1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39 
40 #undef SCRAMBLE_DELAYED_REFS
41 
42 /*
43  * control flags for do_chunk_alloc's force field
44  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45  * if we really need one.
46  *
47  * CHUNK_ALLOC_LIMITED means to only try and allocate one
48  * if we have very few chunks already allocated.  This is
49  * used as part of the clustering code to help make sure
50  * we have a good pool of storage to cluster in, without
51  * filling the FS with empty chunks
52  *
53  * CHUNK_ALLOC_FORCE means it must try to allocate one
54  *
55  */
56 enum {
57 	CHUNK_ALLOC_NO_FORCE = 0,
58 	CHUNK_ALLOC_LIMITED = 1,
59 	CHUNK_ALLOC_FORCE = 2,
60 };
61 
62 /*
63  * Control how reservations are dealt with.
64  *
65  * RESERVE_FREE - freeing a reservation.
66  * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67  *   ENOSPC accounting
68  * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69  *   bytes_may_use as the ENOSPC accounting is done elsewhere
70  */
71 enum {
72 	RESERVE_FREE = 0,
73 	RESERVE_ALLOC = 1,
74 	RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76 
77 static int update_block_group(struct btrfs_trans_handle *trans,
78 			      struct btrfs_root *root, u64 bytenr,
79 			      u64 num_bytes, int alloc);
80 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 				struct btrfs_root *root,
82 				struct btrfs_delayed_ref_node *node, u64 parent,
83 				u64 root_objectid, u64 owner_objectid,
84 				u64 owner_offset, int refs_to_drop,
85 				struct btrfs_delayed_extent_op *extra_op);
86 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
87 				    struct extent_buffer *leaf,
88 				    struct btrfs_extent_item *ei);
89 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
90 				      struct btrfs_root *root,
91 				      u64 parent, u64 root_objectid,
92 				      u64 flags, u64 owner, u64 offset,
93 				      struct btrfs_key *ins, int ref_mod);
94 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
95 				     struct btrfs_root *root,
96 				     u64 parent, u64 root_objectid,
97 				     u64 flags, struct btrfs_disk_key *key,
98 				     int level, struct btrfs_key *ins);
99 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
100 			  struct btrfs_root *extent_root, u64 flags,
101 			  int force);
102 static int find_next_key(struct btrfs_path *path, int level,
103 			 struct btrfs_key *key);
104 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
105 			    int dump_block_groups);
106 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
107 				       u64 num_bytes, int reserve,
108 				       int delalloc);
109 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
110 			       u64 num_bytes);
111 int btrfs_pin_extent(struct btrfs_root *root,
112 		     u64 bytenr, u64 num_bytes, int reserved);
113 
114 static noinline int
block_group_cache_done(struct btrfs_block_group_cache * cache)115 block_group_cache_done(struct btrfs_block_group_cache *cache)
116 {
117 	smp_mb();
118 	return cache->cached == BTRFS_CACHE_FINISHED ||
119 		cache->cached == BTRFS_CACHE_ERROR;
120 }
121 
block_group_bits(struct btrfs_block_group_cache * cache,u64 bits)122 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
123 {
124 	return (cache->flags & bits) == bits;
125 }
126 
btrfs_get_block_group(struct btrfs_block_group_cache * cache)127 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
128 {
129 	atomic_inc(&cache->count);
130 }
131 
btrfs_put_block_group(struct btrfs_block_group_cache * cache)132 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
133 {
134 	if (atomic_dec_and_test(&cache->count)) {
135 		WARN_ON(cache->pinned > 0);
136 		WARN_ON(cache->reserved > 0);
137 		kfree(cache->free_space_ctl);
138 		kfree(cache);
139 	}
140 }
141 
142 /*
143  * this adds the block group to the fs_info rb tree for the block group
144  * cache
145  */
btrfs_add_block_group_cache(struct btrfs_fs_info * info,struct btrfs_block_group_cache * block_group)146 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
147 				struct btrfs_block_group_cache *block_group)
148 {
149 	struct rb_node **p;
150 	struct rb_node *parent = NULL;
151 	struct btrfs_block_group_cache *cache;
152 
153 	spin_lock(&info->block_group_cache_lock);
154 	p = &info->block_group_cache_tree.rb_node;
155 
156 	while (*p) {
157 		parent = *p;
158 		cache = rb_entry(parent, struct btrfs_block_group_cache,
159 				 cache_node);
160 		if (block_group->key.objectid < cache->key.objectid) {
161 			p = &(*p)->rb_left;
162 		} else if (block_group->key.objectid > cache->key.objectid) {
163 			p = &(*p)->rb_right;
164 		} else {
165 			spin_unlock(&info->block_group_cache_lock);
166 			return -EEXIST;
167 		}
168 	}
169 
170 	rb_link_node(&block_group->cache_node, parent, p);
171 	rb_insert_color(&block_group->cache_node,
172 			&info->block_group_cache_tree);
173 
174 	if (info->first_logical_byte > block_group->key.objectid)
175 		info->first_logical_byte = block_group->key.objectid;
176 
177 	spin_unlock(&info->block_group_cache_lock);
178 
179 	return 0;
180 }
181 
182 /*
183  * This will return the block group at or after bytenr if contains is 0, else
184  * it will return the block group that contains the bytenr
185  */
186 static struct btrfs_block_group_cache *
block_group_cache_tree_search(struct btrfs_fs_info * info,u64 bytenr,int contains)187 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
188 			      int contains)
189 {
190 	struct btrfs_block_group_cache *cache, *ret = NULL;
191 	struct rb_node *n;
192 	u64 end, start;
193 
194 	spin_lock(&info->block_group_cache_lock);
195 	n = info->block_group_cache_tree.rb_node;
196 
197 	while (n) {
198 		cache = rb_entry(n, struct btrfs_block_group_cache,
199 				 cache_node);
200 		end = cache->key.objectid + cache->key.offset - 1;
201 		start = cache->key.objectid;
202 
203 		if (bytenr < start) {
204 			if (!contains && (!ret || start < ret->key.objectid))
205 				ret = cache;
206 			n = n->rb_left;
207 		} else if (bytenr > start) {
208 			if (contains && bytenr <= end) {
209 				ret = cache;
210 				break;
211 			}
212 			n = n->rb_right;
213 		} else {
214 			ret = cache;
215 			break;
216 		}
217 	}
218 	if (ret) {
219 		btrfs_get_block_group(ret);
220 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
221 			info->first_logical_byte = ret->key.objectid;
222 	}
223 	spin_unlock(&info->block_group_cache_lock);
224 
225 	return ret;
226 }
227 
add_excluded_extent(struct btrfs_root * root,u64 start,u64 num_bytes)228 static int add_excluded_extent(struct btrfs_root *root,
229 			       u64 start, u64 num_bytes)
230 {
231 	u64 end = start + num_bytes - 1;
232 	set_extent_bits(&root->fs_info->freed_extents[0],
233 			start, end, EXTENT_UPTODATE, GFP_NOFS);
234 	set_extent_bits(&root->fs_info->freed_extents[1],
235 			start, end, EXTENT_UPTODATE, GFP_NOFS);
236 	return 0;
237 }
238 
free_excluded_extents(struct btrfs_root * root,struct btrfs_block_group_cache * cache)239 static void free_excluded_extents(struct btrfs_root *root,
240 				  struct btrfs_block_group_cache *cache)
241 {
242 	u64 start, end;
243 
244 	start = cache->key.objectid;
245 	end = start + cache->key.offset - 1;
246 
247 	clear_extent_bits(&root->fs_info->freed_extents[0],
248 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
249 	clear_extent_bits(&root->fs_info->freed_extents[1],
250 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
251 }
252 
exclude_super_stripes(struct btrfs_root * root,struct btrfs_block_group_cache * cache)253 static int exclude_super_stripes(struct btrfs_root *root,
254 				 struct btrfs_block_group_cache *cache)
255 {
256 	u64 bytenr;
257 	u64 *logical;
258 	int stripe_len;
259 	int i, nr, ret;
260 
261 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
262 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
263 		cache->bytes_super += stripe_len;
264 		ret = add_excluded_extent(root, cache->key.objectid,
265 					  stripe_len);
266 		if (ret)
267 			return ret;
268 	}
269 
270 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
271 		bytenr = btrfs_sb_offset(i);
272 		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
273 				       cache->key.objectid, bytenr,
274 				       0, &logical, &nr, &stripe_len);
275 		if (ret)
276 			return ret;
277 
278 		while (nr--) {
279 			u64 start, len;
280 
281 			if (logical[nr] > cache->key.objectid +
282 			    cache->key.offset)
283 				continue;
284 
285 			if (logical[nr] + stripe_len <= cache->key.objectid)
286 				continue;
287 
288 			start = logical[nr];
289 			if (start < cache->key.objectid) {
290 				start = cache->key.objectid;
291 				len = (logical[nr] + stripe_len) - start;
292 			} else {
293 				len = min_t(u64, stripe_len,
294 					    cache->key.objectid +
295 					    cache->key.offset - start);
296 			}
297 
298 			cache->bytes_super += len;
299 			ret = add_excluded_extent(root, start, len);
300 			if (ret) {
301 				kfree(logical);
302 				return ret;
303 			}
304 		}
305 
306 		kfree(logical);
307 	}
308 	return 0;
309 }
310 
311 static struct btrfs_caching_control *
get_caching_control(struct btrfs_block_group_cache * cache)312 get_caching_control(struct btrfs_block_group_cache *cache)
313 {
314 	struct btrfs_caching_control *ctl;
315 
316 	spin_lock(&cache->lock);
317 	if (!cache->caching_ctl) {
318 		spin_unlock(&cache->lock);
319 		return NULL;
320 	}
321 
322 	ctl = cache->caching_ctl;
323 	atomic_inc(&ctl->count);
324 	spin_unlock(&cache->lock);
325 	return ctl;
326 }
327 
put_caching_control(struct btrfs_caching_control * ctl)328 static void put_caching_control(struct btrfs_caching_control *ctl)
329 {
330 	if (atomic_dec_and_test(&ctl->count))
331 		kfree(ctl);
332 }
333 
334 #ifdef CONFIG_BTRFS_DEBUG
fragment_free_space(struct btrfs_root * root,struct btrfs_block_group_cache * block_group)335 static void fragment_free_space(struct btrfs_root *root,
336 				struct btrfs_block_group_cache *block_group)
337 {
338 	u64 start = block_group->key.objectid;
339 	u64 len = block_group->key.offset;
340 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
341 		root->nodesize : root->sectorsize;
342 	u64 step = chunk << 1;
343 
344 	while (len > chunk) {
345 		btrfs_remove_free_space(block_group, start, chunk);
346 		start += step;
347 		if (len < step)
348 			len = 0;
349 		else
350 			len -= step;
351 	}
352 }
353 #endif
354 
355 /*
356  * this is only called by cache_block_group, since we could have freed extents
357  * we need to check the pinned_extents for any extents that can't be used yet
358  * since their free space will be released as soon as the transaction commits.
359  */
add_new_free_space(struct btrfs_block_group_cache * block_group,struct btrfs_fs_info * info,u64 start,u64 end)360 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
361 			      struct btrfs_fs_info *info, u64 start, u64 end)
362 {
363 	u64 extent_start, extent_end, size, total_added = 0;
364 	int ret;
365 
366 	while (start < end) {
367 		ret = find_first_extent_bit(info->pinned_extents, start,
368 					    &extent_start, &extent_end,
369 					    EXTENT_DIRTY | EXTENT_UPTODATE,
370 					    NULL);
371 		if (ret)
372 			break;
373 
374 		if (extent_start <= start) {
375 			start = extent_end + 1;
376 		} else if (extent_start > start && extent_start < end) {
377 			size = extent_start - start;
378 			total_added += size;
379 			ret = btrfs_add_free_space(block_group, start,
380 						   size);
381 			BUG_ON(ret); /* -ENOMEM or logic error */
382 			start = extent_end + 1;
383 		} else {
384 			break;
385 		}
386 	}
387 
388 	if (start < end) {
389 		size = end - start;
390 		total_added += size;
391 		ret = btrfs_add_free_space(block_group, start, size);
392 		BUG_ON(ret); /* -ENOMEM or logic error */
393 	}
394 
395 	return total_added;
396 }
397 
caching_thread(struct btrfs_work * work)398 static noinline void caching_thread(struct btrfs_work *work)
399 {
400 	struct btrfs_block_group_cache *block_group;
401 	struct btrfs_fs_info *fs_info;
402 	struct btrfs_caching_control *caching_ctl;
403 	struct btrfs_root *extent_root;
404 	struct btrfs_path *path;
405 	struct extent_buffer *leaf;
406 	struct btrfs_key key;
407 	u64 total_found = 0;
408 	u64 last = 0;
409 	u32 nritems;
410 	int ret = -ENOMEM;
411 	bool wakeup = true;
412 
413 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
414 	block_group = caching_ctl->block_group;
415 	fs_info = block_group->fs_info;
416 	extent_root = fs_info->extent_root;
417 
418 	path = btrfs_alloc_path();
419 	if (!path)
420 		goto out;
421 
422 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
423 
424 #ifdef CONFIG_BTRFS_DEBUG
425 	/*
426 	 * If we're fragmenting we don't want to make anybody think we can
427 	 * allocate from this block group until we've had a chance to fragment
428 	 * the free space.
429 	 */
430 	if (btrfs_should_fragment_free_space(extent_root, block_group))
431 		wakeup = false;
432 #endif
433 	/*
434 	 * We don't want to deadlock with somebody trying to allocate a new
435 	 * extent for the extent root while also trying to search the extent
436 	 * root to add free space.  So we skip locking and search the commit
437 	 * root, since its read-only
438 	 */
439 	path->skip_locking = 1;
440 	path->search_commit_root = 1;
441 	path->reada = 1;
442 
443 	key.objectid = last;
444 	key.offset = 0;
445 	key.type = BTRFS_EXTENT_ITEM_KEY;
446 again:
447 	mutex_lock(&caching_ctl->mutex);
448 	/* need to make sure the commit_root doesn't disappear */
449 	down_read(&fs_info->commit_root_sem);
450 
451 next:
452 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
453 	if (ret < 0)
454 		goto err;
455 
456 	leaf = path->nodes[0];
457 	nritems = btrfs_header_nritems(leaf);
458 
459 	while (1) {
460 		if (btrfs_fs_closing(fs_info) > 1) {
461 			last = (u64)-1;
462 			break;
463 		}
464 
465 		if (path->slots[0] < nritems) {
466 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
467 		} else {
468 			ret = find_next_key(path, 0, &key);
469 			if (ret)
470 				break;
471 
472 			if (need_resched() ||
473 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
474 				if (wakeup)
475 					caching_ctl->progress = last;
476 				btrfs_release_path(path);
477 				up_read(&fs_info->commit_root_sem);
478 				mutex_unlock(&caching_ctl->mutex);
479 				cond_resched();
480 				goto again;
481 			}
482 
483 			ret = btrfs_next_leaf(extent_root, path);
484 			if (ret < 0)
485 				goto err;
486 			if (ret)
487 				break;
488 			leaf = path->nodes[0];
489 			nritems = btrfs_header_nritems(leaf);
490 			continue;
491 		}
492 
493 		if (key.objectid < last) {
494 			key.objectid = last;
495 			key.offset = 0;
496 			key.type = BTRFS_EXTENT_ITEM_KEY;
497 
498 			if (wakeup)
499 				caching_ctl->progress = last;
500 			btrfs_release_path(path);
501 			goto next;
502 		}
503 
504 		if (key.objectid < block_group->key.objectid) {
505 			path->slots[0]++;
506 			continue;
507 		}
508 
509 		if (key.objectid >= block_group->key.objectid +
510 		    block_group->key.offset)
511 			break;
512 
513 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
514 		    key.type == BTRFS_METADATA_ITEM_KEY) {
515 			total_found += add_new_free_space(block_group,
516 							  fs_info, last,
517 							  key.objectid);
518 			if (key.type == BTRFS_METADATA_ITEM_KEY)
519 				last = key.objectid +
520 					fs_info->tree_root->nodesize;
521 			else
522 				last = key.objectid + key.offset;
523 
524 			if (total_found > (1024 * 1024 * 2)) {
525 				total_found = 0;
526 				if (wakeup)
527 					wake_up(&caching_ctl->wait);
528 			}
529 		}
530 		path->slots[0]++;
531 	}
532 	ret = 0;
533 
534 	total_found += add_new_free_space(block_group, fs_info, last,
535 					  block_group->key.objectid +
536 					  block_group->key.offset);
537 	spin_lock(&block_group->lock);
538 	block_group->caching_ctl = NULL;
539 	block_group->cached = BTRFS_CACHE_FINISHED;
540 	spin_unlock(&block_group->lock);
541 
542 #ifdef CONFIG_BTRFS_DEBUG
543 	if (btrfs_should_fragment_free_space(extent_root, block_group)) {
544 		u64 bytes_used;
545 
546 		spin_lock(&block_group->space_info->lock);
547 		spin_lock(&block_group->lock);
548 		bytes_used = block_group->key.offset -
549 			btrfs_block_group_used(&block_group->item);
550 		block_group->space_info->bytes_used += bytes_used >> 1;
551 		spin_unlock(&block_group->lock);
552 		spin_unlock(&block_group->space_info->lock);
553 		fragment_free_space(extent_root, block_group);
554 	}
555 #endif
556 
557 	caching_ctl->progress = (u64)-1;
558 err:
559 	btrfs_free_path(path);
560 	up_read(&fs_info->commit_root_sem);
561 
562 	free_excluded_extents(extent_root, block_group);
563 
564 	mutex_unlock(&caching_ctl->mutex);
565 out:
566 	if (ret) {
567 		spin_lock(&block_group->lock);
568 		block_group->caching_ctl = NULL;
569 		block_group->cached = BTRFS_CACHE_ERROR;
570 		spin_unlock(&block_group->lock);
571 	}
572 	wake_up(&caching_ctl->wait);
573 
574 	put_caching_control(caching_ctl);
575 	btrfs_put_block_group(block_group);
576 }
577 
cache_block_group(struct btrfs_block_group_cache * cache,int load_cache_only)578 static int cache_block_group(struct btrfs_block_group_cache *cache,
579 			     int load_cache_only)
580 {
581 	DEFINE_WAIT(wait);
582 	struct btrfs_fs_info *fs_info = cache->fs_info;
583 	struct btrfs_caching_control *caching_ctl;
584 	int ret = 0;
585 
586 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
587 	if (!caching_ctl)
588 		return -ENOMEM;
589 
590 	INIT_LIST_HEAD(&caching_ctl->list);
591 	mutex_init(&caching_ctl->mutex);
592 	init_waitqueue_head(&caching_ctl->wait);
593 	caching_ctl->block_group = cache;
594 	caching_ctl->progress = cache->key.objectid;
595 	atomic_set(&caching_ctl->count, 1);
596 	btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
597 			caching_thread, NULL, NULL);
598 
599 	spin_lock(&cache->lock);
600 	/*
601 	 * This should be a rare occasion, but this could happen I think in the
602 	 * case where one thread starts to load the space cache info, and then
603 	 * some other thread starts a transaction commit which tries to do an
604 	 * allocation while the other thread is still loading the space cache
605 	 * info.  The previous loop should have kept us from choosing this block
606 	 * group, but if we've moved to the state where we will wait on caching
607 	 * block groups we need to first check if we're doing a fast load here,
608 	 * so we can wait for it to finish, otherwise we could end up allocating
609 	 * from a block group who's cache gets evicted for one reason or
610 	 * another.
611 	 */
612 	while (cache->cached == BTRFS_CACHE_FAST) {
613 		struct btrfs_caching_control *ctl;
614 
615 		ctl = cache->caching_ctl;
616 		atomic_inc(&ctl->count);
617 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
618 		spin_unlock(&cache->lock);
619 
620 		schedule();
621 
622 		finish_wait(&ctl->wait, &wait);
623 		put_caching_control(ctl);
624 		spin_lock(&cache->lock);
625 	}
626 
627 	if (cache->cached != BTRFS_CACHE_NO) {
628 		spin_unlock(&cache->lock);
629 		kfree(caching_ctl);
630 		return 0;
631 	}
632 	WARN_ON(cache->caching_ctl);
633 	cache->caching_ctl = caching_ctl;
634 	cache->cached = BTRFS_CACHE_FAST;
635 	spin_unlock(&cache->lock);
636 
637 	if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
638 		mutex_lock(&caching_ctl->mutex);
639 		ret = load_free_space_cache(fs_info, cache);
640 
641 		spin_lock(&cache->lock);
642 		if (ret == 1) {
643 			cache->caching_ctl = NULL;
644 			cache->cached = BTRFS_CACHE_FINISHED;
645 			cache->last_byte_to_unpin = (u64)-1;
646 			caching_ctl->progress = (u64)-1;
647 		} else {
648 			if (load_cache_only) {
649 				cache->caching_ctl = NULL;
650 				cache->cached = BTRFS_CACHE_NO;
651 			} else {
652 				cache->cached = BTRFS_CACHE_STARTED;
653 				cache->has_caching_ctl = 1;
654 			}
655 		}
656 		spin_unlock(&cache->lock);
657 #ifdef CONFIG_BTRFS_DEBUG
658 		if (ret == 1 &&
659 		    btrfs_should_fragment_free_space(fs_info->extent_root,
660 						     cache)) {
661 			u64 bytes_used;
662 
663 			spin_lock(&cache->space_info->lock);
664 			spin_lock(&cache->lock);
665 			bytes_used = cache->key.offset -
666 				btrfs_block_group_used(&cache->item);
667 			cache->space_info->bytes_used += bytes_used >> 1;
668 			spin_unlock(&cache->lock);
669 			spin_unlock(&cache->space_info->lock);
670 			fragment_free_space(fs_info->extent_root, cache);
671 		}
672 #endif
673 		mutex_unlock(&caching_ctl->mutex);
674 
675 		wake_up(&caching_ctl->wait);
676 		if (ret == 1) {
677 			put_caching_control(caching_ctl);
678 			free_excluded_extents(fs_info->extent_root, cache);
679 			return 0;
680 		}
681 	} else {
682 		/*
683 		 * We are not going to do the fast caching, set cached to the
684 		 * appropriate value and wakeup any waiters.
685 		 */
686 		spin_lock(&cache->lock);
687 		if (load_cache_only) {
688 			cache->caching_ctl = NULL;
689 			cache->cached = BTRFS_CACHE_NO;
690 		} else {
691 			cache->cached = BTRFS_CACHE_STARTED;
692 			cache->has_caching_ctl = 1;
693 		}
694 		spin_unlock(&cache->lock);
695 		wake_up(&caching_ctl->wait);
696 	}
697 
698 	if (load_cache_only) {
699 		put_caching_control(caching_ctl);
700 		return 0;
701 	}
702 
703 	down_write(&fs_info->commit_root_sem);
704 	atomic_inc(&caching_ctl->count);
705 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
706 	up_write(&fs_info->commit_root_sem);
707 
708 	btrfs_get_block_group(cache);
709 
710 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
711 
712 	return ret;
713 }
714 
715 /*
716  * return the block group that starts at or after bytenr
717  */
718 static struct btrfs_block_group_cache *
btrfs_lookup_first_block_group(struct btrfs_fs_info * info,u64 bytenr)719 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
720 {
721 	struct btrfs_block_group_cache *cache;
722 
723 	cache = block_group_cache_tree_search(info, bytenr, 0);
724 
725 	return cache;
726 }
727 
728 /*
729  * return the block group that contains the given bytenr
730  */
btrfs_lookup_block_group(struct btrfs_fs_info * info,u64 bytenr)731 struct btrfs_block_group_cache *btrfs_lookup_block_group(
732 						 struct btrfs_fs_info *info,
733 						 u64 bytenr)
734 {
735 	struct btrfs_block_group_cache *cache;
736 
737 	cache = block_group_cache_tree_search(info, bytenr, 1);
738 
739 	return cache;
740 }
741 
__find_space_info(struct btrfs_fs_info * info,u64 flags)742 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
743 						  u64 flags)
744 {
745 	struct list_head *head = &info->space_info;
746 	struct btrfs_space_info *found;
747 
748 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
749 
750 	rcu_read_lock();
751 	list_for_each_entry_rcu(found, head, list) {
752 		if (found->flags & flags) {
753 			rcu_read_unlock();
754 			return found;
755 		}
756 	}
757 	rcu_read_unlock();
758 	return NULL;
759 }
760 
761 /*
762  * after adding space to the filesystem, we need to clear the full flags
763  * on all the space infos.
764  */
btrfs_clear_space_info_full(struct btrfs_fs_info * info)765 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
766 {
767 	struct list_head *head = &info->space_info;
768 	struct btrfs_space_info *found;
769 
770 	rcu_read_lock();
771 	list_for_each_entry_rcu(found, head, list)
772 		found->full = 0;
773 	rcu_read_unlock();
774 }
775 
776 /* simple helper to search for an existing data extent at a given offset */
btrfs_lookup_data_extent(struct btrfs_root * root,u64 start,u64 len)777 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
778 {
779 	int ret;
780 	struct btrfs_key key;
781 	struct btrfs_path *path;
782 
783 	path = btrfs_alloc_path();
784 	if (!path)
785 		return -ENOMEM;
786 
787 	key.objectid = start;
788 	key.offset = len;
789 	key.type = BTRFS_EXTENT_ITEM_KEY;
790 	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
791 				0, 0);
792 	btrfs_free_path(path);
793 	return ret;
794 }
795 
796 /*
797  * helper function to lookup reference count and flags of a tree block.
798  *
799  * the head node for delayed ref is used to store the sum of all the
800  * reference count modifications queued up in the rbtree. the head
801  * node may also store the extent flags to set. This way you can check
802  * to see what the reference count and extent flags would be if all of
803  * the delayed refs are not processed.
804  */
btrfs_lookup_extent_info(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 offset,int metadata,u64 * refs,u64 * flags)805 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
806 			     struct btrfs_root *root, u64 bytenr,
807 			     u64 offset, int metadata, u64 *refs, u64 *flags)
808 {
809 	struct btrfs_delayed_ref_head *head;
810 	struct btrfs_delayed_ref_root *delayed_refs;
811 	struct btrfs_path *path;
812 	struct btrfs_extent_item *ei;
813 	struct extent_buffer *leaf;
814 	struct btrfs_key key;
815 	u32 item_size;
816 	u64 num_refs;
817 	u64 extent_flags;
818 	int ret;
819 
820 	/*
821 	 * If we don't have skinny metadata, don't bother doing anything
822 	 * different
823 	 */
824 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
825 		offset = root->nodesize;
826 		metadata = 0;
827 	}
828 
829 	path = btrfs_alloc_path();
830 	if (!path)
831 		return -ENOMEM;
832 
833 	if (!trans) {
834 		path->skip_locking = 1;
835 		path->search_commit_root = 1;
836 	}
837 
838 search_again:
839 	key.objectid = bytenr;
840 	key.offset = offset;
841 	if (metadata)
842 		key.type = BTRFS_METADATA_ITEM_KEY;
843 	else
844 		key.type = BTRFS_EXTENT_ITEM_KEY;
845 
846 	ret = btrfs_search_slot(trans, root->fs_info->extent_root,
847 				&key, path, 0, 0);
848 	if (ret < 0)
849 		goto out_free;
850 
851 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
852 		if (path->slots[0]) {
853 			path->slots[0]--;
854 			btrfs_item_key_to_cpu(path->nodes[0], &key,
855 					      path->slots[0]);
856 			if (key.objectid == bytenr &&
857 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
858 			    key.offset == root->nodesize)
859 				ret = 0;
860 		}
861 	}
862 
863 	if (ret == 0) {
864 		leaf = path->nodes[0];
865 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
866 		if (item_size >= sizeof(*ei)) {
867 			ei = btrfs_item_ptr(leaf, path->slots[0],
868 					    struct btrfs_extent_item);
869 			num_refs = btrfs_extent_refs(leaf, ei);
870 			extent_flags = btrfs_extent_flags(leaf, ei);
871 		} else {
872 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
873 			struct btrfs_extent_item_v0 *ei0;
874 			BUG_ON(item_size != sizeof(*ei0));
875 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
876 					     struct btrfs_extent_item_v0);
877 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
878 			/* FIXME: this isn't correct for data */
879 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
880 #else
881 			BUG();
882 #endif
883 		}
884 		BUG_ON(num_refs == 0);
885 	} else {
886 		num_refs = 0;
887 		extent_flags = 0;
888 		ret = 0;
889 	}
890 
891 	if (!trans)
892 		goto out;
893 
894 	delayed_refs = &trans->transaction->delayed_refs;
895 	spin_lock(&delayed_refs->lock);
896 	head = btrfs_find_delayed_ref_head(trans, bytenr);
897 	if (head) {
898 		if (!mutex_trylock(&head->mutex)) {
899 			atomic_inc(&head->node.refs);
900 			spin_unlock(&delayed_refs->lock);
901 
902 			btrfs_release_path(path);
903 
904 			/*
905 			 * Mutex was contended, block until it's released and try
906 			 * again
907 			 */
908 			mutex_lock(&head->mutex);
909 			mutex_unlock(&head->mutex);
910 			btrfs_put_delayed_ref(&head->node);
911 			goto search_again;
912 		}
913 		spin_lock(&head->lock);
914 		if (head->extent_op && head->extent_op->update_flags)
915 			extent_flags |= head->extent_op->flags_to_set;
916 		else
917 			BUG_ON(num_refs == 0);
918 
919 		num_refs += head->node.ref_mod;
920 		spin_unlock(&head->lock);
921 		mutex_unlock(&head->mutex);
922 	}
923 	spin_unlock(&delayed_refs->lock);
924 out:
925 	WARN_ON(num_refs == 0);
926 	if (refs)
927 		*refs = num_refs;
928 	if (flags)
929 		*flags = extent_flags;
930 out_free:
931 	btrfs_free_path(path);
932 	return ret;
933 }
934 
935 /*
936  * Back reference rules.  Back refs have three main goals:
937  *
938  * 1) differentiate between all holders of references to an extent so that
939  *    when a reference is dropped we can make sure it was a valid reference
940  *    before freeing the extent.
941  *
942  * 2) Provide enough information to quickly find the holders of an extent
943  *    if we notice a given block is corrupted or bad.
944  *
945  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
946  *    maintenance.  This is actually the same as #2, but with a slightly
947  *    different use case.
948  *
949  * There are two kinds of back refs. The implicit back refs is optimized
950  * for pointers in non-shared tree blocks. For a given pointer in a block,
951  * back refs of this kind provide information about the block's owner tree
952  * and the pointer's key. These information allow us to find the block by
953  * b-tree searching. The full back refs is for pointers in tree blocks not
954  * referenced by their owner trees. The location of tree block is recorded
955  * in the back refs. Actually the full back refs is generic, and can be
956  * used in all cases the implicit back refs is used. The major shortcoming
957  * of the full back refs is its overhead. Every time a tree block gets
958  * COWed, we have to update back refs entry for all pointers in it.
959  *
960  * For a newly allocated tree block, we use implicit back refs for
961  * pointers in it. This means most tree related operations only involve
962  * implicit back refs. For a tree block created in old transaction, the
963  * only way to drop a reference to it is COW it. So we can detect the
964  * event that tree block loses its owner tree's reference and do the
965  * back refs conversion.
966  *
967  * When a tree block is COW'd through a tree, there are four cases:
968  *
969  * The reference count of the block is one and the tree is the block's
970  * owner tree. Nothing to do in this case.
971  *
972  * The reference count of the block is one and the tree is not the
973  * block's owner tree. In this case, full back refs is used for pointers
974  * in the block. Remove these full back refs, add implicit back refs for
975  * every pointers in the new block.
976  *
977  * The reference count of the block is greater than one and the tree is
978  * the block's owner tree. In this case, implicit back refs is used for
979  * pointers in the block. Add full back refs for every pointers in the
980  * block, increase lower level extents' reference counts. The original
981  * implicit back refs are entailed to the new block.
982  *
983  * The reference count of the block is greater than one and the tree is
984  * not the block's owner tree. Add implicit back refs for every pointer in
985  * the new block, increase lower level extents' reference count.
986  *
987  * Back Reference Key composing:
988  *
989  * The key objectid corresponds to the first byte in the extent,
990  * The key type is used to differentiate between types of back refs.
991  * There are different meanings of the key offset for different types
992  * of back refs.
993  *
994  * File extents can be referenced by:
995  *
996  * - multiple snapshots, subvolumes, or different generations in one subvol
997  * - different files inside a single subvolume
998  * - different offsets inside a file (bookend extents in file.c)
999  *
1000  * The extent ref structure for the implicit back refs has fields for:
1001  *
1002  * - Objectid of the subvolume root
1003  * - objectid of the file holding the reference
1004  * - original offset in the file
1005  * - how many bookend extents
1006  *
1007  * The key offset for the implicit back refs is hash of the first
1008  * three fields.
1009  *
1010  * The extent ref structure for the full back refs has field for:
1011  *
1012  * - number of pointers in the tree leaf
1013  *
1014  * The key offset for the implicit back refs is the first byte of
1015  * the tree leaf
1016  *
1017  * When a file extent is allocated, The implicit back refs is used.
1018  * the fields are filled in:
1019  *
1020  *     (root_key.objectid, inode objectid, offset in file, 1)
1021  *
1022  * When a file extent is removed file truncation, we find the
1023  * corresponding implicit back refs and check the following fields:
1024  *
1025  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
1026  *
1027  * Btree extents can be referenced by:
1028  *
1029  * - Different subvolumes
1030  *
1031  * Both the implicit back refs and the full back refs for tree blocks
1032  * only consist of key. The key offset for the implicit back refs is
1033  * objectid of block's owner tree. The key offset for the full back refs
1034  * is the first byte of parent block.
1035  *
1036  * When implicit back refs is used, information about the lowest key and
1037  * level of the tree block are required. These information are stored in
1038  * tree block info structure.
1039  */
1040 
1041 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
convert_extent_item_v0(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 owner,u32 extra_size)1042 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1043 				  struct btrfs_root *root,
1044 				  struct btrfs_path *path,
1045 				  u64 owner, u32 extra_size)
1046 {
1047 	struct btrfs_extent_item *item;
1048 	struct btrfs_extent_item_v0 *ei0;
1049 	struct btrfs_extent_ref_v0 *ref0;
1050 	struct btrfs_tree_block_info *bi;
1051 	struct extent_buffer *leaf;
1052 	struct btrfs_key key;
1053 	struct btrfs_key found_key;
1054 	u32 new_size = sizeof(*item);
1055 	u64 refs;
1056 	int ret;
1057 
1058 	leaf = path->nodes[0];
1059 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1060 
1061 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1062 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
1063 			     struct btrfs_extent_item_v0);
1064 	refs = btrfs_extent_refs_v0(leaf, ei0);
1065 
1066 	if (owner == (u64)-1) {
1067 		while (1) {
1068 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1069 				ret = btrfs_next_leaf(root, path);
1070 				if (ret < 0)
1071 					return ret;
1072 				BUG_ON(ret > 0); /* Corruption */
1073 				leaf = path->nodes[0];
1074 			}
1075 			btrfs_item_key_to_cpu(leaf, &found_key,
1076 					      path->slots[0]);
1077 			BUG_ON(key.objectid != found_key.objectid);
1078 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1079 				path->slots[0]++;
1080 				continue;
1081 			}
1082 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1083 					      struct btrfs_extent_ref_v0);
1084 			owner = btrfs_ref_objectid_v0(leaf, ref0);
1085 			break;
1086 		}
1087 	}
1088 	btrfs_release_path(path);
1089 
1090 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1091 		new_size += sizeof(*bi);
1092 
1093 	new_size -= sizeof(*ei0);
1094 	ret = btrfs_search_slot(trans, root, &key, path,
1095 				new_size + extra_size, 1);
1096 	if (ret < 0)
1097 		return ret;
1098 	BUG_ON(ret); /* Corruption */
1099 
1100 	btrfs_extend_item(root, path, new_size);
1101 
1102 	leaf = path->nodes[0];
1103 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1104 	btrfs_set_extent_refs(leaf, item, refs);
1105 	/* FIXME: get real generation */
1106 	btrfs_set_extent_generation(leaf, item, 0);
1107 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1108 		btrfs_set_extent_flags(leaf, item,
1109 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1110 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1111 		bi = (struct btrfs_tree_block_info *)(item + 1);
1112 		/* FIXME: get first key of the block */
1113 		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1114 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1115 	} else {
1116 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1117 	}
1118 	btrfs_mark_buffer_dirty(leaf);
1119 	return 0;
1120 }
1121 #endif
1122 
hash_extent_data_ref(u64 root_objectid,u64 owner,u64 offset)1123 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1124 {
1125 	u32 high_crc = ~(u32)0;
1126 	u32 low_crc = ~(u32)0;
1127 	__le64 lenum;
1128 
1129 	lenum = cpu_to_le64(root_objectid);
1130 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1131 	lenum = cpu_to_le64(owner);
1132 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1133 	lenum = cpu_to_le64(offset);
1134 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1135 
1136 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1137 }
1138 
hash_extent_data_ref_item(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref)1139 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1140 				     struct btrfs_extent_data_ref *ref)
1141 {
1142 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1143 				    btrfs_extent_data_ref_objectid(leaf, ref),
1144 				    btrfs_extent_data_ref_offset(leaf, ref));
1145 }
1146 
match_extent_data_ref(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref,u64 root_objectid,u64 owner,u64 offset)1147 static int match_extent_data_ref(struct extent_buffer *leaf,
1148 				 struct btrfs_extent_data_ref *ref,
1149 				 u64 root_objectid, u64 owner, u64 offset)
1150 {
1151 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1152 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1153 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1154 		return 0;
1155 	return 1;
1156 }
1157 
lookup_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset)1158 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1159 					   struct btrfs_root *root,
1160 					   struct btrfs_path *path,
1161 					   u64 bytenr, u64 parent,
1162 					   u64 root_objectid,
1163 					   u64 owner, u64 offset)
1164 {
1165 	struct btrfs_key key;
1166 	struct btrfs_extent_data_ref *ref;
1167 	struct extent_buffer *leaf;
1168 	u32 nritems;
1169 	int ret;
1170 	int recow;
1171 	int err = -ENOENT;
1172 
1173 	key.objectid = bytenr;
1174 	if (parent) {
1175 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1176 		key.offset = parent;
1177 	} else {
1178 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1179 		key.offset = hash_extent_data_ref(root_objectid,
1180 						  owner, offset);
1181 	}
1182 again:
1183 	recow = 0;
1184 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1185 	if (ret < 0) {
1186 		err = ret;
1187 		goto fail;
1188 	}
1189 
1190 	if (parent) {
1191 		if (!ret)
1192 			return 0;
1193 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1194 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1195 		btrfs_release_path(path);
1196 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1197 		if (ret < 0) {
1198 			err = ret;
1199 			goto fail;
1200 		}
1201 		if (!ret)
1202 			return 0;
1203 #endif
1204 		goto fail;
1205 	}
1206 
1207 	leaf = path->nodes[0];
1208 	nritems = btrfs_header_nritems(leaf);
1209 	while (1) {
1210 		if (path->slots[0] >= nritems) {
1211 			ret = btrfs_next_leaf(root, path);
1212 			if (ret < 0)
1213 				err = ret;
1214 			if (ret)
1215 				goto fail;
1216 
1217 			leaf = path->nodes[0];
1218 			nritems = btrfs_header_nritems(leaf);
1219 			recow = 1;
1220 		}
1221 
1222 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1223 		if (key.objectid != bytenr ||
1224 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1225 			goto fail;
1226 
1227 		ref = btrfs_item_ptr(leaf, path->slots[0],
1228 				     struct btrfs_extent_data_ref);
1229 
1230 		if (match_extent_data_ref(leaf, ref, root_objectid,
1231 					  owner, offset)) {
1232 			if (recow) {
1233 				btrfs_release_path(path);
1234 				goto again;
1235 			}
1236 			err = 0;
1237 			break;
1238 		}
1239 		path->slots[0]++;
1240 	}
1241 fail:
1242 	return err;
1243 }
1244 
insert_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add)1245 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1246 					   struct btrfs_root *root,
1247 					   struct btrfs_path *path,
1248 					   u64 bytenr, u64 parent,
1249 					   u64 root_objectid, u64 owner,
1250 					   u64 offset, int refs_to_add)
1251 {
1252 	struct btrfs_key key;
1253 	struct extent_buffer *leaf;
1254 	u32 size;
1255 	u32 num_refs;
1256 	int ret;
1257 
1258 	key.objectid = bytenr;
1259 	if (parent) {
1260 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1261 		key.offset = parent;
1262 		size = sizeof(struct btrfs_shared_data_ref);
1263 	} else {
1264 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1265 		key.offset = hash_extent_data_ref(root_objectid,
1266 						  owner, offset);
1267 		size = sizeof(struct btrfs_extent_data_ref);
1268 	}
1269 
1270 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1271 	if (ret && ret != -EEXIST)
1272 		goto fail;
1273 
1274 	leaf = path->nodes[0];
1275 	if (parent) {
1276 		struct btrfs_shared_data_ref *ref;
1277 		ref = btrfs_item_ptr(leaf, path->slots[0],
1278 				     struct btrfs_shared_data_ref);
1279 		if (ret == 0) {
1280 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1281 		} else {
1282 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1283 			num_refs += refs_to_add;
1284 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1285 		}
1286 	} else {
1287 		struct btrfs_extent_data_ref *ref;
1288 		while (ret == -EEXIST) {
1289 			ref = btrfs_item_ptr(leaf, path->slots[0],
1290 					     struct btrfs_extent_data_ref);
1291 			if (match_extent_data_ref(leaf, ref, root_objectid,
1292 						  owner, offset))
1293 				break;
1294 			btrfs_release_path(path);
1295 			key.offset++;
1296 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1297 						      size);
1298 			if (ret && ret != -EEXIST)
1299 				goto fail;
1300 
1301 			leaf = path->nodes[0];
1302 		}
1303 		ref = btrfs_item_ptr(leaf, path->slots[0],
1304 				     struct btrfs_extent_data_ref);
1305 		if (ret == 0) {
1306 			btrfs_set_extent_data_ref_root(leaf, ref,
1307 						       root_objectid);
1308 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1309 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1310 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1311 		} else {
1312 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1313 			num_refs += refs_to_add;
1314 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1315 		}
1316 	}
1317 	btrfs_mark_buffer_dirty(leaf);
1318 	ret = 0;
1319 fail:
1320 	btrfs_release_path(path);
1321 	return ret;
1322 }
1323 
remove_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int refs_to_drop,int * last_ref)1324 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1325 					   struct btrfs_root *root,
1326 					   struct btrfs_path *path,
1327 					   int refs_to_drop, int *last_ref)
1328 {
1329 	struct btrfs_key key;
1330 	struct btrfs_extent_data_ref *ref1 = NULL;
1331 	struct btrfs_shared_data_ref *ref2 = NULL;
1332 	struct extent_buffer *leaf;
1333 	u32 num_refs = 0;
1334 	int ret = 0;
1335 
1336 	leaf = path->nodes[0];
1337 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1338 
1339 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1340 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1341 				      struct btrfs_extent_data_ref);
1342 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1343 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1344 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1345 				      struct btrfs_shared_data_ref);
1346 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1347 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1348 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1349 		struct btrfs_extent_ref_v0 *ref0;
1350 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1351 				      struct btrfs_extent_ref_v0);
1352 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1353 #endif
1354 	} else {
1355 		BUG();
1356 	}
1357 
1358 	BUG_ON(num_refs < refs_to_drop);
1359 	num_refs -= refs_to_drop;
1360 
1361 	if (num_refs == 0) {
1362 		ret = btrfs_del_item(trans, root, path);
1363 		*last_ref = 1;
1364 	} else {
1365 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1366 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1367 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1368 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1369 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1370 		else {
1371 			struct btrfs_extent_ref_v0 *ref0;
1372 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1373 					struct btrfs_extent_ref_v0);
1374 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1375 		}
1376 #endif
1377 		btrfs_mark_buffer_dirty(leaf);
1378 	}
1379 	return ret;
1380 }
1381 
extent_data_ref_count(struct btrfs_path * path,struct btrfs_extent_inline_ref * iref)1382 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1383 					  struct btrfs_extent_inline_ref *iref)
1384 {
1385 	struct btrfs_key key;
1386 	struct extent_buffer *leaf;
1387 	struct btrfs_extent_data_ref *ref1;
1388 	struct btrfs_shared_data_ref *ref2;
1389 	u32 num_refs = 0;
1390 
1391 	leaf = path->nodes[0];
1392 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1393 	if (iref) {
1394 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
1395 		    BTRFS_EXTENT_DATA_REF_KEY) {
1396 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1397 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1398 		} else {
1399 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1400 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1401 		}
1402 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1403 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1404 				      struct btrfs_extent_data_ref);
1405 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1406 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1407 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1408 				      struct btrfs_shared_data_ref);
1409 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1410 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1411 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1412 		struct btrfs_extent_ref_v0 *ref0;
1413 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1414 				      struct btrfs_extent_ref_v0);
1415 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1416 #endif
1417 	} else {
1418 		WARN_ON(1);
1419 	}
1420 	return num_refs;
1421 }
1422 
lookup_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid)1423 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1424 					  struct btrfs_root *root,
1425 					  struct btrfs_path *path,
1426 					  u64 bytenr, u64 parent,
1427 					  u64 root_objectid)
1428 {
1429 	struct btrfs_key key;
1430 	int ret;
1431 
1432 	key.objectid = bytenr;
1433 	if (parent) {
1434 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1435 		key.offset = parent;
1436 	} else {
1437 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1438 		key.offset = root_objectid;
1439 	}
1440 
1441 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1442 	if (ret > 0)
1443 		ret = -ENOENT;
1444 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1445 	if (ret == -ENOENT && parent) {
1446 		btrfs_release_path(path);
1447 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1448 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1449 		if (ret > 0)
1450 			ret = -ENOENT;
1451 	}
1452 #endif
1453 	return ret;
1454 }
1455 
insert_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid)1456 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1457 					  struct btrfs_root *root,
1458 					  struct btrfs_path *path,
1459 					  u64 bytenr, u64 parent,
1460 					  u64 root_objectid)
1461 {
1462 	struct btrfs_key key;
1463 	int ret;
1464 
1465 	key.objectid = bytenr;
1466 	if (parent) {
1467 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1468 		key.offset = parent;
1469 	} else {
1470 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1471 		key.offset = root_objectid;
1472 	}
1473 
1474 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1475 	btrfs_release_path(path);
1476 	return ret;
1477 }
1478 
extent_ref_type(u64 parent,u64 owner)1479 static inline int extent_ref_type(u64 parent, u64 owner)
1480 {
1481 	int type;
1482 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1483 		if (parent > 0)
1484 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1485 		else
1486 			type = BTRFS_TREE_BLOCK_REF_KEY;
1487 	} else {
1488 		if (parent > 0)
1489 			type = BTRFS_SHARED_DATA_REF_KEY;
1490 		else
1491 			type = BTRFS_EXTENT_DATA_REF_KEY;
1492 	}
1493 	return type;
1494 }
1495 
find_next_key(struct btrfs_path * path,int level,struct btrfs_key * key)1496 static int find_next_key(struct btrfs_path *path, int level,
1497 			 struct btrfs_key *key)
1498 
1499 {
1500 	for (; level < BTRFS_MAX_LEVEL; level++) {
1501 		if (!path->nodes[level])
1502 			break;
1503 		if (path->slots[level] + 1 >=
1504 		    btrfs_header_nritems(path->nodes[level]))
1505 			continue;
1506 		if (level == 0)
1507 			btrfs_item_key_to_cpu(path->nodes[level], key,
1508 					      path->slots[level] + 1);
1509 		else
1510 			btrfs_node_key_to_cpu(path->nodes[level], key,
1511 					      path->slots[level] + 1);
1512 		return 0;
1513 	}
1514 	return 1;
1515 }
1516 
1517 /*
1518  * look for inline back ref. if back ref is found, *ref_ret is set
1519  * to the address of inline back ref, and 0 is returned.
