1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Based on the design of the Berkeley Packet Filter. The new
5  * internal format has been designed by PLUMgrid:
6  *
7  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8  *
9  * Authors:
10  *
11  *	Jay Schulist <jschlst@samba.org>
12  *	Alexei Starovoitov <ast@plumgrid.com>
13  *	Daniel Borkmann <dborkman@redhat.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * Andi Kleen - Fix a few bad bugs and races.
21  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22  */
23 
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <linux/fcntl.h>
28 #include <linux/socket.h>
29 #include <linux/in.h>
30 #include <linux/inet.h>
31 #include <linux/netdevice.h>
32 #include <linux/if_packet.h>
33 #include <linux/gfp.h>
34 #include <net/ip.h>
35 #include <net/protocol.h>
36 #include <net/netlink.h>
37 #include <linux/skbuff.h>
38 #include <net/sock.h>
39 #include <linux/errno.h>
40 #include <linux/timer.h>
41 #include <asm/uaccess.h>
42 #include <asm/unaligned.h>
43 #include <linux/filter.h>
44 #include <linux/ratelimit.h>
45 #include <linux/seccomp.h>
46 #include <linux/if_vlan.h>
47 #include <linux/bpf.h>
48 
49 /**
50  *	sk_filter - run a packet through a socket filter
51  *	@sk: sock associated with &sk_buff
52  *	@skb: buffer to filter
53  *
54  * Run the filter code and then cut skb->data to correct size returned by
55  * SK_RUN_FILTER. If pkt_len is 0 we toss packet. If skb->len is smaller
56  * than pkt_len we keep whole skb->data. This is the socket level
57  * wrapper to SK_RUN_FILTER. It returns 0 if the packet should
58  * be accepted or -EPERM if the packet should be tossed.
59  *
60  */
sk_filter(struct sock * sk,struct sk_buff * skb)61 int sk_filter(struct sock *sk, struct sk_buff *skb)
62 {
63 	int err;
64 	struct sk_filter *filter;
65 
66 	/*
67 	 * If the skb was allocated from pfmemalloc reserves, only
68 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
69 	 * helping free memory
70 	 */
71 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
72 		return -ENOMEM;
73 
74 	err = security_sock_rcv_skb(sk, skb);
75 	if (err)
76 		return err;
77 
78 	rcu_read_lock();
79 	filter = rcu_dereference(sk->sk_filter);
80 	if (filter) {
81 		unsigned int pkt_len = SK_RUN_FILTER(filter, skb);
82 
83 		err = pkt_len ? pskb_trim(skb, pkt_len) : -EPERM;
84 	}
85 	rcu_read_unlock();
86 
87 	return err;
88 }
89 EXPORT_SYMBOL(sk_filter);
90 
__skb_get_pay_offset(u64 ctx,u64 a,u64 x,u64 r4,u64 r5)91 static u64 __skb_get_pay_offset(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
92 {
93 	return skb_get_poff((struct sk_buff *)(unsigned long) ctx);
94 }
95 
__skb_get_nlattr(u64 ctx,u64 a,u64 x,u64 r4,u64 r5)96 static u64 __skb_get_nlattr(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
97 {
98 	struct sk_buff *skb = (struct sk_buff *)(unsigned long) ctx;
99 	struct nlattr *nla;
100 
101 	if (skb_is_nonlinear(skb))
102 		return 0;
103 
104 	if (skb->len < sizeof(struct nlattr))
105 		return 0;
106 
107 	if (a > skb->len - sizeof(struct nlattr))
108 		return 0;
109 
110 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
111 	if (nla)
112 		return (void *) nla - (void *) skb->data;
113 
114 	return 0;
115 }
116 
__skb_get_nlattr_nest(u64 ctx,u64 a,u64 x,u64 r4,u64 r5)117 static u64 __skb_get_nlattr_nest(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
118 {
119 	struct sk_buff *skb = (struct sk_buff *)(unsigned long) ctx;
120 	struct nlattr *nla;
121 
122 	if (skb_is_nonlinear(skb))
123 		return 0;
124 
125 	if (skb->len < sizeof(struct nlattr))
126 		return 0;
127 
128 	if (a > skb->len - sizeof(struct nlattr))
129 		return 0;
130 
131 	nla = (struct nlattr *) &skb->data[a];
132 	if (nla->nla_len > skb->len - a)
133 		return 0;
134 
135 	nla = nla_find_nested(nla, x);
136 	if (nla)
137 		return (void *) nla - (void *) skb->data;
138 
139 	return 0;
140 }
141 
__get_raw_cpu_id(u64 ctx,u64 a,u64 x,u64 r4,u64 r5)142 static u64 __get_raw_cpu_id(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
143 {
144 	return raw_smp_processor_id();
145 }
146 
147 /* note that this only generates 32-bit random numbers */
__get_random_u32(u64 ctx,u64 a,u64 x,u64 r4,u64 r5)148 static u64 __get_random_u32(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
149 {
150 	return prandom_u32();
151 }
152 
convert_skb_access(int skb_field,int dst_reg,int src_reg,struct bpf_insn * insn_buf)153 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
154 			      struct bpf_insn *insn_buf)
155 {
156 	struct bpf_insn *insn = insn_buf;
157 
158 	switch (skb_field) {
159 	case SKF_AD_MARK:
160 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
161 
162 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
163 				      offsetof(struct sk_buff, mark));
164 		break;
165 
166 	case SKF_AD_PKTTYPE:
167 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
168 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
169 #ifdef __BIG_ENDIAN_BITFIELD
170 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
171 #endif
172 		break;
173 
174 	case SKF_AD_QUEUE:
175 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);
176 
177 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
178 				      offsetof(struct sk_buff, queue_mapping));
179 		break;
180 
181 	case SKF_AD_VLAN_TAG:
182 	case SKF_AD_VLAN_TAG_PRESENT:
183 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
184 		BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
185 
186 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
187 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
188 				      offsetof(struct sk_buff, vlan_tci));
189 		if (skb_field == SKF_AD_VLAN_TAG) {
190 			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg,
191 						~VLAN_TAG_PRESENT);
192 		} else {
193 			/* dst_reg >>= 12 */
194 			*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 12);
195 			/* dst_reg &= 1 */
196 			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
197 		}
198 		break;
199 	}
200 
201 	return insn - insn_buf;
202 }
203 
convert_bpf_extensions(struct sock_filter * fp,struct bpf_insn ** insnp)204 static bool convert_bpf_extensions(struct sock_filter *fp,
205 				   struct bpf_insn **insnp)
206 {
207 	struct bpf_insn *insn = *insnp;
208 	u32 cnt;
209 
210 	switch (fp->k) {
211 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
212 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
213 
214 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
215 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
216 				      offsetof(struct sk_buff, protocol));
217 		/* A = ntohs(A) [emitting a nop or swap16] */
218 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
219 		break;
220 
221 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
222 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
223 		insn += cnt - 1;
224 		break;
225 
226 	case SKF_AD_OFF + SKF_AD_IFINDEX:
227 	case SKF_AD_OFF + SKF_AD_HATYPE:
228 		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
