1 /*
2  *  linux/fs/block_dev.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *  Copyright (C) 2001  Andrea Arcangeli <andrea@suse.de> SuSE
6  */
7 
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/module.h>
18 #include <linux/blkpg.h>
19 #include <linux/magic.h>
20 #include <linux/buffer_head.h>
21 #include <linux/swap.h>
22 #include <linux/pagevec.h>
23 #include <linux/writeback.h>
24 #include <linux/mpage.h>
25 #include <linux/mount.h>
26 #include <linux/uio.h>
27 #include <linux/namei.h>
28 #include <linux/log2.h>
29 #include <linux/cleancache.h>
30 #include <asm/uaccess.h>
31 #include "internal.h"
32 
33 struct bdev_inode {
34 	struct block_device bdev;
35 	struct inode vfs_inode;
36 };
37 
38 static const struct address_space_operations def_blk_aops;
39 
BDEV_I(struct inode * inode)40 static inline struct bdev_inode *BDEV_I(struct inode *inode)
41 {
42 	return container_of(inode, struct bdev_inode, vfs_inode);
43 }
44 
I_BDEV(struct inode * inode)45 inline struct block_device *I_BDEV(struct inode *inode)
46 {
47 	return &BDEV_I(inode)->bdev;
48 }
49 EXPORT_SYMBOL(I_BDEV);
50 
bdev_write_inode(struct inode * inode)51 static void bdev_write_inode(struct inode *inode)
52 {
53 	spin_lock(&inode->i_lock);
54 	while (inode->i_state & I_DIRTY) {
55 		spin_unlock(&inode->i_lock);
56 		WARN_ON_ONCE(write_inode_now(inode, true));
57 		spin_lock(&inode->i_lock);
58 	}
59 	spin_unlock(&inode->i_lock);
60 }
61 
62 /* Kill _all_ buffers and pagecache , dirty or not.. */
kill_bdev(struct block_device * bdev)63 void kill_bdev(struct block_device *bdev)
64 {
65 	struct address_space *mapping = bdev->bd_inode->i_mapping;
66 
67 	if (mapping->nrpages == 0 && mapping->nrshadows == 0)
68 		return;
69 
70 	invalidate_bh_lrus();
71 	truncate_inode_pages(mapping, 0);
72 }
73 EXPORT_SYMBOL(kill_bdev);
74 
75 /* Invalidate clean unused buffers and pagecache. */
invalidate_bdev(struct block_device * bdev)76 void invalidate_bdev(struct block_device *bdev)
77 {
78 	struct address_space *mapping = bdev->bd_inode->i_mapping;
79 
80 	if (mapping->nrpages == 0)
81 		return;
82 
83 	invalidate_bh_lrus();
84 	lru_add_drain_all();	/* make sure all lru add caches are flushed */
85 	invalidate_mapping_pages(mapping, 0, -1);
86 	/* 99% of the time, we don't need to flush the cleancache on the bdev.
