1 /*
2 * Linux Socket Filter - Kernel level socket filtering
3 *
4 * Based on the design of the Berkeley Packet Filter. The new
5 * internal format has been designed by PLUMgrid:
6 *
7 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8 *
9 * Authors:
10 *
11 * Jay Schulist <jschlst@samba.org>
12 * Alexei Starovoitov <ast@plumgrid.com>
13 * Daniel Borkmann <dborkman@redhat.com>
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 *
20 * Andi Kleen - Fix a few bad bugs and races.
21 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22 */
23
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <linux/fcntl.h>
28 #include <linux/socket.h>
29 #include <linux/in.h>
30 #include <linux/inet.h>
31 #include <linux/netdevice.h>
32 #include <linux/if_packet.h>
33 #include <linux/gfp.h>
34 #include <net/ip.h>
35 #include <net/protocol.h>
36 #include <net/netlink.h>
37 #include <linux/skbuff.h>
38 #include <net/sock.h>
39 #include <linux/errno.h>
40 #include <linux/timer.h>
41 #include <asm/uaccess.h>
42 #include <asm/unaligned.h>
43 #include <linux/filter.h>
44 #include <linux/ratelimit.h>
45 #include <linux/seccomp.h>
46 #include <linux/if_vlan.h>
47 #include <linux/bpf.h>
48
49 /**
50 * sk_filter - run a packet through a socket filter
51 * @sk: sock associated with &sk_buff
52 * @skb: buffer to filter
53 *
54 * Run the filter code and then cut skb->data to correct size returned by
55 * SK_RUN_FILTER. If pkt_len is 0 we toss packet. If skb->len is smaller
56 * than pkt_len we keep whole skb->data. This is the socket level
57 * wrapper to SK_RUN_FILTER. It returns 0 if the packet should
58 * be accepted or -EPERM if the packet should be tossed.
59 *
60 */
sk_filter(struct sock * sk,struct sk_buff * skb)61 int sk_filter(struct sock *sk, struct sk_buff *skb)
62 {
63 int err;
64 struct sk_filter *filter;
65
66 /*
67 * If the skb was allocated from pfmemalloc reserves, only
68 * allow SOCK_MEMALLOC sockets to use it as this socket is
69 * helping free memory
70 */
71 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
72 return -ENOMEM;
73
74 err = security_sock_rcv_skb(sk, skb);
75 if (err)
76 return err;
77
78 rcu_read_lock();
79 filter = rcu_dereference(sk->sk_filter);
80 if (filter) {
81 unsigned int pkt_len = SK_RUN_FILTER(filter, skb);
82
83 err = pkt_len ? pskb_trim(skb, pkt_len) : -EPERM;
84 }
85 rcu_read_unlock();
86
87 return err;
88 }
89 EXPORT_SYMBOL(sk_filter);
90
__skb_get_pay_offset(u64 ctx,u64 a,u64 x,u64 r4,u64 r5)91 static u64 __skb_get_pay_offset(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
92 {
93 return skb_get_poff((struct sk_buff *)(unsigned long) ctx);
94 }
95
__skb_get_nlattr(u64 ctx,u64 a,u64 x,u64 r4,u64 r5)96 static u64 __skb_get_nlattr(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
97 {
98 struct sk_buff *skb = (struct sk_buff *)(unsigned long) ctx;
99 struct nlattr *nla;
100
101 if (skb_is_nonlinear(skb))
102 return 0;
103
104 if (skb->len < sizeof(struct nlattr))
105 return 0;
106
107 if (a > skb->len - sizeof(struct nlattr))
108 return 0;
109
110 nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
111 if (nla)
112 return (void *) nla - (void *) skb->data;
113
114 return 0;
115 }
116
__skb_get_nlattr_nest(u64 ctx,u64 a,u64 x,u64 r4,u64 r5)117 static u64 __skb_get_nlattr_nest(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
118 {
119 struct sk_buff *skb = (struct sk_buff *)(unsigned long) ctx;
120 struct nlattr *nla;
121
122 if (skb_is_nonlinear(skb))
123 return 0;
124
125 if (skb->len < sizeof(struct nlattr))
126 return 0;
127
128 if (a > skb->len - sizeof(struct nlattr))
129 return 0;
130
131 nla = (struct nlattr *) &skb->data[a];
132 if (nla->nla_len > skb->len - a)
133 return 0;
134
135 nla = nla_find_nested(nla, x);
136 if (nla)
137 return (void *) nla - (void *) skb->data;
138
139 return 0;
140 }
141
__get_raw_cpu_id(u64 ctx,u64 a,u64 x,u64 r4,u64 r5)142 static u64 __get_raw_cpu_id(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
143 {
144 return raw_smp_processor_id();
145 }
146
147 /* note that this only generates 32-bit random numbers */
__get_random_u32(u64 ctx,u64 a,u64 x,u64 r4,u64 r5)148 static u64 __get_random_u32(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
149 {
150 return prandom_u32();
151 }
152
convert_skb_access(int skb_field,int dst_reg,int src_reg,struct bpf_insn * insn_buf)153 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
154 struct bpf_insn *insn_buf)
155 {
156 struct bpf_insn *insn = insn_buf;
157
158 switch (skb_field) {
159 case SKF_AD_MARK:
160 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
161
162 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
163 offsetof(struct sk_buff, mark));
164 break;
165
166 case SKF_AD_PKTTYPE:
167 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
168 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
169 #ifdef __BIG_ENDIAN_BITFIELD
170 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
171 #endif
172 break;
173
174 case SKF_AD_QUEUE:
175 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);
176
177 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
178 offsetof(struct sk_buff, queue_mapping));
179 break;
180
181 case SKF_AD_VLAN_TAG:
182 case SKF_AD_VLAN_TAG_PRESENT:
183 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
184 BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
185
186 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
187 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
188 offsetof(struct sk_buff, vlan_tci));
189 if (skb_field == SKF_AD_VLAN_TAG) {
190 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg,
191 ~VLAN_TAG_PRESENT);
192 } else {
193 /* dst_reg >>= 12 */
194 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 12);
195 /* dst_reg &= 1 */
196 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
197 }
198 break;
199 }
200
201 return insn - insn_buf;
202 }
203
convert_bpf_extensions(struct sock_filter * fp,struct bpf_insn ** insnp)204 static bool convert_bpf_extensions(struct sock_filter *fp,
205 struct bpf_insn **insnp)
206 {
207 struct bpf_insn *insn = *insnp;
208 u32 cnt;
209
210 switch (fp->k) {
211 case SKF_AD_OFF + SKF_AD_PROTOCOL:
212 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
213
214 /* A = *(u16 *) (CTX + offsetof(protocol)) */
215 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
216 offsetof(struct sk_buff, protocol));
217 /* A = ntohs(A) [emitting a nop or swap16] */
218 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
219 break;
220
221 case SKF_AD_OFF + SKF_AD_PKTTYPE:
222 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
223 insn += cnt - 1;
224 break;
225
226 case SKF_AD_OFF + SKF_AD_IFINDEX:
227 case SKF_AD_OFF + SKF_AD_HATYPE:
