1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52 
53 #ifdef CONFIG_X86
54 #include <asm/cpufeature.h>
55 #endif
56 
57 static const struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61 				    int read_only);
62 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
63 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64 				      struct btrfs_root *root);
65 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
66 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
67 					struct extent_io_tree *dirty_pages,
68 					int mark);
69 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
70 				       struct extent_io_tree *pinned_extents);
71 static int btrfs_cleanup_transaction(struct btrfs_root *root);
72 static void btrfs_error_commit_super(struct btrfs_root *root);
73 
74 /*
75  * btrfs_end_io_wq structs are used to do processing in task context when an IO
76  * is complete.  This is used during reads to verify checksums, and it is used
77  * by writes to insert metadata for new file extents after IO is complete.
78  */
79 struct btrfs_end_io_wq {
80 	struct bio *bio;
81 	bio_end_io_t *end_io;
82 	void *private;
83 	struct btrfs_fs_info *info;
84 	int error;
85 	enum btrfs_wq_endio_type metadata;
86 	struct list_head list;
87 	struct btrfs_work work;
88 };
89 
90 static struct kmem_cache *btrfs_end_io_wq_cache;
91 
btrfs_end_io_wq_init(void)92 int __init btrfs_end_io_wq_init(void)
93 {
94 	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
95 					sizeof(struct btrfs_end_io_wq),
96 					0,
97 					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
98 					NULL);
99 	if (!btrfs_end_io_wq_cache)
100 		return -ENOMEM;
101 	return 0;
102 }
103 
btrfs_end_io_wq_exit(void)104 void btrfs_end_io_wq_exit(void)
105 {
106 	if (btrfs_end_io_wq_cache)
107 		kmem_cache_destroy(btrfs_end_io_wq_cache);
108 }
109 
110 /*
111  * async submit bios are used to offload expensive checksumming
112  * onto the worker threads.  They checksum file and metadata bios
113  * just before they are sent down the IO stack.
114  */
115 struct async_submit_bio {
116 	struct inode *inode;
117 	struct bio *bio;
118 	struct list_head list;
119 	extent_submit_bio_hook_t *submit_bio_start;
120 	extent_submit_bio_hook_t *submit_bio_done;
121 	int rw;
122 	int mirror_num;
123 	unsigned long bio_flags;
124 	/*
125 	 * bio_offset is optional, can be used if the pages in the bio
126 	 * can't tell us where in the file the bio should go
127 	 */
128 	u64 bio_offset;
129 	struct btrfs_work work;
130 	int error;
131 };
132 
133 /*
134  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
135  * eb, the lockdep key is determined by the btrfs_root it belongs to and
136  * the level the eb occupies in the tree.
137  *
138  * Different roots are used for different purposes and may nest inside each
139  * other and they require separate keysets.  As lockdep keys should be
140  * static, assign keysets according to the purpose of the root as indicated
141  * by btrfs_root->objectid.  This ensures that all special purpose roots
142  * have separate keysets.
143  *
144  * Lock-nesting across peer nodes is always done with the immediate parent
145  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
146  * subclass to avoid triggering lockdep warning in such cases.
147  *
148  * The key is set by the readpage_end_io_hook after the buffer has passed
149  * csum validation but before the pages are unlocked.  It is also set by
150  * btrfs_init_new_buffer on freshly allocated blocks.
151  *
152  * We also add a check to make sure the highest level of the tree is the
153  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
154  * needs update as well.
155  */
156 #ifdef CONFIG_DEBUG_LOCK_ALLOC
157 # if BTRFS_MAX_LEVEL != 8
158 #  error
159 # endif
160 
161 static struct btrfs_lockdep_keyset {
162 	u64			id;		/* root objectid */
163 	const char		*name_stem;	/* lock name stem */
164 	char			names[BTRFS_MAX_LEVEL + 1][20];
165 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
166 } btrfs_lockdep_keysets[] = {
167 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
168 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
169 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
170 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
171 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
172 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
173 	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
174 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
175 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
176 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
177 	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
178 	{ .id = 0,				.name_stem = "tree"	},
179 };
180 
btrfs_init_lockdep(void)181 void __init btrfs_init_lockdep(void)
182 {
183 	int i, j;
184 
185 	/* initialize lockdep class names */
186 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
187 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
188 
189 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
190 			snprintf(ks->names[j], sizeof(ks->names[j]),
191 				 "btrfs-%s-%02d", ks->name_stem, j);
192 	}
193 }
194 
btrfs_set_buffer_lockdep_class(u64 objectid,struct extent_buffer * eb,int level)195 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
196 				    int level)
197 {
198 	struct btrfs_lockdep_keyset *ks;
199 
200 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
201 
202 	/* find the matching keyset, id 0 is the default entry */
203 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
204 		if (ks->id == objectid)
205 			break;
206 
207 	lockdep_set_class_and_name(&eb->lock,
208 				   &ks->keys[level], ks->names[level]);
209 }
210 
211 #endif
212 
213 /*
214  * extents on the btree inode are pretty simple, there's one extent
215  * that covers the entire device
216  */
btree_get_extent(struct inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,int create)217 static struct extent_map *btree_get_extent(struct inode *inode,
218 		struct page *page, size_t pg_offset, u64 start, u64 len,
219 		int create)
220 {
221 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
222 	struct extent_map *em;
223 	int ret;
224 
225 	read_lock(&em_tree->lock);
226 	em = lookup_extent_mapping(em_tree, start, len);
227 	if (em) {
228 		em->bdev =
229 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
230 		read_unlock(&em_tree->lock);
231 		goto out;
232 	}
233 	read_unlock(&em_tree->lock);
234 
235 	em = alloc_extent_map();
236 	if (!em) {
237 		em = ERR_PTR(-ENOMEM);
238 		goto out;
239 	}
240 	em->start = 0;
241 	em->len = (u64)-1;
242 	em->block_len = (u64)-1;
243 	em->block_start = 0;
244 	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
245 
246 	write_lock(&em_tree->lock);
247 	ret = add_extent_mapping(em_tree, em, 0);
248 	if (ret == -EEXIST) {
249 		free_extent_map(em);
250 		em = lookup_extent_mapping(em_tree, start, len);
251 		if (!em)
252 			em = ERR_PTR(-EIO);
253 	} else if (ret) {
254 		free_extent_map(em);
255 		em = ERR_PTR(ret);
256 	}
257 	write_unlock(&em_tree->lock);
258 
259 out:
260 	return em;
261 }
262 
btrfs_csum_data(char * data,u32 seed,size_t len)263 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
264 {
265 	return btrfs_crc32c(seed, data, len);
266 }
267 
btrfs_csum_final(u32 crc,char * result)268 void btrfs_csum_final(u32 crc, char *result)
269 {
270 	put_unaligned_le32(~crc, result);
271 }
272 
273 /*
274  * compute the csum for a btree block, and either verify it or write it
275  * into the csum field of the block.
276  */
csum_tree_block(struct btrfs_fs_info * fs_info,struct extent_buffer * buf,int verify)277 static int csum_tree_block(struct btrfs_fs_info *fs_info,
278 			   struct extent_buffer *buf,
279 			   int verify)
280 {
281 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
282 	char *result = NULL;
283 	unsigned long len;
284 	unsigned long cur_len;
285 	unsigned long offset = BTRFS_CSUM_SIZE;
286 	char *kaddr;
287 	unsigned long map_start;
288 	unsigned long map_len;
289 	int err;
290 	u32 crc = ~(u32)0;
291 	unsigned long inline_result;
292 
293 	len = buf->len - offset;
294 	while (len > 0) {
295 		err = map_private_extent_buffer(buf, offset, 32,
296 					&kaddr, &map_start, &map_len);
297 		if (err)
298 			return 1;
299 		cur_len = min(len, map_len - (offset - map_start));
300 		crc = btrfs_csum_data(kaddr + offset - map_start,
301 				      crc, cur_len);
302 		len -= cur_len;
303 		offset += cur_len;
304 	}
305 	if (csum_size > sizeof(inline_result)) {
306 		result = kzalloc(csum_size, GFP_NOFS);
307 		if (!result)
308 			return 1;
309 	} else {
310 		result = (char *)&inline_result;
311 	}
312 
313 	btrfs_csum_final(crc, result);
314 
315 	if (verify) {
316 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
317 			u32 val;
318 			u32 found = 0;
319 			memcpy(&found, result, csum_size);
320 
321 			read_extent_buffer(buf, &val, 0, csum_size);
322 			printk_ratelimited(KERN_WARNING
323 				"BTRFS: %s checksum verify failed on %llu wanted %X found %X "
324 				"level %d\n",
325 				fs_info->sb->s_id, buf->start,
326 				val, found, btrfs_header_level(buf));
327 			if (result != (char *)&inline_result)
328 				kfree(result);
329 			return 1;
330 		}
331 	} else {
332 		write_extent_buffer(buf, result, 0, csum_size);
333 	}
334 	if (result != (char *)&inline_result)
335 		kfree(result);
336 	return 0;
337 }
338 
339 /*
340  * we can't consider a given block up to date unless the transid of the
341  * block matches the transid in the parent node's pointer.  This is how we
342  * detect blocks that either didn't get written at all or got written
343  * in the wrong place.
344  */
verify_parent_transid(struct extent_io_tree * io_tree,struct extent_buffer * eb,u64 parent_transid,int atomic)345 static int verify_parent_transid(struct extent_io_tree *io_tree,
346 				 struct extent_buffer *eb, u64 parent_transid,
347 				 int atomic)
348 {
349 	struct extent_state *cached_state = NULL;
350 	int ret;
351 	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
352 
353 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
354 		return 0;
355 
356 	if (atomic)
357 		return -EAGAIN;
358 
359 	if (need_lock) {
360 		btrfs_tree_read_lock(eb);
361 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
362 	}
363 
364 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
365 			 0, &cached_state);
366 	if (extent_buffer_uptodate(eb) &&
367 	    btrfs_header_generation(eb) == parent_transid) {
368 		ret = 0;
369 		goto out;
370 	}
371 	printk_ratelimited(KERN_ERR
372 	    "BTRFS (device %s): parent transid verify failed on %llu wanted %llu found %llu\n",
373 			eb->fs_info->sb->s_id, eb->start,
374 			parent_transid, btrfs_header_generation(eb));
375 	ret = 1;
376 
377 	/*
378 	 * Things reading via commit roots that don't have normal protection,
379 	 * like send, can have a really old block in cache that may point at a
380 	 * block that has been free'd and re-allocated.  So don't clear uptodate
381 	 * if we find an eb that is under IO (dirty/writeback) because we could
382 	 * end up reading in the stale data and then writing it back out and
383 	 * making everybody very sad.
384 	 */
385 	if (!extent_buffer_under_io(eb))
386 		clear_extent_buffer_uptodate(eb);
387 out:
388 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
389 			     &cached_state, GFP_NOFS);
390 	if (need_lock)
391 		btrfs_tree_read_unlock_blocking(eb);
392 	return ret;
393 }
394 
395 /*
396  * Return 0 if the superblock checksum type matches the checksum value of that
397  * algorithm. Pass the raw disk superblock data.
398  */
btrfs_check_super_csum(char * raw_disk_sb)399 static int btrfs_check_super_csum(char *raw_disk_sb)
400 {
401 	struct btrfs_super_block *disk_sb =
402 		(struct btrfs_super_block *)raw_disk_sb;
403 	u16 csum_type = btrfs_super_csum_type(disk_sb);
404 	int ret = 0;
405 
406 	if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
407 		u32 crc = ~(u32)0;
408 		const int csum_size = sizeof(crc);
409 		char result[csum_size];
410 
411 		/*
412 		 * The super_block structure does not span the whole
413 		 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
414 		 * is filled with zeros and is included in the checkum.
415 		 */
416 		crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
417 				crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
418 		btrfs_csum_final(crc, result);
419 
420 		if (memcmp(raw_disk_sb, result, csum_size))
421 			ret = 1;
422 	}
423 
424 	if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
425 		printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
426 				csum_type);
427 		ret = 1;
428 	}
429 
430 	return ret;
431 }
432 
433 /*
434  * helper to read a given tree block, doing retries as required when
435  * the checksums don't match and we have alternate mirrors to try.
436  */
btree_read_extent_buffer_pages(struct btrfs_root * root,struct extent_buffer * eb,u64 start,u64 parent_transid)437 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
438 					  struct extent_buffer *eb,
439 					  u64 start, u64 parent_transid)
440 {
441 	struct extent_io_tree *io_tree;
442 	int failed = 0;
443 	int ret;
444 	int num_copies = 0;
445 	int mirror_num = 0;
446 	int failed_mirror = 0;
447 
448 	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
449 	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
450 	while (1) {
451 		ret = read_extent_buffer_pages(io_tree, eb, start,
452 					       WAIT_COMPLETE,
453 					       btree_get_extent, mirror_num);
454 		if (!ret) {
455 			if (!verify_parent_transid(io_tree, eb,
456 						   parent_transid, 0))
457 				break;
458 			else
459 				ret = -EIO;
460 		}
461 
462 		/*
463 		 * This buffer's crc is fine, but its contents are corrupted, so
464 		 * there is no reason to read the other copies, they won't be
465 		 * any less wrong.
466 		 */
467 		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
468 			break;
469 
470 		num_copies = btrfs_num_copies(root->fs_info,
471 					      eb->start, eb->len);
472 		if (num_copies == 1)
473 			break;
474 
475 		if (!failed_mirror) {
476 			failed = 1;
477 			failed_mirror = eb->read_mirror;
478 		}
479 
480 		mirror_num++;
481 		if (mirror_num == failed_mirror)
482 			mirror_num++;
483 
484 		if (mirror_num > num_copies)
485 			break;
486 	}
487 
488 	if (failed && !ret && failed_mirror)
489 		repair_eb_io_failure(root, eb, failed_mirror);
490 
491 	return ret;
492 }
493 
494 /*
495  * checksum a dirty tree block before IO.  This has extra checks to make sure
496  * we only fill in the checksum field in the first page of a multi-page block
497  */
498 
csum_dirty_buffer(struct btrfs_fs_info * fs_info,struct page * page)499 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
500 {
501 	u64 start = page_offset(page);
502 	u64 found_start;
503 	struct extent_buffer *eb;
504 
505 	eb = (struct extent_buffer *)page->private;
506 	if (page != eb->pages[0])
507 		return 0;
508 	found_start = btrfs_header_bytenr(eb);
509 	if (WARN_ON(found_start != start || !PageUptodate(page)))
510 		return 0;
511 	csum_tree_block(fs_info, eb, 0);
512 	return 0;
513 }
514 
check_tree_block_fsid(struct btrfs_fs_info * fs_info,struct extent_buffer * eb)515 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
516 				 struct extent_buffer *eb)
517 {
518 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
519 	u8 fsid[BTRFS_UUID_SIZE];
520 	int ret = 1;
521 
522 	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
523 	while (fs_devices) {
524 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
525 			ret = 0;
526 			break;
527 		}
528 		fs_devices = fs_devices->seed;
529 	}
530 	return ret;
531 }
532 
533 #define CORRUPT(reason, eb, root, slot)				\
534 	btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"	\
535 		   "root=%llu, slot=%d", reason,			\
536 	       btrfs_header_bytenr(eb),	root->objectid, slot)
537 
check_leaf(struct btrfs_root * root,struct extent_buffer * leaf)538 static noinline int check_leaf(struct btrfs_root *root,
539 			       struct extent_buffer *leaf)
540 {
541 	struct btrfs_key key;
542 	struct btrfs_key leaf_key;
543 	u32 nritems = btrfs_header_nritems(leaf);
544 	int slot;
545 
546 	if (nritems == 0)
547 		return 0;
548 
549 	/* Check the 0 item */
550 	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
551 	    BTRFS_LEAF_DATA_SIZE(root)) {
552 		CORRUPT("invalid item offset size pair", leaf, root, 0);
553 		return -EIO;
554 	}
555 
556 	/*
557 	 * Check to make sure each items keys are in the correct order and their
558 	 * offsets make sense.  We only have to loop through nritems-1 because
559 	 * we check the current slot against the next slot, which verifies the
560 	 * next slot's offset+size makes sense and that the current's slot
561 	 * offset is correct.
562 	 */
563 	for (slot = 0; slot < nritems - 1; slot++) {
564 		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
565 		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
566 
567 		/* Make sure the keys are in the right order */
568 		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
569 			CORRUPT("bad key order", leaf, root, slot);
570 			return -EIO;
571 		}
572 
573 		/*
574 		 * Make sure the offset and ends are right, remember that the
575 		 * item data starts at the end of the leaf and grows towards the
576 		 * front.
577 		 */
578 		if (btrfs_item_offset_nr(leaf, slot) !=
579 			btrfs_item_end_nr(leaf, slot + 1)) {
580 			CORRUPT("slot offset bad", leaf, root, slot);
581 			return -EIO;
582 		}
583 
584 		/*
585 		 * Check to make sure that we don't point outside of the leaf,
586 		 * just incase all the items are consistent to eachother, but
587 		 * all point outside of the leaf.
588 		 */
589 		if (btrfs_item_end_nr(leaf, slot) >
590 		    BTRFS_LEAF_DATA_SIZE(root)) {
591 			CORRUPT("slot end outside of leaf", leaf, root, slot);
592 			return -EIO;
593 		}
594 	}
595 
596 	return 0;
597 }
598 
btree_readpage_end_io_hook(struct btrfs_io_bio * io_bio,u64 phy_offset,struct page * page,u64 start,u64 end,int mirror)599 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
600 				      u64 phy_offset, struct page *page,
601 				      u64 start, u64 end, int mirror)
602 {
603 	u64 found_start;
604 	int found_level;
605 	struct extent_buffer *eb;
606 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
607 	int ret = 0;
608 	int reads_done;
609 
610 	if (!page->private)
611 		goto out;
612 
613 	eb = (struct extent_buffer *)page->private;
614 
615 	/* the pending IO might have been the only thing that kept this buffer
616 	 * in memory.  Make sure we have a ref for all this other checks
617 	 */
618 	extent_buffer_get(eb);
619 
620 	reads_done = atomic_dec_and_test(&eb->io_pages);
621 	if (!reads_done)
622 		goto err;
623 
624 	eb->read_mirror = mirror;
625 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
626 		ret = -EIO;
627 		goto err;
628 	}
629 
630 	found_start = btrfs_header_bytenr(eb);
631 	if (found_start != eb->start) {
632 		printk_ratelimited(KERN_ERR "BTRFS (device %s): bad tree block start "
633 			       "%llu %llu\n",
634 			       eb->fs_info->sb->s_id, found_start, eb->start);
635 		ret = -EIO;
636 		goto err;
637 	}
638 	if (check_tree_block_fsid(root->fs_info, eb)) {
639 		printk_ratelimited(KERN_ERR "BTRFS (device %s): bad fsid on block %llu\n",
640 			       eb->fs_info->sb->s_id, eb->start);
641 		ret = -EIO;
642 		goto err;
643 	}
644 	found_level = btrfs_header_level(eb);
645 	if (found_level >= BTRFS_MAX_LEVEL) {
646 		btrfs_err(root->fs_info, "bad tree block level %d",
647 			   (int)btrfs_header_level(eb));
648 		ret = -EIO;
649 		goto err;
650 	}
651 
652 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
653 				       eb, found_level);
654 
655 	ret = csum_tree_block(root->fs_info, eb, 1);
656 	if (ret) {
657 		ret = -EIO;
658 		goto err;
659 	}
660 
661 	/*
662 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
663 	 * that we don't try and read the other copies of this block, just
664 	 * return -EIO.