87 	 * But, for the strange corners, lets be cautious
88 	 */
89 	cleancache_invalidate_inode(mapping);
90 }
91 EXPORT_SYMBOL(invalidate_bdev);
92 
set_blocksize(struct block_device * bdev,int size)93 int set_blocksize(struct block_device *bdev, int size)
94 {
95 	/* Size must be a power of two, and between 512 and PAGE_SIZE */
96 	if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
97 		return -EINVAL;
98 
99 	/* Size cannot be smaller than the size supported by the device */
100 	if (size < bdev_logical_block_size(bdev))
101 		return -EINVAL;
102 
103 	/* Don't change the size if it is same as current */
104 	if (bdev->bd_block_size != size) {
105 		sync_blockdev(bdev);
106 		bdev->bd_block_size = size;
107 		bdev->bd_inode->i_blkbits = blksize_bits(size);
108 		kill_bdev(bdev);
109 	}
110 	return 0;
111 }
112 
113 EXPORT_SYMBOL(set_blocksize);
114 
sb_set_blocksize(struct super_block * sb,int size)115 int sb_set_blocksize(struct super_block *sb, int size)
116 {
117 	if (set_blocksize(sb->s_bdev, size))
118 		return 0;
119 	/* If we get here, we know size is power of two
120 	 * and it's value is between 512 and PAGE_SIZE */
121 	sb->s_blocksize = size;
122 	sb->s_blocksize_bits = blksize_bits(size);
123 	return sb->s_blocksize;
124 }
125 
126 EXPORT_SYMBOL(sb_set_blocksize);
127 
sb_min_blocksize(struct super_block * sb,int size)128 int sb_min_blocksize(struct super_block *sb, int size)
129 {
130 	int minsize = bdev_logical_block_size(sb->s_bdev);
131 	if (size < minsize)
132 		size = minsize;
133 	return sb_set_blocksize(sb, size);
134 }
135 
136 EXPORT_SYMBOL(sb_min_blocksize);
137 
138 static int
blkdev_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)139 blkdev_get_block(struct inode *inode, sector_t iblock,
140 		struct buffer_head *bh, int create)
141 {
142 	bh->b_bdev = I_BDEV(inode);
143 	bh->b_blocknr = iblock;
144 	set_buffer_mapped(bh);
145 	return 0;
146 }
147 
148 static ssize_t
blkdev_direct_IO(struct kiocb * iocb,struct iov_iter * iter,loff_t offset)149 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, loff_t offset)
150 {
151 	struct file *file = iocb->ki_filp;
152 	struct inode *inode = file->f_mapping->host;
153 
154 	return __blockdev_direct_IO(iocb, inode, I_BDEV(inode), iter, offset,
155 				    blkdev_get_block, NULL, NULL,
156 				    DIO_SKIP_DIO_COUNT);
157 }
158 
__sync_blockdev(struct block_device * bdev,int wait)159 int __sync_blockdev(struct block_device *bdev, int wait)
160 {
161 	if (!bdev)
162 		return 0;
163 	if (!wait)
164 		return filemap_flush(bdev->bd_inode->i_mapping);
165 	return filemap_write_and_wait(bdev->bd_inode->i_mapping);
166 }
167 
168 /*
169  * Write out and wait upon all the dirty data associated with a block
170  * device via its mapping.  Does not take the superblock lock.
171  */
sync_blockdev(struct block_device * bdev)172 int sync_blockdev(struct block_device *bdev)
173 {
174 	return __sync_blockdev(bdev, 1);
175 }
176 EXPORT_SYMBOL(sync_blockdev);
177 
178 /*
179  * Write out and wait upon all dirty data associated with this
180  * device.   Filesystem data as well as the underlying block
181  * device.  Takes the superblock lock.
182  */
fsync_bdev(struct block_device * bdev)183 int fsync_bdev(struct block_device *bdev)
184 {
185 	struct super_block *sb = get_super(bdev);
186 	if (sb) {
187 		int res = sync_filesystem(sb);
188 		drop_super(sb);
189 		return res;
190 	}
191 	return sync_blockdev(bdev);
192 }
193 EXPORT_SYMBOL(fsync_bdev);
194 
195 /**
196  * freeze_bdev  --  lock a filesystem and force it into a consistent state
197  * @bdev:	blockdevice to lock
198  *
199  * If a superblock is found on this device, we take the s_umount semaphore
200  * on it to make sure nobody unmounts until the snapshot creation is done.
201  * The reference counter (bd_fsfreeze_count) guarantees that only the last
202  * unfreeze process can unfreeze the frozen filesystem actually when multiple
203  * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
204  * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
205  * actually.
206  */
freeze_bdev(struct block_device * bdev)207 struct super_block *freeze_bdev(struct block_device *bdev)
208 {
209 	struct super_block *sb;
210 	int error = 0;
211 
212 	mutex_lock(&bdev->bd_fsfreeze_mutex);
213 	if (++bdev->bd_fsfreeze_count > 1) {
214 		/*
215 		 * We don't even need to grab a reference - the first call
216 		 * to freeze_bdev grab an active reference and only the last
217 		 * thaw_bdev drops it.