228 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
229 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
230 BUILD_BUG_ON(bytes_to_bpf_size(FIELD_SIZEOF(struct sk_buff, dev)) < 0);
231
232 *insn++ = BPF_LDX_MEM(bytes_to_bpf_size(FIELD_SIZEOF(struct sk_buff, dev)),
233 BPF_REG_TMP, BPF_REG_CTX,
234 offsetof(struct sk_buff, dev));
235 /* if (tmp != 0) goto pc + 1 */
236 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
237 *insn++ = BPF_EXIT_INSN();
238 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
239 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
240 offsetof(struct net_device, ifindex));
241 else
242 *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
243 offsetof(struct net_device, type));
244 break;
245
246 case SKF_AD_OFF + SKF_AD_MARK:
247 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
248 insn += cnt - 1;
249 break;
250
251 case SKF_AD_OFF + SKF_AD_RXHASH:
252 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
253
254 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
255 offsetof(struct sk_buff, hash));
256 break;
257
258 case SKF_AD_OFF + SKF_AD_QUEUE:
259 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
260 insn += cnt - 1;
261 break;
262
263 case SKF_AD_OFF + SKF_AD_VLAN_TAG:
264 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
265 BPF_REG_A, BPF_REG_CTX, insn);
266 insn += cnt - 1;
267 break;
268
269 case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
270 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
271 BPF_REG_A, BPF_REG_CTX, insn);
272 insn += cnt - 1;
273 break;
274
275 case SKF_AD_OFF + SKF_AD_VLAN_TPID:
276 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);
277
278 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
279 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
280 offsetof(struct sk_buff, vlan_proto));
281 /* A = ntohs(A) [emitting a nop or swap16] */
282 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
283 break;
284
285 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
286 case SKF_AD_OFF + SKF_AD_NLATTR:
287 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
288 case SKF_AD_OFF + SKF_AD_CPU:
289 case SKF_AD_OFF + SKF_AD_RANDOM:
290 /* arg1 = CTX */
291 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
292 /* arg2 = A */
293 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
294 /* arg3 = X */
295 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
296 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
297 switch (fp->k) {
298 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
299 *insn = BPF_EMIT_CALL(__skb_get_pay_offset);
300 break;
301 case SKF_AD_OFF + SKF_AD_NLATTR:
302 *insn = BPF_EMIT_CALL(__skb_get_nlattr);
303 break;
304 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
305 *insn = BPF_EMIT_CALL(__skb_get_nlattr_nest);
306 break;
307 case SKF_AD_OFF + SKF_AD_CPU:
308 *insn = BPF_EMIT_CALL(__get_raw_cpu_id);
309 break;
310 case SKF_AD_OFF + SKF_AD_RANDOM:
311 *insn = BPF_EMIT_CALL(__get_random_u32);
312 break;
313 }
314 break;
315
316 case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
317 /* A ^= X */
318 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
319 break;
320
321 default:
322 /* This is just a dummy call to avoid letting the compiler
323 * evict __bpf_call_base() as an optimization. Placed here
324 * where no-one bothers.
325 */
326 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
327 return false;
328 }
329
330 *insnp = insn;
331 return true;
332 }
333
334 /**
335 * bpf_convert_filter - convert filter program
336 * @prog: the user passed filter program
337 * @len: the length of the user passed filter program
338 * @new_prog: buffer where converted program will be stored
339 * @new_len: pointer to store length of converted program
340 *
341 * Remap 'sock_filter' style BPF instruction set to 'sock_filter_ext' style.
342 * Conversion workflow:
343 *
344 * 1) First pass for calculating the new program length:
345 * bpf_convert_filter(old_prog, old_len, NULL, &new_len)
346 *
347 * 2) 2nd pass to remap in two passes: 1st pass finds new
348 * jump offsets, 2nd pass remapping:
349 * new_prog = kmalloc(sizeof(struct bpf_insn) * new_len);
350 * bpf_convert_filter(old_prog, old_len, new_prog, &new_len);
351 *
352 * User BPF's register A is mapped to our BPF register 6, user BPF
353 * register X is mapped to BPF register 7; frame pointer is always
354 * register 10; Context 'void *ctx' is stored in register 1, that is,
355 * for socket filters: ctx == 'struct sk_buff *', for seccomp:
356 * ctx == 'struct seccomp_data *'.
357 */
bpf_convert_filter(struct sock_filter * prog,int len,struct bpf_insn * new_prog,int * new_len)358 int bpf_convert_filter(struct sock_filter *prog, int len,
359 struct bpf_insn *new_prog, int *new_len)
360 {
361 int new_flen = 0, pass = 0, target, i;
362 struct bpf_insn *new_insn;
363 struct sock_filter *fp;
364 int *addrs = NULL;
365 u8 bpf_src;
366
367 BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
368 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
369
370 if (len <= 0 || len > BPF_MAXINSNS)
371 return -EINVAL;
372
373 if (new_prog) {
374 addrs = kcalloc(len, sizeof(*addrs), GFP_KERNEL);
375 if (!addrs)
376 return -ENOMEM;
377 }
378
379 do_pass:
380 new_insn = new_prog;
381 fp = prog;
382
383 if (new_insn)
384 *new_insn = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
385 new_insn++;
386
387 for (i = 0; i < len; fp++, i++) {
388 struct bpf_insn tmp_insns[6] = { };
389 struct bpf_insn *insn = tmp_insns;
390
391 if (addrs)
392 addrs[i] = new_insn - new_prog;
393
394 switch (fp->code) {
395 /* All arithmetic insns and skb loads map as-is. */
396 case BPF_ALU | BPF_ADD | BPF_X:
397 case BPF_ALU | BPF_ADD | BPF_K:
398 case BPF_ALU | BPF_SUB | BPF_X:
399 case BPF_ALU | BPF_SUB | BPF_K:
400 case BPF_ALU | BPF_AND | BPF_X:
401 case BPF_ALU | BPF_AND | BPF_K:
402 case BPF_ALU | BPF_OR | BPF_X:
403 case BPF_ALU | BPF_OR | BPF_K:
404 case BPF_ALU | BPF_LSH | BPF_X:
405 case BPF_ALU | BPF_LSH | BPF_K:
406 case BPF_ALU | BPF_RSH | BPF_X:
407 case BPF_ALU | BPF_RSH | BPF_K:
408 case BPF_ALU | BPF_XOR | BPF_X:
409 case BPF_ALU | BPF_XOR | BPF_K:
410 case BPF_ALU | BPF_MUL | BPF_X:
411 case BPF_ALU | BPF_MUL | BPF_K:
412 case BPF_ALU | BPF_DIV | BPF_X:
413 case BPF_ALU | BPF_DIV | BPF_K:
414 case BPF_ALU | BPF_MOD | BPF_X:
415 case BPF_ALU | BPF_MOD | BPF_K:
416 case BPF_ALU | BPF_NEG:
417 case BPF_LD | BPF_ABS | BPF_W:
418 case BPF_LD | BPF_ABS | BPF_H:
419 case BPF_LD | BPF_ABS | BPF_B:
420 case BPF_LD | BPF_IND | BPF_W:
421 case BPF_LD | BPF_IND | BPF_H:
422 case BPF_LD | BPF_IND | BPF_B:
423 /* Check for overloaded BPF extension and
424 * directly convert it if found, otherwise
425 * just move on with mapping.
