1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Based on the design of the Berkeley Packet Filter. The new
5  * internal format has been designed by PLUMgrid:
6  *
7  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8  *
9  * Authors:
10  *
11  *	Jay Schulist <jschlst@samba.org>
12  *	Alexei Starovoitov <ast@plumgrid.com>
13  *	Daniel Borkmann <dborkman@redhat.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * Andi Kleen - Fix a few bad bugs and races.
21  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22  */
23 
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <linux/fcntl.h>
28 #include <linux/socket.h>
29 #include <linux/in.h>
30 #include <linux/inet.h>
31 #include <linux/netdevice.h>
32 #include <linux/if_packet.h>
33 #include <linux/gfp.h>
34 #include <net/ip.h>
35 #include <net/protocol.h>
36 #include <net/netlink.h>
37 #include <linux/skbuff.h>
38 #include <net/sock.h>
39 #include <net/flow_dissector.h>
40 #include <linux/errno.h>
41 #include <linux/timer.h>
42 #include <asm/uaccess.h>
43 #include <asm/unaligned.h>
44 #include <linux/filter.h>
45 #include <linux/ratelimit.h>
46 #include <linux/seccomp.h>
47 #include <linux/if_vlan.h>
48 #include <linux/bpf.h>
49 #include <net/sch_generic.h>
50 #include <net/cls_cgroup.h>
51 #include <net/dst_metadata.h>
52 #include <net/dst.h>
53 
54 /**
55  *	sk_filter - run a packet through a socket filter
56  *	@sk: sock associated with &sk_buff
57  *	@skb: buffer to filter
58  *
59  * Run the eBPF program and then cut skb->data to correct size returned by
60  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
61  * than pkt_len we keep whole skb->data. This is the socket level
62  * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
63  * be accepted or -EPERM if the packet should be tossed.
64  *
65  */
sk_filter(struct sock * sk,struct sk_buff * skb)66 int sk_filter(struct sock *sk, struct sk_buff *skb)
67 {
68 	int err;
69 	struct sk_filter *filter;
70 
71 	/*
72 	 * If the skb was allocated from pfmemalloc reserves, only
73 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
74 	 * helping free memory
75 	 */
76 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
77 		return -ENOMEM;
78 
79 	err = security_sock_rcv_skb(sk, skb);
80 	if (err)
81 		return err;
82 
83 	rcu_read_lock();
84 	filter = rcu_dereference(sk->sk_filter);
85 	if (filter) {
86 		unsigned int pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
87 
88 		err = pkt_len ? pskb_trim(skb, pkt_len) : -EPERM;
89 	}
90 	rcu_read_unlock();
91 
92 	return err;
93 }
94 EXPORT_SYMBOL(sk_filter);
95 
__skb_get_pay_offset(u64 ctx,u64 a,u64 x,u64 r4,u64 r5)96 static u64 __skb_get_pay_offset(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
97 {
98 	return skb_get_poff((struct sk_buff *)(unsigned long) ctx);
99 }
100 
__skb_get_nlattr(u64 ctx,u64 a,u64 x,u64 r4,u64 r5)101 static u64 __skb_get_nlattr(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
102 {
103 	struct sk_buff *skb = (struct sk_buff *)(unsigned long) ctx;
104 	struct nlattr *nla;
105 
106 	if (skb_is_nonlinear(skb))
107 		return 0;
108 
109 	if (skb->len < sizeof(struct nlattr))
110 		return 0;
111 
112 	if (a > skb->len - sizeof(struct nlattr))
113 		return 0;
114 
115 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
116 	if (nla)
117 		return (void *) nla - (void *) skb->data;
118 
119 	return 0;
120 }
121 
__skb_get_nlattr_nest(u64 ctx,u64 a,u64 x,u64 r4,u64 r5)122 static u64 __skb_get_nlattr_nest(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
123 {
124 	struct sk_buff *skb = (struct sk_buff *)(unsigned long) ctx;
125 	struct nlattr *nla;
126 
127 	if (skb_is_nonlinear(skb))
128 		return 0;
129 
130 	if (skb->len < sizeof(struct nlattr))
131 		return 0;
132 
133 	if (a > skb->len - sizeof(struct nlattr))
134 		return 0;
135 
136 	nla = (struct nlattr *) &skb->data[a];
137 	if (nla->nla_len > skb->len - a)
138 		return 0;
139 
140 	nla = nla_find_nested(nla, x);
141 	if (nla)
142 		return (void *) nla - (void *) skb->data;
143 
144 	return 0;
145 }
146 
__get_raw_cpu_id(u64 ctx,u64 a,u64 x,u64 r4,u64 r5)147 static u64 __get_raw_cpu_id(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
148 {
149 	return raw_smp_processor_id();
150 }
151 
convert_skb_access(int skb_field,int dst_reg,int src_reg,struct bpf_insn * insn_buf)152 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
153 			      struct bpf_insn *insn_buf)
154 {
155 	struct bpf_insn *insn = insn_buf;
156 
157 	switch (skb_field) {
158 	case SKF_AD_MARK:
159 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
160 
161 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
162 				      offsetof(struct sk_buff, mark));
163 		break;
164 
165 	case SKF_AD_PKTTYPE:
166 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
167 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
168 #ifdef __BIG_ENDIAN_BITFIELD
169 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
170 #endif
171 		break;
172 
173 	case SKF_AD_QUEUE:
174 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);
175 
176 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
177 				      offsetof(struct sk_buff, queue_mapping));
178 		break;
179 
180 	case SKF_AD_VLAN_TAG:
181 	case SKF_AD_VLAN_TAG_PRESENT:
182 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
183 		BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
184 
185 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
186 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
187 				      offsetof(struct sk_buff, vlan_tci));
188 		if (skb_field == SKF_AD_VLAN_TAG) {
189 			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg,
190 						~VLAN_TAG_PRESENT);
191 		} else {
192 			/* dst_reg >>= 12 */
193 			*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 12);
194 			/* dst_reg &= 1 */
195 			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
196 		}
197 		break;
198 	}
199 
200 	return insn - insn_buf;
201 }
202 
convert_bpf_extensions(struct sock_filter * fp,struct bpf_insn ** insnp)203 static bool convert_bpf_extensions(struct sock_filter *fp,
204 				   struct bpf_insn **insnp)
205 {
206 	struct bpf_insn *insn = *insnp;
207 	u32 cnt;
208 
209 	switch (fp->k) {
210 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
211 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
212 
213 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
214 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
215 				      offsetof(struct sk_buff, protocol));
216 		/* A = ntohs(A) [emitting a nop or swap16] */
217 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
218 		break;
219 
220 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
221 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
222 		insn += cnt - 1;
223 		break;
224 
225 	case SKF_AD_OFF + SKF_AD_IFINDEX:
226 	case SKF_AD_OFF + SKF_AD_HATYPE:
227 		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
228 		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
229 		BUILD_BUG_ON(bytes_to_bpf_size(FIELD_SIZEOF(struct sk_buff, dev)) < 0);
230 
231 		*insn++ = BPF_LDX_MEM(bytes_to_bpf_size(FIELD_SIZEOF(struct sk_buff, dev)),
232 				      BPF_REG_TMP, BPF_REG_CTX,
233 				      offsetof(struct sk_buff, dev));
234 		/* if (tmp != 0) goto pc + 1 */
235 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
236 		*insn++ = BPF_EXIT_INSN();
237 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
238 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
239 					    offsetof(struct net_device, ifindex));
240 		else
241 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
242 					    offsetof(struct net_device, type));
243 		break;
244 
245 	case SKF_AD_OFF + SKF_AD_MARK:
246 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
247 		insn += cnt - 1;
248 		break;
249 
250 	case SKF_AD_OFF + SKF_AD_RXHASH:
251 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
252 
253 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
254 				    offsetof(struct sk_buff, hash));
255 		break;
256 
257 	case SKF_AD_OFF + SKF_AD_QUEUE:
258 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
259 		insn += cnt - 1;
260 		break;
261 
262 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
263 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
264 					 BPF_REG_A, BPF_REG_CTX, insn);
265 		insn += cnt - 1;
266 		break;
267 
268 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
269 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
270 					 BPF_REG_A, BPF_REG_CTX, insn);
271 		insn += cnt - 1;
272 		break;
273 
274 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
275 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);
276 
277 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
278 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
279 				      offsetof(struct sk_buff, vlan_proto));
280 		/* A = ntohs(A) [emitting a nop or swap16] */
281 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
282 		break;
283 
284 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
285 	case SKF_AD_OFF + SKF_AD_NLATTR:
286 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
287 	case SKF_AD_OFF + SKF_AD_CPU:
288 	case SKF_AD_OFF + SKF_AD_RANDOM:
289 		/* arg1 = CTX */
290 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
291 		/* arg2 = A */
292 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
293 		/* arg3 = X */
294 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
295 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
296 		switch (fp->k) {
297 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
298 			*insn = BPF_EMIT_CALL(__skb_get_pay_offset);
299 			break;
300 		case SKF_AD_OFF + SKF_AD_NLATTR:
301 			*insn = BPF_EMIT_CALL(__skb_get_nlattr);
302 			break;
303 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
304 			*insn = BPF_EMIT_CALL(__skb_get_nlattr_nest);
305 			break;
306 		case SKF_AD_OFF + SKF_AD_CPU:
307 			*insn = BPF_EMIT_CALL(__get_raw_cpu_id);
308 			break;
309 		case SKF_AD_OFF + SKF_AD_RANDOM:
310 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
311 			bpf_user_rnd_init_once();
312 			break;
313 		}
314 		break;
315 
316 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
317 		/* A ^= X */
318 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
319 		break;
320 
321 	default:
322 		/* This is just a dummy call to avoid letting the compiler
323 		 * evict __bpf_call_base() as an optimization. Placed here
324 		 * where no-one bothers.