218 		 */
219 		sb = get_super(bdev);
220 		drop_super(sb);
221 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
222 		return sb;
223 	}
224 
225 	sb = get_active_super(bdev);
226 	if (!sb)
227 		goto out;
228 	if (sb->s_op->freeze_super)
229 		error = sb->s_op->freeze_super(sb);
230 	else
231 		error = freeze_super(sb);
232 	if (error) {
233 		deactivate_super(sb);
234 		bdev->bd_fsfreeze_count--;
235 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
236 		return ERR_PTR(error);
237 	}
238 	deactivate_super(sb);
239  out:
240 	sync_blockdev(bdev);
241 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
242 	return sb;	/* thaw_bdev releases s->s_umount */
243 }
244 EXPORT_SYMBOL(freeze_bdev);
245 
246 /**
247  * thaw_bdev  -- unlock filesystem
248  * @bdev:	blockdevice to unlock
249  * @sb:		associated superblock
250  *
251  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
252  */
thaw_bdev(struct block_device * bdev,struct super_block * sb)253 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
254 {
255 	int error = -EINVAL;
256 
257 	mutex_lock(&bdev->bd_fsfreeze_mutex);
258 	if (!bdev->bd_fsfreeze_count)
259 		goto out;
260 
261 	error = 0;
262 	if (--bdev->bd_fsfreeze_count > 0)
263 		goto out;
264 
265 	if (!sb)
266 		goto out;
267 
268 	if (sb->s_op->thaw_super)
269 		error = sb->s_op->thaw_super(sb);
270 	else
271 		error = thaw_super(sb);
272 	if (error) {
273 		bdev->bd_fsfreeze_count++;
274 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
275 		return error;
276 	}
277 out:
278 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
279 	return 0;
280 }
281 EXPORT_SYMBOL(thaw_bdev);
282 
blkdev_writepage(struct page * page,struct writeback_control * wbc)283 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
284 {
285 	return block_write_full_page(page, blkdev_get_block, wbc);
286 }
287 
blkdev_readpage(struct file * file,struct page * page)288 static int blkdev_readpage(struct file * file, struct page * page)
289 {
290 	return block_read_full_page(page, blkdev_get_block);
291 }
292 
blkdev_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)293 static int blkdev_readpages(struct file *file, struct address_space *mapping,
294 			struct list_head *pages, unsigned nr_pages)
295 {
296 	return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
297 }
298 
blkdev_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)299 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
300 			loff_t pos, unsigned len, unsigned flags,
301 			struct page **pagep, void **fsdata)
302 {
303 	return block_write_begin(mapping, pos, len, flags, pagep,
304 				 blkdev_get_block);
305 }
306 
blkdev_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)307 static int blkdev_write_end(struct file *file, struct address_space *mapping,
308 			loff_t pos, unsigned len, unsigned copied,
309 			struct page *page, void *fsdata)
310 {
311 	int ret;
312 	ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
313 
314 	unlock_page(page);
315 	page_cache_release(page);
316 
317 	return ret;
318 }
319 
320 /*
321  * private llseek:
322  * for a block special file file_inode(file)->i_size is zero
323  * so we compute the size by hand (just as in block_read/write above)
324  */
block_llseek(struct file * file,loff_t offset,int whence)325 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
326 {
327 	struct inode *bd_inode = file->f_mapping->host;
328 	loff_t retval;
329 
330 	mutex_lock(&bd_inode->i_mutex);
331 	retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
332 	mutex_unlock(&bd_inode->i_mutex);
333 	return retval;
334 }
335 
blkdev_fsync(struct file * filp,loff_t start,loff_t end,int datasync)336 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
337 {
338 	struct inode *bd_inode = filp->f_mapping->host;
339 	struct block_device *bdev = I_BDEV(bd_inode);
340 	int error;
341 
342 	error = filemap_write_and_wait_range(filp->f_mapping, start, end);
343 	if (error)
344 		return error;
345 
346 	/*
347 	 * There is no need to serialise calls to blkdev_issue_flush with
348 	 * i_mutex and doing so causes performance issues with concurrent
349 	 * O_SYNC writers to a block device.