426 */
427 if (BPF_CLASS(fp->code) == BPF_LD &&
428 BPF_MODE(fp->code) == BPF_ABS &&
429 convert_bpf_extensions(fp, &insn))
430 break;
431
432 *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
433 break;
434
435 /* Jump transformation cannot use BPF block macros
436 * everywhere as offset calculation and target updates
437 * require a bit more work than the rest, i.e. jump
438 * opcodes map as-is, but offsets need adjustment.
439 */
440
441 #define BPF_EMIT_JMP \
442 do { \
443 if (target >= len || target < 0) \
444 goto err; \
445 insn->off = addrs ? addrs[target] - addrs[i] - 1 : 0; \
446 /* Adjust pc relative offset for 2nd or 3rd insn. */ \
447 insn->off -= insn - tmp_insns; \
448 } while (0)
449
450 case BPF_JMP | BPF_JA:
451 target = i + fp->k + 1;
452 insn->code = fp->code;
453 BPF_EMIT_JMP;
454 break;
455
456 case BPF_JMP | BPF_JEQ | BPF_K:
457 case BPF_JMP | BPF_JEQ | BPF_X:
458 case BPF_JMP | BPF_JSET | BPF_K:
459 case BPF_JMP | BPF_JSET | BPF_X:
460 case BPF_JMP | BPF_JGT | BPF_K:
461 case BPF_JMP | BPF_JGT | BPF_X:
462 case BPF_JMP | BPF_JGE | BPF_K:
463 case BPF_JMP | BPF_JGE | BPF_X:
464 if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
465 /* BPF immediates are signed, zero extend
466 * immediate into tmp register and use it
467 * in compare insn.
468 */
469 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
470
471 insn->dst_reg = BPF_REG_A;
472 insn->src_reg = BPF_REG_TMP;
473 bpf_src = BPF_X;
474 } else {
475 insn->dst_reg = BPF_REG_A;
476 insn->src_reg = BPF_REG_X;
477 insn->imm = fp->k;
478 bpf_src = BPF_SRC(fp->code);
479 }
480
481 /* Common case where 'jump_false' is next insn. */
482 if (fp->jf == 0) {
483 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
484 target = i + fp->jt + 1;
485 BPF_EMIT_JMP;
486 break;
487 }
488
489 /* Convert JEQ into JNE when 'jump_true' is next insn. */
490 if (fp->jt == 0 && BPF_OP(fp->code) == BPF_JEQ) {
491 insn->code = BPF_JMP | BPF_JNE | bpf_src;
492 target = i + fp->jf + 1;
493 BPF_EMIT_JMP;
494 break;
495 }
496
497 /* Other jumps are mapped into two insns: Jxx and JA. */
498 target = i + fp->jt + 1;
499 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
500 BPF_EMIT_JMP;
501 insn++;
502
503 insn->code = BPF_JMP | BPF_JA;
504 target = i + fp->jf + 1;
505 BPF_EMIT_JMP;
506 break;
507
508 /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
509 case BPF_LDX | BPF_MSH | BPF_B:
510 /* tmp = A */
511 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_A);
512 /* A = BPF_R0 = *(u8 *) (skb->data + K) */
513 *insn++ = BPF_LD_ABS(BPF_B, fp->k);
514 /* A &= 0xf */
515 *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
516 /* A <<= 2 */
517 *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
518 /* X = A */
519 *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
520 /* A = tmp */
521 *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
522 break;
523
524 /* RET_K, RET_A are remaped into 2 insns. */
525 case BPF_RET | BPF_A:
526 case BPF_RET | BPF_K:
527 *insn++ = BPF_MOV32_RAW(BPF_RVAL(fp->code) == BPF_K ?
528 BPF_K : BPF_X, BPF_REG_0,
529 BPF_REG_A, fp->k);
530 *insn = BPF_EXIT_INSN();
531 break;
532
533 /* Store to stack. */
534 case BPF_ST:
535 case BPF_STX:
536 *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
537 BPF_ST ? BPF_REG_A : BPF_REG_X,
538 -(BPF_MEMWORDS - fp->k) * 4);
539 break;
540
541 /* Load from stack. */
542 case BPF_LD | BPF_MEM:
543 case BPF_LDX | BPF_MEM:
544 *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
545 BPF_REG_A : BPF_REG_X, BPF_REG_FP,
546 -(BPF_MEMWORDS - fp->k) * 4);
547 break;
548
549 /* A = K or X = K */
550 case BPF_LD | BPF_IMM:
551 case BPF_LDX | BPF_IMM:
552 *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
553 BPF_REG_A : BPF_REG_X, fp->k);
554 break;
555
556 /* X = A */
557 case BPF_MISC | BPF_TAX:
558 *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
559 break;
560
561 /* A = X */
562 case BPF_MISC | BPF_TXA:
563 *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
564 break;
565
566 /* A = skb->len or X = skb->len */
567 case BPF_LD | BPF_W | BPF_LEN:
568 case BPF_LDX | BPF_W | BPF_LEN:
569 *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
570 BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
571 offsetof(struct sk_buff, len));
572 break;
573
574 /* Access seccomp_data fields. */
575 case BPF_LDX | BPF_ABS | BPF_W:
576 /* A = *(u32 *) (ctx + K) */
577 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
578 break;
579
580 /* Unknown instruction. */
581 default:
582 goto err;
583 }
584
585 insn++;
586 if (new_prog)
587 memcpy(new_insn, tmp_insns,
588 sizeof(*insn) * (insn - tmp_insns));
589 new_insn += insn - tmp_insns;
590 }
591
592 if (!new_prog) {
593 /* Only calculating new length. */
594 *new_len = new_insn - new_prog;
595 return 0;
596 }
597
598 pass++;
599 if (new_flen != new_insn - new_prog) {
600 new_flen = new_insn - new_prog;
601 if (pass > 2)
602 goto err;
603 goto do_pass;
604 }
605
606 kfree(addrs);
607 BUG_ON(*new_len != new_flen);
608 return 0;
609 err:
610 kfree(addrs);
611 return -EINVAL;
612 }
613
614 /* Security:
615 *
616 * As we dont want to clear mem[] array for each packet going through
617 * __bpf_prog_run(), we check that filter loaded by user never try to read
618 * a cell if not previously written, and we check all branches to be sure
619 * a malicious user doesn't try to abuse us.