1520  *
1521  * if back ref isn't found, *ref_ret is set to the address where it
1522  * should be inserted, and -ENOENT is returned.
1523  *
1524  * if insert is true and there are too many inline back refs, the path
1525  * points to the extent item, and -EAGAIN is returned.
1526  *
1527  * NOTE: inline back refs are ordered in the same way that back ref
1528  *	 items in the tree are ordered.
1529  */
1530 static noinline_for_stack
lookup_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int insert)1531 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1532 				 struct btrfs_root *root,
1533 				 struct btrfs_path *path,
1534 				 struct btrfs_extent_inline_ref **ref_ret,
1535 				 u64 bytenr, u64 num_bytes,
1536 				 u64 parent, u64 root_objectid,
1537 				 u64 owner, u64 offset, int insert)
1538 {
1539 	struct btrfs_key key;
1540 	struct extent_buffer *leaf;
1541 	struct btrfs_extent_item *ei;
1542 	struct btrfs_extent_inline_ref *iref;
1543 	u64 flags;
1544 	u64 item_size;
1545 	unsigned long ptr;
1546 	unsigned long end;
1547 	int extra_size;
1548 	int type;
1549 	int want;
1550 	int ret;
1551 	int err = 0;
1552 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1553 						 SKINNY_METADATA);
1554 
1555 	key.objectid = bytenr;
1556 	key.type = BTRFS_EXTENT_ITEM_KEY;
1557 	key.offset = num_bytes;
1558 
1559 	want = extent_ref_type(parent, owner);
1560 	if (insert) {
1561 		extra_size = btrfs_extent_inline_ref_size(want);
1562 		path->keep_locks = 1;
1563 	} else
1564 		extra_size = -1;
1565 
1566 	/*
1567 	 * Owner is our parent level, so we can just add one to get the level
1568 	 * for the block we are interested in.
1569 	 */
1570 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1571 		key.type = BTRFS_METADATA_ITEM_KEY;
1572 		key.offset = owner;
1573 	}
1574 
1575 again:
1576 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1577 	if (ret < 0) {
1578 		err = ret;
1579 		goto out;
1580 	}
1581 
1582 	/*
1583 	 * We may be a newly converted file system which still has the old fat
1584 	 * extent entries for metadata, so try and see if we have one of those.
1585 	 */
1586 	if (ret > 0 && skinny_metadata) {
1587 		skinny_metadata = false;
1588 		if (path->slots[0]) {
1589 			path->slots[0]--;
1590 			btrfs_item_key_to_cpu(path->nodes[0], &key,
1591 					      path->slots[0]);
1592 			if (key.objectid == bytenr &&
1593 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
1594 			    key.offset == num_bytes)
1595 				ret = 0;
1596 		}
1597 		if (ret) {
1598 			key.objectid = bytenr;
1599 			key.type = BTRFS_EXTENT_ITEM_KEY;
1600 			key.offset = num_bytes;
1601 			btrfs_release_path(path);
1602 			goto again;
1603 		}
1604 	}
1605 
1606 	if (ret && !insert) {
1607 		err = -ENOENT;
1608 		goto out;
1609 	} else if (WARN_ON(ret)) {
1610 		err = -EIO;
1611 		goto out;
1612 	}
1613 
1614 	leaf = path->nodes[0];
1615 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1616 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1617 	if (item_size < sizeof(*ei)) {
1618 		if (!insert) {
1619 			err = -ENOENT;
1620 			goto out;
1621 		}
1622 		ret = convert_extent_item_v0(trans, root, path, owner,
1623 					     extra_size);
1624 		if (ret < 0) {
1625 			err = ret;
1626 			goto out;
1627 		}
1628 		leaf = path->nodes[0];
1629 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1630 	}
1631 #endif
1632 	BUG_ON(item_size < sizeof(*ei));
1633 
1634 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1635 	flags = btrfs_extent_flags(leaf, ei);
1636 
1637 	ptr = (unsigned long)(ei + 1);
1638 	end = (unsigned long)ei + item_size;
1639 
1640 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1641 		ptr += sizeof(struct btrfs_tree_block_info);
1642 		BUG_ON(ptr > end);
1643 	}
1644 
1645 	err = -ENOENT;
1646 	while (1) {
1647 		if (ptr >= end) {
1648 			WARN_ON(ptr > end);
1649 			break;
1650 		}
1651 		iref = (struct btrfs_extent_inline_ref *)ptr;
1652 		type = btrfs_extent_inline_ref_type(leaf, iref);
1653 		if (want < type)
1654 			break;
1655 		if (want > type) {
1656 			ptr += btrfs_extent_inline_ref_size(type);
1657 			continue;
1658 		}
1659 
1660 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1661 			struct btrfs_extent_data_ref *dref;
1662 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1663 			if (match_extent_data_ref(leaf, dref, root_objectid,
1664 						  owner, offset)) {
1665 				err = 0;
1666 				break;
1667 			}
1668 			if (hash_extent_data_ref_item(leaf, dref) <
1669 			    hash_extent_data_ref(root_objectid, owner, offset))
1670 				break;
1671 		} else {
1672 			u64 ref_offset;
1673 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1674 			if (parent > 0) {
1675 				if (parent == ref_offset) {
1676 					err = 0;
1677 					break;
1678 				}
1679 				if (ref_offset < parent)
1680 					break;
1681 			} else {
1682 				if (root_objectid == ref_offset) {
1683 					err = 0;
1684 					break;
1685 				}
1686 				if (ref_offset < root_objectid)
1687 					break;
1688 			}
1689 		}
1690 		ptr += btrfs_extent_inline_ref_size(type);
1691 	}
1692 	if (err == -ENOENT && insert) {
1693 		if (item_size + extra_size >=
1694 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1695 			err = -EAGAIN;
1696 			goto out;
1697 		}
1698 		/*
1699 		 * To add new inline back ref, we have to make sure
1700 		 * there is no corresponding back ref item.
1701 		 * For simplicity, we just do not add new inline back
1702 		 * ref if there is any kind of item for this block
1703 		 */
1704 		if (find_next_key(path, 0, &key) == 0 &&
1705 		    key.objectid == bytenr &&
1706 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1707 			err = -EAGAIN;
1708 			goto out;
1709 		}
1710 	}
1711 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1712 out:
1713 	if (insert) {
1714 		path->keep_locks = 0;
1715 		btrfs_unlock_up_safe(path, 1);
1716 	}
1717 	return err;
1718 }
1719 
1720 /*
1721  * helper to add new inline back ref
1722  */
1723 static noinline_for_stack
setup_inline_extent_backref(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1724 void setup_inline_extent_backref(struct btrfs_root *root,
1725 				 struct btrfs_path *path,
1726 				 struct btrfs_extent_inline_ref *iref,
1727 				 u64 parent, u64 root_objectid,
1728 				 u64 owner, u64 offset, int refs_to_add,
1729 				 struct btrfs_delayed_extent_op *extent_op)
1730 {
1731 	struct extent_buffer *leaf;
1732 	struct btrfs_extent_item *ei;
1733 	unsigned long ptr;
1734 	unsigned long end;
1735 	unsigned long item_offset;
1736 	u64 refs;
1737 	int size;
1738 	int type;
1739 
1740 	leaf = path->nodes[0];
1741 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1742 	item_offset = (unsigned long)iref - (unsigned long)ei;
1743 
1744 	type = extent_ref_type(parent, owner);
1745 	size = btrfs_extent_inline_ref_size(type);
1746 
1747 	btrfs_extend_item(root, path, size);
1748 
1749 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1750 	refs = btrfs_extent_refs(leaf, ei);
1751 	refs += refs_to_add;
1752 	btrfs_set_extent_refs(leaf, ei, refs);
1753 	if (extent_op)
1754 		__run_delayed_extent_op(extent_op, leaf, ei);
1755 
1756 	ptr = (unsigned long)ei + item_offset;
1757 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1758 	if (ptr < end - size)
1759 		memmove_extent_buffer(leaf, ptr + size, ptr,
1760 				      end - size - ptr);
1761 
1762 	iref = (struct btrfs_extent_inline_ref *)ptr;
1763 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1764 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1765 		struct btrfs_extent_data_ref *dref;
1766 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1767 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1768 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1769 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1770 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1771 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1772 		struct btrfs_shared_data_ref *sref;
1773 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1774 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1775 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1776 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1777 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1778 	} else {
1779 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1780 	}
1781 	btrfs_mark_buffer_dirty(leaf);
1782 }
1783 
lookup_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset)1784 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1785 				 struct btrfs_root *root,
1786 				 struct btrfs_path *path,
1787 				 struct btrfs_extent_inline_ref **ref_ret,
1788 				 u64 bytenr, u64 num_bytes, u64 parent,
1789 				 u64 root_objectid, u64 owner, u64 offset)
1790 {
1791 	int ret;
1792 
1793 	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1794 					   bytenr, num_bytes, parent,
1795 					   root_objectid, owner, offset, 0);
1796 	if (ret != -ENOENT)
1797 		return ret;
1798 
1799 	btrfs_release_path(path);
1800 	*ref_ret = NULL;
1801 
1802 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1803 		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1804 					    root_objectid);
1805 	} else {
1806 		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1807 					     root_objectid, owner, offset);
1808 	}
1809 	return ret;
1810 }
1811 
1812 /*
1813  * helper to update/remove inline back ref
1814  */
1815 static noinline_for_stack
update_inline_extent_backref(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_mod,struct btrfs_delayed_extent_op * extent_op,int * last_ref)1816 void update_inline_extent_backref(struct btrfs_root *root,
1817 				  struct btrfs_path *path,
1818 				  struct btrfs_extent_inline_ref *iref,
1819 				  int refs_to_mod,
1820 				  struct btrfs_delayed_extent_op *extent_op,
1821 				  int *last_ref)
1822 {
1823 	struct extent_buffer *leaf;
1824 	struct btrfs_extent_item *ei;
1825 	struct btrfs_extent_data_ref *dref = NULL;
1826 	struct btrfs_shared_data_ref *sref = NULL;
1827 	unsigned long ptr;
1828 	unsigned long end;
1829 	u32 item_size;
1830 	int size;
1831 	int type;
1832 	u64 refs;
1833 
1834 	leaf = path->nodes[0];
1835 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1836 	refs = btrfs_extent_refs(leaf, ei);
1837 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1838 	refs += refs_to_mod;
1839 	btrfs_set_extent_refs(leaf, ei, refs);
1840 	if (extent_op)
1841 		__run_delayed_extent_op(extent_op, leaf, ei);
1842 
1843 	type = btrfs_extent_inline_ref_type(leaf, iref);
1844 
1845 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1846 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1847 		refs = btrfs_extent_data_ref_count(leaf, dref);
1848 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1849 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1850 		refs = btrfs_shared_data_ref_count(leaf, sref);
1851 	} else {
1852 		refs = 1;
1853 		BUG_ON(refs_to_mod != -1);
1854 	}
1855 
1856 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1857 	refs += refs_to_mod;
1858 
1859 	if (refs > 0) {
1860 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1861 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1862 		else
1863 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1864 	} else {
1865 		*last_ref = 1;
1866 		size =  btrfs_extent_inline_ref_size(type);
1867 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1868 		ptr = (unsigned long)iref;
1869 		end = (unsigned long)ei + item_size;
1870 		if (ptr + size < end)
1871 			memmove_extent_buffer(leaf, ptr, ptr + size,
1872 					      end - ptr - size);
1873 		item_size -= size;
1874 		btrfs_truncate_item(root, path, item_size, 1);
1875 	}
1876 	btrfs_mark_buffer_dirty(leaf);
1877 }
1878 
1879 static noinline_for_stack
insert_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1880 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1881 				 struct btrfs_root *root,
1882 				 struct btrfs_path *path,
1883 				 u64 bytenr, u64 num_bytes, u64 parent,
1884 				 u64 root_objectid, u64 owner,
1885 				 u64 offset, int refs_to_add,
1886 				 struct btrfs_delayed_extent_op *extent_op)
1887 {
1888 	struct btrfs_extent_inline_ref *iref;
1889 	int ret;
1890 
1891 	ret = lookup_inline_extent_backref(trans, root, path, &iref,
1892 					   bytenr, num_bytes, parent,
1893 					   root_objectid, owner, offset, 1);
1894 	if (ret == 0) {
1895 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1896 		update_inline_extent_backref(root, path, iref,
1897 					     refs_to_add, extent_op, NULL);
1898 	} else if (ret == -ENOENT) {
1899 		setup_inline_extent_backref(root, path, iref, parent,
1900 					    root_objectid, owner, offset,
1901 					    refs_to_add, extent_op);
1902 		ret = 0;
1903 	}
1904 	return ret;
1905 }
1906 
insert_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add)1907 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1908 				 struct btrfs_root *root,
1909 				 struct btrfs_path *path,
1910 				 u64 bytenr, u64 parent, u64 root_objectid,
1911 				 u64 owner, u64 offset, int refs_to_add)
1912 {
1913 	int ret;
1914 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1915 		BUG_ON(refs_to_add != 1);
1916 		ret = insert_tree_block_ref(trans, root, path, bytenr,
1917 					    parent, root_objectid);
1918 	} else {
1919 		ret = insert_extent_data_ref(trans, root, path, bytenr,
1920 					     parent, root_objectid,
1921 					     owner, offset, refs_to_add);
1922 	}
1923 	return ret;
1924 }
1925 
remove_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_drop,int is_data,int * last_ref)1926 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1927 				 struct btrfs_root *root,
1928 				 struct btrfs_path *path,
1929 				 struct btrfs_extent_inline_ref *iref,
1930 				 int refs_to_drop, int is_data, int *last_ref)
1931 {
1932 	int ret = 0;
1933 
1934 	BUG_ON(!is_data && refs_to_drop != 1);
1935 	if (iref) {
1936 		update_inline_extent_backref(root, path, iref,
1937 					     -refs_to_drop, NULL, last_ref);
1938 	} else if (is_data) {
1939 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1940 					     last_ref);
1941 	} else {
1942 		*last_ref = 1;
1943 		ret = btrfs_del_item(trans, root, path);
1944 	}
1945 	return ret;
1946 }
1947 
1948 #define in_range(b, first, len)        ((b) >= (first) && (b) < (first) + (len))
btrfs_issue_discard(struct block_device * bdev,u64 start,u64 len,u64 * discarded_bytes)1949 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1950 			       u64 *discarded_bytes)
1951 {
1952 	int j, ret = 0;
1953 	u64 bytes_left, end;
1954 	u64 aligned_start = ALIGN(start, 1 << 9);
1955 
1956 	if (WARN_ON(start != aligned_start)) {
1957 		len -= aligned_start - start;
1958 		len = round_down(len, 1 << 9);
1959 		start = aligned_start;
1960 	}
1961 
1962 	*discarded_bytes = 0;
1963 
1964 	if (!len)
1965 		return 0;
1966 
1967 	end = start + len;
1968 	bytes_left = len;
1969 
1970 	/* Skip any superblocks on this device. */
1971 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1972 		u64 sb_start = btrfs_sb_offset(j);
1973 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1974 		u64 size = sb_start - start;
1975 
1976 		if (!in_range(sb_start, start, bytes_left) &&
1977 		    !in_range(sb_end, start, bytes_left) &&
1978 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1979 			continue;
1980 
1981 		/*
1982 		 * Superblock spans beginning of range.  Adjust start and
1983 		 * try again.
1984 		 */
1985 		if (sb_start <= start) {
1986 			start += sb_end - start;
1987 			if (start > end) {
1988 				bytes_left = 0;
1989 				break;
1990 			}
1991 			bytes_left = end - start;
1992 			continue;
1993 		}
1994 
1995 		if (size) {
1996 			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1997 						   GFP_NOFS, 0);
1998 			if (!ret)
1999 				*discarded_bytes += size;
2000 			else if (ret != -EOPNOTSUPP)
2001 				return ret;
2002 		}
2003 
2004 		start = sb_end;
2005 		if (start > end) {
2006 			bytes_left = 0;
2007 			break;
2008 		}
2009 		bytes_left = end - start;
2010 	}
2011 
2012 	if (bytes_left) {
2013 		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2014 					   GFP_NOFS, 0);
2015 		if (!ret)
2016 			*discarded_bytes += bytes_left;
2017 	}
2018 	return ret;
2019 }
2020 
btrfs_discard_extent(struct btrfs_root * root,u64 bytenr,u64 num_bytes,u64 * actual_bytes)2021 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
2022 			 u64 num_bytes, u64 *actual_bytes)
2023 {
2024 	int ret;
2025 	u64 discarded_bytes = 0;
2026 	struct btrfs_bio *bbio = NULL;
2027 
2028 
2029 	/* Tell the block device(s) that the sectors can be discarded */
2030 	ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
2031 			      bytenr, &num_bytes, &bbio, 0);
2032 	/* Error condition is -ENOMEM */
2033 	if (!ret) {
2034 		struct btrfs_bio_stripe *stripe = bbio->stripes;
2035 		int i;
2036 
2037 
2038 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2039 			u64 bytes;
2040 			if (!stripe->dev->can_discard)
2041 				continue;
2042 
2043 			ret = btrfs_issue_discard(stripe->dev->bdev,
2044 						  stripe->physical,
2045 						  stripe->length,
2046 						  &bytes);
2047 			if (!ret)
2048 				discarded_bytes += bytes;
2049 			else if (ret != -EOPNOTSUPP)
2050 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2051 
2052 			/*
2053 			 * Just in case we get back EOPNOTSUPP for some reason,
2054 			 * just ignore the return value so we don't screw up
2055 			 * people calling discard_extent.
2056 			 */
2057 			ret = 0;
2058 		}
2059 		btrfs_put_bbio(bbio);
2060 	}
2061 
2062 	if (actual_bytes)
2063 		*actual_bytes = discarded_bytes;
2064 
2065 
2066 	if (ret == -EOPNOTSUPP)
2067 		ret = 0;
2068 	return ret;
2069 }
2070 
2071 /* Can return -ENOMEM */
btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset)2072 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2073 			 struct btrfs_root *root,
2074 			 u64 bytenr, u64 num_bytes, u64 parent,
2075 			 u64 root_objectid, u64 owner, u64 offset)
2076 {
2077 	int ret;
2078 	struct btrfs_fs_info *fs_info = root->fs_info;
2079 
2080 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2081 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
2082 
2083 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2084 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2085 					num_bytes,
2086 					parent, root_objectid, (int)owner,
2087 					BTRFS_ADD_DELAYED_REF, NULL);
2088 	} else {
2089 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2090 					num_bytes, parent, root_objectid,
2091 					owner, offset, 0,
2092 					BTRFS_ADD_DELAYED_REF, NULL);
2093 	}
2094 	return ret;
2095 }
2096 
__btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_delayed_ref_node * node,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)2097 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2098 				  struct btrfs_root *root,
2099 				  struct btrfs_delayed_ref_node *node,
2100 				  u64 parent, u64 root_objectid,
2101 				  u64 owner, u64 offset, int refs_to_add,
2102 				  struct btrfs_delayed_extent_op *extent_op)
2103 {
2104 	struct btrfs_fs_info *fs_info = root->fs_info;
2105 	struct btrfs_path *path;
2106 	struct extent_buffer *leaf;
2107 	struct btrfs_extent_item *item;
2108 	struct btrfs_key key;
2109 	u64 bytenr = node->bytenr;
2110 	u64 num_bytes = node->num_bytes;
2111 	u64 refs;
2112 	int ret;
2113 
2114 	path = btrfs_alloc_path();
2115 	if (!path)
2116 		return -ENOMEM;
2117 
2118 	path->reada = 1;
2119 	path->leave_spinning = 1;
2120 	/* this will setup the path even if it fails to insert the back ref */
2121 	ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2122 					   bytenr, num_bytes, parent,
2123 					   root_objectid, owner, offset,
2124 					   refs_to_add, extent_op);
2125 	if ((ret < 0 && ret != -EAGAIN) || !ret)
2126 		goto out;
2127 
2128 	/*
2129 	 * Ok we had -EAGAIN which means we didn't have space to insert and
2130 	 * inline extent ref, so just update the reference count and add a
2131 	 * normal backref.
2132 	 */
2133 	leaf = path->nodes[0];
2134 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2135 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2136 	refs = btrfs_extent_refs(leaf, item);
2137 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2138 	if (extent_op)
2139 		__run_delayed_extent_op(extent_op, leaf, item);
2140 
2141 	btrfs_mark_buffer_dirty(leaf);
2142 	btrfs_release_path(path);
2143 
2144 	path->reada = 1;
2145 	path->leave_spinning = 1;
2146 	/* now insert the actual backref */
2147 	ret = insert_extent_backref(trans, root->fs_info->extent_root,
2148 				    path, bytenr, parent, root_objectid,
2149 				    owner, offset, refs_to_add);
2150 	if (ret)
2151 		btrfs_abort_transaction(trans, root, ret);
2152 out:
2153 	btrfs_free_path(path);
2154 	return ret;
2155 }
2156 
run_delayed_data_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)2157 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2158 				struct btrfs_root *root,
2159 				struct btrfs_delayed_ref_node *node,
2160 				struct btrfs_delayed_extent_op *extent_op,
2161 				int insert_reserved)
2162 {
2163 	int ret = 0;
2164 	struct btrfs_delayed_data_ref *ref;
2165 	struct btrfs_key ins;
2166 	u64 parent = 0;
2167 	u64 ref_root = 0;
2168 	u64 flags = 0;
2169 
2170 	ins.objectid = node->bytenr;
2171 	ins.offset = node->num_bytes;
2172 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2173 
2174 	ref = btrfs_delayed_node_to_data_ref(node);
2175 	trace_run_delayed_data_ref(node, ref, node->action);
2176 
2177 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2178 		parent = ref->parent;
2179 	ref_root = ref->root;
2180 
2181 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2182 		if (extent_op)
2183 			flags |= extent_op->flags_to_set;
2184 		ret = alloc_reserved_file_extent(trans, root,
2185 						 parent, ref_root, flags,
2186 						 ref->objectid, ref->offset,
2187 						 &ins, node->ref_mod);
2188 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2189 		ret = __btrfs_inc_extent_ref(trans, root, node, parent,
2190 					     ref_root, ref->objectid,
2191 					     ref->offset, node->ref_mod,
2192 					     extent_op);
2193 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2194 		ret = __btrfs_free_extent(trans, root, node, parent,
2195 					  ref_root, ref->objectid,
2196 					  ref->offset, node->ref_mod,
2197 					  extent_op);
2198 	} else {
2199 		BUG();
2200 	}
2201 	return ret;
2202 }
2203 
__run_delayed_extent_op(struct btrfs_delayed_extent_op * extent_op,struct extent_buffer * leaf,struct btrfs_extent_item * ei)2204 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2205 				    struct extent_buffer *leaf,
2206 				    struct btrfs_extent_item *ei)
2207 {
2208 	u64 flags = btrfs_extent_flags(leaf, ei);
2209 	if (extent_op->update_flags) {
2210 		flags |= extent_op->flags_to_set;
2211 		btrfs_set_extent_flags(leaf, ei, flags);
2212 	}
2213 
2214 	if (extent_op->update_key) {
2215 		struct btrfs_tree_block_info *bi;
2216 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2217 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2218 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2219 	}
2220 }
2221 
run_delayed_extent_op(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op)2222 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2223 				 struct btrfs_root *root,
2224 				 struct btrfs_delayed_ref_node *node,
2225 				 struct btrfs_delayed_extent_op *extent_op)
2226 {
2227 	struct btrfs_key key;
2228 	struct btrfs_path *path;
2229 	struct btrfs_extent_item *ei;
2230 	struct extent_buffer *leaf;
2231 	u32 item_size;
2232 	int ret;
2233 	int err = 0;
2234 	int metadata = !extent_op->is_data;
2235 
2236 	if (trans->aborted)
2237 		return 0;
2238 
2239 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2240 		metadata = 0;
2241 
2242 	path = btrfs_alloc_path();
2243 	if (!path)
2244 		return -ENOMEM;
2245 
2246 	key.objectid = node->bytenr;
2247 
2248 	if (metadata) {
2249 		key.type = BTRFS_METADATA_ITEM_KEY;
2250 		key.offset = extent_op->level;
2251 	} else {
2252 		key.type = BTRFS_EXTENT_ITEM_KEY;
2253 		key.offset = node->num_bytes;
2254 	}
2255 
2256 again:
2257 	path->reada = 1;
2258 	path->leave_spinning = 1;
2259 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2260 				path, 0, 1);
2261 	if (ret < 0) {
2262 		err = ret;
2263 		goto out;
2264 	}
2265 	if (ret > 0) {
2266 		if (metadata) {
2267 			if (path->slots[0] > 0) {
2268 				path->slots[0]--;
2269 				btrfs_item_key_to_cpu(path->nodes[0], &key,
2270 						      path->slots[0]);
2271 				if (key.objectid == node->bytenr &&
2272 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
2273 				    key.offset == node->num_bytes)
2274 					ret = 0;
2275 			}
2276 			if (ret > 0) {
2277 				btrfs_release_path(path);
2278 				metadata = 0;
2279 
2280 				key.objectid = node->bytenr;
2281 				key.offset = node->num_bytes;
2282 				key.type = BTRFS_EXTENT_ITEM_KEY;
2283 				goto again;
2284 			}
2285 		} else {
2286 			err = -EIO;
2287 			goto out;
2288 		}
2289 	}
2290 
2291 	leaf = path->nodes[0];
2292 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2293 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2294 	if (item_size < sizeof(*ei)) {
2295 		ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2296 					     path, (u64)-1, 0);
2297 		if (ret < 0) {
2298 			err = ret;
2299 			goto out;
2300 		}
2301 		leaf = path->nodes[0];
2302 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2303 	}
2304 #endif
2305 	BUG_ON(item_size < sizeof(*ei));
2306 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2307 	__run_delayed_extent_op(extent_op, leaf, ei);
2308 
2309 	btrfs_mark_buffer_dirty(leaf);
2310 out:
2311 	btrfs_free_path(path);
2312 	return err;
2313 }
2314 
run_delayed_tree_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)2315 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2316 				struct btrfs_root *root,
2317 				struct btrfs_delayed_ref_node *node,
2318 				struct btrfs_delayed_extent_op *extent_op,
2319 				int insert_reserved)
2320 {
2321 	int ret = 0;
2322 	struct btrfs_delayed_tree_ref *ref;
2323 	struct btrfs_key ins;
2324 	u64 parent = 0;
2325 	u64 ref_root = 0;
2326 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2327 						 SKINNY_METADATA);
2328 
2329 	ref = btrfs_delayed_node_to_tree_ref(node);
2330 	trace_run_delayed_tree_ref(node, ref, node->action);
2331 
2332 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2333 		parent = ref->parent;
2334 	ref_root = ref->root;
2335 
2336 	ins.objectid = node->bytenr;
2337 	if (skinny_metadata) {
2338 		ins.offset = ref->level;
2339 		ins.type = BTRFS_METADATA_ITEM_KEY;
2340 	} else {
2341 		ins.offset = node->num_bytes;
2342 		ins.type = BTRFS_EXTENT_ITEM_KEY;
2343 	}
2344 
2345 	BUG_ON(node->ref_mod != 1);
2346 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2347 		BUG_ON(!extent_op || !extent_op->update_flags);
2348 		ret = alloc_reserved_tree_block(trans, root,
2349 						parent, ref_root,
2350 						extent_op->flags_to_set,
2351 						&extent_op->key,
2352 						ref->level, &ins);
2353 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2354 		ret = __btrfs_inc_extent_ref(trans, root, node,
2355 					     parent, ref_root,
2356 					     ref->level, 0, 1,
2357 					     extent_op);
2358 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2359 		ret = __btrfs_free_extent(trans, root, node,
2360 					  parent, ref_root,
2361 					  ref->level, 0, 1, extent_op);
2362 	} else {
2363 		BUG();
2364 	}
2365 	return ret;
2366 }
2367 
2368 /* helper function to actually process a single delayed ref entry */
run_one_delayed_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)2369 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2370 			       struct btrfs_root *root,
2371 			       struct btrfs_delayed_ref_node *node,
2372 			       struct btrfs_delayed_extent_op *extent_op,
2373 			       int insert_reserved)
2374 {
2375 	int ret = 0;
2376 
2377 	if (trans->aborted) {
2378 		if (insert_reserved)
2379 			btrfs_pin_extent(root, node->bytenr,
2380 					 node->num_bytes, 1);
2381 		return 0;
2382 	}
2383 
2384 	if (btrfs_delayed_ref_is_head(node)) {
2385 		struct btrfs_delayed_ref_head *head;
2386 		/*
2387 		 * we've hit the end of the chain and we were supposed
2388 		 * to insert this extent into the tree.  But, it got
2389 		 * deleted before we ever needed to insert it, so all
2390 		 * we have to do is clean up the accounting
2391 		 */
2392 		BUG_ON(extent_op);
2393 		head = btrfs_delayed_node_to_head(node);
2394 		trace_run_delayed_ref_head(node, head, node->action);
2395 
2396 		if (insert_reserved) {
2397 			btrfs_pin_extent(root, node->bytenr,
2398 					 node->num_bytes, 1);
2399 			if (head->is_data) {
2400 				ret = btrfs_del_csums(trans, root,
2401 						      node->bytenr,
2402 						      node->num_bytes);
2403 			}
2404 		}
2405 
2406 		/* Also free its reserved qgroup space */
2407 		btrfs_qgroup_free_delayed_ref(root->fs_info,
2408 					      head->qgroup_ref_root,
2409 					      head->qgroup_reserved);
2410 		return ret;
2411 	}
2412 
2413 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2414 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2415 		ret = run_delayed_tree_ref(trans, root, node, extent_op,
2416 					   insert_reserved);
2417 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2418 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2419 		ret = run_delayed_data_ref(trans, root, node, extent_op,
2420 					   insert_reserved);
2421 	else
2422 		BUG();
2423 	return ret;
2424 }
2425 
2426 static inline struct btrfs_delayed_ref_node *
select_delayed_ref(struct btrfs_delayed_ref_head * head)2427 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2428 {
2429 	struct btrfs_delayed_ref_node *ref;
2430 
2431 	if (list_empty(&head->ref_list))
2432 		return NULL;
2433 
2434 	/*
2435 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2436 	 * This is to prevent a ref count from going down to zero, which deletes
2437 	 * the extent item from the extent tree, when there still are references
2438 	 * to add, which would fail because they would not find the extent item.
2439 	 */
2440 	list_for_each_entry(ref, &head->ref_list, list) {
2441 		if (ref->action == BTRFS_ADD_DELAYED_REF)
2442 			return ref;
2443 	}
2444 
2445 	return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2446 			  list);
2447 }
2448 
2449 /*
2450  * Returns 0 on success or if called with an already aborted transaction.
2451  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2452  */
__btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,struct btrfs_root * root,unsigned long nr)2453 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2454 					     struct btrfs_root *root,
2455 					     unsigned long nr)
2456 {
2457 	struct btrfs_delayed_ref_root *delayed_refs;
2458 	struct btrfs_delayed_ref_node *ref;
2459 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2460 	struct btrfs_delayed_extent_op *extent_op;
2461 	struct btrfs_fs_info *fs_info = root->fs_info;
2462 	ktime_t start = ktime_get();
2463 	int ret;
2464 	unsigned long count = 0;
2465 	unsigned long actual_count = 0;
2466 	int must_insert_reserved = 0;
2467 
2468 	delayed_refs = &trans->transaction->delayed_refs;
2469 	while (1) {
2470 		if (!locked_ref) {
2471 			if (count >= nr)
2472 				break;
2473 
2474 			spin_lock(&delayed_refs->lock);
2475 			locked_ref = btrfs_select_ref_head(trans);
2476 			if (!locked_ref) {
2477 				spin_unlock(&delayed_refs->lock);
2478 				break;
2479 			}
2480 
2481 			/* grab the lock that says we are going to process
2482 			 * all the refs for this head */
2483 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2484 			spin_unlock(&delayed_refs->lock);
2485 			/*
2486 			 * we may have dropped the spin lock to get the head
2487 			 * mutex lock, and that might have given someone else
2488 			 * time to free the head.  If that's true, it has been
2489 			 * removed from our list and we can move on.
2490 			 */
2491 			if (ret == -EAGAIN) {
2492 				locked_ref = NULL;
2493 				count++;
2494 				continue;
2495 			}
2496 		}
2497 
2498 		/*
2499 		 * We need to try and merge add/drops of the same ref since we
2500 		 * can run into issues with relocate dropping the implicit ref
2501 		 * and then it being added back again before the drop can
2502 		 * finish.  If we merged anything we need to re-loop so we can
2503 		 * get a good ref.
2504 		 * Or we can get node references of the same type that weren't
2505 		 * merged when created due to bumps in the tree mod seq, and
2506 		 * we need to merge them to prevent adding an inline extent
2507 		 * backref before dropping it (triggering a BUG_ON at
2508 		 * insert_inline_extent_backref()).
2509 		 */
2510 		spin_lock(&locked_ref->lock);
2511 		btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2512 					 locked_ref);
2513 
2514 		/*
2515 		 * locked_ref is the head node, so we have to go one
2516 		 * node back for any delayed ref updates
2517 		 */
2518 		ref = select_delayed_ref(locked_ref);
2519 
2520 		if (ref && ref->seq &&
2521 		    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2522 			spin_unlock(&locked_ref->lock);
2523 			btrfs_delayed_ref_unlock(locked_ref);
2524 			spin_lock(&delayed_refs->lock);
2525 			locked_ref->processing = 0;
2526 			delayed_refs->num_heads_ready++;
2527 			spin_unlock(&delayed_refs->lock);
2528 			locked_ref = NULL;
2529 			cond_resched();
2530 			count++;
2531 			continue;
2532 		}
2533 
2534 		/*
2535 		 * record the must insert reserved flag before we
2536 		 * drop the spin lock.
2537 		 */
2538 		must_insert_reserved = locked_ref->must_insert_reserved;
2539 		locked_ref->must_insert_reserved = 0;
2540 
2541 		extent_op = locked_ref->extent_op;
2542 		locked_ref->extent_op = NULL;
2543 
2544 		if (!ref) {
2545 
2546 
2547 			/* All delayed refs have been processed, Go ahead
2548 			 * and send the head node to run_one_delayed_ref,
2549 			 * so that any accounting fixes can happen
2550 			 */
2551 			ref = &locked_ref->node;
2552 
2553 			if (extent_op && must_insert_reserved) {
2554 				btrfs_free_delayed_extent_op(extent_op);
2555 				extent_op = NULL;
2556 			}
2557 
2558 			if (extent_op) {
2559 				spin_unlock(&locked_ref->lock);
2560 				ret = run_delayed_extent_op(trans, root,
2561 							    ref, extent_op);
2562 				btrfs_free_delayed_extent_op(extent_op);
2563 
2564 				if (ret) {
2565 					/*
2566 					 * Need to reset must_insert_reserved if
2567 					 * there was an error so the abort stuff
2568 					 * can cleanup the reserved space
2569 					 * properly.
2570 					 */
2571 					if (must_insert_reserved)
2572 						locked_ref->must_insert_reserved = 1;
2573 					locked_ref->processing = 0;
2574 					btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2575 					btrfs_delayed_ref_unlock(locked_ref);
2576 					return ret;
2577 				}
2578 				continue;
2579 			}
2580 
2581 			/*
2582 			 * Need to drop our head ref lock and re-aqcuire the
2583 			 * delayed ref lock and then re-check to make sure
2584 			 * nobody got added.
2585 			 */
2586 			spin_unlock(&locked_ref->lock);
2587 			spin_lock(&delayed_refs->lock);
2588 			spin_lock(&locked_ref->lock);
2589 			if (!list_empty(&locked_ref->ref_list) ||
2590 			    locked_ref->extent_op) {
2591 				spin_unlock(&locked_ref->lock);
2592 				spin_unlock(&delayed_refs->lock);
2593 				continue;
2594 			}
2595 			ref->in_tree = 0;
2596 			delayed_refs->num_heads--;
2597 			rb_erase(&locked_ref->href_node,
2598 				 &delayed_refs->href_root);
2599 			spin_unlock(&delayed_refs->lock);
2600 		} else {
2601 			actual_count++;
2602 			ref->in_tree = 0;
2603 			list_del(&ref->list);
2604 		}
2605 		atomic_dec(&delayed_refs->num_entries);
2606 
2607 		if (!btrfs_delayed_ref_is_head(ref)) {
2608 			/*
2609 			 * when we play the delayed ref, also correct the
2610 			 * ref_mod on head
2611 			 */
2612 			switch (ref->action) {
2613 			case BTRFS_ADD_DELAYED_REF:
2614 			case BTRFS_ADD_DELAYED_EXTENT:
2615 				locked_ref->node.ref_mod -= ref->ref_mod;
2616 				break;
2617 			case BTRFS_DROP_DELAYED_REF:
2618 				locked_ref->node.ref_mod += ref->ref_mod;
2619 				break;
2620 			default:
2621 				WARN_ON(1);
2622 			}
2623 		}
2624 		spin_unlock(&locked_ref->lock);
2625 
2626 		ret = run_one_delayed_ref(trans, root, ref, extent_op,
2627 					  must_insert_reserved);
2628 
2629 		btrfs_free_delayed_extent_op(extent_op);
2630 		if (ret) {
2631 			locked_ref->processing = 0;
2632 			btrfs_delayed_ref_unlock(locked_ref);
2633 			btrfs_put_delayed_ref(ref);
2634 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2635 			return ret;
2636 		}
2637 
2638 		/*
2639 		 * If this node is a head, that means all the refs in this head
2640 		 * have been dealt with, and we will pick the next head to deal
2641 		 * with, so we must unlock the head and drop it from the cluster
2642 		 * list before we release it.
2643 		 */
2644 		if (btrfs_delayed_ref_is_head(ref)) {
2645 			if (locked_ref->is_data &&
2646 			    locked_ref->total_ref_mod < 0) {
2647 				spin_lock(&delayed_refs->lock);
2648 				delayed_refs->pending_csums -= ref->num_bytes;
2649 				spin_unlock(&delayed_refs->lock);
2650 			}
2651 			btrfs_delayed_ref_unlock(locked_ref);
2652 			locked_ref = NULL;
2653 		}
2654 		btrfs_put_delayed_ref(ref);
2655 		count++;
2656 		cond_resched();
2657 	}
2658 
2659 	/*
2660 	 * We don't want to include ref heads since we can have empty ref heads
2661 	 * and those will drastically skew our runtime down since we just do
2662 	 * accounting, no actual extent tree updates.
2663 	 */
2664 	if (actual_count > 0) {
2665 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2666 		u64 avg;
2667 
2668 		/*
2669 		 * We weigh the current average higher than our current runtime
2670 		 * to avoid large swings in the average.
2671 		 */
2672 		spin_lock(&delayed_refs->lock);
2673 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2674 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2675 		spin_unlock(&delayed_refs->lock);
2676 	}
2677 	return 0;
2678 }
2679 
2680 #ifdef SCRAMBLE_DELAYED_REFS
2681 /*
2682  * Normally delayed refs get processed in ascending bytenr order. This
2683  * correlates in most cases to the order added. To expose dependencies on this
2684  * order, we start to process the tree in the middle instead of the beginning
2685  */
find_middle(struct rb_root * root)2686 static u64 find_middle(struct rb_root *root)
2687 {
2688 	struct rb_node *n = root->rb_node;
2689 	struct btrfs_delayed_ref_node *entry;
2690 	int alt = 1;
2691 	u64 middle;
2692 	u64 first = 0, last = 0;
2693 
2694 	n = rb_first(root);
2695 	if (n) {
2696 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2697 		first = entry->bytenr;
2698 	}
2699 	n = rb_last(root);
2700 	if (n) {
2701 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2702 		last = entry->bytenr;
2703 	}
2704 	n = root->rb_node;
2705 
2706 	while (n) {
2707 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2708 		WARN_ON(!entry->in_tree);
2709 
2710 		middle = entry->bytenr;
2711 
2712 		if (alt)
2713 			n = n->rb_left;
2714 		else
2715 			n = n->rb_right;
2716 
2717 		alt = 1 - alt;
2718 	}
2719 	return middle;
2720 }
2721 #endif
2722 
heads_to_leaves(struct btrfs_root * root,u64 heads)2723 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2724 {
2725 	u64 num_bytes;
2726 
2727 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2728 			     sizeof(struct btrfs_extent_inline_ref));
2729 	if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2730 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2731 
2732 	/*
2733 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2734 	 * closer to what we're really going to want to ouse.
2735 	 */
2736 	return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2737 }
2738 
2739 /*
2740  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2741  * would require to store the csums for that many bytes.
2742  */
btrfs_csum_bytes_to_leaves(struct btrfs_root * root,u64 csum_bytes)2743 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2744 {
2745 	u64 csum_size;
2746 	u64 num_csums_per_leaf;
2747 	u64 num_csums;
2748 
2749 	csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2750 	num_csums_per_leaf = div64_u64(csum_size,
2751 			(u64)btrfs_super_csum_size(root->fs_info->super_copy));
2752 	num_csums = div64_u64(csum_bytes, root->sectorsize);
2753 	num_csums += num_csums_per_leaf - 1;
2754 	num_csums = div64_u64(num_csums, num_csums_per_leaf);
2755 	return num_csums;
2756 }
2757 
btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle * trans,struct btrfs_root * root)2758 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2759 				       struct btrfs_root *root)
2760 {
2761 	struct btrfs_block_rsv *global_rsv;
2762 	u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2763 	u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2764 	u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2765 	u64 num_bytes, num_dirty_bgs_bytes;
2766 	int ret = 0;
2767 
2768 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2769 	num_heads = heads_to_leaves(root, num_heads);
2770 	if (num_heads > 1)
2771 		num_bytes += (num_heads - 1) * root->nodesize;
2772 	num_bytes <<= 1;
2773 	num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2774 	num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2775 							     num_dirty_bgs);
2776 	global_rsv = &root->fs_info->global_block_rsv;
2777 
2778 	/*
2779 	 * If we can't allocate any more chunks lets make sure we have _lots_ of
2780 	 * wiggle room since running delayed refs can create more delayed refs.
2781 	 */
2782 	if (global_rsv->space_info->full) {
2783 		num_dirty_bgs_bytes <<= 1;
2784 		num_bytes <<= 1;
2785 	}
2786 
2787 	spin_lock(&global_rsv->lock);
2788 	if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2789 		ret = 1;
2790 	spin_unlock(&global_rsv->lock);
2791 	return ret;
2792 }
2793 
btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle * trans,struct btrfs_root * root)2794 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2795 				       struct btrfs_root *root)
2796 {
2797 	struct btrfs_fs_info *fs_info = root->fs_info;
2798 	u64 num_entries =
2799 		atomic_read(&trans->transaction->delayed_refs.num_entries);
2800 	u64 avg_runtime;
2801 	u64 val;
2802 
2803 	smp_mb();
2804 	avg_runtime = fs_info->avg_delayed_ref_runtime;
2805 	val = num_entries * avg_runtime;
2806 	if (num_entries * avg_runtime >= NSEC_PER_SEC)
2807 		return 1;
2808 	if (val >= NSEC_PER_SEC / 2)
2809 		return 2;
2810 
2811 	return btrfs_check_space_for_delayed_refs(trans, root);
2812 }
2813 
2814 struct async_delayed_refs {
2815 	struct btrfs_root *root;
2816 	int count;
2817 	int error;
2818 	int sync;
2819 	struct completion wait;
2820 	struct btrfs_work work;
2821 };
2822 
delayed_ref_async_start(struct btrfs_work * work)2823 static void delayed_ref_async_start(struct btrfs_work *work)
2824 {
2825 	struct async_delayed_refs *async;
2826 	struct btrfs_trans_handle *trans;
2827 	int ret;
2828 
2829 	async = container_of(work, struct async_delayed_refs, work);
2830 
2831 	trans = btrfs_join_transaction(async->root);
2832 	if (IS_ERR(trans)) {
2833 		async->error = PTR_ERR(trans);
2834 		goto done;
2835 	}
2836 
2837 	/*
2838 	 * trans->sync means that when we call end_transaciton, we won't
2839 	 * wait on delayed refs
2840 	 */
2841 	trans->sync = true;
2842 	ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2843 	if (ret)
2844 		async->error = ret;
2845 
2846 	ret = btrfs_end_transaction(trans, async->root);
2847 	if (ret && !async->error)
2848 		async->error = ret;
2849 done:
2850 	if (async->sync)
2851 		complete(&async->wait);
2852 	else
2853 		kfree(async);
2854 }
2855 
btrfs_async_run_delayed_refs(struct btrfs_root * root,unsigned long count,int wait)2856 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2857 				 unsigned long count, int wait)
2858 {
2859 	struct async_delayed_refs *async;
2860 	int ret;
2861 
2862 	async = kmalloc(sizeof(*async), GFP_NOFS);
2863 	if (!async)
2864 		return -ENOMEM;
2865 
2866 	async->root = root->fs_info->tree_root;
2867 	async->count = count;
2868 	async->error = 0;
2869 	if (wait)
2870 		async->sync = 1;
2871 	else
2872 		async->sync = 0;
2873 	init_completion(&async->wait);
2874 
2875 	btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2876 			delayed_ref_async_start, NULL, NULL);
2877 
2878 	btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2879 
2880 	if (wait) {
2881 		wait_for_completion(&async->wait);
2882 		ret = async->error;
2883 		kfree(async);
2884 		return ret;
2885 	}
2886 	return 0;
2887 }
2888 
2889 /*
2890  * this starts processing the delayed reference count updates and
2891  * extent insertions we have queued up so far.  count can be
2892  * 0, which means to process everything in the tree at the start
2893  * of the run (but not newly added entries), or it can be some target
2894  * number you'd like to process.