350 	 */
351 	error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
352 	if (error == -EOPNOTSUPP)
353 		error = 0;
354 
355 	return error;
356 }
357 EXPORT_SYMBOL(blkdev_fsync);
358 
359 /**
360  * bdev_read_page() - Start reading a page from a block device
361  * @bdev: The device to read the page from
362  * @sector: The offset on the device to read the page to (need not be aligned)
363  * @page: The page to read
364  *
365  * On entry, the page should be locked.  It will be unlocked when the page
366  * has been read.  If the block driver implements rw_page synchronously,
367  * that will be true on exit from this function, but it need not be.
368  *
369  * Errors returned by this function are usually "soft", eg out of memory, or
370  * queue full; callers should try a different route to read this page rather
371  * than propagate an error back up the stack.
372  *
373  * Return: negative errno if an error occurs, 0 if submission was successful.
374  */
bdev_read_page(struct block_device * bdev,sector_t sector,struct page * page)375 int bdev_read_page(struct block_device *bdev, sector_t sector,
376 			struct page *page)
377 {
378 	const struct block_device_operations *ops = bdev->bd_disk->fops;
379 	if (!ops->rw_page)
380 		return -EOPNOTSUPP;
381 	return ops->rw_page(bdev, sector + get_start_sect(bdev), page, READ);
382 }
383 EXPORT_SYMBOL_GPL(bdev_read_page);
384 
385 /**
386  * bdev_write_page() - Start writing a page to a block device
387  * @bdev: The device to write the page to
388  * @sector: The offset on the device to write the page to (need not be aligned)
389  * @page: The page to write
390  * @wbc: The writeback_control for the write
391  *
392  * On entry, the page should be locked and not currently under writeback.
393  * On exit, if the write started successfully, the page will be unlocked and
394  * under writeback.  If the write failed already (eg the driver failed to
395  * queue the page to the device), the page will still be locked.  If the
396  * caller is a ->writepage implementation, it will need to unlock the page.
397  *
398  * Errors returned by this function are usually "soft", eg out of memory, or
399  * queue full; callers should try a different route to write this page rather
400  * than propagate an error back up the stack.
401  *
402  * Return: negative errno if an error occurs, 0 if submission was successful.
403  */
bdev_write_page(struct block_device * bdev,sector_t sector,struct page * page,struct writeback_control * wbc)404 int bdev_write_page(struct block_device *bdev, sector_t sector,
405 			struct page *page, struct writeback_control *wbc)
406 {
407 	int result;
408 	int rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE;
409 	const struct block_device_operations *ops = bdev->bd_disk->fops;
410 	if (!ops->rw_page)
411 		return -EOPNOTSUPP;
412 	set_page_writeback(page);
413 	result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, rw);
414 	if (result)
415 		end_page_writeback(page);
416 	else
417 		unlock_page(page);
418 	return result;
419 }
420 EXPORT_SYMBOL_GPL(bdev_write_page);
421 
422 /**
423  * bdev_direct_access() - Get the address for directly-accessibly memory
424  * @bdev: The device containing the memory
425  * @sector: The offset within the device
426  * @addr: Where to put the address of the memory
427  * @pfn: The Page Frame Number for the memory
428  * @size: The number of bytes requested
429  *
430  * If a block device is made up of directly addressable memory, this function
431  * will tell the caller the PFN and the address of the memory.  The address
432  * may be directly dereferenced within the kernel without the need to call
433  * ioremap(), kmap() or similar.  The PFN is suitable for inserting into
434  * page tables.
435  *
436  * Return: negative errno if an error occurs, otherwise the number of bytes
437  * accessible at this address.