620 */
check_load_and_stores(const struct sock_filter * filter,int flen)621 static int check_load_and_stores(const struct sock_filter *filter, int flen)
622 {
623 u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
624 int pc, ret = 0;
625
626 BUILD_BUG_ON(BPF_MEMWORDS > 16);
627
628 masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
629 if (!masks)
630 return -ENOMEM;
631
632 memset(masks, 0xff, flen * sizeof(*masks));
633
634 for (pc = 0; pc < flen; pc++) {
635 memvalid &= masks[pc];
636
637 switch (filter[pc].code) {
638 case BPF_ST:
639 case BPF_STX:
640 memvalid |= (1 << filter[pc].k);
641 break;
642 case BPF_LD | BPF_MEM:
643 case BPF_LDX | BPF_MEM:
644 if (!(memvalid & (1 << filter[pc].k))) {
645 ret = -EINVAL;
646 goto error;
647 }
648 break;
649 case BPF_JMP | BPF_JA:
650 /* A jump must set masks on target */
651 masks[pc + 1 + filter[pc].k] &= memvalid;
652 memvalid = ~0;
653 break;
654 case BPF_JMP | BPF_JEQ | BPF_K:
655 case BPF_JMP | BPF_JEQ | BPF_X:
656 case BPF_JMP | BPF_JGE | BPF_K:
657 case BPF_JMP | BPF_JGE | BPF_X:
658 case BPF_JMP | BPF_JGT | BPF_K:
659 case BPF_JMP | BPF_JGT | BPF_X:
660 case BPF_JMP | BPF_JSET | BPF_K:
661 case BPF_JMP | BPF_JSET | BPF_X:
662 /* A jump must set masks on targets */
663 masks[pc + 1 + filter[pc].jt] &= memvalid;
664 masks[pc + 1 + filter[pc].jf] &= memvalid;
665 memvalid = ~0;
666 break;
667 }
668 }
669 error:
670 kfree(masks);
671 return ret;
672 }
673
chk_code_allowed(u16 code_to_probe)674 static bool chk_code_allowed(u16 code_to_probe)
675 {
676 static const bool codes[] = {
677 /* 32 bit ALU operations */
678 [BPF_ALU | BPF_ADD | BPF_K] = true,
679 [BPF_ALU | BPF_ADD | BPF_X] = true,
680 [BPF_ALU | BPF_SUB | BPF_K] = true,
681 [BPF_ALU | BPF_SUB | BPF_X] = true,
682 [BPF_ALU | BPF_MUL | BPF_K] = true,
683 [BPF_ALU | BPF_MUL | BPF_X] = true,
684 [BPF_ALU | BPF_DIV | BPF_K] = true,
685 [BPF_ALU | BPF_DIV | BPF_X] = true,
686 [BPF_ALU | BPF_MOD | BPF_K] = true,
687 [BPF_ALU | BPF_MOD | BPF_X] = true,
688 [BPF_ALU | BPF_AND | BPF_K] = true,
689 [BPF_ALU | BPF_AND | BPF_X] = true,
690 [BPF_ALU | BPF_OR | BPF_K] = true,
691 [BPF_ALU | BPF_OR | BPF_X] = true,
692 [BPF_ALU | BPF_XOR | BPF_K] = true,
693 [BPF_ALU | BPF_XOR | BPF_X] = true,
694 [BPF_ALU | BPF_LSH | BPF_K] = true,
695 [BPF_ALU | BPF_LSH | BPF_X] = true,
696 [BPF_ALU | BPF_RSH | BPF_K] = true,
697 [BPF_ALU | BPF_RSH | BPF_X] = true,
698 [BPF_ALU | BPF_NEG] = true,
699 /* Load instructions */
700 [BPF_LD | BPF_W | BPF_ABS] = true,
701 [BPF_LD | BPF_H | BPF_ABS] = true,
702 [BPF_LD | BPF_B | BPF_ABS] = true,
703 [BPF_LD | BPF_W | BPF_LEN] = true,
704 [BPF_LD | BPF_W | BPF_IND] = true,
705 [BPF_LD | BPF_H | BPF_IND] = true,
706 [BPF_LD | BPF_B | BPF_IND] = true,
707 [BPF_LD | BPF_IMM] = true,
708 [BPF_LD | BPF_MEM] = true,
709 [BPF_LDX | BPF_W | BPF_LEN] = true,
710 [BPF_LDX | BPF_B | BPF_MSH] = true,
711 [BPF_LDX | BPF_IMM] = true,
712 [BPF_LDX | BPF_MEM] = true,
713 /* Store instructions */
714 [BPF_ST] = true,
715 [BPF_STX] = true,
716 /* Misc instructions */
717 [BPF_MISC | BPF_TAX] = true,
718 [BPF_MISC | BPF_TXA] = true,
719 /* Return instructions */
720 [BPF_RET | BPF_K] = true,
721 [BPF_RET | BPF_A] = true,
722 /* Jump instructions */
723 [BPF_JMP | BPF_JA] = true,
724 [BPF_JMP | BPF_JEQ | BPF_K] = true,
725 [BPF_JMP | BPF_JEQ | BPF_X] = true,
726 [BPF_JMP | BPF_JGE | BPF_K] = true,
727 [BPF_JMP | BPF_JGE | BPF_X] = true,
728 [BPF_JMP | BPF_JGT | BPF_K] = true,
729 [BPF_JMP | BPF_JGT | BPF_X] = true,
730 [BPF_JMP | BPF_JSET | BPF_K] = true,
731 [BPF_JMP | BPF_JSET | BPF_X] = true,
732 };
733
734 if (code_to_probe >= ARRAY_SIZE(codes))
735 return false;
736
737 return codes[code_to_probe];
738 }
739
740 /**
741 * bpf_check_classic - verify socket filter code
742 * @filter: filter to verify
743 * @flen: length of filter
744 *
745 * Check the user's filter code. If we let some ugly
746 * filter code slip through kaboom! The filter must contain
747 * no references or jumps that are out of range, no illegal
748 * instructions, and must end with a RET instruction.
749 *
750 * All jumps are forward as they are not signed.
751 *
752 * Returns 0 if the rule set is legal or -EINVAL if not.
753 */
bpf_check_classic(const struct sock_filter * filter,unsigned int flen)754 int bpf_check_classic(const struct sock_filter *filter, unsigned int flen)
755 {
756 bool anc_found;
757 int pc;
758
759 if (flen == 0 || flen > BPF_MAXINSNS)
760 return -EINVAL;
761
762 /* Check the filter code now */
763 for (pc = 0; pc < flen; pc++) {
764 const struct sock_filter *ftest = &filter[pc];
765
766 /* May we actually operate on this code? */
767 if (!chk_code_allowed(ftest->code))
768 return -EINVAL;
769
770 /* Some instructions need special checks */
771 switch (ftest->code) {
772 case BPF_ALU | BPF_DIV | BPF_K:
773 case BPF_ALU | BPF_MOD | BPF_K:
774 /* Check for division by zero */
775 if (ftest->k == 0)
776 return -EINVAL;
777 break;
778 case BPF_ALU | BPF_LSH | BPF_K:
779 case BPF_ALU | BPF_RSH | BPF_K:
780 if (ftest->k >= 32)
781 return -EINVAL;
782 break;
783 case BPF_LD | BPF_MEM:
784 case BPF_LDX | BPF_MEM:
785 case BPF_ST:
786 case BPF_STX:
787 /* Check for invalid memory addresses */
788 if (ftest->k >= BPF_MEMWORDS)
789 return -EINVAL;
790 break;
791 case BPF_JMP | BPF_JA:
792 /* Note, the large ftest->k might cause loops.