325 		 */
326 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
327 		return false;
328 	}
329 
330 	*insnp = insn;
331 	return true;
332 }
333 
334 /**
335  *	bpf_convert_filter - convert filter program
336  *	@prog: the user passed filter program
337  *	@len: the length of the user passed filter program
338  *	@new_prog: buffer where converted program will be stored
339  *	@new_len: pointer to store length of converted program
340  *
341  * Remap 'sock_filter' style BPF instruction set to 'sock_filter_ext' style.
342  * Conversion workflow:
343  *
344  * 1) First pass for calculating the new program length:
345  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len)
346  *
347  * 2) 2nd pass to remap in two passes: 1st pass finds new
348  *    jump offsets, 2nd pass remapping:
349  *   new_prog = kmalloc(sizeof(struct bpf_insn) * new_len);
350  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len);
351  *
352  * User BPF's register A is mapped to our BPF register 6, user BPF
353  * register X is mapped to BPF register 7; frame pointer is always
354  * register 10; Context 'void *ctx' is stored in register 1, that is,
355  * for socket filters: ctx == 'struct sk_buff *', for seccomp:
356  * ctx == 'struct seccomp_data *'.
357  */
bpf_convert_filter(struct sock_filter * prog,int len,struct bpf_insn * new_prog,int * new_len)358 static int bpf_convert_filter(struct sock_filter *prog, int len,
359 			      struct bpf_insn *new_prog, int *new_len)
360 {
361 	int new_flen = 0, pass = 0, target, i;
362 	struct bpf_insn *new_insn;
363 	struct sock_filter *fp;
364 	int *addrs = NULL;
365 	u8 bpf_src;
366 
367 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
368 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
369 
370 	if (len <= 0 || len > BPF_MAXINSNS)
371 		return -EINVAL;
372 
373 	if (new_prog) {
374 		addrs = kcalloc(len, sizeof(*addrs),
375 				GFP_KERNEL | __GFP_NOWARN);
376 		if (!addrs)
377 			return -ENOMEM;
378 	}
379 
380 do_pass:
381 	new_insn = new_prog;
382 	fp = prog;
383 
384 	if (new_insn)
385 		*new_insn = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
386 	new_insn++;
387 
388 	for (i = 0; i < len; fp++, i++) {
389 		struct bpf_insn tmp_insns[6] = { };
390 		struct bpf_insn *insn = tmp_insns;
391 
392 		if (addrs)
393 			addrs[i] = new_insn - new_prog;
394 
395 		switch (fp->code) {
396 		/* All arithmetic insns and skb loads map as-is. */
397 		case BPF_ALU | BPF_ADD | BPF_X:
398 		case BPF_ALU | BPF_ADD | BPF_K:
399 		case BPF_ALU | BPF_SUB | BPF_X:
400 		case BPF_ALU | BPF_SUB | BPF_K:
401 		case BPF_ALU | BPF_AND | BPF_X:
402 		case BPF_ALU | BPF_AND | BPF_K:
403 		case BPF_ALU | BPF_OR | BPF_X:
404 		case BPF_ALU | BPF_OR | BPF_K:
405 		case BPF_ALU | BPF_LSH | BPF_X:
406 		case BPF_ALU | BPF_LSH | BPF_K:
407 		case BPF_ALU | BPF_RSH | BPF_X:
408 		case BPF_ALU | BPF_RSH | BPF_K:
409 		case BPF_ALU | BPF_XOR | BPF_X:
410 		case BPF_ALU | BPF_XOR | BPF_K:
411 		case BPF_ALU | BPF_MUL | BPF_X:
412 		case BPF_ALU | BPF_MUL | BPF_K:
413 		case BPF_ALU | BPF_DIV | BPF_X:
414 		case BPF_ALU | BPF_DIV | BPF_K:
415 		case BPF_ALU | BPF_MOD | BPF_X:
416 		case BPF_ALU | BPF_MOD | BPF_K:
417 		case BPF_ALU | BPF_NEG:
418 		case BPF_LD | BPF_ABS | BPF_W:
419 		case BPF_LD | BPF_ABS | BPF_H:
420 		case BPF_LD | BPF_ABS | BPF_B:
421 		case BPF_LD | BPF_IND | BPF_W:
422 		case BPF_LD | BPF_IND | BPF_H:
423 		case BPF_LD | BPF_IND | BPF_B:
424 			/* Check for overloaded BPF extension and
425 			 * directly convert it if found, otherwise
426 			 * just move on with mapping.
427 			 */
428 			if (BPF_CLASS(fp->code) == BPF_LD &&
429 			    BPF_MODE(fp->code) == BPF_ABS &&
430 			    convert_bpf_extensions(fp, &insn))
431 				break;
432 
433 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
434 			break;
435 
436 		/* Jump transformation cannot use BPF block macros
437 		 * everywhere as offset calculation and target updates
438 		 * require a bit more work than the rest, i.e. jump
439 		 * opcodes map as-is, but offsets need adjustment.
440 		 */
441 
442 #define BPF_EMIT_JMP							\
443 	do {								\
444 		if (target >= len || target < 0)			\
445 			goto err;					\
446 		insn->off = addrs ? addrs[target] - addrs[i] - 1 : 0;	\
447 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
448 		insn->off -= insn - tmp_insns;				\
449 	} while (0)
450 
451 		case BPF_JMP | BPF_JA:
452 			target = i + fp->k + 1;
453 			insn->code = fp->code;
454 			BPF_EMIT_JMP;
455 			break;
456 
457 		case BPF_JMP | BPF_JEQ | BPF_K:
458 		case BPF_JMP | BPF_JEQ | BPF_X:
459 		case BPF_JMP | BPF_JSET | BPF_K:
460 		case BPF_JMP | BPF_JSET | BPF_X:
461 		case BPF_JMP | BPF_JGT | BPF_K:
462 		case BPF_JMP | BPF_JGT | BPF_X:
463 		case BPF_JMP | BPF_JGE | BPF_K:
464 		case BPF_JMP | BPF_JGE | BPF_X:
465 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
466 				/* BPF immediates are signed, zero extend
467 				 * immediate into tmp register and use it
468 				 * in compare insn.
469 				 */
470 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
471 
472 				insn->dst_reg = BPF_REG_A;
473 				insn->src_reg = BPF_REG_TMP;
474 				bpf_src = BPF_X;
475 			} else {
476 				insn->dst_reg = BPF_REG_A;
477 				insn->imm = fp->k;
478 				bpf_src = BPF_SRC(fp->code);
479 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
480 			}
481 
482 			/* Common case where 'jump_false' is next insn. */
483 			if (fp->jf == 0) {
484 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
485 				target = i + fp->jt + 1;
486 				BPF_EMIT_JMP;
487 				break;
488 			}
489 
490 			/* Convert JEQ into JNE when 'jump_true' is next insn. */
491 			if (fp->jt == 0 && BPF_OP(fp->code) == BPF_JEQ) {
492 				insn->code = BPF_JMP | BPF_JNE | bpf_src;
493 				target = i + fp->jf + 1;
494 				BPF_EMIT_JMP;
495 				break;
496 			}
497 
498 			/* Other jumps are mapped into two insns: Jxx and JA. */
499 			target = i + fp->jt + 1;
500 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
501 			BPF_EMIT_JMP;
502 			insn++;
503 
504 			insn->code = BPF_JMP | BPF_JA;
505 			target = i + fp->jf + 1;
506 			BPF_EMIT_JMP;
507 			break;
508 
509 		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
510 		case BPF_LDX | BPF_MSH | BPF_B:
511 			/* tmp = A */
512 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_A);
513 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
514 			*insn++ = BPF_LD_ABS(BPF_B, fp->k);
515 			/* A &= 0xf */
516 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
517 			/* A <<= 2 */
518 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
519 			/* X = A */
520 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
521 			/* A = tmp */
522 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
523 			break;
524 
525 		/* RET_K, RET_A are remaped into 2 insns. */
526 		case BPF_RET | BPF_A:
527 		case BPF_RET | BPF_K:
528 			*insn++ = BPF_MOV32_RAW(BPF_RVAL(fp->code) == BPF_K ?