665 	 */
666 	if (found_level == 0 && check_leaf(root, eb)) {
667 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
668 		ret = -EIO;
669 	}
670 
671 	if (!ret)
672 		set_extent_buffer_uptodate(eb);
673 err:
674 	if (reads_done &&
675 	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
676 		btree_readahead_hook(root, eb, eb->start, ret);
677 
678 	if (ret) {
679 		/*
680 		 * our io error hook is going to dec the io pages
681 		 * again, we have to make sure it has something
682 		 * to decrement
683 		 */
684 		atomic_inc(&eb->io_pages);
685 		clear_extent_buffer_uptodate(eb);
686 	}
687 	free_extent_buffer(eb);
688 out:
689 	return ret;
690 }
691 
btree_io_failed_hook(struct page * page,int failed_mirror)692 static int btree_io_failed_hook(struct page *page, int failed_mirror)
693 {
694 	struct extent_buffer *eb;
695 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
696 
697 	eb = (struct extent_buffer *)page->private;
698 	set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
699 	eb->read_mirror = failed_mirror;
700 	atomic_dec(&eb->io_pages);
701 	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
702 		btree_readahead_hook(root, eb, eb->start, -EIO);
703 	return -EIO;	/* we fixed nothing */
704 }
705 
end_workqueue_bio(struct bio * bio,int err)706 static void end_workqueue_bio(struct bio *bio, int err)
707 {
708 	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
709 	struct btrfs_fs_info *fs_info;
710 	struct btrfs_workqueue *wq;
711 	btrfs_work_func_t func;
712 
713 	fs_info = end_io_wq->info;
714 	end_io_wq->error = err;
715 
716 	if (bio->bi_rw & REQ_WRITE) {
717 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
718 			wq = fs_info->endio_meta_write_workers;
719 			func = btrfs_endio_meta_write_helper;
720 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
721 			wq = fs_info->endio_freespace_worker;
722 			func = btrfs_freespace_write_helper;
723 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
724 			wq = fs_info->endio_raid56_workers;
725 			func = btrfs_endio_raid56_helper;
726 		} else {
727 			wq = fs_info->endio_write_workers;
728 			func = btrfs_endio_write_helper;
729 		}
730 	} else {
731 		if (unlikely(end_io_wq->metadata ==
732 			     BTRFS_WQ_ENDIO_DIO_REPAIR)) {
733 			wq = fs_info->endio_repair_workers;
734 			func = btrfs_endio_repair_helper;
735 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
736 			wq = fs_info->endio_raid56_workers;
737 			func = btrfs_endio_raid56_helper;
738 		} else if (end_io_wq->metadata) {
739 			wq = fs_info->endio_meta_workers;
740 			func = btrfs_endio_meta_helper;
741 		} else {
742 			wq = fs_info->endio_workers;
743 			func = btrfs_endio_helper;
744 		}
745 	}
746 
747 	btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
748 	btrfs_queue_work(wq, &end_io_wq->work);
749 }
750 
btrfs_bio_wq_end_io(struct btrfs_fs_info * info,struct bio * bio,enum btrfs_wq_endio_type metadata)751 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
752 			enum btrfs_wq_endio_type metadata)
753 {
754 	struct btrfs_end_io_wq *end_io_wq;
755 
756 	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
757 	if (!end_io_wq)
758 		return -ENOMEM;
759 
760 	end_io_wq->private = bio->bi_private;
761 	end_io_wq->end_io = bio->bi_end_io;
762 	end_io_wq->info = info;
763 	end_io_wq->error = 0;
764 	end_io_wq->bio = bio;
765 	end_io_wq->metadata = metadata;
766 
767 	bio->bi_private = end_io_wq;
768 	bio->bi_end_io = end_workqueue_bio;
769 	return 0;
770 }
771 
btrfs_async_submit_limit(struct btrfs_fs_info * info)772 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
773 {
774 	unsigned long limit = min_t(unsigned long,
775 				    info->thread_pool_size,
776 				    info->fs_devices->open_devices);
777 	return 256 * limit;
778 }
779 
run_one_async_start(struct btrfs_work * work)780 static void run_one_async_start(struct btrfs_work *work)
781 {
782 	struct async_submit_bio *async;
783 	int ret;
784 
785 	async = container_of(work, struct  async_submit_bio, work);
786 	ret = async->submit_bio_start(async->inode, async->rw, async->bio,
787 				      async->mirror_num, async->bio_flags,
788 				      async->bio_offset);
789 	if (ret)
790 		async->error = ret;
791 }
792 
run_one_async_done(struct btrfs_work * work)793 static void run_one_async_done(struct btrfs_work *work)
794 {
795 	struct btrfs_fs_info *fs_info;
796 	struct async_submit_bio *async;
797 	int limit;
798 
799 	async = container_of(work, struct  async_submit_bio, work);
800 	fs_info = BTRFS_I(async->inode)->root->fs_info;
801 
802 	limit = btrfs_async_submit_limit(fs_info);
803 	limit = limit * 2 / 3;
804 
805 	if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
806 	    waitqueue_active(&fs_info->async_submit_wait))
807 		wake_up(&fs_info->async_submit_wait);
808 
809 	/* If an error occured we just want to clean up the bio and move on */
810 	if (async->error) {
811 		bio_endio(async->bio, async->error);
812 		return;
813 	}
814 
815 	async->submit_bio_done(async->inode, async->rw, async->bio,
816 			       async->mirror_num, async->bio_flags,
817 			       async->bio_offset);
818 }
819 
run_one_async_free(struct btrfs_work * work)820 static void run_one_async_free(struct btrfs_work *work)
821 {
822 	struct async_submit_bio *async;
823 
824 	async = container_of(work, struct  async_submit_bio, work);
825 	kfree(async);
826 }
827 
btrfs_wq_submit_bio(struct btrfs_fs_info * fs_info,struct inode * inode,int rw,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset,extent_submit_bio_hook_t * submit_bio_start,extent_submit_bio_hook_t * submit_bio_done)828 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
829 			int rw, struct bio *bio, int mirror_num,
830 			unsigned long bio_flags,
831 			u64 bio_offset,
832 			extent_submit_bio_hook_t *submit_bio_start,
833 			extent_submit_bio_hook_t *submit_bio_done)
834 {
835 	struct async_submit_bio *async;
836 
837 	async = kmalloc(sizeof(*async), GFP_NOFS);
838 	if (!async)
839 		return -ENOMEM;
840 
841 	async->inode = inode;
842 	async->rw = rw;
843 	async->bio = bio;
844 	async->mirror_num = mirror_num;
845 	async->submit_bio_start = submit_bio_start;
846 	async->submit_bio_done = submit_bio_done;
847 
848 	btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
849 			run_one_async_done, run_one_async_free);
850 
851 	async->bio_flags = bio_flags;
852 	async->bio_offset = bio_offset;
853 
854 	async->error = 0;
855 
856 	atomic_inc(&fs_info->nr_async_submits);
857 
858 	if (rw & REQ_SYNC)
859 		btrfs_set_work_high_priority(&async->work);
860 
861 	btrfs_queue_work(fs_info->workers, &async->work);
862 
863 	while (atomic_read(&fs_info->async_submit_draining) &&
864 	      atomic_read(&fs_info->nr_async_submits)) {
865 		wait_event(fs_info->async_submit_wait,
866 			   (atomic_read(&fs_info->nr_async_submits) == 0));
867 	}
868 
869 	return 0;
870 }
871 
btree_csum_one_bio(struct bio * bio)872 static int btree_csum_one_bio(struct bio *bio)
873 {
874 	struct bio_vec *bvec;
875 	struct btrfs_root *root;
876 	int i, ret = 0;
877 
878 	bio_for_each_segment_all(bvec, bio, i) {
879 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
880 		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
881 		if (ret)
882 			break;
883 	}
884 
885 	return ret;
886 }
887 
__btree_submit_bio_start(struct inode * inode,int rw,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset)888 static int __btree_submit_bio_start(struct inode *inode, int rw,
889 				    struct bio *bio, int mirror_num,
890 				    unsigned long bio_flags,
891 				    u64 bio_offset)
892 {
893 	/*
894 	 * when we're called for a write, we're already in the async
895 	 * submission context.  Just jump into btrfs_map_bio
896 	 */
897 	return btree_csum_one_bio(bio);
898 }
899 
__btree_submit_bio_done(struct inode * inode,int rw,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset)900 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
901 				 int mirror_num, unsigned long bio_flags,
902 				 u64 bio_offset)
903 {
904 	int ret;
905 
906 	/*
907 	 * when we're called for a write, we're already in the async
908 	 * submission context.  Just jump into btrfs_map_bio
909 	 */
910 	ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
911 	if (ret)
912 		bio_endio(bio, ret);
913 	return ret;
914 }
915 
check_async_write(struct inode * inode,unsigned long bio_flags)916 static int check_async_write(struct inode *inode, unsigned long bio_flags)
917 {
918 	if (bio_flags & EXTENT_BIO_TREE_LOG)
919 		return 0;
920 #ifdef CONFIG_X86
921 	if (cpu_has_xmm4_2)
922 		return 0;
923 #endif
924 	return 1;
925 }
926 
btree_submit_bio_hook(struct inode * inode,int rw,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset)927 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
928 				 int mirror_num, unsigned long bio_flags,
929 				 u64 bio_offset)
930 {
931 	int async = check_async_write(inode, bio_flags);
932 	int ret;
933 
934 	if (!(rw & REQ_WRITE)) {
935 		/*
936 		 * called for a read, do the setup so that checksum validation
937 		 * can happen in the async kernel threads
938 		 */
939 		ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
940 					  bio, BTRFS_WQ_ENDIO_METADATA);
941 		if (ret)
942 			goto out_w_error;
943 		ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
944 				    mirror_num, 0);
945 	} else if (!async) {
946 		ret = btree_csum_one_bio(bio);
947 		if (ret)
948 			goto out_w_error;
949 		ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
950 				    mirror_num, 0);
951 	} else {
952 		/*
953 		 * kthread helpers are used to submit writes so that
954 		 * checksumming can happen in parallel across all CPUs
955 		 */
956 		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
957 					  inode, rw, bio, mirror_num, 0,
958 					  bio_offset,
959 					  __btree_submit_bio_start,
960 					  __btree_submit_bio_done);
961 	}
962 
963 	if (ret) {
964 out_w_error:
965 		bio_endio(bio, ret);
966 	}
967 	return ret;
968 }
969 
970 #ifdef CONFIG_MIGRATION
btree_migratepage(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)971 static int btree_migratepage(struct address_space *mapping,
972 			struct page *newpage, struct page *page,
973 			enum migrate_mode mode)
974 {
975 	/*
976 	 * we can't safely write a btree page from here,
977 	 * we haven't done the locking hook
978 	 */
979 	if (PageDirty(page))
980 		return -EAGAIN;
981 	/*
982 	 * Buffers may be managed in a filesystem specific way.
983 	 * We must have no buffers or drop them.
984 	 */
985 	if (page_has_private(page) &&
986 	    !try_to_release_page(page, GFP_KERNEL))
987 		return -EAGAIN;
988 	return migrate_page(mapping, newpage, page, mode);
989 }
990 #endif
991 
992 
btree_writepages(struct address_space * mapping,struct writeback_control * wbc)993 static int btree_writepages(struct address_space *mapping,
994 			    struct writeback_control *wbc)
995 {
996 	struct btrfs_fs_info *fs_info;
997 	int ret;
998 
999 	if (wbc->sync_mode == WB_SYNC_NONE) {
1000 
1001 		if (wbc->for_kupdate)
1002 			return 0;
1003 
1004 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
1005 		/* this is a bit racy, but that's ok */
1006 		ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1007 					     BTRFS_DIRTY_METADATA_THRESH);
1008 		if (ret < 0)
1009 			return 0;
1010 	}
1011 	return btree_write_cache_pages(mapping, wbc);
1012 }
1013 
btree_readpage(struct file * file,struct page * page)1014 static int btree_readpage(struct file *file, struct page *page)
1015 {
1016 	struct extent_io_tree *tree;
1017 	tree = &BTRFS_I(page->mapping->host)->io_tree;
1018 	return extent_read_full_page(tree, page, btree_get_extent, 0);
1019 }
1020 
btree_releasepage(struct page * page,gfp_t gfp_flags)1021 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1022 {
1023 	if (PageWriteback(page) || PageDirty(page))
1024 		return 0;
1025 
1026 	return try_release_extent_buffer(page);
1027 }
1028 
btree_invalidatepage(struct page * page,unsigned int offset,unsigned int length)1029 static void btree_invalidatepage(struct page *page, unsigned int offset,
1030 				 unsigned int length)
1031 {
1032 	struct extent_io_tree *tree;
1033 	tree = &BTRFS_I(page->mapping->host)->io_tree;
1034 	extent_invalidatepage(tree, page, offset);
1035 	btree_releasepage(page, GFP_NOFS);
1036 	if (PagePrivate(page)) {
1037 		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1038 			   "page private not zero on page %llu",
1039 			   (unsigned long long)page_offset(page));
1040 		ClearPagePrivate(page);
1041 		set_page_private(page, 0);
1042 		page_cache_release(page);
1043 	}
1044 }
1045 
btree_set_page_dirty(struct page * page)1046 static int btree_set_page_dirty(struct page *page)
1047 {
1048 #ifdef DEBUG
1049 	struct extent_buffer *eb;
1050 
1051 	BUG_ON(!PagePrivate(page));
1052 	eb = (struct extent_buffer *)page->private;
1053 	BUG_ON(!eb);
1054 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1055 	BUG_ON(!atomic_read(&eb->refs));
1056 	btrfs_assert_tree_locked(eb);
1057 #endif
1058 	return __set_page_dirty_nobuffers(page);
1059 }
1060 
1061 static const struct address_space_operations btree_aops = {
1062 	.readpage	= btree_readpage,
1063 	.writepages	= btree_writepages,
1064 	.releasepage	= btree_releasepage,
1065 	.invalidatepage = btree_invalidatepage,
1066 #ifdef CONFIG_MIGRATION
1067 	.migratepage	= btree_migratepage,
1068 #endif
1069 	.set_page_dirty = btree_set_page_dirty,
1070 };
1071 
readahead_tree_block(struct btrfs_root * root,u64 bytenr)1072 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1073 {
1074 	struct extent_buffer *buf = NULL;
1075 	struct inode *btree_inode = root->fs_info->btree_inode;
1076 
1077 	buf = btrfs_find_create_tree_block(root, bytenr);
1078 	if (!buf)
1079 		return;
1080 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1081 				 buf, 0, WAIT_NONE, btree_get_extent, 0);
1082 	free_extent_buffer(buf);
1083 }
1084 
reada_tree_block_flagged(struct btrfs_root * root,u64 bytenr,int mirror_num,struct extent_buffer ** eb)1085 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1086 			 int mirror_num, struct extent_buffer **eb)
1087 {
1088 	struct extent_buffer *buf = NULL;
1089 	struct inode *btree_inode = root->fs_info->btree_inode;
1090 	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1091 	int ret;
1092 
1093 	buf = btrfs_find_create_tree_block(root, bytenr);
1094 	if (!buf)
1095 		return 0;
1096 
1097 	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1098 
1099 	ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1100 				       btree_get_extent, mirror_num);
1101 	if (ret) {
1102 		free_extent_buffer(buf);
1103 		return ret;
1104 	}
1105 
1106 	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1107 		free_extent_buffer(buf);
1108 		return -EIO;
1109 	} else if (extent_buffer_uptodate(buf)) {
1110 		*eb = buf;
1111 	} else {
1112 		free_extent_buffer(buf);
1113 	}
1114 	return 0;
1115 }
1116 
btrfs_find_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr)1117 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1118 					    u64 bytenr)
1119 {
1120 	return find_extent_buffer(fs_info, bytenr);
1121 }
1122 
btrfs_find_create_tree_block(struct btrfs_root * root,u64 bytenr)1123 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1124 						 u64 bytenr)
1125 {
1126 	if (btrfs_test_is_dummy_root(root))
1127 		return alloc_test_extent_buffer(root->fs_info, bytenr);
1128 	return alloc_extent_buffer(root->fs_info, bytenr);
1129 }
1130 
1131 
btrfs_write_tree_block(struct extent_buffer * buf)1132 int btrfs_write_tree_block(struct extent_buffer *buf)
1133 {
1134 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1135 					buf->start + buf->len - 1);
1136 }
1137 
btrfs_wait_tree_block_writeback(struct extent_buffer * buf)1138 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1139 {
1140 	return filemap_fdatawait_range(buf->pages[0]->mapping,
1141 				       buf->start, buf->start + buf->len - 1);
1142 }
1143 
read_tree_block(struct btrfs_root * root,u64 bytenr,u64 parent_transid)1144 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1145 				      u64 parent_transid)
1146 {
1147 	struct extent_buffer *buf = NULL;
1148 	int ret;
1149 
1150 	buf = btrfs_find_create_tree_block(root, bytenr);
1151 	if (!buf)
1152 		return NULL;
1153 
1154 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1155 	if (ret) {
1156 		free_extent_buffer(buf);
1157 		return NULL;
1158 	}
1159 	return buf;
1160 
1161 }
1162 
clean_tree_block(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,struct extent_buffer * buf)1163 void clean_tree_block(struct btrfs_trans_handle *trans,
1164 		      struct btrfs_fs_info *fs_info,
1165 		      struct extent_buffer *buf)
1166 {
1167 	if (btrfs_header_generation(buf) ==
1168 	    fs_info->running_transaction->transid) {
1169 		btrfs_assert_tree_locked(buf);
1170 
1171 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1172 			__percpu_counter_add(&fs_info->dirty_metadata_bytes,
1173 					     -buf->len,
1174 					     fs_info->dirty_metadata_batch);
1175 			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1176 			btrfs_set_lock_blocking(buf);
1177 			clear_extent_buffer_dirty(buf);
1178 		}
1179 	}
1180 }
1181 
btrfs_alloc_subvolume_writers(void)1182 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1183 {
1184 	struct btrfs_subvolume_writers *writers;
1185 	int ret;
1186 
1187 	writers = kmalloc(sizeof(*writers), GFP_NOFS);
1188 	if (!writers)
1189 		return ERR_PTR(-ENOMEM);
1190 
1191 	ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1192 	if (ret < 0) {
1193 		kfree(writers);
1194 		return ERR_PTR(ret);
1195 	}
1196 
1197 	init_waitqueue_head(&writers->wait);
1198 	return writers;
1199 }
1200 
1201 static void
btrfs_free_subvolume_writers(struct btrfs_subvolume_writers * writers)1202 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1203 {
1204 	percpu_counter_destroy(&writers->counter);
1205 	kfree(writers);
1206 }
1207 
__setup_root(u32 nodesize,u32 sectorsize,u32 stripesize,struct btrfs_root * root,struct btrfs_fs_info * fs_info,u64 objectid)1208 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1209 			 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1210 			 u64 objectid)
1211 {
1212 	root->node = NULL;
1213 	root->commit_root = NULL;
1214 	root->sectorsize = sectorsize;
1215 	root->nodesize = nodesize;