229 		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
230 		BUILD_BUG_ON(bytes_to_bpf_size(FIELD_SIZEOF(struct sk_buff, dev)) < 0);
231 
232 		*insn++ = BPF_LDX_MEM(bytes_to_bpf_size(FIELD_SIZEOF(struct sk_buff, dev)),
233 				      BPF_REG_TMP, BPF_REG_CTX,
234 				      offsetof(struct sk_buff, dev));
235 		/* if (tmp != 0) goto pc + 1 */
236 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
237 		*insn++ = BPF_EXIT_INSN();
238 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
239 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
240 					    offsetof(struct net_device, ifindex));
241 		else
242 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
243 					    offsetof(struct net_device, type));
244 		break;
245 
246 	case SKF_AD_OFF + SKF_AD_MARK:
247 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
248 		insn += cnt - 1;
249 		break;
250 
251 	case SKF_AD_OFF + SKF_AD_RXHASH:
252 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
253 
254 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
255 				    offsetof(struct sk_buff, hash));
256 		break;
257 
258 	case SKF_AD_OFF + SKF_AD_QUEUE:
259 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
260 		insn += cnt - 1;
261 		break;
262 
263 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
264 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
265 					 BPF_REG_A, BPF_REG_CTX, insn);
266 		insn += cnt - 1;
267 		break;
268 
269 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
270 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
271 					 BPF_REG_A, BPF_REG_CTX, insn);
272 		insn += cnt - 1;
273 		break;
274 
275 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
276 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);
277 
278 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
279 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
280 				      offsetof(struct sk_buff, vlan_proto));
281 		/* A = ntohs(A) [emitting a nop or swap16] */
282 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
283 		break;
284 
285 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
286 	case SKF_AD_OFF + SKF_AD_NLATTR:
287 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
288 	case SKF_AD_OFF + SKF_AD_CPU:
289 	case SKF_AD_OFF + SKF_AD_RANDOM:
290 		/* arg1 = CTX */
291 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
292 		/* arg2 = A */
293 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
294 		/* arg3 = X */
295 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
296 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
297 		switch (fp->k) {
298 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
299 			*insn = BPF_EMIT_CALL(__skb_get_pay_offset);
300 			break;
301 		case SKF_AD_OFF + SKF_AD_NLATTR:
302 			*insn = BPF_EMIT_CALL(__skb_get_nlattr);
303 			break;
304 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
305 			*insn = BPF_EMIT_CALL(__skb_get_nlattr_nest);
306 			break;
307 		case SKF_AD_OFF + SKF_AD_CPU:
308 			*insn = BPF_EMIT_CALL(__get_raw_cpu_id);
309 			break;
310 		case SKF_AD_OFF + SKF_AD_RANDOM:
311 			*insn = BPF_EMIT_CALL(__get_random_u32);
312 			break;
313 		}
314 		break;
315 
316 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
317 		/* A ^= X */
318 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
319 		break;
320 
321 	default:
322 		/* This is just a dummy call to avoid letting the compiler
323 		 * evict __bpf_call_base() as an optimization. Placed here
324 		 * where no-one bothers.
325 		 */
326 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
327 		return false;
328 	}
329 
330 	*insnp = insn;
331 	return true;
332 }
333 
334 /**
335  *	bpf_convert_filter - convert filter program
336  *	@prog: the user passed filter program
337  *	@len: the length of the user passed filter program
338  *	@new_prog: buffer where converted program will be stored
339  *	@new_len: pointer to store length of converted program
340  *
341  * Remap 'sock_filter' style BPF instruction set to 'sock_filter_ext' style.
342  * Conversion workflow:
343  *
344  * 1) First pass for calculating the new program length:
345  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len)
346  *
347  * 2) 2nd pass to remap in two passes: 1st pass finds new
348  *    jump offsets, 2nd pass remapping:
349  *   new_prog = kmalloc(sizeof(struct bpf_insn) * new_len);
350  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len);
351  *
352  * User BPF's register A is mapped to our BPF register 6, user BPF
353  * register X is mapped to BPF register 7; frame pointer is always
354  * register 10; Context 'void *ctx' is stored in register 1, that is,
355  * for socket filters: ctx == 'struct sk_buff *', for seccomp:
356  * ctx == 'struct seccomp_data *'.
357  */
bpf_convert_filter(struct sock_filter * prog,int len,struct bpf_insn * new_prog,int * new_len)358 int bpf_convert_filter(struct sock_filter *prog, int len,
359 		       struct bpf_insn *new_prog, int *new_len)
360 {
361 	int new_flen = 0, pass = 0, target, i;
362 	struct bpf_insn *new_insn;
363 	struct sock_filter *fp;
364 	int *addrs = NULL;
365 	u8 bpf_src;
366 
367 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
368 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
369 
370 	if (len <= 0 || len > BPF_MAXINSNS)
371 		return -EINVAL;
372 
373 	if (new_prog) {
374 		addrs = kcalloc(len, sizeof(*addrs), GFP_KERNEL);
375 		if (!addrs)
376 			return -ENOMEM;
377 	}
378 
379 do_pass:
380 	new_insn = new_prog;
381 	fp = prog;
382 
383 	if (new_insn)
384 		*new_insn = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
385 	new_insn++;
386 
387 	for (i = 0; i < len; fp++, i++) {
388 		struct bpf_insn tmp_insns[6] = { };
389 		struct bpf_insn *insn = tmp_insns;
390 
391 		if (addrs)
392 			addrs[i] = new_insn - new_prog;
393 
394 		switch (fp->code) {
395 		/* All arithmetic insns and skb loads map as-is. */
396 		case BPF_ALU | BPF_ADD | BPF_X:
397 		case BPF_ALU | BPF_ADD | BPF_K:
398 		case BPF_ALU | BPF_SUB | BPF_X:
399 		case BPF_ALU | BPF_SUB | BPF_K:
400 		case BPF_ALU | BPF_AND | BPF_X:
401 		case BPF_ALU | BPF_AND | BPF_K:
402 		case BPF_ALU | BPF_OR | BPF_X:
403 		case BPF_ALU | BPF_OR | BPF_K:
404 		case BPF_ALU | BPF_LSH | BPF_X:
405 		case BPF_ALU | BPF_LSH | BPF_K:
406 		case BPF_ALU | BPF_RSH | BPF_X:
407 		case BPF_ALU | BPF_RSH | BPF_K:
408 		case BPF_ALU | BPF_XOR | BPF_X:
409 		case BPF_ALU | BPF_XOR | BPF_K:
410 		case BPF_ALU | BPF_MUL | BPF_X:
411 		case BPF_ALU | BPF_MUL | BPF_K:
412 		case BPF_ALU | BPF_DIV | BPF_X:
413 		case BPF_ALU | BPF_DIV | BPF_K:
414 		case BPF_ALU | BPF_MOD | BPF_X:
415 		case BPF_ALU | BPF_MOD | BPF_K:
416 		case BPF_ALU | BPF_NEG:
417 		case BPF_LD | BPF_ABS | BPF_W:
418 		case BPF_LD | BPF_ABS | BPF_H:
419 		case BPF_LD | BPF_ABS | BPF_B:
420 		case BPF_LD | BPF_IND | BPF_W:
421 		case BPF_LD | BPF_IND | BPF_H:
422 		case BPF_LD | BPF_IND | BPF_B:
423 			/* Check for overloaded BPF extension and
424 			 * directly convert it if found, otherwise
425 			 * just move on with mapping.