529 						BPF_K : BPF_X, BPF_REG_0,
530 						BPF_REG_A, fp->k);
531 			*insn = BPF_EXIT_INSN();
532 			break;
533 
534 		/* Store to stack. */
535 		case BPF_ST:
536 		case BPF_STX:
537 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
538 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
539 					    -(BPF_MEMWORDS - fp->k) * 4);
540 			break;
541 
542 		/* Load from stack. */
543 		case BPF_LD | BPF_MEM:
544 		case BPF_LDX | BPF_MEM:
545 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
546 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
547 					    -(BPF_MEMWORDS - fp->k) * 4);
548 			break;
549 
550 		/* A = K or X = K */
551 		case BPF_LD | BPF_IMM:
552 		case BPF_LDX | BPF_IMM:
553 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
554 					      BPF_REG_A : BPF_REG_X, fp->k);
555 			break;
556 
557 		/* X = A */
558 		case BPF_MISC | BPF_TAX:
559 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
560 			break;
561 
562 		/* A = X */
563 		case BPF_MISC | BPF_TXA:
564 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
565 			break;
566 
567 		/* A = skb->len or X = skb->len */
568 		case BPF_LD | BPF_W | BPF_LEN:
569 		case BPF_LDX | BPF_W | BPF_LEN:
570 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
571 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
572 					    offsetof(struct sk_buff, len));
573 			break;
574 
575 		/* Access seccomp_data fields. */
576 		case BPF_LDX | BPF_ABS | BPF_W:
577 			/* A = *(u32 *) (ctx + K) */
578 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
579 			break;
580 
581 		/* Unknown instruction. */
582 		default:
583 			goto err;
584 		}
585 
586 		insn++;
587 		if (new_prog)
588 			memcpy(new_insn, tmp_insns,
589 			       sizeof(*insn) * (insn - tmp_insns));
590 		new_insn += insn - tmp_insns;
591 	}
592 
593 	if (!new_prog) {
594 		/* Only calculating new length. */
595 		*new_len = new_insn - new_prog;
596 		return 0;
597 	}
598 
599 	pass++;
600 	if (new_flen != new_insn - new_prog) {
601 		new_flen = new_insn - new_prog;
602 		if (pass > 2)
603 			goto err;
604 		goto do_pass;
605 	}
606 
607 	kfree(addrs);
608 	BUG_ON(*new_len != new_flen);
609 	return 0;
610 err:
611 	kfree(addrs);
612 	return -EINVAL;
613 }
614 
615 /* Security:
616  *
617  * As we dont want to clear mem[] array for each packet going through
618  * __bpf_prog_run(), we check that filter loaded by user never try to read
619  * a cell if not previously written, and we check all branches to be sure
620  * a malicious user doesn't try to abuse us.
621  */
check_load_and_stores(const struct sock_filter * filter,int flen)622 static int check_load_and_stores(const struct sock_filter *filter, int flen)
623 {
624 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
625 	int pc, ret = 0;
626 
627 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
628 
629 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
630 	if (!masks)
631 		return -ENOMEM;
632 
633 	memset(masks, 0xff, flen * sizeof(*masks));
634 
635 	for (pc = 0; pc < flen; pc++) {
636 		memvalid &= masks[pc];
637 
638 		switch (filter[pc].code) {
639 		case BPF_ST:
640 		case BPF_STX:
641 			memvalid |= (1 << filter[pc].k);
642 			break;
643 		case BPF_LD | BPF_MEM:
644 		case BPF_LDX | BPF_MEM:
645 			if (!(memvalid & (1 << filter[pc].k))) {
646 				ret = -EINVAL;
647 				goto error;
648 			}
649 			break;
650 		case BPF_JMP | BPF_JA:
651 			/* A jump must set masks on target */
652 			masks[pc + 1 + filter[pc].k] &= memvalid;
653 			memvalid = ~0;
654 			break;
655 		case BPF_JMP | BPF_JEQ | BPF_K:
656 		case BPF_JMP | BPF_JEQ | BPF_X:
657 		case BPF_JMP | BPF_JGE | BPF_K:
658 		case BPF_JMP | BPF_JGE | BPF_X:
659 		case BPF_JMP | BPF_JGT | BPF_K:
660 		case BPF_JMP | BPF_JGT | BPF_X:
661 		case BPF_JMP | BPF_JSET | BPF_K:
662 		case BPF_JMP | BPF_JSET | BPF_X:
663 			/* A jump must set masks on targets */
664 			masks[pc + 1 + filter[pc].jt] &= memvalid;
665 			masks[pc + 1 + filter[pc].jf] &= memvalid;
666 			memvalid = ~0;
667 			break;
668 		}
669 	}
670 error:
671 	kfree(masks);
672 	return ret;
673 }
674 
chk_code_allowed(u16 code_to_probe)675 static bool chk_code_allowed(u16 code_to_probe)
676 {
677 	static const bool codes[] = {
678 		/* 32 bit ALU operations */
679 		[BPF_ALU | BPF_ADD | BPF_K] = true,
680 		[BPF_ALU | BPF_ADD | BPF_X] = true,
681 		[BPF_ALU | BPF_SUB | BPF_K] = true,
682 		[BPF_ALU | BPF_SUB | BPF_X] = true,
683 		[BPF_ALU | BPF_MUL | BPF_K] = true,
684 		[BPF_ALU | BPF_MUL | BPF_X] = true,
685 		[BPF_ALU | BPF_DIV | BPF_K] = true,
686 		[BPF_ALU | BPF_DIV | BPF_X] = true,
687 		[BPF_ALU | BPF_MOD | BPF_K] = true,
688 		[BPF_ALU | BPF_MOD | BPF_X] = true,
689 		[BPF_ALU | BPF_AND | BPF_K] = true,
690 		[BPF_ALU | BPF_AND | BPF_X] = true,
691 		[BPF_ALU | BPF_OR | BPF_K] = true,
692 		[BPF_ALU | BPF_OR | BPF_X] = true,
693 		[BPF_ALU | BPF_XOR | BPF_K] = true,
694 		[BPF_ALU | BPF_XOR | BPF_X] = true,
695 		[BPF_ALU | BPF_LSH | BPF_K] = true,
696 		[BPF_ALU | BPF_LSH | BPF_X] = true,
697 		[BPF_ALU | BPF_RSH | BPF_K] = true,
698 		[BPF_ALU | BPF_RSH | BPF_X] = true,
699 		[BPF_ALU | BPF_NEG] = true,
700 		/* Load instructions */
701 		[BPF_LD | BPF_W | BPF_ABS] = true,
702 		[BPF_LD | BPF_H | BPF_ABS] = true,
703 		[BPF_LD | BPF_B | BPF_ABS] = true,
704 		[BPF_LD | BPF_W | BPF_LEN] = true,
705 		[BPF_LD | BPF_W | BPF_IND] = true,
706 		[BPF_LD | BPF_H | BPF_IND] = true,
707 		[BPF_LD | BPF_B | BPF_IND] = true,
708 		[BPF_LD | BPF_IMM] = true,
709 		[BPF_LD | BPF_MEM] = true,
710 		[BPF_LDX | BPF_W | BPF_LEN] = true,
711 		[BPF_LDX | BPF_B | BPF_MSH] = true,
712 		[BPF_LDX | BPF_IMM] = true,
713 		[BPF_LDX | BPF_MEM] = true,
714 		/* Store instructions */
715 		[BPF_ST] = true,
716 		[BPF_STX] = true,
717 		/* Misc instructions */
718 		[BPF_MISC | BPF_TAX] = true,
719 		[BPF_MISC | BPF_TXA] = true,
720 		/* Return instructions */
721 		[BPF_RET | BPF_K] = true,
722 		[BPF_RET | BPF_A] = true,
723 		/* Jump instructions */
724 		[BPF_JMP | BPF_JA] = true,
725 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
726 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
727 		[BPF_JMP | BPF_JGE | BPF_K] = true,
728 		[BPF_JMP | BPF_JGE | BPF_X] = true,
729 		[BPF_JMP | BPF_JGT | BPF_K] = true,
730 		[BPF_JMP | BPF_JGT | BPF_X] = true,
731 		[BPF_JMP | BPF_JSET | BPF_K] = true,
732 		[BPF_JMP | BPF_JSET | BPF_X] = true,
733 	};
734 
735 	if (code_to_probe >= ARRAY_SIZE(codes))
736 		return false;
737 
738 	return codes[code_to_probe];
739 }
740 
741 /**
742  *	bpf_check_classic - verify socket filter code
743  *	@filter: filter to verify
744  *	@flen: length of filter
745  *
746  * Check the user's filter code. If we let some ugly
747  * filter code slip through kaboom! The filter must contain
748  * no references or jumps that are out of range, no illegal
749  * instructions, and must end with a RET instruction.
750  *
751  * All jumps are forward as they are not signed.
752  *
753  * Returns 0 if the rule set is legal or -EINVAL if not.
754  */
bpf_check_classic(const struct sock_filter * filter,unsigned int flen)755 static int bpf_check_classic(const struct sock_filter *filter,
756 			     unsigned int flen)
757 {
758 	bool anc_found;
759 	int pc;
760 
761 	if (flen == 0 || flen > BPF_MAXINSNS)
762 		return -EINVAL;
763 
764 	/* Check the filter code now */
765 	for (pc = 0; pc < flen; pc++) {
766 		const struct sock_filter *ftest = &filter[pc];
767 
768 		/* May we actually operate on this code? */
769 		if (!chk_code_allowed(ftest->code))
770 			return -EINVAL;
771 
772 		/* Some instructions need special checks */
773 		switch (ftest->code) {
774 		case BPF_ALU | BPF_DIV | BPF_K:
775 		case BPF_ALU | BPF_MOD | BPF_K:
776 			/* Check for division by zero */
777 			if (ftest->k == 0)
778 				return -EINVAL;
779 			break;
780 		case BPF_ALU | BPF_LSH | BPF_K:
781 		case BPF_ALU | BPF_RSH | BPF_K:
782 			if (ftest->k >= 32)
783 				return -EINVAL;
784 			break;
785 		case BPF_LD | BPF_MEM:
786 		case BPF_LDX | BPF_MEM:
787 		case BPF_ST:
788 		case BPF_STX:
789 			/* Check for invalid memory addresses */
790 			if (ftest->k >= BPF_MEMWORDS)
791 				return -EINVAL;
792 			break;
793 		case BPF_JMP | BPF_JA:
794 			/* Note, the large ftest->k might cause loops.