438  */
bdev_direct_access(struct block_device * bdev,sector_t sector,void ** addr,unsigned long * pfn,long size)439 long bdev_direct_access(struct block_device *bdev, sector_t sector,
440 			void **addr, unsigned long *pfn, long size)
441 {
442 	long avail;
443 	const struct block_device_operations *ops = bdev->bd_disk->fops;
444 
445 	if (size < 0)
446 		return size;
447 	if (!ops->direct_access)
448 		return -EOPNOTSUPP;
449 	if ((sector + DIV_ROUND_UP(size, 512)) >
450 					part_nr_sects_read(bdev->bd_part))
451 		return -ERANGE;
452 	sector += get_start_sect(bdev);
453 	if (sector % (PAGE_SIZE / 512))
454 		return -EINVAL;
455 	avail = ops->direct_access(bdev, sector, addr, pfn, size);
456 	if (!avail)
457 		return -ERANGE;
458 	return min(avail, size);
459 }
460 EXPORT_SYMBOL_GPL(bdev_direct_access);
461 
462 /*
463  * pseudo-fs
464  */
465 
466 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
467 static struct kmem_cache * bdev_cachep __read_mostly;
468 
bdev_alloc_inode(struct super_block * sb)469 static struct inode *bdev_alloc_inode(struct super_block *sb)
470 {
471 	struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
472 	if (!ei)
473 		return NULL;
474 	return &ei->vfs_inode;
475 }
476 
bdev_i_callback(struct rcu_head * head)477 static void bdev_i_callback(struct rcu_head *head)
478 {
479 	struct inode *inode = container_of(head, struct inode, i_rcu);
480 	struct bdev_inode *bdi = BDEV_I(inode);
481 
482 	kmem_cache_free(bdev_cachep, bdi);
483 }
484 
bdev_destroy_inode(struct inode * inode)485 static void bdev_destroy_inode(struct inode *inode)
486 {
487 	call_rcu(&inode->i_rcu, bdev_i_callback);
488 }
489 
init_once(void * foo)490 static void init_once(void *foo)
491 {
492 	struct bdev_inode *ei = (struct bdev_inode *) foo;
493 	struct block_device *bdev = &ei->bdev;
494 
495 	memset(bdev, 0, sizeof(*bdev));
496 	mutex_init(&bdev->bd_mutex);
497 	INIT_LIST_HEAD(&bdev->bd_inodes);
498 	INIT_LIST_HEAD(&bdev->bd_list);
499 #ifdef CONFIG_SYSFS
500 	INIT_LIST_HEAD(&bdev->bd_holder_disks);
501 #endif
502 	inode_init_once(&ei->vfs_inode);
503 	/* Initialize mutex for freeze. */
504 	mutex_init(&bdev->bd_fsfreeze_mutex);
505 }
506 
__bd_forget(struct inode * inode)507 static inline void __bd_forget(struct inode *inode)
508 {
509 	list_del_init(&inode->i_devices);
510 	inode->i_bdev = NULL;
511 	inode->i_mapping = &inode->i_data;
512 }
513 
bdev_evict_inode(struct inode * inode)514 static void bdev_evict_inode(struct inode *inode)
515 {
516 	struct block_device *bdev = &BDEV_I(inode)->bdev;
517 	struct list_head *p;
518 	truncate_inode_pages_final(&inode->i_data);
519 	invalidate_inode_buffers(inode); /* is it needed here? */
520 	clear_inode(inode);
521 	spin_lock(&bdev_lock);
522 	while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) {
523 		__bd_forget(list_entry(p, struct inode, i_devices));
524 	}
525 	list_del_init(&bdev->bd_list);
526 	spin_unlock(&bdev_lock);
527 }
528 
529 static const struct super_operations bdev_sops = {
530 	.statfs = simple_statfs,