426 			 */
427 			if (BPF_CLASS(fp->code) == BPF_LD &&
428 			    BPF_MODE(fp->code) == BPF_ABS &&
429 			    convert_bpf_extensions(fp, &insn))
430 				break;
431 
432 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
433 			break;
434 
435 		/* Jump transformation cannot use BPF block macros
436 		 * everywhere as offset calculation and target updates
437 		 * require a bit more work than the rest, i.e. jump
438 		 * opcodes map as-is, but offsets need adjustment.
439 		 */
440 
441 #define BPF_EMIT_JMP							\
442 	do {								\
443 		if (target >= len || target < 0)			\
444 			goto err;					\
445 		insn->off = addrs ? addrs[target] - addrs[i] - 1 : 0;	\
446 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
447 		insn->off -= insn - tmp_insns;				\
448 	} while (0)
449 
450 		case BPF_JMP | BPF_JA:
451 			target = i + fp->k + 1;
452 			insn->code = fp->code;
453 			BPF_EMIT_JMP;
454 			break;
455 
456 		case BPF_JMP | BPF_JEQ | BPF_K:
457 		case BPF_JMP | BPF_JEQ | BPF_X:
458 		case BPF_JMP | BPF_JSET | BPF_K:
459 		case BPF_JMP | BPF_JSET | BPF_X:
460 		case BPF_JMP | BPF_JGT | BPF_K:
461 		case BPF_JMP | BPF_JGT | BPF_X:
462 		case BPF_JMP | BPF_JGE | BPF_K:
463 		case BPF_JMP | BPF_JGE | BPF_X:
464 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
465 				/* BPF immediates are signed, zero extend
466 				 * immediate into tmp register and use it
467 				 * in compare insn.
468 				 */
469 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
470 
471 				insn->dst_reg = BPF_REG_A;
472 				insn->src_reg = BPF_REG_TMP;
473 				bpf_src = BPF_X;
474 			} else {
475 				insn->dst_reg = BPF_REG_A;
476 				insn->src_reg = BPF_REG_X;
477 				insn->imm = fp->k;
478 				bpf_src = BPF_SRC(fp->code);
479 			}
480 
481 			/* Common case where 'jump_false' is next insn. */
482 			if (fp->jf == 0) {
483 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
484 				target = i + fp->jt + 1;
485 				BPF_EMIT_JMP;
486 				break;
487 			}
488 
489 			/* Convert JEQ into JNE when 'jump_true' is next insn. */
490 			if (fp->jt == 0 && BPF_OP(fp->code) == BPF_JEQ) {
491 				insn->code = BPF_JMP | BPF_JNE | bpf_src;
492 				target = i + fp->jf + 1;
493 				BPF_EMIT_JMP;
494 				break;
495 			}
496 
497 			/* Other jumps are mapped into two insns: Jxx and JA. */
498 			target = i + fp->jt + 1;
499 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
500 			BPF_EMIT_JMP;
501 			insn++;
502 
503 			insn->code = BPF_JMP | BPF_JA;
504 			target = i + fp->jf + 1;
505 			BPF_EMIT_JMP;
506 			break;
507 
508 		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
509 		case BPF_LDX | BPF_MSH | BPF_B:
510 			/* tmp = A */
511 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_A);
512 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
513 			*insn++ = BPF_LD_ABS(BPF_B, fp->k);
514 			/* A &= 0xf */
515 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
516 			/* A <<= 2 */
517 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
518 			/* X = A */
519 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
520 			/* A = tmp */
521 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
522 			break;
523 
524 		/* RET_K, RET_A are remaped into 2 insns. */
525 		case BPF_RET | BPF_A:
526 		case BPF_RET | BPF_K:
527 			*insn++ = BPF_MOV32_RAW(BPF_RVAL(fp->code) == BPF_K ?
528 						BPF_K : BPF_X, BPF_REG_0,
529 						BPF_REG_A, fp->k);
530 			*insn = BPF_EXIT_INSN();
531 			break;
532 
533 		/* Store to stack. */
534 		case BPF_ST:
535 		case BPF_STX:
536 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
537 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
538 					    -(BPF_MEMWORDS - fp->k) * 4);
539 			break;
540 
541 		/* Load from stack. */
542 		case BPF_LD | BPF_MEM:
543 		case BPF_LDX | BPF_MEM:
544 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
545 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
546 					    -(BPF_MEMWORDS - fp->k) * 4);
547 			break;
548 
549 		/* A = K or X = K */
550 		case BPF_LD | BPF_IMM:
551 		case BPF_LDX | BPF_IMM:
552 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
553 					      BPF_REG_A : BPF_REG_X, fp->k);
554 			break;
555 
556 		/* X = A */
557 		case BPF_MISC | BPF_TAX:
558 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
559 			break;
560 
561 		/* A = X */
562 		case BPF_MISC | BPF_TXA:
563 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
564 			break;
565 
566 		/* A = skb->len or X = skb->len */
567 		case BPF_LD | BPF_W | BPF_LEN:
568 		case BPF_LDX | BPF_W | BPF_LEN:
569 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
570 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
571 					    offsetof(struct sk_buff, len));
572 			break;
573 
574 		/* Access seccomp_data fields. */
575 		case BPF_LDX | BPF_ABS | BPF_W:
576 			/* A = *(u32 *) (ctx + K) */
577 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
578 			break;
579 
580 		/* Unknown instruction. */
581 		default:
582 			goto err;
583 		}
584 
585 		insn++;
586 		if (new_prog)
587 			memcpy(new_insn, tmp_insns,
588 			       sizeof(*insn) * (insn - tmp_insns));
589 		new_insn += insn - tmp_insns;
590 	}
591 
592 	if (!new_prog) {
593 		/* Only calculating new length. */
594 		*new_len = new_insn - new_prog;
595 		return 0;
596 	}
597 
598 	pass++;
599 	if (new_flen != new_insn - new_prog) {
600 		new_flen = new_insn - new_prog;
601 		if (pass > 2)
602 			goto err;
603 		goto do_pass;
604 	}
605 
606 	kfree(addrs);
607 	BUG_ON(*new_len != new_flen);
608 	return 0;
609 err:
610 	kfree(addrs);
611 	return -EINVAL;
612 }
613 
614 /* Security:
615  *
616  * As we dont want to clear mem[] array for each packet going through
617  * __bpf_prog_run(), we check that filter loaded by user never try to read
618  * a cell if not previously written, and we check all branches to be sure
619  * a malicious user doesn't try to abuse us.