2895  *
2896  * Returns 0 on success or if called with an aborted transaction
2897  * Returns <0 on error and aborts the transaction
2898  */
btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,struct btrfs_root * root,unsigned long count)2899 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2900 			   struct btrfs_root *root, unsigned long count)
2901 {
2902 	struct rb_node *node;
2903 	struct btrfs_delayed_ref_root *delayed_refs;
2904 	struct btrfs_delayed_ref_head *head;
2905 	int ret;
2906 	int run_all = count == (unsigned long)-1;
2907 	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2908 
2909 	/* We'll clean this up in btrfs_cleanup_transaction */
2910 	if (trans->aborted)
2911 		return 0;
2912 
2913 	if (root == root->fs_info->extent_root)
2914 		root = root->fs_info->tree_root;
2915 
2916 	delayed_refs = &trans->transaction->delayed_refs;
2917 	if (count == 0)
2918 		count = atomic_read(&delayed_refs->num_entries) * 2;
2919 
2920 again:
2921 #ifdef SCRAMBLE_DELAYED_REFS
2922 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2923 #endif
2924 	trans->can_flush_pending_bgs = false;
2925 	ret = __btrfs_run_delayed_refs(trans, root, count);
2926 	if (ret < 0) {
2927 		btrfs_abort_transaction(trans, root, ret);
2928 		return ret;
2929 	}
2930 
2931 	if (run_all) {
2932 		if (!list_empty(&trans->new_bgs))
2933 			btrfs_create_pending_block_groups(trans, root);
2934 
2935 		spin_lock(&delayed_refs->lock);
2936 		node = rb_first(&delayed_refs->href_root);
2937 		if (!node) {
2938 			spin_unlock(&delayed_refs->lock);
2939 			goto out;
2940 		}
2941 		count = (unsigned long)-1;
2942 
2943 		while (node) {
2944 			head = rb_entry(node, struct btrfs_delayed_ref_head,
2945 					href_node);
2946 			if (btrfs_delayed_ref_is_head(&head->node)) {
2947 				struct btrfs_delayed_ref_node *ref;
2948 
2949 				ref = &head->node;
2950 				atomic_inc(&ref->refs);
2951 
2952 				spin_unlock(&delayed_refs->lock);
2953 				/*
2954 				 * Mutex was contended, block until it's
2955 				 * released and try again
2956 				 */
2957 				mutex_lock(&head->mutex);
2958 				mutex_unlock(&head->mutex);
2959 
2960 				btrfs_put_delayed_ref(ref);
2961 				cond_resched();
2962 				goto again;
2963 			} else {
2964 				WARN_ON(1);
2965 			}
2966 			node = rb_next(node);
2967 		}
2968 		spin_unlock(&delayed_refs->lock);
2969 		cond_resched();
2970 		goto again;
2971 	}
2972 out:
2973 	assert_qgroups_uptodate(trans);
2974 	trans->can_flush_pending_bgs = can_flush_pending_bgs;
2975 	return 0;
2976 }
2977 
btrfs_set_disk_extent_flags(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 num_bytes,u64 flags,int level,int is_data)2978 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2979 				struct btrfs_root *root,
2980 				u64 bytenr, u64 num_bytes, u64 flags,
2981 				int level, int is_data)
2982 {
2983 	struct btrfs_delayed_extent_op *extent_op;
2984 	int ret;
2985 
2986 	extent_op = btrfs_alloc_delayed_extent_op();
2987 	if (!extent_op)
2988 		return -ENOMEM;
2989 
2990 	extent_op->flags_to_set = flags;
2991 	extent_op->update_flags = 1;
2992 	extent_op->update_key = 0;
2993 	extent_op->is_data = is_data ? 1 : 0;
2994 	extent_op->level = level;
2995 
2996 	ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2997 					  num_bytes, extent_op);
2998 	if (ret)
2999 		btrfs_free_delayed_extent_op(extent_op);
3000 	return ret;
3001 }
3002 
check_delayed_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,u64 bytenr)3003 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
3004 				      struct btrfs_root *root,
3005 				      struct btrfs_path *path,
3006 				      u64 objectid, u64 offset, u64 bytenr)
3007 {
3008 	struct btrfs_delayed_ref_head *head;
3009 	struct btrfs_delayed_ref_node *ref;
3010 	struct btrfs_delayed_data_ref *data_ref;
3011 	struct btrfs_delayed_ref_root *delayed_refs;
3012 	int ret = 0;
3013 
3014 	delayed_refs = &trans->transaction->delayed_refs;
3015 	spin_lock(&delayed_refs->lock);
3016 	head = btrfs_find_delayed_ref_head(trans, bytenr);
3017 	if (!head) {
3018 		spin_unlock(&delayed_refs->lock);
3019 		return 0;
3020 	}
3021 
3022 	if (!mutex_trylock(&head->mutex)) {
3023 		atomic_inc(&head->node.refs);
3024 		spin_unlock(&delayed_refs->lock);
3025 
3026 		btrfs_release_path(path);
3027 
3028 		/*
3029 		 * Mutex was contended, block until it's released and let
3030 		 * caller try again
3031 		 */
3032 		mutex_lock(&head->mutex);
3033 		mutex_unlock(&head->mutex);
3034 		btrfs_put_delayed_ref(&head->node);
3035 		return -EAGAIN;
3036 	}
3037 	spin_unlock(&delayed_refs->lock);
3038 
3039 	spin_lock(&head->lock);
3040 	list_for_each_entry(ref, &head->ref_list, list) {
3041 		/* If it's a shared ref we know a cross reference exists */
3042 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3043 			ret = 1;
3044 			break;
3045 		}
3046 
3047 		data_ref = btrfs_delayed_node_to_data_ref(ref);
3048 
3049 		/*
3050 		 * If our ref doesn't match the one we're currently looking at
3051 		 * then we have a cross reference.
3052 		 */
3053 		if (data_ref->root != root->root_key.objectid ||
3054 		    data_ref->objectid != objectid ||
3055 		    data_ref->offset != offset) {
3056 			ret = 1;
3057 			break;
3058 		}
3059 	}
3060 	spin_unlock(&head->lock);
3061 	mutex_unlock(&head->mutex);
3062 	return ret;
3063 }
3064 
check_committed_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,u64 bytenr)3065 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
3066 					struct btrfs_root *root,
3067 					struct btrfs_path *path,
3068 					u64 objectid, u64 offset, u64 bytenr)
3069 {
3070 	struct btrfs_root *extent_root = root->fs_info->extent_root;
3071 	struct extent_buffer *leaf;
3072 	struct btrfs_extent_data_ref *ref;
3073 	struct btrfs_extent_inline_ref *iref;
3074 	struct btrfs_extent_item *ei;
3075 	struct btrfs_key key;
3076 	u32 item_size;
3077 	int ret;
3078 
3079 	key.objectid = bytenr;
3080 	key.offset = (u64)-1;
3081 	key.type = BTRFS_EXTENT_ITEM_KEY;
3082 
3083 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3084 	if (ret < 0)
3085 		goto out;
3086 	BUG_ON(ret == 0); /* Corruption */
3087 
3088 	ret = -ENOENT;
3089 	if (path->slots[0] == 0)
3090 		goto out;
3091 
3092 	path->slots[0]--;
3093 	leaf = path->nodes[0];
3094 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3095 
3096 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3097 		goto out;
3098 
3099 	ret = 1;
3100 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3101 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3102 	if (item_size < sizeof(*ei)) {
3103 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3104 		goto out;
3105 	}
3106 #endif
3107 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3108 
3109 	if (item_size != sizeof(*ei) +
3110 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3111 		goto out;
3112 
3113 	if (btrfs_extent_generation(leaf, ei) <=
3114 	    btrfs_root_last_snapshot(&root->root_item))
3115 		goto out;
3116 
3117 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3118 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
3119 	    BTRFS_EXTENT_DATA_REF_KEY)
3120 		goto out;
3121 
3122 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3123 	if (btrfs_extent_refs(leaf, ei) !=
3124 	    btrfs_extent_data_ref_count(leaf, ref) ||
3125 	    btrfs_extent_data_ref_root(leaf, ref) !=
3126 	    root->root_key.objectid ||
3127 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3128 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
3129 		goto out;
3130 
3131 	ret = 0;
3132 out:
3133 	return ret;
3134 }
3135 
btrfs_cross_ref_exist(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid,u64 offset,u64 bytenr)3136 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3137 			  struct btrfs_root *root,
3138 			  u64 objectid, u64 offset, u64 bytenr)
3139 {
3140 	struct btrfs_path *path;
3141 	int ret;
3142 	int ret2;
3143 
3144 	path = btrfs_alloc_path();
3145 	if (!path)
3146 		return -ENOENT;
3147 
3148 	do {
3149 		ret = check_committed_ref(trans, root, path, objectid,
3150 					  offset, bytenr);
3151 		if (ret && ret != -ENOENT)
3152 			goto out;
3153 
3154 		ret2 = check_delayed_ref(trans, root, path, objectid,
3155 					 offset, bytenr);
3156 	} while (ret2 == -EAGAIN);
3157 
3158 	if (ret2 && ret2 != -ENOENT) {
3159 		ret = ret2;
3160 		goto out;
3161 	}
3162 
3163 	if (ret != -ENOENT || ret2 != -ENOENT)
3164 		ret = 0;
3165 out:
3166 	btrfs_free_path(path);
3167 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3168 		WARN_ON(ret > 0);
3169 	return ret;
3170 }
3171 
__btrfs_mod_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref,int inc)3172 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3173 			   struct btrfs_root *root,
3174 			   struct extent_buffer *buf,
3175 			   int full_backref, int inc)
3176 {
3177 	u64 bytenr;
3178 	u64 num_bytes;
3179 	u64 parent;
3180 	u64 ref_root;
3181 	u32 nritems;
3182 	struct btrfs_key key;
3183 	struct btrfs_file_extent_item *fi;
3184 	int i;
3185 	int level;
3186 	int ret = 0;
3187 	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3188 			    u64, u64, u64, u64, u64, u64);
3189 
3190 
3191 	if (btrfs_test_is_dummy_root(root))
3192 		return 0;
3193 
3194 	ref_root = btrfs_header_owner(buf);
3195 	nritems = btrfs_header_nritems(buf);
3196 	level = btrfs_header_level(buf);
3197 
3198 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3199 		return 0;
3200 
3201 	if (inc)
3202 		process_func = btrfs_inc_extent_ref;
3203 	else
3204 		process_func = btrfs_free_extent;
3205 
3206 	if (full_backref)
3207 		parent = buf->start;
3208 	else
3209 		parent = 0;
3210 
3211 	for (i = 0; i < nritems; i++) {
3212 		if (level == 0) {
3213 			btrfs_item_key_to_cpu(buf, &key, i);
3214 			if (key.type != BTRFS_EXTENT_DATA_KEY)
3215 				continue;
3216 			fi = btrfs_item_ptr(buf, i,
3217 					    struct btrfs_file_extent_item);
3218 			if (btrfs_file_extent_type(buf, fi) ==
3219 			    BTRFS_FILE_EXTENT_INLINE)
3220 				continue;
3221 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3222 			if (bytenr == 0)
3223 				continue;
3224 
3225 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3226 			key.offset -= btrfs_file_extent_offset(buf, fi);
3227 			ret = process_func(trans, root, bytenr, num_bytes,
3228 					   parent, ref_root, key.objectid,
3229 					   key.offset);
3230 			if (ret)
3231 				goto fail;
3232 		} else {
3233 			bytenr = btrfs_node_blockptr(buf, i);
3234 			num_bytes = root->nodesize;
3235 			ret = process_func(trans, root, bytenr, num_bytes,
3236 					   parent, ref_root, level - 1, 0);
3237 			if (ret)
3238 				goto fail;
3239 		}
3240 	}
3241 	return 0;
3242 fail:
3243 	return ret;
3244 }
3245 
btrfs_inc_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)3246 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3247 		  struct extent_buffer *buf, int full_backref)
3248 {
3249 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3250 }
3251 
btrfs_dec_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)3252 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3253 		  struct extent_buffer *buf, int full_backref)
3254 {
3255 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3256 }
3257 
write_one_cache_group(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_block_group_cache * cache)3258 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3259 				 struct btrfs_root *root,
3260 				 struct btrfs_path *path,
3261 				 struct btrfs_block_group_cache *cache)
3262 {
3263 	int ret;
3264 	struct btrfs_root *extent_root = root->fs_info->extent_root;
3265 	unsigned long bi;
3266 	struct extent_buffer *leaf;
3267 
3268 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3269 	if (ret) {
3270 		if (ret > 0)
3271 			ret = -ENOENT;
3272 		goto fail;
3273 	}
3274 
3275 	leaf = path->nodes[0];
3276 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3277 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3278 	btrfs_mark_buffer_dirty(leaf);
3279 fail:
3280 	btrfs_release_path(path);
3281 	return ret;
3282 
3283 }
3284 
3285 static struct btrfs_block_group_cache *
next_block_group(struct btrfs_root * root,struct btrfs_block_group_cache * cache)3286 next_block_group(struct btrfs_root *root,
3287 		 struct btrfs_block_group_cache *cache)
3288 {
3289 	struct rb_node *node;
3290 
3291 	spin_lock(&root->fs_info->block_group_cache_lock);
3292 
3293 	/* If our block group was removed, we need a full search. */
3294 	if (RB_EMPTY_NODE(&cache->cache_node)) {
3295 		const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3296 
3297 		spin_unlock(&root->fs_info->block_group_cache_lock);
3298 		btrfs_put_block_group(cache);
3299 		cache = btrfs_lookup_first_block_group(root->fs_info,
3300 						       next_bytenr);
3301 		return cache;
3302 	}
3303 	node = rb_next(&cache->cache_node);
3304 	btrfs_put_block_group(cache);
3305 	if (node) {
3306 		cache = rb_entry(node, struct btrfs_block_group_cache,
3307 				 cache_node);
3308 		btrfs_get_block_group(cache);
3309 	} else
3310 		cache = NULL;
3311 	spin_unlock(&root->fs_info->block_group_cache_lock);
3312 	return cache;
3313 }
3314 
cache_save_setup(struct btrfs_block_group_cache * block_group,struct btrfs_trans_handle * trans,struct btrfs_path * path)3315 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3316 			    struct btrfs_trans_handle *trans,
3317 			    struct btrfs_path *path)
3318 {
3319 	struct btrfs_root *root = block_group->fs_info->tree_root;
3320 	struct inode *inode = NULL;
3321 	u64 alloc_hint = 0;
3322 	int dcs = BTRFS_DC_ERROR;
3323 	u64 num_pages = 0;
3324 	int retries = 0;
3325 	int ret = 0;
3326 
3327 	/*
3328 	 * If this block group is smaller than 100 megs don't bother caching the
3329 	 * block group.
3330 	 */
3331 	if (block_group->key.offset < (100 * 1024 * 1024)) {
3332 		spin_lock(&block_group->lock);
3333 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3334 		spin_unlock(&block_group->lock);
3335 		return 0;
3336 	}
3337 
3338 	if (trans->aborted)
3339 		return 0;
3340 again:
3341 	inode = lookup_free_space_inode(root, block_group, path);
3342 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3343 		ret = PTR_ERR(inode);
3344 		btrfs_release_path(path);
3345 		goto out;
3346 	}
3347 
3348 	if (IS_ERR(inode)) {
3349 		BUG_ON(retries);
3350 		retries++;
3351 
3352 		if (block_group->ro)
3353 			goto out_free;
3354 
3355 		ret = create_free_space_inode(root, trans, block_group, path);
3356 		if (ret)
3357 			goto out_free;
3358 		goto again;
3359 	}
3360 
3361 	/* We've already setup this transaction, go ahead and exit */
3362 	if (block_group->cache_generation == trans->transid &&
3363 	    i_size_read(inode)) {
3364 		dcs = BTRFS_DC_SETUP;
3365 		goto out_put;
3366 	}
3367 
3368 	/*
3369 	 * We want to set the generation to 0, that way if anything goes wrong
3370 	 * from here on out we know not to trust this cache when we load up next
3371 	 * time.
3372 	 */
3373 	BTRFS_I(inode)->generation = 0;
3374 	ret = btrfs_update_inode(trans, root, inode);
3375 	if (ret) {
3376 		/*
3377 		 * So theoretically we could recover from this, simply set the
3378 		 * super cache generation to 0 so we know to invalidate the
3379 		 * cache, but then we'd have to keep track of the block groups
3380 		 * that fail this way so we know we _have_ to reset this cache
3381 		 * before the next commit or risk reading stale cache.  So to
3382 		 * limit our exposure to horrible edge cases lets just abort the
3383 		 * transaction, this only happens in really bad situations
3384 		 * anyway.
3385 		 */
3386 		btrfs_abort_transaction(trans, root, ret);
3387 		goto out_put;
3388 	}
3389 	WARN_ON(ret);
3390 
3391 	if (i_size_read(inode) > 0) {
3392 		ret = btrfs_check_trunc_cache_free_space(root,
3393 					&root->fs_info->global_block_rsv);
3394 		if (ret)
3395 			goto out_put;
3396 
3397 		ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
3398 		if (ret)
3399 			goto out_put;
3400 	}
3401 
3402 	spin_lock(&block_group->lock);
3403 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3404 	    !btrfs_test_opt(root, SPACE_CACHE)) {
3405 		/*
3406 		 * don't bother trying to write stuff out _if_
3407 		 * a) we're not cached,
3408 		 * b) we're with nospace_cache mount option.
3409 		 */
3410 		dcs = BTRFS_DC_WRITTEN;
3411 		spin_unlock(&block_group->lock);
3412 		goto out_put;
3413 	}
3414 	spin_unlock(&block_group->lock);
3415 
3416 	/*
3417 	 * We hit an ENOSPC when setting up the cache in this transaction, just
3418 	 * skip doing the setup, we've already cleared the cache so we're safe.
3419 	 */
3420 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3421 		ret = -ENOSPC;
3422 		goto out_put;
3423 	}
3424 
3425 	/*
3426 	 * Try to preallocate enough space based on how big the block group is.
3427 	 * Keep in mind this has to include any pinned space which could end up
3428 	 * taking up quite a bit since it's not folded into the other space
3429 	 * cache.
3430 	 */
3431 	num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
3432 	if (!num_pages)
3433 		num_pages = 1;
3434 
3435 	num_pages *= 16;
3436 	num_pages *= PAGE_CACHE_SIZE;
3437 
3438 	ret = btrfs_check_data_free_space(inode, 0, num_pages);
3439 	if (ret)
3440 		goto out_put;
3441 
3442 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3443 					      num_pages, num_pages,
3444 					      &alloc_hint);
3445 	/*
3446 	 * Our cache requires contiguous chunks so that we don't modify a bunch
3447 	 * of metadata or split extents when writing the cache out, which means
3448 	 * we can enospc if we are heavily fragmented in addition to just normal
3449 	 * out of space conditions.  So if we hit this just skip setting up any
3450 	 * other block groups for this transaction, maybe we'll unpin enough
3451 	 * space the next time around.
3452 	 */
3453 	if (!ret)
3454 		dcs = BTRFS_DC_SETUP;
3455 	else if (ret == -ENOSPC)
3456 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3457 	btrfs_free_reserved_data_space(inode, 0, num_pages);
3458 
3459 out_put:
3460 	iput(inode);
3461 out_free:
3462 	btrfs_release_path(path);
3463 out:
3464 	spin_lock(&block_group->lock);
3465 	if (!ret && dcs == BTRFS_DC_SETUP)
3466 		block_group->cache_generation = trans->transid;
3467 	block_group->disk_cache_state = dcs;
3468 	spin_unlock(&block_group->lock);
3469 
3470 	return ret;
3471 }
3472 
btrfs_setup_space_cache(struct btrfs_trans_handle * trans,struct btrfs_root * root)3473 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3474 			    struct btrfs_root *root)
3475 {
3476 	struct btrfs_block_group_cache *cache, *tmp;
3477 	struct btrfs_transaction *cur_trans = trans->transaction;
3478 	struct btrfs_path *path;
3479 
3480 	if (list_empty(&cur_trans->dirty_bgs) ||
3481 	    !btrfs_test_opt(root, SPACE_CACHE))
3482 		return 0;
3483 
3484 	path = btrfs_alloc_path();
3485 	if (!path)
3486 		return -ENOMEM;
3487 
3488 	/* Could add new block groups, use _safe just in case */
3489 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3490 				 dirty_list) {
3491 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3492 			cache_save_setup(cache, trans, path);
3493 	}
3494 
3495 	btrfs_free_path(path);
3496 	return 0;
3497 }
3498 
3499 /*
3500  * transaction commit does final block group cache writeback during a
3501  * critical section where nothing is allowed to change the FS.  This is
3502  * required in order for the cache to actually match the block group,
3503  * but can introduce a lot of latency into the commit.
3504  *
3505  * So, btrfs_start_dirty_block_groups is here to kick off block group
3506  * cache IO.  There's a chance we'll have to redo some of it if the
3507  * block group changes again during the commit, but it greatly reduces
3508  * the commit latency by getting rid of the easy block groups while
3509  * we're still allowing others to join the commit.
3510  */
btrfs_start_dirty_block_groups(struct btrfs_trans_handle * trans,struct btrfs_root * root)3511 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3512 				   struct btrfs_root *root)
3513 {
3514 	struct btrfs_block_group_cache *cache;
3515 	struct btrfs_transaction *cur_trans = trans->transaction;
3516 	int ret = 0;
3517 	int should_put;
3518 	struct btrfs_path *path = NULL;
3519 	LIST_HEAD(dirty);
3520 	struct list_head *io = &cur_trans->io_bgs;
3521 	int num_started = 0;
3522 	int loops = 0;
3523 
3524 	spin_lock(&cur_trans->dirty_bgs_lock);
3525 	if (list_empty(&cur_trans->dirty_bgs)) {
3526 		spin_unlock(&cur_trans->dirty_bgs_lock);
3527 		return 0;
3528 	}
3529 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
3530 	spin_unlock(&cur_trans->dirty_bgs_lock);
3531 
3532 again:
3533 	/*
3534 	 * make sure all the block groups on our dirty list actually
3535 	 * exist
3536 	 */
3537 	btrfs_create_pending_block_groups(trans, root);
3538 
3539 	if (!path) {
3540 		path = btrfs_alloc_path();
3541 		if (!path)
3542 			return -ENOMEM;
3543 	}
3544 
3545 	/*
3546 	 * cache_write_mutex is here only to save us from balance or automatic
3547 	 * removal of empty block groups deleting this block group while we are
3548 	 * writing out the cache
3549 	 */
3550 	mutex_lock(&trans->transaction->cache_write_mutex);
3551 	while (!list_empty(&dirty)) {
3552 		cache = list_first_entry(&dirty,
3553 					 struct btrfs_block_group_cache,
3554 					 dirty_list);
3555 		/*
3556 		 * this can happen if something re-dirties a block
3557 		 * group that is already under IO.  Just wait for it to
3558 		 * finish and then do it all again
3559 		 */
3560 		if (!list_empty(&cache->io_list)) {
3561 			list_del_init(&cache->io_list);
3562 			btrfs_wait_cache_io(root, trans, cache,
3563 					    &cache->io_ctl, path,
3564 					    cache->key.objectid);
3565 			btrfs_put_block_group(cache);
3566 		}
3567 
3568 
3569 		/*
3570 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3571 		 * if it should update the cache_state.  Don't delete
3572 		 * until after we wait.
3573 		 *
3574 		 * Since we're not running in the commit critical section
3575 		 * we need the dirty_bgs_lock to protect from update_block_group
3576 		 */
3577 		spin_lock(&cur_trans->dirty_bgs_lock);
3578 		list_del_init(&cache->dirty_list);
3579 		spin_unlock(&cur_trans->dirty_bgs_lock);
3580 
3581 		should_put = 1;
3582 
3583 		cache_save_setup(cache, trans, path);
3584 
3585 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3586 			cache->io_ctl.inode = NULL;
3587 			ret = btrfs_write_out_cache(root, trans, cache, path);
3588 			if (ret == 0 && cache->io_ctl.inode) {
3589 				num_started++;
3590 				should_put = 0;
3591 
3592 				/*
3593 				 * the cache_write_mutex is protecting
3594 				 * the io_list
3595 				 */
3596 				list_add_tail(&cache->io_list, io);
3597 			} else {
3598 				/*
3599 				 * if we failed to write the cache, the
3600 				 * generation will be bad and life goes on
3601 				 */
3602 				ret = 0;
3603 			}
3604 		}
3605 		if (!ret) {
3606 			ret = write_one_cache_group(trans, root, path, cache);
3607 			/*
3608 			 * Our block group might still be attached to the list
3609 			 * of new block groups in the transaction handle of some
3610 			 * other task (struct btrfs_trans_handle->new_bgs). This
3611 			 * means its block group item isn't yet in the extent
3612 			 * tree. If this happens ignore the error, as we will
3613 			 * try again later in the critical section of the
3614 			 * transaction commit.
3615 			 */
3616 			if (ret == -ENOENT) {
3617 				ret = 0;
3618 				spin_lock(&cur_trans->dirty_bgs_lock);
3619 				if (list_empty(&cache->dirty_list)) {
3620 					list_add_tail(&cache->dirty_list,
3621 						      &cur_trans->dirty_bgs);
3622 					btrfs_get_block_group(cache);
3623 				}
3624 				spin_unlock(&cur_trans->dirty_bgs_lock);
3625 			} else if (ret) {
3626 				btrfs_abort_transaction(trans, root, ret);
3627 			}
3628 		}
3629 
3630 		/* if its not on the io list, we need to put the block group */
3631 		if (should_put)
3632 			btrfs_put_block_group(cache);
3633 
3634 		if (ret)
3635 			break;
3636 
3637 		/*
3638 		 * Avoid blocking other tasks for too long. It might even save
3639 		 * us from writing caches for block groups that are going to be
3640 		 * removed.
3641 		 */
3642 		mutex_unlock(&trans->transaction->cache_write_mutex);
3643 		mutex_lock(&trans->transaction->cache_write_mutex);
3644 	}
3645 	mutex_unlock(&trans->transaction->cache_write_mutex);
3646 
3647 	/*
3648 	 * go through delayed refs for all the stuff we've just kicked off
3649 	 * and then loop back (just once)
3650 	 */
3651 	ret = btrfs_run_delayed_refs(trans, root, 0);
3652 	if (!ret && loops == 0) {
3653 		loops++;
3654 		spin_lock(&cur_trans->dirty_bgs_lock);
3655 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3656 		/*
3657 		 * dirty_bgs_lock protects us from concurrent block group
3658 		 * deletes too (not just cache_write_mutex).
3659 		 */
3660 		if (!list_empty(&dirty)) {
3661 			spin_unlock(&cur_trans->dirty_bgs_lock);
3662 			goto again;
3663 		}
3664 		spin_unlock(&cur_trans->dirty_bgs_lock);
3665 	}
3666 
3667 	btrfs_free_path(path);
3668 	return ret;
3669 }
3670 
btrfs_write_dirty_block_groups(struct btrfs_trans_handle * trans,struct btrfs_root * root)3671 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3672 				   struct btrfs_root *root)
3673 {
3674 	struct btrfs_block_group_cache *cache;
3675 	struct btrfs_transaction *cur_trans = trans->transaction;
3676 	int ret = 0;
3677 	int should_put;
3678 	struct btrfs_path *path;
3679 	struct list_head *io = &cur_trans->io_bgs;
3680 	int num_started = 0;
3681 
3682 	path = btrfs_alloc_path();
3683 	if (!path)
3684 		return -ENOMEM;
3685 
3686 	/*
3687 	 * We don't need the lock here since we are protected by the transaction
3688 	 * commit.  We want to do the cache_save_setup first and then run the
3689 	 * delayed refs to make sure we have the best chance at doing this all
3690 	 * in one shot.
3691 	 */
3692 	while (!list_empty(&cur_trans->dirty_bgs)) {
3693 		cache = list_first_entry(&cur_trans->dirty_bgs,
3694 					 struct btrfs_block_group_cache,
3695 					 dirty_list);
3696 
3697 		/*
3698 		 * this can happen if cache_save_setup re-dirties a block
3699 		 * group that is already under IO.  Just wait for it to
3700 		 * finish and then do it all again
3701 		 */
3702 		if (!list_empty(&cache->io_list)) {
3703 			list_del_init(&cache->io_list);
3704 			btrfs_wait_cache_io(root, trans, cache,
3705 					    &cache->io_ctl, path,
3706 					    cache->key.objectid);
3707 			btrfs_put_block_group(cache);
3708 		}
3709 
3710 		/*
3711 		 * don't remove from the dirty list until after we've waited
3712 		 * on any pending IO
3713 		 */
3714 		list_del_init(&cache->dirty_list);
3715 		should_put = 1;
3716 
3717 		cache_save_setup(cache, trans, path);
3718 
3719 		if (!ret)
3720 			ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3721 
3722 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3723 			cache->io_ctl.inode = NULL;
3724 			ret = btrfs_write_out_cache(root, trans, cache, path);
3725 			if (ret == 0 && cache->io_ctl.inode) {
3726 				num_started++;
3727 				should_put = 0;
3728 				list_add_tail(&cache->io_list, io);
3729 			} else {
3730 				/*
3731 				 * if we failed to write the cache, the
3732 				 * generation will be bad and life goes on
3733 				 */
3734 				ret = 0;
3735 			}
3736 		}
3737 		if (!ret) {
3738 			ret = write_one_cache_group(trans, root, path, cache);
3739 			if (ret)
3740 				btrfs_abort_transaction(trans, root, ret);
3741 		}
3742 
3743 		/* if its not on the io list, we need to put the block group */
3744 		if (should_put)
3745 			btrfs_put_block_group(cache);
3746 	}
3747 
3748 	while (!list_empty(io)) {
3749 		cache = list_first_entry(io, struct btrfs_block_group_cache,
3750 					 io_list);
3751 		list_del_init(&cache->io_list);
3752 		btrfs_wait_cache_io(root, trans, cache,
3753 				    &cache->io_ctl, path, cache->key.objectid);
3754 		btrfs_put_block_group(cache);
3755 	}
3756 
3757 	btrfs_free_path(path);
3758 	return ret;
3759 }
3760 
btrfs_extent_readonly(struct btrfs_root * root,u64 bytenr)3761 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3762 {
3763 	struct btrfs_block_group_cache *block_group;
3764 	int readonly = 0;
3765 
3766 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3767 	if (!block_group || block_group->ro)
3768 		readonly = 1;
3769 	if (block_group)
3770 		btrfs_put_block_group(block_group);
3771 	return readonly;
3772 }
3773 
alloc_name(u64 flags)3774 static const char *alloc_name(u64 flags)
3775 {
3776 	switch (flags) {
3777 	case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3778 		return "mixed";
3779 	case BTRFS_BLOCK_GROUP_METADATA:
3780 		return "metadata";
3781 	case BTRFS_BLOCK_GROUP_DATA:
3782 		return "data";
3783 	case BTRFS_BLOCK_GROUP_SYSTEM:
3784 		return "system";
3785 	default:
3786 		WARN_ON(1);
3787 		return "invalid-combination";
3788 	};
3789 }
3790 
update_space_info(struct btrfs_fs_info * info,u64 flags,u64 total_bytes,u64 bytes_used,struct btrfs_space_info ** space_info)3791 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3792 			     u64 total_bytes, u64 bytes_used,
3793 			     struct btrfs_space_info **space_info)
3794 {
3795 	struct btrfs_space_info *found;
3796 	int i;
3797 	int factor;
3798 	int ret;
3799 
3800 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3801 		     BTRFS_BLOCK_GROUP_RAID10))
3802 		factor = 2;
3803 	else
3804 		factor = 1;
3805 
3806 	found = __find_space_info(info, flags);
3807 	if (found) {
3808 		spin_lock(&found->lock);
3809 		found->total_bytes += total_bytes;
3810 		found->disk_total += total_bytes * factor;
3811 		found->bytes_used += bytes_used;
3812 		found->disk_used += bytes_used * factor;
3813 		if (total_bytes > 0)
3814 			found->full = 0;
3815 		spin_unlock(&found->lock);
3816 		*space_info = found;
3817 		return 0;
3818 	}
3819 	found = kzalloc(sizeof(*found), GFP_NOFS);
3820 	if (!found)
3821 		return -ENOMEM;
3822 
3823 	ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3824 	if (ret) {
3825 		kfree(found);
3826 		return ret;
3827 	}
3828 
3829 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3830 		INIT_LIST_HEAD(&found->block_groups[i]);
3831 	init_rwsem(&found->groups_sem);
3832 	spin_lock_init(&found->lock);
3833 	found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3834 	found->total_bytes = total_bytes;
3835 	found->disk_total = total_bytes * factor;
3836 	found->bytes_used = bytes_used;
3837 	found->disk_used = bytes_used * factor;
3838 	found->bytes_pinned = 0;
3839 	found->bytes_reserved = 0;
3840 	found->bytes_readonly = 0;
3841 	found->bytes_may_use = 0;
3842 	found->full = 0;
3843 	found->max_extent_size = 0;
3844 	found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3845 	found->chunk_alloc = 0;
3846 	found->flush = 0;
3847 	init_waitqueue_head(&found->wait);
3848 	INIT_LIST_HEAD(&found->ro_bgs);
3849 
3850 	ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3851 				    info->space_info_kobj, "%s",
3852 				    alloc_name(found->flags));
3853 	if (ret) {
3854 		kfree(found);
3855 		return ret;
3856 	}
3857 
3858 	*space_info = found;
3859 	list_add_rcu(&found->list, &info->space_info);
3860 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3861 		info->data_sinfo = found;
3862 
3863 	return ret;
3864 }
3865 
set_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)3866 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3867 {
3868 	u64 extra_flags = chunk_to_extended(flags) &
3869 				BTRFS_EXTENDED_PROFILE_MASK;
3870 
3871 	write_seqlock(&fs_info->profiles_lock);
3872 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3873 		fs_info->avail_data_alloc_bits |= extra_flags;
3874 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
3875 		fs_info->avail_metadata_alloc_bits |= extra_flags;
3876 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3877 		fs_info->avail_system_alloc_bits |= extra_flags;
3878 	write_sequnlock(&fs_info->profiles_lock);
3879 }
3880 
3881 /*
3882  * returns target flags in extended format or 0 if restripe for this
3883  * chunk_type is not in progress
3884  *
3885  * should be called with either volume_mutex or balance_lock held
3886  */
get_restripe_target(struct btrfs_fs_info * fs_info,u64 flags)3887 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3888 {
3889 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3890 	u64 target = 0;
3891 
3892 	if (!bctl)
3893 		return 0;
3894 
3895 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
3896 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3897 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3898 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3899 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3900 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3901 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3902 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3903 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3904 	}
3905 
3906 	return target;
3907 }
3908 
3909 /*
3910  * @flags: available profiles in extended format (see ctree.h)
3911  *
3912  * Returns reduced profile in chunk format.  If profile changing is in
3913  * progress (either running or paused) picks the target profile (if it's
3914  * already available), otherwise falls back to plain reducing.
3915  */
btrfs_reduce_alloc_profile(struct btrfs_root * root,u64 flags)3916 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3917 {
3918 	u64 num_devices = root->fs_info->fs_devices->rw_devices;
3919 	u64 target;
3920 	u64 raid_type;
3921 	u64 allowed = 0;
3922 
3923 	/*
3924 	 * see if restripe for this chunk_type is in progress, if so
3925 	 * try to reduce to the target profile
3926 	 */
3927 	spin_lock(&root->fs_info->balance_lock);
3928 	target = get_restripe_target(root->fs_info, flags);
3929 	if (target) {
3930 		/* pick target profile only if it's already available */
3931 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3932 			spin_unlock(&root->fs_info->balance_lock);
3933 			return extended_to_chunk(target);
3934 		}
3935 	}
3936 	spin_unlock(&root->fs_info->balance_lock);
3937 
3938 	/* First, mask out the RAID levels which aren't possible */
3939 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3940 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
3941 			allowed |= btrfs_raid_group[raid_type];
3942 	}
3943 	allowed &= flags;
3944 
3945 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
3946 		allowed = BTRFS_BLOCK_GROUP_RAID6;
3947 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
3948 		allowed = BTRFS_BLOCK_GROUP_RAID5;
3949 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
3950 		allowed = BTRFS_BLOCK_GROUP_RAID10;
3951 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
3952 		allowed = BTRFS_BLOCK_GROUP_RAID1;
3953 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
3954 		allowed = BTRFS_BLOCK_GROUP_RAID0;
3955 
3956 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
3957 
3958 	return extended_to_chunk(flags | allowed);
3959 }
3960 
get_alloc_profile(struct btrfs_root * root,u64 orig_flags)3961 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3962 {
3963 	unsigned seq;
3964 	u64 flags;
3965 
3966 	do {
3967 		flags = orig_flags;
3968 		seq = read_seqbegin(&root->fs_info->profiles_lock);
3969 
3970 		if (flags & BTRFS_BLOCK_GROUP_DATA)
3971 			flags |= root->fs_info->avail_data_alloc_bits;
3972 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3973 			flags |= root->fs_info->avail_system_alloc_bits;
3974 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3975 			flags |= root->fs_info->avail_metadata_alloc_bits;
3976 	} while (read_seqretry(&root->fs_info->profiles_lock, seq));
3977 
3978 	return btrfs_reduce_alloc_profile(root, flags);
3979 }
3980 
btrfs_get_alloc_profile(struct btrfs_root * root,int data)3981 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3982 {
3983 	u64 flags;
3984 	u64 ret;
3985 
3986 	if (data)
3987 		flags = BTRFS_BLOCK_GROUP_DATA;
3988 	else if (root == root->fs_info->chunk_root)
3989 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
3990 	else
3991 		flags = BTRFS_BLOCK_GROUP_METADATA;
3992 
3993 	ret = get_alloc_profile(root, flags);
3994 	return ret;
3995 }
3996 
btrfs_alloc_data_chunk_ondemand(struct inode * inode,u64 bytes)3997 int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes)
3998 {
3999 	struct btrfs_space_info *data_sinfo;
4000 	struct btrfs_root *root = BTRFS_I(inode)->root;
4001 	struct btrfs_fs_info *fs_info = root->fs_info;
4002 	u64 used;
4003 	int ret = 0;
4004 	int need_commit = 2;
4005 	int have_pinned_space;
4006 
4007 	/* make sure bytes are sectorsize aligned */
4008 	bytes = ALIGN(bytes, root->sectorsize);
4009 
4010 	if (btrfs_is_free_space_inode(inode)) {
4011 		need_commit = 0;
4012 		ASSERT(current->journal_info);
4013 	}
4014 
4015 	data_sinfo = fs_info->data_sinfo;
4016 	if (!data_sinfo)
4017 		goto alloc;
4018 
4019 again:
4020 	/* make sure we have enough space to handle the data first */
4021 	spin_lock(&data_sinfo->lock);
4022 	used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
4023 		data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
4024 		data_sinfo->bytes_may_use;
4025 
4026 	if (used + bytes > data_sinfo->total_bytes) {
4027 		struct btrfs_trans_handle *trans;
4028 
4029 		/*
4030 		 * if we don't have enough free bytes in this space then we need
4031 		 * to alloc a new chunk.
4032 		 */
4033 		if (!data_sinfo->full) {
4034 			u64 alloc_target;
4035 
4036 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4037 			spin_unlock(&data_sinfo->lock);
4038 alloc:
4039 			alloc_target = btrfs_get_alloc_profile(root, 1);
4040 			/*
4041 			 * It is ugly that we don't call nolock join
4042 			 * transaction for the free space inode case here.
4043 			 * But it is safe because we only do the data space
4044 			 * reservation for the free space cache in the
4045 			 * transaction context, the common join transaction
4046 			 * just increase the counter of the current transaction
4047 			 * handler, doesn't try to acquire the trans_lock of
4048 			 * the fs.
4049 			 */
4050 			trans = btrfs_join_transaction(root);
4051 			if (IS_ERR(trans))
4052 				return PTR_ERR(trans);
4053 
4054 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4055 					     alloc_target,
4056 					     CHUNK_ALLOC_NO_FORCE);
4057 			btrfs_end_transaction(trans, root);
4058 			if (ret < 0) {
4059 				if (ret != -ENOSPC)
4060 					return ret;
4061 				else {
4062 					have_pinned_space = 1;
4063 					goto commit_trans;
4064 				}
4065 			}
4066 
4067 			if (!data_sinfo)
4068 				data_sinfo = fs_info->data_sinfo;
4069 
4070 			goto again;
4071 		}
4072 
4073 		/*
4074 		 * If we don't have enough pinned space to deal with this
4075 		 * allocation, and no removed chunk in current transaction,
4076 		 * don't bother committing the transaction.
4077 		 */
4078 		have_pinned_space = percpu_counter_compare(
4079 			&data_sinfo->total_bytes_pinned,
4080 			used + bytes - data_sinfo->total_bytes);
4081 		spin_unlock(&data_sinfo->lock);
4082 
4083 		/* commit the current transaction and try again */
4084 commit_trans:
4085 		if (need_commit &&
4086 		    !atomic_read(&root->fs_info->open_ioctl_trans)) {
4087 			need_commit--;
4088 
4089 			if (need_commit > 0) {
4090 				btrfs_start_delalloc_roots(fs_info, 0, -1);
4091 				btrfs_wait_ordered_roots(fs_info, -1);
4092 			}
4093 
4094 			trans = btrfs_join_transaction(root);
4095 			if (IS_ERR(trans))
4096 				return PTR_ERR(trans);
4097 			if (have_pinned_space >= 0 ||
4098 			    test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4099 				     &trans->transaction->flags) ||
4100 			    need_commit > 0) {
4101 				ret = btrfs_commit_transaction(trans, root);
4102 				if (ret)
4103 					return ret;
4104 				/*
4105 				 * The cleaner kthread might still be doing iput
4106 				 * operations. Wait for it to finish so that
4107 				 * more space is released.
4108 				 */
4109 				mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
4110 				mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
4111 				goto again;
4112 			} else {
4113 				btrfs_end_transaction(trans, root);
4114 			}
4115 		}
4116 
4117 		trace_btrfs_space_reservation(root->fs_info,
4118 					      "space_info:enospc",
4119 					      data_sinfo->flags, bytes, 1);
4120 		return -ENOSPC;
4121 	}
4122 	data_sinfo->bytes_may_use += bytes;
4123 	trace_btrfs_space_reservation(root->fs_info, "space_info",
4124 				      data_sinfo->flags, bytes, 1);
4125 	spin_unlock(&data_sinfo->lock);
4126 
4127 	return ret;
4128 }
4129 
4130 /*
4131  * New check_data_free_space() with ability for precious data reservation
4132  * Will replace old btrfs_check_data_free_space(), but for patch split,
4133  * add a new function first and then replace it.
4134  */
btrfs_check_data_free_space(struct inode * inode,u64 start,u64 len)4135 int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4136 {
4137 	struct btrfs_root *root = BTRFS_I(inode)->root;
4138 	int ret;
4139 
4140 	/* align the range */
4141 	len = round_up(start + len, root->sectorsize) -
4142 	      round_down(start, root->sectorsize);
4143 	start = round_down(start, root->sectorsize);
4144 
4145 	ret = btrfs_alloc_data_chunk_ondemand(inode, len);
4146 	if (ret < 0)
4147 		return ret;
4148 
4149 	/*
4150 	 * Use new btrfs_qgroup_reserve_data to reserve precious data space
4151 	 *
4152 	 * TODO: Find a good method to avoid reserve data space for NOCOW
4153 	 * range, but don't impact performance on quota disable case.
4154 	 */
4155 	ret = btrfs_qgroup_reserve_data(inode, start, len);
4156 	return ret;
4157 }
4158 
4159 /*
4160  * Called if we need to clear a data reservation for this inode
4161  * Normally in a error case.
4162  *
4163  * This one will *NOT* use accurate qgroup reserved space API, just for case
4164  * which we can't sleep and is sure it won't affect qgroup reserved space.
4165  * Like clear_bit_hook().
4166  */
btrfs_free_reserved_data_space_noquota(struct inode * inode,u64 start,u64 len)4167 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4168 					    u64 len)
4169 {
4170 	struct btrfs_root *root = BTRFS_I(inode)->root;
4171 	struct btrfs_space_info *data_sinfo;
4172 
4173 	/* Make sure the range is aligned to sectorsize */
4174 	len = round_up(start + len, root->sectorsize) -
4175 	      round_down(start, root->sectorsize);
4176 	start = round_down(start, root->sectorsize);
4177 
4178 	data_sinfo = root->fs_info->data_sinfo;
4179 	spin_lock(&data_sinfo->lock);
4180 	if (WARN_ON(data_sinfo->bytes_may_use < len))
4181 		data_sinfo->bytes_may_use = 0;
4182 	else
4183 		data_sinfo->bytes_may_use -= len;
4184 	trace_btrfs_space_reservation(root->fs_info, "space_info",
4185 				      data_sinfo->flags, len, 0);
4186 	spin_unlock(&data_sinfo->lock);
4187 }
4188 
4189 /*
4190  * Called if we need to clear a data reservation for this inode
4191  * Normally in a error case.
4192  *
4193  * This one will handle the per-indoe data rsv map for accurate reserved
4194  * space framework.
4195  */
btrfs_free_reserved_data_space(struct inode * inode,u64 start,u64 len)4196 void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4197 {
4198 	btrfs_free_reserved_data_space_noquota(inode, start, len);
4199 	btrfs_qgroup_free_data(inode, start, len);
4200 }
4201 
force_metadata_allocation(struct btrfs_fs_info * info)4202 static void force_metadata_allocation(struct btrfs_fs_info *info)
4203 {
4204 	struct list_head *head = &info->space_info;
4205 	struct btrfs_space_info *found;
4206 
4207 	rcu_read_lock();
4208 	list_for_each_entry_rcu(found, head, list) {
4209 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4210 			found->force_alloc = CHUNK_ALLOC_FORCE;
4211 	}
4212 	rcu_read_unlock();
4213 }
4214 
calc_global_rsv_need_space(struct btrfs_block_rsv * global)4215 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4216 {
4217 	return (global->size << 1);
4218 }
4219 
should_alloc_chunk(struct btrfs_root * root,struct btrfs_space_info * sinfo,int force)4220 static int should_alloc_chunk(struct btrfs_root *root,
4221 			      struct btrfs_space_info *sinfo, int force)
4222 {
4223 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4224 	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4225 	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4226 	u64 thresh;
4227 
4228 	if (force == CHUNK_ALLOC_FORCE)
4229 		return 1;
4230 
4231 	/*
4232 	 * We need to take into account the global rsv because for all intents
4233 	 * and purposes it's used space.  Don't worry about locking the
4234 	 * global_rsv, it doesn't change except when the transaction commits.