531 	.alloc_inode = bdev_alloc_inode,
532 	.destroy_inode = bdev_destroy_inode,
533 	.drop_inode = generic_delete_inode,
534 	.evict_inode = bdev_evict_inode,
535 };
536 
bd_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)537 static struct dentry *bd_mount(struct file_system_type *fs_type,
538 	int flags, const char *dev_name, void *data)
539 {
540 	return mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
541 }
542 
543 static struct file_system_type bd_type = {
544 	.name		= "bdev",
545 	.mount		= bd_mount,
546 	.kill_sb	= kill_anon_super,
547 };
548 
549 static struct super_block *blockdev_superblock __read_mostly;
550 
bdev_cache_init(void)551 void __init bdev_cache_init(void)
552 {
553 	int err;
554 	static struct vfsmount *bd_mnt;
555 
556 	bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
557 			0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
558 				SLAB_MEM_SPREAD|SLAB_PANIC),
559 			init_once);
560 	err = register_filesystem(&bd_type);
561 	if (err)
562 		panic("Cannot register bdev pseudo-fs");
563 	bd_mnt = kern_mount(&bd_type);
564 	if (IS_ERR(bd_mnt))
565 		panic("Cannot create bdev pseudo-fs");
566 	blockdev_superblock = bd_mnt->mnt_sb;   /* For writeback */
567 }
568 
569 /*
570  * Most likely _very_ bad one - but then it's hardly critical for small
571  * /dev and can be fixed when somebody will need really large one.
572  * Keep in mind that it will be fed through icache hash function too.
573  */
hash(dev_t dev)574 static inline unsigned long hash(dev_t dev)
575 {
576 	return MAJOR(dev)+MINOR(dev);
577 }
578 
bdev_test(struct inode * inode,void * data)579 static int bdev_test(struct inode *inode, void *data)
580 {
581 	return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
582 }
583 
bdev_set(struct inode * inode,void * data)584 static int bdev_set(struct inode *inode, void *data)
585 {
586 	BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
587 	return 0;
588 }
589 
590 static LIST_HEAD(all_bdevs);
591 
bdget(dev_t dev)592 struct block_device *bdget(dev_t dev)
593 {
594 	struct block_device *bdev;
595 	struct inode *inode;
596 
597 	inode = iget5_locked(blockdev_superblock, hash(dev),
598 			bdev_test, bdev_set, &dev);
599 
600 	if (!inode)
601 		return NULL;
602 
603 	bdev = &BDEV_I(inode)->bdev;
604 
605 	if (inode->i_state & I_NEW) {
606 		bdev->bd_contains = NULL;
607 		bdev->bd_super = NULL;
608 		bdev->bd_inode = inode;
609 		bdev->bd_block_size = (1 << inode->i_blkbits);
610 		bdev->bd_part_count = 0;
611 		bdev->bd_invalidated = 0;
612 		inode->i_mode = S_IFBLK;
613 		inode->i_rdev = dev;
614 		inode->i_bdev = bdev;
615 		inode->i_data.a_ops = &def_blk_aops;
616 		mapping_set_gfp_mask(&inode->i_data, GFP_USER);
617 		spin_lock(&bdev_lock);
618 		list_add(&bdev->bd_list, &all_bdevs);
619 		spin_unlock(&bdev_lock);
620 		unlock_new_inode(inode);
621 	}
622 	return bdev;
623 }
624 
625 EXPORT_SYMBOL(bdget);
626 
627 /**
628  * bdgrab -- Grab a reference to an already referenced block device
629  * @bdev:	Block device to grab a reference to.