620  */
check_load_and_stores(const struct sock_filter * filter,int flen)621 static int check_load_and_stores(const struct sock_filter *filter, int flen)
622 {
623 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
624 	int pc, ret = 0;
625 
626 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
627 
628 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
629 	if (!masks)
630 		return -ENOMEM;
631 
632 	memset(masks, 0xff, flen * sizeof(*masks));
633 
634 	for (pc = 0; pc < flen; pc++) {
635 		memvalid &= masks[pc];
636 
637 		switch (filter[pc].code) {
638 		case BPF_ST:
639 		case BPF_STX:
640 			memvalid |= (1 << filter[pc].k);
641 			break;
642 		case BPF_LD | BPF_MEM:
643 		case BPF_LDX | BPF_MEM:
644 			if (!(memvalid & (1 << filter[pc].k))) {
645 				ret = -EINVAL;
646 				goto error;
647 			}
648 			break;
649 		case BPF_JMP | BPF_JA:
650 			/* A jump must set masks on target */
651 			masks[pc + 1 + filter[pc].k] &= memvalid;
652 			memvalid = ~0;
653 			break;
654 		case BPF_JMP | BPF_JEQ | BPF_K:
655 		case BPF_JMP | BPF_JEQ | BPF_X:
656 		case BPF_JMP | BPF_JGE | BPF_K:
657 		case BPF_JMP | BPF_JGE | BPF_X:
658 		case BPF_JMP | BPF_JGT | BPF_K:
659 		case BPF_JMP | BPF_JGT | BPF_X:
660 		case BPF_JMP | BPF_JSET | BPF_K:
661 		case BPF_JMP | BPF_JSET | BPF_X:
662 			/* A jump must set masks on targets */
663 			masks[pc + 1 + filter[pc].jt] &= memvalid;
664 			masks[pc + 1 + filter[pc].jf] &= memvalid;
665 			memvalid = ~0;
666 			break;
667 		}
668 	}
669 error:
670 	kfree(masks);
671 	return ret;
672 }
673 
chk_code_allowed(u16 code_to_probe)674 static bool chk_code_allowed(u16 code_to_probe)
675 {
676 	static const bool codes[] = {
677 		/* 32 bit ALU operations */
678 		[BPF_ALU | BPF_ADD | BPF_K] = true,
679 		[BPF_ALU | BPF_ADD | BPF_X] = true,
680 		[BPF_ALU | BPF_SUB | BPF_K] = true,
681 		[BPF_ALU | BPF_SUB | BPF_X] = true,
682 		[BPF_ALU | BPF_MUL | BPF_K] = true,
683 		[BPF_ALU | BPF_MUL | BPF_X] = true,
684 		[BPF_ALU | BPF_DIV | BPF_K] = true,
685 		[BPF_ALU | BPF_DIV | BPF_X] = true,
686 		[BPF_ALU | BPF_MOD | BPF_K] = true,
687 		[BPF_ALU | BPF_MOD | BPF_X] = true,
688 		[BPF_ALU | BPF_AND | BPF_K] = true,
689 		[BPF_ALU | BPF_AND | BPF_X] = true,
690 		[BPF_ALU | BPF_OR | BPF_K] = true,
691 		[BPF_ALU | BPF_OR | BPF_X] = true,
692 		[BPF_ALU | BPF_XOR | BPF_K] = true,
693 		[BPF_ALU | BPF_XOR | BPF_X] = true,
694 		[BPF_ALU | BPF_LSH | BPF_K] = true,
695 		[BPF_ALU | BPF_LSH | BPF_X] = true,
696 		[BPF_ALU | BPF_RSH | BPF_K] = true,
697 		[BPF_ALU | BPF_RSH | BPF_X] = true,
698 		[BPF_ALU | BPF_NEG] = true,
699 		/* Load instructions */
700 		[BPF_LD | BPF_W | BPF_ABS] = true,
701 		[BPF_LD | BPF_H | BPF_ABS] = true,
702 		[BPF_LD | BPF_B | BPF_ABS] = true,
703 		[BPF_LD | BPF_W | BPF_LEN] = true,
704 		[BPF_LD | BPF_W | BPF_IND] = true,
705 		[BPF_LD | BPF_H | BPF_IND] = true,
706 		[BPF_LD | BPF_B | BPF_IND] = true,
707 		[BPF_LD | BPF_IMM] = true,
708 		[BPF_LD | BPF_MEM] = true,
709 		[BPF_LDX | BPF_W | BPF_LEN] = true,
710 		[BPF_LDX | BPF_B | BPF_MSH] = true,
711 		[BPF_LDX | BPF_IMM] = true,
712 		[BPF_LDX | BPF_MEM] = true,
713 		/* Store instructions */
714 		[BPF_ST] = true,
715 		[BPF_STX] = true,
716 		/* Misc instructions */
717 		[BPF_MISC | BPF_TAX] = true,
718 		[BPF_MISC | BPF_TXA] = true,
719 		/* Return instructions */
720 		[BPF_RET | BPF_K] = true,
721 		[BPF_RET | BPF_A] = true,
722 		/* Jump instructions */
723 		[BPF_JMP | BPF_JA] = true,
724 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
725 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
726 		[BPF_JMP | BPF_JGE | BPF_K] = true,
727 		[BPF_JMP | BPF_JGE | BPF_X] = true,
728 		[BPF_JMP | BPF_JGT | BPF_K] = true,
729 		[BPF_JMP | BPF_JGT | BPF_X] = true,
730 		[BPF_JMP | BPF_JSET | BPF_K] = true,
731 		[BPF_JMP | BPF_JSET | BPF_X] = true,
732 	};
733 
734 	if (code_to_probe >= ARRAY_SIZE(codes))
735 		return false;
736 
737 	return codes[code_to_probe];
738 }
739 
740 /**
741  *	bpf_check_classic - verify socket filter code
742  *	@filter: filter to verify
743  *	@flen: length of filter
744  *
745  * Check the user's filter code. If we let some ugly
746  * filter code slip through kaboom! The filter must contain
747  * no references or jumps that are out of range, no illegal
748  * instructions, and must end with a RET instruction.
749  *
750  * All jumps are forward as they are not signed.
751  *
752  * Returns 0 if the rule set is legal or -EINVAL if not.
753  */
bpf_check_classic(const struct sock_filter * filter,unsigned int flen)754 int bpf_check_classic(const struct sock_filter *filter, unsigned int flen)
755 {
756 	bool anc_found;
757 	int pc;
758 
759 	if (flen == 0 || flen > BPF_MAXINSNS)
760 		return -EINVAL;
761 
762 	/* Check the filter code now */
763 	for (pc = 0; pc < flen; pc++) {
764 		const struct sock_filter *ftest = &filter[pc];
765 
766 		/* May we actually operate on this code? */
767 		if (!chk_code_allowed(ftest->code))
768 			return -EINVAL;
769 
770 		/* Some instructions need special checks */
771 		switch (ftest->code) {
772 		case BPF_ALU | BPF_DIV | BPF_K:
773 		case BPF_ALU | BPF_MOD | BPF_K:
774 			/* Check for division by zero */
775 			if (ftest->k == 0)
776 				return -EINVAL;
777 			break;
778 		case BPF_ALU | BPF_LSH | BPF_K:
779 		case BPF_ALU | BPF_RSH | BPF_K:
780 			if (ftest->k >= 32)
781 				return -EINVAL;
782 			break;
783 		case BPF_LD | BPF_MEM:
784 		case BPF_LDX | BPF_MEM:
785 		case BPF_ST:
786 		case BPF_STX:
787 			/* Check for invalid memory addresses */
788 			if (ftest->k >= BPF_MEMWORDS)
789 				return -EINVAL;
790 			break;
791 		case BPF_JMP | BPF_JA:
792 			/* Note, the large ftest->k might cause loops.