795 			 * Compare this with conditional jumps below,
796 			 * where offsets are limited. --ANK (981016)
797 			 */
798 			if (ftest->k >= (unsigned int)(flen - pc - 1))
799 				return -EINVAL;
800 			break;
801 		case BPF_JMP | BPF_JEQ | BPF_K:
802 		case BPF_JMP | BPF_JEQ | BPF_X:
803 		case BPF_JMP | BPF_JGE | BPF_K:
804 		case BPF_JMP | BPF_JGE | BPF_X:
805 		case BPF_JMP | BPF_JGT | BPF_K:
806 		case BPF_JMP | BPF_JGT | BPF_X:
807 		case BPF_JMP | BPF_JSET | BPF_K:
808 		case BPF_JMP | BPF_JSET | BPF_X:
809 			/* Both conditionals must be safe */
810 			if (pc + ftest->jt + 1 >= flen ||
811 			    pc + ftest->jf + 1 >= flen)
812 				return -EINVAL;
813 			break;
814 		case BPF_LD | BPF_W | BPF_ABS:
815 		case BPF_LD | BPF_H | BPF_ABS:
816 		case BPF_LD | BPF_B | BPF_ABS:
817 			anc_found = false;
818 			if (bpf_anc_helper(ftest) & BPF_ANC)
819 				anc_found = true;
820 			/* Ancillary operation unknown or unsupported */
821 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
822 				return -EINVAL;
823 		}
824 	}
825 
826 	/* Last instruction must be a RET code */
827 	switch (filter[flen - 1].code) {
828 	case BPF_RET | BPF_K:
829 	case BPF_RET | BPF_A:
830 		return check_load_and_stores(filter, flen);
831 	}
832 
833 	return -EINVAL;
834 }
835 
bpf_prog_store_orig_filter(struct bpf_prog * fp,const struct sock_fprog * fprog)836 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
837 				      const struct sock_fprog *fprog)
838 {
839 	unsigned int fsize = bpf_classic_proglen(fprog);
840 	struct sock_fprog_kern *fkprog;
841 
842 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
843 	if (!fp->orig_prog)
844 		return -ENOMEM;
845 
846 	fkprog = fp->orig_prog;
847 	fkprog->len = fprog->len;
848 
849 	fkprog->filter = kmemdup(fp->insns, fsize,
850 				 GFP_KERNEL | __GFP_NOWARN);
851 	if (!fkprog->filter) {
852 		kfree(fp->orig_prog);
853 		return -ENOMEM;
854 	}
855 
856 	return 0;
857 }
858 
bpf_release_orig_filter(struct bpf_prog * fp)859 static void bpf_release_orig_filter(struct bpf_prog *fp)
860 {
861 	struct sock_fprog_kern *fprog = fp->orig_prog;
862 
863 	if (fprog) {
864 		kfree(fprog->filter);
865 		kfree(fprog);
866 	}
867 }
868 
__bpf_prog_release(struct bpf_prog * prog)869 static void __bpf_prog_release(struct bpf_prog *prog)
870 {
871 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
872 		bpf_prog_put(prog);
873 	} else {
874 		bpf_release_orig_filter(prog);
875 		bpf_prog_free(prog);
876 	}
877 }
878 
__sk_filter_release(struct sk_filter * fp)879 static void __sk_filter_release(struct sk_filter *fp)
880 {
881 	__bpf_prog_release(fp->prog);
882 	kfree(fp);
883 }
884 
885 /**
886  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
887  *	@rcu: rcu_head that contains the sk_filter to free
888  */
sk_filter_release_rcu(struct rcu_head * rcu)889 static void sk_filter_release_rcu(struct rcu_head *rcu)
890 {
891 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
892 
893 	__sk_filter_release(fp);
894 }
895 
896 /**
897  *	sk_filter_release - release a socket filter
898  *	@fp: filter to remove
899  *
900  *	Remove a filter from a socket and release its resources.
901  */
sk_filter_release(struct sk_filter * fp)902 static void sk_filter_release(struct sk_filter *fp)
903 {
904 	if (atomic_dec_and_test(&fp->refcnt))
905 		call_rcu(&fp->rcu, sk_filter_release_rcu);
906 }
907 
sk_filter_uncharge(struct sock * sk,struct sk_filter * fp)908 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
909 {
910 	u32 filter_size = bpf_prog_size(fp->prog->len);
911 
912 	atomic_sub(filter_size, &sk->sk_omem_alloc);
913 	sk_filter_release(fp);
914 }
915 
916 /* try to charge the socket memory if there is space available
917  * return true on success
918  */
sk_filter_charge(struct sock * sk,struct sk_filter * fp)919 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
920 {
921 	u32 filter_size = bpf_prog_size(fp->prog->len);
922 
923 	/* same check as in sock_kmalloc() */
924 	if (filter_size <= sysctl_optmem_max &&
925 	    atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
926 		atomic_inc(&fp->refcnt);
927 		atomic_add(filter_size, &sk->sk_omem_alloc);
928 		return true;
929 	}
930 	return false;
931 }
932 
bpf_migrate_filter(struct bpf_prog * fp)933 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
934 {
935 	struct sock_filter *old_prog;
936 	struct bpf_prog *old_fp;
937 	int err, new_len, old_len = fp->len;
938 
939 	/* We are free to overwrite insns et al right here as it
940 	 * won't be used at this point in time anymore internally
941 	 * after the migration to the internal BPF instruction
942 	 * representation.
943 	 */
944 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
945 		     sizeof(struct bpf_insn));
946 
947 	/* Conversion cannot happen on overlapping memory areas,
948 	 * so we need to keep the user BPF around until the 2nd
949 	 * pass. At this time, the user BPF is stored in fp->insns.
950 	 */
951 	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
952 			   GFP_KERNEL | __GFP_NOWARN);
953 	if (!old_prog) {
954 		err = -ENOMEM;
955 		goto out_err;
956 	}
957 
958 	/* 1st pass: calculate the new program length. */
959 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len);
960 	if (err)
961 		goto out_err_free;
962 
963 	/* Expand fp for appending the new filter representation. */
964 	old_fp = fp;
965 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
966 	if (!fp) {
967 		/* The old_fp is still around in case we couldn't
968 		 * allocate new memory, so uncharge on that one.
969 		 */
970 		fp = old_fp;
971 		err = -ENOMEM;
972 		goto out_err_free;
973 	}
974 
975 	fp->len = new_len;
976 
977 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
978 	err = bpf_convert_filter(old_prog, old_len, fp->insnsi, &new_len);
979 	if (err)
980 		/* 2nd bpf_convert_filter() can fail only if it fails
981 		 * to allocate memory, remapping must succeed. Note,
982 		 * that at this time old_fp has already been released
983 		 * by krealloc().
984 		 */
985 		goto out_err_free;
986 
987 	bpf_prog_select_runtime(fp);
988 
989 	kfree(old_prog);
990 	return fp;
991 
992 out_err_free:
993 	kfree(old_prog);
994 out_err:
995 	__bpf_prog_release(fp);
996 	return ERR_PTR(err);
997 }
998 
bpf_prepare_filter(struct bpf_prog * fp,bpf_aux_classic_check_t trans)999 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1000 					   bpf_aux_classic_check_t trans)
1001 {
1002 	int err;
1003 
1004 	fp->bpf_func = NULL;
1005 	fp->jited = 0;
1006 
1007 	err = bpf_check_classic(fp->insns, fp->len);
1008 	if (err) {
1009 		__bpf_prog_release(fp);
1010 		return ERR_PTR(err);
1011 	}
1012 
1013 	/* There might be additional checks and transformations
1014 	 * needed on classic filters, f.e. in case of seccomp.
1015 	 */
1016 	if (trans) {
1017 		err = trans(fp->insns, fp->len);
1018 		if (err) {
1019 			__bpf_prog_release(fp);
1020 			return ERR_PTR(err);
1021 		}
1022 	}
1023 
1024 	/* Probe if we can JIT compile the filter and if so, do
1025 	 * the compilation of the filter.
1026 	 */
1027 	bpf_jit_compile(fp);
1028 
1029 	/* JIT compiler couldn't process this filter, so do the
1030 	 * internal BPF translation for the optimized interpreter.
1031 	 */
1032 	if (!fp->jited)
1033 		fp = bpf_migrate_filter(fp);
1034 
1035 	return fp;
1036 }
1037 
1038 /**
1039  *	bpf_prog_create - create an unattached filter
1040  *	@pfp: the unattached filter that is created
1041  *	@fprog: the filter program
1042  *
1043  * Create a filter independent of any socket. We first run some
1044  * sanity checks on it to make sure it does not explode on us later.
1045  * If an error occurs or there is insufficient memory for the filter
1046  * a negative errno code is returned. On success the return is zero.
1047  */
bpf_prog_create(struct bpf_prog ** pfp,struct sock_fprog_kern * fprog)1048 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1049 {
1050 	unsigned int fsize = bpf_classic_proglen(fprog);
1051 	struct bpf_prog *fp;
1052 
1053 	/* Make sure new filter is there and in the right amounts. */
1054 	if (fprog->filter == NULL)
1055 		return -EINVAL;
1056 
1057 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1058 	if (!fp)
1059 		return -ENOMEM;
1060 
1061 	memcpy(fp->insns, fprog->filter, fsize);
1062 
1063 	fp->len = fprog->len;
1064 	/* Since unattached filters are not copied back to user
1065 	 * space through sk_get_filter(), we do not need to hold
1066 	 * a copy here, and can spare us the work.