793 * Compare this with conditional jumps below,
794 * where offsets are limited. --ANK (981016)
795 */
796 if (ftest->k >= (unsigned int)(flen - pc - 1))
797 return -EINVAL;
798 break;
799 case BPF_JMP | BPF_JEQ | BPF_K:
800 case BPF_JMP | BPF_JEQ | BPF_X:
801 case BPF_JMP | BPF_JGE | BPF_K:
802 case BPF_JMP | BPF_JGE | BPF_X:
803 case BPF_JMP | BPF_JGT | BPF_K:
804 case BPF_JMP | BPF_JGT | BPF_X:
805 case BPF_JMP | BPF_JSET | BPF_K:
806 case BPF_JMP | BPF_JSET | BPF_X:
807 /* Both conditionals must be safe */
808 if (pc + ftest->jt + 1 >= flen ||
809 pc + ftest->jf + 1 >= flen)
810 return -EINVAL;
811 break;
812 case BPF_LD | BPF_W | BPF_ABS:
813 case BPF_LD | BPF_H | BPF_ABS:
814 case BPF_LD | BPF_B | BPF_ABS:
815 anc_found = false;
816 if (bpf_anc_helper(ftest) & BPF_ANC)
817 anc_found = true;
818 /* Ancillary operation unknown or unsupported */
819 if (anc_found == false && ftest->k >= SKF_AD_OFF)
820 return -EINVAL;
821 }
822 }
823
824 /* Last instruction must be a RET code */
825 switch (filter[flen - 1].code) {
826 case BPF_RET | BPF_K:
827 case BPF_RET | BPF_A:
828 return check_load_and_stores(filter, flen);
829 }
830
831 return -EINVAL;
832 }
833 EXPORT_SYMBOL(bpf_check_classic);
834
bpf_prog_store_orig_filter(struct bpf_prog * fp,const struct sock_fprog * fprog)835 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
836 const struct sock_fprog *fprog)
837 {
838 unsigned int fsize = bpf_classic_proglen(fprog);
839 struct sock_fprog_kern *fkprog;
840
841 fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
842 if (!fp->orig_prog)
843 return -ENOMEM;
844
845 fkprog = fp->orig_prog;
846 fkprog->len = fprog->len;
847 fkprog->filter = kmemdup(fp->insns, fsize, GFP_KERNEL);
848 if (!fkprog->filter) {
849 kfree(fp->orig_prog);
850 return -ENOMEM;
851 }
852
853 return 0;
854 }
855
bpf_release_orig_filter(struct bpf_prog * fp)856 static void bpf_release_orig_filter(struct bpf_prog *fp)
857 {
858 struct sock_fprog_kern *fprog = fp->orig_prog;
859
860 if (fprog) {
861 kfree(fprog->filter);
862 kfree(fprog);
863 }
864 }
865
__bpf_prog_release(struct bpf_prog * prog)866 static void __bpf_prog_release(struct bpf_prog *prog)
867 {
868 if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
869 bpf_prog_put(prog);
870 } else {
871 bpf_release_orig_filter(prog);
872 bpf_prog_free(prog);
873 }
874 }
875
__sk_filter_release(struct sk_filter * fp)876 static void __sk_filter_release(struct sk_filter *fp)
877 {
878 __bpf_prog_release(fp->prog);
879 kfree(fp);
880 }
881
882 /**
883 * sk_filter_release_rcu - Release a socket filter by rcu_head
884 * @rcu: rcu_head that contains the sk_filter to free
885 */
sk_filter_release_rcu(struct rcu_head * rcu)886 static void sk_filter_release_rcu(struct rcu_head *rcu)
887 {
888 struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
889
890 __sk_filter_release(fp);
891 }
892
893 /**
894 * sk_filter_release - release a socket filter
895 * @fp: filter to remove
896 *
897 * Remove a filter from a socket and release its resources.
898 */
sk_filter_release(struct sk_filter * fp)899 static void sk_filter_release(struct sk_filter *fp)
900 {
901 if (atomic_dec_and_test(&fp->refcnt))
902 call_rcu(&fp->rcu, sk_filter_release_rcu);
903 }
904
sk_filter_uncharge(struct sock * sk,struct sk_filter * fp)905 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
906 {
907 u32 filter_size = bpf_prog_size(fp->prog->len);
908
909 atomic_sub(filter_size, &sk->sk_omem_alloc);
910 sk_filter_release(fp);
911 }
912
913 /* try to charge the socket memory if there is space available
914 * return true on success
915 */
sk_filter_charge(struct sock * sk,struct sk_filter * fp)916 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
917 {
918 u32 filter_size = bpf_prog_size(fp->prog->len);
919
920 /* same check as in sock_kmalloc() */
921 if (filter_size <= sysctl_optmem_max &&
922 atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
923 atomic_inc(&fp->refcnt);
924 atomic_add(filter_size, &sk->sk_omem_alloc);
925 return true;
926 }
927 return false;
928 }
929
bpf_migrate_filter(struct bpf_prog * fp)930 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
931 {
932 struct sock_filter *old_prog;
933 struct bpf_prog *old_fp;
934 int err, new_len, old_len = fp->len;
935
936 /* We are free to overwrite insns et al right here as it
937 * won't be used at this point in time anymore internally
938 * after the migration to the internal BPF instruction
939 * representation.
940 */
941 BUILD_BUG_ON(sizeof(struct sock_filter) !=
942 sizeof(struct bpf_insn));
943
944 /* Conversion cannot happen on overlapping memory areas,
945 * so we need to keep the user BPF around until the 2nd
946 * pass. At this time, the user BPF is stored in fp->insns.
947 */
948 old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
949 GFP_KERNEL);
950 if (!old_prog) {
951 err = -ENOMEM;
952 goto out_err;
953 }
954
955 /* 1st pass: calculate the new program length. */
956 err = bpf_convert_filter(old_prog, old_len, NULL, &new_len);
957 if (err)
958 goto out_err_free;
959
960 /* Expand fp for appending the new filter representation. */
961 old_fp = fp;
962 fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
963 if (!fp) {
964 /* The old_fp is still around in case we couldn't
965 * allocate new memory, so uncharge on that one.
966 */
967 fp = old_fp;
968 err = -ENOMEM;
969 goto out_err_free;
970 }
971
972 fp->len = new_len;
973
974 /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
975 err = bpf_convert_filter(old_prog, old_len, fp->insnsi, &new_len);
976 if (err)
977 /* 2nd bpf_convert_filter() can fail only if it fails
978 * to allocate memory, remapping must succeed. Note,
979 * that at this time old_fp has already been released
980 * by krealloc().