1216 	root->stripesize = stripesize;
1217 	root->state = 0;
1218 	root->orphan_cleanup_state = 0;
1219 
1220 	root->objectid = objectid;
1221 	root->last_trans = 0;
1222 	root->highest_objectid = 0;
1223 	root->nr_delalloc_inodes = 0;
1224 	root->nr_ordered_extents = 0;
1225 	root->name = NULL;
1226 	root->inode_tree = RB_ROOT;
1227 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1228 	root->block_rsv = NULL;
1229 	root->orphan_block_rsv = NULL;
1230 
1231 	INIT_LIST_HEAD(&root->dirty_list);
1232 	INIT_LIST_HEAD(&root->root_list);
1233 	INIT_LIST_HEAD(&root->delalloc_inodes);
1234 	INIT_LIST_HEAD(&root->delalloc_root);
1235 	INIT_LIST_HEAD(&root->ordered_extents);
1236 	INIT_LIST_HEAD(&root->ordered_root);
1237 	INIT_LIST_HEAD(&root->logged_list[0]);
1238 	INIT_LIST_HEAD(&root->logged_list[1]);
1239 	spin_lock_init(&root->orphan_lock);
1240 	spin_lock_init(&root->inode_lock);
1241 	spin_lock_init(&root->delalloc_lock);
1242 	spin_lock_init(&root->ordered_extent_lock);
1243 	spin_lock_init(&root->accounting_lock);
1244 	spin_lock_init(&root->log_extents_lock[0]);
1245 	spin_lock_init(&root->log_extents_lock[1]);
1246 	mutex_init(&root->objectid_mutex);
1247 	mutex_init(&root->log_mutex);
1248 	mutex_init(&root->ordered_extent_mutex);
1249 	mutex_init(&root->delalloc_mutex);
1250 	init_waitqueue_head(&root->log_writer_wait);
1251 	init_waitqueue_head(&root->log_commit_wait[0]);
1252 	init_waitqueue_head(&root->log_commit_wait[1]);
1253 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1254 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1255 	atomic_set(&root->log_commit[0], 0);
1256 	atomic_set(&root->log_commit[1], 0);
1257 	atomic_set(&root->log_writers, 0);
1258 	atomic_set(&root->log_batch, 0);
1259 	atomic_set(&root->orphan_inodes, 0);
1260 	atomic_set(&root->refs, 1);
1261 	atomic_set(&root->will_be_snapshoted, 0);
1262 	root->log_transid = 0;
1263 	root->log_transid_committed = -1;
1264 	root->last_log_commit = 0;
1265 	if (fs_info)
1266 		extent_io_tree_init(&root->dirty_log_pages,
1267 				     fs_info->btree_inode->i_mapping);
1268 
1269 	memset(&root->root_key, 0, sizeof(root->root_key));
1270 	memset(&root->root_item, 0, sizeof(root->root_item));
1271 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1272 	if (fs_info)
1273 		root->defrag_trans_start = fs_info->generation;
1274 	else
1275 		root->defrag_trans_start = 0;
1276 	root->root_key.objectid = objectid;
1277 	root->anon_dev = 0;
1278 
1279 	spin_lock_init(&root->root_item_lock);
1280 }
1281 
btrfs_alloc_root(struct btrfs_fs_info * fs_info)1282 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1283 {
1284 	struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1285 	if (root)
1286 		root->fs_info = fs_info;
1287 	return root;
1288 }
1289 
1290 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1291 /* Should only be used by the testing infrastructure */
btrfs_alloc_dummy_root(void)1292 struct btrfs_root *btrfs_alloc_dummy_root(void)
1293 {
1294 	struct btrfs_root *root;
1295 
1296 	root = btrfs_alloc_root(NULL);
1297 	if (!root)
1298 		return ERR_PTR(-ENOMEM);
1299 	__setup_root(4096, 4096, 4096, root, NULL, 1);
1300 	set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1301 	root->alloc_bytenr = 0;
1302 
1303 	return root;
1304 }
1305 #endif
1306 
btrfs_create_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 objectid)1307 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1308 				     struct btrfs_fs_info *fs_info,
1309 				     u64 objectid)
1310 {
1311 	struct extent_buffer *leaf;
1312 	struct btrfs_root *tree_root = fs_info->tree_root;
1313 	struct btrfs_root *root;
1314 	struct btrfs_key key;
1315 	int ret = 0;
1316 	uuid_le uuid;
1317 
1318 	root = btrfs_alloc_root(fs_info);
1319 	if (!root)
1320 		return ERR_PTR(-ENOMEM);
1321 
1322 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1323 		tree_root->stripesize, root, fs_info, objectid);
1324 	root->root_key.objectid = objectid;
1325 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1326 	root->root_key.offset = 0;
1327 
1328 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1329 	if (IS_ERR(leaf)) {
1330 		ret = PTR_ERR(leaf);
1331 		leaf = NULL;
1332 		goto fail;
1333 	}
1334 
1335 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1336 	btrfs_set_header_bytenr(leaf, leaf->start);
1337 	btrfs_set_header_generation(leaf, trans->transid);
1338 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1339 	btrfs_set_header_owner(leaf, objectid);
1340 	root->node = leaf;
1341 
1342 	write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1343 			    BTRFS_FSID_SIZE);
1344 	write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1345 			    btrfs_header_chunk_tree_uuid(leaf),
1346 			    BTRFS_UUID_SIZE);
1347 	btrfs_mark_buffer_dirty(leaf);
1348 
1349 	root->commit_root = btrfs_root_node(root);
1350 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1351 
1352 	root->root_item.flags = 0;
1353 	root->root_item.byte_limit = 0;
1354 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1355 	btrfs_set_root_generation(&root->root_item, trans->transid);
1356 	btrfs_set_root_level(&root->root_item, 0);
1357 	btrfs_set_root_refs(&root->root_item, 1);
1358 	btrfs_set_root_used(&root->root_item, leaf->len);
1359 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1360 	btrfs_set_root_dirid(&root->root_item, 0);
1361 	uuid_le_gen(&uuid);
1362 	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1363 	root->root_item.drop_level = 0;
1364 
1365 	key.objectid = objectid;
1366 	key.type = BTRFS_ROOT_ITEM_KEY;
1367 	key.offset = 0;
1368 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1369 	if (ret)
1370 		goto fail;
1371 
1372 	btrfs_tree_unlock(leaf);
1373 
1374 	return root;
1375 
1376 fail:
1377 	if (leaf) {
1378 		btrfs_tree_unlock(leaf);
1379 		free_extent_buffer(root->commit_root);
1380 		free_extent_buffer(leaf);
1381 	}
1382 	kfree(root);
1383 
1384 	return ERR_PTR(ret);
1385 }
1386 
alloc_log_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1387 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1388 					 struct btrfs_fs_info *fs_info)
1389 {
1390 	struct btrfs_root *root;
1391 	struct btrfs_root *tree_root = fs_info->tree_root;
1392 	struct extent_buffer *leaf;
1393 
1394 	root = btrfs_alloc_root(fs_info);
1395 	if (!root)
1396 		return ERR_PTR(-ENOMEM);
1397 
1398 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1399 		     tree_root->stripesize, root, fs_info,
1400 		     BTRFS_TREE_LOG_OBJECTID);
1401 
1402 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1403 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1404 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1405 
1406 	/*
1407 	 * DON'T set REF_COWS for log trees
1408 	 *
1409 	 * log trees do not get reference counted because they go away
1410 	 * before a real commit is actually done.  They do store pointers
1411 	 * to file data extents, and those reference counts still get
1412 	 * updated (along with back refs to the log tree).
1413 	 */
1414 
1415 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1416 			NULL, 0, 0, 0);
1417 	if (IS_ERR(leaf)) {
1418 		kfree(root);
1419 		return ERR_CAST(leaf);
1420 	}
1421 
1422 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1423 	btrfs_set_header_bytenr(leaf, leaf->start);
1424 	btrfs_set_header_generation(leaf, trans->transid);
1425 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1426 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1427 	root->node = leaf;
1428 
1429 	write_extent_buffer(root->node, root->fs_info->fsid,
1430 			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
1431 	btrfs_mark_buffer_dirty(root->node);
1432 	btrfs_tree_unlock(root->node);
1433 	return root;
1434 }
1435 
btrfs_init_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1436 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1437 			     struct btrfs_fs_info *fs_info)
1438 {
1439 	struct btrfs_root *log_root;
1440 
1441 	log_root = alloc_log_tree(trans, fs_info);
1442 	if (IS_ERR(log_root))
1443 		return PTR_ERR(log_root);
1444 	WARN_ON(fs_info->log_root_tree);
1445 	fs_info->log_root_tree = log_root;
1446 	return 0;
1447 }
1448 
btrfs_add_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root)1449 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1450 		       struct btrfs_root *root)
1451 {
1452 	struct btrfs_root *log_root;
1453 	struct btrfs_inode_item *inode_item;
1454 
1455 	log_root = alloc_log_tree(trans, root->fs_info);
1456 	if (IS_ERR(log_root))
1457 		return PTR_ERR(log_root);
1458 
1459 	log_root->last_trans = trans->transid;
1460 	log_root->root_key.offset = root->root_key.objectid;
1461 
1462 	inode_item = &log_root->root_item.inode;
1463 	btrfs_set_stack_inode_generation(inode_item, 1);
1464 	btrfs_set_stack_inode_size(inode_item, 3);
1465 	btrfs_set_stack_inode_nlink(inode_item, 1);
1466 	btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1467 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1468 
1469 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1470 
1471 	WARN_ON(root->log_root);
1472 	root->log_root = log_root;
1473 	root->log_transid = 0;
1474 	root->log_transid_committed = -1;
1475 	root->last_log_commit = 0;
1476 	return 0;
1477 }
1478 
btrfs_read_tree_root(struct btrfs_root * tree_root,struct btrfs_key * key)1479 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1480 					       struct btrfs_key *key)
1481 {
1482 	struct btrfs_root *root;
1483 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1484 	struct btrfs_path *path;
1485 	u64 generation;
1486 	int ret;
1487 
1488 	path = btrfs_alloc_path();
1489 	if (!path)
1490 		return ERR_PTR(-ENOMEM);
1491 
1492 	root = btrfs_alloc_root(fs_info);
1493 	if (!root) {
1494 		ret = -ENOMEM;
1495 		goto alloc_fail;
1496 	}
1497 
1498 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1499 		tree_root->stripesize, root, fs_info, key->objectid);
1500 
1501 	ret = btrfs_find_root(tree_root, key, path,
1502 			      &root->root_item, &root->root_key);
1503 	if (ret) {
1504 		if (ret > 0)
1505 			ret = -ENOENT;
1506 		goto find_fail;
1507 	}
1508 
1509 	generation = btrfs_root_generation(&root->root_item);
1510 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1511 				     generation);
1512 	if (!root->node) {
1513 		ret = -ENOMEM;
1514 		goto find_fail;
1515 	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1516 		ret = -EIO;
1517 		goto read_fail;
1518 	}
1519 	root->commit_root = btrfs_root_node(root);
1520 out:
1521 	btrfs_free_path(path);
1522 	return root;
1523 
1524 read_fail:
1525 	free_extent_buffer(root->node);
1526 find_fail:
1527 	kfree(root);
1528 alloc_fail:
1529 	root = ERR_PTR(ret);
1530 	goto out;
1531 }
1532 
btrfs_read_fs_root(struct btrfs_root * tree_root,struct btrfs_key * location)1533 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1534 				      struct btrfs_key *location)
1535 {
1536 	struct btrfs_root *root;
1537 
1538 	root = btrfs_read_tree_root(tree_root, location);
1539 	if (IS_ERR(root))
1540 		return root;
1541 
1542 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1543 		set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1544 		btrfs_check_and_init_root_item(&root->root_item);
1545 	}
1546 
1547 	return root;
1548 }
1549 
btrfs_init_fs_root(struct btrfs_root * root)1550 int btrfs_init_fs_root(struct btrfs_root *root)
1551 {
1552 	int ret;
1553 	struct btrfs_subvolume_writers *writers;
1554 
1555 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1556 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1557 					GFP_NOFS);
1558 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1559 		ret = -ENOMEM;
1560 		goto fail;
1561 	}
1562 
1563 	writers = btrfs_alloc_subvolume_writers();
1564 	if (IS_ERR(writers)) {
1565 		ret = PTR_ERR(writers);
1566 		goto fail;
1567 	}
1568 	root->subv_writers = writers;
1569 
1570 	btrfs_init_free_ino_ctl(root);
1571 	spin_lock_init(&root->ino_cache_lock);
1572 	init_waitqueue_head(&root->ino_cache_wait);
1573 
1574 	ret = get_anon_bdev(&root->anon_dev);
1575 	if (ret)
1576 		goto free_writers;
1577 
1578 	mutex_lock(&root->objectid_mutex);
1579 	ret = btrfs_find_highest_objectid(root,
1580 					&root->highest_objectid);
1581 	if (ret) {
1582 		mutex_unlock(&root->objectid_mutex);
1583 		goto free_root_dev;
1584 	}
1585 
1586 	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1587 
1588 	mutex_unlock(&root->objectid_mutex);
1589 
1590 	return 0;
1591 
1592 free_root_dev:
1593 	free_anon_bdev(root->anon_dev);
1594 free_writers:
1595 	btrfs_free_subvolume_writers(root->subv_writers);
1596 fail:
1597 	kfree(root->free_ino_ctl);
1598 	kfree(root->free_ino_pinned);
1599 	return ret;
1600 }
1601 
btrfs_lookup_fs_root(struct btrfs_fs_info * fs_info,u64 root_id)1602 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1603 					       u64 root_id)
1604 {
1605 	struct btrfs_root *root;
1606 
1607 	spin_lock(&fs_info->fs_roots_radix_lock);
1608 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1609 				 (unsigned long)root_id);
1610 	spin_unlock(&fs_info->fs_roots_radix_lock);
1611 	return root;
1612 }
1613 
btrfs_insert_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)1614 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1615 			 struct btrfs_root *root)
1616 {
1617 	int ret;
1618 
1619 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1620 	if (ret)
1621 		return ret;
1622 
1623 	spin_lock(&fs_info->fs_roots_radix_lock);
1624 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1625 				(unsigned long)root->root_key.objectid,
1626 				root);
1627 	if (ret == 0)
1628 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1629 	spin_unlock(&fs_info->fs_roots_radix_lock);
1630 	radix_tree_preload_end();
1631 
1632 	return ret;
1633 }
1634 
btrfs_get_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_key * location,bool check_ref)1635 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1636 				     struct btrfs_key *location,
1637 				     bool check_ref)
1638 {
1639 	struct btrfs_root *root;
1640 	struct btrfs_path *path;
1641 	struct btrfs_key key;
1642 	int ret;
1643 
1644 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1645 		return fs_info->tree_root;
1646 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1647 		return fs_info->extent_root;
1648 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1649 		return fs_info->chunk_root;
1650 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1651 		return fs_info->dev_root;
1652 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1653 		return fs_info->csum_root;
1654 	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1655 		return fs_info->quota_root ? fs_info->quota_root :
1656 					     ERR_PTR(-ENOENT);
1657 	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1658 		return fs_info->uuid_root ? fs_info->uuid_root :
1659 					    ERR_PTR(-ENOENT);
1660 again:
1661 	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1662 	if (root) {
1663 		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1664 			return ERR_PTR(-ENOENT);
1665 		return root;
1666 	}
1667 
1668 	root = btrfs_read_fs_root(fs_info->tree_root, location);
1669 	if (IS_ERR(root))
1670 		return root;
1671 
1672 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1673 		ret = -ENOENT;
1674 		goto fail;
1675 	}
1676 
1677 	ret = btrfs_init_fs_root(root);
1678 	if (ret)
1679 		goto fail;
1680 
1681 	path = btrfs_alloc_path();
1682 	if (!path) {
1683 		ret = -ENOMEM;
1684 		goto fail;
1685 	}
1686 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1687 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1688 	key.offset = location->objectid;
1689 
1690 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1691 	btrfs_free_path(path);
1692 	if (ret < 0)
1693 		goto fail;
1694 	if (ret == 0)
1695 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1696 
1697 	ret = btrfs_insert_fs_root(fs_info, root);
1698 	if (ret) {
1699 		if (ret == -EEXIST) {
1700 			free_fs_root(root);
1701 			goto again;
1702 		}
1703 		goto fail;
1704 	}
1705 	return root;
1706 fail:
1707 	free_fs_root(root);
1708 	return ERR_PTR(ret);
1709 }
1710 
btrfs_congested_fn(void * congested_data,int bdi_bits)1711 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1712 {
1713 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1714 	int ret = 0;
1715 	struct btrfs_device *device;
1716 	struct backing_dev_info *bdi;
1717 
1718 	rcu_read_lock();
1719 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1720 		if (!device->bdev)
1721 			continue;
1722 		bdi = blk_get_backing_dev_info(device->bdev);
1723 		if (bdi_congested(bdi, bdi_bits)) {
1724 			ret = 1;
1725 			break;
1726 		}
1727 	}
1728 	rcu_read_unlock();
1729 	return ret;
1730 }
1731 
setup_bdi(struct btrfs_fs_info * info,struct backing_dev_info * bdi)1732 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1733 {
1734 	int err;
1735 
1736 	err = bdi_setup_and_register(bdi, "btrfs");
1737 	if (err)
1738 		return err;
1739 
1740 	bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE;
1741 	bdi->congested_fn	= btrfs_congested_fn;
1742 	bdi->congested_data	= info;
1743 	return 0;
1744 }
1745 
1746 /*
1747  * called by the kthread helper functions to finally call the bio end_io
1748  * functions.  This is where read checksum verification actually happens
1749  */
end_workqueue_fn(struct btrfs_work * work)1750 static void end_workqueue_fn(struct btrfs_work *work)
1751 {
1752 	struct bio *bio;
1753 	struct btrfs_end_io_wq *end_io_wq;
1754 	int error;
1755 
1756 	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1757 	bio = end_io_wq->bio;
1758 
1759 	error = end_io_wq->error;
1760 	bio->bi_private = end_io_wq->private;
1761 	bio->bi_end_io = end_io_wq->end_io;
1762 	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1763 	bio_endio_nodec(bio, error);
1764 }
1765 
cleaner_kthread(void * arg)1766 static int cleaner_kthread(void *arg)
1767 {
1768 	struct btrfs_root *root = arg;
1769 	int again;
1770 
1771 	do {
1772 		again = 0;
1773 
1774 		/* Make the cleaner go to sleep early. */
1775 		if (btrfs_need_cleaner_sleep(root))
1776 			goto sleep;
1777 
1778 		if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1779 			goto sleep;
1780 
1781 		/*
1782 		 * Avoid the problem that we change the status of the fs
1783 		 * during the above check and trylock.