1067 	 */
1068 	fp->orig_prog = NULL;
1069 
1070 	/* bpf_prepare_filter() already takes care of freeing
1071 	 * memory in case something goes wrong.
1072 	 */
1073 	fp = bpf_prepare_filter(fp, NULL);
1074 	if (IS_ERR(fp))
1075 		return PTR_ERR(fp);
1076 
1077 	*pfp = fp;
1078 	return 0;
1079 }
1080 EXPORT_SYMBOL_GPL(bpf_prog_create);
1081 
1082 /**
1083  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1084  *	@pfp: the unattached filter that is created
1085  *	@fprog: the filter program
1086  *	@trans: post-classic verifier transformation handler
1087  *	@save_orig: save classic BPF program
1088  *
1089  * This function effectively does the same as bpf_prog_create(), only
1090  * that it builds up its insns buffer from user space provided buffer.
1091  * It also allows for passing a bpf_aux_classic_check_t handler.
1092  */
bpf_prog_create_from_user(struct bpf_prog ** pfp,struct sock_fprog * fprog,bpf_aux_classic_check_t trans,bool save_orig)1093 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1094 			      bpf_aux_classic_check_t trans, bool save_orig)
1095 {
1096 	unsigned int fsize = bpf_classic_proglen(fprog);
1097 	struct bpf_prog *fp;
1098 	int err;
1099 
1100 	/* Make sure new filter is there and in the right amounts. */
1101 	if (fprog->filter == NULL)
1102 		return -EINVAL;
1103 
1104 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1105 	if (!fp)
1106 		return -ENOMEM;
1107 
1108 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1109 		__bpf_prog_free(fp);
1110 		return -EFAULT;
1111 	}
1112 
1113 	fp->len = fprog->len;
1114 	fp->orig_prog = NULL;
1115 
1116 	if (save_orig) {
1117 		err = bpf_prog_store_orig_filter(fp, fprog);
1118 		if (err) {
1119 			__bpf_prog_free(fp);
1120 			return -ENOMEM;
1121 		}
1122 	}
1123 
1124 	/* bpf_prepare_filter() already takes care of freeing
1125 	 * memory in case something goes wrong.
1126 	 */
1127 	fp = bpf_prepare_filter(fp, trans);
1128 	if (IS_ERR(fp))
1129 		return PTR_ERR(fp);
1130 
1131 	*pfp = fp;
1132 	return 0;
1133 }
1134 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1135 
bpf_prog_destroy(struct bpf_prog * fp)1136 void bpf_prog_destroy(struct bpf_prog *fp)
1137 {
1138 	__bpf_prog_release(fp);
1139 }
1140 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1141 
__sk_attach_prog(struct bpf_prog * prog,struct sock * sk,bool locked)1142 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk,
1143 			    bool locked)
1144 {
1145 	struct sk_filter *fp, *old_fp;
1146 
1147 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1148 	if (!fp)
1149 		return -ENOMEM;
1150 
1151 	fp->prog = prog;
1152 	atomic_set(&fp->refcnt, 0);
1153 
1154 	if (!sk_filter_charge(sk, fp)) {
1155 		kfree(fp);
1156 		return -ENOMEM;
1157 	}
1158 
1159 	old_fp = rcu_dereference_protected(sk->sk_filter, locked);
1160 	rcu_assign_pointer(sk->sk_filter, fp);
1161 	if (old_fp)
1162 		sk_filter_uncharge(sk, old_fp);
1163 
1164 	return 0;
1165 }
1166 
1167 /**
1168  *	sk_attach_filter - attach a socket filter
1169  *	@fprog: the filter program
1170  *	@sk: the socket to use
1171  *
1172  * Attach the user's filter code. We first run some sanity checks on
1173  * it to make sure it does not explode on us later. If an error
1174  * occurs or there is insufficient memory for the filter a negative
1175  * errno code is returned. On success the return is zero.
1176  */
__sk_attach_filter(struct sock_fprog * fprog,struct sock * sk,bool locked)1177 int __sk_attach_filter(struct sock_fprog *fprog, struct sock *sk,
1178 		       bool locked)
1179 {
1180 	unsigned int fsize = bpf_classic_proglen(fprog);
1181 	unsigned int bpf_fsize = bpf_prog_size(fprog->len);
1182 	struct bpf_prog *prog;
1183 	int err;
1184 
1185 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1186 		return -EPERM;
1187 
1188 	/* Make sure new filter is there and in the right amounts. */
1189 	if (fprog->filter == NULL)
1190 		return -EINVAL;
1191 
1192 	prog = bpf_prog_alloc(bpf_fsize, 0);
1193 	if (!prog)
1194 		return -ENOMEM;
1195 
1196 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1197 		__bpf_prog_free(prog);
1198 		return -EFAULT;
1199 	}
1200 
1201 	prog->len = fprog->len;
1202 
1203 	err = bpf_prog_store_orig_filter(prog, fprog);
1204 	if (err) {
1205 		__bpf_prog_free(prog);
1206 		return -ENOMEM;
1207 	}
1208 
1209 	/* bpf_prepare_filter() already takes care of freeing
1210 	 * memory in case something goes wrong.
1211 	 */
1212 	prog = bpf_prepare_filter(prog, NULL);
1213 	if (IS_ERR(prog))
1214 		return PTR_ERR(prog);
1215 
1216 	err = __sk_attach_prog(prog, sk, locked);
1217 	if (err < 0) {
1218 		__bpf_prog_release(prog);
1219 		return err;
1220 	}
1221 
1222 	return 0;
1223 }
1224 EXPORT_SYMBOL_GPL(__sk_attach_filter);
1225 
sk_attach_filter(struct sock_fprog * fprog,struct sock * sk)1226 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1227 {
1228 	return __sk_attach_filter(fprog, sk, sock_owned_by_user(sk));
1229 }
1230 
sk_attach_bpf(u32 ufd,struct sock * sk)1231 int sk_attach_bpf(u32 ufd, struct sock *sk)
1232 {
1233 	struct bpf_prog *prog;
1234 	int err;
1235 
1236 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1237 		return -EPERM;
1238 
1239 	prog = bpf_prog_get(ufd);
1240 	if (IS_ERR(prog))
1241 		return PTR_ERR(prog);
1242 
1243 	if (prog->type != BPF_PROG_TYPE_SOCKET_FILTER) {
1244 		bpf_prog_put(prog);
1245 		return -EINVAL;
1246 	}
1247 
1248 	err = __sk_attach_prog(prog, sk, sock_owned_by_user(sk));
1249 	if (err < 0) {
1250 		bpf_prog_put(prog);
1251 		return err;
1252 	}
1253 
1254 	return 0;
1255 }
1256 
1257 #define BPF_RECOMPUTE_CSUM(flags)	((flags) & 1)
1258 
bpf_skb_store_bytes(u64 r1,u64 r2,u64 r3,u64 r4,u64 flags)1259 static u64 bpf_skb_store_bytes(u64 r1, u64 r2, u64 r3, u64 r4, u64 flags)
1260 {
1261 	struct sk_buff *skb = (struct sk_buff *) (long) r1;
1262 	int offset = (int) r2;
1263 	void *from = (void *) (long) r3;
1264 	unsigned int len = (unsigned int) r4;
1265 	char buf[16];
1266 	void *ptr;
1267 
1268 	/* bpf verifier guarantees that:
1269 	 * 'from' pointer points to bpf program stack
1270 	 * 'len' bytes of it were initialized
1271 	 * 'len' > 0
1272 	 * 'skb' is a valid pointer to 'struct sk_buff'
1273 	 *
1274 	 * so check for invalid 'offset' and too large 'len'
1275 	 */
1276 	if (unlikely((u32) offset > 0xffff || len > sizeof(buf)))
1277 		return -EFAULT;
1278 
1279 	if (unlikely(skb_cloned(skb) &&
1280 		     !skb_clone_writable(skb, offset + len)))
1281 		return -EFAULT;
1282 
1283 	ptr = skb_header_pointer(skb, offset, len, buf);
1284 	if (unlikely(!ptr))
1285 		return -EFAULT;
1286 
1287 	if (BPF_RECOMPUTE_CSUM(flags))
1288 		skb_postpull_rcsum(skb, ptr, len);
1289 
1290 	memcpy(ptr, from, len);
1291 
1292 	if (ptr == buf)
1293 		/* skb_store_bits cannot return -EFAULT here */
1294 		skb_store_bits(skb, offset, ptr, len);
1295 
1296 	if (BPF_RECOMPUTE_CSUM(flags) && skb->ip_summed == CHECKSUM_COMPLETE)
1297 		skb->csum = csum_add(skb->csum, csum_partial(ptr, len, 0));
1298 	return 0;
1299 }
1300 
1301 const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1302 	.func		= bpf_skb_store_bytes,
1303 	.gpl_only	= false,