981 */
982 goto out_err_free;
983
984 bpf_prog_select_runtime(fp);
985
986 kfree(old_prog);
987 return fp;
988
989 out_err_free:
990 kfree(old_prog);
991 out_err:
992 __bpf_prog_release(fp);
993 return ERR_PTR(err);
994 }
995
bpf_prepare_filter(struct bpf_prog * fp)996 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp)
997 {
998 int err;
999
1000 fp->bpf_func = NULL;
1001 fp->jited = false;
1002
1003 err = bpf_check_classic(fp->insns, fp->len);
1004 if (err) {
1005 __bpf_prog_release(fp);
1006 return ERR_PTR(err);
1007 }
1008
1009 /* Probe if we can JIT compile the filter and if so, do
1010 * the compilation of the filter.
1011 */
1012 bpf_jit_compile(fp);
1013
1014 /* JIT compiler couldn't process this filter, so do the
1015 * internal BPF translation for the optimized interpreter.
1016 */
1017 if (!fp->jited)
1018 fp = bpf_migrate_filter(fp);
1019
1020 return fp;
1021 }
1022
1023 /**
1024 * bpf_prog_create - create an unattached filter
1025 * @pfp: the unattached filter that is created
1026 * @fprog: the filter program
1027 *
1028 * Create a filter independent of any socket. We first run some
1029 * sanity checks on it to make sure it does not explode on us later.
1030 * If an error occurs or there is insufficient memory for the filter
1031 * a negative errno code is returned. On success the return is zero.
1032 */
bpf_prog_create(struct bpf_prog ** pfp,struct sock_fprog_kern * fprog)1033 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1034 {
1035 unsigned int fsize = bpf_classic_proglen(fprog);
1036 struct bpf_prog *fp;
1037
1038 /* Make sure new filter is there and in the right amounts. */
1039 if (fprog->filter == NULL)
1040 return -EINVAL;
1041
1042 fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1043 if (!fp)
1044 return -ENOMEM;
1045
1046 memcpy(fp->insns, fprog->filter, fsize);
1047
1048 fp->len = fprog->len;
1049 /* Since unattached filters are not copied back to user
1050 * space through sk_get_filter(), we do not need to hold
1051 * a copy here, and can spare us the work.
1052 */
1053 fp->orig_prog = NULL;
1054
1055 /* bpf_prepare_filter() already takes care of freeing
1056 * memory in case something goes wrong.
1057 */
1058 fp = bpf_prepare_filter(fp);
1059 if (IS_ERR(fp))
1060 return PTR_ERR(fp);
1061
1062 *pfp = fp;
1063 return 0;
1064 }
1065 EXPORT_SYMBOL_GPL(bpf_prog_create);
1066
bpf_prog_destroy(struct bpf_prog * fp)1067 void bpf_prog_destroy(struct bpf_prog *fp)
1068 {
1069 __bpf_prog_release(fp);
1070 }
1071 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1072
__sk_attach_prog(struct bpf_prog * prog,struct sock * sk)1073 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1074 {
1075 struct sk_filter *fp, *old_fp;
1076
1077 fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1078 if (!fp)
1079 return -ENOMEM;
1080
1081 fp->prog = prog;
1082 atomic_set(&fp->refcnt, 0);
1083
1084 if (!sk_filter_charge(sk, fp)) {
1085 kfree(fp);
1086 return -ENOMEM;
1087 }
1088
1089 old_fp = rcu_dereference_protected(sk->sk_filter,
1090 sock_owned_by_user(sk));
1091 rcu_assign_pointer(sk->sk_filter, fp);
1092
1093 if (old_fp)
1094 sk_filter_uncharge(sk, old_fp);
1095
1096 return 0;
1097 }
1098
1099 /**
1100 * sk_attach_filter - attach a socket filter
1101 * @fprog: the filter program
1102 * @sk: the socket to use
1103 *
1104 * Attach the user's filter code. We first run some sanity checks on
1105 * it to make sure it does not explode on us later. If an error
1106 * occurs or there is insufficient memory for the filter a negative
1107 * errno code is returned. On success the return is zero.
1108 */
sk_attach_filter(struct sock_fprog * fprog,struct sock * sk)1109 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1110 {
1111 unsigned int fsize = bpf_classic_proglen(fprog);
1112 unsigned int bpf_fsize = bpf_prog_size(fprog->len);
1113 struct bpf_prog *prog;
1114 int err;
1115
1116 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1117 return -EPERM;
1118
1119 /* Make sure new filter is there and in the right amounts. */
1120 if (fprog->filter == NULL)
1121 return -EINVAL;
1122
1123 prog = bpf_prog_alloc(bpf_fsize, 0);
1124 if (!prog)
1125 return -ENOMEM;
1126
1127 if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1128 __bpf_prog_free(prog);
1129 return -EFAULT;
1130 }
1131
1132 prog->len = fprog->len;
1133
1134 err = bpf_prog_store_orig_filter(prog, fprog);
1135 if (err) {
1136 __bpf_prog_free(prog);
1137 return -ENOMEM;
1138 }
1139
1140 /* bpf_prepare_filter() already takes care of freeing
1141 * memory in case something goes wrong.
1142 */
1143 prog = bpf_prepare_filter(prog);
1144 if (IS_ERR(prog))
1145 return PTR_ERR(prog);
1146
1147 err = __sk_attach_prog(prog, sk);
1148 if (err < 0) {
1149 __bpf_prog_release(prog);
1150 return err;
1151 }
1152
1153 return 0;
1154 }
1155 EXPORT_SYMBOL_GPL(sk_attach_filter);
1156
sk_attach_bpf(u32 ufd,struct sock * sk)1157 int sk_attach_bpf(u32 ufd, struct sock *sk)
1158 {
1159 struct bpf_prog *prog;
1160 int err;
1161
1162 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1163 return -EPERM;
1164
1165 prog = bpf_prog_get(ufd);
1166 if (IS_ERR(prog))
1167 return PTR_ERR(prog);
1168
1169 if (prog->type != BPF_PROG_TYPE_SOCKET_FILTER) {
1170 bpf_prog_put(prog);
1171 return -EINVAL;
1172 }
1173
1174 err = __sk_attach_prog(prog, sk);
1175 if (err < 0) {
1176 bpf_prog_put(prog);
1177 return err;
1178 }
1179
1180 return 0;
1181 }
1182
1183 /**
1184 * bpf_skb_clone_not_writable - is the header of a clone not writable
1185 * @skb: buffer to check
1186 * @len: length up to which to write, can be negative
1187 *
1188 * Returns true if modifying the header part of the cloned buffer
1189 * does require the data to be copied. I.e. this version works with
1190 * negative lengths needed for eBPF case!