1784 		 */
1785 		if (btrfs_need_cleaner_sleep(root)) {
1786 			mutex_unlock(&root->fs_info->cleaner_mutex);
1787 			goto sleep;
1788 		}
1789 
1790 		mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
1791 		btrfs_run_delayed_iputs(root);
1792 		btrfs_delete_unused_bgs(root->fs_info);
1793 		mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
1794 
1795 		again = btrfs_clean_one_deleted_snapshot(root);
1796 		mutex_unlock(&root->fs_info->cleaner_mutex);
1797 
1798 		/*
1799 		 * The defragger has dealt with the R/O remount and umount,
1800 		 * needn't do anything special here.
1801 		 */
1802 		btrfs_run_defrag_inodes(root->fs_info);
1803 sleep:
1804 		if (!try_to_freeze() && !again) {
1805 			set_current_state(TASK_INTERRUPTIBLE);
1806 			if (!kthread_should_stop())
1807 				schedule();
1808 			__set_current_state(TASK_RUNNING);
1809 		}
1810 	} while (!kthread_should_stop());
1811 	return 0;
1812 }
1813 
transaction_kthread(void * arg)1814 static int transaction_kthread(void *arg)
1815 {
1816 	struct btrfs_root *root = arg;
1817 	struct btrfs_trans_handle *trans;
1818 	struct btrfs_transaction *cur;
1819 	u64 transid;
1820 	unsigned long now;
1821 	unsigned long delay;
1822 	bool cannot_commit;
1823 
1824 	do {
1825 		cannot_commit = false;
1826 		delay = HZ * root->fs_info->commit_interval;
1827 		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1828 
1829 		spin_lock(&root->fs_info->trans_lock);
1830 		cur = root->fs_info->running_transaction;
1831 		if (!cur) {
1832 			spin_unlock(&root->fs_info->trans_lock);
1833 			goto sleep;
1834 		}
1835 
1836 		now = get_seconds();
1837 		if (cur->state < TRANS_STATE_BLOCKED &&
1838 		    (now < cur->start_time ||
1839 		     now - cur->start_time < root->fs_info->commit_interval)) {
1840 			spin_unlock(&root->fs_info->trans_lock);
1841 			delay = HZ * 5;
1842 			goto sleep;
1843 		}
1844 		transid = cur->transid;
1845 		spin_unlock(&root->fs_info->trans_lock);
1846 
1847 		/* If the file system is aborted, this will always fail. */
1848 		trans = btrfs_attach_transaction(root);
1849 		if (IS_ERR(trans)) {
1850 			if (PTR_ERR(trans) != -ENOENT)
1851 				cannot_commit = true;
1852 			goto sleep;
1853 		}
1854 		if (transid == trans->transid) {
1855 			btrfs_commit_transaction(trans, root);
1856 		} else {
1857 			btrfs_end_transaction(trans, root);
1858 		}
1859 sleep:
1860 		wake_up_process(root->fs_info->cleaner_kthread);
1861 		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1862 
1863 		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1864 				      &root->fs_info->fs_state)))
1865 			btrfs_cleanup_transaction(root);
1866 		if (!try_to_freeze()) {
1867 			set_current_state(TASK_INTERRUPTIBLE);
1868 			if (!kthread_should_stop() &&
1869 			    (!btrfs_transaction_blocked(root->fs_info) ||
1870 			     cannot_commit))
1871 				schedule_timeout(delay);
1872 			__set_current_state(TASK_RUNNING);
1873 		}
1874 	} while (!kthread_should_stop());
1875 	return 0;
1876 }
1877 
1878 /*
1879  * this will find the highest generation in the array of
1880  * root backups.  The index of the highest array is returned,
1881  * or -1 if we can't find anything.
1882  *
1883  * We check to make sure the array is valid by comparing the
1884  * generation of the latest  root in the array with the generation
1885  * in the super block.  If they don't match we pitch it.
1886  */
find_newest_super_backup(struct btrfs_fs_info * info,u64 newest_gen)1887 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1888 {
1889 	u64 cur;
1890 	int newest_index = -1;
1891 	struct btrfs_root_backup *root_backup;
1892 	int i;
1893 
1894 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1895 		root_backup = info->super_copy->super_roots + i;
1896 		cur = btrfs_backup_tree_root_gen(root_backup);
1897 		if (cur == newest_gen)
1898 			newest_index = i;
1899 	}
1900 
1901 	/* check to see if we actually wrapped around */
1902 	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1903 		root_backup = info->super_copy->super_roots;
1904 		cur = btrfs_backup_tree_root_gen(root_backup);
1905 		if (cur == newest_gen)
1906 			newest_index = 0;
1907 	}
1908 	return newest_index;
1909 }
1910 
1911 
1912 /*
1913  * find the oldest backup so we know where to store new entries
1914  * in the backup array.  This will set the backup_root_index
1915  * field in the fs_info struct
1916  */
find_oldest_super_backup(struct btrfs_fs_info * info,u64 newest_gen)1917 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1918 				     u64 newest_gen)
1919 {
1920 	int newest_index = -1;
1921 
1922 	newest_index = find_newest_super_backup(info, newest_gen);
1923 	/* if there was garbage in there, just move along */
1924 	if (newest_index == -1) {
1925 		info->backup_root_index = 0;
1926 	} else {
1927 		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1928 	}
1929 }
1930 
1931 /*
1932  * copy all the root pointers into the super backup array.
1933  * this will bump the backup pointer by one when it is
1934  * done
1935  */
backup_super_roots(struct btrfs_fs_info * info)1936 static void backup_super_roots(struct btrfs_fs_info *info)
1937 {
1938 	int next_backup;
1939 	struct btrfs_root_backup *root_backup;
1940 	int last_backup;
1941 
1942 	next_backup = info->backup_root_index;
1943 	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1944 		BTRFS_NUM_BACKUP_ROOTS;
1945 
1946 	/*
1947 	 * just overwrite the last backup if we're at the same generation
1948 	 * this happens only at umount
1949 	 */
1950 	root_backup = info->super_for_commit->super_roots + last_backup;
1951 	if (btrfs_backup_tree_root_gen(root_backup) ==
1952 	    btrfs_header_generation(info->tree_root->node))
1953 		next_backup = last_backup;
1954 
1955 	root_backup = info->super_for_commit->super_roots + next_backup;
1956 
1957 	/*
1958 	 * make sure all of our padding and empty slots get zero filled
1959 	 * regardless of which ones we use today
1960 	 */
1961 	memset(root_backup, 0, sizeof(*root_backup));
1962 
1963 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1964 
1965 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1966 	btrfs_set_backup_tree_root_gen(root_backup,
1967 			       btrfs_header_generation(info->tree_root->node));
1968 
1969 	btrfs_set_backup_tree_root_level(root_backup,
1970 			       btrfs_header_level(info->tree_root->node));
1971 
1972 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1973 	btrfs_set_backup_chunk_root_gen(root_backup,
1974 			       btrfs_header_generation(info->chunk_root->node));
1975 	btrfs_set_backup_chunk_root_level(root_backup,
1976 			       btrfs_header_level(info->chunk_root->node));
1977 
1978 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1979 	btrfs_set_backup_extent_root_gen(root_backup,
1980 			       btrfs_header_generation(info->extent_root->node));
1981 	btrfs_set_backup_extent_root_level(root_backup,
1982 			       btrfs_header_level(info->extent_root->node));
1983 
1984 	/*
1985 	 * we might commit during log recovery, which happens before we set
1986 	 * the fs_root.  Make sure it is valid before we fill it in.
1987 	 */
1988 	if (info->fs_root && info->fs_root->node) {
1989 		btrfs_set_backup_fs_root(root_backup,
1990 					 info->fs_root->node->start);
1991 		btrfs_set_backup_fs_root_gen(root_backup,
1992 			       btrfs_header_generation(info->fs_root->node));
1993 		btrfs_set_backup_fs_root_level(root_backup,
1994 			       btrfs_header_level(info->fs_root->node));
1995 	}
1996 
1997 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1998 	btrfs_set_backup_dev_root_gen(root_backup,
1999 			       btrfs_header_generation(info->dev_root->node));
2000 	btrfs_set_backup_dev_root_level(root_backup,
2001 				       btrfs_header_level(info->dev_root->node));
2002 
2003 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2004 	btrfs_set_backup_csum_root_gen(root_backup,
2005 			       btrfs_header_generation(info->csum_root->node));
2006 	btrfs_set_backup_csum_root_level(root_backup,
2007 			       btrfs_header_level(info->csum_root->node));
2008 
2009 	btrfs_set_backup_total_bytes(root_backup,
2010 			     btrfs_super_total_bytes(info->super_copy));
2011 	btrfs_set_backup_bytes_used(root_backup,
2012 			     btrfs_super_bytes_used(info->super_copy));
2013 	btrfs_set_backup_num_devices(root_backup,
2014 			     btrfs_super_num_devices(info->super_copy));
2015 
2016 	/*
2017 	 * if we don't copy this out to the super_copy, it won't get remembered
2018 	 * for the next commit
2019 	 */
2020 	memcpy(&info->super_copy->super_roots,
2021 	       &info->super_for_commit->super_roots,
2022 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2023 }
2024 
2025 /*
2026  * this copies info out of the root backup array and back into
2027  * the in-memory super block.  It is meant to help iterate through
2028  * the array, so you send it the number of backups you've already
2029  * tried and the last backup index you used.
2030  *
2031  * this returns -1 when it has tried all the backups
2032  */
next_root_backup(struct btrfs_fs_info * info,struct btrfs_super_block * super,int * num_backups_tried,int * backup_index)2033 static noinline int next_root_backup(struct btrfs_fs_info *info,
2034 				     struct btrfs_super_block *super,
2035 				     int *num_backups_tried, int *backup_index)
2036 {
2037 	struct btrfs_root_backup *root_backup;
2038 	int newest = *backup_index;
2039 
2040 	if (*num_backups_tried == 0) {
2041 		u64 gen = btrfs_super_generation(super);
2042 
2043 		newest = find_newest_super_backup(info, gen);
2044 		if (newest == -1)
2045 			return -1;
2046 
2047 		*backup_index = newest;
2048 		*num_backups_tried = 1;
2049 	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2050 		/* we've tried all the backups, all done */
2051 		return -1;
2052 	} else {
2053 		/* jump to the next oldest backup */
2054 		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2055 			BTRFS_NUM_BACKUP_ROOTS;
2056 		*backup_index = newest;
2057 		*num_backups_tried += 1;
2058 	}
2059 	root_backup = super->super_roots + newest;
2060 
2061 	btrfs_set_super_generation(super,
2062 				   btrfs_backup_tree_root_gen(root_backup));
2063 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2064 	btrfs_set_super_root_level(super,
2065 				   btrfs_backup_tree_root_level(root_backup));
2066 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2067 
2068 	/*
2069 	 * fixme: the total bytes and num_devices need to match or we should
2070 	 * need a fsck
2071 	 */
2072 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2073 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2074 	return 0;
2075 }
2076 
2077 /* helper to cleanup workers */
btrfs_stop_all_workers(struct btrfs_fs_info * fs_info)2078 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2079 {
2080 	btrfs_destroy_workqueue(fs_info->fixup_workers);
2081 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2082 	btrfs_destroy_workqueue(fs_info->workers);
2083 	btrfs_destroy_workqueue(fs_info->endio_workers);
2084 	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2085 	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2086 	btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2087 	btrfs_destroy_workqueue(fs_info->rmw_workers);
2088 	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2089 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2090 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2091 	btrfs_destroy_workqueue(fs_info->submit_workers);
2092 	btrfs_destroy_workqueue(fs_info->delayed_workers);
2093 	btrfs_destroy_workqueue(fs_info->caching_workers);
2094 	btrfs_destroy_workqueue(fs_info->readahead_workers);
2095 	btrfs_destroy_workqueue(fs_info->flush_workers);
2096 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2097 	btrfs_destroy_workqueue(fs_info->extent_workers);
2098 }
2099 
free_root_extent_buffers(struct btrfs_root * root)2100 static void free_root_extent_buffers(struct btrfs_root *root)
2101 {
2102 	if (root) {
2103 		free_extent_buffer(root->node);
2104 		free_extent_buffer(root->commit_root);
2105 		root->node = NULL;
2106 		root->commit_root = NULL;
2107 	}
2108 }
2109 
2110 /* helper to cleanup tree roots */
free_root_pointers(struct btrfs_fs_info * info,int chunk_root)2111 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2112 {
2113 	free_root_extent_buffers(info->tree_root);
2114 
2115 	free_root_extent_buffers(info->dev_root);
2116 	free_root_extent_buffers(info->extent_root);
2117 	free_root_extent_buffers(info->csum_root);
2118 	free_root_extent_buffers(info->quota_root);
2119 	free_root_extent_buffers(info->uuid_root);
2120 	if (chunk_root)
2121 		free_root_extent_buffers(info->chunk_root);
2122 }
2123 
btrfs_free_fs_roots(struct btrfs_fs_info * fs_info)2124 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2125 {
2126 	int ret;
2127 	struct btrfs_root *gang[8];
2128 	int i;
2129 
2130 	while (!list_empty(&fs_info->dead_roots)) {
2131 		gang[0] = list_entry(fs_info->dead_roots.next,
2132 				     struct btrfs_root, root_list);
2133 		list_del(&gang[0]->root_list);
2134 
2135 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2136 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2137 		} else {
2138 			free_extent_buffer(gang[0]->node);
2139 			free_extent_buffer(gang[0]->commit_root);
2140 			btrfs_put_fs_root(gang[0]);
2141 		}
2142 	}
2143 
2144 	while (1) {
2145 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2146 					     (void **)gang, 0,
2147 					     ARRAY_SIZE(gang));
2148 		if (!ret)
2149 			break;
2150 		for (i = 0; i < ret; i++)
2151 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2152 	}
2153 
2154 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2155 		btrfs_free_log_root_tree(NULL, fs_info);
2156 		btrfs_destroy_pinned_extent(fs_info->tree_root,
2157 					    fs_info->pinned_extents);
2158 	}
2159 }
2160 
btrfs_init_scrub(struct btrfs_fs_info * fs_info)2161 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2162 {
2163 	mutex_init(&fs_info->scrub_lock);
2164 	atomic_set(&fs_info->scrubs_running, 0);
2165 	atomic_set(&fs_info->scrub_pause_req, 0);
2166 	atomic_set(&fs_info->scrubs_paused, 0);
2167 	atomic_set(&fs_info->scrub_cancel_req, 0);
2168 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2169 	fs_info->scrub_workers_refcnt = 0;
2170 }
2171 
btrfs_init_balance(struct btrfs_fs_info * fs_info)2172 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2173 {
2174 	spin_lock_init(&fs_info->balance_lock);
2175 	mutex_init(&fs_info->balance_mutex);
2176 	atomic_set(&fs_info->balance_running, 0);
2177 	atomic_set(&fs_info->balance_pause_req, 0);
2178 	atomic_set(&fs_info->balance_cancel_req, 0);
2179 	fs_info->balance_ctl = NULL;
2180 	init_waitqueue_head(&fs_info->balance_wait_q);
2181 }
2182 
btrfs_init_btree_inode(struct btrfs_fs_info * fs_info,struct btrfs_root * tree_root)2183 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2184 				   struct btrfs_root *tree_root)
2185 {
2186 	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2187 	set_nlink(fs_info->btree_inode, 1);
2188 	/*
2189 	 * we set the i_size on the btree inode to the max possible int.
