_lock);
5142 
5143 	len = strnlen(label, BTRFS_LABEL_SIZE);
5144 
5145 	if (len == BTRFS_LABEL_SIZE) {
5146 		btrfs_warn(root->fs_info,
5147 			"label is too long, return the first %zu bytes", --len);
5148 	}
5149 
5150 	ret = copy_to_user(arg, label, len);
5151 
5152 	return ret ? -EFAULT : 0;
5153 }
5154 
btrfs_ioctl_set_fslabel(struct file * file,void __user * arg)5155 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5156 {
5157 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5158 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
5159 	struct btrfs_trans_handle *trans;
5160 	char label[BTRFS_LABEL_SIZE];
5161 	int ret;
5162 
5163 	if (!capable(CAP_SYS_ADMIN))
5164 		return -EPERM;
5165 
5166 	if (copy_from_user(label, arg, sizeof(label)))
5167 		return -EFAULT;
5168 
5169 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5170 		btrfs_err(root->fs_info, "unable to set label with more than %d bytes",
5171 		       BTRFS_LABEL_SIZE - 1);
5172 		return -EINVAL;
5173 	}
5174 
5175 	ret = mnt_want_write_file(file);
5176 	if (ret)
5177 		return ret;
5178 
5179 	trans = btrfs_start_transaction(root, 0);
5180 	if (IS_ERR(trans)) {
5181 		ret = PTR_ERR(trans);
5182 		goto out_unlock;
5183 	}
5184 
5185 	spin_lock(&root->fs_info->super_lock);
5186 	strcpy(super_block->label, label);
5187 	spin_unlock(&root->fs_info->super_lock);
5188 	ret = btrfs_commit_transaction(trans, root);
5189 
5190 out_unlock:
5191 	mnt_drop_write_file(file);
5192 	return ret;
5193 }
5194 
5195 #define INIT_FEATURE_FLAGS(suffix) \
5196 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5197 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5198 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5199 
btrfs_ioctl_get_supported_features(struct file * file,void __user * arg)5200 static int btrfs_ioctl_get_supported_features(struct file *file,
5201 					      void __user *arg)
5202 {
5203 	static struct btrfs_ioctl_feature_flags features[3] = {
5204 		INIT_FEATURE_FLAGS(SUPP),
5205 		INIT_FEATURE_FLAGS(SAFE_SET),
5206 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
5207 	};
5208 
5209 	if (copy_to_user(arg, &features, sizeof(features)))
5210 		return -EFAULT;
5211 
5212 	return 0;
5213 }
5214 
btrfs_ioctl_get_features(struct file * file,void __user * arg)5215 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5216 {
5217 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5218 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
5219 	struct btrfs_ioctl_feature_flags features;
5220 
5221 	features.compat_flags = btrfs_super_compat_flags(super_block);
5222 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5223 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
5224 
5225 	if (copy_to_user(arg, &features, sizeof(features)))
5226 		return -EFAULT;
5227 
5228 	return 0;
5229 }
5230 
check_feature_bits(struct btrfs_root * root,enum btrfs_feature_set set,u64 change_mask,u64 flags,u64 supported_flags,u64 safe_set,u64 safe_clear)5231 static int check_feature_bits(struct btrfs_root *root,
5232 			      enum btrfs_feature_set set,
5233 			      u64 change_mask, u64 flags, u64 supported_flags,
5234 			      u64 safe_set, u64 safe_clear)
5235 {
5236 	const char *type = btrfs_feature_set_names[set];
5237 	char *names;
5238 	u64 disallowed, unsupported;
5239 	u64 set_mask = flags & change_mask;
5240 	u64 clear_mask = ~flags & change_mask;
5241 
5242 	unsupported = set_mask & ~supported_flags;
5243 	if (unsupported) {