1191 */
bpf_skb_clone_unwritable(const struct sk_buff * skb,int len)1192 static bool bpf_skb_clone_unwritable(const struct sk_buff *skb, int len)
1193 {
1194 return skb_header_cloned(skb) ||
1195 (int) skb_headroom(skb) + len > skb->hdr_len;
1196 }
1197
1198 #define BPF_RECOMPUTE_CSUM(flags) ((flags) & 1)
1199
bpf_skb_store_bytes(u64 r1,u64 r2,u64 r3,u64 r4,u64 flags)1200 static u64 bpf_skb_store_bytes(u64 r1, u64 r2, u64 r3, u64 r4, u64 flags)
1201 {
1202 struct sk_buff *skb = (struct sk_buff *) (long) r1;
1203 int offset = (int) r2;
1204 void *from = (void *) (long) r3;
1205 unsigned int len = (unsigned int) r4;
1206 char buf[16];
1207 void *ptr;
1208
1209 /* bpf verifier guarantees that:
1210 * 'from' pointer points to bpf program stack
1211 * 'len' bytes of it were initialized
1212 * 'len' > 0
1213 * 'skb' is a valid pointer to 'struct sk_buff'
1214 *
1215 * so check for invalid 'offset' and too large 'len'
1216 */
1217 if (unlikely((u32) offset > 0xffff || len > sizeof(buf)))
1218 return -EFAULT;
1219
1220 offset -= skb->data - skb_mac_header(skb);
1221 if (unlikely(skb_cloned(skb) &&
1222 bpf_skb_clone_unwritable(skb, offset + len)))
1223 return -EFAULT;
1224
1225 ptr = skb_header_pointer(skb, offset, len, buf);
1226 if (unlikely(!ptr))
1227 return -EFAULT;
1228
1229 if (BPF_RECOMPUTE_CSUM(flags))
1230 skb_postpull_rcsum(skb, ptr, len);
1231
1232 memcpy(ptr, from, len);
1233
1234 if (ptr == buf)
1235 /* skb_store_bits cannot return -EFAULT here */
1236 skb_store_bits(skb, offset, ptr, len);
1237
1238 if (BPF_RECOMPUTE_CSUM(flags) && skb->ip_summed == CHECKSUM_COMPLETE)
1239 skb->csum = csum_add(skb->csum, csum_partial(ptr, len, 0));
1240 return 0;
1241 }
1242
1243 const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1244 .func = bpf_skb_store_bytes,
1245 .gpl_only = false,
1246 .ret_type = RET_INTEGER,
1247 .arg1_type = ARG_PTR_TO_CTX,
1248 .arg2_type = ARG_ANYTHING,
1249 .arg3_type = ARG_PTR_TO_STACK,
1250 .arg4_type = ARG_CONST_STACK_SIZE,
1251 .arg5_type = ARG_ANYTHING,
1252 };
1253
1254 #define BPF_HEADER_FIELD_SIZE(flags) ((flags) & 0x0f)
1255 #define BPF_IS_PSEUDO_HEADER(flags) ((flags) & 0x10)
1256
bpf_l3_csum_replace(u64 r1,u64 r2,u64 from,u64 to,u64 flags)1257 static u64 bpf_l3_csum_replace(u64 r1, u64 r2, u64 from, u64 to, u64 flags)
1258 {
1259 struct sk_buff *skb = (struct sk_buff *) (long) r1;
1260 int offset = (int) r2;
1261 __sum16 sum, *ptr;
1262
1263 if (unlikely((u32) offset > 0xffff))
1264 return -EFAULT;
1265
1266 offset -= skb->data - skb_mac_header(skb);
1267 if (unlikely(skb_cloned(skb) &&
1268 bpf_skb_clone_unwritable(skb, offset + sizeof(sum))))
1269 return -EFAULT;
1270
1271 ptr = skb_header_pointer(skb, offset, sizeof(sum), &sum);
1272 if (unlikely(!ptr))
1273 return -EFAULT;
1274
1275 switch (BPF_HEADER_FIELD_SIZE(flags)) {
1276 case 2:
1277 csum_replace2(ptr, from, to);
1278 break;
1279 case 4:
1280 csum_replace4(ptr, from, to);
1281 break;
1282 default:
1283 return -EINVAL;
1284 }
1285
1286 if (ptr == &sum)
1287 /* skb_store_bits guaranteed to not return -EFAULT here */
1288 skb_store_bits(skb, offset, ptr, sizeof(sum));
1289
1290 return 0;
1291 }
1292
1293 const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1294 .func = bpf_l3_csum_replace,
1295 .gpl_only = false,
1296 .ret_type = RET_INTEGER,
1297 .arg1_type = ARG_PTR_TO_CTX,
1298 .arg2_type = ARG_ANYTHING,
1299 .arg3_type = ARG_ANYTHING,
1300 .arg4_type = ARG_ANYTHING,
1301 .arg5_type = ARG_ANYTHING,
1302 };
1303
bpf_l4_csum_replace(u64 r1,u64 r2,u64 from,u64 to,u64 flags)1304 static u64 bpf_l4_csum_replace(u64 r1, u64 r2, u64 from, u64 to, u64 flags)
1305 {
1306 struct sk_buff *skb = (struct sk_buff *) (long) r1;
1307 u32 is_pseudo = BPF_IS_PSEUDO_HEADER(flags);
1308 int offset = (int) r2;
1309 __sum16 sum, *ptr;
1310
1311 if (unlikely((u32) offset > 0xffff))
1312 return -EFAULT;
1313
1314 offset -= skb->data - skb_mac_header(skb);
1315 if (unlikely(skb_cloned(skb) &&
1316 bpf_skb_clone_unwritable(skb, offset + sizeof(sum))))
1317 return -EFAULT;
1318
1319 ptr = skb_header_pointer(skb, offset, sizeof(sum), &sum);
1320 if (unlikely(!ptr))
1321 return -EFAULT;
1322
1323 switch (BPF_HEADER_FIELD_SIZE(flags)) {
1324 case 2:
1325 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1326 break;
1327 case 4:
1328 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1329 break;
1330 default:
1331 return -EINVAL;
1332 }
1333
1334 if (ptr == &sum)
1335 /* skb_store_bits guaranteed to not return -EFAULT here */
1336 skb_store_bits(skb, offset, ptr, sizeof(sum));
1337
1338 return 0;
1339 }
1340
1341 const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1342 .func = bpf_l4_csum_replace,
1343 .gpl_only = false,
1344 .ret_type = RET_INTEGER,
1345 .arg1_type = ARG_PTR_TO_CTX,
1346 .arg2_type = ARG_ANYTHING,
1347 .arg3_type = ARG_ANYTHING,
1348 .arg4_type = ARG_ANYTHING,
1349 .arg5_type = ARG_ANYTHING,
1350 };
1351
1352 static const struct bpf_func_proto *
sk_filter_func_proto(enum bpf_func_id func_id)1353 sk_filter_func_proto(enum bpf_func_id func_id)
1354 {
1355 switch (func_id) {
1356 case BPF_FUNC_map_lookup_elem:
1357 return &bpf_map_lookup_elem_proto;
1358 case BPF_FUNC_map_update_elem:
1359 return &bpf_map_update_elem_proto;
1360 case BPF_FUNC_map_delete_elem:
1361 return &bpf_map_delete_elem_proto;
1362 case BPF_FUNC_get_prandom_u32:
1363 return &bpf_get_prandom_u32_proto;
1364 case BPF_FUNC_get_smp_processor_id:
1365 return &bpf_get_smp_processor_id_proto;
1366 default:
1367 return NULL;
1368 }
1369 }
1370
1371 static const struct bpf_func_proto *
tc_cls_act_func_proto(enum bpf_func_id func_id)1372 tc_cls_act_func_proto(enum bpf_func_id func_id)
1373 {
1374 switch (func_id) {