2190 	 * the real end of the address space is determined by all of
2191 	 * the devices in the system
2192 	 */
2193 	fs_info->btree_inode->i_size = OFFSET_MAX;
2194 	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2195 
2196 	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2197 	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2198 			     fs_info->btree_inode->i_mapping);
2199 	BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2200 	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2201 
2202 	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2203 
2204 	BTRFS_I(fs_info->btree_inode)->root = tree_root;
2205 	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2206 	       sizeof(struct btrfs_key));
2207 	set_bit(BTRFS_INODE_DUMMY,
2208 		&BTRFS_I(fs_info->btree_inode)->runtime_flags);
2209 	btrfs_insert_inode_hash(fs_info->btree_inode);
2210 }
2211 
btrfs_init_dev_replace_locks(struct btrfs_fs_info * fs_info)2212 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2213 {
2214 	fs_info->dev_replace.lock_owner = 0;
2215 	atomic_set(&fs_info->dev_replace.nesting_level, 0);
2216 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2217 	mutex_init(&fs_info->dev_replace.lock_management_lock);
2218 	mutex_init(&fs_info->dev_replace.lock);
2219 	init_waitqueue_head(&fs_info->replace_wait);
2220 }
2221 
btrfs_init_qgroup(struct btrfs_fs_info * fs_info)2222 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2223 {
2224 	spin_lock_init(&fs_info->qgroup_lock);
2225 	mutex_init(&fs_info->qgroup_ioctl_lock);
2226 	fs_info->qgroup_tree = RB_ROOT;
2227 	fs_info->qgroup_op_tree = RB_ROOT;
2228 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2229 	fs_info->qgroup_seq = 1;
2230 	fs_info->quota_enabled = 0;
2231 	fs_info->pending_quota_state = 0;
2232 	fs_info->qgroup_ulist = NULL;
2233 	mutex_init(&fs_info->qgroup_rescan_lock);
2234 }
2235 
btrfs_init_workqueues(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2236 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2237 		struct btrfs_fs_devices *fs_devices)
2238 {
2239 	int max_active = fs_info->thread_pool_size;
2240 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2241 
2242 	fs_info->workers =
2243 		btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2244 				      max_active, 16);
2245 
2246 	fs_info->delalloc_workers =
2247 		btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2248 
2249 	fs_info->flush_workers =
2250 		btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2251 
2252 	fs_info->caching_workers =
2253 		btrfs_alloc_workqueue("cache", flags, max_active, 0);
2254 
2255 	/*
2256 	 * a higher idle thresh on the submit workers makes it much more
2257 	 * likely that bios will be send down in a sane order to the
2258 	 * devices
2259 	 */
2260 	fs_info->submit_workers =
2261 		btrfs_alloc_workqueue("submit", flags,
2262 				      min_t(u64, fs_devices->num_devices,
2263 					    max_active), 64);
2264 
2265 	fs_info->fixup_workers =
2266 		btrfs_alloc_workqueue("fixup", flags, 1, 0);
2267 
2268 	/*
2269 	 * endios are largely parallel and should have a very
2270 	 * low idle thresh
2271 	 */
2272 	fs_info->endio_workers =
2273 		btrfs_alloc_workqueue("endio", flags, max_active, 4);
2274 	fs_info->endio_meta_workers =
2275 		btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2276 	fs_info->endio_meta_write_workers =
2277 		btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2278 	fs_info->endio_raid56_workers =
2279 		btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2280 	fs_info->endio_repair_workers =
2281 		btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2282 	fs_info->rmw_workers =
2283 		btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2284 	fs_info->endio_write_workers =
2285 		btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2286 	fs_info->endio_freespace_worker =
2287 		btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2288 	fs_info->delayed_workers =
2289 		btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2290 	fs_info->readahead_workers =
2291 		btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2292 	fs_info->qgroup_rescan_workers =
2293 		btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2294 	fs_info->extent_workers =
2295 		btrfs_alloc_workqueue("extent-refs", flags,
2296 				      min_t(u64, fs_devices->num_devices,
2297 					    max_active), 8);
2298 
2299 	if (!(fs_info->workers && fs_info->delalloc_workers &&
2300 	      fs_info->submit_workers && fs_info->flush_workers &&
2301 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2302 	      fs_info->endio_meta_write_workers &&
2303 	      fs_info->endio_repair_workers &&
2304 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2305 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2306 	      fs_info->caching_workers && fs_info->readahead_workers &&
2307 	      fs_info->fixup_workers && fs_info->delayed_workers &&
2308 	      fs_info->extent_workers &&
2309 	      fs_info->qgroup_rescan_workers)) {
2310 		return -ENOMEM;
2311 	}
2312 
2313 	return 0;
2314 }
2315 
btrfs_replay_log(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2316 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2317 			    struct btrfs_fs_devices *fs_devices)
2318 {
2319 	int ret;
2320 	struct btrfs_root *tree_root = fs_info->tree_root;
2321 	struct btrfs_root *log_tree_root;
2322 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2323 	u64 bytenr = btrfs_super_log_root(disk_super);
2324 
2325 	if (fs_devices->rw_devices == 0) {
2326 		printk(KERN_WARNING "BTRFS: log replay required "
2327 		       "on RO media\n");
2328 		return -EIO;
2329 	}
2330 
2331 	log_tree_root = btrfs_alloc_root(fs_info);
2332 	if (!log_tree_root)
2333 		return -ENOMEM;
2334 
2335 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
2336 			tree_root->stripesize, log_tree_root, fs_info,
2337 			BTRFS_TREE_LOG_OBJECTID);
2338 
2339 	log_tree_root->node = read_tree_block(tree_root, bytenr,
2340 			fs_info->generation + 1);
2341 	if (!log_tree_root->node ||
2342 	    !extent_buffer_uptodate(log_tree_root->node)) {
2343 		printk(KERN_ERR "BTRFS: failed to read log tree\n");
2344 		free_extent_buffer(log_tree_root->node);
2345 		kfree(log_tree_root);
2346 		return -EIO;
2347 	}
2348 	/* returns with log_tree_root freed on success */
2349 	ret = btrfs_recover_log_trees(log_tree_root);
2350 	if (ret) {
2351 		btrfs_error(tree_root->fs_info, ret,
2352 			    "Failed to recover log tree");
2353 		free_extent_buffer(log_tree_root->node);
2354 		kfree(log_tree_root);
2355 		return ret;
2356 	}
2357 
2358 	if (fs_info->sb->s_flags & MS_RDONLY) {
2359 		ret = btrfs_commit_super(tree_root);
2360 		if (ret)
2361 			return ret;
2362 	}
2363 
2364 	return 0;
2365 }
2366 
btrfs_read_roots(struct btrfs_fs_info * fs_info,struct btrfs_root * tree_root)2367 static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2368 			    struct btrfs_root *tree_root)
2369 {
2370 	struct btrfs_root *root;
2371 	struct btrfs_key location;
2372 	int ret;
2373 
2374 	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2375 	location.type = BTRFS_ROOT_ITEM_KEY;
2376 	location.offset = 0;
2377 
2378 	root = btrfs_read_tree_root(tree_root, &location);
2379 	if (IS_ERR(root))
2380 		return PTR_ERR(root);
2381 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2382 	fs_info->extent_root = root;
2383 
2384 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2385 	root = btrfs_read_tree_root(tree_root, &location);
2386 	if (IS_ERR(root))
2387 		return PTR_ERR(root);
2388 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2389 	fs_info->dev_root = root;
2390 	btrfs_init_devices_late(fs_info);
2391 
2392 	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2393 	root = btrfs_read_tree_root(tree_root, &location);
2394 	if (IS_ERR(root))
2395 		return PTR_ERR(root);
2396 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2397 	fs_info->csum_root = root;
2398 
2399 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2400 	root = btrfs_read_tree_root(tree_root, &location);
2401 	if (!IS_ERR(root)) {
2402 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2403 		fs_info->quota_enabled = 1;
2404 		fs_info->pending_quota_state = 1;
2405 		fs_info->quota_root = root;
2406 	}
2407 
2408 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2409 	root = btrfs_read_tree_root(tree_root, &location);
2410 	if (IS_ERR(root)) {
2411 		ret = PTR_ERR(root);
2412 		if (ret != -ENOENT)
2413 			return ret;
2414 	} else {
2415 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2416 		fs_info->uuid_root = root;
2417 	}
2418 
2419 	return 0;
2420 }
2421 
open_ctree(struct super_block * sb,struct btrfs_fs_devices * fs_devices,char * options)2422 int open_ctree(struct super_block *sb,
2423 	       struct btrfs_fs_devices *fs_devices,
2424 	       char *options)
2425 {
2426 	u32 sectorsize;
2427 	u32 nodesize;
2428 	u32 stripesize;
2429 	u64 generation;
2430 	u64 features;
2431 	struct btrfs_key location;
2432 	struct buffer_head *bh;
2433 	struct btrfs_super_block *disk_super;
2434 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2435 	struct btrfs_root *tree_root;
2436 	struct btrfs_root *chunk_root;
2437 	int ret;
2438 	int err = -EINVAL;
2439 	int num_backups_tried = 0;
2440 	int backup_index = 0;
2441 	int max_active;
2442 
2443 	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2444 	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2445 	if (!tree_root || !chunk_root) {
2446 		err = -ENOMEM;
2447 		goto fail;
2448 	}
2449 
2450 	ret = init_srcu_struct(&fs_info->subvol_srcu);
2451 	if (ret) {
2452 		err = ret;
2453 		goto fail;
2454 	}
2455 
2456 	ret = setup_bdi(fs_info, &fs_info->bdi);
2457 	if (ret) {
2458 		err = ret;
2459 		goto fail_srcu;
2460 	}
2461 
2462 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2463 	if (ret) {
2464 		err = ret;
2465 		goto fail_bdi;
2466 	}
2467 	fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2468 					(1 + ilog2(nr_cpu_ids));
2469 
2470 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2471 	if (ret) {
2472 		err = ret;
2473 		goto fail_dirty_metadata_bytes;
2474 	}
2475 
2476 	ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2477 	if (ret) {
2478 		err = ret;
2479 		goto fail_delalloc_bytes;
2480 	}
2481 
2482 	fs_info->btree_inode = new_inode(sb);
2483 	if (!fs_info->btree_inode) {
2484 		err = -ENOMEM;
2485 		goto fail_bio_counter;
2486 	}
2487 
2488 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2489 
2490 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2491 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2492 	INIT_LIST_HEAD(&fs_info->trans_list);
2493 	INIT_LIST_HEAD(&fs_info->dead_roots);
2494 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2495 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2496 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2497 	spin_lock_init(&fs_info->delalloc_root_lock);
2498 	spin_lock_init(&fs_info->trans_lock);
2499 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2500 	spin_lock_init(&fs_info->delayed_iput_lock);
2501 	spin_lock_init(&fs_info->defrag_inodes_lock);
2502 	spin_lock_init(&fs_info->free_chunk_lock);
2503 	spin_lock_init(&fs_info->tree_mod_seq_lock);
2504 	spin_lock_init(&fs_info->super_lock);
2505 	spin_lock_init(&fs_info->qgroup_op_lock);
2506 	spin_lock_init(&fs_info->buffer_lock);
2507 	spin_lock_init(&fs_info->unused_bgs_lock);
2508 	rwlock_init(&fs_info->tree_mod_log_lock);
2509 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2510 	mutex_init(&fs_info->reloc_mutex);
2511 	mutex_init(&fs_info->delalloc_root_mutex);
2512 	mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2513 	seqlock_init(&fs_info->profiles_lock);
2514 
2515 	init_completion(&fs_info->kobj_unregister);
2516 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2517 	INIT_LIST_HEAD(&fs_info->space_info);
2518 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2519 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2520 	btrfs_mapping_init(&fs_info->mapping_tree);
2521 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2522 			     BTRFS_BLOCK_RSV_GLOBAL);
2523 	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2524 			     BTRFS_BLOCK_RSV_DELALLOC);
2525 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2526 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2527 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2528 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2529 			     BTRFS_BLOCK_RSV_DELOPS);
2530 	atomic_set(&fs_info->nr_async_submits, 0);
2531 	atomic_set(&fs_info->async_delalloc_pages, 0);
2532 	atomic_set(&fs_info->async_submit_draining, 0);
2533 	atomic_set(&fs_info->nr_async_bios, 0);
2534 	atomic_set(&fs_info->defrag_running, 0);
2535 	atomic_set(&fs_info->qgroup_op_seq, 0);
2536 	atomic64_set(&fs_info->tree_mod_seq, 0);
2537 	fs_info->sb = sb;
2538 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2539 	fs_info->metadata_ratio = 0;
2540 	fs_info->defrag_inodes = RB_ROOT;
2541 	fs_info->free_chunk_space = 0;
2542 	fs_info->tree_mod_log = RB_ROOT;
2543 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2544 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2545 	/* readahead state */
2546 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2547 	spin_lock_init(&fs_info->reada_lock);
2548 
2549 	fs_info->thread_pool_size = min_t(unsigned long,
2550 					  num_online_cpus() + 2, 8);
2551 
2552 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2553 	spin_lock_init(&fs_info->ordered_root_lock);
2554 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2555 					GFP_NOFS);
2556 	if (!fs_info->delayed_root) {
2557 		err = -ENOMEM;
2558 		goto fail_iput;
2559 	}
2560 	btrfs_init_delayed_root(fs_info->delayed_root);
2561 
2562 	btrfs_init_scrub(fs_info);
2563 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2564 	fs_info->check_integrity_print_mask = 0;
2565 #endif
2566 	btrfs_init_balance(fs_info);
2567 	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2568 
2569 	sb->s_blocksize = 4096;
2570 	sb->s_blocksize_bits = blksize_bits(4096);
2571 	sb->s_bdi = &fs_info->bdi;
2572 
2573 	btrfs_init_btree_inode(fs_info, tree_root);
2574 
2575 	spin_lock_init(&fs_info->block_group_cache_lock);
2576 	fs_info->block_group_cache_tree = RB_ROOT;
2577 	fs_info->first_logical_byte = (u64)-1;
2578 
2579 	extent_io_tree_init(&fs_info->freed_extents[0],
2580 			     fs_info->btree_inode->i_mapping);
2581 	extent_io_tree_init(&fs_info->freed_extents[1],
2582 			     fs_info->btree_inode->i_mapping);
2583 	fs_info->pinned_extents = &fs_info->freed_extents[0];
2584 	fs_info->do_barriers = 1;
2585 
2586 
2587 	mutex_init(&fs_info->ordered_operations_mutex);
2588 	mutex_init(&fs_info->ordered_extent_flush_mutex);
2589 	mutex_init(&fs_info->tree_log_mutex);
2590 	mutex_init(&fs_info->chunk_mutex);
2591 	mutex_init(&fs_info->transaction_kthread_mutex);
2592 	mutex_init(&fs_info->cleaner_mutex);
2593 	mutex_init(&fs_info->volume_mutex);
2594 	mutex_init(&fs_info->ro_block_group_mutex);
2595 	init_rwsem(&fs_info->commit_root_sem);
2596 	init_rwsem(&fs_info->cleanup_work_sem);
2597 	init_rwsem(&fs_info->subvol_sem);
2598 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2599 
2600 	btrfs_init_dev_replace_locks(fs_info);
2601 	btrfs_init_qgroup(fs_info);
2602 
2603 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2604 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2605 
2606 	init_waitqueue_head(&fs_info->transaction_throttle);
2607 	init_waitqueue_head(&fs_info->transaction_wait);
2608 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2609 	init_waitqueue_head(&fs_info->async_submit_wait);
2610 
2611 	INIT_LIST_HEAD(&fs_info->pinned_chunks);
2612 
2613 	ret = btrfs_alloc_stripe_hash_table(fs_info);
2614 	if (ret) {
2615 		err = ret;
2616 		goto fail_alloc;
2617 	}
2618 
2619 	__setup_root(4096, 4096, 4096, tree_root,
2620 		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
2621 
2622 	invalidate_bdev(fs_devices->latest_bdev);
2623 
2624 	/*
2625 	 * Read super block and check the signature bytes only
2626 	 */
2627 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2628 	if (!bh) {
2629 		err = -EINVAL;
2630 		goto fail_alloc;
2631 	}
2632 
2633 	/*
2634 	 * We want to check superblock checksum, the type is stored inside.
2635 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2636 	 */
2637 	if (btrfs_check_super_csum(bh->b_data)) {
2638 		printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2639 		err = -EINVAL;
2640 		brelse(bh);
2641 		goto fail_alloc;
2642 	}
2643 
2644 	/*
2645 	 * super_copy is zeroed at allocation time and we never touch the
2646 	 * following bytes up to INFO_SIZE, the checksum is calculated from
2647 	 * the whole block of INFO_SIZE
2648 	 */
2649 	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2650 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2651 	       sizeof(*fs_info->super_for_commit));
2652 	brelse(bh);
2653 
2654 	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2655 
2656 	ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2657 	if (ret) {
2658 		printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2659 		err = -EINVAL;
2660 		goto fail_alloc;
2661 	}
2662 
2663 	disk_super = fs_info->super_copy;
2664 	if (!btrfs_super_root(disk_super))
2665 		goto fail_alloc;
2666 
2667 	/* check FS state, whether FS is broken. */
2668 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2669 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2670 
2671 	/*
2672 	 * run through our array of backup supers and setup
2673 	 * our ring pointer to the oldest one
2674 	 */
2675 	generation = btrfs_super_generation(disk_super);
2676 	find_oldest_super_backup(fs_info, generation);
2677 
2678 	/*
2679 	 * In the long term, we'll store the compression type in the super
2680 	 * block, and it'll be used for per file compression control.
2681 	 */
2682 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2683 
2684 	ret = btrfs_parse_options(tree_root, options);
2685 	if (ret) {
2686 		err = ret;
2687 		goto fail_alloc;
2688 	}
2689 
2690 	features = btrfs_super_incompat_flags(disk_super) &
2691 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2692 	if (features) {
2693 		printk(KERN_ERR "BTRFS: couldn't mount because of "
2694 		       "unsupported optional features (%Lx).\n",
2695 		       features);
2696 		err = -EINVAL;
2697 		goto fail_alloc;
2698 	}
2699 
2700 	/*
2701 	 * Leafsize and nodesize were always equal, this is only a sanity check.
2702 	 */
2703 	if (le32_to_cpu(disk_super->__unused_leafsize) !=
2704 	    btrfs_super_nodesize(disk_super)) {
2705 		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2706 		       "blocksizes don't match.  node %d leaf %d\n",
2707 		       btrfs_super_nodesize(disk_super),
2708 		       le32_to_cpu(disk_super->__unused_leafsize));
2709 		err = -EINVAL;
2710 		goto fail_alloc;
2711 	}
2712 	if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2713 		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2714 		       "blocksize (%d) was too large\n",
2715 		       btrfs_super_nodesize(disk_super));
2716 		err = -EINVAL;
2717 		goto fail_alloc;
2718 	}
2719 
2720 	features = btrfs_super_incompat_flags(disk_super);
2721 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2722 	if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2723 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2724 
2725 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2726 		printk(KERN_INFO "BTRFS: has skinny extents\n");
2727 
2728 	/*
2729 	 * flag our filesystem as having big metadata blocks if
2730 	 * they are bigger than the page size
2731 	 */
2732 	if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
2733 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2734 			printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2735 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2736 	}
2737 
2738 	nodesize = btrfs_super_nodesize(disk_super);
2739 	sectorsize = btrfs_super_sectorsize(disk_super);
2740 	stripesize = btrfs_super_stripesize(disk_super);
2741 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2742 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2743 
2744 	/*
2745 	 * mixed block groups end up with duplicate but slightly offset
2746 	 * extent buffers for the same range.  It leads to corruptions
2747 	 */
2748 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2749 	    (sectorsize != nodesize)) {
2750 		printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
2751 				"are not allowed for mixed block groups on %s\n",
2752 				sb->s_id);
2753 		goto fail_alloc;
2754 	}
2755 
2756 	/*
2757 	 * Needn't use the lock because there is no other task which will
2758 	 * update the flag.