4235 	 */
4236 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4237 		num_allocated += calc_global_rsv_need_space(global_rsv);
4238 
4239 	/*
4240 	 * in limited mode, we want to have some free space up to
4241 	 * about 1% of the FS size.
4242 	 */
4243 	if (force == CHUNK_ALLOC_LIMITED) {
4244 		thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
4245 		thresh = max_t(u64, 64 * 1024 * 1024,
4246 			       div_factor_fine(thresh, 1));
4247 
4248 		if (num_bytes - num_allocated < thresh)
4249 			return 1;
4250 	}
4251 
4252 	if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
4253 		return 0;
4254 	return 1;
4255 }
4256 
get_profile_num_devs(struct btrfs_root * root,u64 type)4257 static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
4258 {
4259 	u64 num_dev;
4260 
4261 	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4262 		    BTRFS_BLOCK_GROUP_RAID0 |
4263 		    BTRFS_BLOCK_GROUP_RAID5 |
4264 		    BTRFS_BLOCK_GROUP_RAID6))
4265 		num_dev = root->fs_info->fs_devices->rw_devices;
4266 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
4267 		num_dev = 2;
4268 	else
4269 		num_dev = 1;	/* DUP or single */
4270 
4271 	return num_dev;
4272 }
4273 
4274 /*
4275  * If @is_allocation is true, reserve space in the system space info necessary
4276  * for allocating a chunk, otherwise if it's false, reserve space necessary for
4277  * removing a chunk.
4278  */
check_system_chunk(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 type)4279 void check_system_chunk(struct btrfs_trans_handle *trans,
4280 			struct btrfs_root *root,
4281 			u64 type)
4282 {
4283 	struct btrfs_space_info *info;
4284 	u64 left;
4285 	u64 thresh;
4286 	int ret = 0;
4287 	u64 num_devs;
4288 
4289 	/*
4290 	 * Needed because we can end up allocating a system chunk and for an
4291 	 * atomic and race free space reservation in the chunk block reserve.
4292 	 */
4293 	ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
4294 
4295 	info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4296 	spin_lock(&info->lock);
4297 	left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4298 		info->bytes_reserved - info->bytes_readonly -
4299 		info->bytes_may_use;
4300 	spin_unlock(&info->lock);
4301 
4302 	num_devs = get_profile_num_devs(root, type);
4303 
4304 	/* num_devs device items to update and 1 chunk item to add or remove */
4305 	thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4306 		btrfs_calc_trans_metadata_size(root, 1);
4307 
4308 	if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
4309 		btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4310 			left, thresh, type);
4311 		dump_space_info(info, 0, 0);
4312 	}
4313 
4314 	if (left < thresh) {
4315 		u64 flags;
4316 
4317 		flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4318 		/*
4319 		 * Ignore failure to create system chunk. We might end up not
4320 		 * needing it, as we might not need to COW all nodes/leafs from
4321 		 * the paths we visit in the chunk tree (they were already COWed
4322 		 * or created in the current transaction for example).
4323 		 */
4324 		ret = btrfs_alloc_chunk(trans, root, flags);
4325 	}
4326 
4327 	if (!ret) {
4328 		ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4329 					  &root->fs_info->chunk_block_rsv,
4330 					  thresh, BTRFS_RESERVE_NO_FLUSH);
4331 		if (!ret)
4332 			trans->chunk_bytes_reserved += thresh;
4333 	}
4334 }
4335 
do_chunk_alloc(struct btrfs_trans_handle * trans,struct btrfs_root * extent_root,u64 flags,int force)4336 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4337 			  struct btrfs_root *extent_root, u64 flags, int force)
4338 {
4339 	struct btrfs_space_info *space_info;
4340 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
4341 	int wait_for_alloc = 0;
4342 	int ret = 0;
4343 
4344 	/* Don't re-enter if we're already allocating a chunk */
4345 	if (trans->allocating_chunk)
4346 		return -ENOSPC;
4347 
4348 	space_info = __find_space_info(extent_root->fs_info, flags);
4349 	if (!space_info) {
4350 		ret = update_space_info(extent_root->fs_info, flags,
4351 					0, 0, &space_info);
4352 		BUG_ON(ret); /* -ENOMEM */
4353 	}
4354 	BUG_ON(!space_info); /* Logic error */
4355 
4356 again:
4357 	spin_lock(&space_info->lock);
4358 	if (force < space_info->force_alloc)
4359 		force = space_info->force_alloc;
4360 	if (space_info->full) {
4361 		if (should_alloc_chunk(extent_root, space_info, force))
4362 			ret = -ENOSPC;
4363 		else
4364 			ret = 0;
4365 		spin_unlock(&space_info->lock);
4366 		return ret;
4367 	}
4368 
4369 	if (!should_alloc_chunk(extent_root, space_info, force)) {
4370 		spin_unlock(&space_info->lock);
4371 		return 0;
4372 	} else if (space_info->chunk_alloc) {
4373 		wait_for_alloc = 1;
4374 	} else {
4375 		space_info->chunk_alloc = 1;
4376 	}
4377 
4378 	spin_unlock(&space_info->lock);
4379 
4380 	mutex_lock(&fs_info->chunk_mutex);
4381 
4382 	/*
4383 	 * The chunk_mutex is held throughout the entirety of a chunk
4384 	 * allocation, so once we've acquired the chunk_mutex we know that the
4385 	 * other guy is done and we need to recheck and see if we should
4386 	 * allocate.
4387 	 */
4388 	if (wait_for_alloc) {
4389 		mutex_unlock(&fs_info->chunk_mutex);
4390 		wait_for_alloc = 0;
4391 		goto again;
4392 	}
4393 
4394 	trans->allocating_chunk = true;
4395 
4396 	/*
4397 	 * If we have mixed data/metadata chunks we want to make sure we keep
4398 	 * allocating mixed chunks instead of individual chunks.
4399 	 */
4400 	if (btrfs_mixed_space_info(space_info))
4401 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4402 
4403 	/*
4404 	 * if we're doing a data chunk, go ahead and make sure that
4405 	 * we keep a reasonable number of metadata chunks allocated in the
4406 	 * FS as well.
4407 	 */
4408 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4409 		fs_info->data_chunk_allocations++;
4410 		if (!(fs_info->data_chunk_allocations %
4411 		      fs_info->metadata_ratio))
4412 			force_metadata_allocation(fs_info);
4413 	}
4414 
4415 	/*
4416 	 * Check if we have enough space in SYSTEM chunk because we may need
4417 	 * to update devices.
4418 	 */
4419 	check_system_chunk(trans, extent_root, flags);
4420 
4421 	ret = btrfs_alloc_chunk(trans, extent_root, flags);
4422 	trans->allocating_chunk = false;
4423 
4424 	spin_lock(&space_info->lock);
4425 	if (ret < 0 && ret != -ENOSPC)
4426 		goto out;
4427 	if (ret)
4428 		space_info->full = 1;
4429 	else
4430 		ret = 1;
4431 
4432 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4433 out:
4434 	space_info->chunk_alloc = 0;
4435 	spin_unlock(&space_info->lock);
4436 	mutex_unlock(&fs_info->chunk_mutex);
4437 	/*
4438 	 * When we allocate a new chunk we reserve space in the chunk block
4439 	 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4440 	 * add new nodes/leafs to it if we end up needing to do it when
4441 	 * inserting the chunk item and updating device items as part of the
4442 	 * second phase of chunk allocation, performed by
4443 	 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4444 	 * large number of new block groups to create in our transaction
4445 	 * handle's new_bgs list to avoid exhausting the chunk block reserve
4446 	 * in extreme cases - like having a single transaction create many new
4447 	 * block groups when starting to write out the free space caches of all
4448 	 * the block groups that were made dirty during the lifetime of the
4449 	 * transaction.
4450 	 */
4451 	if (trans->can_flush_pending_bgs &&
4452 	    trans->chunk_bytes_reserved >= (2 * 1024 * 1024ull)) {
4453 		btrfs_create_pending_block_groups(trans, trans->root);
4454 		btrfs_trans_release_chunk_metadata(trans);
4455 	}
4456 	return ret;
4457 }
4458 
can_overcommit(struct btrfs_root * root,struct btrfs_space_info * space_info,u64 bytes,enum btrfs_reserve_flush_enum flush)4459 static int can_overcommit(struct btrfs_root *root,
4460 			  struct btrfs_space_info *space_info, u64 bytes,
4461 			  enum btrfs_reserve_flush_enum flush)
4462 {
4463 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4464 	u64 profile = btrfs_get_alloc_profile(root, 0);
4465 	u64 space_size;
4466 	u64 avail;
4467 	u64 used;
4468 
4469 	used = space_info->bytes_used + space_info->bytes_reserved +
4470 		space_info->bytes_pinned + space_info->bytes_readonly;
4471 
4472 	/*
4473 	 * We only want to allow over committing if we have lots of actual space
4474 	 * free, but if we don't have enough space to handle the global reserve
4475 	 * space then we could end up having a real enospc problem when trying
4476 	 * to allocate a chunk or some other such important allocation.
4477 	 */
4478 	spin_lock(&global_rsv->lock);
4479 	space_size = calc_global_rsv_need_space(global_rsv);
4480 	spin_unlock(&global_rsv->lock);
4481 	if (used + space_size >= space_info->total_bytes)
4482 		return 0;
4483 
4484 	used += space_info->bytes_may_use;
4485 
4486 	spin_lock(&root->fs_info->free_chunk_lock);
4487 	avail = root->fs_info->free_chunk_space;
4488 	spin_unlock(&root->fs_info->free_chunk_lock);
4489 
4490 	/*
4491 	 * If we have dup, raid1 or raid10 then only half of the free
4492 	 * space is actually useable.  For raid56, the space info used
4493 	 * doesn't include the parity drive, so we don't have to
4494 	 * change the math
4495 	 */
4496 	if (profile & (BTRFS_BLOCK_GROUP_DUP |
4497 		       BTRFS_BLOCK_GROUP_RAID1 |
4498 		       BTRFS_BLOCK_GROUP_RAID10))
4499 		avail >>= 1;
4500 
4501 	/*
4502 	 * If we aren't flushing all things, let us overcommit up to
4503 	 * 1/2th of the space. If we can flush, don't let us overcommit
4504 	 * too much, let it overcommit up to 1/8 of the space.
4505 	 */
4506 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
4507 		avail >>= 3;
4508 	else
4509 		avail >>= 1;
4510 
4511 	if (used + bytes < space_info->total_bytes + avail)
4512 		return 1;
4513 	return 0;
4514 }
4515 
btrfs_writeback_inodes_sb_nr(struct btrfs_root * root,unsigned long nr_pages,int nr_items)4516 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4517 					 unsigned long nr_pages, int nr_items)
4518 {
4519 	struct super_block *sb = root->fs_info->sb;
4520 
4521 	if (down_read_trylock(&sb->s_umount)) {
4522 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4523 		up_read(&sb->s_umount);
4524 	} else {
4525 		/*
4526 		 * We needn't worry the filesystem going from r/w to r/o though
4527 		 * we don't acquire ->s_umount mutex, because the filesystem
4528 		 * should guarantee the delalloc inodes list be empty after
4529 		 * the filesystem is readonly(all dirty pages are written to
4530 		 * the disk).
4531 		 */
4532 		btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4533 		if (!current->journal_info)
4534 			btrfs_wait_ordered_roots(root->fs_info, nr_items);
4535 	}
4536 }
4537 
calc_reclaim_items_nr(struct btrfs_root * root,u64 to_reclaim)4538 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4539 {
4540 	u64 bytes;
4541 	int nr;
4542 
4543 	bytes = btrfs_calc_trans_metadata_size(root, 1);
4544 	nr = (int)div64_u64(to_reclaim, bytes);
4545 	if (!nr)
4546 		nr = 1;
4547 	return nr;
4548 }
4549 
4550 #define EXTENT_SIZE_PER_ITEM	(256 * 1024)
4551 
4552 /*
4553  * shrink metadata reservation for delalloc
4554  */
shrink_delalloc(struct btrfs_root * root,u64 to_reclaim,u64 orig,bool wait_ordered)4555 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4556 			    bool wait_ordered)
4557 {
4558 	struct btrfs_block_rsv *block_rsv;
4559 	struct btrfs_space_info *space_info;
4560 	struct btrfs_trans_handle *trans;
4561 	u64 delalloc_bytes;
4562 	u64 max_reclaim;
4563 	long time_left;
4564 	unsigned long nr_pages;
4565 	int loops;
4566 	int items;
4567 	enum btrfs_reserve_flush_enum flush;
4568 
4569 	/* Calc the number of the pages we need flush for space reservation */
4570 	items = calc_reclaim_items_nr(root, to_reclaim);
4571 	to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4572 
4573 	trans = (struct btrfs_trans_handle *)current->journal_info;
4574 	block_rsv = &root->fs_info->delalloc_block_rsv;
4575 	space_info = block_rsv->space_info;
4576 
4577 	delalloc_bytes = percpu_counter_sum_positive(
4578 						&root->fs_info->delalloc_bytes);
4579 	if (delalloc_bytes == 0) {
4580 		if (trans)
4581 			return;
4582 		if (wait_ordered)
4583 			btrfs_wait_ordered_roots(root->fs_info, items);
4584 		return;
4585 	}
4586 
4587 	loops = 0;
4588 	while (delalloc_bytes && loops < 3) {
4589 		max_reclaim = min(delalloc_bytes, to_reclaim);
4590 		nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4591 		btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4592 		/*
4593 		 * We need to wait for the async pages to actually start before
4594 		 * we do anything.
4595 		 */
4596 		max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4597 		if (!max_reclaim)
4598 			goto skip_async;
4599 
4600 		if (max_reclaim <= nr_pages)
4601 			max_reclaim = 0;
4602 		else
4603 			max_reclaim -= nr_pages;
4604 
4605 		wait_event(root->fs_info->async_submit_wait,
4606 			   atomic_read(&root->fs_info->async_delalloc_pages) <=
4607 			   (int)max_reclaim);
4608 skip_async:
4609 		if (!trans)
4610 			flush = BTRFS_RESERVE_FLUSH_ALL;
4611 		else
4612 			flush = BTRFS_RESERVE_NO_FLUSH;
4613 		spin_lock(&space_info->lock);
4614 		if (can_overcommit(root, space_info, orig, flush)) {
4615 			spin_unlock(&space_info->lock);
4616 			break;
4617 		}
4618 		spin_unlock(&space_info->lock);
4619 
4620 		loops++;
4621 		if (wait_ordered && !trans) {
4622 			btrfs_wait_ordered_roots(root->fs_info, items);
4623 		} else {
4624 			time_left = schedule_timeout_killable(1);
4625 			if (time_left)
4626 				break;
4627 		}
4628 		delalloc_bytes = percpu_counter_sum_positive(
4629 						&root->fs_info->delalloc_bytes);
4630 	}
4631 }
4632 
4633 /**
4634  * maybe_commit_transaction - possibly commit the transaction if its ok to
4635  * @root - the root we're allocating for
4636  * @bytes - the number of bytes we want to reserve
4637  * @force - force the commit
4638  *
4639  * This will check to make sure that committing the transaction will actually
4640  * get us somewhere and then commit the transaction if it does.  Otherwise it
4641  * will return -ENOSPC.
4642  */
may_commit_transaction(struct btrfs_root * root,struct btrfs_space_info * space_info,u64 bytes,int force)4643 static int may_commit_transaction(struct btrfs_root *root,
4644 				  struct btrfs_space_info *space_info,
4645 				  u64 bytes, int force)
4646 {
4647 	struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4648 	struct btrfs_trans_handle *trans;
4649 
4650 	trans = (struct btrfs_trans_handle *)current->journal_info;
4651 	if (trans)
4652 		return -EAGAIN;
4653 
4654 	if (force)
4655 		goto commit;
4656 
4657 	/* See if there is enough pinned space to make this reservation */
4658 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4659 				   bytes) >= 0)
4660 		goto commit;
4661 
4662 	/*
4663 	 * See if there is some space in the delayed insertion reservation for
4664 	 * this reservation.
4665 	 */
4666 	if (space_info != delayed_rsv->space_info)
4667 		return -ENOSPC;
4668 
4669 	spin_lock(&delayed_rsv->lock);
4670 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4671 				   bytes - delayed_rsv->size) >= 0) {
4672 		spin_unlock(&delayed_rsv->lock);
4673 		return -ENOSPC;
4674 	}
4675 	spin_unlock(&delayed_rsv->lock);
4676 
4677 commit:
4678 	trans = btrfs_join_transaction(root);
4679 	if (IS_ERR(trans))
4680 		return -ENOSPC;
4681 
4682 	return btrfs_commit_transaction(trans, root);
4683 }
4684 
4685 enum flush_state {
4686 	FLUSH_DELAYED_ITEMS_NR	=	1,
4687 	FLUSH_DELAYED_ITEMS	=	2,
4688 	FLUSH_DELALLOC		=	3,
4689 	FLUSH_DELALLOC_WAIT	=	4,
4690 	ALLOC_CHUNK		=	5,
4691 	COMMIT_TRANS		=	6,
4692 };
4693 
flush_space(struct btrfs_root * root,struct btrfs_space_info * space_info,u64 num_bytes,u64 orig_bytes,int state)4694 static int flush_space(struct btrfs_root *root,
4695 		       struct btrfs_space_info *space_info, u64 num_bytes,
4696 		       u64 orig_bytes, int state)
4697 {
4698 	struct btrfs_trans_handle *trans;
4699 	int nr;
4700 	int ret = 0;
4701 
4702 	switch (state) {
4703 	case FLUSH_DELAYED_ITEMS_NR:
4704 	case FLUSH_DELAYED_ITEMS:
4705 		if (state == FLUSH_DELAYED_ITEMS_NR)
4706 			nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4707 		else
4708 			nr = -1;
4709 
4710 		trans = btrfs_join_transaction(root);
4711 		if (IS_ERR(trans)) {
4712 			ret = PTR_ERR(trans);
4713 			break;
4714 		}
4715 		ret = btrfs_run_delayed_items_nr(trans, root, nr);
4716 		btrfs_end_transaction(trans, root);
4717 		break;
4718 	case FLUSH_DELALLOC:
4719 	case FLUSH_DELALLOC_WAIT:
4720 		shrink_delalloc(root, num_bytes * 2, orig_bytes,
4721 				state == FLUSH_DELALLOC_WAIT);
4722 		break;
4723 	case ALLOC_CHUNK:
4724 		trans = btrfs_join_transaction(root);
4725 		if (IS_ERR(trans)) {
4726 			ret = PTR_ERR(trans);
4727 			break;
4728 		}
4729 		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4730 				     btrfs_get_alloc_profile(root, 0),
4731 				     CHUNK_ALLOC_NO_FORCE);
4732 		btrfs_end_transaction(trans, root);
4733 		if (ret == -ENOSPC)
4734 			ret = 0;
4735 		break;
4736 	case COMMIT_TRANS:
4737 		ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4738 		break;
4739 	default:
4740 		ret = -ENOSPC;
4741 		break;
4742 	}
4743 
4744 	return ret;
4745 }
4746 
4747 static inline u64
btrfs_calc_reclaim_metadata_size(struct btrfs_root * root,struct btrfs_space_info * space_info)4748 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4749 				 struct btrfs_space_info *space_info)
4750 {
4751 	u64 used;
4752 	u64 expected;
4753 	u64 to_reclaim;
4754 
4755 	to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4756 				16 * 1024 * 1024);
4757 	spin_lock(&space_info->lock);
4758 	if (can_overcommit(root, space_info, to_reclaim,
4759 			   BTRFS_RESERVE_FLUSH_ALL)) {
4760 		to_reclaim = 0;
4761 		goto out;
4762 	}
4763 
4764 	used = space_info->bytes_used + space_info->bytes_reserved +
4765 	       space_info->bytes_pinned + space_info->bytes_readonly +
4766 	       space_info->bytes_may_use;
4767 	if (can_overcommit(root, space_info, 1024 * 1024,
4768 			   BTRFS_RESERVE_FLUSH_ALL))
4769 		expected = div_factor_fine(space_info->total_bytes, 95);
4770 	else
4771 		expected = div_factor_fine(space_info->total_bytes, 90);
4772 
4773 	if (used > expected)
4774 		to_reclaim = used - expected;
4775 	else
4776 		to_reclaim = 0;
4777 	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4778 				     space_info->bytes_reserved);
4779 out:
4780 	spin_unlock(&space_info->lock);
4781 
4782 	return to_reclaim;
4783 }
4784 
need_do_async_reclaim(struct btrfs_space_info * space_info,struct btrfs_fs_info * fs_info,u64 used)4785 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4786 					struct btrfs_fs_info *fs_info, u64 used)
4787 {
4788 	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4789 
4790 	/* If we're just plain full then async reclaim just slows us down. */
4791 	if (space_info->bytes_used >= thresh)
4792 		return 0;
4793 
4794 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4795 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4796 }
4797 
btrfs_need_do_async_reclaim(struct btrfs_space_info * space_info,struct btrfs_fs_info * fs_info,int flush_state)4798 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4799 				       struct btrfs_fs_info *fs_info,
4800 				       int flush_state)
4801 {
4802 	u64 used;
4803 
4804 	spin_lock(&space_info->lock);
4805 	/*
4806 	 * We run out of space and have not got any free space via flush_space,
4807 	 * so don't bother doing async reclaim.
4808 	 */
4809 	if (flush_state > COMMIT_TRANS && space_info->full) {
4810 		spin_unlock(&space_info->lock);
4811 		return 0;
4812 	}
4813 
4814 	used = space_info->bytes_used + space_info->bytes_reserved +
4815 	       space_info->bytes_pinned + space_info->bytes_readonly +
4816 	       space_info->bytes_may_use;
4817 	if (need_do_async_reclaim(space_info, fs_info, used)) {
4818 		spin_unlock(&space_info->lock);
4819 		return 1;
4820 	}
4821 	spin_unlock(&space_info->lock);
4822 
4823 	return 0;
4824 }
4825 
btrfs_async_reclaim_metadata_space(struct work_struct * work)4826 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4827 {
4828 	struct btrfs_fs_info *fs_info;
4829 	struct btrfs_space_info *space_info;
4830 	u64 to_reclaim;
4831 	int flush_state;
4832 
4833 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4834 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4835 
4836 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4837 						      space_info);
4838 	if (!to_reclaim)
4839 		return;
4840 
4841 	flush_state = FLUSH_DELAYED_ITEMS_NR;
4842 	do {
4843 		flush_space(fs_info->fs_root, space_info, to_reclaim,
4844 			    to_reclaim, flush_state);
4845 		flush_state++;
4846 		if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4847 						 flush_state))
4848 			return;
4849 	} while (flush_state < COMMIT_TRANS);
4850 }
4851 
btrfs_init_async_reclaim_work(struct work_struct * work)4852 void btrfs_init_async_reclaim_work(struct work_struct *work)
4853 {
4854 	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4855 }
4856 
4857 /**
4858  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4859  * @root - the root we're allocating for
4860  * @block_rsv - the block_rsv we're allocating for
4861  * @orig_bytes - the number of bytes we want
4862  * @flush - whether or not we can flush to make our reservation
4863  *
4864  * This will reserve orgi_bytes number of bytes from the space info associated
4865  * with the block_rsv.  If there is not enough space it will make an attempt to
4866  * flush out space to make room.  It will do this by flushing delalloc if
4867  * possible or committing the transaction.  If flush is 0 then no attempts to
4868  * regain reservations will be made and this will fail if there is not enough
4869  * space already.
4870  */
reserve_metadata_bytes(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,u64 orig_bytes,enum btrfs_reserve_flush_enum flush)4871 static int reserve_metadata_bytes(struct btrfs_root *root,
4872 				  struct btrfs_block_rsv *block_rsv,
4873 				  u64 orig_bytes,
4874 				  enum btrfs_reserve_flush_enum flush)
4875 {
4876 	struct btrfs_space_info *space_info = block_rsv->space_info;
4877 	u64 used;
4878 	u64 num_bytes = orig_bytes;
4879 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
4880 	int ret = 0;
4881 	bool flushing = false;
4882 
4883 again:
4884 	ret = 0;
4885 	spin_lock(&space_info->lock);
4886 	/*
4887 	 * We only want to wait if somebody other than us is flushing and we
4888 	 * are actually allowed to flush all things.
4889 	 */
4890 	while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4891 	       space_info->flush) {
4892 		spin_unlock(&space_info->lock);
4893 		/*
4894 		 * If we have a trans handle we can't wait because the flusher
4895 		 * may have to commit the transaction, which would mean we would
4896 		 * deadlock since we are waiting for the flusher to finish, but
4897 		 * hold the current transaction open.
4898 		 */
4899 		if (current->journal_info)
4900 			return -EAGAIN;
4901 		ret = wait_event_killable(space_info->wait, !space_info->flush);
4902 		/* Must have been killed, return */
4903 		if (ret)
4904 			return -EINTR;
4905 
4906 		spin_lock(&space_info->lock);
4907 	}
4908 
4909 	ret = -ENOSPC;
4910 	used = space_info->bytes_used + space_info->bytes_reserved +
4911 		space_info->bytes_pinned + space_info->bytes_readonly +
4912 		space_info->bytes_may_use;
4913 
4914 	/*
4915 	 * The idea here is that we've not already over-reserved the block group
4916 	 * then we can go ahead and save our reservation first and then start
4917 	 * flushing if we need to.  Otherwise if we've already overcommitted
4918 	 * lets start flushing stuff first and then come back and try to make
4919 	 * our reservation.
4920 	 */
4921 	if (used <= space_info->total_bytes) {
4922 		if (used + orig_bytes <= space_info->total_bytes) {
4923 			space_info->bytes_may_use += orig_bytes;
4924 			trace_btrfs_space_reservation(root->fs_info,
4925 				"space_info", space_info->flags, orig_bytes, 1);
4926 			ret = 0;
4927 		} else {
4928 			/*
4929 			 * Ok set num_bytes to orig_bytes since we aren't
4930 			 * overocmmitted, this way we only try and reclaim what
4931 			 * we need.
4932 			 */
4933 			num_bytes = orig_bytes;
4934 		}
4935 	} else {
4936 		/*
4937 		 * Ok we're over committed, set num_bytes to the overcommitted
4938 		 * amount plus the amount of bytes that we need for this
4939 		 * reservation.
4940 		 */
4941 		num_bytes = used - space_info->total_bytes +
4942 			(orig_bytes * 2);
4943 	}
4944 
4945 	if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4946 		space_info->bytes_may_use += orig_bytes;
4947 		trace_btrfs_space_reservation(root->fs_info, "space_info",
4948 					      space_info->flags, orig_bytes,
4949 					      1);
4950 		ret = 0;
4951 	}
4952 
4953 	/*
4954 	 * Couldn't make our reservation, save our place so while we're trying
4955 	 * to reclaim space we can actually use it instead of somebody else
4956 	 * stealing it from us.
4957 	 *
4958 	 * We make the other tasks wait for the flush only when we can flush
4959 	 * all things.
4960 	 */
4961 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4962 		flushing = true;
4963 		space_info->flush = 1;
4964 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4965 		used += orig_bytes;
4966 		/*
4967 		 * We will do the space reservation dance during log replay,
4968 		 * which means we won't have fs_info->fs_root set, so don't do
4969 		 * the async reclaim as we will panic.
4970 		 */
4971 		if (!root->fs_info->log_root_recovering &&
4972 		    need_do_async_reclaim(space_info, root->fs_info, used) &&
4973 		    !work_busy(&root->fs_info->async_reclaim_work))
4974 			queue_work(system_unbound_wq,
4975 				   &root->fs_info->async_reclaim_work);
4976 	}
4977 	spin_unlock(&space_info->lock);
4978 
4979 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4980 		goto out;
4981 
4982 	ret = flush_space(root, space_info, num_bytes, orig_bytes,
4983 			  flush_state);
4984 	flush_state++;
4985 
4986 	/*
4987 	 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4988 	 * would happen. So skip delalloc flush.
4989 	 */
4990 	if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4991 	    (flush_state == FLUSH_DELALLOC ||
4992 	     flush_state == FLUSH_DELALLOC_WAIT))
4993 		flush_state = ALLOC_CHUNK;
4994 
4995 	if (!ret)
4996 		goto again;
4997 	else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4998 		 flush_state < COMMIT_TRANS)
4999 		goto again;
5000 	else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
5001 		 flush_state <= COMMIT_TRANS)
5002 		goto again;
5003 
5004 out:
5005 	if (ret == -ENOSPC &&
5006 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5007 		struct btrfs_block_rsv *global_rsv =
5008 			&root->fs_info->global_block_rsv;
5009 
5010 		if (block_rsv != global_rsv &&
5011 		    !block_rsv_use_bytes(global_rsv, orig_bytes))
5012 			ret = 0;
5013 	}
5014 	if (ret == -ENOSPC)
5015 		trace_btrfs_space_reservation(root->fs_info,
5016 					      "space_info:enospc",
5017 					      space_info->flags, orig_bytes, 1);
5018 	if (flushing) {
5019 		spin_lock(&space_info->lock);
5020 		space_info->flush = 0;
5021 		wake_up_all(&space_info->wait);
5022 		spin_unlock(&space_info->lock);
5023 	}
5024 	return ret;
5025 }
5026 
get_block_rsv(const struct btrfs_trans_handle * trans,const struct btrfs_root * root)5027 static struct btrfs_block_rsv *get_block_rsv(
5028 					const struct btrfs_trans_handle *trans,
5029 					const struct btrfs_root *root)
5030 {
5031 	struct btrfs_block_rsv *block_rsv = NULL;
5032 
5033 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5034 	    (root == root->fs_info->csum_root && trans->adding_csums) ||
5035 	     (root == root->fs_info->uuid_root))
5036 		block_rsv = trans->block_rsv;
5037 
5038 	if (!block_rsv)
5039 		block_rsv = root->block_rsv;
5040 
5041 	if (!block_rsv)
5042 		block_rsv = &root->fs_info->empty_block_rsv;
5043 
5044 	return block_rsv;
5045 }
5046 
block_rsv_use_bytes(struct btrfs_block_rsv * block_rsv,u64 num_bytes)5047 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5048 			       u64 num_bytes)
5049 {
5050 	int ret = -ENOSPC;
5051 	spin_lock(&block_rsv->lock);
5052 	if (block_rsv->reserved >= num_bytes) {
5053 		block_rsv->reserved -= num_bytes;
5054 		if (block_rsv->reserved < block_rsv->size)
5055 			block_rsv->full = 0;
5056 		ret = 0;
5057 	}
5058 	spin_unlock(&block_rsv->lock);
5059 	return ret;
5060 }
5061 
block_rsv_add_bytes(struct btrfs_block_rsv * block_rsv,u64 num_bytes,int update_size)5062 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5063 				u64 num_bytes, int update_size)
5064 {
5065 	spin_lock(&block_rsv->lock);
5066 	block_rsv->reserved += num_bytes;
5067 	if (update_size)
5068 		block_rsv->size += num_bytes;
5069 	else if (block_rsv->reserved >= block_rsv->size)
5070 		block_rsv->full = 1;
5071 	spin_unlock(&block_rsv->lock);
5072 }
5073 
btrfs_cond_migrate_bytes(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * dest,u64 num_bytes,int min_factor)5074 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5075 			     struct btrfs_block_rsv *dest, u64 num_bytes,
5076 			     int min_factor)
5077 {
5078 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5079 	u64 min_bytes;
5080 
5081 	if (global_rsv->space_info != dest->space_info)
5082 		return -ENOSPC;
5083 
5084 	spin_lock(&global_rsv->lock);
5085 	min_bytes = div_factor(global_rsv->size, min_factor);
5086 	if (global_rsv->reserved < min_bytes + num_bytes) {
5087 		spin_unlock(&global_rsv->lock);
5088 		return -ENOSPC;
5089 	}
5090 	global_rsv->reserved -= num_bytes;
5091 	if (global_rsv->reserved < global_rsv->size)
5092 		global_rsv->full = 0;
5093 	spin_unlock(&global_rsv->lock);
5094 
5095 	block_rsv_add_bytes(dest, num_bytes, 1);
5096 	return 0;
5097 }
5098 
block_rsv_release_bytes(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * block_rsv,struct btrfs_block_rsv * dest,u64 num_bytes)5099 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5100 				    struct btrfs_block_rsv *block_rsv,
5101 				    struct btrfs_block_rsv *dest, u64 num_bytes)
5102 {
5103 	struct btrfs_space_info *space_info = block_rsv->space_info;
5104 
5105 	spin_lock(&block_rsv->lock);
5106 	if (num_bytes == (u64)-1)
5107 		num_bytes = block_rsv->size;
5108 	block_rsv->size -= num_bytes;
5109 	if (block_rsv->reserved >= block_rsv->size) {
5110 		num_bytes = block_rsv->reserved - block_rsv->size;
5111 		block_rsv->reserved = block_rsv->size;
5112 		block_rsv->full = 1;
5113 	} else {
5114 		num_bytes = 0;
5115 	}
5116 	spin_unlock(&block_rsv->lock);
5117 
5118 	if (num_bytes > 0) {
5119 		if (dest) {
5120 			spin_lock(&dest->lock);
5121 			if (!dest->full) {
5122 				u64 bytes_to_add;
5123 
5124 				bytes_to_add = dest->size - dest->reserved;
5125 				bytes_to_add = min(num_bytes, bytes_to_add);
5126 				dest->reserved += bytes_to_add;
5127 				if (dest->reserved >= dest->size)
5128 					dest->full = 1;
5129 				num_bytes -= bytes_to_add;
5130 			}
5131 			spin_unlock(&dest->lock);
5132 		}
5133 		if (num_bytes) {
5134 			spin_lock(&space_info->lock);
5135 			space_info->bytes_may_use -= num_bytes;
5136 			trace_btrfs_space_reservation(fs_info, "space_info",
5137 					space_info->flags, num_bytes, 0);
5138 			spin_unlock(&space_info->lock);
5139 		}
5140 	}
5141 }
5142 
block_rsv_migrate_bytes(struct btrfs_block_rsv * src,struct btrfs_block_rsv * dst,u64 num_bytes)5143 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
5144 				   struct btrfs_block_rsv *dst, u64 num_bytes)
5145 {
5146 	int ret;
5147 
5148 	ret = block_rsv_use_bytes(src, num_bytes);
5149 	if (ret)
5150 		return ret;
5151 
5152 	block_rsv_add_bytes(dst, num_bytes, 1);
5153 	return 0;
5154 }
5155 
btrfs_init_block_rsv(struct btrfs_block_rsv * rsv,unsigned short type)5156 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5157 {
5158 	memset(rsv, 0, sizeof(*rsv));
5159 	spin_lock_init(&rsv->lock);
5160 	rsv->type = type;
5161 }
5162 
btrfs_alloc_block_rsv(struct btrfs_root * root,unsigned short type)5163 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5164 					      unsigned short type)
5165 {
5166 	struct btrfs_block_rsv *block_rsv;
5167 	struct btrfs_fs_info *fs_info = root->fs_info;
5168 
5169 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5170 	if (!block_rsv)
5171 		return NULL;
5172 
5173 	btrfs_init_block_rsv(block_rsv, type);
5174 	block_rsv->space_info = __find_space_info(fs_info,
5175 						  BTRFS_BLOCK_GROUP_METADATA);
5176 	return block_rsv;
5177 }
5178 
btrfs_free_block_rsv(struct btrfs_root * root,struct btrfs_block_rsv * rsv)5179 void btrfs_free_block_rsv(struct btrfs_root *root,
5180 			  struct btrfs_block_rsv *rsv)
5181 {
5182 	if (!rsv)
5183 		return;
5184 	btrfs_block_rsv_release(root, rsv, (u64)-1);
5185 	kfree(rsv);
5186 }
5187 
__btrfs_free_block_rsv(struct btrfs_block_rsv * rsv)5188 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5189 {
5190 	kfree(rsv);
5191 }
5192 
btrfs_block_rsv_add(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,u64 num_bytes,enum btrfs_reserve_flush_enum flush)5193 int btrfs_block_rsv_add(struct btrfs_root *root,
5194 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5195 			enum btrfs_reserve_flush_enum flush)
5196 {
5197 	int ret;
5198 
5199 	if (num_bytes == 0)
5200 		return 0;
5201 
5202 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5203 	if (!ret) {
5204 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
5205 		return 0;
5206 	}
5207 
5208 	return ret;
5209 }
5210 
btrfs_block_rsv_check(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,int min_factor)5211 int btrfs_block_rsv_check(struct btrfs_root *root,
5212 			  struct btrfs_block_rsv *block_rsv, int min_factor)
5213 {
5214 	u64 num_bytes = 0;
5215 	int ret = -ENOSPC;
5216 
5217 	if (!block_rsv)
5218 		return 0;
5219 
5220 	spin_lock(&block_rsv->lock);
5221 	num_bytes = div_factor(block_rsv->size, min_factor);
5222 	if (block_rsv->reserved >= num_bytes)
5223 		ret = 0;
5224 	spin_unlock(&block_rsv->lock);
5225 
5226 	return ret;
5227 }
5228 
btrfs_block_rsv_refill(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,u64 min_reserved,enum btrfs_reserve_flush_enum flush)5229 int btrfs_block_rsv_refill(struct btrfs_root *root,
5230 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5231 			   enum btrfs_reserve_flush_enum flush)
5232 {
5233 	u64 num_bytes = 0;
5234 	int ret = -ENOSPC;
5235 
5236 	if (!block_rsv)
5237 		return 0;
5238 
5239 	spin_lock(&block_rsv->lock);
5240 	num_bytes = min_reserved;
5241 	if (block_rsv->reserved >= num_bytes)
5242 		ret = 0;
5243 	else
5244 		num_bytes -= block_rsv->reserved;
5245 	spin_unlock(&block_rsv->lock);
5246 
5247 	if (!ret)
5248 		return 0;
5249 
5250 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5251 	if (!ret) {
5252 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
5253 		return 0;
5254 	}
5255 
5256 	return ret;
5257 }
5258 
btrfs_block_rsv_migrate(struct btrfs_block_rsv * src_rsv,struct btrfs_block_rsv * dst_rsv,u64 num_bytes)5259 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5260 			    struct btrfs_block_rsv *dst_rsv,
5261 			    u64 num_bytes)
5262 {
5263 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5264 }
5265 
btrfs_block_rsv_release(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,u64 num_bytes)5266 void btrfs_block_rsv_release(struct btrfs_root *root,
5267 			     struct btrfs_block_rsv *block_rsv,
5268 			     u64 num_bytes)
5269 {
5270 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5271 	if (global_rsv == block_rsv ||
5272 	    block_rsv->space_info != global_rsv->space_info)
5273 		global_rsv = NULL;
5274 	block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5275 				num_bytes);
5276 }
5277 
5278 /*
5279  * helper to calculate size of global block reservation.
5280  * the desired value is sum of space used by extent tree,
5281  * checksum tree and root tree
5282  */
calc_global_metadata_size(struct btrfs_fs_info * fs_info)5283 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
5284 {
5285 	struct btrfs_space_info *sinfo;
5286 	u64 num_bytes;
5287 	u64 meta_used;
5288 	u64 data_used;
5289 	int csum_size = btrfs_super_csum_size(fs_info->super_copy);
5290 
5291 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5292 	spin_lock(&sinfo->lock);
5293 	data_used = sinfo->bytes_used;
5294 	spin_unlock(&sinfo->lock);
5295 
5296 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5297 	spin_lock(&sinfo->lock);
5298 	if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5299 		data_used = 0;
5300 	meta_used = sinfo->bytes_used;
5301 	spin_unlock(&sinfo->lock);
5302 
5303 	num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5304 		    csum_size * 2;
5305 	num_bytes += div_u64(data_used + meta_used, 50);
5306 
5307 	if (num_bytes * 3 > meta_used)
5308 		num_bytes = div_u64(meta_used, 3);
5309 
5310 	return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
5311 }
5312 
update_global_block_rsv(struct btrfs_fs_info * fs_info)5313 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5314 {
5315 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5316 	struct btrfs_space_info *sinfo = block_rsv->space_info;
5317 	u64 num_bytes;
5318 
5319 	num_bytes = calc_global_metadata_size(fs_info);
5320 
5321 	spin_lock(&sinfo->lock);
5322 	spin_lock(&block_rsv->lock);
5323 
5324 	block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
5325 
5326 	num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5327 		    sinfo->bytes_reserved + sinfo->bytes_readonly +
5328 		    sinfo->bytes_may_use;
5329 
5330 	if (sinfo->total_bytes > num_bytes) {
5331 		num_bytes = sinfo->total_bytes - num_bytes;
5332 		block_rsv->reserved += num_bytes;
5333 		sinfo->bytes_may_use += num_bytes;
5334 		trace_btrfs_space_reservation(fs_info, "space_info",
5335 				      sinfo->flags, num_bytes, 1);
5336 	}
5337 
5338 	if (block_rsv->reserved >= block_rsv->size) {
5339 		num_bytes = block_rsv->reserved - block_rsv->size;
5340 		sinfo->bytes_may_use -= num_bytes;
5341 		trace_btrfs_space_reservation(fs_info, "space_info",
5342 				      sinfo->flags, num_bytes, 0);
5343 		block_rsv->reserved = block_rsv->size;
5344 		block_rsv->full = 1;
5345 	}
5346 
5347 	spin_unlock(&block_rsv->lock);
5348 	spin_unlock(&sinfo->lock);
5349 }
5350 
init_global_block_rsv(struct btrfs_fs_info * fs_info)5351 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5352 {
5353 	struct btrfs_space_info *space_info;
5354 
5355 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5356 	fs_info->chunk_block_rsv.space_info = space_info;
5357 
5358 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5359 	fs_info->global_block_rsv.space_info = space_info;
5360 	fs_info->delalloc_block_rsv.space_info = space_info;
5361 	fs_info->trans_block_rsv.space_info = space_info;
5362 	fs_info->empty_block_rsv.space_info = space_info;
5363 	fs_info->delayed_block_rsv.space_info = space_info;
5364 
5365 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5366 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5367 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5368 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5369 	if (fs_info->quota_root)
5370 		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5371 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5372 
5373 	update_global_block_rsv(fs_info);
5374 }
5375 
release_global_block_rsv(struct btrfs_fs_info * fs_info)5376 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5377 {
5378 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5379 				(u64)-1);
5380 	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5381 	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5382 	WARN_ON(fs_info->trans_block_rsv.size > 0);
5383 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5384 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
5385 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5386 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
5387 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5388 }
5389 
btrfs_trans_release_metadata(struct btrfs_trans_handle * trans,struct btrfs_root * root)5390 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5391 				  struct btrfs_root *root)
5392 {
5393 	if (!trans->block_rsv)
5394 		return;
5395 
5396 	if (!trans->bytes_reserved)
5397 		return;
5398 
5399 	trace_btrfs_space_reservation(root->fs_info, "transaction",
5400 				      trans->transid, trans->bytes_reserved, 0);
5401 	btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
5402 	trans->bytes_reserved = 0;
5403 }
5404 
5405 /*
5406  * To be called after all the new block groups attached to the transaction
5407  * handle have been created (btrfs_create_pending_block_groups()).
5408  */
btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle * trans)5409 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5410 {
5411 	struct btrfs_fs_info *fs_info = trans->root->fs_info;
5412 
5413 	if (!trans->chunk_bytes_reserved)
5414 		return;
5415 
5416 	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5417 
5418 	block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5419 				trans->chunk_bytes_reserved);
5420 	trans->chunk_bytes_reserved = 0;
5421 }
5422 
5423 /* Can only return 0 or -ENOSPC */
btrfs_orphan_reserve_metadata(struct btrfs_trans_handle * trans,struct inode * inode)5424 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5425 				  struct inode *inode)
5426 {
5427 	struct btrfs_root *root = BTRFS_I(inode)->root;
5428 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5429 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5430 
5431 	/*
5432 	 * We need to hold space in order to delete our orphan item once we've
5433 	 * added it, so this takes the reservation so we can release it later
5434 	 * when we are truly done with the orphan item.
5435 	 */
5436 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5437 	trace_btrfs_space_reservation(root->fs_info, "orphan",
5438 				      btrfs_ino(inode), num_bytes, 1);
5439 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5440 }
5441 
btrfs_orphan_release_metadata(struct inode * inode)5442 void btrfs_orphan_release_metadata(struct inode *inode)
5443 {
5444 	struct btrfs_root *root = BTRFS_I(inode)->root;
5445 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5446 	trace_btrfs_space_reservation(root->fs_info, "orphan",
5447 				      btrfs_ino(inode), num_bytes, 0);
5448 	btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5449 }
5450 
5451 /*
5452  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5453  * root: the root of the parent directory
5454  * rsv: block reservation
5455  * items: the number of items that we need do reservation
5456  * qgroup_reserved: used to return the reserved size in qgroup
5457  *
5458  * This function is used to reserve the space for snapshot/subvolume
5459  * creation and deletion. Those operations are different with the
5460  * common file/directory operations, they change two fs/file trees
5461  * and root tree, the number of items that the qgroup reserves is
5462  * different with the free space reservation. So we can not use
5463  * the space reseravtion mechanism in start_transaction().
5464  */
btrfs_subvolume_reserve_metadata(struct btrfs_root * root,struct btrfs_block_rsv * rsv,int items,u64 * qgroup_reserved,bool use_global_rsv)5465 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5466 				     struct btrfs_block_rsv *rsv,
5467 				     int items,
5468 				     u64 *qgroup_reserved,
5469 				     bool use_global_rsv)
5470 {
5471 	u64 num_bytes;
5472 	int ret;
5473 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5474 
5475 	if (root->fs_info->quota_enabled) {
5476 		/* One for parent inode, two for dir entries */
5477 		num_bytes = 3 * root->nodesize;
5478 		ret = btrfs_qgroup_reserve_meta(root, num_bytes);
5479 		if (ret)
5480 			return ret;
5481 	} else {
5482 		num_bytes = 0;
5483 	}
5484 
5485 	*qgroup_reserved = num_bytes;
5486 
5487 	num_bytes = btrfs_calc_trans_metadata_size(root, items);
5488 	rsv->space_info = __find_space_info(root->fs_info,
5489 					    BTRFS_BLOCK_GROUP_METADATA);
5490 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5491 				  BTRFS_RESERVE_FLUSH_ALL);
5492 
5493 	if (ret == -ENOSPC && use_global_rsv)
5494 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5495 
5496 	if (ret && *qgroup_reserved)
5497 		btrfs_qgroup_free_meta(root, *qgroup_reserved);
5498 
5499 	return ret;
5500 }
5501 
btrfs_subvolume_release_metadata(struct btrfs_root * root,struct btrfs_block_rsv * rsv,u64 qgroup_reserved)5502 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5503 				      struct btrfs_block_rsv *rsv,
5504 				      u64 qgroup_reserved)
5505 {
5506 	btrfs_block_rsv_release(root, rsv, (u64)-1);
5507 }
5508 
5509 /**
5510  * drop_outstanding_extent - drop an outstanding extent
5511  * @inode: the inode we're dropping the extent for
5512  * @num_bytes: the number of bytes we're relaseing.