630  */
bdgrab(struct block_device * bdev)631 struct block_device *bdgrab(struct block_device *bdev)
632 {
633 	ihold(bdev->bd_inode);
634 	return bdev;
635 }
636 EXPORT_SYMBOL(bdgrab);
637 
nr_blockdev_pages(void)638 long nr_blockdev_pages(void)
639 {
640 	struct block_device *bdev;
641 	long ret = 0;
642 	spin_lock(&bdev_lock);
643 	list_for_each_entry(bdev, &all_bdevs, bd_list) {
644 		ret += bdev->bd_inode->i_mapping->nrpages;
645 	}
646 	spin_unlock(&bdev_lock);
647 	return ret;
648 }
649 
bdput(struct block_device * bdev)650 void bdput(struct block_device *bdev)
651 {
652 	iput(bdev->bd_inode);
653 }
654 
655 EXPORT_SYMBOL(bdput);
656 
bd_acquire(struct inode * inode)657 static struct block_device *bd_acquire(struct inode *inode)
658 {
659 	struct block_device *bdev;
660 
661 	spin_lock(&bdev_lock);
662 	bdev = inode->i_bdev;
663 	if (bdev) {
664 		ihold(bdev->bd_inode);
665 		spin_unlock(&bdev_lock);
666 		return bdev;
667 	}
668 	spin_unlock(&bdev_lock);
669 
670 	bdev = bdget(inode->i_rdev);
671 	if (bdev) {
672 		spin_lock(&bdev_lock);
673 		if (!inode->i_bdev) {
674 			/*
675 			 * We take an additional reference to bd_inode,
676 			 * and it's released in clear_inode() of inode.
677 			 * So, we can access it via ->i_mapping always
678 			 * without igrab().
679 			 */
680 			ihold(bdev->bd_inode);
681 			inode->i_bdev = bdev;
682 			inode->i_mapping = bdev->bd_inode->i_mapping;
683 			list_add(&inode->i_devices, &bdev->bd_inodes);
684 		}
685 		spin_unlock(&bdev_lock);
686 	}
687 	return bdev;
688 }
689 
sb_is_blkdev_sb(struct super_block * sb)690 int sb_is_blkdev_sb(struct super_block *sb)
691 {
692 	return sb == blockdev_superblock;
693 }
694 
695 /* Call when you free inode */
696 
bd_forget(struct inode * inode)697 void bd_forget(struct inode *inode)
698 {
699 	struct block_device *bdev = NULL;
700 
701 	spin_lock(&bdev_lock);
702 	if (!sb_is_blkdev_sb(inode->i_sb))
703 		bdev = inode->i_bdev;
704 	__bd_forget(inode);
705 	spin_unlock(&bdev_lock);
706 
707 	if (bdev)
708 		iput(bdev->bd_inode);
709 }
710 
711 /**
712  * bd_may_claim - test whether a block device can be claimed
713  * @bdev: block device of interest
714  * @whole: whole block device containing @bdev, may equal @bdev
715  * @holder: holder trying to claim @bdev
716  *
717  * Test whether @bdev can be claimed by @holder.
718  *
719  * CONTEXT:
720  * spin_lock(&bdev_lock).
721  *
722  * RETURNS:
723  * %true if @bdev can be claimed, %false otherwise.
724  */
bd_may_claim(struct block_device * bdev,struct block_device * whole,void * holder)725 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
726 			 void *holder)
727 {
728 	if (bdev->bd_holder == holder)
729 		return true;	 /* already a holder */
730 	else if (bdev->bd_holder != NULL)
731 		return false; 	 /* held by someone else */
732 	else if (bdev->bd_contains == bdev)
733 		return true;  	 /* is a whole device which isn't held */
734 
735 	else if (whole->bd_holder == bd_may_claim)
736 		return true; 	 /* is a partition of a device that is being partitioned */
737 	else if (whole->bd_holder != NULL)
738 		return false;	 /* is a partition of a held device */
739 	else
740 		return true;	 /* is a partition of an un-held device */
741 }
742 
743 /**
744  * bd_prepare_to_claim - prepare to claim a block device
745  * @bdev: block device of interest
746  * @whole: the whole device containing @bdev, may equal @bdev
747  * @holder: holder trying to claim @bdev
748  *
749  * Prepare to claim @bdev.  This function fails if @bdev is already
750  * claimed by another holder and waits if another claiming is in
751  * progress.  This function doesn't actually claim.  On successful
752  * return, the caller has ownership of bd_claiming and bd_holder[s].
753  *
754  * CONTEXT:
755  * spin_lock(&bdev_lock).  Might release bdev_lock, sleep and regrab
756  * it multiple times.