5244 		names = btrfs_printable_features(set, unsupported);
5245 		if (names) {
5246 			btrfs_warn(root->fs_info,
5247 			   "this kernel does not support the %s feature bit%s",
5248 			   names, strchr(names, ',') ? "s" : "");
5249 			kfree(names);
5250 		} else
5251 			btrfs_warn(root->fs_info,
5252 			   "this kernel does not support %s bits 0x%llx",
5253 			   type, unsupported);
5254 		return -EOPNOTSUPP;
5255 	}
5256 
5257 	disallowed = set_mask & ~safe_set;
5258 	if (disallowed) {
5259 		names = btrfs_printable_features(set, disallowed);
5260 		if (names) {
5261 			btrfs_warn(root->fs_info,
5262 			   "can't set the %s feature bit%s while mounted",
5263 			   names, strchr(names, ',') ? "s" : "");
5264 			kfree(names);
5265 		} else
5266 			btrfs_warn(root->fs_info,
5267 			   "can't set %s bits 0x%llx while mounted",
5268 			   type, disallowed);
5269 		return -EPERM;
5270 	}
5271 
5272 	disallowed = clear_mask & ~safe_clear;
5273 	if (disallowed) {
5274 		names = btrfs_printable_features(set, disallowed);
5275 		if (names) {
5276 			btrfs_warn(root->fs_info,
5277 			   "can't clear the %s feature bit%s while mounted",
5278 			   names, strchr(names, ',') ? "s" : "");
5279 			kfree(names);
5280 		} else
5281 			btrfs_warn(root->fs_info,
5282 			   "can't clear %s bits 0x%llx while mounted",
5283 			   type, disallowed);
5284 		return -EPERM;
5285 	}
5286 
5287 	return 0;
5288 }
5289 
5290 #define check_feature(root, change_mask, flags, mask_base)	\
5291 check_feature_bits(root, FEAT_##mask_base, change_mask, flags,	\
5292 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
5293 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
5294 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5295 
btrfs_ioctl_set_features(struct file * file,void __user * arg)5296 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5297 {
5298 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5299 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
5300 	struct btrfs_ioctl_feature_flags flags[2];
5301 	struct btrfs_trans_handle *trans;
5302 	u64 newflags;
5303 	int ret;
5304 
5305 	if (!capable(CAP_SYS_ADMIN))
5306 		return -EPERM;
5307 
5308 	if (copy_from_user(flags, arg, sizeof(flags)))
5309 		return -EFAULT;
5310 
5311 	/* Nothing to do */
5312 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5313 	    !flags[0].incompat_flags)
5314 		return 0;
5315 
5316 	ret = check_feature(root, flags[0].compat_flags,
5317 			    flags[1].compat_flags, COMPAT);
5318 	if (ret)
5319 		return ret;
5320 
5321 	ret = check_feature(root, flags[0].compat_ro_flags,
5322 			    flags[1].compat_ro_flags, COMPAT_RO);
5323 	if (ret)
5324 		return ret;
5325 
5326 	ret = check_feature(root, flags[0].incompat_flags,
5327 			    flags[1].incompat_flags, INCOMPAT);
5328 	if (ret)
5329 		return ret;
5330 
5331 	trans = btrfs_start_transaction(root, 0);
5332 	if (IS_ERR(trans))
5333 		return PTR_ERR(trans);
5334 
5335 	spin_lock(&root->fs_info->super_lock);
5336 	newflags = btrfs_super_compat_flags(super_block);
5337 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
5338 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5339 	btrfs_set_super_compat_flags(super_block, newflags);
5340 
5341 	newflags = btrfs_super_compat_ro_flags(super_block);
5342 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5343 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5344 	btrfs_set_super_compat_ro_flags(super_block, newflags);
5345 