5513  *
5514  * This is called when we are freeing up an outstanding extent, either called
5515  * after an error or after an extent is written.  This will return the number of
5516  * reserved extents that need to be freed.  This must be called with
5517  * BTRFS_I(inode)->lock held.
5518  */
drop_outstanding_extent(struct inode * inode,u64 num_bytes)5519 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5520 {
5521 	unsigned drop_inode_space = 0;
5522 	unsigned dropped_extents = 0;
5523 	unsigned num_extents = 0;
5524 
5525 	num_extents = (unsigned)div64_u64(num_bytes +
5526 					  BTRFS_MAX_EXTENT_SIZE - 1,
5527 					  BTRFS_MAX_EXTENT_SIZE);
5528 	ASSERT(num_extents);
5529 	ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5530 	BTRFS_I(inode)->outstanding_extents -= num_extents;
5531 
5532 	if (BTRFS_I(inode)->outstanding_extents == 0 &&
5533 	    test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5534 			       &BTRFS_I(inode)->runtime_flags))
5535 		drop_inode_space = 1;
5536 
5537 	/*
5538 	 * If we have more or the same amount of outsanding extents than we have
5539 	 * reserved then we need to leave the reserved extents count alone.
5540 	 */
5541 	if (BTRFS_I(inode)->outstanding_extents >=
5542 	    BTRFS_I(inode)->reserved_extents)
5543 		return drop_inode_space;
5544 
5545 	dropped_extents = BTRFS_I(inode)->reserved_extents -
5546 		BTRFS_I(inode)->outstanding_extents;
5547 	BTRFS_I(inode)->reserved_extents -= dropped_extents;
5548 	return dropped_extents + drop_inode_space;
5549 }
5550 
5551 /**
5552  * calc_csum_metadata_size - return the amount of metada space that must be
5553  *	reserved/free'd for the given bytes.
5554  * @inode: the inode we're manipulating
5555  * @num_bytes: the number of bytes in question
5556  * @reserve: 1 if we are reserving space, 0 if we are freeing space
5557  *
5558  * This adjusts the number of csum_bytes in the inode and then returns the
5559  * correct amount of metadata that must either be reserved or freed.  We
5560  * calculate how many checksums we can fit into one leaf and then divide the
5561  * number of bytes that will need to be checksumed by this value to figure out
5562  * how many checksums will be required.  If we are adding bytes then the number
5563  * may go up and we will return the number of additional bytes that must be
5564  * reserved.  If it is going down we will return the number of bytes that must
5565  * be freed.
5566  *
5567  * This must be called with BTRFS_I(inode)->lock held.
5568  */
calc_csum_metadata_size(struct inode * inode,u64 num_bytes,int reserve)5569 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5570 				   int reserve)
5571 {
5572 	struct btrfs_root *root = BTRFS_I(inode)->root;
5573 	u64 old_csums, num_csums;
5574 
5575 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5576 	    BTRFS_I(inode)->csum_bytes == 0)
5577 		return 0;
5578 
5579 	old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5580 	if (reserve)
5581 		BTRFS_I(inode)->csum_bytes += num_bytes;
5582 	else
5583 		BTRFS_I(inode)->csum_bytes -= num_bytes;
5584 	num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5585 
5586 	/* No change, no need to reserve more */
5587 	if (old_csums == num_csums)
5588 		return 0;
5589 
5590 	if (reserve)
5591 		return btrfs_calc_trans_metadata_size(root,
5592 						      num_csums - old_csums);
5593 
5594 	return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5595 }
5596 
btrfs_delalloc_reserve_metadata(struct inode * inode,u64 num_bytes)5597 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5598 {
5599 	struct btrfs_root *root = BTRFS_I(inode)->root;
5600 	struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5601 	u64 to_reserve = 0;
5602 	u64 csum_bytes;
5603 	unsigned nr_extents = 0;
5604 	int extra_reserve = 0;
5605 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5606 	int ret = 0;
5607 	bool delalloc_lock = true;
5608 	u64 to_free = 0;
5609 	unsigned dropped;
5610 
5611 	/* If we are a free space inode we need to not flush since we will be in
5612 	 * the middle of a transaction commit.  We also don't need the delalloc
5613 	 * mutex since we won't race with anybody.  We need this mostly to make
5614 	 * lockdep shut its filthy mouth.
5615 	 */
5616 	if (btrfs_is_free_space_inode(inode)) {
5617 		flush = BTRFS_RESERVE_NO_FLUSH;
5618 		delalloc_lock = false;
5619 	}
5620 
5621 	if (flush != BTRFS_RESERVE_NO_FLUSH &&
5622 	    btrfs_transaction_in_commit(root->fs_info))
5623 		schedule_timeout(1);
5624 
5625 	if (delalloc_lock)
5626 		mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5627 
5628 	num_bytes = ALIGN(num_bytes, root->sectorsize);
5629 
5630 	spin_lock(&BTRFS_I(inode)->lock);
5631 	nr_extents = (unsigned)div64_u64(num_bytes +
5632 					 BTRFS_MAX_EXTENT_SIZE - 1,
5633 					 BTRFS_MAX_EXTENT_SIZE);
5634 	BTRFS_I(inode)->outstanding_extents += nr_extents;
5635 	nr_extents = 0;
5636 
5637 	if (BTRFS_I(inode)->outstanding_extents >
5638 	    BTRFS_I(inode)->reserved_extents)
5639 		nr_extents = BTRFS_I(inode)->outstanding_extents -
5640 			BTRFS_I(inode)->reserved_extents;
5641 
5642 	/*
5643 	 * Add an item to reserve for updating the inode when we complete the
5644 	 * delalloc io.
5645 	 */
5646 	if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5647 		      &BTRFS_I(inode)->runtime_flags)) {
5648 		nr_extents++;
5649 		extra_reserve = 1;
5650 	}
5651 
5652 	to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5653 	to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5654 	csum_bytes = BTRFS_I(inode)->csum_bytes;
5655 	spin_unlock(&BTRFS_I(inode)->lock);
5656 
5657 	if (root->fs_info->quota_enabled) {
5658 		ret = btrfs_qgroup_reserve_meta(root,
5659 				nr_extents * root->nodesize);
5660 		if (ret)
5661 			goto out_fail;
5662 	}
5663 
5664 	ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5665 	if (unlikely(ret)) {
5666 		btrfs_qgroup_free_meta(root, nr_extents * root->nodesize);
5667 		goto out_fail;
5668 	}
5669 
5670 	spin_lock(&BTRFS_I(inode)->lock);
5671 	if (extra_reserve) {
5672 		set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5673 			&BTRFS_I(inode)->runtime_flags);
5674 		nr_extents--;
5675 	}
5676 	BTRFS_I(inode)->reserved_extents += nr_extents;
5677 	spin_unlock(&BTRFS_I(inode)->lock);
5678 
5679 	if (delalloc_lock)
5680 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5681 
5682 	if (to_reserve)
5683 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5684 					      btrfs_ino(inode), to_reserve, 1);
5685 	block_rsv_add_bytes(block_rsv, to_reserve, 1);
5686 
5687 	return 0;
5688 
5689 out_fail:
5690 	spin_lock(&BTRFS_I(inode)->lock);
5691 	dropped = drop_outstanding_extent(inode, num_bytes);
5692 	/*
5693 	 * If the inodes csum_bytes is the same as the original
5694 	 * csum_bytes then we know we haven't raced with any free()ers
5695 	 * so we can just reduce our inodes csum bytes and carry on.
5696 	 */
5697 	if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5698 		calc_csum_metadata_size(inode, num_bytes, 0);
5699 	} else {
5700 		u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5701 		u64 bytes;
5702 
5703 		/*
5704 		 * This is tricky, but first we need to figure out how much we
5705 		 * free'd from any free-ers that occured during this
5706 		 * reservation, so we reset ->csum_bytes to the csum_bytes
5707 		 * before we dropped our lock, and then call the free for the
5708 		 * number of bytes that were freed while we were trying our
5709 		 * reservation.
5710 		 */
5711 		bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5712 		BTRFS_I(inode)->csum_bytes = csum_bytes;
5713 		to_free = calc_csum_metadata_size(inode, bytes, 0);
5714 
5715 
5716 		/*
5717 		 * Now we need to see how much we would have freed had we not
5718 		 * been making this reservation and our ->csum_bytes were not
5719 		 * artificially inflated.
5720 		 */
5721 		BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5722 		bytes = csum_bytes - orig_csum_bytes;
5723 		bytes = calc_csum_metadata_size(inode, bytes, 0);
5724 
5725 		/*
5726 		 * Now reset ->csum_bytes to what it should be.  If bytes is
5727 		 * more than to_free then we would have free'd more space had we
5728 		 * not had an artificially high ->csum_bytes, so we need to free
5729 		 * the remainder.  If bytes is the same or less then we don't
5730 		 * need to do anything, the other free-ers did the correct
5731 		 * thing.
5732 		 */
5733 		BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5734 		if (bytes > to_free)
5735 			to_free = bytes - to_free;
5736 		else
5737 			to_free = 0;
5738 	}
5739 	spin_unlock(&BTRFS_I(inode)->lock);
5740 	if (dropped)
5741 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5742 
5743 	if (to_free) {
5744 		btrfs_block_rsv_release(root, block_rsv, to_free);
5745 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5746 					      btrfs_ino(inode), to_free, 0);
5747 	}
5748 	if (delalloc_lock)
5749 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5750 	return ret;
5751 }
5752 
5753 /**
5754  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5755  * @inode: the inode to release the reservation for
5756  * @num_bytes: the number of bytes we're releasing
5757  *
5758  * This will release the metadata reservation for an inode.  This can be called
5759  * once we complete IO for a given set of bytes to release their metadata
5760  * reservations.
5761  */
btrfs_delalloc_release_metadata(struct inode * inode,u64 num_bytes)5762 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5763 {
5764 	struct btrfs_root *root = BTRFS_I(inode)->root;
5765 	u64 to_free = 0;
5766 	unsigned dropped;
5767 
5768 	num_bytes = ALIGN(num_bytes, root->sectorsize);
5769 	spin_lock(&BTRFS_I(inode)->lock);
5770 	dropped = drop_outstanding_extent(inode, num_bytes);
5771 
5772 	if (num_bytes)
5773 		to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5774 	spin_unlock(&BTRFS_I(inode)->lock);
5775 	if (dropped > 0)
5776 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5777 
5778 	if (btrfs_test_is_dummy_root(root))
5779 		return;
5780 
5781 	trace_btrfs_space_reservation(root->fs_info, "delalloc",
5782 				      btrfs_ino(inode), to_free, 0);
5783 
5784 	btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5785 				to_free);
5786 }
5787 
5788 /**
5789  * btrfs_delalloc_reserve_space - reserve data and metadata space for
5790  * delalloc
5791  * @inode: inode we're writing to
5792  * @start: start range we are writing to
5793  * @len: how long the range we are writing to
5794  *
5795  * TODO: This function will finally replace old btrfs_delalloc_reserve_space()
5796  *
5797  * This will do the following things
5798  *
5799  * o reserve space in data space info for num bytes
5800  *   and reserve precious corresponding qgroup space
5801  *   (Done in check_data_free_space)
5802  *
5803  * o reserve space for metadata space, based on the number of outstanding
5804  *   extents and how much csums will be needed
5805  *   also reserve metadata space in a per root over-reserve method.
5806  * o add to the inodes->delalloc_bytes
5807  * o add it to the fs_info's delalloc inodes list.
5808  *   (Above 3 all done in delalloc_reserve_metadata)
5809  *
5810  * Return 0 for success
5811  * Return <0 for error(-ENOSPC or -EQUOT)
5812  */
btrfs_delalloc_reserve_space(struct inode * inode,u64 start,u64 len)5813 int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
5814 {
5815 	int ret;
5816 
5817 	ret = btrfs_check_data_free_space(inode, start, len);
5818 	if (ret < 0)
5819 		return ret;
5820 	ret = btrfs_delalloc_reserve_metadata(inode, len);
5821 	if (ret < 0)
5822 		btrfs_free_reserved_data_space(inode, start, len);
5823 	return ret;
5824 }
5825 
5826 /**
5827  * btrfs_delalloc_release_space - release data and metadata space for delalloc
5828  * @inode: inode we're releasing space for
5829  * @start: start position of the space already reserved
5830  * @len: the len of the space already reserved
5831  *
5832  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
5833  * called in the case that we don't need the metadata AND data reservations
5834  * anymore.  So if there is an error or we insert an inline extent.
5835  *
5836  * This function will release the metadata space that was not used and will
5837  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5838  * list if there are no delalloc bytes left.
5839  * Also it will handle the qgroup reserved space.
5840  */
btrfs_delalloc_release_space(struct inode * inode,u64 start,u64 len)5841 void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
5842 {
5843 	btrfs_delalloc_release_metadata(inode, len);
5844 	btrfs_free_reserved_data_space(inode, start, len);
5845 }
5846 
update_block_group(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 num_bytes,int alloc)5847 static int update_block_group(struct btrfs_trans_handle *trans,
5848 			      struct btrfs_root *root, u64 bytenr,
5849 			      u64 num_bytes, int alloc)
5850 {
5851 	struct btrfs_block_group_cache *cache = NULL;
5852 	struct btrfs_fs_info *info = root->fs_info;
5853 	u64 total = num_bytes;
5854 	u64 old_val;
5855 	u64 byte_in_group;
5856 	int factor;
5857 
5858 	/* block accounting for super block */
5859 	spin_lock(&info->delalloc_root_lock);
5860 	old_val = btrfs_super_bytes_used(info->super_copy);
5861 	if (alloc)
5862 		old_val += num_bytes;
5863 	else
5864 		old_val -= num_bytes;
5865 	btrfs_set_super_bytes_used(info->super_copy, old_val);
5866 	spin_unlock(&info->delalloc_root_lock);
5867 
5868 	while (total) {
5869 		cache = btrfs_lookup_block_group(info, bytenr);
5870 		if (!cache)
5871 			return -ENOENT;
5872 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5873 				    BTRFS_BLOCK_GROUP_RAID1 |
5874 				    BTRFS_BLOCK_GROUP_RAID10))
5875 			factor = 2;
5876 		else
5877 			factor = 1;
5878 		/*
5879 		 * If this block group has free space cache written out, we
5880 		 * need to make sure to load it if we are removing space.  This
5881 		 * is because we need the unpinning stage to actually add the
5882 		 * space back to the block group, otherwise we will leak space.
5883 		 */
5884 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
5885 			cache_block_group(cache, 1);
5886 
5887 		byte_in_group = bytenr - cache->key.objectid;
5888 		WARN_ON(byte_in_group > cache->key.offset);
5889 
5890 		spin_lock(&cache->space_info->lock);
5891 		spin_lock(&cache->lock);
5892 
5893 		if (btrfs_test_opt(root, SPACE_CACHE) &&
5894 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
5895 			cache->disk_cache_state = BTRFS_DC_CLEAR;
5896 
5897 		old_val = btrfs_block_group_used(&cache->item);
5898 		num_bytes = min(total, cache->key.offset - byte_in_group);
5899 		if (alloc) {
5900 			old_val += num_bytes;
5901 			btrfs_set_block_group_used(&cache->item, old_val);
5902 			cache->reserved -= num_bytes;
5903 			cache->space_info->bytes_reserved -= num_bytes;
5904 			cache->space_info->bytes_used += num_bytes;
5905 			cache->space_info->disk_used += num_bytes * factor;
5906 			spin_unlock(&cache->lock);
5907 			spin_unlock(&cache->space_info->lock);
5908 		} else {
5909 			old_val -= num_bytes;
5910 			btrfs_set_block_group_used(&cache->item, old_val);
5911 			cache->pinned += num_bytes;
5912 			cache->space_info->bytes_pinned += num_bytes;
5913 			cache->space_info->bytes_used -= num_bytes;
5914 			cache->space_info->disk_used -= num_bytes * factor;
5915 			spin_unlock(&cache->lock);
5916 			spin_unlock(&cache->space_info->lock);
5917 
5918 			set_extent_dirty(info->pinned_extents,
5919 					 bytenr, bytenr + num_bytes - 1,
5920 					 GFP_NOFS | __GFP_NOFAIL);
5921 		}
5922 
5923 		spin_lock(&trans->transaction->dirty_bgs_lock);
5924 		if (list_empty(&cache->dirty_list)) {
5925 			list_add_tail(&cache->dirty_list,
5926 				      &trans->transaction->dirty_bgs);
5927 				trans->transaction->num_dirty_bgs++;
5928 			btrfs_get_block_group(cache);
5929 		}
5930 		spin_unlock(&trans->transaction->dirty_bgs_lock);
5931 
5932 		/*
5933 		 * No longer have used bytes in this block group, queue it for
5934 		 * deletion. We do this after adding the block group to the
5935 		 * dirty list to avoid races between cleaner kthread and space
5936 		 * cache writeout.
5937 		 */
5938 		if (!alloc && old_val == 0) {
5939 			spin_lock(&info->unused_bgs_lock);
5940 			if (list_empty(&cache->bg_list)) {
5941 				btrfs_get_block_group(cache);
5942 				list_add_tail(&cache->bg_list,
5943 					      &info->unused_bgs);
5944 			}
5945 			spin_unlock(&info->unused_bgs_lock);
5946 		}
5947 
5948 		btrfs_put_block_group(cache);
5949 		total -= num_bytes;
5950 		bytenr += num_bytes;
5951 	}
5952 	return 0;
5953 }
5954 
first_logical_byte(struct btrfs_root * root,u64 search_start)5955 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5956 {
5957 	struct btrfs_block_group_cache *cache;
5958 	u64 bytenr;
5959 
5960 	spin_lock(&root->fs_info->block_group_cache_lock);
5961 	bytenr = root->fs_info->first_logical_byte;
5962 	spin_unlock(&root->fs_info->block_group_cache_lock);
5963 
5964 	if (bytenr < (u64)-1)
5965 		return bytenr;
5966 
5967 	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5968 	if (!cache)
5969 		return 0;
5970 
5971 	bytenr = cache->key.objectid;
5972 	btrfs_put_block_group(cache);
5973 
5974 	return bytenr;
5975 }
5976 
pin_down_extent(struct btrfs_root * root,struct btrfs_block_group_cache * cache,u64 bytenr,u64 num_bytes,int reserved)5977 static int pin_down_extent(struct btrfs_root *root,
5978 			   struct btrfs_block_group_cache *cache,
5979 			   u64 bytenr, u64 num_bytes, int reserved)
5980 {
5981 	spin_lock(&cache->space_info->lock);
5982 	spin_lock(&cache->lock);
5983 	cache->pinned += num_bytes;
5984 	cache->space_info->bytes_pinned += num_bytes;
5985 	if (reserved) {
5986 		cache->reserved -= num_bytes;
5987 		cache->space_info->bytes_reserved -= num_bytes;
5988 	}
5989 	spin_unlock(&cache->lock);
5990 	spin_unlock(&cache->space_info->lock);
5991 
5992 	set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5993 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5994 	if (reserved)
5995 		trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5996 	return 0;
5997 }
5998 
5999 /*
6000  * this function must be called within transaction
6001  */
btrfs_pin_extent(struct btrfs_root * root,u64 bytenr,u64 num_bytes,int reserved)6002 int btrfs_pin_extent(struct btrfs_root *root,
6003 		     u64 bytenr, u64 num_bytes, int reserved)
6004 {
6005 	struct btrfs_block_group_cache *cache;
6006 
6007 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6008 	BUG_ON(!cache); /* Logic error */
6009 
6010 	pin_down_extent(root, cache, bytenr, num_bytes, reserved);
6011 
6012 	btrfs_put_block_group(cache);
6013 	return 0;
6014 }
6015 
6016 /*
6017  * this function must be called within transaction
6018  */
btrfs_pin_extent_for_log_replay(struct btrfs_root * root,u64 bytenr,u64 num_bytes)6019 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
6020 				    u64 bytenr, u64 num_bytes)
6021 {
6022 	struct btrfs_block_group_cache *cache;
6023 	int ret;
6024 
6025 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6026 	if (!cache)
6027 		return -EINVAL;
6028 
6029 	/*
6030 	 * pull in the free space cache (if any) so that our pin
6031 	 * removes the free space from the cache.  We have load_only set
6032 	 * to one because the slow code to read in the free extents does check
6033 	 * the pinned extents.
6034 	 */
6035 	cache_block_group(cache, 1);
6036 
6037 	pin_down_extent(root, cache, bytenr, num_bytes, 0);
6038 
6039 	/* remove us from the free space cache (if we're there at all) */
6040 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6041 	btrfs_put_block_group(cache);
6042 	return ret;
6043 }
6044 
__exclude_logged_extent(struct btrfs_root * root,u64 start,u64 num_bytes)6045 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
6046 {
6047 	int ret;
6048 	struct btrfs_block_group_cache *block_group;
6049 	struct btrfs_caching_control *caching_ctl;
6050 
6051 	block_group = btrfs_lookup_block_group(root->fs_info, start);
6052 	if (!block_group)
6053 		return -EINVAL;
6054 
6055 	cache_block_group(block_group, 0);
6056 	caching_ctl = get_caching_control(block_group);
6057 
6058 	if (!caching_ctl) {
6059 		/* Logic error */
6060 		BUG_ON(!block_group_cache_done(block_group));
6061 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
6062 	} else {
6063 		mutex_lock(&caching_ctl->mutex);
6064 
6065 		if (start >= caching_ctl->progress) {
6066 			ret = add_excluded_extent(root, start, num_bytes);
6067 		} else if (start + num_bytes <= caching_ctl->progress) {
6068 			ret = btrfs_remove_free_space(block_group,
6069 						      start, num_bytes);
6070 		} else {
6071 			num_bytes = caching_ctl->progress - start;
6072 			ret = btrfs_remove_free_space(block_group,
6073 						      start, num_bytes);
6074 			if (ret)
6075 				goto out_lock;
6076 
6077 			num_bytes = (start + num_bytes) -
6078 				caching_ctl->progress;
6079 			start = caching_ctl->progress;
6080 			ret = add_excluded_extent(root, start, num_bytes);
6081 		}
6082 out_lock:
6083 		mutex_unlock(&caching_ctl->mutex);
6084 		put_caching_control(caching_ctl);
6085 	}
6086 	btrfs_put_block_group(block_group);
6087 	return ret;
6088 }
6089 
btrfs_exclude_logged_extents(struct btrfs_root * log,struct extent_buffer * eb)6090 int btrfs_exclude_logged_extents(struct btrfs_root *log,
6091 				 struct extent_buffer *eb)
6092 {
6093 	struct btrfs_file_extent_item *item;
6094 	struct btrfs_key key;
6095 	int found_type;
6096 	int i;
6097 
6098 	if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
6099 		return 0;
6100 
6101 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
6102 		btrfs_item_key_to_cpu(eb, &key, i);
6103 		if (key.type != BTRFS_EXTENT_DATA_KEY)
6104 			continue;
6105 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6106 		found_type = btrfs_file_extent_type(eb, item);
6107 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
6108 			continue;
6109 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6110 			continue;
6111 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6112 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6113 		__exclude_logged_extent(log, key.objectid, key.offset);
6114 	}
6115 
6116 	return 0;
6117 }
6118 
6119 /**
6120  * btrfs_update_reserved_bytes - update the block_group and space info counters
6121  * @cache:	The cache we are manipulating
6122  * @num_bytes:	The number of bytes in question
6123  * @reserve:	One of the reservation enums
6124  * @delalloc:   The blocks are allocated for the delalloc write
6125  *
6126  * This is called by the allocator when it reserves space, or by somebody who is
6127  * freeing space that was never actually used on disk.  For example if you
6128  * reserve some space for a new leaf in transaction A and before transaction A
6129  * commits you free that leaf, you call this with reserve set to 0 in order to
6130  * clear the reservation.
6131  *
6132  * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
6133  * ENOSPC accounting.  For data we handle the reservation through clearing the
6134  * delalloc bits in the io_tree.  We have to do this since we could end up
6135  * allocating less disk space for the amount of data we have reserved in the
6136  * case of compression.
6137  *
6138  * If this is a reservation and the block group has become read only we cannot
6139  * make the reservation and return -EAGAIN, otherwise this function always
6140  * succeeds.
6141  */
btrfs_update_reserved_bytes(struct btrfs_block_group_cache * cache,u64 num_bytes,int reserve,int delalloc)6142 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
6143 				       u64 num_bytes, int reserve, int delalloc)
6144 {
6145 	struct btrfs_space_info *space_info = cache->space_info;
6146 	int ret = 0;
6147 
6148 	spin_lock(&space_info->lock);
6149 	spin_lock(&cache->lock);
6150 	if (reserve != RESERVE_FREE) {
6151 		if (cache->ro) {
6152 			ret = -EAGAIN;
6153 		} else {
6154 			cache->reserved += num_bytes;
6155 			space_info->bytes_reserved += num_bytes;
6156 			if (reserve == RESERVE_ALLOC) {
6157 				trace_btrfs_space_reservation(cache->fs_info,
6158 						"space_info", space_info->flags,
6159 						num_bytes, 0);
6160 				space_info->bytes_may_use -= num_bytes;
6161 			}
6162 
6163 			if (delalloc)
6164 				cache->delalloc_bytes += num_bytes;
6165 		}
6166 	} else {
6167 		if (cache->ro)
6168 			space_info->bytes_readonly += num_bytes;
6169 		cache->reserved -= num_bytes;
6170 		space_info->bytes_reserved -= num_bytes;
6171 
6172 		if (delalloc)
6173 			cache->delalloc_bytes -= num_bytes;
6174 	}
6175 	spin_unlock(&cache->lock);
6176 	spin_unlock(&space_info->lock);
6177 	return ret;
6178 }
6179 
btrfs_prepare_extent_commit(struct btrfs_trans_handle * trans,struct btrfs_root * root)6180 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
6181 				struct btrfs_root *root)
6182 {
6183 	struct btrfs_fs_info *fs_info = root->fs_info;
6184 	struct btrfs_caching_control *next;
6185 	struct btrfs_caching_control *caching_ctl;
6186 	struct btrfs_block_group_cache *cache;
6187 
6188 	down_write(&fs_info->commit_root_sem);
6189 
6190 	list_for_each_entry_safe(caching_ctl, next,
6191 				 &fs_info->caching_block_groups, list) {
6192 		cache = caching_ctl->block_group;
6193 		if (block_group_cache_done(cache)) {
6194 			cache->last_byte_to_unpin = (u64)-1;
6195 			list_del_init(&caching_ctl->list);
6196 			put_caching_control(caching_ctl);
6197 		} else {
6198 			cache->last_byte_to_unpin = caching_ctl->progress;
6199 		}
6200 	}
6201 
6202 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6203 		fs_info->pinned_extents = &fs_info->freed_extents[1];
6204 	else
6205 		fs_info->pinned_extents = &fs_info->freed_extents[0];
6206 
6207 	up_write(&fs_info->commit_root_sem);
6208 
6209 	update_global_block_rsv(fs_info);
6210 }
6211 
6212 /*
6213  * Returns the free cluster for the given space info and sets empty_cluster to
6214  * what it should be based on the mount options.
6215  */
6216 static struct btrfs_free_cluster *
fetch_cluster_info(struct btrfs_root * root,struct btrfs_space_info * space_info,u64 * empty_cluster)6217 fetch_cluster_info(struct btrfs_root *root, struct btrfs_space_info *space_info,
6218 		   u64 *empty_cluster)
6219 {
6220 	struct btrfs_free_cluster *ret = NULL;
6221 	bool ssd = btrfs_test_opt(root, SSD);
6222 
6223 	*empty_cluster = 0;
6224 	if (btrfs_mixed_space_info(space_info))
6225 		return ret;
6226 
6227 	if (ssd)
6228 		*empty_cluster = 2 * 1024 * 1024;
6229 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6230 		ret = &root->fs_info->meta_alloc_cluster;
6231 		if (!ssd)
6232 			*empty_cluster = 64 * 1024;
6233 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6234 		ret = &root->fs_info->data_alloc_cluster;
6235 	}
6236 
6237 	return ret;
6238 }
6239 
unpin_extent_range(struct btrfs_root * root,u64 start,u64 end,const bool return_free_space)6240 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6241 			      const bool return_free_space)
6242 {
6243 	struct btrfs_fs_info *fs_info = root->fs_info;
6244 	struct btrfs_block_group_cache *cache = NULL;
6245 	struct btrfs_space_info *space_info;
6246 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6247 	struct btrfs_free_cluster *cluster = NULL;
6248 	u64 len;
6249 	u64 total_unpinned = 0;
6250 	u64 empty_cluster = 0;
6251 	bool readonly;
6252 
6253 	while (start <= end) {
6254 		readonly = false;
6255 		if (!cache ||
6256 		    start >= cache->key.objectid + cache->key.offset) {
6257 			if (cache)
6258 				btrfs_put_block_group(cache);
6259 			total_unpinned = 0;
6260 			cache = btrfs_lookup_block_group(fs_info, start);
6261 			BUG_ON(!cache); /* Logic error */
6262 
6263 			cluster = fetch_cluster_info(root,
6264 						     cache->space_info,
6265 						     &empty_cluster);
6266 			empty_cluster <<= 1;
6267 		}
6268 
6269 		len = cache->key.objectid + cache->key.offset - start;
6270 		len = min(len, end + 1 - start);
6271 
6272 		if (start < cache->last_byte_to_unpin) {
6273 			len = min(len, cache->last_byte_to_unpin - start);
6274 			if (return_free_space)
6275 				btrfs_add_free_space(cache, start, len);
6276 		}
6277 
6278 		start += len;
6279 		total_unpinned += len;
6280 		space_info = cache->space_info;
6281 
6282 		/*
6283 		 * If this space cluster has been marked as fragmented and we've
6284 		 * unpinned enough in this block group to potentially allow a
6285 		 * cluster to be created inside of it go ahead and clear the
6286 		 * fragmented check.
6287 		 */
6288 		if (cluster && cluster->fragmented &&
6289 		    total_unpinned > empty_cluster) {
6290 			spin_lock(&cluster->lock);
6291 			cluster->fragmented = 0;
6292 			spin_unlock(&cluster->lock);
6293 		}
6294 
6295 		spin_lock(&space_info->lock);
6296 		spin_lock(&cache->lock);
6297 		cache->pinned -= len;
6298 		space_info->bytes_pinned -= len;
6299 		space_info->max_extent_size = 0;
6300 		percpu_counter_add(&space_info->total_bytes_pinned, -len);
6301 		if (cache->ro) {
6302 			space_info->bytes_readonly += len;
6303 			readonly = true;
6304 		}
6305 		spin_unlock(&cache->lock);
6306 		if (!readonly && global_rsv->space_info == space_info) {
6307 			spin_lock(&global_rsv->lock);
6308 			if (!global_rsv->full) {
6309 				len = min(len, global_rsv->size -
6310 					  global_rsv->reserved);
6311 				global_rsv->reserved += len;
6312 				space_info->bytes_may_use += len;
6313 				if (global_rsv->reserved >= global_rsv->size)
6314 					global_rsv->full = 1;
6315 			}
6316 			spin_unlock(&global_rsv->lock);
6317 		}
6318 		spin_unlock(&space_info->lock);
6319 	}
6320 
6321 	if (cache)
6322 		btrfs_put_block_group(cache);
6323 	return 0;
6324 }
6325 
btrfs_finish_extent_commit(struct btrfs_trans_handle * trans,struct btrfs_root * root)6326 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6327 			       struct btrfs_root *root)
6328 {
6329 	struct btrfs_fs_info *fs_info = root->fs_info;
6330 	struct btrfs_block_group_cache *block_group, *tmp;
6331 	struct list_head *deleted_bgs;
6332 	struct extent_io_tree *unpin;
6333 	u64 start;
6334 	u64 end;
6335 	int ret;
6336 
6337 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6338 		unpin = &fs_info->freed_extents[1];
6339 	else
6340 		unpin = &fs_info->freed_extents[0];
6341 
6342 	while (!trans->aborted) {
6343 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
6344 		ret = find_first_extent_bit(unpin, 0, &start, &end,
6345 					    EXTENT_DIRTY, NULL);
6346 		if (ret) {
6347 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6348 			break;
6349 		}
6350 
6351 		if (btrfs_test_opt(root, DISCARD))
6352 			ret = btrfs_discard_extent(root, start,
6353 						   end + 1 - start, NULL);
6354 
6355 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
6356 		unpin_extent_range(root, start, end, true);
6357 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6358 		cond_resched();
6359 	}
6360 
6361 	/*
6362 	 * Transaction is finished.  We don't need the lock anymore.  We
6363 	 * do need to clean up the block groups in case of a transaction
6364 	 * abort.
6365 	 */
6366 	deleted_bgs = &trans->transaction->deleted_bgs;
6367 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6368 		u64 trimmed = 0;
6369 
6370 		ret = -EROFS;
6371 		if (!trans->aborted)
6372 			ret = btrfs_discard_extent(root,
6373 						   block_group->key.objectid,
6374 						   block_group->key.offset,
6375 						   &trimmed);
6376 
6377 		list_del_init(&block_group->bg_list);
6378 		btrfs_put_block_group_trimming(block_group);
6379 		btrfs_put_block_group(block_group);
6380 
6381 		if (ret) {
6382 			const char *errstr = btrfs_decode_error(ret);
6383 			btrfs_warn(fs_info,
6384 				   "Discard failed while removing blockgroup: errno=%d %s\n",
6385 				   ret, errstr);
6386 		}
6387 	}
6388 
6389 	return 0;
6390 }
6391 
add_pinned_bytes(struct btrfs_fs_info * fs_info,u64 num_bytes,u64 owner,u64 root_objectid)6392 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6393 			     u64 owner, u64 root_objectid)
6394 {
6395 	struct btrfs_space_info *space_info;
6396 	u64 flags;
6397 
6398 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6399 		if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6400 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
6401 		else
6402 			flags = BTRFS_BLOCK_GROUP_METADATA;
6403 	} else {
6404 		flags = BTRFS_BLOCK_GROUP_DATA;
6405 	}
6406 
6407 	space_info = __find_space_info(fs_info, flags);
6408 	BUG_ON(!space_info); /* Logic bug */
6409 	percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6410 }
6411 
6412 
__btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_delayed_ref_node * node,u64 parent,u64 root_objectid,u64 owner_objectid,u64 owner_offset,int refs_to_drop,struct btrfs_delayed_extent_op * extent_op)6413 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6414 				struct btrfs_root *root,
6415 				struct btrfs_delayed_ref_node *node, u64 parent,
6416 				u64 root_objectid, u64 owner_objectid,
6417 				u64 owner_offset, int refs_to_drop,
6418 				struct btrfs_delayed_extent_op *extent_op)
6419 {
6420 	struct btrfs_key key;
6421 	struct btrfs_path *path;
6422 	struct btrfs_fs_info *info = root->fs_info;
6423 	struct btrfs_root *extent_root = info->extent_root;
6424 	struct extent_buffer *leaf;
6425 	struct btrfs_extent_item *ei;
6426 	struct btrfs_extent_inline_ref *iref;
6427 	int ret;
6428 	int is_data;
6429 	int extent_slot = 0;
6430 	int found_extent = 0;
6431 	int num_to_del = 1;
6432 	u32 item_size;
6433 	u64 refs;
6434 	u64 bytenr = node->bytenr;
6435 	u64 num_bytes = node->num_bytes;
6436 	int last_ref = 0;
6437 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6438 						 SKINNY_METADATA);
6439 
6440 	path = btrfs_alloc_path();
6441 	if (!path)
6442 		return -ENOMEM;
6443 
6444 	path->reada = 1;
6445 	path->leave_spinning = 1;
6446 
6447 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6448 	BUG_ON(!is_data && refs_to_drop != 1);
6449 
6450 	if (is_data)
6451 		skinny_metadata = 0;
6452 
6453 	ret = lookup_extent_backref(trans, extent_root, path, &iref,
6454 				    bytenr, num_bytes, parent,
6455 				    root_objectid, owner_objectid,
6456 				    owner_offset);
6457 	if (ret == 0) {
6458 		extent_slot = path->slots[0];
6459 		while (extent_slot >= 0) {
6460 			btrfs_item_key_to_cpu(path->nodes[0], &key,
6461 					      extent_slot);
6462 			if (key.objectid != bytenr)
6463 				break;
6464 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6465 			    key.offset == num_bytes) {
6466 				found_extent = 1;
6467 				break;
6468 			}
6469 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
6470 			    key.offset == owner_objectid) {
6471 				found_extent = 1;
6472 				break;
6473 			}
6474 			if (path->slots[0] - extent_slot > 5)
6475 				break;
6476 			extent_slot--;
6477 		}
6478 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6479 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6480 		if (found_extent && item_size < sizeof(*ei))
6481 			found_extent = 0;
6482 #endif
6483 		if (!found_extent) {
6484 			BUG_ON(iref);
6485 			ret = remove_extent_backref(trans, extent_root, path,
6486 						    NULL, refs_to_drop,
6487 						    is_data, &last_ref);
6488 			if (ret) {
6489 				btrfs_abort_transaction(trans, extent_root, ret);
6490 				goto out;
6491 			}
6492 			btrfs_release_path(path);
6493 			path->leave_spinning = 1;
6494 
6495 			key.objectid = bytenr;
6496 			key.type = BTRFS_EXTENT_ITEM_KEY;
6497 			key.offset = num_bytes;
6498 
6499 			if (!is_data && skinny_metadata) {
6500 				key.type = BTRFS_METADATA_ITEM_KEY;
6501 				key.offset = owner_objectid;
6502 			}
6503 
6504 			ret = btrfs_search_slot(trans, extent_root,
6505 						&key, path, -1, 1);
6506 			if (ret > 0 && skinny_metadata && path->slots[0]) {
6507 				/*
6508 				 * Couldn't find our skinny metadata item,
6509 				 * see if we have ye olde extent item.
6510 				 */
6511 				path->slots[0]--;
6512 				btrfs_item_key_to_cpu(path->nodes[0], &key,
6513 						      path->slots[0]);
6514 				if (key.objectid == bytenr &&
6515 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
6516 				    key.offset == num_bytes)
6517 					ret = 0;
6518 			}
6519 
6520 			if (ret > 0 && skinny_metadata) {
6521 				skinny_metadata = false;
6522 				key.objectid = bytenr;
6523 				key.type = BTRFS_EXTENT_ITEM_KEY;
6524 				key.offset = num_bytes;
6525 				btrfs_release_path(path);
6526 				ret = btrfs_search_slot(trans, extent_root,
6527 							&key, path, -1, 1);
6528 			}
6529 
6530 			if (ret) {
6531 				btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6532 					ret, bytenr);
6533 				if (ret > 0)
6534 					btrfs_print_leaf(extent_root,
6535 							 path->nodes[0]);
6536 			}
6537 			if (ret < 0) {
6538 				btrfs_abort_transaction(trans, extent_root, ret);
6539 				goto out;
6540 			}
6541 			extent_slot = path->slots[0];
6542 		}
6543 	} else if (WARN_ON(ret == -ENOENT)) {
6544 		btrfs_print_leaf(extent_root, path->nodes[0]);
6545 		btrfs_err(info,
6546 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
6547 			bytenr, parent, root_objectid, owner_objectid,
6548 			owner_offset);
6549 		btrfs_abort_transaction(trans, extent_root, ret);
6550 		goto out;
6551 	} else {
6552 		btrfs_abort_transaction(trans, extent_root, ret);
6553 		goto out;
6554 	}
6555 
6556 	leaf = path->nodes[0];
6557 	item_size = btrfs_item_size_nr(leaf, extent_slot);
6558 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6559 	if (item_size < sizeof(*ei)) {
6560 		BUG_ON(found_extent || extent_slot != path->slots[0]);
6561 		ret = convert_extent_item_v0(trans, extent_root, path,
6562 					     owner_objectid, 0);
6563 		if (ret < 0) {
6564 			btrfs_abort_transaction(trans, extent_root, ret);
6565 			goto out;
6566 		}
6567 
6568 		btrfs_release_path(path);
6569 		path->leave_spinning = 1;
6570 
6571 		key.objectid = bytenr;
6572 		key.type = BTRFS_EXTENT_ITEM_KEY;
6573 		key.offset = num_bytes;
6574 
6575 		ret = btrfs_search_slot(trans, extent_root, &key, path,
6576 					-1, 1);
6577 		if (ret) {
6578 			btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6579 				ret, bytenr);
6580 			btrfs_print_leaf(extent_root, path->nodes[0]);
6581 		}
6582 		if (ret < 0) {
6583 			btrfs_abort_transaction(trans, extent_root, ret);
6584 			goto out;
6585 		}
6586 
6587 		extent_slot = path->slots[0];
6588 		leaf = path->nodes[0];
6589 		item_size = btrfs_item_size_nr(leaf, extent_slot);
6590 	}
6591 #endif
6592 	BUG_ON(item_size < sizeof(*ei));
6593 	ei = btrfs_item_ptr(leaf, extent_slot,
6594 			    struct btrfs_extent_item);
6595 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6596 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
6597 		struct btrfs_tree_block_info *bi;
6598 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6599 		bi = (struct btrfs_tree_block_info *)(ei + 1);
6600 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6601 	}
6602 
6603 	refs = btrfs_extent_refs(leaf, ei);
6604 	if (refs < refs_to_drop) {
6605 		btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6606 			  "for bytenr %Lu", refs_to_drop, refs, bytenr);
6607 		ret = -EINVAL;
6608 		btrfs_abort_transaction(trans, extent_root, ret);
6609 		goto out;
6610 	}
6611 	refs -= refs_to_drop;
6612 
6613 	if (refs > 0) {
6614 		if (extent_op)
6615 			__run_delayed_extent_op(extent_op, leaf, ei);
6616 		/*
6617 		 * In the case of inline back ref, reference count will
6618 		 * be updated by remove_extent_backref
6619 		 */
6620 		if (iref) {
6621 			BUG_ON(!found_extent);
6622 		} else {
6623 			btrfs_set_extent_refs(leaf, ei, refs);
6624 			btrfs_mark_buffer_dirty(leaf);
6625 		}
6626 		if (found_extent) {
6627 			ret = remove_extent_backref(trans, extent_root, path,
6628 						    iref, refs_to_drop,
6629 						    is_data, &last_ref);
6630 			if (ret) {
6631 				btrfs_abort_transaction(trans, extent_root, ret);
6632 				goto out;
6633 			}
6634 		}
6635 		add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6636 				 root_objectid);
6637 	} else {
6638 		if (found_extent) {
6639 			BUG_ON(is_data && refs_to_drop !=
6640 			       extent_data_ref_count(path, iref));
6641 			if (iref) {
6642 				BUG_ON(path->slots[0] != extent_slot);
6643 			} else {
6644 				BUG_ON(path->slots[0] != extent_slot + 1);
6645 				path->slots[0] = extent_slot;
6646 				num_to_del = 2;
6647 			}
6648 		}
6649 
6650 		last_ref = 1;
6651 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6652 				      num_to_del);
6653 		if (ret) {
6654 			btrfs_abort_transaction(trans, extent_root, ret);
6655 			goto out;
6656 		}
6657 		btrfs_release_path(path);
6658 
6659 		if (is_data) {
6660 			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6661 			if (ret) {
6662 				btrfs_abort_transaction(trans, extent_root, ret);
6663 				goto out;
6664 			}
6665 		}
6666 
6667 		ret = update_block_group(trans, root, bytenr, num_bytes, 0);
6668 		if (ret) {
6669 			btrfs_abort_transaction(trans, extent_root, ret);
6670 			goto out;
6671 		}
6672 	}
6673 	btrfs_release_path(path);
6674 
6675 out:
6676 	btrfs_free_path(path);
6677 	return ret;
6678 }
6679 
6680 /*
6681  * when we free an block, it is possible (and likely) that we free the last
6682  * delayed ref for that extent as well.  This searches the delayed ref tree for
6683  * a given extent, and if there are no other delayed refs to be processed, it
6684  * removes it from the tree.
6685  */
check_ref_cleanup(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr)6686 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6687 				      struct btrfs_root *root, u64 bytenr)
6688 {
6689 	struct btrfs_delayed_ref_head *head;
6690 	struct btrfs_delayed_ref_root *delayed_refs;
6691 	int ret = 0;
6692 
6693 	delayed_refs = &trans->transaction->delayed_refs;
6694 	spin_lock(&delayed_refs->lock);
6695 	head = btrfs_find_delayed_ref_head(trans, bytenr);
6696 	if (!head)
6697 		goto out_delayed_unlock;
6698 
6699 	spin_lock(&head->lock);
6700 	if (!list_empty(&head->ref_list))
6701 		goto out;
6702 
6703 	if (head->extent_op) {
6704 		if (!head->must_insert_reserved)
6705 			goto out;
6706 		btrfs_free_delayed_extent_op(head->extent_op);
6707 		head->extent_op = NULL;
6708 	}
6709 
6710 	/*
6711 	 * waiting for the lock here would deadlock.  If someone else has it
6712 	 * locked they are already in the process of dropping it anyway
6713 	 */
6714 	if (!mutex_trylock(&head->mutex))
6715 		goto out;
6716 
6717 	/*
6718 	 * at this point we have a head with no other entries.  Go
6719 	 * ahead and process it.
6720 	 */
6721 	head->node.in_tree = 0;
6722 	rb_erase(&head->href_node, &delayed_refs->href_root);
6723 
6724 	atomic_dec(&delayed_refs->num_entries);
6725 
6726 	/*
6727 	 * we don't take a ref on the node because we're removing it from the
6728 	 * tree, so we just steal the ref the tree was holding.