793 			 * Compare this with conditional jumps below,
794 			 * where offsets are limited. --ANK (981016)
795 			 */
796 			if (ftest->k >= (unsigned int)(flen - pc - 1))
797 				return -EINVAL;
798 			break;
799 		case BPF_JMP | BPF_JEQ | BPF_K:
800 		case BPF_JMP | BPF_JEQ | BPF_X:
801 		case BPF_JMP | BPF_JGE | BPF_K:
802 		case BPF_JMP | BPF_JGE | BPF_X:
803 		case BPF_JMP | BPF_JGT | BPF_K:
804 		case BPF_JMP | BPF_JGT | BPF_X:
805 		case BPF_JMP | BPF_JSET | BPF_K:
806 		case BPF_JMP | BPF_JSET | BPF_X:
807 			/* Both conditionals must be safe */
808 			if (pc + ftest->jt + 1 >= flen ||
809 			    pc + ftest->jf + 1 >= flen)
810 				return -EINVAL;
811 			break;
812 		case BPF_LD | BPF_W | BPF_ABS:
813 		case BPF_LD | BPF_H | BPF_ABS:
814 		case BPF_LD | BPF_B | BPF_ABS:
815 			anc_found = false;
816 			if (bpf_anc_helper(ftest) & BPF_ANC)
817 				anc_found = true;
818 			/* Ancillary operation unknown or unsupported */
819 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
820 				return -EINVAL;
821 		}
822 	}
823 
824 	/* Last instruction must be a RET code */
825 	switch (filter[flen - 1].code) {
826 	case BPF_RET | BPF_K:
827 	case BPF_RET | BPF_A:
828 		return check_load_and_stores(filter, flen);
829 	}
830 
831 	return -EINVAL;
832 }
833 EXPORT_SYMBOL(bpf_check_classic);
834 
bpf_prog_store_orig_filter(struct bpf_prog * fp,const struct sock_fprog * fprog)835 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
836 				      const struct sock_fprog *fprog)
837 {
838 	unsigned int fsize = bpf_classic_proglen(fprog);
839 	struct sock_fprog_kern *fkprog;
840 
841 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
842 	if (!fp->orig_prog)
843 		return -ENOMEM;
844 
845 	fkprog = fp->orig_prog;
846 	fkprog->len = fprog->len;
847 	fkprog->filter = kmemdup(fp->insns, fsize, GFP_KERNEL);
848 	if (!fkprog->filter) {
849 		kfree(fp->orig_prog);
850 		return -ENOMEM;
851 	}
852 
853 	return 0;
854 }
855 
bpf_release_orig_filter(struct bpf_prog * fp)856 static void bpf_release_orig_filter(struct bpf_prog *fp)
857 {
858 	struct sock_fprog_kern *fprog = fp->orig_prog;
859 
860 	if (fprog) {
861 		kfree(fprog->filter);
862 		kfree(fprog);
863 	}
864 }
865 
__bpf_prog_release(struct bpf_prog * prog)866 static void __bpf_prog_release(struct bpf_prog *prog)
867 {
868 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
869 		bpf_prog_put(prog);
870 	} else {
871 		bpf_release_orig_filter(prog);
872 		bpf_prog_free(prog);
873 	}
874 }
875 
__sk_filter_release(struct sk_filter * fp)876 static void __sk_filter_release(struct sk_filter *fp)
877 {
878 	__bpf_prog_release(fp->prog);
879 	kfree(fp);
880 }
881 
882 /**
883  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
884  *	@rcu: rcu_head that contains the sk_filter to free
885  */
sk_filter_release_rcu(struct rcu_head * rcu)886 static void sk_filter_release_rcu(struct rcu_head *rcu)
887 {
888 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
889 
890 	__sk_filter_release(fp);
891 }
892 
893 /**
894  *	sk_filter_release - release a socket filter
895  *	@fp: filter to remove
896  *
897  *	Remove a filter from a socket and release its resources.
898  */
sk_filter_release(struct sk_filter * fp)899 static void sk_filter_release(struct sk_filter *fp)
900 {
901 	if (atomic_dec_and_test(&fp->refcnt))
902 		call_rcu(&fp->rcu, sk_filter_release_rcu);
903 }
904 
sk_filter_uncharge(struct sock * sk,struct sk_filter * fp)905 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
906 {
907 	u32 filter_size = bpf_prog_size(fp->prog->len);
908 
909 	atomic_sub(filter_size, &sk->sk_omem_alloc);
910 	sk_filter_release(fp);
911 }
912 
913 /* try to charge the socket memory if there is space available
914  * return true on success
915  */
sk_filter_charge(struct sock * sk,struct sk_filter * fp)916 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
917 {
918 	u32 filter_size = bpf_prog_size(fp->prog->len);
919 
920 	/* same check as in sock_kmalloc() */
921 	if (filter_size <= sysctl_optmem_max &&
922 	    atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
923 		atomic_inc(&fp->refcnt);
924 		atomic_add(filter_size, &sk->sk_omem_alloc);
925 		return true;
926 	}
927 	return false;
928 }
929 
bpf_migrate_filter(struct bpf_prog * fp)930 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
931 {
932 	struct sock_filter *old_prog;
933 	struct bpf_prog *old_fp;
934 	int err, new_len, old_len = fp->len;
935 
936 	/* We are free to overwrite insns et al right here as it
937 	 * won't be used at this point in time anymore internally
938 	 * after the migration to the internal BPF instruction
939 	 * representation.
940 	 */
941 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
942 		     sizeof(struct bpf_insn));
943 
944 	/* Conversion cannot happen on overlapping memory areas,
945 	 * so we need to keep the user BPF around until the 2nd
946 	 * pass. At this time, the user BPF is stored in fp->insns.
947 	 */
948 	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
949 			   GFP_KERNEL);
950 	if (!old_prog) {
951 		err = -ENOMEM;
952 		goto out_err;
953 	}
954 
955 	/* 1st pass: calculate the new program length. */
956 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len);
957 	if (err)
958 		goto out_err_free;
959 
960 	/* Expand fp for appending the new filter representation. */
961 	old_fp = fp;
962 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
963 	if (!fp) {
964 		/* The old_fp is still around in case we couldn't
965 		 * allocate new memory, so uncharge on that one.
966 		 */
967 		fp = old_fp;
968 		err = -ENOMEM;
969 		goto out_err_free;
970 	}
971 
972 	fp->len = new_len;
973 
974 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
975 	err = bpf_convert_filter(old_prog, old_len, fp->insnsi, &new_len);
976 	if (err)
977 		/* 2nd bpf_convert_filter() can fail only if it fails
978 		 * to allocate memory, remapping must succeed. Note,
979 		 * that at this time old_fp has already been released
980 		 * by krealloc().
981 		 */
982 		goto out_err_free;
983 
984 	bpf_prog_select_runtime(fp);
985 
986 	kfree(old_prog);
987 	return fp;
988 
989 out_err_free:
990 	kfree(old_prog);
991 out_err:
992 	__bpf_prog_release(fp);
993 	return ERR_PTR(err);
994 }
995 
bpf_prepare_filter(struct bpf_prog * fp)996 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp)
997 {
998 	int err;
999 
1000 	fp->bpf_func = NULL;
1001 	fp->jited = false;
1002 
1003 	err = bpf_check_classic(fp->insns, fp->len);
1004 	if (err) {
1005 		__bpf_prog_release(fp);
1006 		return ERR_PTR(err);
1007 	}
1008 
1009 	/* Probe if we can JIT compile the filter and if so, do
1010 	 * the compilation of the filter.