5346 	newflags = btrfs_super_incompat_flags(super_block);
5347 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5348 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5349 	btrfs_set_super_incompat_flags(super_block, newflags);
5350 	spin_unlock(&root->fs_info->super_lock);
5351 
5352 	return btrfs_commit_transaction(trans, root);
5353 }
5354 
btrfs_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5355 long btrfs_ioctl(struct file *file, unsigned int
5356 		cmd, unsigned long arg)
5357 {
5358 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5359 	void __user *argp = (void __user *)arg;
5360 
5361 	switch (cmd) {
5362 	case FS_IOC_GETFLAGS:
5363 		return btrfs_ioctl_getflags(file, argp);
5364 	case FS_IOC_SETFLAGS:
5365 		return btrfs_ioctl_setflags(file, argp);
5366 	case FS_IOC_GETVERSION:
5367 		return btrfs_ioctl_getversion(file, argp);
5368 	case FITRIM:
5369 		return btrfs_ioctl_fitrim(file, argp);
5370 	case BTRFS_IOC_SNAP_CREATE:
5371 		return btrfs_ioctl_snap_create(file, argp, 0);
5372 	case BTRFS_IOC_SNAP_CREATE_V2:
5373 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
5374 	case BTRFS_IOC_SUBVOL_CREATE:
5375 		return btrfs_ioctl_snap_create(file, argp, 1);
5376 	case BTRFS_IOC_SUBVOL_CREATE_V2:
5377 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
5378 	case BTRFS_IOC_SNAP_DESTROY:
5379 		return btrfs_ioctl_snap_destroy(file, argp);
5380 	case BTRFS_IOC_SUBVOL_GETFLAGS:
5381 		return btrfs_ioctl_subvol_getflags(file, argp);
5382 	case BTRFS_IOC_SUBVOL_SETFLAGS:
5383 		return btrfs_ioctl_subvol_setflags(file, argp);
5384 	case BTRFS_IOC_DEFAULT_SUBVOL:
5385 		return btrfs_ioctl_default_subvol(file, argp);
5386 	case BTRFS_IOC_DEFRAG:
5387 		return btrfs_ioctl_defrag(file, NULL);
5388 	case BTRFS_IOC_DEFRAG_RANGE:
5389 		return btrfs_ioctl_defrag(file, argp);
5390 	case BTRFS_IOC_RESIZE:
5391 		return btrfs_ioctl_resize(file, argp);
5392 	case BTRFS_IOC_ADD_DEV:
5393 		return btrfs_ioctl_add_dev(root, argp);
5394 	case BTRFS_IOC_RM_DEV:
5395 		return btrfs_ioctl_rm_dev(file, argp);
5396 	case BTRFS_IOC_FS_INFO:
5397 		return btrfs_ioctl_fs_info(root, argp);
5398 	case BTRFS_IOC_DEV_INFO:
5399 		return btrfs_ioctl_dev_info(root, argp);
5400 	case BTRFS_IOC_BALANCE:
5401 		return btrfs_ioctl_balance(file, NULL);
5402 	case BTRFS_IOC_CLONE:
5403 		return btrfs_ioctl_clone(file, arg, 0, 0, 0);
5404 	case BTRFS_IOC_CLONE_RANGE:
5405 		return btrfs_ioctl_clone_range(file, argp);
5406 	case BTRFS_IOC_TRANS_START:
5407 		return btrfs_ioctl_trans_start(file);
5408 	case BTRFS_IOC_TRANS_END:
5409 		return btrfs_ioctl_trans_end(file);
5410 	case BTRFS_IOC_TREE_SEARCH:
5411 		return btrfs_ioctl_tree_search(file, argp);
5412 	case BTRFS_IOC_TREE_SEARCH_V2:
5413 		return btrfs_ioctl_tree_search_v2(file, argp);
5414 	case BTRFS_IOC_INO_LOOKUP:
5415 		return btrfs_ioctl_ino_lookup(file, argp);
5416 	case BTRFS_IOC_INO_PATHS:
5417 		return btrfs_ioctl_ino_to_path(root, argp);
5418 	case BTRFS_IOC_LOGICAL_INO:
5419 		return btrfs_ioctl_logical_to_ino(root, argp);
5420 	case BTRFS_IOC_SPACE_INFO:
5421 		return btrfs_ioctl_space_info(root, argp);
5422 	case BTRFS_IOC_SYNC: {
5423 		int ret;
5424 
5425 		ret = btrfs_start_delalloc_roots(root->fs_info, 0, -1);
5426 		if (ret)
5427 			return ret;
5428 		ret = btrfs_sync_fs(file_inode(file)->i_sb, 1);
5429 		/*
5430 		 * The transaction thread may want to do more work,
5431 		 * namely it pokes the cleaner ktread that will start
5432 		 * processing uncleaned subvols.