1304 	.ret_type	= RET_INTEGER,
1305 	.arg1_type	= ARG_PTR_TO_CTX,
1306 	.arg2_type	= ARG_ANYTHING,
1307 	.arg3_type	= ARG_PTR_TO_STACK,
1308 	.arg4_type	= ARG_CONST_STACK_SIZE,
1309 	.arg5_type	= ARG_ANYTHING,
1310 };
1311 
1312 #define BPF_HEADER_FIELD_SIZE(flags)	((flags) & 0x0f)
1313 #define BPF_IS_PSEUDO_HEADER(flags)	((flags) & 0x10)
1314 
bpf_l3_csum_replace(u64 r1,u64 r2,u64 from,u64 to,u64 flags)1315 static u64 bpf_l3_csum_replace(u64 r1, u64 r2, u64 from, u64 to, u64 flags)
1316 {
1317 	struct sk_buff *skb = (struct sk_buff *) (long) r1;
1318 	int offset = (int) r2;
1319 	__sum16 sum, *ptr;
1320 
1321 	if (unlikely((u32) offset > 0xffff))
1322 		return -EFAULT;
1323 
1324 	if (unlikely(skb_cloned(skb) &&
1325 		     !skb_clone_writable(skb, offset + sizeof(sum))))
1326 		return -EFAULT;
1327 
1328 	ptr = skb_header_pointer(skb, offset, sizeof(sum), &sum);
1329 	if (unlikely(!ptr))
1330 		return -EFAULT;
1331 
1332 	switch (BPF_HEADER_FIELD_SIZE(flags)) {
1333 	case 2:
1334 		csum_replace2(ptr, from, to);
1335 		break;
1336 	case 4:
1337 		csum_replace4(ptr, from, to);
1338 		break;
1339 	default:
1340 		return -EINVAL;
1341 	}
1342 
1343 	if (ptr == &sum)
1344 		/* skb_store_bits guaranteed to not return -EFAULT here */
1345 		skb_store_bits(skb, offset, ptr, sizeof(sum));
1346 
1347 	return 0;
1348 }
1349 
1350 const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1351 	.func		= bpf_l3_csum_replace,
1352 	.gpl_only	= false,
1353 	.ret_type	= RET_INTEGER,
1354 	.arg1_type	= ARG_PTR_TO_CTX,
1355 	.arg2_type	= ARG_ANYTHING,
1356 	.arg3_type	= ARG_ANYTHING,
1357 	.arg4_type	= ARG_ANYTHING,
1358 	.arg5_type	= ARG_ANYTHING,
1359 };
1360 
bpf_l4_csum_replace(u64 r1,u64 r2,u64 from,u64 to,u64 flags)1361 static u64 bpf_l4_csum_replace(u64 r1, u64 r2, u64 from, u64 to, u64 flags)
1362 {
1363 	struct sk_buff *skb = (struct sk_buff *) (long) r1;
1364 	bool is_pseudo = !!BPF_IS_PSEUDO_HEADER(flags);
1365 	int offset = (int) r2;
1366 	__sum16 sum, *ptr;
1367 
1368 	if (unlikely((u32) offset > 0xffff))
1369 		return -EFAULT;
1370 
1371 	if (unlikely(skb_cloned(skb) &&
1372 		     !skb_clone_writable(skb, offset + sizeof(sum))))
1373 		return -EFAULT;
1374 
1375 	ptr = skb_header_pointer(skb, offset, sizeof(sum), &sum);
1376 	if (unlikely(!ptr))
1377 		return -EFAULT;
1378 
1379 	switch (BPF_HEADER_FIELD_SIZE(flags)) {
1380 	case 2:
1381 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1382 		break;
1383 	case 4:
1384 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1385 		break;
1386 	default:
1387 		return -EINVAL;
1388 	}
1389 
1390 	if (ptr == &sum)
1391 		/* skb_store_bits guaranteed to not return -EFAULT here */
1392 		skb_store_bits(skb, offset, ptr, sizeof(sum));
1393 
1394 	return 0;
1395 }
1396 
1397 const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1398 	.func		= bpf_l4_csum_replace,
1399 	.gpl_only	= false,
1400 	.ret_type	= RET_INTEGER,
1401 	.arg1_type	= ARG_PTR_TO_CTX,
1402 	.arg2_type	= ARG_ANYTHING,
1403 	.arg3_type	= ARG_ANYTHING,
1404 	.arg4_type	= ARG_ANYTHING,
1405 	.arg5_type	= ARG_ANYTHING,
1406 };
1407 
1408 #define BPF_IS_REDIRECT_INGRESS(flags)	((flags) & 1)
1409 
bpf_clone_redirect(u64 r1,u64 ifindex,u64 flags,u64 r4,u64 r5)1410 static u64 bpf_clone_redirect(u64 r1, u64 ifindex, u64 flags, u64 r4, u64 r5)
1411 {
1412 	struct sk_buff *skb = (struct sk_buff *) (long) r1, *skb2;
1413 	struct net_device *dev;
1414 
1415 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
1416 	if (unlikely(!dev))
1417 		return -EINVAL;
1418 
1419 	skb2 = skb_clone(skb, GFP_ATOMIC);
1420 	if (unlikely(!skb2))
1421 		return -ENOMEM;
1422 
1423 	if (BPF_IS_REDIRECT_INGRESS(flags))
1424 		return dev_forward_skb(dev, skb2);
1425 
1426 	skb2->dev = dev;
1427 	skb_sender_cpu_clear(skb2);
1428 	return dev_queue_xmit(skb2);
1429 }
1430 
1431 const struct bpf_func_proto bpf_clone_redirect_proto = {
1432 	.func           = bpf_clone_redirect,
1433 	.gpl_only       = false,
1434 	.ret_type       = RET_INTEGER,
1435 	.arg1_type      = ARG_PTR_TO_CTX,
1436 	.arg2_type      = ARG_ANYTHING,
1437 	.arg3_type      = ARG_ANYTHING,
1438 };
1439 
1440 struct redirect_info {
1441 	u32 ifindex;
1442 	u32 flags;
1443 };
1444 
1445 static DEFINE_PER_CPU(struct redirect_info, redirect_info);
bpf_redirect(u64 ifindex,u64 flags,u64 r3,u64 r4,u64 r5)1446 static u64 bpf_redirect(u64 ifindex, u64 flags, u64 r3, u64 r4, u64 r5)
1447 {
1448 	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
1449 
1450 	ri->ifindex = ifindex;
1451 	ri->flags = flags;
1452 	return TC_ACT_REDIRECT;
1453 }
1454 
skb_do_redirect(struct sk_buff * skb)1455 int skb_do_redirect(struct sk_buff *skb)
1456 {
1457 	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
1458 	struct net_device *dev;
1459 
1460 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->ifindex);
1461 	ri->ifindex = 0;
1462 	if (unlikely(!dev)) {
1463 		kfree_skb(skb);
1464 		return -EINVAL;
1465 	}
1466 
1467 	if (BPF_IS_REDIRECT_INGRESS(ri->flags))
1468 		return dev_forward_skb(dev, skb);
1469 
1470 	skb->dev = dev;
1471 	skb_sender_cpu_clear(skb);
1472 	return dev_queue_xmit(skb);
1473 }
1474 
1475 const struct bpf_func_proto bpf_redirect_proto = {
1476 	.func           = bpf_redirect,
1477 	.gpl_only       = false,
1478 	.ret_type       = RET_INTEGER,
1479 	.arg1_type      = ARG_ANYTHING,
1480 	.arg2_type      = ARG_ANYTHING,
1481 };
1482 
bpf_get_cgroup_classid(u64 r1,u64 r2,u64 r3,u64 r4,u64 r5)1483 static u64 bpf_get_cgroup_classid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1484 {
1485 	return task_get_classid((struct sk_buff *) (unsigned long) r1);
1486 }
1487 
1488 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
1489 	.func           = bpf_get_cgroup_classid,
1490 	.gpl_only       = false,
1491 	.ret_type       = RET_INTEGER,
1492 	.arg1_type      = ARG_PTR_TO_CTX,
1493 };
1494 
bpf_get_route_realm(u64 r1,u64 r2,u64 r3,u64 r4,u64 r5)1495 static u64 bpf_get_route_realm(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1496 {
1497 #ifdef CONFIG_IP_ROUTE_CLASSID
1498 	const struct dst_entry *dst;
1499 
1500 	dst = skb_dst((struct sk_buff *) (unsigned long) r1);
1501 	if (dst)
1502 		return dst->tclassid;
1503 #endif
1504 	return 0;
1505 }
1506 
1507 static const struct bpf_func_proto bpf_get_route_realm_proto = {
1508 	.func           = bpf_get_route_realm,
1509 	.gpl_only       = false,
1510 	.ret_type       = RET_INTEGER,
1511 	.arg1_type      = ARG_PTR_TO_CTX,
1512 };
1513 
bpf_skb_vlan_push(u64 r1,u64 r2,u64 vlan_tci,u64 r4,u64 r5)1514 static u64 bpf_skb_vlan_push(u64 r1, u64 r2, u64 vlan_tci, u64 r4, u64 r5)
1515 {
1516 	struct sk_buff *skb = (struct sk_buff *) (long) r1;
1517 	__be16 vlan_proto = (__force __be16) r2;
1518 
1519 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
1520 		     vlan_proto != htons(ETH_P_8021AD)))
1521 		vlan_proto = htons(ETH_P_8021Q);
1522 
1523 	return skb_vlan_push(skb, vlan_proto, vlan_tci);
1524 }
1525 
1526 const struct bpf_func_proto bpf_skb_vlan_push_proto = {
1527 	.func           = bpf_skb_vlan_push,
1528 	.gpl_only       = false,
1529 	.ret_type       = RET_INTEGER,
1530 	.arg1_type      = ARG_PTR_TO_CTX,