1011 	 */
1012 	bpf_jit_compile(fp);
1013 
1014 	/* JIT compiler couldn't process this filter, so do the
1015 	 * internal BPF translation for the optimized interpreter.
1016 	 */
1017 	if (!fp->jited)
1018 		fp = bpf_migrate_filter(fp);
1019 
1020 	return fp;
1021 }
1022 
1023 /**
1024  *	bpf_prog_create - create an unattached filter
1025  *	@pfp: the unattached filter that is created
1026  *	@fprog: the filter program
1027  *
1028  * Create a filter independent of any socket. We first run some
1029  * sanity checks on it to make sure it does not explode on us later.
1030  * If an error occurs or there is insufficient memory for the filter
1031  * a negative errno code is returned. On success the return is zero.
1032  */
bpf_prog_create(struct bpf_prog ** pfp,struct sock_fprog_kern * fprog)1033 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1034 {
1035 	unsigned int fsize = bpf_classic_proglen(fprog);
1036 	struct bpf_prog *fp;
1037 
1038 	/* Make sure new filter is there and in the right amounts. */
1039 	if (fprog->filter == NULL)
1040 		return -EINVAL;
1041 
1042 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1043 	if (!fp)
1044 		return -ENOMEM;
1045 
1046 	memcpy(fp->insns, fprog->filter, fsize);
1047 
1048 	fp->len = fprog->len;
1049 	/* Since unattached filters are not copied back to user
1050 	 * space through sk_get_filter(), we do not need to hold
1051 	 * a copy here, and can spare us the work.
1052 	 */
1053 	fp->orig_prog = NULL;
1054 
1055 	/* bpf_prepare_filter() already takes care of freeing
1056 	 * memory in case something goes wrong.
1057 	 */
1058 	fp = bpf_prepare_filter(fp);
1059 	if (IS_ERR(fp))
1060 		return PTR_ERR(fp);
1061 
1062 	*pfp = fp;
1063 	return 0;
1064 }
1065 EXPORT_SYMBOL_GPL(bpf_prog_create);
1066 
bpf_prog_destroy(struct bpf_prog * fp)1067 void bpf_prog_destroy(struct bpf_prog *fp)
1068 {
1069 	__bpf_prog_release(fp);
1070 }
1071 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1072 
__sk_attach_prog(struct bpf_prog * prog,struct sock * sk)1073 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1074 {
1075 	struct sk_filter *fp, *old_fp;
1076 
1077 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1078 	if (!fp)
1079 		return -ENOMEM;
1080 
1081 	fp->prog = prog;
1082 	atomic_set(&fp->refcnt, 0);
1083 
1084 	if (!sk_filter_charge(sk, fp)) {
1085 		kfree(fp);
1086 		return -ENOMEM;
1087 	}
1088 
1089 	old_fp = rcu_dereference_protected(sk->sk_filter,
1090 					   sock_owned_by_user(sk));
1091 	rcu_assign_pointer(sk->sk_filter, fp);
1092 
1093 	if (old_fp)
1094 		sk_filter_uncharge(sk, old_fp);
1095 
1096 	return 0;
1097 }
1098 
1099 /**
1100  *	sk_attach_filter - attach a socket filter
1101  *	@fprog: the filter program
1102  *	@sk: the socket to use
1103  *
1104  * Attach the user's filter code. We first run some sanity checks on
1105  * it to make sure it does not explode on us later. If an error
1106  * occurs or there is insufficient memory for the filter a negative
1107  * errno code is returned. On success the return is zero.
1108  */
sk_attach_filter(struct sock_fprog * fprog,struct sock * sk)1109 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1110 {
1111 	unsigned int fsize = bpf_classic_proglen(fprog);
1112 	unsigned int bpf_fsize = bpf_prog_size(fprog->len);
1113 	struct bpf_prog *prog;
1114 	int err;
1115 
1116 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1117 		return -EPERM;
1118 
1119 	/* Make sure new filter is there and in the right amounts. */
1120 	if (fprog->filter == NULL)
1121 		return -EINVAL;
1122 
1123 	prog = bpf_prog_alloc(bpf_fsize, 0);
1124 	if (!prog)
1125 		return -ENOMEM;
1126 
1127 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1128 		__bpf_prog_free(prog);
1129 		return -EFAULT;
1130 	}
1131 
1132 	prog->len = fprog->len;
1133 
1134 	err = bpf_prog_store_orig_filter(prog, fprog);
1135 	if (err) {
1136 		__bpf_prog_free(prog);
1137 		return -ENOMEM;
1138 	}
1139 
1140 	/* bpf_prepare_filter() already takes care of freeing
1141 	 * memory in case something goes wrong.
1142 	 */
1143 	prog = bpf_prepare_filter(prog);
1144 	if (IS_ERR(prog))
1145 		return PTR_ERR(prog);
1146 
1147 	err = __sk_attach_prog(prog, sk);
1148 	if (err < 0) {
1149 		__bpf_prog_release(prog);
1150 		return err;
1151 	}
1152 
1153 	return 0;
1154 }
1155 EXPORT_SYMBOL_GPL(sk_attach_filter);
1156 
sk_attach_bpf(u32 ufd,struct sock * sk)1157 int sk_attach_bpf(u32 ufd, struct sock *sk)
1158 {
1159 	struct bpf_prog *prog;
1160 	int err;
1161 
1162 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1163 		return -EPERM;
1164 
1165 	prog = bpf_prog_get(ufd);
1166 	if (IS_ERR(prog))
1167 		return PTR_ERR(prog);
1168 
1169 	if (prog->type != BPF_PROG_TYPE_SOCKET_FILTER) {
1170 		bpf_prog_put(prog);
1171 		return -EINVAL;
1172 	}
1173 
1174 	err = __sk_attach_prog(prog, sk);
1175 	if (err < 0) {
1176 		bpf_prog_put(prog);
1177 		return err;
1178 	}
1179 
1180 	return 0;
1181 }
1182 
1183 /**
1184  *	bpf_skb_clone_not_writable - is the header of a clone not writable
1185  *	@skb: buffer to check
1186  *	@len: length up to which to write, can be negative
1187  *
1188  *	Returns true if modifying the header part of the cloned buffer
1189  *	does require the data to be copied. I.e. this version works with
1190  *	negative lengths needed for eBPF case!