6729 	 */
6730 	delayed_refs->num_heads--;
6731 	if (head->processing == 0)
6732 		delayed_refs->num_heads_ready--;
6733 	head->processing = 0;
6734 	spin_unlock(&head->lock);
6735 	spin_unlock(&delayed_refs->lock);
6736 
6737 	BUG_ON(head->extent_op);
6738 	if (head->must_insert_reserved)
6739 		ret = 1;
6740 
6741 	mutex_unlock(&head->mutex);
6742 	btrfs_put_delayed_ref(&head->node);
6743 	return ret;
6744 out:
6745 	spin_unlock(&head->lock);
6746 
6747 out_delayed_unlock:
6748 	spin_unlock(&delayed_refs->lock);
6749 	return 0;
6750 }
6751 
btrfs_free_tree_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,u64 parent,int last_ref)6752 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6753 			   struct btrfs_root *root,
6754 			   struct extent_buffer *buf,
6755 			   u64 parent, int last_ref)
6756 {
6757 	int pin = 1;
6758 	int ret;
6759 
6760 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6761 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6762 					buf->start, buf->len,
6763 					parent, root->root_key.objectid,
6764 					btrfs_header_level(buf),
6765 					BTRFS_DROP_DELAYED_REF, NULL);
6766 		BUG_ON(ret); /* -ENOMEM */
6767 	}
6768 
6769 	if (!last_ref)
6770 		return;
6771 
6772 	if (btrfs_header_generation(buf) == trans->transid) {
6773 		struct btrfs_block_group_cache *cache;
6774 
6775 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6776 			ret = check_ref_cleanup(trans, root, buf->start);
6777 			if (!ret)
6778 				goto out;
6779 		}
6780 
6781 		cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6782 
6783 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6784 			pin_down_extent(root, cache, buf->start, buf->len, 1);
6785 			btrfs_put_block_group(cache);
6786 			goto out;
6787 		}
6788 
6789 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6790 
6791 		btrfs_add_free_space(cache, buf->start, buf->len);
6792 		btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6793 		btrfs_put_block_group(cache);
6794 		trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6795 		pin = 0;
6796 	}
6797 out:
6798 	if (pin)
6799 		add_pinned_bytes(root->fs_info, buf->len,
6800 				 btrfs_header_level(buf),
6801 				 root->root_key.objectid);
6802 
6803 	/*
6804 	 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6805 	 * anymore.
6806 	 */
6807 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6808 }
6809 
6810 /* Can return -ENOMEM */
btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset)6811 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6812 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6813 		      u64 owner, u64 offset)
6814 {
6815 	int ret;
6816 	struct btrfs_fs_info *fs_info = root->fs_info;
6817 
6818 	if (btrfs_test_is_dummy_root(root))
6819 		return 0;
6820 
6821 	add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6822 
6823 	/*
6824 	 * tree log blocks never actually go into the extent allocation
6825 	 * tree, just update pinning info and exit early.
6826 	 */
6827 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6828 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6829 		/* unlocks the pinned mutex */
6830 		btrfs_pin_extent(root, bytenr, num_bytes, 1);
6831 		ret = 0;
6832 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6833 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6834 					num_bytes,
6835 					parent, root_objectid, (int)owner,
6836 					BTRFS_DROP_DELAYED_REF, NULL);
6837 	} else {
6838 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6839 						num_bytes,
6840 						parent, root_objectid, owner,
6841 						offset, 0,
6842 						BTRFS_DROP_DELAYED_REF, NULL);
6843 	}
6844 	return ret;
6845 }
6846 
6847 /*
6848  * when we wait for progress in the block group caching, its because
6849  * our allocation attempt failed at least once.  So, we must sleep
6850  * and let some progress happen before we try again.
6851  *
6852  * This function will sleep at least once waiting for new free space to
6853  * show up, and then it will check the block group free space numbers
6854  * for our min num_bytes.  Another option is to have it go ahead
6855  * and look in the rbtree for a free extent of a given size, but this
6856  * is a good start.
6857  *
6858  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6859  * any of the information in this block group.
6860  */
6861 static noinline void
wait_block_group_cache_progress(struct btrfs_block_group_cache * cache,u64 num_bytes)6862 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6863 				u64 num_bytes)
6864 {
6865 	struct btrfs_caching_control *caching_ctl;
6866 
6867 	caching_ctl = get_caching_control(cache);
6868 	if (!caching_ctl)
6869 		return;
6870 
6871 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6872 		   (cache->free_space_ctl->free_space >= num_bytes));
6873 
6874 	put_caching_control(caching_ctl);
6875 }
6876 
6877 static noinline int
wait_block_group_cache_done(struct btrfs_block_group_cache * cache)6878 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6879 {
6880 	struct btrfs_caching_control *caching_ctl;
6881 	int ret = 0;
6882 
6883 	caching_ctl = get_caching_control(cache);
6884 	if (!caching_ctl)
6885 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6886 
6887 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
6888 	if (cache->cached == BTRFS_CACHE_ERROR)
6889 		ret = -EIO;
6890 	put_caching_control(caching_ctl);
6891 	return ret;
6892 }
6893 
__get_raid_index(u64 flags)6894 int __get_raid_index(u64 flags)
6895 {
6896 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
6897 		return BTRFS_RAID_RAID10;
6898 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6899 		return BTRFS_RAID_RAID1;
6900 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
6901 		return BTRFS_RAID_DUP;
6902 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6903 		return BTRFS_RAID_RAID0;
6904 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6905 		return BTRFS_RAID_RAID5;
6906 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6907 		return BTRFS_RAID_RAID6;
6908 
6909 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6910 }
6911 
get_block_group_index(struct btrfs_block_group_cache * cache)6912 int get_block_group_index(struct btrfs_block_group_cache *cache)
6913 {
6914 	return __get_raid_index(cache->flags);
6915 }
6916 
6917 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6918 	[BTRFS_RAID_RAID10]	= "raid10",
6919 	[BTRFS_RAID_RAID1]	= "raid1",
6920 	[BTRFS_RAID_DUP]	= "dup",
6921 	[BTRFS_RAID_RAID0]	= "raid0",
6922 	[BTRFS_RAID_SINGLE]	= "single",
6923 	[BTRFS_RAID_RAID5]	= "raid5",
6924 	[BTRFS_RAID_RAID6]	= "raid6",
6925 };
6926 
get_raid_name(enum btrfs_raid_types type)6927 static const char *get_raid_name(enum btrfs_raid_types type)
6928 {
6929 	if (type >= BTRFS_NR_RAID_TYPES)
6930 		return NULL;
6931 
6932 	return btrfs_raid_type_names[type];
6933 }
6934 
6935 enum btrfs_loop_type {
6936 	LOOP_CACHING_NOWAIT = 0,
6937 	LOOP_CACHING_WAIT = 1,
6938 	LOOP_ALLOC_CHUNK = 2,
6939 	LOOP_NO_EMPTY_SIZE = 3,
6940 };
6941 
6942 static inline void
btrfs_lock_block_group(struct btrfs_block_group_cache * cache,int delalloc)6943 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6944 		       int delalloc)
6945 {
6946 	if (delalloc)
6947 		down_read(&cache->data_rwsem);
6948 }
6949 
6950 static inline void
btrfs_grab_block_group(struct btrfs_block_group_cache * cache,int delalloc)6951 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6952 		       int delalloc)
6953 {
6954 	btrfs_get_block_group(cache);
6955 	if (delalloc)
6956 		down_read(&cache->data_rwsem);
6957 }
6958 
6959 static struct btrfs_block_group_cache *
btrfs_lock_cluster(struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster,int delalloc)6960 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6961 		   struct btrfs_free_cluster *cluster,
6962 		   int delalloc)
6963 {
6964 	struct btrfs_block_group_cache *used_bg;
6965 	bool locked = false;
6966 again:
6967 	spin_lock(&cluster->refill_lock);
6968 	if (locked) {
6969 		if (used_bg == cluster->block_group)
6970 			return used_bg;
6971 
6972 		up_read(&used_bg->data_rwsem);
6973 		btrfs_put_block_group(used_bg);
6974 	}
6975 
6976 	used_bg = cluster->block_group;
6977 	if (!used_bg)
6978 		return NULL;
6979 
6980 	if (used_bg == block_group)
6981 		return used_bg;
6982 
6983 	btrfs_get_block_group(used_bg);
6984 
6985 	if (!delalloc)
6986 		return used_bg;
6987 
6988 	if (down_read_trylock(&used_bg->data_rwsem))
6989 		return used_bg;
6990 
6991 	spin_unlock(&cluster->refill_lock);
6992 	down_read(&used_bg->data_rwsem);
6993 	locked = true;
6994 	goto again;
6995 }
6996 
6997 static inline void
btrfs_release_block_group(struct btrfs_block_group_cache * cache,int delalloc)6998 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6999 			 int delalloc)
7000 {
7001 	if (delalloc)
7002 		up_read(&cache->data_rwsem);
7003 	btrfs_put_block_group(cache);
7004 }
7005 
7006 /*
7007  * walks the btree of allocated extents and find a hole of a given size.
7008  * The key ins is changed to record the hole:
7009  * ins->objectid == start position
7010  * ins->flags = BTRFS_EXTENT_ITEM_KEY
7011  * ins->offset == the size of the hole.
7012  * Any available blocks before search_start are skipped.
7013  *
7014  * If there is no suitable free space, we will record the max size of
7015  * the free space extent currently.
7016  */
find_free_extent(struct btrfs_root * orig_root,u64 num_bytes,u64 empty_size,u64 hint_byte,struct btrfs_key * ins,u64 flags,int delalloc)7017 static noinline int find_free_extent(struct btrfs_root *orig_root,
7018 				     u64 num_bytes, u64 empty_size,
7019 				     u64 hint_byte, struct btrfs_key *ins,
7020 				     u64 flags, int delalloc)
7021 {
7022 	int ret = 0;
7023 	struct btrfs_root *root = orig_root->fs_info->extent_root;
7024 	struct btrfs_free_cluster *last_ptr = NULL;
7025 	struct btrfs_block_group_cache *block_group = NULL;
7026 	u64 search_start = 0;
7027 	u64 max_extent_size = 0;
7028 	u64 empty_cluster = 0;
7029 	struct btrfs_space_info *space_info;
7030 	int loop = 0;
7031 	int index = __get_raid_index(flags);
7032 	int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
7033 		RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
7034 	bool failed_cluster_refill = false;
7035 	bool failed_alloc = false;
7036 	bool use_cluster = true;
7037 	bool have_caching_bg = false;
7038 	bool orig_have_caching_bg = false;
7039 	bool full_search = false;
7040 
7041 	WARN_ON(num_bytes < root->sectorsize);
7042 	ins->type = BTRFS_EXTENT_ITEM_KEY;
7043 	ins->objectid = 0;
7044 	ins->offset = 0;
7045 
7046 	trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
7047 
7048 	space_info = __find_space_info(root->fs_info, flags);
7049 	if (!space_info) {
7050 		btrfs_err(root->fs_info, "No space info for %llu", flags);
7051 		return -ENOSPC;
7052 	}
7053 
7054 	/*
7055 	 * If our free space is heavily fragmented we may not be able to make
7056 	 * big contiguous allocations, so instead of doing the expensive search
7057 	 * for free space, simply return ENOSPC with our max_extent_size so we
7058 	 * can go ahead and search for a more manageable chunk.
7059 	 *
7060 	 * If our max_extent_size is large enough for our allocation simply
7061 	 * disable clustering since we will likely not be able to find enough
7062 	 * space to create a cluster and induce latency trying.
7063 	 */
7064 	if (unlikely(space_info->max_extent_size)) {
7065 		spin_lock(&space_info->lock);
7066 		if (space_info->max_extent_size &&
7067 		    num_bytes > space_info->max_extent_size) {
7068 			ins->offset = space_info->max_extent_size;
7069 			spin_unlock(&space_info->lock);
7070 			return -ENOSPC;
7071 		} else if (space_info->max_extent_size) {
7072 			use_cluster = false;
7073 		}
7074 		spin_unlock(&space_info->lock);
7075 	}
7076 
7077 	last_ptr = fetch_cluster_info(orig_root, space_info, &empty_cluster);
7078 	if (last_ptr) {
7079 		spin_lock(&last_ptr->lock);
7080 		if (last_ptr->block_group)
7081 			hint_byte = last_ptr->window_start;
7082 		if (last_ptr->fragmented) {
7083 			/*
7084 			 * We still set window_start so we can keep track of the
7085 			 * last place we found an allocation to try and save
7086 			 * some time.
7087 			 */
7088 			hint_byte = last_ptr->window_start;
7089 			use_cluster = false;
7090 		}
7091 		spin_unlock(&last_ptr->lock);
7092 	}
7093 
7094 	search_start = max(search_start, first_logical_byte(root, 0));
7095 	search_start = max(search_start, hint_byte);
7096 	if (search_start == hint_byte) {
7097 		block_group = btrfs_lookup_block_group(root->fs_info,
7098 						       search_start);
7099 		/*
7100 		 * we don't want to use the block group if it doesn't match our
7101 		 * allocation bits, or if its not cached.
7102 		 *
7103 		 * However if we are re-searching with an ideal block group
7104 		 * picked out then we don't care that the block group is cached.
7105 		 */
7106 		if (block_group && block_group_bits(block_group, flags) &&
7107 		    block_group->cached != BTRFS_CACHE_NO) {
7108 			down_read(&space_info->groups_sem);
7109 			if (list_empty(&block_group->list) ||
7110 			    block_group->ro) {
7111 				/*
7112 				 * someone is removing this block group,
7113 				 * we can't jump into the have_block_group
7114 				 * target because our list pointers are not
7115 				 * valid
7116 				 */
7117 				btrfs_put_block_group(block_group);
7118 				up_read(&space_info->groups_sem);
7119 			} else {
7120 				index = get_block_group_index(block_group);
7121 				btrfs_lock_block_group(block_group, delalloc);
7122 				goto have_block_group;
7123 			}
7124 		} else if (block_group) {
7125 			btrfs_put_block_group(block_group);
7126 		}
7127 	}
7128 search:
7129 	have_caching_bg = false;
7130 	if (index == 0 || index == __get_raid_index(flags))
7131 		full_search = true;
7132 	down_read(&space_info->groups_sem);
7133 	list_for_each_entry(block_group, &space_info->block_groups[index],
7134 			    list) {
7135 		u64 offset;
7136 		int cached;
7137 
7138 		btrfs_grab_block_group(block_group, delalloc);
7139 		search_start = block_group->key.objectid;
7140 
7141 		/*
7142 		 * this can happen if we end up cycling through all the
7143 		 * raid types, but we want to make sure we only allocate
7144 		 * for the proper type.
7145 		 */
7146 		if (!block_group_bits(block_group, flags)) {
7147 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
7148 				BTRFS_BLOCK_GROUP_RAID1 |
7149 				BTRFS_BLOCK_GROUP_RAID5 |
7150 				BTRFS_BLOCK_GROUP_RAID6 |
7151 				BTRFS_BLOCK_GROUP_RAID10;
7152 
7153 			/*
7154 			 * if they asked for extra copies and this block group
7155 			 * doesn't provide them, bail.  This does allow us to
7156 			 * fill raid0 from raid1.
7157 			 */
7158 			if ((flags & extra) && !(block_group->flags & extra))
7159 				goto loop;
7160 		}
7161 
7162 have_block_group:
7163 		cached = block_group_cache_done(block_group);
7164 		if (unlikely(!cached)) {
7165 			have_caching_bg = true;
7166 			ret = cache_block_group(block_group, 0);
7167 			BUG_ON(ret < 0);
7168 			ret = 0;
7169 		}
7170 
7171 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7172 			goto loop;
7173 		if (unlikely(block_group->ro))
7174 			goto loop;
7175 
7176 		/*
7177 		 * Ok we want to try and use the cluster allocator, so
7178 		 * lets look there
7179 		 */
7180 		if (last_ptr && use_cluster) {
7181 			struct btrfs_block_group_cache *used_block_group;
7182 			unsigned long aligned_cluster;
7183 			/*
7184 			 * the refill lock keeps out other
7185 			 * people trying to start a new cluster
7186 			 */
7187 			used_block_group = btrfs_lock_cluster(block_group,
7188 							      last_ptr,
7189 							      delalloc);
7190 			if (!used_block_group)
7191 				goto refill_cluster;
7192 
7193 			if (used_block_group != block_group &&
7194 			    (used_block_group->ro ||
7195 			     !block_group_bits(used_block_group, flags)))
7196 				goto release_cluster;
7197 
7198 			offset = btrfs_alloc_from_cluster(used_block_group,
7199 						last_ptr,
7200 						num_bytes,
7201 						used_block_group->key.objectid,
7202 						&max_extent_size);
7203 			if (offset) {
7204 				/* we have a block, we're done */
7205 				spin_unlock(&last_ptr->refill_lock);
7206 				trace_btrfs_reserve_extent_cluster(root,
7207 						used_block_group,
7208 						search_start, num_bytes);
7209 				if (used_block_group != block_group) {
7210 					btrfs_release_block_group(block_group,
7211 								  delalloc);
7212 					block_group = used_block_group;
7213 				}
7214 				goto checks;
7215 			}
7216 
7217 			WARN_ON(last_ptr->block_group != used_block_group);
7218 release_cluster:
7219 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
7220 			 * set up a new clusters, so lets just skip it
7221 			 * and let the allocator find whatever block
7222 			 * it can find.  If we reach this point, we
7223 			 * will have tried the cluster allocator
7224 			 * plenty of times and not have found
7225 			 * anything, so we are likely way too
7226 			 * fragmented for the clustering stuff to find
7227 			 * anything.
7228 			 *
7229 			 * However, if the cluster is taken from the
7230 			 * current block group, release the cluster
7231 			 * first, so that we stand a better chance of
7232 			 * succeeding in the unclustered
7233 			 * allocation.  */
7234 			if (loop >= LOOP_NO_EMPTY_SIZE &&
7235 			    used_block_group != block_group) {
7236 				spin_unlock(&last_ptr->refill_lock);
7237 				btrfs_release_block_group(used_block_group,
7238 							  delalloc);
7239 				goto unclustered_alloc;
7240 			}
7241 
7242 			/*
7243 			 * this cluster didn't work out, free it and
7244 			 * start over
7245 			 */
7246 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
7247 
7248 			if (used_block_group != block_group)
7249 				btrfs_release_block_group(used_block_group,
7250 							  delalloc);
7251 refill_cluster:
7252 			if (loop >= LOOP_NO_EMPTY_SIZE) {
7253 				spin_unlock(&last_ptr->refill_lock);
7254 				goto unclustered_alloc;
7255 			}
7256 
7257 			aligned_cluster = max_t(unsigned long,
7258 						empty_cluster + empty_size,
7259 					      block_group->full_stripe_len);
7260 
7261 			/* allocate a cluster in this block group */
7262 			ret = btrfs_find_space_cluster(root, block_group,
7263 						       last_ptr, search_start,
7264 						       num_bytes,
7265 						       aligned_cluster);
7266 			if (ret == 0) {
7267 				/*
7268 				 * now pull our allocation out of this
7269 				 * cluster
7270 				 */
7271 				offset = btrfs_alloc_from_cluster(block_group,
7272 							last_ptr,
7273 							num_bytes,
7274 							search_start,
7275 							&max_extent_size);
7276 				if (offset) {
7277 					/* we found one, proceed */
7278 					spin_unlock(&last_ptr->refill_lock);
7279 					trace_btrfs_reserve_extent_cluster(root,
7280 						block_group, search_start,
7281 						num_bytes);
7282 					goto checks;
7283 				}
7284 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
7285 				   && !failed_cluster_refill) {
7286 				spin_unlock(&last_ptr->refill_lock);
7287 
7288 				failed_cluster_refill = true;
7289 				wait_block_group_cache_progress(block_group,
7290 				       num_bytes + empty_cluster + empty_size);
7291 				goto have_block_group;
7292 			}
7293 
7294 			/*
7295 			 * at this point we either didn't find a cluster
7296 			 * or we weren't able to allocate a block from our
7297 			 * cluster.  Free the cluster we've been trying
7298 			 * to use, and go to the next block group
7299 			 */
7300 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
7301 			spin_unlock(&last_ptr->refill_lock);
7302 			goto loop;
7303 		}
7304 
7305 unclustered_alloc:
7306 		/*
7307 		 * We are doing an unclustered alloc, set the fragmented flag so
7308 		 * we don't bother trying to setup a cluster again until we get
7309 		 * more space.
7310 		 */
7311 		if (unlikely(last_ptr)) {
7312 			spin_lock(&last_ptr->lock);
7313 			last_ptr->fragmented = 1;
7314 			spin_unlock(&last_ptr->lock);
7315 		}
7316 		spin_lock(&block_group->free_space_ctl->tree_lock);
7317 		if (cached &&
7318 		    block_group->free_space_ctl->free_space <
7319 		    num_bytes + empty_cluster + empty_size) {
7320 			if (block_group->free_space_ctl->free_space >
7321 			    max_extent_size)
7322 				max_extent_size =
7323 					block_group->free_space_ctl->free_space;
7324 			spin_unlock(&block_group->free_space_ctl->tree_lock);
7325 			goto loop;
7326 		}
7327 		spin_unlock(&block_group->free_space_ctl->tree_lock);
7328 
7329 		offset = btrfs_find_space_for_alloc(block_group, search_start,
7330 						    num_bytes, empty_size,
7331 						    &max_extent_size);
7332 		/*
7333 		 * If we didn't find a chunk, and we haven't failed on this
7334 		 * block group before, and this block group is in the middle of
7335 		 * caching and we are ok with waiting, then go ahead and wait
7336 		 * for progress to be made, and set failed_alloc to true.
7337 		 *
7338 		 * If failed_alloc is true then we've already waited on this
7339 		 * block group once and should move on to the next block group.
7340 		 */
7341 		if (!offset && !failed_alloc && !cached &&
7342 		    loop > LOOP_CACHING_NOWAIT) {
7343 			wait_block_group_cache_progress(block_group,
7344 						num_bytes + empty_size);
7345 			failed_alloc = true;
7346 			goto have_block_group;
7347 		} else if (!offset) {
7348 			goto loop;
7349 		}
7350 checks:
7351 		search_start = ALIGN(offset, root->stripesize);
7352 
7353 		/* move on to the next group */
7354 		if (search_start + num_bytes >
7355 		    block_group->key.objectid + block_group->key.offset) {
7356 			btrfs_add_free_space(block_group, offset, num_bytes);
7357 			goto loop;
7358 		}
7359 
7360 		if (offset < search_start)
7361 			btrfs_add_free_space(block_group, offset,
7362 					     search_start - offset);
7363 		BUG_ON(offset > search_start);
7364 
7365 		ret = btrfs_update_reserved_bytes(block_group, num_bytes,
7366 						  alloc_type, delalloc);
7367 		if (ret == -EAGAIN) {
7368 			btrfs_add_free_space(block_group, offset, num_bytes);
7369 			goto loop;
7370 		}
7371 
7372 		/* we are all good, lets return */
7373 		ins->objectid = search_start;
7374 		ins->offset = num_bytes;
7375 
7376 		trace_btrfs_reserve_extent(orig_root, block_group,
7377 					   search_start, num_bytes);
7378 		btrfs_release_block_group(block_group, delalloc);
7379 		break;
7380 loop:
7381 		failed_cluster_refill = false;
7382 		failed_alloc = false;
7383 		BUG_ON(index != get_block_group_index(block_group));
7384 		btrfs_release_block_group(block_group, delalloc);
7385 	}
7386 	up_read(&space_info->groups_sem);
7387 
7388 	if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7389 		&& !orig_have_caching_bg)
7390 		orig_have_caching_bg = true;
7391 
7392 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7393 		goto search;
7394 
7395 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7396 		goto search;
7397 
7398 	/*
7399 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7400 	 *			caching kthreads as we move along
7401 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7402 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7403 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7404 	 *			again
7405 	 */
7406 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7407 		index = 0;
7408 		if (loop == LOOP_CACHING_NOWAIT) {
7409 			/*
7410 			 * We want to skip the LOOP_CACHING_WAIT step if we
7411 			 * don't have any unached bgs and we've alrelady done a
7412 			 * full search through.
7413 			 */
7414 			if (orig_have_caching_bg || !full_search)
7415 				loop = LOOP_CACHING_WAIT;
7416 			else
7417 				loop = LOOP_ALLOC_CHUNK;
7418 		} else {
7419 			loop++;
7420 		}
7421 
7422 		if (loop == LOOP_ALLOC_CHUNK) {
7423 			struct btrfs_trans_handle *trans;
7424 			int exist = 0;
7425 
7426 			trans = current->journal_info;
7427 			if (trans)
7428 				exist = 1;
7429 			else
7430 				trans = btrfs_join_transaction(root);
7431 
7432 			if (IS_ERR(trans)) {
7433 				ret = PTR_ERR(trans);
7434 				goto out;
7435 			}
7436 
7437 			ret = do_chunk_alloc(trans, root, flags,
7438 					     CHUNK_ALLOC_FORCE);
7439 
7440 			/*
7441 			 * If we can't allocate a new chunk we've already looped
7442 			 * through at least once, move on to the NO_EMPTY_SIZE
7443 			 * case.
7444 			 */
7445 			if (ret == -ENOSPC)
7446 				loop = LOOP_NO_EMPTY_SIZE;
7447 
7448 			/*
7449 			 * Do not bail out on ENOSPC since we
7450 			 * can do more things.
7451 			 */
7452 			if (ret < 0 && ret != -ENOSPC)
7453 				btrfs_abort_transaction(trans,
7454 							root, ret);
7455 			else
7456 				ret = 0;
7457 			if (!exist)
7458 				btrfs_end_transaction(trans, root);
7459 			if (ret)
7460 				goto out;
7461 		}
7462 
7463 		if (loop == LOOP_NO_EMPTY_SIZE) {
7464 			/*
7465 			 * Don't loop again if we already have no empty_size and
7466 			 * no empty_cluster.
7467 			 */
7468 			if (empty_size == 0 &&
7469 			    empty_cluster == 0) {
7470 				ret = -ENOSPC;
7471 				goto out;
7472 			}
7473 			empty_size = 0;
7474 			empty_cluster = 0;
7475 		}
7476 
7477 		goto search;
7478 	} else if (!ins->objectid) {
7479 		ret = -ENOSPC;
7480 	} else if (ins->objectid) {
7481 		if (!use_cluster && last_ptr) {
7482 			spin_lock(&last_ptr->lock);
7483 			last_ptr->window_start = ins->objectid;
7484 			spin_unlock(&last_ptr->lock);
7485 		}
7486 		ret = 0;
7487 	}
7488 out:
7489 	if (ret == -ENOSPC) {
7490 		spin_lock(&space_info->lock);
7491 		space_info->max_extent_size = max_extent_size;
7492 		spin_unlock(&space_info->lock);
7493 		ins->offset = max_extent_size;
7494 	}
7495 	return ret;
7496 }
7497 
dump_space_info(struct btrfs_space_info * info,u64 bytes,int dump_block_groups)7498 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7499 			    int dump_block_groups)
7500 {
7501 	struct btrfs_block_group_cache *cache;
7502 	int index = 0;
7503 
7504 	spin_lock(&info->lock);
7505 	printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
7506 	       info->flags,
7507 	       info->total_bytes - info->bytes_used - info->bytes_pinned -
7508 	       info->bytes_reserved - info->bytes_readonly,
7509 	       (info->full) ? "" : "not ");
7510 	printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7511 	       "reserved=%llu, may_use=%llu, readonly=%llu\n",
7512 	       info->total_bytes, info->bytes_used, info->bytes_pinned,
7513 	       info->bytes_reserved, info->bytes_may_use,
7514 	       info->bytes_readonly);
7515 	spin_unlock(&info->lock);
7516 
7517 	if (!dump_block_groups)
7518 		return;
7519 
7520 	down_read(&info->groups_sem);
7521 again:
7522 	list_for_each_entry(cache, &info->block_groups[index], list) {
7523 		spin_lock(&cache->lock);
7524 		printk(KERN_INFO "BTRFS: "
7525 			   "block group %llu has %llu bytes, "
7526 			   "%llu used %llu pinned %llu reserved %s\n",
7527 		       cache->key.objectid, cache->key.offset,
7528 		       btrfs_block_group_used(&cache->item), cache->pinned,
7529 		       cache->reserved, cache->ro ? "[readonly]" : "");
7530 		btrfs_dump_free_space(cache, bytes);
7531 		spin_unlock(&cache->lock);
7532 	}
7533 	if (++index < BTRFS_NR_RAID_TYPES)
7534 		goto again;
7535 	up_read(&info->groups_sem);
7536 }
7537 
btrfs_reserve_extent(struct btrfs_root * root,u64 num_bytes,u64 min_alloc_size,u64 empty_size,u64 hint_byte,struct btrfs_key * ins,int is_data,int delalloc)7538 int btrfs_reserve_extent(struct btrfs_root *root,
7539 			 u64 num_bytes, u64 min_alloc_size,
7540 			 u64 empty_size, u64 hint_byte,
7541 			 struct btrfs_key *ins, int is_data, int delalloc)
7542 {
7543 	bool final_tried = num_bytes == min_alloc_size;
7544 	u64 flags;
7545 	int ret;
7546 
7547 	flags = btrfs_get_alloc_profile(root, is_data);
7548 again:
7549 	WARN_ON(num_bytes < root->sectorsize);
7550 	ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
7551 			       flags, delalloc);
7552 
7553 	if (ret == -ENOSPC) {
7554 		if (!final_tried && ins->offset) {
7555 			num_bytes = min(num_bytes >> 1, ins->offset);
7556 			num_bytes = round_down(num_bytes, root->sectorsize);
7557 			num_bytes = max(num_bytes, min_alloc_size);
7558 			if (num_bytes == min_alloc_size)
7559 				final_tried = true;
7560 			goto again;
7561 		} else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7562 			struct btrfs_space_info *sinfo;
7563 
7564 			sinfo = __find_space_info(root->fs_info, flags);
7565 			btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
7566 				flags, num_bytes);
7567 			if (sinfo)
7568 				dump_space_info(sinfo, num_bytes, 1);
7569 		}
7570 	}
7571 
7572 	return ret;
7573 }
7574 
__btrfs_free_reserved_extent(struct btrfs_root * root,u64 start,u64 len,int pin,int delalloc)7575 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
7576 					u64 start, u64 len,
7577 					int pin, int delalloc)
7578 {
7579 	struct btrfs_block_group_cache *cache;
7580 	int ret = 0;
7581 
7582 	cache = btrfs_lookup_block_group(root->fs_info, start);
7583 	if (!cache) {
7584 		btrfs_err(root->fs_info, "Unable to find block group for %llu",
7585 			start);
7586 		return -ENOSPC;
7587 	}
7588 
7589 	if (pin)
7590 		pin_down_extent(root, cache, start, len, 1);
7591 	else {
7592 		if (btrfs_test_opt(root, DISCARD))
7593 			ret = btrfs_discard_extent(root, start, len, NULL);
7594 		btrfs_add_free_space(cache, start, len);
7595 		btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
7596 	}
7597 
7598 	btrfs_put_block_group(cache);
7599 
7600 	trace_btrfs_reserved_extent_free(root, start, len);
7601 
7602 	return ret;
7603 }
7604 
btrfs_free_reserved_extent(struct btrfs_root * root,u64 start,u64 len,int delalloc)7605 int btrfs_free_reserved_extent(struct btrfs_root *root,
7606 			       u64 start, u64 len, int delalloc)
7607 {
7608 	return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
7609 }
7610 
btrfs_free_and_pin_reserved_extent(struct btrfs_root * root,u64 start,u64 len)7611 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7612 				       u64 start, u64 len)
7613 {
7614 	return __btrfs_free_reserved_extent(root, start, len, 1, 0);
7615 }
7616 
alloc_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 parent,u64 root_objectid,u64 flags,u64 owner,u64 offset,struct btrfs_key * ins,int ref_mod)7617 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7618 				      struct btrfs_root *root,
7619 				      u64 parent, u64 root_objectid,
7620 				      u64 flags, u64 owner, u64 offset,
7621 				      struct btrfs_key *ins, int ref_mod)
7622 {
7623 	int ret;
7624 	struct btrfs_fs_info *fs_info = root->fs_info;
7625 	struct btrfs_extent_item *extent_item;
7626 	struct btrfs_extent_inline_ref *iref;
7627 	struct btrfs_path *path;
7628 	struct extent_buffer *leaf;
7629 	int type;
7630 	u32 size;
7631 
7632 	if (parent > 0)
7633 		type = BTRFS_SHARED_DATA_REF_KEY;
7634 	else
7635 		type = BTRFS_EXTENT_DATA_REF_KEY;
7636 
7637 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7638 
7639 	path = btrfs_alloc_path();
7640 	if (!path)
7641 		return -ENOMEM;
7642 
7643 	path->leave_spinning = 1;
7644 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7645 				      ins, size);
7646 	if (ret) {
7647 		btrfs_free_path(path);
7648 		return ret;
7649 	}
7650 
7651 	leaf = path->nodes[0];
7652 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
7653 				     struct btrfs_extent_item);
7654 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7655 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7656 	btrfs_set_extent_flags(leaf, extent_item,
7657 			       flags | BTRFS_EXTENT_FLAG_DATA);
7658 
7659 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7660 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
7661 	if (parent > 0) {
7662 		struct btrfs_shared_data_ref *ref;
7663 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
7664 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7665 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7666 	} else {
7667 		struct btrfs_extent_data_ref *ref;
7668 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7669 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7670 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7671 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7672 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7673 	}
7674 
7675 	btrfs_mark_buffer_dirty(path->nodes[0]);
7676 	btrfs_free_path(path);
7677 
7678 	ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
7679 	if (ret) { /* -ENOENT, logic error */
7680 		btrfs_err(fs_info, "update block group failed for %llu %llu",
7681 			ins->objectid, ins->offset);
7682 		BUG();
7683 	}
7684 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7685 	return ret;
7686 }
7687 
alloc_reserved_tree_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 parent,u64 root_objectid,u64 flags,struct btrfs_disk_key * key,int level,struct btrfs_key * ins)7688 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7689 				     struct btrfs_root *root,
7690 				     u64 parent, u64 root_objectid,
7691 				     u64 flags, struct btrfs_disk_key *key,
7692 				     int level, struct btrfs_key *ins)
7693 {
7694 	int ret;
7695 	struct btrfs_fs_info *fs_info = root->fs_info;
7696 	struct btrfs_extent_item *extent_item;
7697 	struct btrfs_tree_block_info *block_info;
7698 	struct btrfs_extent_inline_ref *iref;
7699 	struct btrfs_path *path;
7700 	struct extent_buffer *leaf;
7701 	u32 size = sizeof(*extent_item) + sizeof(*iref);
7702 	u64 num_bytes = ins->offset;
7703 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7704 						 SKINNY_METADATA);
7705 
7706 	if (!skinny_metadata)
7707 		size += sizeof(*block_info);
7708 
7709 	path = btrfs_alloc_path();
7710 	if (!path) {
7711 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7712 						   root->nodesize);
7713 		return -ENOMEM;
7714 	}
7715 
7716 	path->leave_spinning = 1;
7717 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7718 				      ins, size);
7719 	if (ret) {
7720 		btrfs_free_path(path);
7721 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7722 						   root->nodesize);
7723 		return ret;
7724 	}
7725 
7726 	leaf = path->nodes[0];
7727 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
7728 				     struct btrfs_extent_item);
7729 	btrfs_set_extent_refs(leaf, extent_item, 1);
7730 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7731 	btrfs_set_extent_flags(leaf, extent_item,
7732 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7733 
7734 	if (skinny_metadata) {
7735 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7736 		num_bytes = root->nodesize;
7737 	} else {
7738 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7739 		btrfs_set_tree_block_key(leaf, block_info, key);
7740 		btrfs_set_tree_block_level(leaf, block_info, level);
7741 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7742 	}
7743 
7744 	if (parent > 0) {
7745 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7746 		btrfs_set_extent_inline_ref_type(leaf, iref,
7747 						 BTRFS_SHARED_BLOCK_REF_KEY);
7748 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7749 	} else {
7750 		btrfs_set_extent_inline_ref_type(leaf, iref,
7751 						 BTRFS_TREE_BLOCK_REF_KEY);
7752 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7753 	}
7754 
7755 	btrfs_mark_buffer_dirty(leaf);
7756 	btrfs_free_path(path);
7757 
7758 	ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7759 				 1);
7760 	if (ret) { /* -ENOENT, logic error */
7761 		btrfs_err(fs_info, "update block group failed for %llu %llu",
7762 			ins->objectid, ins->offset);
7763 		BUG();
7764 	}
7765 
7766 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7767 	return ret;
7768 }
7769 
btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 root_objectid,u64 owner,u64 offset,u64 ram_bytes,struct btrfs_key * ins)7770 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7771 				     struct btrfs_root *root,
7772 				     u64 root_objectid, u64 owner,
7773 				     u64 offset, u64 ram_bytes,
7774 				     struct btrfs_key *ins)
7775 {
7776 	int ret;
7777 
7778 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7779 
7780 	ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7781 					 ins->offset, 0,
7782 					 root_objectid, owner, offset,
7783 					 ram_bytes, BTRFS_ADD_DELAYED_EXTENT,
7784 					 NULL);
7785 	return ret;
7786 }
7787 
7788 /*
7789  * this is used by the tree logging recovery code.  It records that
7790  * an extent has been allocated and makes sure to clear the free
7791  * space cache bits as well
7792  */
btrfs_alloc_logged_file_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 root_objectid,u64 owner,u64 offset,struct btrfs_key * ins)7793 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7794 				   struct btrfs_root *root,
7795 				   u64 root_objectid, u64 owner, u64 offset,
7796 				   struct btrfs_key *ins)
7797 {
7798 	int ret;
7799 	struct btrfs_block_group_cache *block_group;
7800 
7801 	/*
7802 	 * Mixed block groups will exclude before processing the log so we only
7803 	 * need to do the exlude dance if this fs isn't mixed.
7804 	 */
7805 	if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7806 		ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7807 		if (ret)
7808 			return ret;
7809 	}
7810 
7811 	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7812 	if (!block_group)
7813 		return -EINVAL;
7814 
7815 	ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7816 					  RESERVE_ALLOC_NO_ACCOUNT, 0);
7817 	BUG_ON(ret); /* logic error */
7818 	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7819 					 0, owner, offset, ins, 1);
7820 	btrfs_put_block_group(block_group);
7821 	return ret;
7822 }
7823 
7824 static struct extent_buffer *
btrfs_init_new_buffer(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,int level)7825 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7826 		      u64 bytenr, int level)
7827 {
7828 	struct extent_buffer *buf;
7829 
7830 	buf = btrfs_find_create_tree_block(root, bytenr);
7831 	if (!buf)
7832 		return ERR_PTR(-ENOMEM);
7833 	btrfs_set_header_generation(buf, trans->transid);
7834 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7835 	btrfs_tree_lock(buf);
7836 	clean_tree_block(trans, root->fs_info, buf);
7837 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7838 
7839 	btrfs_set_lock_blocking(buf);
7840 	btrfs_set_buffer_uptodate(buf);
7841 
7842 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7843 		buf->log_index = root->log_transid % 2;
7844 		/*
7845 		 * we allow two log transactions at a time, use different
7846 		 * EXENT bit to differentiate dirty pages.
7847 		 */
7848 		if (buf->log_index == 0)
7849 			set_extent_dirty(&root->dirty_log_pages, buf->start,
7850 					buf->start + buf->len - 1, GFP_NOFS);
7851 		else
7852 			set_extent_new(&root->dirty_log_pages, buf->start,
7853 					buf->start + buf->len - 1, GFP_NOFS);
7854 	} else {
7855 		buf->log_index = -1;
7856 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7857 			 buf->start + buf->len - 1, GFP_NOFS);
7858 	}
7859 	trans->blocks_used++;
7860 	/* this returns a buffer locked for blocking */
7861 	return buf;
7862 }
7863 
7864 static struct btrfs_block_rsv *
use_block_rsv(struct btrfs_trans_handle * trans,struct btrfs_root * root,u32 blocksize)7865 use_block_rsv(struct btrfs_trans_handle *trans,
7866 	      struct btrfs_root *root, u32 blocksize)
7867 {
7868 	struct btrfs_block_rsv *block_rsv;
7869 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7870 	int ret;
7871 	bool global_updated = false;
7872 
7873 	block_rsv = get_block_rsv(trans, root);
7874 
7875 	if (unlikely(block_rsv->size == 0))
7876 		goto try_reserve;
7877 again:
7878 	ret = block_rsv_use_bytes(block_rsv, blocksize);
7879 	if (!ret)
7880 		return block_rsv;
7881 
7882 	if (block_rsv->failfast)
7883 		return ERR_PTR(ret);
7884 
7885 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7886 		global_updated = true;
7887 		update_global_block_rsv(root->fs_info);
7888 		goto again;
7889 	}
7890 
7891 	if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7892 		static DEFINE_RATELIMIT_STATE(_rs,
7893 				DEFAULT_RATELIMIT_INTERVAL * 10,
7894 				/*DEFAULT_RATELIMIT_BURST*/ 1);
7895 		if (__ratelimit(&_rs))
7896 			WARN(1, KERN_DEBUG
7897 				"BTRFS: block rsv returned %d\n", ret);
7898 	}
7899 try_reserve:
7900 	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7901 				     BTRFS_RESERVE_NO_FLUSH);
7902 	if (!ret)
7903 		return block_rsv;
7904 	/*
7905 	 * If we couldn't reserve metadata bytes try and use some from
7906 	 * the global reserve if its space type is the same as the global
7907 	 * reservation.
7908 	 */
7909 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7910 	    block_rsv->space_info == global_rsv->space_info) {
7911 		ret = block_rsv_use_bytes(global_rsv, blocksize);
7912 		if (!ret)
7913 			return global_rsv;
7914 	}
7915 	return ERR_PTR(ret);
7916 }
7917 
unuse_block_rsv(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * block_rsv,u32 blocksize)7918 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7919 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
7920 {
7921 	block_rsv_add_bytes(block_rsv, blocksize, 0);
7922 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7923 }
7924 
7925 /*
7926  * finds a free extent and does all the dirty work required for allocation
7927  * returns the tree buffer or an ERR_PTR on error.
7928  */
btrfs_alloc_tree_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 parent,u64 root_objectid,struct btrfs_disk_key * key,int level,u64 hint,u64 empty_size)7929 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7930 					struct btrfs_root *root,
7931 					u64 parent, u64 root_objectid,
7932 					struct btrfs_disk_key *key, int level,
7933 					u64 hint, u64 empty_size)
7934 {
7935 	struct btrfs_key ins;
7936 	struct btrfs_block_rsv *block_rsv;
7937 	struct extent_buffer *buf;
7938 	struct btrfs_delayed_extent_op *extent_op;
7939 	u64 flags = 0;
7940 	int ret;
7941 	u32 blocksize = root->nodesize;
7942 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7943 						 SKINNY_METADATA);
7944 
7945 	if (btrfs_test_is_dummy_root(root)) {
7946 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
7947 					    level);
7948 		if (!IS_ERR(buf))
7949 			root->alloc_bytenr += blocksize;
7950 		return buf;
7951 	}
7952 
7953 	block_rsv = use_block_rsv(trans, root, blocksize);
7954 	if (IS_ERR(block_rsv))
7955 		return ERR_CAST(block_rsv);
7956 
7957 	ret = btrfs_reserve_extent(root, blocksize, blocksize,
7958 				   empty_size, hint, &ins, 0, 0);
7959 	if (ret)
7960 		goto out_unuse;
7961 
7962 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
7963 	if (IS_ERR(buf)) {
7964 		ret = PTR_ERR(buf);
7965 		goto out_free_reserved;
7966 	}
7967 
7968 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7969 		if (parent == 0)
7970 			parent = ins.objectid;
7971 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7972 	} else
7973 		BUG_ON(parent > 0);
7974 
7975 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7976 		extent_op = btrfs_alloc_delayed_extent_op();
7977 		if (!extent_op) {
7978 			ret = -ENOMEM;
7979 			goto out_free_buf;
7980 		}
7981 		if (key)
7982 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
7983 		else
7984 			memset(&extent_op->key, 0, sizeof(extent_op->key));
7985 		extent_op->flags_to_set = flags;
7986 		if (skinny_metadata)
7987 			extent_op->update_key = 0;
7988 		else
7989 			extent_op->update_key = 1;
7990 		extent_op->update_flags = 1;
7991 		extent_op->is_data = 0;
7992 		extent_op->level = level;
7993 
7994 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7995 						 ins.objectid, ins.offset,
7996 						 parent, root_objectid, level,
7997 						 BTRFS_ADD_DELAYED_EXTENT,
7998 						 extent_op);
7999 		if (ret)
8000 			goto out_free_delayed;
8001 	}
8002 	return buf;
8003 
8004 out_free_delayed:
8005 	btrfs_free_delayed_extent_op(extent_op);
8006 out_free_buf:
8007 	free_extent_buffer(buf);
8008 out_free_reserved:
8009 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
8010 out_unuse:
8011 	unuse_block_rsv(root->fs_info, block_rsv, blocksize);
8012 	return ERR_PTR(ret);
8013 }
8014 
8015 struct walk_control {
8016 	u64 refs[BTRFS_MAX_LEVEL];
8017 	u64 flags[BTRFS_MAX_LEVEL];
8018 	struct btrfs_key update_progress;
8019 	int stage;
8020 	int level;
8021 	int shared_level;
8022 	int update_ref;
8023 	int keep_locks;
8024 	int reada_slot;
8025 	int reada_count;
8026 	int for_reloc;
8027 };
8028 
8029 #define DROP_REFERENCE	1
8030 #define UPDATE_BACKREF	2
8031 
reada_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct walk_control * wc,struct btrfs_path * path)8032 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8033 				     struct btrfs_root *root,
8034 				     struct walk_control *wc,
8035 				     struct btrfs_path *path)
8036 {
8037 	u64 bytenr;
8038 	u64 generation;
8039 	u64 refs;
8040 	u64 flags;
8041 	u32 nritems;
8042 	u32 blocksize;
8043 	struct btrfs_key key;
8044 	struct extent_buffer *eb;
8045 	int ret;
8046 	int slot;
8047 	int nread = 0;
8048 
8049 	if (path->slots[wc->level] < wc->reada_slot) {
8050 		wc->reada_count = wc->reada_count * 2 / 3;
8051 		wc->reada_count = max(wc->reada_count, 2);
8052 	} else {
8053 		wc->reada_count = wc->reada_count * 3 / 2;
8054 		wc->reada_count = min_t(int, wc->reada_count,
8055 					BTRFS_NODEPTRS_PER_BLOCK(root));
8056 	}
8057 
8058 	eb = path->nodes[wc->level];
8059 	nritems = btrfs_header_nritems(eb);
8060 	blocksize = root->nodesize;
8061 
8062 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8063 		if (nread >= wc->reada_count)
8064 			break;
8065 
8066 		cond_resched();
8067 		bytenr = btrfs_node_blockptr(eb, slot);
8068 		generation = btrfs_node_ptr_generation(eb, slot);
8069 
8070 		if (slot == path->slots[wc->level])
8071 			goto reada;
8072 
8073 		if (wc->stage == UPDATE_BACKREF &&
8074 		    generation <= root->root_key.offset)
8075 			continue;
8076 
8077 		/* We don't lock the tree block, it's OK to be racy here */
8078 		ret = btrfs_lookup_extent_info(trans, root, bytenr,
8079 					       wc->level - 1, 1, &refs,
8080 					       &flags);
8081 		/* We don't care about errors in readahead. */
8082 		if (ret < 0)
8083 			continue;
8084 		BUG_ON(refs == 0);
8085 
8086 		if (wc->stage == DROP_REFERENCE) {
8087 			if (refs == 1)
8088 				goto reada;
8089 
8090 			if (wc->level == 1 &&
8091 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8092 				continue;
8093 			if (!wc->update_ref ||
8094 			    generation <= root->root_key.offset)
8095 				continue;
8096 			btrfs_node_key_to_cpu(eb, &key, slot);
8097 			ret = btrfs_comp_cpu_keys(&key,
8098 						  &wc->update_progress);
8099 			if (ret < 0)
8100 				continue;
8101 		} else {
8102 			if (wc->level == 1 &&
8103 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8104 				continue;
8105 		}
8106 reada:
8107 		readahead_tree_block(root, bytenr);
8108 		nread++;
8109 	}
8110 	wc->reada_slot = slot;
8111 }
8112 
8113 /*
8114  * These may not be seen by the usual inc/dec ref code so we have to
8115  * add them here.