2759 	 */
2760 	btrfs_set_super_incompat_flags(disk_super, features);
2761 
2762 	features = btrfs_super_compat_ro_flags(disk_super) &
2763 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2764 	if (!(sb->s_flags & MS_RDONLY) && features) {
2765 		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2766 		       "unsupported option features (%Lx).\n",
2767 		       features);
2768 		err = -EINVAL;
2769 		goto fail_alloc;
2770 	}
2771 
2772 	max_active = fs_info->thread_pool_size;
2773 
2774 	ret = btrfs_init_workqueues(fs_info, fs_devices);
2775 	if (ret) {
2776 		err = ret;
2777 		goto fail_sb_buffer;
2778 	}
2779 
2780 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2781 	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2782 				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2783 
2784 	tree_root->nodesize = nodesize;
2785 	tree_root->sectorsize = sectorsize;
2786 	tree_root->stripesize = stripesize;
2787 
2788 	sb->s_blocksize = sectorsize;
2789 	sb->s_blocksize_bits = blksize_bits(sectorsize);
2790 
2791 	if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2792 		printk(KERN_ERR "BTRFS: valid FS not found on %s\n", sb->s_id);
2793 		goto fail_sb_buffer;
2794 	}
2795 
2796 	if (sectorsize != PAGE_SIZE) {
2797 		printk(KERN_ERR "BTRFS: incompatible sector size (%lu) "
2798 		       "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2799 		goto fail_sb_buffer;
2800 	}
2801 
2802 	mutex_lock(&fs_info->chunk_mutex);
2803 	ret = btrfs_read_sys_array(tree_root);
2804 	mutex_unlock(&fs_info->chunk_mutex);
2805 	if (ret) {
2806 		printk(KERN_ERR "BTRFS: failed to read the system "
2807 		       "array on %s\n", sb->s_id);
2808 		goto fail_sb_buffer;
2809 	}
2810 
2811 	generation = btrfs_super_chunk_root_generation(disk_super);
2812 
2813 	__setup_root(nodesize, sectorsize, stripesize, chunk_root,
2814 		     fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2815 
2816 	chunk_root->node = read_tree_block(chunk_root,
2817 					   btrfs_super_chunk_root(disk_super),
2818 					   generation);
2819 	if (!chunk_root->node ||
2820 	    !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2821 		printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
2822 		       sb->s_id);
2823 		goto fail_tree_roots;
2824 	}
2825 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2826 	chunk_root->commit_root = btrfs_root_node(chunk_root);
2827 
2828 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2829 	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2830 
2831 	ret = btrfs_read_chunk_tree(chunk_root);
2832 	if (ret) {
2833 		printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
2834 		       sb->s_id);
2835 		goto fail_tree_roots;
2836 	}
2837 
2838 	/*
2839 	 * keep the device that is marked to be the target device for the
2840 	 * dev_replace procedure
2841 	 */
2842 	btrfs_close_extra_devices(fs_devices, 0);
2843 
2844 	if (!fs_devices->latest_bdev) {
2845 		printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
2846 		       sb->s_id);
2847 		goto fail_tree_roots;
2848 	}
2849 
2850 retry_root_backup:
2851 	generation = btrfs_super_generation(disk_super);
2852 
2853 	tree_root->node = read_tree_block(tree_root,
2854 					  btrfs_super_root(disk_super),
2855 					  generation);
2856 	if (!tree_root->node ||
2857 	    !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2858 		printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2859 		       sb->s_id);
2860 
2861 		goto recovery_tree_root;
2862 	}
2863 
2864 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2865 	tree_root->commit_root = btrfs_root_node(tree_root);
2866 	btrfs_set_root_refs(&tree_root->root_item, 1);
2867 
2868 	mutex_lock(&tree_root->objectid_mutex);
2869 	ret = btrfs_find_highest_objectid(tree_root,
2870 					&tree_root->highest_objectid);
2871 	if (ret) {
2872 		mutex_unlock(&tree_root->objectid_mutex);
2873 		goto recovery_tree_root;
2874 	}
2875 
2876 	ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2877 
2878 	mutex_unlock(&tree_root->objectid_mutex);
2879 
2880 	ret = btrfs_read_roots(fs_info, tree_root);
2881 	if (ret)
2882 		goto recovery_tree_root;
2883 
2884 	fs_info->generation = generation;
2885 	fs_info->last_trans_committed = generation;
2886 
2887 	ret = btrfs_recover_balance(fs_info);
2888 	if (ret) {
2889 		printk(KERN_ERR "BTRFS: failed to recover balance\n");
2890 		goto fail_block_groups;
2891 	}
2892 
2893 	ret = btrfs_init_dev_stats(fs_info);
2894 	if (ret) {
2895 		printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2896 		       ret);
2897 		goto fail_block_groups;
2898 	}
2899 
2900 	ret = btrfs_init_dev_replace(fs_info);
2901 	if (ret) {
2902 		pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2903 		goto fail_block_groups;
2904 	}
2905 
2906 	btrfs_close_extra_devices(fs_devices, 1);
2907 
2908 	ret = btrfs_sysfs_add_one(fs_info);
2909 	if (ret) {
2910 		pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2911 		goto fail_block_groups;
2912 	}
2913 
2914 	ret = btrfs_init_space_info(fs_info);
2915 	if (ret) {
2916 		printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2917 		goto fail_sysfs;
2918 	}
2919 
2920 	ret = btrfs_read_block_groups(fs_info->extent_root);
2921 	if (ret) {
2922 		printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2923 		goto fail_sysfs;
2924 	}
2925 	fs_info->num_tolerated_disk_barrier_failures =
2926 		btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2927 	if (fs_info->fs_devices->missing_devices >
2928 	     fs_info->num_tolerated_disk_barrier_failures &&
2929 	    !(sb->s_flags & MS_RDONLY)) {
2930 		printk(KERN_WARNING "BTRFS: "
2931 			"too many missing devices, writeable mount is not allowed\n");
2932 		goto fail_sysfs;
2933 	}
2934 
2935 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2936 					       "btrfs-cleaner");
2937 	if (IS_ERR(fs_info->cleaner_kthread))
2938 		goto fail_sysfs;
2939 
2940 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
2941 						   tree_root,
2942 						   "btrfs-transaction");
2943 	if (IS_ERR(fs_info->transaction_kthread))
2944 		goto fail_cleaner;
2945 
2946 	if (!btrfs_test_opt(tree_root, SSD) &&
2947 	    !btrfs_test_opt(tree_root, NOSSD) &&
2948 	    !fs_info->fs_devices->rotating) {
2949 		printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2950 		       "mode\n");
2951 		btrfs_set_opt(fs_info->mount_opt, SSD);
2952 	}
2953 
2954 	/*
2955 	 * Mount does not set all options immediatelly, we can do it now and do
2956 	 * not have to wait for transaction commit
2957 	 */
2958 	btrfs_apply_pending_changes(fs_info);
2959 
2960 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2961 	if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2962 		ret = btrfsic_mount(tree_root, fs_devices,
2963 				    btrfs_test_opt(tree_root,
2964 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2965 				    1 : 0,
2966 				    fs_info->check_integrity_print_mask);
2967 		if (ret)
2968 			printk(KERN_WARNING "BTRFS: failed to initialize"
2969 			       " integrity check module %s\n", sb->s_id);
2970 	}
2971 #endif
2972 	ret = btrfs_read_qgroup_config(fs_info);
2973 	if (ret)
2974 		goto fail_trans_kthread;
2975 
2976 	/* do not make disk changes in broken FS */
2977 	if (btrfs_super_log_root(disk_super) != 0) {
2978 		ret = btrfs_replay_log(fs_info, fs_devices);
2979 		if (ret) {
2980 			err = ret;
2981 			goto fail_qgroup;
2982 		}
2983 	}
2984 
2985 	ret = btrfs_find_orphan_roots(tree_root);
2986 	if (ret)
2987 		goto fail_qgroup;
2988 
2989 	if (!(sb->s_flags & MS_RDONLY)) {
2990 		ret = btrfs_cleanup_fs_roots(fs_info);
2991 		if (ret)
2992 			goto fail_qgroup;
2993 
2994 		mutex_lock(&fs_info->cleaner_mutex);
2995 		ret = btrfs_recover_relocation(tree_root);
2996 		mutex_unlock(&fs_info->cleaner_mutex);
2997 		if (ret < 0) {
2998 			printk(KERN_WARNING
2999 			       "BTRFS: failed to recover relocation\n");
3000 			err = -EINVAL;
3001 			goto fail_qgroup;
3002 		}
3003 	}
3004 
3005 	location.objectid = BTRFS_FS_TREE_OBJECTID;
3006 	location.type = BTRFS_ROOT_ITEM_KEY;
3007 	location.offset = 0;
3008 
3009 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3010 	if (IS_ERR(fs_info->fs_root)) {
3011 		err = PTR_ERR(fs_info->fs_root);
3012 		goto fail_qgroup;
3013 	}
3014 
3015 	if (sb->s_flags & MS_RDONLY)
3016 		return 0;
3017 
3018 	down_read(&fs_info->cleanup_work_sem);
3019 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3020 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3021 		up_read(&fs_info->cleanup_work_sem);
3022 		close_ctree(tree_root);
3023 		return ret;
3024 	}
3025 	up_read(&fs_info->cleanup_work_sem);
3026 
3027 	ret = btrfs_resume_balance_async(fs_info);
3028 	if (ret) {
3029 		printk(KERN_WARNING "BTRFS: failed to resume balance\n");
3030 		close_ctree(tree_root);
3031 		return ret;
3032 	}
3033 
3034 	ret = btrfs_resume_dev_replace_async(fs_info);
3035 	if (ret) {
3036 		pr_warn("BTRFS: failed to resume dev_replace\n");
3037 		close_ctree(tree_root);
3038 		return ret;
3039 	}
3040 
3041 	btrfs_qgroup_rescan_resume(fs_info);
3042 
3043 	if (!fs_info->uuid_root) {
3044 		pr_info("BTRFS: creating UUID tree\n");
3045 		ret = btrfs_create_uuid_tree(fs_info);
3046 		if (ret) {
3047 			pr_warn("BTRFS: failed to create the UUID tree %d\n",
3048 				ret);
3049 			close_ctree(tree_root);
3050 			return ret;
3051 		}
3052 	} else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3053 		   fs_info->generation !=
3054 				btrfs_super_uuid_tree_generation(disk_super)) {
3055 		pr_info("BTRFS: checking UUID tree\n");
3056 		ret = btrfs_check_uuid_tree(fs_info);
3057 		if (ret) {
3058 			pr_warn("BTRFS: failed to check the UUID tree %d\n",
3059 				ret);
3060 			close_ctree(tree_root);
3061 			return ret;
3062 		}
3063 	} else {
3064 		fs_info->update_uuid_tree_gen = 1;
3065 	}
3066 
3067 	fs_info->open = 1;
3068 
3069 	return 0;
3070 
3071 fail_qgroup:
3072 	btrfs_free_qgroup_config(fs_info);
3073 fail_trans_kthread:
3074 	kthread_stop(fs_info->transaction_kthread);
3075 	btrfs_cleanup_transaction(fs_info->tree_root);
3076 	btrfs_free_fs_roots(fs_info);
3077 fail_cleaner:
3078 	kthread_stop(fs_info->cleaner_kthread);
3079 
3080 	/*
3081 	 * make sure we're done with the btree inode before we stop our
3082 	 * kthreads
3083 	 */
3084 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3085 
3086 fail_sysfs:
3087 	btrfs_sysfs_remove_one(fs_info);
3088 
3089 fail_block_groups:
3090 	btrfs_put_block_group_cache(fs_info);
3091 	btrfs_free_block_groups(fs_info);
3092 
3093 fail_tree_roots:
3094 	free_root_pointers(fs_info, 1);
3095 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3096 
3097 fail_sb_buffer:
3098 	btrfs_stop_all_workers(fs_info);
3099 fail_alloc:
3100 fail_iput:
3101 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3102 
3103 	iput(fs_info->btree_inode);
3104 fail_bio_counter:
3105 	percpu_counter_destroy(&fs_info->bio_counter);
3106 fail_delalloc_bytes:
3107 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3108 fail_dirty_metadata_bytes:
3109 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3110 fail_bdi:
3111 	bdi_destroy(&fs_info->bdi);
3112 fail_srcu:
3113 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3114 fail:
3115 	btrfs_free_stripe_hash_table(fs_info);
3116 	btrfs_close_devices(fs_info->fs_devices);
3117 	return err;
3118 
3119 recovery_tree_root:
3120 	if (!btrfs_test_opt(tree_root, RECOVERY))
3121 		goto fail_tree_roots;
3122 
3123 	free_root_pointers(fs_info, 0);
3124 
3125 	/* don't use the log in recovery mode, it won't be valid */
3126 	btrfs_set_super_log_root(disk_super, 0);
3127 
3128 	/* we can't trust the free space cache either */
3129 	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3130 
3131 	ret = next_root_backup(fs_info, fs_info->super_copy,
3132 			       &num_backups_tried, &backup_index);
3133 	if (ret == -1)
3134 		goto fail_block_groups;
3135 	goto retry_root_backup;
3136 }
3137 
btrfs_end_buffer_write_sync(struct buffer_head * bh,int uptodate)3138 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3139 {
3140 	if (uptodate) {
3141 		set_buffer_uptodate(bh);
3142 	} else {
3143 		struct btrfs_device *device = (struct btrfs_device *)
3144 			bh->b_private;
3145 
3146 		printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
3147 					  "I/O error on %s\n",
3148 					  rcu_str_deref(device->name));
3149 		/* note, we dont' set_buffer_write_io_error because we have
3150 		 * our own ways of dealing with the IO errors
3151 		 */
3152 		clear_buffer_uptodate(bh);
3153 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3154 	}
3155 	unlock_buffer(bh);
3156 	put_bh(bh);
3157 }
3158 
btrfs_read_dev_super(struct block_device * bdev)3159 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3160 {
3161 	struct buffer_head *bh;
3162 	struct buffer_head *latest = NULL;
3163 	struct btrfs_super_block *super;
3164 	int i;
3165 	u64 transid = 0;
3166 	u64 bytenr;
3167 
3168 	/* we would like to check all the supers, but that would make
3169 	 * a btrfs mount succeed after a mkfs from a different FS.
3170 	 * So, we need to add a special mount option to scan for
3171 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3172 	 */
3173 	for (i = 0; i < 1; i++) {
3174 		bytenr = btrfs_sb_offset(i);
3175 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3176 					i_size_read(bdev->bd_inode))
3177 			break;
3178 		bh = __bread(bdev, bytenr / 4096,
3179 					BTRFS_SUPER_INFO_SIZE);
3180 		if (!bh)
3181 			continue;
3182 
3183 		super = (struct btrfs_super_block *)bh->b_data;
3184 		if (btrfs_super_bytenr(super) != bytenr ||
3185 		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3186 			brelse(bh);
3187 			continue;
3188 		}
3189 
3190 		if (!latest || btrfs_super_generation(super) > transid) {
3191 			brelse(latest);
3192 			latest = bh;
3193 			transid = btrfs_super_generation(super);
3194 		} else {
3195 			brelse(bh);
3196 		}
3197 	}
3198 	return latest;
3199 }
3200 
3201 /*
3202  * this should be called twice, once with wait == 0 and
3203  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3204  * we write are pinned.
3205  *
3206  * They are released when wait == 1 is done.
3207  * max_mirrors must be the same for both runs, and it indicates how
3208  * many supers on this one device should be written.
3209  *
3210  * max_mirrors == 0 means to write them all.
3211  */
write_dev_supers(struct btrfs_device * device,struct btrfs_super_block * sb,int do_barriers,int wait,int max_mirrors)3212 static int write_dev_supers(struct btrfs_device *device,
3213 			    struct btrfs_super_block *sb,
3214 			    int do_barriers, int wait, int max_mirrors)
3215 {
3216 	struct buffer_head *bh;
3217 	int i;
3218 	int ret;
3219 	int errors = 0;
3220 	u32 crc;
3221 	u64 bytenr;
3222 
3223 	if (max_mirrors == 0)
3224 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3225 
3226 	for (i = 0; i < max_mirrors; i++) {
3227 		bytenr = btrfs_sb_offset(i);
3228 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3229 		    device->commit_total_bytes)
3230 			break;
3231 
3232 		if (wait) {
3233 			bh = __find_get_block(device->bdev, bytenr / 4096,
3234 					      BTRFS_SUPER_INFO_SIZE);
3235 			if (!bh) {
3236 				errors++;
3237 				continue;
3238 			}
3239 			wait_on_buffer(bh);
3240 			if (!buffer_uptodate(bh))
3241 				errors++;
3242 
3243 			/* drop our reference */
3244 			brelse(bh);
3245 
3246 			/* drop the reference from the wait == 0 run */
3247 			brelse(bh);
3248 			continue;
3249 		} else {
3250 			btrfs_set_super_bytenr(sb, bytenr);
3251 
3252 			crc = ~(u32)0;
3253 			crc = btrfs_csum_data((char *)sb +
3254 					      BTRFS_CSUM_SIZE, crc,
3255 					      BTRFS_SUPER_INFO_SIZE -
3256 					      BTRFS_CSUM_SIZE);
3257 			btrfs_csum_final(crc, sb->csum);
3258 
3259 			/*
3260 			 * one reference for us, and we leave it for the
3261 			 * caller
3262 			 */
3263 			bh = __getblk(device->bdev, bytenr / 4096,
3264 				      BTRFS_SUPER_INFO_SIZE);
3265 			if (!bh) {
3266 				printk(KERN_ERR "BTRFS: couldn't get super "
3267 				       "buffer head for bytenr %Lu\n", bytenr);
3268 				errors++;
3269 				continue;
3270 			}
3271 
3272 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3273 
3274 			/* one reference for submit_bh */
3275 			get_bh(bh);
3276 
3277 			set_buffer_uptodate(bh);
3278 			lock_buffer(bh);
3279 			bh->b_end_io = btrfs_end_buffer_write_sync;
3280 			bh->b_private = device;
3281 		}
3282 
3283 		/*
3284 		 * we fua the first super.  The others we allow
3285 		 * to go down lazy.
3286 		 */
3287 		if (i == 0)
3288 			ret = btrfsic_submit_bh(WRITE_FUA, bh);
3289 		else
3290 			ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3291 		if (ret)
3292 			errors++;
3293 	}
3294 	return errors < i ? 0 : -1;
3295 }
3296 
3297 /*
3298  * endio for the write_dev_flush, this will wake anyone waiting
3299  * for the barrier when it is done
3300  */
btrfs_end_empty_barrier(struct bio * bio,int err)3301 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3302 {
3303 	if (err) {
3304 		if (err == -EOPNOTSUPP)
3305 			set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3306 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
3307 	}
3308 	if (bio->bi_private)
3309 		complete(bio->bi_private);
3310 	bio_put(bio);
3311 }
3312 
3313 /*
3314  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3315  * sent down.  With wait == 1, it waits for the previous flush.