1531 	.arg2_type      = ARG_ANYTHING,
1532 	.arg3_type      = ARG_ANYTHING,
1533 };
1534 EXPORT_SYMBOL_GPL(bpf_skb_vlan_push_proto);
1535 
bpf_skb_vlan_pop(u64 r1,u64 r2,u64 r3,u64 r4,u64 r5)1536 static u64 bpf_skb_vlan_pop(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1537 {
1538 	struct sk_buff *skb = (struct sk_buff *) (long) r1;
1539 
1540 	return skb_vlan_pop(skb);
1541 }
1542 
1543 const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
1544 	.func           = bpf_skb_vlan_pop,
1545 	.gpl_only       = false,
1546 	.ret_type       = RET_INTEGER,
1547 	.arg1_type      = ARG_PTR_TO_CTX,
1548 };
1549 EXPORT_SYMBOL_GPL(bpf_skb_vlan_pop_proto);
1550 
bpf_helper_changes_skb_data(void * func)1551 bool bpf_helper_changes_skb_data(void *func)
1552 {
1553 	if (func == bpf_skb_vlan_push)
1554 		return true;
1555 	if (func == bpf_skb_vlan_pop)
1556 		return true;
1557 	return false;
1558 }
1559 
bpf_skb_get_tunnel_key(u64 r1,u64 r2,u64 size,u64 flags,u64 r5)1560 static u64 bpf_skb_get_tunnel_key(u64 r1, u64 r2, u64 size, u64 flags, u64 r5)
1561 {
1562 	struct sk_buff *skb = (struct sk_buff *) (long) r1;
1563 	struct bpf_tunnel_key *to = (struct bpf_tunnel_key *) (long) r2;
1564 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
1565 
1566 	if (unlikely(size != sizeof(struct bpf_tunnel_key) || flags || !info))
1567 		return -EINVAL;
1568 	if (ip_tunnel_info_af(info) != AF_INET)
1569 		return -EINVAL;
1570 
1571 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
1572 	to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
1573 
1574 	return 0;
1575 }
1576 
1577 const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
1578 	.func		= bpf_skb_get_tunnel_key,
1579 	.gpl_only	= false,
1580 	.ret_type	= RET_INTEGER,
1581 	.arg1_type	= ARG_PTR_TO_CTX,
1582 	.arg2_type	= ARG_PTR_TO_STACK,
1583 	.arg3_type	= ARG_CONST_STACK_SIZE,
1584 	.arg4_type	= ARG_ANYTHING,
1585 };
1586 
1587 static struct metadata_dst __percpu *md_dst;
1588 
bpf_skb_set_tunnel_key(u64 r1,u64 r2,u64 size,u64 flags,u64 r5)1589 static u64 bpf_skb_set_tunnel_key(u64 r1, u64 r2, u64 size, u64 flags, u64 r5)
1590 {
1591 	struct sk_buff *skb = (struct sk_buff *) (long) r1;
1592 	struct bpf_tunnel_key *from = (struct bpf_tunnel_key *) (long) r2;
1593 	struct metadata_dst *md = this_cpu_ptr(md_dst);
1594 	struct ip_tunnel_info *info;
1595 
1596 	if (unlikely(size != sizeof(struct bpf_tunnel_key) || flags))
1597 		return -EINVAL;
1598 
1599 	skb_dst_drop(skb);
1600 	dst_hold((struct dst_entry *) md);
1601 	skb_dst_set(skb, (struct dst_entry *) md);
1602 
1603 	info = &md->u.tun_info;
1604 	info->mode = IP_TUNNEL_INFO_TX;
1605 	info->key.tun_flags = TUNNEL_KEY;
1606 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
1607 	info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
1608 
1609 	return 0;
1610 }
1611 
1612 const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
1613 	.func		= bpf_skb_set_tunnel_key,
1614 	.gpl_only	= false,
1615 	.ret_type	= RET_INTEGER,
1616 	.arg1_type	= ARG_PTR_TO_CTX,
1617 	.arg2_type	= ARG_PTR_TO_STACK,
1618 	.arg3_type	= ARG_CONST_STACK_SIZE,
1619 	.arg4_type	= ARG_ANYTHING,
1620 };
1621 
bpf_get_skb_set_tunnel_key_proto(void)1622 static const struct bpf_func_proto *bpf_get_skb_set_tunnel_key_proto(void)
1623 {
1624 	if (!md_dst) {
1625 		/* race is not possible, since it's called from
1626 		 * verifier that is holding verifier mutex
1627 		 */
1628 		md_dst = metadata_dst_alloc_percpu(0, GFP_KERNEL);
1629 		if (!md_dst)
1630 			return NULL;
1631 	}
1632 	return &bpf_skb_set_tunnel_key_proto;
1633 }
1634 
1635 static const struct bpf_func_proto *
sk_filter_func_proto(enum bpf_func_id func_id)1636 sk_filter_func_proto(enum bpf_func_id func_id)
1637 {
1638 	switch (func_id) {
1639 	case BPF_FUNC_map_lookup_elem:
1640 		return &bpf_map_lookup_elem_proto;
1641 	case BPF_FUNC_map_update_elem:
1642 		return &bpf_map_update_elem_proto;
1643 	case BPF_FUNC_map_delete_elem:
1644 		return &bpf_map_delete_elem_proto;
1645 	case BPF_FUNC_get_prandom_u32:
1646 		return &bpf_get_prandom_u32_proto;
1647 	case BPF_FUNC_get_smp_processor_id:
1648 		return &bpf_get_smp_processor_id_proto;
1649 	case BPF_FUNC_tail_call:
1650 		return &bpf_tail_call_proto;
1651 	case BPF_FUNC_ktime_get_ns:
1652 		return &bpf_ktime_get_ns_proto;
1653 	case BPF_FUNC_trace_printk:
1654 		if (capable(CAP_SYS_ADMIN))
1655 			return bpf_get_trace_printk_proto();
1656 	default:
1657 		return NULL;
1658 	}
1659 }
1660 
1661 static const struct bpf_func_proto *
tc_cls_act_func_proto(enum bpf_func_id func_id)1662 tc_cls_act_func_proto(enum bpf_func_id func_id)
1663 {
1664 	switch (func_id) {
1665 	case BPF_FUNC_skb_store_bytes:
1666 		return &bpf_skb_store_bytes_proto;
1667 	case BPF_FUNC_l3_csum_replace:
1668 		return &bpf_l3_csum_replace_proto;
1669 	case BPF_FUNC_l4_csum_replace:
1670 		return &bpf_l4_csum_replace_proto;
1671 	case BPF_FUNC_clone_redirect:
1672 		return &bpf_clone_redirect_proto;
1673 	case BPF_FUNC_get_cgroup_classid:
1674 		return &bpf_get_cgroup_classid_proto;
1675 	case BPF_FUNC_skb_vlan_push:
1676 		return &bpf_skb_vlan_push_proto;
1677 	case BPF_FUNC_skb_vlan_pop:
1678 		return &bpf_skb_vlan_pop_proto;
1679 	case BPF_FUNC_skb_get_tunnel_key:
1680 		return &bpf_skb_get_tunnel_key_proto;
1681 	case BPF_FUNC_skb_set_tunnel_key:
1682 		return bpf_get_skb_set_tunnel_key_proto();
1683 	case BPF_FUNC_redirect:
1684 		return &bpf_redirect_proto;
1685 	case BPF_FUNC_get_route_realm:
1686 		return &bpf_get_route_realm_proto;
1687 	default:
1688 		return sk_filter_func_proto(func_id);
1689 	}
1690 }
1691 
__is_valid_access(int off,int size,enum bpf_access_type type)1692 static bool __is_valid_access(int off, int size, enum bpf_access_type type)
1693 {
1694 	/* check bounds */
1695 	if (off < 0 || off >= sizeof(struct __sk_buff))
1696 		return false;
1697 
1698 	/* disallow misaligned access */
1699 	if (off % size != 0)
1700 		return false;
1701 
1702 	/* all __sk_buff fields are __u32 */
1703 	if (size != 4)
1704 		return false;
1705 
1706 	return true;
1707 }
1708 
sk_filter_is_valid_access(int off,int size,enum bpf_access_type type)1709 static bool sk_filter_is_valid_access(int off, int size,
1710 				      enum bpf_access_type type)
1711 {
1712 	if (off == offsetof(struct __sk_buff, tc_classid))
1713 		return false;
1714 
1715 	if (type == BPF_WRITE) {
1716 		switch (off) {
1717 		case offsetof(struct __sk_buff, cb[0]) ...
1718 			offsetof(struct __sk_buff, cb[4]):
1719 			break;
1720 		default:
1721 			return false;
1722 		}
1723 	}
1724 
1725 	return __is_valid_access(off, size, type);
1726 }
1727 
tc_cls_act_is_valid_access(int off,int size,enum bpf_access_type type)1728 static bool tc_cls_act_is_valid_access(int off, int size,
1729 				       enum bpf_access_type type)
1730 {
1731 	if (off == offsetof(struct __sk_buff, tc_classid))
1732 		return type == BPF_WRITE ? true : false;
1733 
1734 	if (type == BPF_WRITE) {
1735 		switch (off) {
1736 		case offsetof(struct __sk_buff, mark):
1737 		case offsetof(struct __sk_buff, tc_index):
1738 		case offsetof(struct __sk_buff, priority):
1739 		case offsetof(struct __sk_buff, cb[0]) ...