5433 		 */
5434 		wake_up_process(root->fs_info->transaction_kthread);
5435 		return ret;
5436 	}
5437 	case BTRFS_IOC_START_SYNC:
5438 		return btrfs_ioctl_start_sync(root, argp);
5439 	case BTRFS_IOC_WAIT_SYNC:
5440 		return btrfs_ioctl_wait_sync(root, argp);
5441 	case BTRFS_IOC_SCRUB:
5442 		return btrfs_ioctl_scrub(file, argp);
5443 	case BTRFS_IOC_SCRUB_CANCEL:
5444 		return btrfs_ioctl_scrub_cancel(root, argp);
5445 	case BTRFS_IOC_SCRUB_PROGRESS:
5446 		return btrfs_ioctl_scrub_progress(root, argp);
5447 	case BTRFS_IOC_BALANCE_V2:
5448 		return btrfs_ioctl_balance(file, argp);
5449 	case BTRFS_IOC_BALANCE_CTL:
5450 		return btrfs_ioctl_balance_ctl(root, arg);
5451 	case BTRFS_IOC_BALANCE_PROGRESS:
5452 		return btrfs_ioctl_balance_progress(root, argp);
5453 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5454 		return btrfs_ioctl_set_received_subvol(file, argp);
5455 #ifdef CONFIG_64BIT
5456 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5457 		return btrfs_ioctl_set_received_subvol_32(file, argp);
5458 #endif
5459 	case BTRFS_IOC_SEND:
5460 		return btrfs_ioctl_send(file, argp);
5461 	case BTRFS_IOC_GET_DEV_STATS:
5462 		return btrfs_ioctl_get_dev_stats(root, argp);
5463 	case BTRFS_IOC_QUOTA_CTL:
5464 		return btrfs_ioctl_quota_ctl(file, argp);
5465 	case BTRFS_IOC_QGROUP_ASSIGN:
5466 		return btrfs_ioctl_qgroup_assign(file, argp);
5467 	case BTRFS_IOC_QGROUP_CREATE:
5468 		return btrfs_ioctl_qgroup_create(file, argp);
5469 	case BTRFS_IOC_QGROUP_LIMIT:
5470 		return btrfs_ioctl_qgroup_limit(file, argp);
5471 	case BTRFS_IOC_QUOTA_RESCAN:
5472 		return btrfs_ioctl_quota_rescan(file, argp);
5473 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5474 		return btrfs_ioctl_quota_rescan_status(file, argp);
5475 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5476 		return btrfs_ioctl_quota_rescan_wait(file, argp);
5477 	case BTRFS_IOC_DEV_REPLACE:
5478 		return btrfs_ioctl_dev_replace(root, argp);
5479 	case BTRFS_IOC_GET_FSLABEL:
5480 		return btrfs_ioctl_get_fslabel(file, argp);
5481 	case BTRFS_IOC_SET_FSLABEL:
5482 		return btrfs_ioctl_set_fslabel(file, argp);
5483 	case BTRFS_IOC_FILE_EXTENT_SAME:
5484 		return btrfs_ioctl_file_extent_same(file, argp);
5485 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5486 		return btrfs_ioctl_get_supported_features(file, argp);
5487 	case BTRFS_IOC_GET_FEATURES:
5488 		return btrfs_ioctl_get_features(file, argp);
5489 	case BTRFS_IOC_SET_FEATURES:
5490 		return btrfs_ioctl_set_features(file, argp);
5491 	}
5492 
5493 	return -ENOTTY;
5494 }
5495 
5496 #ifdef CONFIG_COMPAT
btrfs_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5497 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5498 {
5499 	switch (cmd) {
5500 	case FS_IOC32_GETFLAGS:
5501 		cmd = FS_IOC_GETFLAGS;
5502 		break;
5503 	case FS_IOC32_SETFLAGS:
5504 		cmd = FS_IOC_SETFLAGS;
5505 		break;
5506 	case FS_IOC32_GETVERSION:
5507 		cmd = FS_IOC_GETVERSION;
5508 		break;
5509 	default:
5510 		return -ENOIOCTLCMD;
5511 	}
5512 
5513 	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5514 }
5515 #endif
5516