1191  */
bpf_skb_clone_unwritable(const struct sk_buff * skb,int len)1192 static bool bpf_skb_clone_unwritable(const struct sk_buff *skb, int len)
1193 {
1194 	return skb_header_cloned(skb) ||
1195 	       (int) skb_headroom(skb) + len > skb->hdr_len;
1196 }
1197 
1198 #define BPF_RECOMPUTE_CSUM(flags)	((flags) & 1)
1199 
bpf_skb_store_bytes(u64 r1,u64 r2,u64 r3,u64 r4,u64 flags)1200 static u64 bpf_skb_store_bytes(u64 r1, u64 r2, u64 r3, u64 r4, u64 flags)
1201 {
1202 	struct sk_buff *skb = (struct sk_buff *) (long) r1;
1203 	int offset = (int) r2;
1204 	void *from = (void *) (long) r3;
1205 	unsigned int len = (unsigned int) r4;
1206 	char buf[16];
1207 	void *ptr;
1208 
1209 	/* bpf verifier guarantees that:
1210 	 * 'from' pointer points to bpf program stack
1211 	 * 'len' bytes of it were initialized
1212 	 * 'len' > 0
1213 	 * 'skb' is a valid pointer to 'struct sk_buff'
1214 	 *
1215 	 * so check for invalid 'offset' and too large 'len'
1216 	 */
1217 	if (unlikely((u32) offset > 0xffff || len > sizeof(buf)))
1218 		return -EFAULT;
1219 
1220 	offset -= skb->data - skb_mac_header(skb);
1221 	if (unlikely(skb_cloned(skb) &&
1222 		     bpf_skb_clone_unwritable(skb, offset + len)))
1223 		return -EFAULT;
1224 
1225 	ptr = skb_header_pointer(skb, offset, len, buf);
1226 	if (unlikely(!ptr))
1227 		return -EFAULT;
1228 
1229 	if (BPF_RECOMPUTE_CSUM(flags))
1230 		skb_postpull_rcsum(skb, ptr, len);
1231 
1232 	memcpy(ptr, from, len);
1233 
1234 	if (ptr == buf)
1235 		/* skb_store_bits cannot return -EFAULT here */
1236 		skb_store_bits(skb, offset, ptr, len);
1237 
1238 	if (BPF_RECOMPUTE_CSUM(flags) && skb->ip_summed == CHECKSUM_COMPLETE)
1239 		skb->csum = csum_add(skb->csum, csum_partial(ptr, len, 0));
1240 	return 0;
1241 }
1242 
1243 const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1244 	.func		= bpf_skb_store_bytes,
1245 	.gpl_only	= false,
1246 	.ret_type	= RET_INTEGER,
1247 	.arg1_type	= ARG_PTR_TO_CTX,
1248 	.arg2_type	= ARG_ANYTHING,
1249 	.arg3_type	= ARG_PTR_TO_STACK,
1250 	.arg4_type	= ARG_CONST_STACK_SIZE,
1251 	.arg5_type	= ARG_ANYTHING,
1252 };
1253 
1254 #define BPF_HEADER_FIELD_SIZE(flags)	((flags) & 0x0f)
1255 #define BPF_IS_PSEUDO_HEADER(flags)	((flags) & 0x10)
1256 
bpf_l3_csum_replace(u64 r1,u64 r2,u64 from,u64 to,u64 flags)1257 static u64 bpf_l3_csum_replace(u64 r1, u64 r2, u64 from, u64 to, u64 flags)
1258 {
1259 	struct sk_buff *skb = (struct sk_buff *) (long) r1;
1260 	int offset = (int) r2;
1261 	__sum16 sum, *ptr;
1262 
1263 	if (unlikely((u32) offset > 0xffff))
1264 		return -EFAULT;
1265 
1266 	offset -= skb->data - skb_mac_header(skb);
1267 	if (unlikely(skb_cloned(skb) &&
1268 		     bpf_skb_clone_unwritable(skb, offset + sizeof(sum))))
1269 		return -EFAULT;
1270 
1271 	ptr = skb_header_pointer(skb, offset, sizeof(sum), &sum);
1272 	if (unlikely(!ptr))
1273 		return -EFAULT;
1274 
1275 	switch (BPF_HEADER_FIELD_SIZE(flags)) {
1276 	case 2:
1277 		csum_replace2(ptr, from, to);
1278 		break;
1279 	case 4:
1280 		csum_replace4(ptr, from, to);
1281 		break;
1282 	default:
1283 		return -EINVAL;
1284 	}
1285 
1286 	if (ptr == &sum)
1287 		/* skb_store_bits guaranteed to not return -EFAULT here */
1288 		skb_store_bits(skb, offset, ptr, sizeof(sum));
1289 
1290 	return 0;
1291 }
1292 
1293 const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1294 	.func		= bpf_l3_csum_replace,
1295 	.gpl_only	= false,
1296 	.ret_type	= RET_INTEGER,
1297 	.arg1_type	= ARG_PTR_TO_CTX,
1298 	.arg2_type	= ARG_ANYTHING,
1299 	.arg3_type	= ARG_ANYTHING,
1300 	.arg4_type	= ARG_ANYTHING,
1301 	.arg5_type	= ARG_ANYTHING,
1302 };
1303 
bpf_l4_csum_replace(u64 r1,u64 r2,u64 from,u64 to,u64 flags)1304 static u64 bpf_l4_csum_replace(u64 r1, u64 r2, u64 from, u64 to, u64 flags)
1305 {
1306 	struct sk_buff *skb = (struct sk_buff *) (long) r1;
1307 	u32 is_pseudo = BPF_IS_PSEUDO_HEADER(flags);
1308 	int offset = (int) r2;
1309 	__sum16 sum, *ptr;
1310 
1311 	if (unlikely((u32) offset > 0xffff))
1312 		return -EFAULT;
1313 
1314 	offset -= skb->data - skb_mac_header(skb);
1315 	if (unlikely(skb_cloned(skb) &&
1316 		     bpf_skb_clone_unwritable(skb, offset + sizeof(sum))))
1317 		return -EFAULT;
1318 
1319 	ptr = skb_header_pointer(skb, offset, sizeof(sum), &sum);
1320 	if (unlikely(!ptr))
1321 		return -EFAULT;
1322 
1323 	switch (BPF_HEADER_FIELD_SIZE(flags)) {
1324 	case 2:
1325 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1326 		break;
1327 	case 4:
1328 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1329 		break;
1330 	default:
1331 		return -EINVAL;
1332 	}
1333 
1334 	if (ptr == &sum)
1335 		/* skb_store_bits guaranteed to not return -EFAULT here */
1336 		skb_store_bits(skb, offset, ptr, sizeof(sum));
1337 
1338 	return 0;
1339 }
1340 
1341 const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1342 	.func		= bpf_l4_csum_replace,
1343 	.gpl_only	= false,
1344 	.ret_type	= RET_INTEGER,
1345 	.arg1_type	= ARG_PTR_TO_CTX,
1346 	.arg2_type	= ARG_ANYTHING,
1347 	.arg3_type	= ARG_ANYTHING,
1348 	.arg4_type	= ARG_ANYTHING,
1349 	.arg5_type	= ARG_ANYTHING,
1350 };
1351 
1352 static const struct bpf_func_proto *
sk_filter_func_proto(enum bpf_func_id func_id)1353 sk_filter_func_proto(enum bpf_func_id func_id)
1354 {
1355 	switch (func_id) {
1356 	case BPF_FUNC_map_lookup_elem:
1357 		return &bpf_map_lookup_elem_proto;
1358 	case BPF_FUNC_map_update_elem:
1359 		return &bpf_map_update_elem_proto;
1360 	case BPF_FUNC_map_delete_elem:
1361 		return &bpf_map_delete_elem_proto;
1362 	case BPF_FUNC_get_prandom_u32:
1363 		return &bpf_get_prandom_u32_proto;
1364 	case BPF_FUNC_get_smp_processor_id:
1365 		return &bpf_get_smp_processor_id_proto;
1366 	default:
1367 		return NULL;
1368 	}
1369 }
1370 
1371 static const struct bpf_func_proto *
tc_cls_act_func_proto(enum bpf_func_id func_id)1372 tc_cls_act_func_proto(enum bpf_func_id func_id)
1373 {
1374 	switch (func_id) {
1375 	case BPF_FUNC_skb_store_bytes:
1376 		return &bpf_skb_store_bytes_proto;
1377 	case BPF_FUNC_l3_csum_replace:
1378 		return &bpf_l3_csum_replace_proto;
1379 	case BPF_FUNC_l4_csum_replace:
1380 		return &bpf_l4_csum_replace_proto;
1381 	default:
1382 		return sk_filter_func_proto(func_id);
1383 	}
1384 }
1385 
sk_filter_is_valid_access(int off,int size,enum bpf_access_type type)1386 static bool sk_filter_is_valid_access(int off, int size,
1387 				      enum bpf_access_type type)
1388 {
1389 	/* only read is allowed */
1390 	if (type != BPF_READ)
1391 		return false;
1392 
1393 	/* check bounds */
1394 	if (off < 0 || off >= sizeof(struct __sk_buff))
1395 		return false;
1396 
1397 	/* disallow misaligned access */
1398 	if (off % size != 0)
1399 		return false;
1400 
1401 	/* all __sk_buff fields are __u32 */
1402 	if (size != 4)
1403 		return false;
1404 
1405 	return true;
1406 }
1407 
sk_filter_convert_ctx_access(int dst_reg,int src_reg,int ctx_off,struct bpf_insn * insn_buf)1408 static u32 sk_filter_convert_ctx_access(int dst_reg, int src_reg, int ctx_off,
1409 					struct bpf_insn *insn_buf)
1410 {
1411 	struct bpf_insn *insn = insn_buf;
1412 
1413 	switch (ctx_off) {
1414 	case offsetof(struct __sk_buff, len):
1415 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
1416 
1417 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
1418 				      offsetof(struct sk_buff, len));
1419 		break;
1420 
1421 	case offsetof(struct __sk_buff, protocol):
1422 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
1423 
1424 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
1425 				      offsetof(struct sk_buff, protocol));
1426 		break;
1427 
1428 	case offsetof(struct __sk_buff, vlan_proto):
1429 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);
1430 
1431 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
1432 				      offsetof(struct sk_buff, vlan_proto));
1433 		break;
1434 
1435 	case offsetof(struct __sk_buff, priority):
1436 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, priority) != 4);
1437 
1438 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
1439 				      offsetof(struct sk_buff, priority));
1440 		break;
1441 
1442 	case offsetof(struct __sk_buff, mark):
1443 		return convert_skb_access(SKF_AD_MARK, dst_reg, src_reg, insn);
1444 
1445 	case offsetof(struct __sk_buff, pkt_type):
1446 		return convert_skb_access(SKF_AD_PKTTYPE, dst_reg, src_reg, insn);
1447 
1448 	case offsetof(struct __sk_buff, queue_mapping):
1449 		return convert_skb_access(SKF_AD_QUEUE, dst_reg, src_reg, insn);
1450 
1451 	case offsetof(struct __sk_buff, vlan_present):
1452 		return convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
1453 					  dst_reg, src_reg, insn);
1454 
1455 	case offsetof(struct __sk_buff, vlan_tci):
1456 		return convert_skb_access(SKF_AD_VLAN_TAG,
1457 					  dst_reg, src_reg, insn);
1458 	}
1459 
1460 	return insn - insn_buf;
1461 }
1462 
1463 static const struct bpf_verifier_ops sk_filter_ops = {
1464 	.get_func_proto = sk_filter_func_proto,
1465 	.is_valid_access = sk_filter_is_valid_access,
1466 	.convert_ctx_access = sk_filter_convert_ctx_access,
1467 };
1468 
1469 static const struct bpf_verifier_ops tc_cls_act_ops = {
1470 	.get_func_proto = tc_cls_act_func_proto,
1471 	.is_valid_access = sk_filter_is_valid_access,
1472 	.convert_ctx_access = sk_filter_convert_ctx_access,
1473 };
1474 
1475 static struct bpf_prog_type_list sk_filter_type __read_mostly = {
1476 	.ops = &sk_filter_ops,
1477 	.type = BPF_PROG_TYPE_SOCKET_FILTER,
1478 };
1479 
1480 static struct bpf_prog_type_list sched_cls_type __read_mostly = {
1481 	.ops = &tc_cls_act_ops,
1482 	.type = BPF_PROG_TYPE_SCHED_CLS,
1483 };
1484 
1485 static struct bpf_prog_type_list sched_act_type __read_mostly = {
1486 	.ops = &tc_cls_act_ops,
1487 	.type = BPF_PROG_TYPE_SCHED_ACT,
1488 };
1489 
register_sk_filter_ops(void)1490 static int __init register_sk_filter_ops(void)
1491 {
1492 	bpf_register_prog_type(&sk_filter_type);
1493 	bpf_register_prog_type(&sched_cls_type);
1494 	bpf_register_prog_type(&sched_act_type);
1495 
1496 	return 0;
1497 }
1498 late_initcall(register_sk_filter_ops);
1499 
sk_detach_filter(struct sock * sk)1500 int sk_detach_filter(struct sock *sk)
1501 {
1502 	int ret = -ENOENT;
1503 	struct sk_filter *filter;
1504 
1505 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1506 		return -EPERM;
1507 
1508 	filter = rcu_dereference_protected(sk->sk_filter,
1509 					   sock_owned_by_user(sk));
1510 	if (filter) {
1511 		RCU_INIT_POINTER(sk->sk_filter, NULL);
1512 		sk_filter_uncharge(sk, filter);
1513 		ret = 0;
1514 	}
1515 
1516 	return ret;
1517 }
1518 EXPORT_SYMBOL_GPL(sk_detach_filter);
1519 
sk_get_filter(struct sock * sk,struct sock_filter __user * ubuf,unsigned int len)1520 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
1521 		  unsigned int len)
1522 {
1523 	struct sock_fprog_kern *fprog;
1524 	struct sk_filter *filter;
1525 	int ret = 0;
1526 
1527 	lock_sock(sk);
1528 	filter = rcu_dereference_protected(sk->sk_filter,
1529 					   sock_owned_by_user(sk));
1530 	if (!filter)
1531 		goto out;
1532 
1533 	/* We're copying the filter that has been originally attached,
1534 	 * so no conversion/decode needed anymore. eBPF programs that
1535 	 * have no original program cannot be dumped through this.
1536 	 */
1537 	ret = -EACCES;
1538 	fprog = filter->prog->orig_prog;
1539 	if (!fprog)
1540 		goto out;
1541 
1542 	ret = fprog->len;
1543 	if (!len)
1544 		/* User space only enquires number of filter blocks. */
1545 		goto out;
1546 
1547 	ret = -EINVAL;
1548 	if (len < fprog->len)
1549 		goto out;
1550 
1551 	ret = -EFAULT;
1552 	if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
1553 		goto out;
1554 
1555 	/* Instead of bytes, the API requests to return the number
1556 	 * of filter blocks.
1557 	 */
1558 	ret = fprog->len;
1559 out:
1560 	release_sock(sk);
1561 	return ret;
1562 }
1563