1375 case BPF_FUNC_skb_store_bytes:
1376 return &bpf_skb_store_bytes_proto;
1377 case BPF_FUNC_l3_csum_replace:
1378 return &bpf_l3_csum_replace_proto;
1379 case BPF_FUNC_l4_csum_replace:
1380 return &bpf_l4_csum_replace_proto;
1381 default:
1382 return sk_filter_func_proto(func_id);
1383 }
1384 }
1385
sk_filter_is_valid_access(int off,int size,enum bpf_access_type type)1386 static bool sk_filter_is_valid_access(int off, int size,
1387 enum bpf_access_type type)
1388 {
1389 /* only read is allowed */
1390 if (type != BPF_READ)
1391 return false;
1392
1393 /* check bounds */
1394 if (off < 0 || off >= sizeof(struct __sk_buff))
1395 return false;
1396
1397 /* disallow misaligned access */
1398 if (off % size != 0)
1399 return false;
1400
1401 /* all __sk_buff fields are __u32 */
1402 if (size != 4)
1403 return false;
1404
1405 return true;
1406 }
1407
sk_filter_convert_ctx_access(int dst_reg,int src_reg,int ctx_off,struct bpf_insn * insn_buf)1408 static u32 sk_filter_convert_ctx_access(int dst_reg, int src_reg, int ctx_off,
1409 struct bpf_insn *insn_buf)
1410 {
1411 struct bpf_insn *insn = insn_buf;
1412
1413 switch (ctx_off) {
1414 case offsetof(struct __sk_buff, len):
1415 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
1416
1417 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
1418 offsetof(struct sk_buff, len));
1419 break;
1420
1421 case offsetof(struct __sk_buff, protocol):
1422 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
1423
1424 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
1425 offsetof(struct sk_buff, protocol));
1426 break;
1427
1428 case offsetof(struct __sk_buff, vlan_proto):
1429 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);
1430
1431 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
1432 offsetof(struct sk_buff, vlan_proto));
1433 break;
1434
1435 case offsetof(struct __sk_buff, priority):
1436 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, priority) != 4);
1437
1438 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
1439 offsetof(struct sk_buff, priority));
1440 break;
1441
1442 case offsetof(struct __sk_buff, mark):
1443 return convert_skb_access(SKF_AD_MARK, dst_reg, src_reg, insn);
1444
1445 case offsetof(struct __sk_buff, pkt_type):
1446 return convert_skb_access(SKF_AD_PKTTYPE, dst_reg, src_reg, insn);
1447
1448 case offsetof(struct __sk_buff, queue_mapping):
1449 return convert_skb_access(SKF_AD_QUEUE, dst_reg, src_reg, insn);
1450
1451 case offsetof(struct __sk_buff, vlan_present):
1452 return convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
1453 dst_reg, src_reg, insn);
1454
1455 case offsetof(struct __sk_buff, vlan_tci):
1456 return convert_skb_access(SKF_AD_VLAN_TAG,
1457 dst_reg, src_reg, insn);
1458 }
1459
1460 return insn - insn_buf;
1461 }
1462
1463 static const struct bpf_verifier_ops sk_filter_ops = {
1464 .get_func_proto = sk_filter_func_proto,
1465 .is_valid_access = sk_filter_is_valid_access,
1466 .convert_ctx_access = sk_filter_convert_ctx_access,
1467 };
1468
1469 static const struct bpf_verifier_ops tc_cls_act_ops = {
1470 .get_func_proto = tc_cls_act_func_proto,
1471 .is_valid_access = sk_filter_is_valid_access,
1472 .convert_ctx_access = sk_filter_convert_ctx_access,
1473 };
1474
1475 static struct bpf_prog_type_list sk_filter_type __read_mostly = {
1476 .ops = &sk_filter_ops,
1477 .type = BPF_PROG_TYPE_SOCKET_FILTER,
1478 };
1479
1480 static struct bpf_prog_type_list sched_cls_type __read_mostly = {
1481 .ops = &tc_cls_act_ops,
1482 .type = BPF_PROG_TYPE_SCHED_CLS,
1483 };
1484
1485 static struct bpf_prog_type_list sched_act_type __read_mostly = {
1486 .ops = &tc_cls_act_ops,
1487 .type = BPF_PROG_TYPE_SCHED_ACT,
1488 };
1489
register_sk_filter_ops(void)1490 static int __init register_sk_filter_ops(void)
1491 {
1492 bpf_register_prog_type(&sk_filter_type);
1493 bpf_register_prog_type(&sched_cls_type);
1494 bpf_register_prog_type(&sched_act_type);
1495
1496 return 0;
1497 }
1498 late_initcall(register_sk_filter_ops);
1499
sk_detach_filter(struct sock * sk)1500 int sk_detach_filter(struct sock *sk)
1501 {
1502 int ret = -ENOENT;
1503 struct sk_filter *filter;
1504
1505 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1506 return -EPERM;
1507
1508 filter = rcu_dereference_protected(sk->sk_filter,
1509 sock_owned_by_user(sk));
1510 if (filter) {
1511 RCU_INIT_POINTER(sk->sk_filter, NULL);
1512 sk_filter_uncharge(sk, filter);
1513 ret = 0;
1514 }
1515
1516 return ret;
1517 }
1518 EXPORT_SYMBOL_GPL(sk_detach_filter);
1519
sk_get_filter(struct sock * sk,struct sock_filter __user * ubuf,unsigned int len)1520 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
1521 unsigned int len)
1522 {
1523 struct sock_fprog_kern *fprog;
1524 struct sk_filter *filter;
1525 int ret = 0;
1526
1527 lock_sock(sk);
1528 filter = rcu_dereference_protected(sk->sk_filter,
1529 sock_owned_by_user(sk));
1530 if (!filter)
1531 goto out;
1532
1533 /* We're copying the filter that has been originally attached,
1534 * so no conversion/decode needed anymore. eBPF programs that
1535 * have no original program cannot be dumped through this.
1536 */
1537 ret = -EACCES;
1538 fprog = filter->prog->orig_prog;
1539 if (!fprog)
1540 goto out;
1541
1542 ret = fprog->len;
1543 if (!len)
1544 /* User space only enquires number of filter blocks. */
1545 goto out;
1546
1547 ret = -EINVAL;
1548 if (len < fprog->len)
1549 goto out;
1550
1551 ret = -EFAULT;
1552 if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
1553 goto out;
1554
1555 /* Instead of bytes, the API requests to return the number
1556 * of filter blocks.
1557 */
1558 ret = fprog->len;
1559 out:
1560 release_sock(sk);
1561 return ret;
1562 }
1563