8116  */
record_one_subtree_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 num_bytes)8117 static int record_one_subtree_extent(struct btrfs_trans_handle *trans,
8118 				     struct btrfs_root *root, u64 bytenr,
8119 				     u64 num_bytes)
8120 {
8121 	struct btrfs_qgroup_extent_record *qrecord;
8122 	struct btrfs_delayed_ref_root *delayed_refs;
8123 
8124 	qrecord = kmalloc(sizeof(*qrecord), GFP_NOFS);
8125 	if (!qrecord)
8126 		return -ENOMEM;
8127 
8128 	qrecord->bytenr = bytenr;
8129 	qrecord->num_bytes = num_bytes;
8130 	qrecord->old_roots = NULL;
8131 
8132 	delayed_refs = &trans->transaction->delayed_refs;
8133 	spin_lock(&delayed_refs->lock);
8134 	if (btrfs_qgroup_insert_dirty_extent(delayed_refs, qrecord))
8135 		kfree(qrecord);
8136 	spin_unlock(&delayed_refs->lock);
8137 
8138 	return 0;
8139 }
8140 
account_leaf_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * eb)8141 static int account_leaf_items(struct btrfs_trans_handle *trans,
8142 			      struct btrfs_root *root,
8143 			      struct extent_buffer *eb)
8144 {
8145 	int nr = btrfs_header_nritems(eb);
8146 	int i, extent_type, ret;
8147 	struct btrfs_key key;
8148 	struct btrfs_file_extent_item *fi;
8149 	u64 bytenr, num_bytes;
8150 
8151 	/* We can be called directly from walk_up_proc() */
8152 	if (!root->fs_info->quota_enabled)
8153 		return 0;
8154 
8155 	for (i = 0; i < nr; i++) {
8156 		btrfs_item_key_to_cpu(eb, &key, i);
8157 
8158 		if (key.type != BTRFS_EXTENT_DATA_KEY)
8159 			continue;
8160 
8161 		fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
8162 		/* filter out non qgroup-accountable extents  */
8163 		extent_type = btrfs_file_extent_type(eb, fi);
8164 
8165 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
8166 			continue;
8167 
8168 		bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
8169 		if (!bytenr)
8170 			continue;
8171 
8172 		num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
8173 
8174 		ret = record_one_subtree_extent(trans, root, bytenr, num_bytes);
8175 		if (ret)
8176 			return ret;
8177 	}
8178 	return 0;
8179 }
8180 
8181 /*
8182  * Walk up the tree from the bottom, freeing leaves and any interior
8183  * nodes which have had all slots visited. If a node (leaf or
8184  * interior) is freed, the node above it will have it's slot
8185  * incremented. The root node will never be freed.
8186  *
8187  * At the end of this function, we should have a path which has all
8188  * slots incremented to the next position for a search. If we need to
8189  * read a new node it will be NULL and the node above it will have the
8190  * correct slot selected for a later read.
8191  *
8192  * If we increment the root nodes slot counter past the number of
8193  * elements, 1 is returned to signal completion of the search.
8194  */
adjust_slots_upwards(struct btrfs_root * root,struct btrfs_path * path,int root_level)8195 static int adjust_slots_upwards(struct btrfs_root *root,
8196 				struct btrfs_path *path, int root_level)
8197 {
8198 	int level = 0;
8199 	int nr, slot;
8200 	struct extent_buffer *eb;
8201 
8202 	if (root_level == 0)
8203 		return 1;
8204 
8205 	while (level <= root_level) {
8206 		eb = path->nodes[level];
8207 		nr = btrfs_header_nritems(eb);
8208 		path->slots[level]++;
8209 		slot = path->slots[level];
8210 		if (slot >= nr || level == 0) {
8211 			/*
8212 			 * Don't free the root -  we will detect this
8213 			 * condition after our loop and return a
8214 			 * positive value for caller to stop walking the tree.
8215 			 */
8216 			if (level != root_level) {
8217 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8218 				path->locks[level] = 0;
8219 
8220 				free_extent_buffer(eb);
8221 				path->nodes[level] = NULL;
8222 				path->slots[level] = 0;
8223 			}
8224 		} else {
8225 			/*
8226 			 * We have a valid slot to walk back down
8227 			 * from. Stop here so caller can process these
8228 			 * new nodes.
8229 			 */
8230 			break;
8231 		}
8232 
8233 		level++;
8234 	}
8235 
8236 	eb = path->nodes[root_level];
8237 	if (path->slots[root_level] >= btrfs_header_nritems(eb))
8238 		return 1;
8239 
8240 	return 0;
8241 }
8242 
8243 /*
8244  * root_eb is the subtree root and is locked before this function is called.
8245  */
account_shared_subtree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * root_eb,u64 root_gen,int root_level)8246 static int account_shared_subtree(struct btrfs_trans_handle *trans,
8247 				  struct btrfs_root *root,
8248 				  struct extent_buffer *root_eb,
8249 				  u64 root_gen,
8250 				  int root_level)
8251 {
8252 	int ret = 0;
8253 	int level;
8254 	struct extent_buffer *eb = root_eb;
8255 	struct btrfs_path *path = NULL;
8256 
8257 	BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
8258 	BUG_ON(root_eb == NULL);
8259 
8260 	if (!root->fs_info->quota_enabled)
8261 		return 0;
8262 
8263 	if (!extent_buffer_uptodate(root_eb)) {
8264 		ret = btrfs_read_buffer(root_eb, root_gen);
8265 		if (ret)
8266 			goto out;
8267 	}
8268 
8269 	if (root_level == 0) {
8270 		ret = account_leaf_items(trans, root, root_eb);
8271 		goto out;
8272 	}
8273 
8274 	path = btrfs_alloc_path();
8275 	if (!path)
8276 		return -ENOMEM;
8277 
8278 	/*
8279 	 * Walk down the tree.  Missing extent blocks are filled in as
8280 	 * we go. Metadata is accounted every time we read a new
8281 	 * extent block.
8282 	 *
8283 	 * When we reach a leaf, we account for file extent items in it,
8284 	 * walk back up the tree (adjusting slot pointers as we go)
8285 	 * and restart the search process.
8286 	 */
8287 	extent_buffer_get(root_eb); /* For path */
8288 	path->nodes[root_level] = root_eb;
8289 	path->slots[root_level] = 0;
8290 	path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
8291 walk_down:
8292 	level = root_level;
8293 	while (level >= 0) {
8294 		if (path->nodes[level] == NULL) {
8295 			int parent_slot;
8296 			u64 child_gen;
8297 			u64 child_bytenr;
8298 
8299 			/* We need to get child blockptr/gen from
8300 			 * parent before we can read it. */
8301 			eb = path->nodes[level + 1];
8302 			parent_slot = path->slots[level + 1];
8303 			child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8304 			child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8305 
8306 			eb = read_tree_block(root, child_bytenr, child_gen);
8307 			if (IS_ERR(eb)) {
8308 				ret = PTR_ERR(eb);
8309 				goto out;
8310 			} else if (!extent_buffer_uptodate(eb)) {
8311 				free_extent_buffer(eb);
8312 				ret = -EIO;
8313 				goto out;
8314 			}
8315 
8316 			path->nodes[level] = eb;
8317 			path->slots[level] = 0;
8318 
8319 			btrfs_tree_read_lock(eb);
8320 			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8321 			path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
8322 
8323 			ret = record_one_subtree_extent(trans, root, child_bytenr,
8324 							root->nodesize);
8325 			if (ret)
8326 				goto out;
8327 		}
8328 
8329 		if (level == 0) {
8330 			ret = account_leaf_items(trans, root, path->nodes[level]);
8331 			if (ret)
8332 				goto out;
8333 
8334 			/* Nonzero return here means we completed our search */
8335 			ret = adjust_slots_upwards(root, path, root_level);
8336 			if (ret)
8337 				break;
8338 
8339 			/* Restart search with new slots */
8340 			goto walk_down;
8341 		}
8342 
8343 		level--;
8344 	}
8345 
8346 	ret = 0;
8347 out:
8348 	btrfs_free_path(path);
8349 
8350 	return ret;
8351 }
8352 
8353 /*
8354  * helper to process tree block while walking down the tree.
8355  *
8356  * when wc->stage == UPDATE_BACKREF, this function updates
8357  * back refs for pointers in the block.
8358  *
8359  * NOTE: return value 1 means we should stop walking down.
8360  */
walk_down_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int lookup_info)8361 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8362 				   struct btrfs_root *root,
8363 				   struct btrfs_path *path,
8364 				   struct walk_control *wc, int lookup_info)
8365 {
8366 	int level = wc->level;
8367 	struct extent_buffer *eb = path->nodes[level];
8368 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8369 	int ret;
8370 
8371 	if (wc->stage == UPDATE_BACKREF &&
8372 	    btrfs_header_owner(eb) != root->root_key.objectid)
8373 		return 1;
8374 
8375 	/*
8376 	 * when reference count of tree block is 1, it won't increase
8377 	 * again. once full backref flag is set, we never clear it.
8378 	 */
8379 	if (lookup_info &&
8380 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8381 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8382 		BUG_ON(!path->locks[level]);
8383 		ret = btrfs_lookup_extent_info(trans, root,
8384 					       eb->start, level, 1,
8385 					       &wc->refs[level],
8386 					       &wc->flags[level]);
8387 		BUG_ON(ret == -ENOMEM);
8388 		if (ret)
8389 			return ret;
8390 		BUG_ON(wc->refs[level] == 0);
8391 	}
8392 
8393 	if (wc->stage == DROP_REFERENCE) {
8394 		if (wc->refs[level] > 1)
8395 			return 1;
8396 
8397 		if (path->locks[level] && !wc->keep_locks) {
8398 			btrfs_tree_unlock_rw(eb, path->locks[level]);
8399 			path->locks[level] = 0;
8400 		}
8401 		return 0;
8402 	}
8403 
8404 	/* wc->stage == UPDATE_BACKREF */
8405 	if (!(wc->flags[level] & flag)) {
8406 		BUG_ON(!path->locks[level]);
8407 		ret = btrfs_inc_ref(trans, root, eb, 1);
8408 		BUG_ON(ret); /* -ENOMEM */
8409 		ret = btrfs_dec_ref(trans, root, eb, 0);
8410 		BUG_ON(ret); /* -ENOMEM */
8411 		ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
8412 						  eb->len, flag,
8413 						  btrfs_header_level(eb), 0);
8414 		BUG_ON(ret); /* -ENOMEM */
8415 		wc->flags[level] |= flag;
8416 	}
8417 
8418 	/*
8419 	 * the block is shared by multiple trees, so it's not good to
8420 	 * keep the tree lock
8421 	 */
8422 	if (path->locks[level] && level > 0) {
8423 		btrfs_tree_unlock_rw(eb, path->locks[level]);
8424 		path->locks[level] = 0;
8425 	}
8426 	return 0;
8427 }
8428 
8429 /*
8430  * helper to process tree block pointer.
8431  *
8432  * when wc->stage == DROP_REFERENCE, this function checks
8433  * reference count of the block pointed to. if the block
8434  * is shared and we need update back refs for the subtree
8435  * rooted at the block, this function changes wc->stage to
8436  * UPDATE_BACKREF. if the block is shared and there is no
8437  * need to update back, this function drops the reference
8438  * to the block.
8439  *
8440  * NOTE: return value 1 means we should stop walking down.
8441  */
do_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int * lookup_info)8442 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8443 				 struct btrfs_root *root,
8444 				 struct btrfs_path *path,
8445 				 struct walk_control *wc, int *lookup_info)
8446 {
8447 	u64 bytenr;
8448 	u64 generation;
8449 	u64 parent;
8450 	u32 blocksize;
8451 	struct btrfs_key key;
8452 	struct extent_buffer *next;
8453 	int level = wc->level;
8454 	int reada = 0;
8455 	int ret = 0;
8456 	bool need_account = false;
8457 
8458 	generation = btrfs_node_ptr_generation(path->nodes[level],
8459 					       path->slots[level]);
8460 	/*
8461 	 * if the lower level block was created before the snapshot
8462 	 * was created, we know there is no need to update back refs
8463 	 * for the subtree
8464 	 */
8465 	if (wc->stage == UPDATE_BACKREF &&
8466 	    generation <= root->root_key.offset) {
8467 		*lookup_info = 1;
8468 		return 1;
8469 	}
8470 
8471 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8472 	blocksize = root->nodesize;
8473 
8474 	next = btrfs_find_tree_block(root->fs_info, bytenr);
8475 	if (!next) {
8476 		next = btrfs_find_create_tree_block(root, bytenr);
8477 		if (!next)
8478 			return -ENOMEM;
8479 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8480 					       level - 1);
8481 		reada = 1;
8482 	}
8483 	btrfs_tree_lock(next);
8484 	btrfs_set_lock_blocking(next);
8485 
8486 	ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
8487 				       &wc->refs[level - 1],
8488 				       &wc->flags[level - 1]);
8489 	if (ret < 0) {
8490 		btrfs_tree_unlock(next);
8491 		return ret;
8492 	}
8493 
8494 	if (unlikely(wc->refs[level - 1] == 0)) {
8495 		btrfs_err(root->fs_info, "Missing references.");
8496 		BUG();
8497 	}
8498 	*lookup_info = 0;
8499 
8500 	if (wc->stage == DROP_REFERENCE) {
8501 		if (wc->refs[level - 1] > 1) {
8502 			need_account = true;
8503 			if (level == 1 &&
8504 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8505 				goto skip;
8506 
8507 			if (!wc->update_ref ||
8508 			    generation <= root->root_key.offset)
8509 				goto skip;
8510 
8511 			btrfs_node_key_to_cpu(path->nodes[level], &key,
8512 					      path->slots[level]);
8513 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8514 			if (ret < 0)
8515 				goto skip;
8516 
8517 			wc->stage = UPDATE_BACKREF;
8518 			wc->shared_level = level - 1;
8519 		}
8520 	} else {
8521 		if (level == 1 &&
8522 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8523 			goto skip;
8524 	}
8525 
8526 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
8527 		btrfs_tree_unlock(next);
8528 		free_extent_buffer(next);
8529 		next = NULL;
8530 		*lookup_info = 1;
8531 	}
8532 
8533 	if (!next) {
8534 		if (reada && level == 1)
8535 			reada_walk_down(trans, root, wc, path);
8536 		next = read_tree_block(root, bytenr, generation);
8537 		if (IS_ERR(next)) {
8538 			return PTR_ERR(next);
8539 		} else if (!extent_buffer_uptodate(next)) {
8540 			free_extent_buffer(next);
8541 			return -EIO;
8542 		}
8543 		btrfs_tree_lock(next);
8544 		btrfs_set_lock_blocking(next);
8545 	}
8546 
8547 	level--;
8548 	BUG_ON(level != btrfs_header_level(next));
8549 	path->nodes[level] = next;
8550 	path->slots[level] = 0;
8551 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8552 	wc->level = level;
8553 	if (wc->level == 1)
8554 		wc->reada_slot = 0;
8555 	return 0;
8556 skip:
8557 	wc->refs[level - 1] = 0;
8558 	wc->flags[level - 1] = 0;
8559 	if (wc->stage == DROP_REFERENCE) {
8560 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8561 			parent = path->nodes[level]->start;
8562 		} else {
8563 			BUG_ON(root->root_key.objectid !=
8564 			       btrfs_header_owner(path->nodes[level]));
8565 			parent = 0;
8566 		}
8567 
8568 		if (need_account) {
8569 			ret = account_shared_subtree(trans, root, next,
8570 						     generation, level - 1);
8571 			if (ret) {
8572 				btrfs_err_rl(root->fs_info,
8573 					"Error "
8574 					"%d accounting shared subtree. Quota "
8575 					"is out of sync, rescan required.",
8576 					ret);
8577 			}
8578 		}
8579 		ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
8580 				root->root_key.objectid, level - 1, 0);
8581 		BUG_ON(ret); /* -ENOMEM */
8582 	}
8583 	btrfs_tree_unlock(next);
8584 	free_extent_buffer(next);
8585 	*lookup_info = 1;
8586 	return 1;
8587 }
8588 
8589 /*
8590  * helper to process tree block while walking up the tree.
8591  *
8592  * when wc->stage == DROP_REFERENCE, this function drops
8593  * reference count on the block.
8594  *
8595  * when wc->stage == UPDATE_BACKREF, this function changes
8596  * wc->stage back to DROP_REFERENCE if we changed wc->stage
8597  * to UPDATE_BACKREF previously while processing the block.
8598  *
8599  * NOTE: return value 1 means we should stop walking up.
8600  */
walk_up_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)8601 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8602 				 struct btrfs_root *root,
8603 				 struct btrfs_path *path,
8604 				 struct walk_control *wc)
8605 {
8606 	int ret;
8607 	int level = wc->level;
8608 	struct extent_buffer *eb = path->nodes[level];
8609 	u64 parent = 0;
8610 
8611 	if (wc->stage == UPDATE_BACKREF) {
8612 		BUG_ON(wc->shared_level < level);
8613 		if (level < wc->shared_level)
8614 			goto out;
8615 
8616 		ret = find_next_key(path, level + 1, &wc->update_progress);
8617 		if (ret > 0)
8618 			wc->update_ref = 0;
8619 
8620 		wc->stage = DROP_REFERENCE;
8621 		wc->shared_level = -1;
8622 		path->slots[level] = 0;
8623 
8624 		/*
8625 		 * check reference count again if the block isn't locked.
8626 		 * we should start walking down the tree again if reference
8627 		 * count is one.
8628 		 */
8629 		if (!path->locks[level]) {
8630 			BUG_ON(level == 0);
8631 			btrfs_tree_lock(eb);
8632 			btrfs_set_lock_blocking(eb);
8633 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8634 
8635 			ret = btrfs_lookup_extent_info(trans, root,
8636 						       eb->start, level, 1,
8637 						       &wc->refs[level],
8638 						       &wc->flags[level]);
8639 			if (ret < 0) {
8640 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8641 				path->locks[level] = 0;
8642 				return ret;
8643 			}
8644 			BUG_ON(wc->refs[level] == 0);
8645 			if (wc->refs[level] == 1) {
8646 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8647 				path->locks[level] = 0;
8648 				return 1;
8649 			}
8650 		}
8651 	}
8652 
8653 	/* wc->stage == DROP_REFERENCE */
8654 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8655 
8656 	if (wc->refs[level] == 1) {
8657 		if (level == 0) {
8658 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8659 				ret = btrfs_dec_ref(trans, root, eb, 1);
8660 			else
8661 				ret = btrfs_dec_ref(trans, root, eb, 0);
8662 			BUG_ON(ret); /* -ENOMEM */
8663 			ret = account_leaf_items(trans, root, eb);
8664 			if (ret) {
8665 				btrfs_err_rl(root->fs_info,
8666 					"error "
8667 					"%d accounting leaf items. Quota "
8668 					"is out of sync, rescan required.",
8669 					ret);
8670 			}
8671 		}
8672 		/* make block locked assertion in clean_tree_block happy */
8673 		if (!path->locks[level] &&
8674 		    btrfs_header_generation(eb) == trans->transid) {
8675 			btrfs_tree_lock(eb);
8676 			btrfs_set_lock_blocking(eb);
8677 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8678 		}
8679 		clean_tree_block(trans, root->fs_info, eb);
8680 	}
8681 
8682 	if (eb == root->node) {
8683 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8684 			parent = eb->start;
8685 		else
8686 			BUG_ON(root->root_key.objectid !=
8687 			       btrfs_header_owner(eb));
8688 	} else {
8689 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8690 			parent = path->nodes[level + 1]->start;
8691 		else
8692 			BUG_ON(root->root_key.objectid !=
8693 			       btrfs_header_owner(path->nodes[level + 1]));
8694 	}
8695 
8696 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8697 out:
8698 	wc->refs[level] = 0;
8699 	wc->flags[level] = 0;
8700 	return 0;
8701 }
8702 
walk_down_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)8703 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8704 				   struct btrfs_root *root,
8705 				   struct btrfs_path *path,
8706 				   struct walk_control *wc)
8707 {
8708 	int level = wc->level;
8709 	int lookup_info = 1;
8710 	int ret;
8711 
8712 	while (level >= 0) {
8713 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
8714 		if (ret > 0)
8715 			break;
8716 
8717 		if (level == 0)
8718 			break;
8719 
8720 		if (path->slots[level] >=
8721 		    btrfs_header_nritems(path->nodes[level]))
8722 			break;
8723 
8724 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
8725 		if (ret > 0) {
8726 			path->slots[level]++;
8727 			continue;
8728 		} else if (ret < 0)
8729 			return ret;
8730 		level = wc->level;
8731 	}
8732 	return 0;
8733 }
8734 
walk_up_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int max_level)8735 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8736 				 struct btrfs_root *root,
8737 				 struct btrfs_path *path,
8738 				 struct walk_control *wc, int max_level)
8739 {
8740 	int level = wc->level;
8741 	int ret;
8742 
8743 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8744 	while (level < max_level && path->nodes[level]) {
8745 		wc->level = level;
8746 		if (path->slots[level] + 1 <
8747 		    btrfs_header_nritems(path->nodes[level])) {
8748 			path->slots[level]++;
8749 			return 0;
8750 		} else {
8751 			ret = walk_up_proc(trans, root, path, wc);
8752 			if (ret > 0)
8753 				return 0;
8754 
8755 			if (path->locks[level]) {
8756 				btrfs_tree_unlock_rw(path->nodes[level],
8757 						     path->locks[level]);
8758 				path->locks[level] = 0;
8759 			}
8760 			free_extent_buffer(path->nodes[level]);
8761 			path->nodes[level] = NULL;
8762 			level++;
8763 		}
8764 	}
8765 	return 1;
8766 }
8767 
8768 /*
8769  * drop a subvolume tree.
8770  *
8771  * this function traverses the tree freeing any blocks that only
8772  * referenced by the tree.
8773  *
8774  * when a shared tree block is found. this function decreases its
8775  * reference count by one. if update_ref is true, this function
8776  * also make sure backrefs for the shared block and all lower level
8777  * blocks are properly updated.
8778  *
8779  * If called with for_reloc == 0, may exit early with -EAGAIN
8780  */
btrfs_drop_snapshot(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,int update_ref,int for_reloc)8781 int btrfs_drop_snapshot(struct btrfs_root *root,
8782 			 struct btrfs_block_rsv *block_rsv, int update_ref,
8783 			 int for_reloc)
8784 {
8785 	struct btrfs_path *path;
8786 	struct btrfs_trans_handle *trans;
8787 	struct btrfs_root *tree_root = root->fs_info->tree_root;
8788 	struct btrfs_root_item *root_item = &root->root_item;
8789 	struct walk_control *wc;
8790 	struct btrfs_key key;
8791 	int err = 0;
8792 	int ret;
8793 	int level;
8794 	bool root_dropped = false;
8795 
8796 	btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8797 
8798 	path = btrfs_alloc_path();
8799 	if (!path) {
8800 		err = -ENOMEM;
8801 		goto out;
8802 	}
8803 
8804 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
8805 	if (!wc) {
8806 		btrfs_free_path(path);
8807 		err = -ENOMEM;
8808 		goto out;
8809 	}
8810 
8811 	trans = btrfs_start_transaction(tree_root, 0);
8812 	if (IS_ERR(trans)) {
8813 		err = PTR_ERR(trans);
8814 		goto out_free;
8815 	}
8816 
8817 	if (block_rsv)
8818 		trans->block_rsv = block_rsv;
8819 
8820 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8821 		level = btrfs_header_level(root->node);
8822 		path->nodes[level] = btrfs_lock_root_node(root);
8823 		btrfs_set_lock_blocking(path->nodes[level]);
8824 		path->slots[level] = 0;
8825 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8826 		memset(&wc->update_progress, 0,
8827 		       sizeof(wc->update_progress));
8828 	} else {
8829 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8830 		memcpy(&wc->update_progress, &key,
8831 		       sizeof(wc->update_progress));
8832 
8833 		level = root_item->drop_level;
8834 		BUG_ON(level == 0);
8835 		path->lowest_level = level;
8836 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8837 		path->lowest_level = 0;
8838 		if (ret < 0) {
8839 			err = ret;
8840 			goto out_end_trans;
8841 		}
8842 		WARN_ON(ret > 0);
8843 
8844 		/*
8845 		 * unlock our path, this is safe because only this
8846 		 * function is allowed to delete this snapshot
8847 		 */
8848 		btrfs_unlock_up_safe(path, 0);
8849 
8850 		level = btrfs_header_level(root->node);
8851 		while (1) {
8852 			btrfs_tree_lock(path->nodes[level]);
8853 			btrfs_set_lock_blocking(path->nodes[level]);
8854 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8855 
8856 			ret = btrfs_lookup_extent_info(trans, root,
8857 						path->nodes[level]->start,
8858 						level, 1, &wc->refs[level],
8859 						&wc->flags[level]);
8860 			if (ret < 0) {
8861 				err = ret;
8862 				goto out_end_trans;
8863 			}
8864 			BUG_ON(wc->refs[level] == 0);
8865 
8866 			if (level == root_item->drop_level)
8867 				break;
8868 
8869 			btrfs_tree_unlock(path->nodes[level]);
8870 			path->locks[level] = 0;
8871 			WARN_ON(wc->refs[level] != 1);
8872 			level--;
8873 		}
8874 	}
8875 
8876 	wc->level = level;
8877 	wc->shared_level = -1;
8878 	wc->stage = DROP_REFERENCE;
8879 	wc->update_ref = update_ref;
8880 	wc->keep_locks = 0;
8881 	wc->for_reloc = for_reloc;
8882 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8883 
8884 	while (1) {
8885 
8886 		ret = walk_down_tree(trans, root, path, wc);
8887 		if (ret < 0) {
8888 			err = ret;
8889 			break;
8890 		}
8891 
8892 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8893 		if (ret < 0) {
8894 			err = ret;
8895 			break;
8896 		}
8897 
8898 		if (ret > 0) {
8899 			BUG_ON(wc->stage != DROP_REFERENCE);
8900 			break;
8901 		}
8902 
8903 		if (wc->stage == DROP_REFERENCE) {
8904 			level = wc->level;
8905 			btrfs_node_key(path->nodes[level],
8906 				       &root_item->drop_progress,
8907 				       path->slots[level]);
8908 			root_item->drop_level = level;
8909 		}
8910 
8911 		BUG_ON(wc->level == 0);
8912 		if (btrfs_should_end_transaction(trans, tree_root) ||
8913 		    (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8914 			ret = btrfs_update_root(trans, tree_root,
8915 						&root->root_key,
8916 						root_item);
8917 			if (ret) {
8918 				btrfs_abort_transaction(trans, tree_root, ret);
8919 				err = ret;
8920 				goto out_end_trans;
8921 			}
8922 
8923 			btrfs_end_transaction_throttle(trans, tree_root);
8924 			if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8925 				pr_debug("BTRFS: drop snapshot early exit\n");
8926 				err = -EAGAIN;
8927 				goto out_free;
8928 			}
8929 
8930 			trans = btrfs_start_transaction(tree_root, 0);
8931 			if (IS_ERR(trans)) {
8932 				err = PTR_ERR(trans);
8933 				goto out_free;
8934 			}
8935 			if (block_rsv)
8936 				trans->block_rsv = block_rsv;
8937 		}
8938 	}
8939 	btrfs_release_path(path);
8940 	if (err)
8941 		goto out_end_trans;
8942 
8943 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
8944 	if (ret) {
8945 		btrfs_abort_transaction(trans, tree_root, ret);
8946 		goto out_end_trans;
8947 	}
8948 
8949 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
8950 		ret = btrfs_find_root(tree_root, &root->root_key, path,
8951 				      NULL, NULL);
8952 		if (ret < 0) {
8953 			btrfs_abort_transaction(trans, tree_root, ret);
8954 			err = ret;
8955 			goto out_end_trans;
8956 		} else if (ret > 0) {
8957 			/* if we fail to delete the orphan item this time
8958 			 * around, it'll get picked up the next time.
8959 			 *
8960 			 * The most common failure here is just -ENOENT.
8961 			 */
8962 			btrfs_del_orphan_item(trans, tree_root,
8963 					      root->root_key.objectid);
8964 		}
8965 	}
8966 
8967 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
8968 		btrfs_add_dropped_root(trans, root);
8969 	} else {
8970 		free_extent_buffer(root->node);
8971 		free_extent_buffer(root->commit_root);
8972 		btrfs_put_fs_root(root);
8973 	}
8974 	root_dropped = true;
8975 out_end_trans:
8976 	btrfs_end_transaction_throttle(trans, tree_root);
8977 out_free:
8978 	kfree(wc);
8979 	btrfs_free_path(path);
8980 out:
8981 	/*
8982 	 * So if we need to stop dropping the snapshot for whatever reason we
8983 	 * need to make sure to add it back to the dead root list so that we
8984 	 * keep trying to do the work later.  This also cleans up roots if we
8985 	 * don't have it in the radix (like when we recover after a power fail
8986 	 * or unmount) so we don't leak memory.
8987 	 */
8988 	if (!for_reloc && root_dropped == false)
8989 		btrfs_add_dead_root(root);
8990 	if (err && err != -EAGAIN)
8991 		btrfs_std_error(root->fs_info, err, NULL);
8992 	return err;
8993 }
8994 
8995 /*
8996  * drop subtree rooted at tree block 'node'.
8997  *
8998  * NOTE: this function will unlock and release tree block 'node'
8999  * only used by relocation code
9000  */
btrfs_drop_subtree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * node,struct extent_buffer * parent)9001 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9002 			struct btrfs_root *root,
9003 			struct extent_buffer *node,
9004 			struct extent_buffer *parent)
9005 {
9006 	struct btrfs_path *path;
9007 	struct walk_control *wc;
9008 	int level;
9009 	int parent_level;
9010 	int ret = 0;
9011 	int wret;
9012 
9013 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9014 
9015 	path = btrfs_alloc_path();
9016 	if (!path)
9017 		return -ENOMEM;
9018 
9019 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
9020 	if (!wc) {
9021 		btrfs_free_path(path);
9022 		return -ENOMEM;
9023 	}
9024 
9025 	btrfs_assert_tree_locked(parent);
9026 	parent_level = btrfs_header_level(parent);
9027 	extent_buffer_get(parent);
9028 	path->nodes[parent_level] = parent;
9029 	path->slots[parent_level] = btrfs_header_nritems(parent);
9030 
9031 	btrfs_assert_tree_locked(node);
9032 	level = btrfs_header_level(node);
9033 	path->nodes[level] = node;
9034 	path->slots[level] = 0;
9035 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9036 
9037 	wc->refs[parent_level] = 1;
9038 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9039 	wc->level = level;
9040 	wc->shared_level = -1;
9041 	wc->stage = DROP_REFERENCE;
9042 	wc->update_ref = 0;
9043 	wc->keep_locks = 1;
9044 	wc->for_reloc = 1;
9045 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
9046 
9047 	while (1) {
9048 		wret = walk_down_tree(trans, root, path, wc);
9049 		if (wret < 0) {
9050 			ret = wret;
9051 			break;
9052 		}
9053 
9054 		wret = walk_up_tree(trans, root, path, wc, parent_level);
9055 		if (wret < 0)
9056 			ret = wret;
9057 		if (wret != 0)
9058 			break;
9059 	}
9060 
9061 	kfree(wc);
9062 	btrfs_free_path(path);
9063 	return ret;
9064 }
9065 
update_block_group_flags(struct btrfs_root * root,u64 flags)9066 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
9067 {
9068 	u64 num_devices;
9069 	u64 stripped;
9070 
9071 	/*
9072 	 * if restripe for this chunk_type is on pick target profile and
9073 	 * return, otherwise do the usual balance
9074 	 */
9075 	stripped = get_restripe_target(root->fs_info, flags);
9076 	if (stripped)
9077 		return extended_to_chunk(stripped);
9078 
9079 	num_devices = root->fs_info->fs_devices->rw_devices;
9080 
9081 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
9082 		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9083 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9084 
9085 	if (num_devices == 1) {
9086 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9087 		stripped = flags & ~stripped;
9088 
9089 		/* turn raid0 into single device chunks */
9090 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
9091 			return stripped;
9092 
9093 		/* turn mirroring into duplication */
9094 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9095 			     BTRFS_BLOCK_GROUP_RAID10))
9096 			return stripped | BTRFS_BLOCK_GROUP_DUP;
9097 	} else {
9098 		/* they already had raid on here, just return */
9099 		if (flags & stripped)
9100 			return flags;
9101 
9102 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9103 		stripped = flags & ~stripped;
9104 
9105 		/* switch duplicated blocks with raid1 */
9106 		if (flags & BTRFS_BLOCK_GROUP_DUP)
9107 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
9108 
9109 		/* this is drive concat, leave it alone */
9110 	}
9111 
9112 	return flags;
9113 }
9114 
inc_block_group_ro(struct btrfs_block_group_cache * cache,int force)9115 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9116 {
9117 	struct btrfs_space_info *sinfo = cache->space_info;
9118 	u64 num_bytes;
9119 	u64 min_allocable_bytes;
9120 	int ret = -ENOSPC;
9121 
9122 	/*
9123 	 * We need some metadata space and system metadata space for
9124 	 * allocating chunks in some corner cases until we force to set
9125 	 * it to be readonly.
9126 	 */
9127 	if ((sinfo->flags &
9128 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9129 	    !force)
9130 		min_allocable_bytes = 1 * 1024 * 1024;
9131 	else
9132 		min_allocable_bytes = 0;
9133 
9134 	spin_lock(&sinfo->lock);
9135 	spin_lock(&cache->lock);
9136 
9137 	if (cache->ro) {
9138 		cache->ro++;
9139 		ret = 0;
9140 		goto out;
9141 	}
9142 
9143 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9144 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
9145 
9146 	if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
9147 	    sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
9148 	    min_allocable_bytes <= sinfo->total_bytes) {
9149 		sinfo->bytes_readonly += num_bytes;
9150 		cache->ro++;
9151 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9152 		ret = 0;
9153 	}
9154 out:
9155 	spin_unlock(&cache->lock);
9156 	spin_unlock(&sinfo->lock);
9157 	return ret;
9158 }
9159 
btrfs_inc_block_group_ro(struct btrfs_root * root,struct btrfs_block_group_cache * cache)9160 int btrfs_inc_block_group_ro(struct btrfs_root *root,
9161 			     struct btrfs_block_group_cache *cache)
9162 
9163 {
9164 	struct btrfs_trans_handle *trans;
9165 	u64 alloc_flags;
9166 	int ret;
9167 
9168 again:
9169 	trans = btrfs_join_transaction(root);
9170 	if (IS_ERR(trans))
9171 		return PTR_ERR(trans);
9172 
9173 	/*
9174 	 * we're not allowed to set block groups readonly after the dirty
9175 	 * block groups cache has started writing.  If it already started,
9176 	 * back off and let this transaction commit
9177 	 */
9178 	mutex_lock(&root->fs_info->ro_block_group_mutex);
9179 	if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9180 		u64 transid = trans->transid;
9181 
9182 		mutex_unlock(&root->fs_info->ro_block_group_mutex);
9183 		btrfs_end_transaction(trans, root);
9184 
9185 		ret = btrfs_wait_for_commit(root, transid);
9186 		if (ret)
9187 			return ret;
9188 		goto again;
9189 	}
9190 
9191 	/*
9192 	 * if we are changing raid levels, try to allocate a corresponding
9193 	 * block group with the new raid level.
9194 	 */
9195 	alloc_flags = update_block_group_flags(root, cache->flags);
9196 	if (alloc_flags != cache->flags) {
9197 		ret = do_chunk_alloc(trans, root, alloc_flags,
9198 				     CHUNK_ALLOC_FORCE);
9199 		/*
9200 		 * ENOSPC is allowed here, we may have enough space
9201 		 * already allocated at the new raid level to
9202 		 * carry on
9203 		 */
9204 		if (ret == -ENOSPC)
9205 			ret = 0;
9206 		if (ret < 0)
9207 			goto out;
9208 	}
9209 
9210 	ret = inc_block_group_ro(cache, 0);
9211 	if (!ret)
9212 		goto out;
9213 	alloc_flags = get_alloc_profile(root, cache->space_info->flags);
9214 	ret = do_chunk_alloc(trans, root, alloc_flags,
9215 			     CHUNK_ALLOC_FORCE);
9216 	if (ret < 0)
9217 		goto out;
9218 	ret = inc_block_group_ro(cache, 0);
9219 out:
9220 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9221 		alloc_flags = update_block_group_flags(root, cache->flags);
9222 		lock_chunks(root->fs_info->chunk_root);
9223 		check_system_chunk(trans, root, alloc_flags);
9224 		unlock_chunks(root->fs_info->chunk_root);
9225 	}
9226 	mutex_unlock(&root->fs_info->ro_block_group_mutex);
9227 
9228 	btrfs_end_transaction(trans, root);
9229 	return ret;
9230 }
9231 
btrfs_force_chunk_alloc(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 type)9232 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9233 			    struct btrfs_root *root, u64 type)
9234 {
9235 	u64 alloc_flags = get_alloc_profile(root, type);
9236 	return do_chunk_alloc(trans, root, alloc_flags,
9237 			      CHUNK_ALLOC_FORCE);
9238 }
9239 
9240 /*
9241  * helper to account the unused space of all the readonly block group in the
9242  * space_info. takes mirrors into account.
9243  */
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info * sinfo)9244 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9245 {
9246 	struct btrfs_block_group_cache *block_group;
9247 	u64 free_bytes = 0;
9248 	int factor;
9249 
9250 	/* It's df, we don't care if it's racey */
9251 	if (list_empty(&sinfo->ro_bgs))
9252 		return 0;
9253 
9254 	spin_lock(&sinfo->lock);
9255 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9256 		spin_lock(&block_group->lock);
9257 
9258 		if (!block_group->ro) {
9259 			spin_unlock(&block_group->lock);
9260 			continue;
9261 		}
9262 
9263 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9264 					  BTRFS_BLOCK_GROUP_RAID10 |
9265 					  BTRFS_BLOCK_GROUP_DUP))
9266 			factor = 2;
9267 		else
9268 			factor = 1;
9269 
9270 		free_bytes += (block_group->key.offset -
9271 			       btrfs_block_group_used(&block_group->item)) *
9272 			       factor;
9273 
9274 		spin_unlock(&block_group->lock);
9275 	}
9276 	spin_unlock(&sinfo->lock);
9277 
9278 	return free_bytes;
9279 }
9280 
btrfs_dec_block_group_ro(struct btrfs_root * root,struct btrfs_block_group_cache * cache)9281 void btrfs_dec_block_group_ro(struct btrfs_root *root,
9282 			      struct btrfs_block_group_cache *cache)
9283 {
9284 	struct btrfs_space_info *sinfo = cache->space_info;
9285 	u64 num_bytes;
9286 
9287 	BUG_ON(!cache->ro);
9288 
9289 	spin_lock(&sinfo->lock);
9290 	spin_lock(&cache->lock);
9291 	if (!--cache->ro) {
9292 		num_bytes = cache->key.offset - cache->reserved -
9293 			    cache->pinned - cache->bytes_super -
9294 			    btrfs_block_group_used(&cache->item);
9295 		sinfo->bytes_readonly -= num_bytes;
9296 		list_del_init(&cache->ro_list);
9297 	}
9298 	spin_unlock(&cache->lock);
9299 	spin_unlock(&sinfo->lock);
9300 }
9301 
9302 /*
9303  * checks to see if its even possible to relocate this block group.
9304  *
9305  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9306  * ok to go ahead and try.
9307  */
btrfs_can_relocate(struct btrfs_root * root,u64 bytenr)9308 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
9309 {
9310 	struct btrfs_block_group_cache *block_group;
9311 	struct btrfs_space_info *space_info;
9312 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9313 	struct btrfs_device *device;
9314 	struct btrfs_trans_handle *trans;
9315 	u64 min_free;
9316 	u64 dev_min = 1;
9317 	u64 dev_nr = 0;
9318 	u64 target;
9319 	int index;
9320 	int full = 0;
9321 	int ret = 0;
9322 
9323 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
9324 
9325 	/* odd, couldn't find the block group, leave it alone */
9326 	if (!block_group)
9327 		return -1;
9328 
9329 	min_free = btrfs_block_group_used(&block_group->item);
9330 
9331 	/* no bytes used, we're good */
9332 	if (!min_free)
9333 		goto out;
9334 
9335 	space_info = block_group->space_info;
9336 	spin_lock(&space_info->lock);
9337 
9338 	full = space_info->full;
9339 
9340 	/*
9341 	 * if this is the last block group we have in this space, we can't
9342 	 * relocate it unless we're able to allocate a new chunk below.
9343 	 *
9344 	 * Otherwise, we need to make sure we have room in the space to handle
9345 	 * all of the extents from this block group.  If we can, we're good
9346 	 */
9347 	if ((space_info->total_bytes != block_group->key.offset) &&
9348 	    (space_info->bytes_used + space_info->bytes_reserved +
9349 	     space_info->bytes_pinned + space_info->bytes_readonly +
9350 	     min_free < space_info->total_bytes)) {
9351 		spin_unlock(&space_info->lock);
9352 		goto out;
9353 	}
9354 	spin_unlock(&space_info->lock);
9355 
9356 	/*
9357 	 * ok we don't have enough space, but maybe we have free space on our
9358 	 * devices to allocate new chunks for relocation, so loop through our
9359 	 * alloc devices and guess if we have enough space.  if this block
9360 	 * group is going to be restriped, run checks against the target
9361 	 * profile instead of the current one.
9362 	 */
9363 	ret = -1;
9364 
9365 	/*
9366 	 * index:
9367 	 *      0: raid10
9368 	 *      1: raid1
9369 	 *      2: dup
9370 	 *      3: raid0
9371 	 *      4: single
9372 	 */
9373 	target = get_restripe_target(root->fs_info, block_group->flags);
9374 	if (target) {
9375 		index = __get_raid_index(extended_to_chunk(target));
9376 	} else {
9377 		/*
9378 		 * this is just a balance, so if we were marked as full
9379 		 * we know there is no space for a new chunk
9380 		 */
9381 		if (full)
9382 			goto out;
9383 
9384 		index = get_block_group_index(block_group);
9385 	}
9386 
9387 	if (index == BTRFS_RAID_RAID10) {
9388 		dev_min = 4;
9389 		/* Divide by 2 */
9390 		min_free >>= 1;
9391 	} else if (index == BTRFS_RAID_RAID1) {
9392 		dev_min = 2;
9393 	} else if (index == BTRFS_RAID_DUP) {
9394 		/* Multiply by 2 */
9395 		min_free <<= 1;
9396 	} else if (index == BTRFS_RAID_RAID0) {
9397 		dev_min = fs_devices->rw_devices;
9398 		min_free = div64_u64(min_free, dev_min);
9399 	}
9400 
9401 	/* We need to do this so that we can look at pending chunks */
9402 	trans = btrfs_join_transaction(root);
9403 	if (IS_ERR(trans)) {
9404 		ret = PTR_ERR(trans);
9405 		goto out;
9406 	}
9407 
9408 	mutex_lock(&root->fs_info->chunk_mutex);
9409 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9410 		u64 dev_offset;
9411 
9412 		/*
9413 		 * check to make sure we can actually find a chunk with enough
9414 		 * space to fit our block group in.