1740 			offsetof(struct __sk_buff, cb[4]):
1741 			break;
1742 		default:
1743 			return false;
1744 		}
1745 	}
1746 	return __is_valid_access(off, size, type);
1747 }
1748 
bpf_net_convert_ctx_access(enum bpf_access_type type,int dst_reg,int src_reg,int ctx_off,struct bpf_insn * insn_buf,struct bpf_prog * prog)1749 static u32 bpf_net_convert_ctx_access(enum bpf_access_type type, int dst_reg,
1750 				      int src_reg, int ctx_off,
1751 				      struct bpf_insn *insn_buf,
1752 				      struct bpf_prog *prog)
1753 {
1754 	struct bpf_insn *insn = insn_buf;
1755 
1756 	switch (ctx_off) {
1757 	case offsetof(struct __sk_buff, len):
1758 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
1759 
1760 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
1761 				      offsetof(struct sk_buff, len));
1762 		break;
1763 
1764 	case offsetof(struct __sk_buff, protocol):
1765 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
1766 
1767 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
1768 				      offsetof(struct sk_buff, protocol));
1769 		break;
1770 
1771 	case offsetof(struct __sk_buff, vlan_proto):
1772 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);
1773 
1774 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
1775 				      offsetof(struct sk_buff, vlan_proto));
1776 		break;
1777 
1778 	case offsetof(struct __sk_buff, priority):
1779 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, priority) != 4);
1780 
1781 		if (type == BPF_WRITE)
1782 			*insn++ = BPF_STX_MEM(BPF_W, dst_reg, src_reg,
1783 					      offsetof(struct sk_buff, priority));
1784 		else
1785 			*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
1786 					      offsetof(struct sk_buff, priority));
1787 		break;
1788 
1789 	case offsetof(struct __sk_buff, ingress_ifindex):
1790 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, skb_iif) != 4);
1791 
1792 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
1793 				      offsetof(struct sk_buff, skb_iif));
1794 		break;
1795 
1796 	case offsetof(struct __sk_buff, ifindex):
1797 		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
1798 
1799 		*insn++ = BPF_LDX_MEM(bytes_to_bpf_size(FIELD_SIZEOF(struct sk_buff, dev)),
1800 				      dst_reg, src_reg,
1801 				      offsetof(struct sk_buff, dev));
1802 		*insn++ = BPF_JMP_IMM(BPF_JEQ, dst_reg, 0, 1);
1803 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, dst_reg,
1804 				      offsetof(struct net_device, ifindex));
1805 		break;
1806 
1807 	case offsetof(struct __sk_buff, hash):
1808 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
1809 
1810 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
1811 				      offsetof(struct sk_buff, hash));
1812 		break;
1813 
1814 	case offsetof(struct __sk_buff, mark):
1815 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
1816 
1817 		if (type == BPF_WRITE)
1818 			*insn++ = BPF_STX_MEM(BPF_W, dst_reg, src_reg,
1819 					      offsetof(struct sk_buff, mark));
1820 		else
1821 			*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
1822 					      offsetof(struct sk_buff, mark));
1823 		break;
1824 
1825 	case offsetof(struct __sk_buff, pkt_type):
1826 		return convert_skb_access(SKF_AD_PKTTYPE, dst_reg, src_reg, insn);
1827 
1828 	case offsetof(struct __sk_buff, queue_mapping):
1829 		return convert_skb_access(SKF_AD_QUEUE, dst_reg, src_reg, insn);
1830 
1831 	case offsetof(struct __sk_buff, vlan_present):
1832 		return convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
1833 					  dst_reg, src_reg, insn);
1834 
1835 	case offsetof(struct __sk_buff, vlan_tci):
1836 		return convert_skb_access(SKF_AD_VLAN_TAG,
1837 					  dst_reg, src_reg, insn);
1838 
1839 	case offsetof(struct __sk_buff, cb[0]) ...
1840 		offsetof(struct __sk_buff, cb[4]):
1841 		BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, data) < 20);
1842 
1843 		prog->cb_access = 1;
1844 		ctx_off -= offsetof(struct __sk_buff, cb[0]);
1845 		ctx_off += offsetof(struct sk_buff, cb);
1846 		ctx_off += offsetof(struct qdisc_skb_cb, data);
1847 		if (type == BPF_WRITE)
1848 			*insn++ = BPF_STX_MEM(BPF_W, dst_reg, src_reg, ctx_off);
1849 		else
1850 			*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg, ctx_off);
1851 		break;
1852 
1853 	case offsetof(struct __sk_buff, tc_classid):
1854 		ctx_off -= offsetof(struct __sk_buff, tc_classid);
1855 		ctx_off += offsetof(struct sk_buff, cb);
1856 		ctx_off += offsetof(struct qdisc_skb_cb, tc_classid);
1857 		WARN_ON(type != BPF_WRITE);
1858 		*insn++ = BPF_STX_MEM(BPF_H, dst_reg, src_reg, ctx_off);
1859 		break;
1860 
1861 	case offsetof(struct __sk_buff, tc_index):
1862 #ifdef CONFIG_NET_SCHED
1863 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, tc_index) != 2);
1864 
1865 		if (type == BPF_WRITE)
1866 			*insn++ = BPF_STX_MEM(BPF_H, dst_reg, src_reg,
1867 					      offsetof(struct sk_buff, tc_index));
1868 		else
1869 			*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
1870 					      offsetof(struct sk_buff, tc_index));
1871 		break;
1872 #else
1873 		if (type == BPF_WRITE)
1874 			*insn++ = BPF_MOV64_REG(dst_reg, dst_reg);
1875 		else
1876 			*insn++ = BPF_MOV64_IMM(dst_reg, 0);
1877 		break;
1878 #endif
1879 	}
1880 
1881 	return insn - insn_buf;
1882 }
1883 
1884 static const struct bpf_verifier_ops sk_filter_ops = {
1885 	.get_func_proto = sk_filter_func_proto,
1886 	.is_valid_access = sk_filter_is_valid_access,
1887 	.convert_ctx_access = bpf_net_convert_ctx_access,
1888 };
1889 
1890 static const struct bpf_verifier_ops tc_cls_act_ops = {
1891 	.get_func_proto = tc_cls_act_func_proto,
1892 	.is_valid_access = tc_cls_act_is_valid_access,
1893 	.convert_ctx_access = bpf_net_convert_ctx_access,
1894 };
1895 
1896 static struct bpf_prog_type_list sk_filter_type __read_mostly = {
1897 	.ops = &sk_filter_ops,
1898 	.type = BPF_PROG_TYPE_SOCKET_FILTER,
1899 };
1900 
1901 static struct bpf_prog_type_list sched_cls_type __read_mostly = {
1902 	.ops = &tc_cls_act_ops,
1903 	.type = BPF_PROG_TYPE_SCHED_CLS,
1904 };
1905 
1906 static struct bpf_prog_type_list sched_act_type __read_mostly = {
1907 	.ops = &tc_cls_act_ops,
1908 	.type = BPF_PROG_TYPE_SCHED_ACT,
1909 };
1910 
register_sk_filter_ops(void)1911 static int __init register_sk_filter_ops(void)
1912 {
1913 	bpf_register_prog_type(&sk_filter_type);
1914 	bpf_register_prog_type(&sched_cls_type);
1915 	bpf_register_prog_type(&sched_act_type);
1916 
1917 	return 0;
1918 }
1919 late_initcall(register_sk_filter_ops);
1920 
__sk_detach_filter(struct sock * sk,bool locked)1921 int __sk_detach_filter(struct sock *sk, bool locked)
1922 {
1923 	int ret = -ENOENT;
1924 	struct sk_filter *filter;
1925 
1926 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1927 		return -EPERM;
1928 
1929 	filter = rcu_dereference_protected(sk->sk_filter, locked);
1930 	if (filter) {
1931 		RCU_INIT_POINTER(sk->sk_filter, NULL);
1932 		sk_filter_uncharge(sk, filter);
1933 		ret = 0;
1934 	}
1935 
1936 	return ret;
1937 }
1938 EXPORT_SYMBOL_GPL(__sk_detach_filter);
1939 
sk_detach_filter(struct sock * sk)1940 int sk_detach_filter(struct sock *sk)
1941 {
1942 	return __sk_detach_filter(sk, sock_owned_by_user(sk));
1943 }
1944 
sk_get_filter(struct sock * sk,struct sock_filter __user * ubuf,unsigned int len)1945 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
1946 		  unsigned int len)
1947 {
1948 	struct sock_fprog_kern *fprog;
1949 	struct sk_filter *filter;
1950 	int ret = 0;
1951 
1952 	lock_sock(sk);
1953 	filter = rcu_dereference_protected(sk->sk_filter,
1954 					   sock_owned_by_user(sk));
1955 	if (!filter)
1956 		goto out;
1957 
1958 	/* We're copying the filter that has been originally attached,
1959 	 * so no conversion/decode needed anymore. eBPF programs that
1960 	 * have no original program cannot be dumped through this.
1961 	 */
1962 	ret = -EACCES;
1963 	fprog = filter->prog->orig_prog;
1964 	if (!fprog)
1965 		goto out;
1966 
1967 	ret = fprog->len;
1968 	if (!len)
1969 		/* User space only enquires number of filter blocks. */
1970 		goto out;
1971 
1972 	ret = -EINVAL;
1973 	if (len < fprog->len)
1974 		goto out;
1975 
1976 	ret = -EFAULT;
1977 	if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
1978 		goto out;
1979 
1980 	/* Instead of bytes, the API requests to return the number
1981 	 * of filter blocks.
1982 	 */
1983 	ret = fprog->len;
1984 out:
1985 	release_sock(sk);
1986 	return ret;
1987 }
1988