3316  *
3317  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3318  * capable
3319  */
write_dev_flush(struct btrfs_device * device,int wait)3320 static int write_dev_flush(struct btrfs_device *device, int wait)
3321 {
3322 	struct bio *bio;
3323 	int ret = 0;
3324 
3325 	if (device->nobarriers)
3326 		return 0;
3327 
3328 	if (wait) {
3329 		bio = device->flush_bio;
3330 		if (!bio)
3331 			return 0;
3332 
3333 		wait_for_completion(&device->flush_wait);
3334 
3335 		if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3336 			printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
3337 				      rcu_str_deref(device->name));
3338 			device->nobarriers = 1;
3339 		} else if (!bio_flagged(bio, BIO_UPTODATE)) {
3340 			ret = -EIO;
3341 			btrfs_dev_stat_inc_and_print(device,
3342 				BTRFS_DEV_STAT_FLUSH_ERRS);
3343 		}
3344 
3345 		/* drop the reference from the wait == 0 run */
3346 		bio_put(bio);
3347 		device->flush_bio = NULL;
3348 
3349 		return ret;
3350 	}
3351 
3352 	/*
3353 	 * one reference for us, and we leave it for the
3354 	 * caller
3355 	 */
3356 	device->flush_bio = NULL;
3357 	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3358 	if (!bio)
3359 		return -ENOMEM;
3360 
3361 	bio->bi_end_io = btrfs_end_empty_barrier;
3362 	bio->bi_bdev = device->bdev;
3363 	init_completion(&device->flush_wait);
3364 	bio->bi_private = &device->flush_wait;
3365 	device->flush_bio = bio;
3366 
3367 	bio_get(bio);
3368 	btrfsic_submit_bio(WRITE_FLUSH, bio);
3369 
3370 	return 0;
3371 }
3372 
3373 /*
3374  * send an empty flush down to each device in parallel,
3375  * then wait for them
3376  */
barrier_all_devices(struct btrfs_fs_info * info)3377 static int barrier_all_devices(struct btrfs_fs_info *info)
3378 {
3379 	struct list_head *head;
3380 	struct btrfs_device *dev;
3381 	int errors_send = 0;
3382 	int errors_wait = 0;
3383 	int ret;
3384 
3385 	/* send down all the barriers */
3386 	head = &info->fs_devices->devices;
3387 	list_for_each_entry_rcu(dev, head, dev_list) {
3388 		if (dev->missing)
3389 			continue;
3390 		if (!dev->bdev) {
3391 			errors_send++;
3392 			continue;
3393 		}
3394 		if (!dev->in_fs_metadata || !dev->writeable)
3395 			continue;
3396 
3397 		ret = write_dev_flush(dev, 0);
3398 		if (ret)
3399 			errors_send++;
3400 	}
3401 
3402 	/* wait for all the barriers */
3403 	list_for_each_entry_rcu(dev, head, dev_list) {
3404 		if (dev->missing)
3405 			continue;
3406 		if (!dev->bdev) {
3407 			errors_wait++;
3408 			continue;
3409 		}
3410 		if (!dev->in_fs_metadata || !dev->writeable)
3411 			continue;
3412 
3413 		ret = write_dev_flush(dev, 1);
3414 		if (ret)
3415 			errors_wait++;
3416 	}
3417 	if (errors_send > info->num_tolerated_disk_barrier_failures ||
3418 	    errors_wait > info->num_tolerated_disk_barrier_failures)
3419 		return -EIO;
3420 	return 0;
3421 }
3422 
btrfs_calc_num_tolerated_disk_barrier_failures(struct btrfs_fs_info * fs_info)3423 int btrfs_calc_num_tolerated_disk_barrier_failures(
3424 	struct btrfs_fs_info *fs_info)
3425 {
3426 	struct btrfs_ioctl_space_info space;
3427 	struct btrfs_space_info *sinfo;
3428 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3429 		       BTRFS_BLOCK_GROUP_SYSTEM,
3430 		       BTRFS_BLOCK_GROUP_METADATA,
3431 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3432 	int num_types = 4;
3433 	int i;
3434 	int c;
3435 	int num_tolerated_disk_barrier_failures =
3436 		(int)fs_info->fs_devices->num_devices;
3437 
3438 	for (i = 0; i < num_types; i++) {
3439 		struct btrfs_space_info *tmp;
3440 
3441 		sinfo = NULL;
3442 		rcu_read_lock();
3443 		list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3444 			if (tmp->flags == types[i]) {
3445 				sinfo = tmp;
3446 				break;
3447 			}
3448 		}
3449 		rcu_read_unlock();
3450 
3451 		if (!sinfo)
3452 			continue;
3453 
3454 		down_read(&sinfo->groups_sem);
3455 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3456 			if (!list_empty(&sinfo->block_groups[c])) {
3457 				u64 flags;
3458 
3459 				btrfs_get_block_group_info(
3460 					&sinfo->block_groups[c], &space);
3461 				if (space.total_bytes == 0 ||
3462 				    space.used_bytes == 0)
3463 					continue;
3464 				flags = space.flags;
3465 				/*
3466 				 * return
3467 				 * 0: if dup, single or RAID0 is configured for
3468 				 *    any of metadata, system or data, else
3469 				 * 1: if RAID5 is configured, or if RAID1 or
3470 				 *    RAID10 is configured and only two mirrors
3471 				 *    are used, else
3472 				 * 2: if RAID6 is configured, else
3473 				 * num_mirrors - 1: if RAID1 or RAID10 is
3474 				 *                  configured and more than
3475 				 *                  2 mirrors are used.
3476 				 */
3477 				if (num_tolerated_disk_barrier_failures > 0 &&
3478 				    ((flags & (BTRFS_BLOCK_GROUP_DUP |
3479 					       BTRFS_BLOCK_GROUP_RAID0)) ||
3480 				     ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3481 				      == 0)))
3482 					num_tolerated_disk_barrier_failures = 0;
3483 				else if (num_tolerated_disk_barrier_failures > 1) {
3484 					if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3485 					    BTRFS_BLOCK_GROUP_RAID5 |
3486 					    BTRFS_BLOCK_GROUP_RAID10)) {
3487 						num_tolerated_disk_barrier_failures = 1;
3488 					} else if (flags &
3489 						   BTRFS_BLOCK_GROUP_RAID6) {
3490 						num_tolerated_disk_barrier_failures = 2;
3491 					}
3492 				}
3493 			}
3494 		}
3495 		up_read(&sinfo->groups_sem);
3496 	}
3497 
3498 	return num_tolerated_disk_barrier_failures;
3499 }
3500 
write_all_supers(struct btrfs_root * root,int max_mirrors)3501 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3502 {
3503 	struct list_head *head;
3504 	struct btrfs_device *dev;
3505 	struct btrfs_super_block *sb;
3506 	struct btrfs_dev_item *dev_item;
3507 	int ret;
3508 	int do_barriers;
3509 	int max_errors;
3510 	int total_errors = 0;
3511 	u64 flags;
3512 
3513 	do_barriers = !btrfs_test_opt(root, NOBARRIER);
3514 	backup_super_roots(root->fs_info);
3515 
3516 	sb = root->fs_info->super_for_commit;
3517 	dev_item = &sb->dev_item;
3518 
3519 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3520 	head = &root->fs_info->fs_devices->devices;
3521 	max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3522 
3523 	if (do_barriers) {
3524 		ret = barrier_all_devices(root->fs_info);
3525 		if (ret) {
3526 			mutex_unlock(
3527 				&root->fs_info->fs_devices->device_list_mutex);
3528 			btrfs_error(root->fs_info, ret,
3529 				    "errors while submitting device barriers.");
3530 			return ret;
3531 		}
3532 	}
3533 
3534 	list_for_each_entry_rcu(dev, head, dev_list) {
3535 		if (!dev->bdev) {
3536 			total_errors++;
3537 			continue;
3538 		}
3539 		if (!dev->in_fs_metadata || !dev->writeable)
3540 			continue;
3541 
3542 		btrfs_set_stack_device_generation(dev_item, 0);
3543 		btrfs_set_stack_device_type(dev_item, dev->type);
3544 		btrfs_set_stack_device_id(dev_item, dev->devid);
3545 		btrfs_set_stack_device_total_bytes(dev_item,
3546 						   dev->commit_total_bytes);
3547 		btrfs_set_stack_device_bytes_used(dev_item,
3548 						  dev->commit_bytes_used);
3549 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3550 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3551 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3552 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3553 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3554 
3555 		flags = btrfs_super_flags(sb);
3556 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3557 
3558 		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3559 		if (ret)
3560 			total_errors++;
3561 	}
3562 	if (total_errors > max_errors) {
3563 		btrfs_err(root->fs_info, "%d errors while writing supers",
3564 		       total_errors);
3565 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3566 
3567 		/* FUA is masked off if unsupported and can't be the reason */
3568 		btrfs_error(root->fs_info, -EIO,
3569 			    "%d errors while writing supers", total_errors);
3570 		return -EIO;
3571 	}
3572 
3573 	total_errors = 0;
3574 	list_for_each_entry_rcu(dev, head, dev_list) {
3575 		if (!dev->bdev)
3576 			continue;
3577 		if (!dev->in_fs_metadata || !dev->writeable)
3578 			continue;
3579 
3580 		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3581 		if (ret)
3582 			total_errors++;
3583 	}
3584 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3585 	if (total_errors > max_errors) {
3586 		btrfs_error(root->fs_info, -EIO,
3587 			    "%d errors while writing supers", total_errors);
3588 		return -EIO;
3589 	}
3590 	return 0;
3591 }
3592 
write_ctree_super(struct btrfs_trans_handle * trans,struct btrfs_root * root,int max_mirrors)3593 int write_ctree_super(struct btrfs_trans_handle *trans,
3594 		      struct btrfs_root *root, int max_mirrors)
3595 {
3596 	return write_all_supers(root, max_mirrors);
3597 }
3598 
3599 /* Drop a fs root from the radix tree and free it. */
btrfs_drop_and_free_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)3600 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3601 				  struct btrfs_root *root)
3602 {
3603 	spin_lock(&fs_info->fs_roots_radix_lock);
3604 	radix_tree_delete(&fs_info->fs_roots_radix,
3605 			  (unsigned long)root->root_key.objectid);
3606 	spin_unlock(&fs_info->fs_roots_radix_lock);
3607 
3608 	if (btrfs_root_refs(&root->root_item) == 0)
3609 		synchronize_srcu(&fs_info->subvol_srcu);
3610 
3611 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3612 		btrfs_free_log(NULL, root);
3613 
3614 	if (root->free_ino_pinned)
3615 		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3616 	if (root->free_ino_ctl)
3617 		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3618 	free_fs_root(root);
3619 }
3620 
free_fs_root(struct btrfs_root * root)3621 static void free_fs_root(struct btrfs_root *root)
3622 {
3623 	iput(root->ino_cache_inode);
3624 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3625 	btrfs_free_block_rsv(root, root->orphan_block_rsv);
3626 	root->orphan_block_rsv = NULL;
3627 	if (root->anon_dev)
3628 		free_anon_bdev(root->anon_dev);
3629 	if (root->subv_writers)
3630 		btrfs_free_subvolume_writers(root->subv_writers);
3631 	free_extent_buffer(root->node);
3632 	free_extent_buffer(root->commit_root);
3633 	kfree(root->free_ino_ctl);
3634 	kfree(root->free_ino_pinned);
3635 	kfree(root->name);
3636 	btrfs_put_fs_root(root);
3637 }
3638 
btrfs_free_fs_root(struct btrfs_root * root)3639 void btrfs_free_fs_root(struct btrfs_root *root)
3640 {
3641 	free_fs_root(root);
3642 }
3643 
btrfs_cleanup_fs_roots(struct btrfs_fs_info * fs_info)3644 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3645 {
3646 	u64 root_objectid = 0;
3647 	struct btrfs_root *gang[8];
3648 	int i = 0;
3649 	int err = 0;
3650 	unsigned int ret = 0;
3651 	int index;
3652 
3653 	while (1) {
3654 		index = srcu_read_lock(&fs_info->subvol_srcu);
3655 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3656 					     (void **)gang, root_objectid,
3657 					     ARRAY_SIZE(gang));
3658 		if (!ret) {
3659 			srcu_read_unlock(&fs_info->subvol_srcu, index);
3660 			break;
3661 		}
3662 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3663 
3664 		for (i = 0; i < ret; i++) {
3665 			/* Avoid to grab roots in dead_roots */
3666 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3667 				gang[i] = NULL;
3668 				continue;
3669 			}
3670 			/* grab all the search result for later use */
3671 			gang[i] = btrfs_grab_fs_root(gang[i]);
3672 		}
3673 		srcu_read_unlock(&fs_info->subvol_srcu, index);
3674 
3675 		for (i = 0; i < ret; i++) {
3676 			if (!gang[i])
3677 				continue;
3678 			root_objectid = gang[i]->root_key.objectid;
3679 			err = btrfs_orphan_cleanup(gang[i]);
3680 			if (err)
3681 				break;
3682 			btrfs_put_fs_root(gang[i]);
3683 		}
3684 		root_objectid++;
3685 	}
3686 
3687 	/* release the uncleaned roots due to error */
3688 	for (; i < ret; i++) {
3689 		if (gang[i])
3690 			btrfs_put_fs_root(gang[i]);
3691 	}
3692 	return err;
3693 }
3694 
btrfs_commit_super(struct btrfs_root * root)3695 int btrfs_commit_super(struct btrfs_root *root)
3696 {
3697 	struct btrfs_trans_handle *trans;
3698 
3699 	mutex_lock(&root->fs_info->cleaner_mutex);
3700 	btrfs_run_delayed_iputs(root);
3701 	mutex_unlock(&root->fs_info->cleaner_mutex);
3702 	wake_up_process(root->fs_info->cleaner_kthread);
3703 
3704 	/* wait until ongoing cleanup work done */
3705 	down_write(&root->fs_info->cleanup_work_sem);
3706 	up_write(&root->fs_info->cleanup_work_sem);
3707 
3708 	trans = btrfs_join_transaction(root);
3709 	if (IS_ERR(trans))
3710 		return PTR_ERR(trans);
3711 	return btrfs_commit_transaction(trans, root);
3712 }
3713 
close_ctree(struct btrfs_root * root)3714 void close_ctree(struct btrfs_root *root)
3715 {
3716 	struct btrfs_fs_info *fs_info = root->fs_info;
3717 	int ret;
3718 
3719 	fs_info->closing = 1;
3720 	smp_mb();
3721 
3722 	/* wait for the uuid_scan task to finish */
3723 	down(&fs_info->uuid_tree_rescan_sem);
3724 	/* avoid complains from lockdep et al., set sem back to initial state */
3725 	up(&fs_info->uuid_tree_rescan_sem);
3726 
3727 	/* pause restriper - we want to resume on mount */
3728 	btrfs_pause_balance(fs_info);
3729 
3730 	btrfs_dev_replace_suspend_for_unmount(fs_info);
3731 
3732 	btrfs_scrub_cancel(fs_info);
3733 
3734 	/* wait for any defraggers to finish */
3735 	wait_event(fs_info->transaction_wait,
3736 		   (atomic_read(&fs_info->defrag_running) == 0));
3737 
3738 	/* clear out the rbtree of defraggable inodes */
3739 	btrfs_cleanup_defrag_inodes(fs_info);
3740 
3741 	cancel_work_sync(&fs_info->async_reclaim_work);
3742 
3743 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3744 		ret = btrfs_commit_super(root);
3745 		if (ret)
3746 			btrfs_err(fs_info, "commit super ret %d", ret);
3747 	}
3748 
3749 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3750 		btrfs_error_commit_super(root);
3751 
3752 	kthread_stop(fs_info->transaction_kthread);
3753 	kthread_stop(fs_info->cleaner_kthread);
3754 
3755 	fs_info->closing = 2;
3756 	smp_mb();
3757 
3758 	btrfs_free_qgroup_config(fs_info);
3759 
3760 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3761 		btrfs_info(fs_info, "at unmount delalloc count %lld",
3762 		       percpu_counter_sum(&fs_info->delalloc_bytes));
3763 	}
3764 
3765 	btrfs_sysfs_remove_one(fs_info);
3766 
3767 	btrfs_free_fs_roots(fs_info);
3768 
3769 	btrfs_put_block_group_cache(fs_info);
3770 
3771 	btrfs_free_block_groups(fs_info);
3772 
3773 	/*
3774 	 * we must make sure there is not any read request to
3775 	 * submit after we stopping all workers.
3776 	 */
3777 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3778 	btrfs_stop_all_workers(fs_info);
3779 
3780 	fs_info->open = 0;
3781 	free_root_pointers(fs_info, 1);
3782 
3783 	iput(fs_info->btree_inode);
3784 
3785 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3786 	if (btrfs_test_opt(root, CHECK_INTEGRITY))
3787 		btrfsic_unmount(root, fs_info->fs_devices);
3788 #endif
3789 
3790 	btrfs_close_devices(fs_info->fs_devices);
3791 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3792 
3793 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3794 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3795 	percpu_counter_destroy(&fs_info->bio_counter);
3796 	bdi_destroy(&fs_info->bdi);
3797 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3798 
3799 	btrfs_free_stripe_hash_table(fs_info);
3800 
3801 	__btrfs_free_block_rsv(root->orphan_block_rsv);
3802 	root->orphan_block_rsv = NULL;
3803 
3804 	lock_chunks(root);
3805 	while (!list_empty(&fs_info->pinned_chunks)) {
3806 		struct extent_map *em;
3807 
3808 		em = list_first_entry(&fs_info->pinned_chunks,
3809 				      struct extent_map, list);
3810 		list_del_init(&em->list);
3811 		free_extent_map(em);
3812 	}
3813 	unlock_chunks(root);
3814 }
3815 
btrfs_buffer_uptodate(struct extent_buffer * buf,u64 parent_transid,int atomic)3816 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3817 			  int atomic)
3818 {
3819 	int ret;
3820 	struct inode *btree_inode = buf->pages[0]->mapping->host;
3821 
3822 	ret = extent_buffer_uptodate(buf);
3823 	if (!ret)
3824 		return ret;
3825 
3826 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3827 				    parent_transid, atomic);
3828 	if (ret == -EAGAIN)
3829 		return ret;
3830 	return !ret;
3831 }
3832 
btrfs_set_buffer_uptodate(struct extent_buffer * buf)3833 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3834 {
3835 	return set_extent_buffer_uptodate(buf);
3836 }
3837 
btrfs_mark_buffer_dirty(struct extent_buffer * buf)3838 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3839 {
3840 	struct btrfs_root *root;
3841 	u64 transid = btrfs_header_generation(buf);
3842 	int was_dirty;
3843 
3844 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3845 	/*
3846 	 * This is a fast path so only do this check if we have sanity tests
3847 	 * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3848 	 * outside of the sanity tests.