9415 		 */
9416 		if (device->total_bytes > device->bytes_used + min_free &&
9417 		    !device->is_tgtdev_for_dev_replace) {
9418 			ret = find_free_dev_extent(trans, device, min_free,
9419 						   &dev_offset, NULL);
9420 			if (!ret)
9421 				dev_nr++;
9422 
9423 			if (dev_nr >= dev_min)
9424 				break;
9425 
9426 			ret = -1;
9427 		}
9428 	}
9429 	mutex_unlock(&root->fs_info->chunk_mutex);
9430 	btrfs_end_transaction(trans, root);
9431 out:
9432 	btrfs_put_block_group(block_group);
9433 	return ret;
9434 }
9435 
find_first_block_group(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key)9436 static int find_first_block_group(struct btrfs_root *root,
9437 		struct btrfs_path *path, struct btrfs_key *key)
9438 {
9439 	int ret = 0;
9440 	struct btrfs_key found_key;
9441 	struct extent_buffer *leaf;
9442 	int slot;
9443 
9444 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9445 	if (ret < 0)
9446 		goto out;
9447 
9448 	while (1) {
9449 		slot = path->slots[0];
9450 		leaf = path->nodes[0];
9451 		if (slot >= btrfs_header_nritems(leaf)) {
9452 			ret = btrfs_next_leaf(root, path);
9453 			if (ret == 0)
9454 				continue;
9455 			if (ret < 0)
9456 				goto out;
9457 			break;
9458 		}
9459 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
9460 
9461 		if (found_key.objectid >= key->objectid &&
9462 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9463 			ret = 0;
9464 			goto out;
9465 		}
9466 		path->slots[0]++;
9467 	}
9468 out:
9469 	return ret;
9470 }
9471 
btrfs_put_block_group_cache(struct btrfs_fs_info * info)9472 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9473 {
9474 	struct btrfs_block_group_cache *block_group;
9475 	u64 last = 0;
9476 
9477 	while (1) {
9478 		struct inode *inode;
9479 
9480 		block_group = btrfs_lookup_first_block_group(info, last);
9481 		while (block_group) {
9482 			spin_lock(&block_group->lock);
9483 			if (block_group->iref)
9484 				break;
9485 			spin_unlock(&block_group->lock);
9486 			block_group = next_block_group(info->tree_root,
9487 						       block_group);
9488 		}
9489 		if (!block_group) {
9490 			if (last == 0)
9491 				break;
9492 			last = 0;
9493 			continue;
9494 		}
9495 
9496 		inode = block_group->inode;
9497 		block_group->iref = 0;
9498 		block_group->inode = NULL;
9499 		spin_unlock(&block_group->lock);
9500 		iput(inode);
9501 		last = block_group->key.objectid + block_group->key.offset;
9502 		btrfs_put_block_group(block_group);
9503 	}
9504 }
9505 
btrfs_free_block_groups(struct btrfs_fs_info * info)9506 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9507 {
9508 	struct btrfs_block_group_cache *block_group;
9509 	struct btrfs_space_info *space_info;
9510 	struct btrfs_caching_control *caching_ctl;
9511 	struct rb_node *n;
9512 
9513 	down_write(&info->commit_root_sem);
9514 	while (!list_empty(&info->caching_block_groups)) {
9515 		caching_ctl = list_entry(info->caching_block_groups.next,
9516 					 struct btrfs_caching_control, list);
9517 		list_del(&caching_ctl->list);
9518 		put_caching_control(caching_ctl);
9519 	}
9520 	up_write(&info->commit_root_sem);
9521 
9522 	spin_lock(&info->unused_bgs_lock);
9523 	while (!list_empty(&info->unused_bgs)) {
9524 		block_group = list_first_entry(&info->unused_bgs,
9525 					       struct btrfs_block_group_cache,
9526 					       bg_list);
9527 		list_del_init(&block_group->bg_list);
9528 		btrfs_put_block_group(block_group);
9529 	}
9530 	spin_unlock(&info->unused_bgs_lock);
9531 
9532 	spin_lock(&info->block_group_cache_lock);
9533 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9534 		block_group = rb_entry(n, struct btrfs_block_group_cache,
9535 				       cache_node);
9536 		rb_erase(&block_group->cache_node,
9537 			 &info->block_group_cache_tree);
9538 		RB_CLEAR_NODE(&block_group->cache_node);
9539 		spin_unlock(&info->block_group_cache_lock);
9540 
9541 		down_write(&block_group->space_info->groups_sem);
9542 		list_del(&block_group->list);
9543 		up_write(&block_group->space_info->groups_sem);
9544 
9545 		if (block_group->cached == BTRFS_CACHE_STARTED)
9546 			wait_block_group_cache_done(block_group);
9547 
9548 		/*
9549 		 * We haven't cached this block group, which means we could
9550 		 * possibly have excluded extents on this block group.
9551 		 */
9552 		if (block_group->cached == BTRFS_CACHE_NO ||
9553 		    block_group->cached == BTRFS_CACHE_ERROR)
9554 			free_excluded_extents(info->extent_root, block_group);
9555 
9556 		btrfs_remove_free_space_cache(block_group);
9557 		btrfs_put_block_group(block_group);
9558 
9559 		spin_lock(&info->block_group_cache_lock);
9560 	}
9561 	spin_unlock(&info->block_group_cache_lock);
9562 
9563 	/* now that all the block groups are freed, go through and
9564 	 * free all the space_info structs.  This is only called during
9565 	 * the final stages of unmount, and so we know nobody is
9566 	 * using them.  We call synchronize_rcu() once before we start,
9567 	 * just to be on the safe side.
9568 	 */
9569 	synchronize_rcu();
9570 
9571 	release_global_block_rsv(info);
9572 
9573 	while (!list_empty(&info->space_info)) {
9574 		int i;
9575 
9576 		space_info = list_entry(info->space_info.next,
9577 					struct btrfs_space_info,
9578 					list);
9579 		if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
9580 			if (WARN_ON(space_info->bytes_pinned > 0 ||
9581 			    space_info->bytes_reserved > 0 ||
9582 			    space_info->bytes_may_use > 0)) {
9583 				dump_space_info(space_info, 0, 0);
9584 			}
9585 		}
9586 		list_del(&space_info->list);
9587 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9588 			struct kobject *kobj;
9589 			kobj = space_info->block_group_kobjs[i];
9590 			space_info->block_group_kobjs[i] = NULL;
9591 			if (kobj) {
9592 				kobject_del(kobj);
9593 				kobject_put(kobj);
9594 			}
9595 		}
9596 		kobject_del(&space_info->kobj);
9597 		kobject_put(&space_info->kobj);
9598 	}
9599 	return 0;
9600 }
9601 
__link_block_group(struct btrfs_space_info * space_info,struct btrfs_block_group_cache * cache)9602 static void __link_block_group(struct btrfs_space_info *space_info,
9603 			       struct btrfs_block_group_cache *cache)
9604 {
9605 	int index = get_block_group_index(cache);
9606 	bool first = false;
9607 
9608 	down_write(&space_info->groups_sem);
9609 	if (list_empty(&space_info->block_groups[index]))
9610 		first = true;
9611 	list_add_tail(&cache->list, &space_info->block_groups[index]);
9612 	up_write(&space_info->groups_sem);
9613 
9614 	if (first) {
9615 		struct raid_kobject *rkobj;
9616 		int ret;
9617 
9618 		rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9619 		if (!rkobj)
9620 			goto out_err;
9621 		rkobj->raid_type = index;
9622 		kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9623 		ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9624 				  "%s", get_raid_name(index));
9625 		if (ret) {
9626 			kobject_put(&rkobj->kobj);
9627 			goto out_err;
9628 		}
9629 		space_info->block_group_kobjs[index] = &rkobj->kobj;
9630 	}
9631 
9632 	return;
9633 out_err:
9634 	pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
9635 }
9636 
9637 static struct btrfs_block_group_cache *
btrfs_create_block_group_cache(struct btrfs_root * root,u64 start,u64 size)9638 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9639 {
9640 	struct btrfs_block_group_cache *cache;
9641 
9642 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
9643 	if (!cache)
9644 		return NULL;
9645 
9646 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9647 					GFP_NOFS);
9648 	if (!cache->free_space_ctl) {
9649 		kfree(cache);
9650 		return NULL;
9651 	}
9652 
9653 	cache->key.objectid = start;
9654 	cache->key.offset = size;
9655 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9656 
9657 	cache->sectorsize = root->sectorsize;
9658 	cache->fs_info = root->fs_info;
9659 	cache->full_stripe_len = btrfs_full_stripe_len(root,
9660 					       &root->fs_info->mapping_tree,
9661 					       start);
9662 	atomic_set(&cache->count, 1);
9663 	spin_lock_init(&cache->lock);
9664 	init_rwsem(&cache->data_rwsem);
9665 	INIT_LIST_HEAD(&cache->list);
9666 	INIT_LIST_HEAD(&cache->cluster_list);
9667 	INIT_LIST_HEAD(&cache->bg_list);
9668 	INIT_LIST_HEAD(&cache->ro_list);
9669 	INIT_LIST_HEAD(&cache->dirty_list);
9670 	INIT_LIST_HEAD(&cache->io_list);
9671 	btrfs_init_free_space_ctl(cache);
9672 	atomic_set(&cache->trimming, 0);
9673 
9674 	return cache;
9675 }
9676 
btrfs_read_block_groups(struct btrfs_root * root)9677 int btrfs_read_block_groups(struct btrfs_root *root)
9678 {
9679 	struct btrfs_path *path;
9680 	int ret;
9681 	struct btrfs_block_group_cache *cache;
9682 	struct btrfs_fs_info *info = root->fs_info;
9683 	struct btrfs_space_info *space_info;
9684 	struct btrfs_key key;
9685 	struct btrfs_key found_key;
9686 	struct extent_buffer *leaf;
9687 	int need_clear = 0;
9688 	u64 cache_gen;
9689 
9690 	root = info->extent_root;
9691 	key.objectid = 0;
9692 	key.offset = 0;
9693 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9694 	path = btrfs_alloc_path();
9695 	if (!path)
9696 		return -ENOMEM;
9697 	path->reada = 1;
9698 
9699 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9700 	if (btrfs_test_opt(root, SPACE_CACHE) &&
9701 	    btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9702 		need_clear = 1;
9703 	if (btrfs_test_opt(root, CLEAR_CACHE))
9704 		need_clear = 1;
9705 
9706 	while (1) {
9707 		ret = find_first_block_group(root, path, &key);
9708 		if (ret > 0)
9709 			break;
9710 		if (ret != 0)
9711 			goto error;
9712 
9713 		leaf = path->nodes[0];
9714 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9715 
9716 		cache = btrfs_create_block_group_cache(root, found_key.objectid,
9717 						       found_key.offset);
9718 		if (!cache) {
9719 			ret = -ENOMEM;
9720 			goto error;
9721 		}
9722 
9723 		if (need_clear) {
9724 			/*
9725 			 * When we mount with old space cache, we need to
9726 			 * set BTRFS_DC_CLEAR and set dirty flag.
9727 			 *
9728 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9729 			 *    truncate the old free space cache inode and
9730 			 *    setup a new one.
9731 			 * b) Setting 'dirty flag' makes sure that we flush
9732 			 *    the new space cache info onto disk.
9733 			 */
9734 			if (btrfs_test_opt(root, SPACE_CACHE))
9735 				cache->disk_cache_state = BTRFS_DC_CLEAR;
9736 		}
9737 
9738 		read_extent_buffer(leaf, &cache->item,
9739 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
9740 				   sizeof(cache->item));
9741 		cache->flags = btrfs_block_group_flags(&cache->item);
9742 
9743 		key.objectid = found_key.objectid + found_key.offset;
9744 		btrfs_release_path(path);
9745 
9746 		/*
9747 		 * We need to exclude the super stripes now so that the space
9748 		 * info has super bytes accounted for, otherwise we'll think
9749 		 * we have more space than we actually do.
9750 		 */
9751 		ret = exclude_super_stripes(root, cache);
9752 		if (ret) {
9753 			/*
9754 			 * We may have excluded something, so call this just in
9755 			 * case.
9756 			 */
9757 			free_excluded_extents(root, cache);
9758 			btrfs_put_block_group(cache);
9759 			goto error;
9760 		}
9761 
9762 		/*
9763 		 * check for two cases, either we are full, and therefore
9764 		 * don't need to bother with the caching work since we won't
9765 		 * find any space, or we are empty, and we can just add all
9766 		 * the space in and be done with it.  This saves us _alot_ of
9767 		 * time, particularly in the full case.
9768 		 */
9769 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9770 			cache->last_byte_to_unpin = (u64)-1;
9771 			cache->cached = BTRFS_CACHE_FINISHED;
9772 			free_excluded_extents(root, cache);
9773 		} else if (btrfs_block_group_used(&cache->item) == 0) {
9774 			cache->last_byte_to_unpin = (u64)-1;
9775 			cache->cached = BTRFS_CACHE_FINISHED;
9776 			add_new_free_space(cache, root->fs_info,
9777 					   found_key.objectid,
9778 					   found_key.objectid +
9779 					   found_key.offset);
9780 			free_excluded_extents(root, cache);
9781 		}
9782 
9783 		ret = btrfs_add_block_group_cache(root->fs_info, cache);
9784 		if (ret) {
9785 			btrfs_remove_free_space_cache(cache);
9786 			btrfs_put_block_group(cache);
9787 			goto error;
9788 		}
9789 
9790 		ret = update_space_info(info, cache->flags, found_key.offset,
9791 					btrfs_block_group_used(&cache->item),
9792 					&space_info);
9793 		if (ret) {
9794 			btrfs_remove_free_space_cache(cache);
9795 			spin_lock(&info->block_group_cache_lock);
9796 			rb_erase(&cache->cache_node,
9797 				 &info->block_group_cache_tree);
9798 			RB_CLEAR_NODE(&cache->cache_node);
9799 			spin_unlock(&info->block_group_cache_lock);
9800 			btrfs_put_block_group(cache);
9801 			goto error;
9802 		}
9803 
9804 		cache->space_info = space_info;
9805 		spin_lock(&cache->space_info->lock);
9806 		cache->space_info->bytes_readonly += cache->bytes_super;
9807 		spin_unlock(&cache->space_info->lock);
9808 
9809 		__link_block_group(space_info, cache);
9810 
9811 		set_avail_alloc_bits(root->fs_info, cache->flags);
9812 		if (btrfs_chunk_readonly(root, cache->key.objectid)) {
9813 			inc_block_group_ro(cache, 1);
9814 		} else if (btrfs_block_group_used(&cache->item) == 0) {
9815 			spin_lock(&info->unused_bgs_lock);
9816 			/* Should always be true but just in case. */
9817 			if (list_empty(&cache->bg_list)) {
9818 				btrfs_get_block_group(cache);
9819 				list_add_tail(&cache->bg_list,
9820 					      &info->unused_bgs);
9821 			}
9822 			spin_unlock(&info->unused_bgs_lock);
9823 		}
9824 	}
9825 
9826 	list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9827 		if (!(get_alloc_profile(root, space_info->flags) &
9828 		      (BTRFS_BLOCK_GROUP_RAID10 |
9829 		       BTRFS_BLOCK_GROUP_RAID1 |
9830 		       BTRFS_BLOCK_GROUP_RAID5 |
9831 		       BTRFS_BLOCK_GROUP_RAID6 |
9832 		       BTRFS_BLOCK_GROUP_DUP)))
9833 			continue;
9834 		/*
9835 		 * avoid allocating from un-mirrored block group if there are
9836 		 * mirrored block groups.
9837 		 */
9838 		list_for_each_entry(cache,
9839 				&space_info->block_groups[BTRFS_RAID_RAID0],
9840 				list)
9841 			inc_block_group_ro(cache, 1);
9842 		list_for_each_entry(cache,
9843 				&space_info->block_groups[BTRFS_RAID_SINGLE],
9844 				list)
9845 			inc_block_group_ro(cache, 1);
9846 	}
9847 
9848 	init_global_block_rsv(info);
9849 	ret = 0;
9850 error:
9851 	btrfs_free_path(path);
9852 	return ret;
9853 }
9854 
btrfs_create_pending_block_groups(struct btrfs_trans_handle * trans,struct btrfs_root * root)9855 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9856 				       struct btrfs_root *root)
9857 {
9858 	struct btrfs_block_group_cache *block_group, *tmp;
9859 	struct btrfs_root *extent_root = root->fs_info->extent_root;
9860 	struct btrfs_block_group_item item;
9861 	struct btrfs_key key;
9862 	int ret = 0;
9863 	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
9864 
9865 	trans->can_flush_pending_bgs = false;
9866 	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9867 		if (ret)
9868 			goto next;
9869 
9870 		spin_lock(&block_group->lock);
9871 		memcpy(&item, &block_group->item, sizeof(item));
9872 		memcpy(&key, &block_group->key, sizeof(key));
9873 		spin_unlock(&block_group->lock);
9874 
9875 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
9876 					sizeof(item));
9877 		if (ret)
9878 			btrfs_abort_transaction(trans, extent_root, ret);
9879 		ret = btrfs_finish_chunk_alloc(trans, extent_root,
9880 					       key.objectid, key.offset);
9881 		if (ret)
9882 			btrfs_abort_transaction(trans, extent_root, ret);
9883 next:
9884 		list_del_init(&block_group->bg_list);
9885 	}
9886 	trans->can_flush_pending_bgs = can_flush_pending_bgs;
9887 }
9888 
btrfs_make_block_group(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytes_used,u64 type,u64 chunk_objectid,u64 chunk_offset,u64 size)9889 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9890 			   struct btrfs_root *root, u64 bytes_used,
9891 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
9892 			   u64 size)
9893 {
9894 	int ret;
9895 	struct btrfs_root *extent_root;
9896 	struct btrfs_block_group_cache *cache;
9897 
9898 	extent_root = root->fs_info->extent_root;
9899 
9900 	btrfs_set_log_full_commit(root->fs_info, trans);
9901 
9902 	cache = btrfs_create_block_group_cache(root, chunk_offset, size);
9903 	if (!cache)
9904 		return -ENOMEM;
9905 
9906 	btrfs_set_block_group_used(&cache->item, bytes_used);
9907 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
9908 	btrfs_set_block_group_flags(&cache->item, type);
9909 
9910 	cache->flags = type;
9911 	cache->last_byte_to_unpin = (u64)-1;
9912 	cache->cached = BTRFS_CACHE_FINISHED;
9913 	ret = exclude_super_stripes(root, cache);
9914 	if (ret) {
9915 		/*
9916 		 * We may have excluded something, so call this just in
9917 		 * case.
9918 		 */
9919 		free_excluded_extents(root, cache);
9920 		btrfs_put_block_group(cache);
9921 		return ret;
9922 	}
9923 
9924 	add_new_free_space(cache, root->fs_info, chunk_offset,
9925 			   chunk_offset + size);
9926 
9927 	free_excluded_extents(root, cache);
9928 
9929 #ifdef CONFIG_BTRFS_DEBUG
9930 	if (btrfs_should_fragment_free_space(root, cache)) {
9931 		u64 new_bytes_used = size - bytes_used;
9932 
9933 		bytes_used += new_bytes_used >> 1;
9934 		fragment_free_space(root, cache);
9935 	}
9936 #endif
9937 	/*
9938 	 * Call to ensure the corresponding space_info object is created and
9939 	 * assigned to our block group, but don't update its counters just yet.
9940 	 * We want our bg to be added to the rbtree with its ->space_info set.
9941 	 */
9942 	ret = update_space_info(root->fs_info, cache->flags, 0, 0,
9943 				&cache->space_info);
9944 	if (ret) {
9945 		btrfs_remove_free_space_cache(cache);
9946 		btrfs_put_block_group(cache);
9947 		return ret;
9948 	}
9949 
9950 	ret = btrfs_add_block_group_cache(root->fs_info, cache);
9951 	if (ret) {
9952 		btrfs_remove_free_space_cache(cache);
9953 		btrfs_put_block_group(cache);
9954 		return ret;
9955 	}
9956 
9957 	/*
9958 	 * Now that our block group has its ->space_info set and is inserted in
9959 	 * the rbtree, update the space info's counters.
9960 	 */
9961 	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9962 				&cache->space_info);
9963 	if (ret) {
9964 		btrfs_remove_free_space_cache(cache);
9965 		spin_lock(&root->fs_info->block_group_cache_lock);
9966 		rb_erase(&cache->cache_node,
9967 			 &root->fs_info->block_group_cache_tree);
9968 		RB_CLEAR_NODE(&cache->cache_node);
9969 		spin_unlock(&root->fs_info->block_group_cache_lock);
9970 		btrfs_put_block_group(cache);
9971 		return ret;
9972 	}
9973 	update_global_block_rsv(root->fs_info);
9974 
9975 	spin_lock(&cache->space_info->lock);
9976 	cache->space_info->bytes_readonly += cache->bytes_super;
9977 	spin_unlock(&cache->space_info->lock);
9978 
9979 	__link_block_group(cache->space_info, cache);
9980 
9981 	list_add_tail(&cache->bg_list, &trans->new_bgs);
9982 
9983 	set_avail_alloc_bits(extent_root->fs_info, type);
9984 
9985 	return 0;
9986 }
9987 
clear_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)9988 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9989 {
9990 	u64 extra_flags = chunk_to_extended(flags) &
9991 				BTRFS_EXTENDED_PROFILE_MASK;
9992 
9993 	write_seqlock(&fs_info->profiles_lock);
9994 	if (flags & BTRFS_BLOCK_GROUP_DATA)
9995 		fs_info->avail_data_alloc_bits &= ~extra_flags;
9996 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
9997 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9998 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9999 		fs_info->avail_system_alloc_bits &= ~extra_flags;
10000 	write_sequnlock(&fs_info->profiles_lock);
10001 }
10002 
btrfs_remove_block_group(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 group_start,struct extent_map * em)10003 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10004 			     struct btrfs_root *root, u64 group_start,
10005 			     struct extent_map *em)
10006 {
10007 	struct btrfs_path *path;
10008 	struct btrfs_block_group_cache *block_group;
10009 	struct btrfs_free_cluster *cluster;
10010 	struct btrfs_root *tree_root = root->fs_info->tree_root;
10011 	struct btrfs_key key;
10012 	struct inode *inode;
10013 	struct kobject *kobj = NULL;
10014 	int ret;
10015 	int index;
10016 	int factor;
10017 	struct btrfs_caching_control *caching_ctl = NULL;
10018 	bool remove_em;
10019 
10020 	root = root->fs_info->extent_root;
10021 
10022 	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
10023 	BUG_ON(!block_group);
10024 	BUG_ON(!block_group->ro);
10025 
10026 	/*
10027 	 * Free the reserved super bytes from this block group before
10028 	 * remove it.
10029 	 */
10030 	free_excluded_extents(root, block_group);
10031 
10032 	memcpy(&key, &block_group->key, sizeof(key));
10033 	index = get_block_group_index(block_group);
10034 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10035 				  BTRFS_BLOCK_GROUP_RAID1 |
10036 				  BTRFS_BLOCK_GROUP_RAID10))
10037 		factor = 2;
10038 	else
10039 		factor = 1;
10040 
10041 	/* make sure this block group isn't part of an allocation cluster */
10042 	cluster = &root->fs_info->data_alloc_cluster;
10043 	spin_lock(&cluster->refill_lock);
10044 	btrfs_return_cluster_to_free_space(block_group, cluster);
10045 	spin_unlock(&cluster->refill_lock);
10046 
10047 	/*
10048 	 * make sure this block group isn't part of a metadata
10049 	 * allocation cluster
10050 	 */
10051 	cluster = &root->fs_info->meta_alloc_cluster;
10052 	spin_lock(&cluster->refill_lock);
10053 	btrfs_return_cluster_to_free_space(block_group, cluster);
10054 	spin_unlock(&cluster->refill_lock);
10055 
10056 	path = btrfs_alloc_path();
10057 	if (!path) {
10058 		ret = -ENOMEM;
10059 		goto out;
10060 	}
10061 
10062 	/*
10063 	 * get the inode first so any iput calls done for the io_list
10064 	 * aren't the final iput (no unlinks allowed now)
10065 	 */
10066 	inode = lookup_free_space_inode(tree_root, block_group, path);
10067 
10068 	mutex_lock(&trans->transaction->cache_write_mutex);
10069 	/*
10070 	 * make sure our free spache cache IO is done before remove the
10071 	 * free space inode
10072 	 */
10073 	spin_lock(&trans->transaction->dirty_bgs_lock);
10074 	if (!list_empty(&block_group->io_list)) {
10075 		list_del_init(&block_group->io_list);
10076 
10077 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10078 
10079 		spin_unlock(&trans->transaction->dirty_bgs_lock);
10080 		btrfs_wait_cache_io(root, trans, block_group,
10081 				    &block_group->io_ctl, path,
10082 				    block_group->key.objectid);
10083 		btrfs_put_block_group(block_group);
10084 		spin_lock(&trans->transaction->dirty_bgs_lock);
10085 	}
10086 
10087 	if (!list_empty(&block_group->dirty_list)) {
10088 		list_del_init(&block_group->dirty_list);
10089 		btrfs_put_block_group(block_group);
10090 	}
10091 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10092 	mutex_unlock(&trans->transaction->cache_write_mutex);
10093 
10094 	if (!IS_ERR(inode)) {
10095 		ret = btrfs_orphan_add(trans, inode);
10096 		if (ret) {
10097 			btrfs_add_delayed_iput(inode);
10098 			goto out;
10099 		}
10100 		clear_nlink(inode);
10101 		/* One for the block groups ref */
10102 		spin_lock(&block_group->lock);
10103 		if (block_group->iref) {
10104 			block_group->iref = 0;
10105 			block_group->inode = NULL;
10106 			spin_unlock(&block_group->lock);
10107 			iput(inode);
10108 		} else {
10109 			spin_unlock(&block_group->lock);
10110 		}
10111 		/* One for our lookup ref */
10112 		btrfs_add_delayed_iput(inode);
10113 	}
10114 
10115 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10116 	key.offset = block_group->key.objectid;
10117 	key.type = 0;
10118 
10119 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10120 	if (ret < 0)
10121 		goto out;
10122 	if (ret > 0)
10123 		btrfs_release_path(path);
10124 	if (ret == 0) {
10125 		ret = btrfs_del_item(trans, tree_root, path);
10126 		if (ret)
10127 			goto out;
10128 		btrfs_release_path(path);
10129 	}
10130 
10131 	spin_lock(&root->fs_info->block_group_cache_lock);
10132 	rb_erase(&block_group->cache_node,
10133 		 &root->fs_info->block_group_cache_tree);
10134 	RB_CLEAR_NODE(&block_group->cache_node);
10135 
10136 	if (root->fs_info->first_logical_byte == block_group->key.objectid)
10137 		root->fs_info->first_logical_byte = (u64)-1;
10138 	spin_unlock(&root->fs_info->block_group_cache_lock);
10139 
10140 	down_write(&block_group->space_info->groups_sem);
10141 	/*
10142 	 * we must use list_del_init so people can check to see if they
10143 	 * are still on the list after taking the semaphore
10144 	 */
10145 	list_del_init(&block_group->list);
10146 	if (list_empty(&block_group->space_info->block_groups[index])) {
10147 		kobj = block_group->space_info->block_group_kobjs[index];
10148 		block_group->space_info->block_group_kobjs[index] = NULL;
10149 		clear_avail_alloc_bits(root->fs_info, block_group->flags);
10150 	}
10151 	up_write(&block_group->space_info->groups_sem);
10152 	if (kobj) {
10153 		kobject_del(kobj);
10154 		kobject_put(kobj);
10155 	}
10156 
10157 	if (block_group->has_caching_ctl)
10158 		caching_ctl = get_caching_control(block_group);
10159 	if (block_group->cached == BTRFS_CACHE_STARTED)
10160 		wait_block_group_cache_done(block_group);
10161 	if (block_group->has_caching_ctl) {
10162 		down_write(&root->fs_info->commit_root_sem);
10163 		if (!caching_ctl) {
10164 			struct btrfs_caching_control *ctl;
10165 
10166 			list_for_each_entry(ctl,
10167 				    &root->fs_info->caching_block_groups, list)
10168 				if (ctl->block_group == block_group) {
10169 					caching_ctl = ctl;
10170 					atomic_inc(&caching_ctl->count);
10171 					break;
10172 				}
10173 		}
10174 		if (caching_ctl)
10175 			list_del_init(&caching_ctl->list);
10176 		up_write(&root->fs_info->commit_root_sem);
10177 		if (caching_ctl) {
10178 			/* Once for the caching bgs list and once for us. */
10179 			put_caching_control(caching_ctl);
10180 			put_caching_control(caching_ctl);
10181 		}
10182 	}
10183 
10184 	spin_lock(&trans->transaction->dirty_bgs_lock);
10185 	if (!list_empty(&block_group->dirty_list)) {
10186 		WARN_ON(1);
10187 	}
10188 	if (!list_empty(&block_group->io_list)) {
10189 		WARN_ON(1);
10190 	}
10191 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10192 	btrfs_remove_free_space_cache(block_group);
10193 
10194 	spin_lock(&block_group->space_info->lock);
10195 	list_del_init(&block_group->ro_list);
10196 
10197 	if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
10198 		WARN_ON(block_group->space_info->total_bytes
10199 			< block_group->key.offset);
10200 		WARN_ON(block_group->space_info->bytes_readonly
10201 			< block_group->key.offset);
10202 		WARN_ON(block_group->space_info->disk_total
10203 			< block_group->key.offset * factor);
10204 	}
10205 	block_group->space_info->total_bytes -= block_group->key.offset;
10206 	block_group->space_info->bytes_readonly -= block_group->key.offset;
10207 	block_group->space_info->disk_total -= block_group->key.offset * factor;
10208 
10209 	spin_unlock(&block_group->space_info->lock);
10210 
10211 	memcpy(&key, &block_group->key, sizeof(key));
10212 
10213 	lock_chunks(root);
10214 	if (!list_empty(&em->list)) {
10215 		/* We're in the transaction->pending_chunks list. */
10216 		free_extent_map(em);
10217 	}
10218 	spin_lock(&block_group->lock);
10219 	block_group->removed = 1;
10220 	/*
10221 	 * At this point trimming can't start on this block group, because we
10222 	 * removed the block group from the tree fs_info->block_group_cache_tree
10223 	 * so no one can't find it anymore and even if someone already got this
10224 	 * block group before we removed it from the rbtree, they have already
10225 	 * incremented block_group->trimming - if they didn't, they won't find
10226 	 * any free space entries because we already removed them all when we
10227 	 * called btrfs_remove_free_space_cache().
10228 	 *
10229 	 * And we must not remove the extent map from the fs_info->mapping_tree
10230 	 * to prevent the same logical address range and physical device space
10231 	 * ranges from being reused for a new block group. This is because our
10232 	 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10233 	 * completely transactionless, so while it is trimming a range the
10234 	 * currently running transaction might finish and a new one start,
10235 	 * allowing for new block groups to be created that can reuse the same
10236 	 * physical device locations unless we take this special care.
10237 	 *
10238 	 * There may also be an implicit trim operation if the file system
10239 	 * is mounted with -odiscard. The same protections must remain
10240 	 * in place until the extents have been discarded completely when
10241 	 * the transaction commit has completed.
10242 	 */
10243 	remove_em = (atomic_read(&block_group->trimming) == 0);
10244 	/*
10245 	 * Make sure a trimmer task always sees the em in the pinned_chunks list
10246 	 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10247 	 * before checking block_group->removed).
10248 	 */
10249 	if (!remove_em) {
10250 		/*
10251 		 * Our em might be in trans->transaction->pending_chunks which
10252 		 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10253 		 * and so is the fs_info->pinned_chunks list.
10254 		 *
10255 		 * So at this point we must be holding the chunk_mutex to avoid
10256 		 * any races with chunk allocation (more specifically at
10257 		 * volumes.c:contains_pending_extent()), to ensure it always
10258 		 * sees the em, either in the pending_chunks list or in the
10259 		 * pinned_chunks list.
10260 		 */
10261 		list_move_tail(&em->list, &root->fs_info->pinned_chunks);
10262 	}
10263 	spin_unlock(&block_group->lock);
10264 
10265 	if (remove_em) {
10266 		struct extent_map_tree *em_tree;
10267 
10268 		em_tree = &root->fs_info->mapping_tree.map_tree;
10269 		write_lock(&em_tree->lock);
10270 		/*
10271 		 * The em might be in the pending_chunks list, so make sure the
10272 		 * chunk mutex is locked, since remove_extent_mapping() will
10273 		 * delete us from that list.
10274 		 */
10275 		remove_extent_mapping(em_tree, em);
10276 		write_unlock(&em_tree->lock);
10277 		/* once for the tree */
10278 		free_extent_map(em);
10279 	}
10280 
10281 	unlock_chunks(root);
10282 
10283 	btrfs_put_block_group(block_group);
10284 	btrfs_put_block_group(block_group);
10285 
10286 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10287 	if (ret > 0)
10288 		ret = -EIO;
10289 	if (ret < 0)
10290 		goto out;
10291 
10292 	ret = btrfs_del_item(trans, root, path);
10293 out:
10294 	btrfs_free_path(path);
10295 	return ret;
10296 }
10297 
10298 struct btrfs_trans_handle *
btrfs_start_trans_remove_block_group(struct btrfs_fs_info * fs_info,const u64 chunk_offset)10299 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10300 				     const u64 chunk_offset)
10301 {
10302 	struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10303 	struct extent_map *em;
10304 	struct map_lookup *map;
10305 	unsigned int num_items;
10306 
10307 	read_lock(&em_tree->lock);
10308 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10309 	read_unlock(&em_tree->lock);
10310 	ASSERT(em && em->start == chunk_offset);
10311 
10312 	/*
10313 	 * We need to reserve 3 + N units from the metadata space info in order
10314 	 * to remove a block group (done at btrfs_remove_chunk() and at
10315 	 * btrfs_remove_block_group()), which are used for:
10316 	 *
10317 	 * 1 unit for adding the free space inode's orphan (located in the tree
10318 	 * of tree roots).
10319 	 * 1 unit for deleting the block group item (located in the extent
10320 	 * tree).
10321 	 * 1 unit for deleting the free space item (located in tree of tree
10322 	 * roots).
10323 	 * N units for deleting N device extent items corresponding to each
10324 	 * stripe (located in the device tree).
10325 	 *
10326 	 * In order to remove a block group we also need to reserve units in the
10327 	 * system space info in order to update the chunk tree (update one or
10328 	 * more device items and remove one chunk item), but this is done at
10329 	 * btrfs_remove_chunk() through a call to check_system_chunk().
10330 	 */
10331 	map = (struct map_lookup *)em->bdev;
10332 	num_items = 3 + map->num_stripes;
10333 	free_extent_map(em);
10334 
10335 	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10336 							   num_items, 1);
10337 }
10338 
10339 /*
10340  * Process the unused_bgs list and remove any that don't have any allocated
10341  * space inside of them.
10342  */
btrfs_delete_unused_bgs(struct btrfs_fs_info * fs_info)10343 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10344 {
10345 	struct btrfs_block_group_cache *block_group;
10346 	struct btrfs_space_info *space_info;
10347 	struct btrfs_root *root = fs_info->extent_root;
10348 	struct btrfs_trans_handle *trans;
10349 	int ret = 0;
10350 
10351 	if (!fs_info->open)
10352 		return;
10353 
10354 	spin_lock(&fs_info->unused_bgs_lock);
10355 	while (!list_empty(&fs_info->unused_bgs)) {
10356 		u64 start, end;
10357 		int trimming;
10358 
10359 		block_group = list_first_entry(&fs_info->unused_bgs,
10360 					       struct btrfs_block_group_cache,
10361 					       bg_list);
10362 		list_del_init(&block_group->bg_list);
10363 
10364 		space_info = block_group->space_info;
10365 
10366 		if (ret || btrfs_mixed_space_info(space_info)) {
10367 			btrfs_put_block_group(block_group);
10368 			continue;
10369 		}
10370 		spin_unlock(&fs_info->unused_bgs_lock);
10371 
10372 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
10373 
10374 		/* Don't want to race with allocators so take the groups_sem */
10375 		down_write(&space_info->groups_sem);
10376 		spin_lock(&block_group->lock);
10377 		if (block_group->reserved ||
10378 		    btrfs_block_group_used(&block_group->item) ||
10379 		    block_group->ro ||
10380 		    list_is_singular(&block_group->list)) {
10381 			/*
10382 			 * We want to bail if we made new allocations or have
10383 			 * outstanding allocations in this block group.  We do
10384 			 * the ro check in case balance is currently acting on
10385 			 * this block group.
10386 			 */
10387 			spin_unlock(&block_group->lock);
10388 			up_write(&space_info->groups_sem);
10389 			goto next;
10390 		}
10391 		spin_unlock(&block_group->lock);
10392 
10393 		/* We don't want to force the issue, only flip if it's ok. */
10394 		ret = inc_block_group_ro(block_group, 0);
10395 		up_write(&space_info->groups_sem);
10396 		if (ret < 0) {
10397 			ret = 0;
10398 			goto next;
10399 		}
10400 
10401 		/*
10402 		 * Want to do this before we do anything else so we can recover
10403 		 * properly if we fail to join the transaction.
10404 		 */
10405 		trans = btrfs_start_trans_remove_block_group(fs_info,
10406 						     block_group->key.objectid);
10407 		if (IS_ERR(trans)) {
10408 			btrfs_dec_block_group_ro(root, block_group);
10409 			ret = PTR_ERR(trans);
10410 			goto next;
10411 		}
10412 
10413 		/*
10414 		 * We could have pending pinned extents for this block group,
10415 		 * just delete them, we don't care about them anymore.
10416 		 */
10417 		start = block_group->key.objectid;
10418 		end = start + block_group->key.offset - 1;
10419 		/*
10420 		 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10421 		 * btrfs_finish_extent_commit(). If we are at transaction N,
10422 		 * another task might be running finish_extent_commit() for the
10423 		 * previous transaction N - 1, and have seen a range belonging
10424 		 * to the block group in freed_extents[] before we were able to
10425 		 * clear the whole block group range from freed_extents[]. This
10426 		 * means that task can lookup for the block group after we
10427 		 * unpinned it from freed_extents[] and removed it, leading to
10428 		 * a BUG_ON() at btrfs_unpin_extent_range().
10429 		 */
10430 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
10431 		ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10432 				  EXTENT_DIRTY, GFP_NOFS);
10433 		if (ret) {
10434 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10435 			btrfs_dec_block_group_ro(root, block_group);
10436 			goto end_trans;
10437 		}
10438 		ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10439 				  EXTENT_DIRTY, GFP_NOFS);
10440 		if (ret) {
10441 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10442 			btrfs_dec_block_group_ro(root, block_group);
10443 			goto end_trans;
10444 		}
10445 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10446 
10447 		/* Reset pinned so btrfs_put_block_group doesn't complain */
10448 		spin_lock(&space_info->lock);
10449 		spin_lock(&block_group->lock);
10450 
10451 		space_info->bytes_pinned -= block_group->pinned;
10452 		space_info->bytes_readonly += block_group->pinned;
10453 		percpu_counter_add(&space_info->total_bytes_pinned,
10454 				   -block_group->pinned);
10455 		block_group->pinned = 0;
10456 
10457 		spin_unlock(&block_group->lock);
10458 		spin_unlock(&space_info->lock);
10459 
10460 		/* DISCARD can flip during remount */
10461 		trimming = btrfs_test_opt(root, DISCARD);
10462 
10463 		/* Implicit trim during transaction commit. */
10464 		if (trimming)
10465 			btrfs_get_block_group_trimming(block_group);
10466 
10467 		/*
10468 		 * Btrfs_remove_chunk will abort the transaction if things go
10469 		 * horribly wrong.
10470 		 */
10471 		ret = btrfs_remove_chunk(trans, root,
10472 					 block_group->key.objectid);
10473 
10474 		if (ret) {
10475 			if (trimming)
10476 				btrfs_put_block_group_trimming(block_group);
10477 			goto end_trans;
10478 		}
10479 
10480 		/*
10481 		 * If we're not mounted with -odiscard, we can just forget
10482 		 * about this block group. Otherwise we'll need to wait
10483 		 * until transaction commit to do the actual discard.
10484 		 */
10485 		if (trimming) {
10486 			spin_lock(&fs_info->unused_bgs_lock);
10487 			/*
10488 			 * A concurrent scrub might have added us to the list
10489 			 * fs_info->unused_bgs, so use a list_move operation
10490 			 * to add the block group to the deleted_bgs list.
10491 			 */
10492 			list_move(&block_group->bg_list,
10493 				  &trans->transaction->deleted_bgs);
10494 			spin_unlock(&fs_info->unused_bgs_lock);
10495 			btrfs_get_block_group(block_group);
10496 		}
10497 end_trans:
10498 		btrfs_end_transaction(trans, root);
10499 next:
10500 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10501 		btrfs_put_block_group(block_group);
10502 		spin_lock(&fs_info->unused_bgs_lock);
10503 	}
10504 	spin_unlock(&fs_info->unused_bgs_lock);
10505 }
10506 
btrfs_init_space_info(struct btrfs_fs_info * fs_info)10507 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10508 {
10509 	struct btrfs_space_info *space_info;
10510 	struct btrfs_super_block *disk_super;
10511 	u64 features;
10512 	u64 flags;
10513 	int mixed = 0;
10514 	int ret;
10515 
10516 	disk_super = fs_info->super_copy;
10517 	if (!btrfs_super_root(disk_super))
10518 		return 1;
10519 
10520 	features = btrfs_super_incompat_flags(disk_super);
10521 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10522 		mixed = 1;
10523 
10524 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
10525 	ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10526 	if (ret)
10527 		goto out;
10528 
10529 	if (mixed) {
10530 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10531 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10532 	} else {
10533 		flags = BTRFS_BLOCK_GROUP_METADATA;
10534 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10535 		if (ret)
10536 			goto out;
10537 
10538 		flags = BTRFS_BLOCK_GROUP_DATA;
10539 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10540 	}
10541 out:
10542 	return ret;
10543 }
10544 
btrfs_error_unpin_extent_range(struct btrfs_root * root,u64 start,u64 end)10545 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10546 {
10547 	return unpin_extent_range(root, start, end, false);
10548 }
10549 
10550 /*
10551  * It used to be that old block groups would be left around forever.
10552  * Iterating over them would be enough to trim unused space.  Since we
10553  * now automatically remove them, we also need to iterate over unallocated
10554  * space.
10555  *
10556  * We don't want a transaction for this since the discard may take a
10557  * substantial amount of time.  We don't require that a transaction be
10558  * running, but we do need to take a running transaction into account
10559  * to ensure that we're not discarding chunks that were released in
10560  * the current transaction.
10561  *
10562  * Holding the chunks lock will prevent other threads from allocating
10563  * or releasing chunks, but it won't prevent a running transaction
10564  * from committing and releasing the memory that the pending chunks
10565  * list head uses.  For that, we need to take a reference to the
10566  * transaction.
10567  */
btrfs_trim_free_extents(struct btrfs_device * device,u64 minlen,u64 * trimmed)10568 static int btrfs_trim_free_extents(struct btrfs_device *device,
10569 				   u64 minlen, u64 *trimmed)
10570 {
10571 	u64 start = 0, len = 0;
10572 	int ret;
10573 
10574 	*trimmed = 0;
10575 
10576 	/* Not writeable = nothing to do. */
10577 	if (!device->writeable)
10578 		return 0;
10579 
10580 	/* No free space = nothing to do. */
10581 	if (device->total_bytes <= device->bytes_used)
10582 		return 0;
10583 
10584 	ret = 0;
10585 
10586 	while (1) {
10587 		struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
10588 		struct btrfs_transaction *trans;
10589 		u64 bytes;
10590 
10591 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10592 		if (ret)
10593 			return ret;
10594 
10595 		down_read(&fs_info->commit_root_sem);
10596 
10597 		spin_lock(&fs_info->trans_lock);
10598 		trans = fs_info->running_transaction;
10599 		if (trans)
10600 			atomic_inc(&trans->use_count);
10601 		spin_unlock(&fs_info->trans_lock);
10602 
10603 		ret = find_free_dev_extent_start(trans, device, minlen, start,
10604 						 &start, &len);
10605 		if (trans)
10606 			btrfs_put_transaction(trans);
10607 
10608 		if (ret) {
10609 			up_read(&fs_info->commit_root_sem);
10610 			mutex_unlock(&fs_info->chunk_mutex);
10611 			if (ret == -ENOSPC)
10612 				ret = 0;
10613 			break;
10614 		}
10615 
10616 		ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10617 		up_read(&fs_info->commit_root_sem);
10618 		mutex_unlock(&fs_info->chunk_mutex);
10619 
10620 		if (ret)
10621 			break;
10622 
10623 		start += len;
10624 		*trimmed += bytes;
10625 
10626 		if (fatal_signal_pending(current)) {
10627 			ret = -ERESTARTSYS;
10628 			break;
10629 		}
10630 
10631 		cond_resched();
10632 	}
10633 
10634 	return ret;
10635 }
10636 
btrfs_trim_fs(struct btrfs_root * root,struct fstrim_range * range)10637 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10638 {
10639 	struct btrfs_fs_info *fs_info = root->fs_info;
10640 	struct btrfs_block_group_cache *cache = NULL;
10641 	struct btrfs_device *device;
10642 	struct list_head *devices;
10643 	u64 group_trimmed;
10644 	u64 start;
10645 	u64 end;
10646 	u64 trimmed = 0;
10647 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10648 	int ret = 0;
10649 
10650 	/*
10651 	 * try to trim all FS space, our block group may start from non-zero.
10652 	 */
10653 	if (range->len == total_bytes)
10654 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
10655 	else
10656 		cache = btrfs_lookup_block_group(fs_info, range->start);
10657 
10658 	while (cache) {
10659 		if (cache->key.objectid >= (range->start + range->len)) {
10660 			btrfs_put_block_group(cache);
10661 			break;
10662 		}
10663 
10664 		start = max(range->start, cache->key.objectid);
10665 		end = min(range->start + range->len,
10666 				cache->key.objectid + cache->key.offset);
10667 
10668 		if (end - start >= range->minlen) {
10669 			if (!block_group_cache_done(cache)) {
10670 				ret = cache_block_group(cache, 0);
10671 				if (ret) {
10672 					btrfs_put_block_group(cache);
10673 					break;
10674 				}
10675 				ret = wait_block_group_cache_done(cache);
10676 				if (ret) {
10677 					btrfs_put_block_group(cache);
10678 					break;
10679 				}
10680 			}
10681 			ret = btrfs_trim_block_group(cache,
10682 						     &group_trimmed,
10683 						     start,
10684 						     end,
10685 						     range->minlen);
10686 
10687 			trimmed += group_trimmed;
10688 			if (ret) {
10689 				btrfs_put_block_group(cache);
10690 				break;
10691 			}
10692 		}
10693 
10694 		cache = next_block_group(fs_info->tree_root, cache);
10695 	}
10696 
10697 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
10698 	devices = &root->fs_info->fs_devices->alloc_list;
10699 	list_for_each_entry(device, devices, dev_alloc_list) {
10700 		ret = btrfs_trim_free_extents(device, range->minlen,
10701 					      &group_trimmed);
10702 		if (ret)
10703 			break;
10704 
10705 		trimmed += group_trimmed;
10706 	}
10707 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
10708 
10709 	range->len = trimmed;
10710 	return ret;
10711 }
10712 
10713 /*
10714  * btrfs_{start,end}_write_no_snapshoting() are similar to
10715  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10716  * data into the page cache through nocow before the subvolume is snapshoted,
10717  * but flush the data into disk after the snapshot creation, or to prevent
10718  * operations while snapshoting is ongoing and that cause the snapshot to be
10719  * inconsistent (writes followed by expanding truncates for example).
10720  */
btrfs_end_write_no_snapshoting(struct btrfs_root * root)10721 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10722 {
10723 	percpu_counter_dec(&root->subv_writers->counter);
10724 	/*
10725 	 * Make sure counter is updated before we wake up waiters.
10726 	 */
10727 	smp_mb();
10728 	if (waitqueue_active(&root->subv_writers->wait))
10729 		wake_up(&root->subv_writers->wait);
10730 }
10731 
btrfs_start_write_no_snapshoting(struct btrfs_root * root)10732 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10733 {
10734 	if (atomic_read(&root->will_be_snapshoted))
10735 		return 0;
10736 
10737 	percpu_counter_inc(&root->subv_writers->counter);
10738 	/*
10739 	 * Make sure counter is updated before we check for snapshot creation.
10740 	 */
10741 	smp_mb();
10742 	if (atomic_read(&root->will_be_snapshoted)) {
10743 		btrfs_end_write_no_snapshoting(root);
10744 		return 0;
10745 	}
10746 	return 1;
10747 }
10748