3849 	 */
3850 	if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3851 		return;
3852 #endif
3853 	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3854 	btrfs_assert_tree_locked(buf);
3855 	if (transid != root->fs_info->generation)
3856 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3857 		       "found %llu running %llu\n",
3858 			buf->start, transid, root->fs_info->generation);
3859 	was_dirty = set_extent_buffer_dirty(buf);
3860 	if (!was_dirty)
3861 		__percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3862 				     buf->len,
3863 				     root->fs_info->dirty_metadata_batch);
3864 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3865 	if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3866 		btrfs_print_leaf(root, buf);
3867 		ASSERT(0);
3868 	}
3869 #endif
3870 }
3871 
__btrfs_btree_balance_dirty(struct btrfs_root * root,int flush_delayed)3872 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3873 					int flush_delayed)
3874 {
3875 	/*
3876 	 * looks as though older kernels can get into trouble with
3877 	 * this code, they end up stuck in balance_dirty_pages forever
3878 	 */
3879 	int ret;
3880 
3881 	if (current->flags & PF_MEMALLOC)
3882 		return;
3883 
3884 	if (flush_delayed)
3885 		btrfs_balance_delayed_items(root);
3886 
3887 	ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3888 				     BTRFS_DIRTY_METADATA_THRESH);
3889 	if (ret > 0) {
3890 		balance_dirty_pages_ratelimited(
3891 				   root->fs_info->btree_inode->i_mapping);
3892 	}
3893 	return;
3894 }
3895 
btrfs_btree_balance_dirty(struct btrfs_root * root)3896 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3897 {
3898 	__btrfs_btree_balance_dirty(root, 1);
3899 }
3900 
btrfs_btree_balance_dirty_nodelay(struct btrfs_root * root)3901 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3902 {
3903 	__btrfs_btree_balance_dirty(root, 0);
3904 }
3905 
btrfs_read_buffer(struct extent_buffer * buf,u64 parent_transid)3906 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3907 {
3908 	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3909 	return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3910 }
3911 
btrfs_check_super_valid(struct btrfs_fs_info * fs_info,int read_only)3912 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3913 			      int read_only)
3914 {
3915 	struct btrfs_super_block *sb = fs_info->super_copy;
3916 	int ret = 0;
3917 
3918 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
3919 		printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
3920 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
3921 		ret = -EINVAL;
3922 	}
3923 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
3924 		printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
3925 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
3926 		ret = -EINVAL;
3927 	}
3928 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
3929 		printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
3930 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
3931 		ret = -EINVAL;
3932 	}
3933 
3934 	/*
3935 	 * The common minimum, we don't know if we can trust the nodesize/sectorsize
3936 	 * items yet, they'll be verified later. Issue just a warning.
3937 	 */
3938 	if (!IS_ALIGNED(btrfs_super_root(sb), 4096))
3939 		printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
3940 				btrfs_super_root(sb));
3941 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096))
3942 		printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
3943 				btrfs_super_chunk_root(sb));
3944 	if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096))
3945 		printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
3946 				btrfs_super_log_root(sb));
3947 
3948 	/*
3949 	 * Check the lower bound, the alignment and other constraints are
3950 	 * checked later.
3951 	 */
3952 	if (btrfs_super_nodesize(sb) < 4096) {
3953 		printk(KERN_ERR "BTRFS: nodesize too small: %u < 4096\n",
3954 				btrfs_super_nodesize(sb));
3955 		ret = -EINVAL;
3956 	}
3957 	if (btrfs_super_sectorsize(sb) < 4096) {
3958 		printk(KERN_ERR "BTRFS: sectorsize too small: %u < 4096\n",
3959 				btrfs_super_sectorsize(sb));
3960 		ret = -EINVAL;
3961 	}
3962 
3963 	if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
3964 		printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
3965 				fs_info->fsid, sb->dev_item.fsid);
3966 		ret = -EINVAL;
3967 	}
3968 
3969 	/*
3970 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
3971 	 * done later
3972 	 */
3973 	if (btrfs_super_num_devices(sb) > (1UL << 31))
3974 		printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
3975 				btrfs_super_num_devices(sb));
3976 	if (btrfs_super_num_devices(sb) == 0) {
3977 		printk(KERN_ERR "BTRFS: number of devices is 0\n");
3978 		ret = -EINVAL;
3979 	}
3980 
3981 	if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
3982 		printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
3983 				btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
3984 		ret = -EINVAL;
3985 	}
3986 
3987 	/*
3988 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
3989 	 * and one chunk
3990 	 */
3991 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
3992 		printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
3993 				btrfs_super_sys_array_size(sb),
3994 				BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
3995 		ret = -EINVAL;
3996 	}
3997 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
3998 			+ sizeof(struct btrfs_chunk)) {
3999 		printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
4000 				btrfs_super_sys_array_size(sb),
4001 				sizeof(struct btrfs_disk_key)
4002 				+ sizeof(struct btrfs_chunk));
4003 		ret = -EINVAL;
4004 	}
4005 
4006 	/*
4007 	 * The generation is a global counter, we'll trust it more than the others
4008 	 * but it's still possible that it's the one that's wrong.
4009 	 */
4010 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4011 		printk(KERN_WARNING
4012 			"BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
4013 			btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4014 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4015 	    && btrfs_super_cache_generation(sb) != (u64)-1)
4016 		printk(KERN_WARNING
4017 			"BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
4018 			btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
4019 
4020 	return ret;
4021 }
4022 
btrfs_error_commit_super(struct btrfs_root * root)4023 static void btrfs_error_commit_super(struct btrfs_root *root)
4024 {
4025 	mutex_lock(&root->fs_info->cleaner_mutex);
4026 	btrfs_run_delayed_iputs(root);
4027 	mutex_unlock(&root->fs_info->cleaner_mutex);
4028 
4029 	down_write(&root->fs_info->cleanup_work_sem);
4030 	up_write(&root->fs_info->cleanup_work_sem);
4031 
4032 	/* cleanup FS via transaction */
4033 	btrfs_cleanup_transaction(root);
4034 }
4035 
btrfs_destroy_ordered_extents(struct btrfs_root * root)4036 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4037 {
4038 	struct btrfs_ordered_extent *ordered;
4039 
4040 	spin_lock(&root->ordered_extent_lock);
4041 	/*
4042 	 * This will just short circuit the ordered completion stuff which will
4043 	 * make sure the ordered extent gets properly cleaned up.
4044 	 */
4045 	list_for_each_entry(ordered, &root->ordered_extents,
4046 			    root_extent_list)
4047 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4048 	spin_unlock(&root->ordered_extent_lock);
4049 }
4050 
btrfs_destroy_all_ordered_extents(struct btrfs_fs_info * fs_info)4051 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4052 {
4053 	struct btrfs_root *root;
4054 	struct list_head splice;
4055 
4056 	INIT_LIST_HEAD(&splice);
4057 
4058 	spin_lock(&fs_info->ordered_root_lock);
4059 	list_splice_init(&fs_info->ordered_roots, &splice);
4060 	while (!list_empty(&splice)) {
4061 		root = list_first_entry(&splice, struct btrfs_root,
4062 					ordered_root);
4063 		list_move_tail(&root->ordered_root,
4064 			       &fs_info->ordered_roots);
4065 
4066 		spin_unlock(&fs_info->ordered_root_lock);
4067 		btrfs_destroy_ordered_extents(root);
4068 
4069 		cond_resched();
4070 		spin_lock(&fs_info->ordered_root_lock);
4071 	}
4072 	spin_unlock(&fs_info->ordered_root_lock);
4073 }
4074 
btrfs_destroy_delayed_refs(struct btrfs_transaction * trans,struct btrfs_root * root)4075 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4076 				      struct btrfs_root *root)
4077 {
4078 	struct rb_node *node;
4079 	struct btrfs_delayed_ref_root *delayed_refs;
4080 	struct btrfs_delayed_ref_node *ref;
4081 	int ret = 0;
4082 
4083 	delayed_refs = &trans->delayed_refs;
4084 
4085 	spin_lock(&delayed_refs->lock);
4086 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4087 		spin_unlock(&delayed_refs->lock);
4088 		btrfs_info(root->fs_info, "delayed_refs has NO entry");
4089 		return ret;
4090 	}
4091 
4092 	while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4093 		struct btrfs_delayed_ref_head *head;
4094 		bool pin_bytes = false;
4095 
4096 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4097 				href_node);
4098 		if (!mutex_trylock(&head->mutex)) {
4099 			atomic_inc(&head->node.refs);
4100 			spin_unlock(&delayed_refs->lock);
4101 
4102 			mutex_lock(&head->mutex);
4103 			mutex_unlock(&head->mutex);
4104 			btrfs_put_delayed_ref(&head->node);
4105 			spin_lock(&delayed_refs->lock);
4106 			continue;
4107 		}
4108 		spin_lock(&head->lock);
4109 		while ((node = rb_first(&head->ref_root)) != NULL) {
4110 			ref = rb_entry(node, struct btrfs_delayed_ref_node,
4111 				       rb_node);
4112 			ref->in_tree = 0;
4113 			rb_erase(&ref->rb_node, &head->ref_root);
4114 			atomic_dec(&delayed_refs->num_entries);
4115 			btrfs_put_delayed_ref(ref);
4116 		}
4117 		if (head->must_insert_reserved)
4118 			pin_bytes = true;
4119 		btrfs_free_delayed_extent_op(head->extent_op);
4120 		delayed_refs->num_heads--;
4121 		if (head->processing == 0)
4122 			delayed_refs->num_heads_ready--;
4123 		atomic_dec(&delayed_refs->num_entries);
4124 		head->node.in_tree = 0;
4125 		rb_erase(&head->href_node, &delayed_refs->href_root);
4126 		spin_unlock(&head->lock);
4127 		spin_unlock(&delayed_refs->lock);
4128 		mutex_unlock(&head->mutex);
4129 
4130 		if (pin_bytes)
4131 			btrfs_pin_extent(root, head->node.bytenr,
4132 					 head->node.num_bytes, 1);
4133 		btrfs_put_delayed_ref(&head->node);
4134 		cond_resched();
4135 		spin_lock(&delayed_refs->lock);
4136 	}
4137 
4138 	spin_unlock(&delayed_refs->lock);
4139 
4140 	return ret;
4141 }
4142 
btrfs_destroy_delalloc_inodes(struct btrfs_root * root)4143 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4144 {
4145 	struct btrfs_inode *btrfs_inode;
4146 	struct list_head splice;
4147 
4148 	INIT_LIST_HEAD(&splice);
4149 
4150 	spin_lock(&root->delalloc_lock);
4151 	list_splice_init(&root->delalloc_inodes, &splice);
4152 
4153 	while (!list_empty(&splice)) {
4154 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4155 					       delalloc_inodes);
4156 
4157 		list_del_init(&btrfs_inode->delalloc_inodes);
4158 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4159 			  &btrfs_inode->runtime_flags);
4160 		spin_unlock(&root->delalloc_lock);
4161 
4162 		btrfs_invalidate_inodes(btrfs_inode->root);
4163 
4164 		spin_lock(&root->delalloc_lock);
4165 	}
4166 
4167 	spin_unlock(&root->delalloc_lock);
4168 }
4169 
btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info * fs_info)4170 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4171 {
4172 	struct btrfs_root *root;
4173 	struct list_head splice;
4174 
4175 	INIT_LIST_HEAD(&splice);
4176 
4177 	spin_lock(&fs_info->delalloc_root_lock);
4178 	list_splice_init(&fs_info->delalloc_roots, &splice);
4179 	while (!list_empty(&splice)) {
4180 		root = list_first_entry(&splice, struct btrfs_root,
4181 					 delalloc_root);
4182 		list_del_init(&root->delalloc_root);
4183 		root = btrfs_grab_fs_root(root);
4184 		BUG_ON(!root);
4185 		spin_unlock(&fs_info->delalloc_root_lock);
4186 
4187 		btrfs_destroy_delalloc_inodes(root);
4188 		btrfs_put_fs_root(root);
4189 
4190 		spin_lock(&fs_info->delalloc_root_lock);
4191 	}
4192 	spin_unlock(&fs_info->delalloc_root_lock);
4193 }
4194 
btrfs_destroy_marked_extents(struct btrfs_root * root,struct extent_io_tree * dirty_pages,int mark)4195 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4196 					struct extent_io_tree *dirty_pages,
4197 					int mark)
4198 {
4199 	int ret;
4200 	struct extent_buffer *eb;
4201 	u64 start = 0;
4202 	u64 end;
4203 
4204 	while (1) {
4205 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4206 					    mark, NULL);
4207 		if (ret)
4208 			break;
4209 
4210 		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4211 		while (start <= end) {
4212 			eb = btrfs_find_tree_block(root->fs_info, start);
4213 			start += root->nodesize;
4214 			if (!eb)
4215 				continue;
4216 			wait_on_extent_buffer_writeback(eb);
4217 
4218 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4219 					       &eb->bflags))
4220 				clear_extent_buffer_dirty(eb);
4221 			free_extent_buffer_stale(eb);
4222 		}
4223 	}
4224 
4225 	return ret;
4226 }
4227 
btrfs_destroy_pinned_extent(struct btrfs_root * root,struct extent_io_tree * pinned_extents)4228 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4229 				       struct extent_io_tree *pinned_extents)
4230 {
4231 	struct extent_io_tree *unpin;
4232 	u64 start;
4233 	u64 end;
4234 	int ret;
4235 	bool loop = true;
4236 
4237 	unpin = pinned_extents;
4238 again:
4239 	while (1) {
4240 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4241 					    EXTENT_DIRTY, NULL);
4242 		if (ret)
4243 			break;
4244 
4245 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
4246 		btrfs_error_unpin_extent_range(root, start, end);
4247 		cond_resched();
4248 	}
4249 
4250 	if (loop) {
4251 		if (unpin == &root->fs_info->freed_extents[0])
4252 			unpin = &root->fs_info->freed_extents[1];
4253 		else
4254 			unpin = &root->fs_info->freed_extents[0];
4255 		loop = false;
4256 		goto again;
4257 	}
4258 
4259 	return 0;
4260 }
4261 
btrfs_free_pending_ordered(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)4262 static void btrfs_free_pending_ordered(struct btrfs_transaction *cur_trans,
4263 				       struct btrfs_fs_info *fs_info)
4264 {
4265 	struct btrfs_ordered_extent *ordered;
4266 
4267 	spin_lock(&fs_info->trans_lock);
4268 	while (!list_empty(&cur_trans->pending_ordered)) {
4269 		ordered = list_first_entry(&cur_trans->pending_ordered,
4270 					   struct btrfs_ordered_extent,
4271 					   trans_list);
4272 		list_del_init(&ordered->trans_list);
4273 		spin_unlock(&fs_info->trans_lock);
4274 
4275 		btrfs_put_ordered_extent(ordered);
4276 		spin_lock(&fs_info->trans_lock);
4277 	}
4278 	spin_unlock(&fs_info->trans_lock);
4279 }
4280 
btrfs_cleanup_one_transaction(struct btrfs_transaction * cur_trans,struct btrfs_root * root)4281 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4282 				   struct btrfs_root *root)
4283 {
4284 	btrfs_destroy_delayed_refs(cur_trans, root);
4285 
4286 	cur_trans->state = TRANS_STATE_COMMIT_START;
4287 	wake_up(&root->fs_info->transaction_blocked_wait);
4288 
4289 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4290 	wake_up(&root->fs_info->transaction_wait);
4291 
4292 	btrfs_free_pending_ordered(cur_trans, root->fs_info);
4293 	btrfs_destroy_delayed_inodes(root);
4294 	btrfs_assert_delayed_root_empty(root);
4295 
4296 	btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4297 				     EXTENT_DIRTY);
4298 	btrfs_destroy_pinned_extent(root,
4299 				    root->fs_info->pinned_extents);
4300 
4301 	cur_trans->state =TRANS_STATE_COMPLETED;
4302 	wake_up(&cur_trans->commit_wait);
4303 
4304 	/*
4305 	memset(cur_trans, 0, sizeof(*cur_trans));
4306 	kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4307 	*/
4308 }
4309 
btrfs_cleanup_transaction(struct btrfs_root * root)4310 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4311 {
4312 	struct btrfs_transaction *t;
4313 
4314 	mutex_lock(&root->fs_info->transaction_kthread_mutex);
4315 
4316 	spin_lock(&root->fs_info->trans_lock);
4317 	while (!list_empty(&root->fs_info->trans_list)) {
4318 		t = list_first_entry(&root->fs_info->trans_list,
4319 				     struct btrfs_transaction, list);
4320 		if (t->state >= TRANS_STATE_COMMIT_START) {
4321 			atomic_inc(&t->use_count);
4322 			spin_unlock(&root->fs_info->trans_lock);
4323 			btrfs_wait_for_commit(root, t->transid);
4324 			btrfs_put_transaction(t);
4325 			spin_lock(&root->fs_info->trans_lock);
4326 			continue;
4327 		}
4328 		if (t == root->fs_info->running_transaction) {
4329 			t->state = TRANS_STATE_COMMIT_DOING;
4330 			spin_unlock(&root->fs_info->trans_lock);
4331 			/*
4332 			 * We wait for 0 num_writers since we don't hold a trans
4333 			 * handle open currently for this transaction.
4334 			 */
4335 			wait_event(t->writer_wait,
4336 				   atomic_read(&t->num_writers) == 0);
4337 		} else {
4338 			spin_unlock(&root->fs_info->trans_lock);
4339 		}
4340 		btrfs_cleanup_one_transaction(t, root);
4341 
4342 		spin_lock(&root->fs_info->trans_lock);
4343 		if (t == root->fs_info->running_transaction)
4344 			root->fs_info->running_transaction = NULL;
4345 		list_del_init(&t->list);
4346 		spin_unlock(&root->fs_info->trans_lock);
4347 
4348 		btrfs_put_transaction(t);
4349 		trace_btrfs_transaction_commit(root);
4350 		spin_lock(&root->fs_info->trans_lock);
4351 	}
4352 	spin_unlock(&root->fs_info->trans_lock);
4353 	btrfs_destroy_all_ordered_extents(root->fs_info);
4354 	btrfs_destroy_delayed_inodes(root);
4355 	btrfs_assert_delayed_root_empty(root);
4356 	btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4357 	btrfs_destroy_all_delalloc_inodes(root->fs_info);
4358 	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4359 
4360 	return 0;
4361 }
4362 
4363 static const struct extent_io_ops btree_extent_io_ops = {
4364 	.readpage_end_io_hook = btree_readpage_end_io_hook,
4365 	.readpage_io_failed_hook = btree_io_failed_hook,
4366 	.submit_bio_hook = btree_submit_bio_hook,
4367 	/* note we're sharing with inode.c for the merge bio hook */
4368 	.merge_bio_hook = btrfs_merge_bio_hook,
4369 };
4370