757  *
758  * RETURNS:
759  * 0 if @bdev can be claimed, -EBUSY otherwise.
760  */
bd_prepare_to_claim(struct block_device * bdev,struct block_device * whole,void * holder)761 static int bd_prepare_to_claim(struct block_device *bdev,
762 			       struct block_device *whole, void *holder)
763 {
764 retry:
765 	/* if someone else claimed, fail */
766 	if (!bd_may_claim(bdev, whole, holder))
767 		return -EBUSY;
768 
769 	/* if claiming is already in progress, wait for it to finish */
770 	if (whole->bd_claiming) {
771 		wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
772 		DEFINE_WAIT(wait);
773 
774 		prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
775 		spin_unlock(&bdev_lock);
776 		schedule();
777 		finish_wait(wq, &wait);
778 		spin_lock(&bdev_lock);
779 		goto retry;
780 	}
781 
782 	/* yay, all mine */
783 	return 0;
784 }
785 
786 /**
787  * bd_start_claiming - start claiming a block device
788  * @bdev: block device of interest
789  * @holder: holder trying to claim @bdev
790  *
791  * @bdev is about to be opened exclusively.  Check @bdev can be opened
792  * exclusively and mark that an exclusive open is in progress.  Each
793  * successful call to this function must be matched with a call to
794  * either bd_finish_claiming() or bd_abort_claiming() (which do not
795  * fail).
796  *
797  * This function is used to gain exclusive access to the block device
798  * without actually causing other exclusive open attempts to fail. It
799  * should be used when the open sequence itself requires exclusive
800  * access but may subsequently fail.
801  *
802  * CONTEXT:
803  * Might sleep.
804  *
805  * RETURNS:
806  * Pointer to the block device containing @bdev on success, ERR_PTR()
807  * value on failure.
808  */
bd_start_claiming(struct block_device * bdev,void * holder)809 static struct block_device *bd_start_claiming(struct block_device *bdev,
810 					      void *holder)
811 {
812 	struct gendisk *disk;
813 	struct block_device *whole;
814 	int partno, err;
815 
816 	might_sleep();
817 
818 	/*
819 	 * @bdev might not have been initialized properly yet, look up
820 	 * and grab the outer block device the hard way.
821 	 */
822 	disk = get_gendisk(bdev->bd_dev, &partno);
823 	if (!disk)
824 		return ERR_PTR(-ENXIO);
825 
826 	/*
827 	 * Normally, @bdev should equal what's returned from bdget_disk()
828 	 * if partno is 0; however, some drivers (floppy) use multiple
829 	 * bdev's for the same physical device and @bdev may be one of the
830 	 * aliases.  Keep @bdev if partno is 0.  This means claimer
831 	 * tracking is broken for those devices but it has always been that
832 	 * way.
833 	 */
834 	if (partno)
835 		whole = bdget_disk(disk, 0);
836 	else
837 		whole = bdgrab(bdev);
838 
839 	module_put(disk->fops->owner);
840 	put_disk(disk);
841 	if (!whole)
842 		return ERR_PTR(-ENOMEM);
843 
844 	/* prepare to claim, if successful, mark claiming in progress */
845 	spin_lock(&bdev_lock);
846 
847 	err = bd_prepare_to_claim(bdev, whole, holder);
848 	if (err == 0) {
849 		whole->bd_claiming = holder;
850 		spin_unlock(&bdev_lock);
851 		return whole;
852 	} else {
853 		spin_unlock(&bdev_lock);
854 		bdput(whole);
855 		return ERR_PTR(err);
856 	}
857 }
858 
859 #ifdef CONFIG_SYSFS
860 struct bd_holder_disk {
861 	struct list_head	list;
862 	struct gendisk		*disk;
863 	int			refcnt;
864 };
865 
bd_find_holder_disk(struct block_device * bdev,struct gendisk * disk)866 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
867 						  struct gendisk *disk)
868 {
869 	struct bd_holder_disk *holder;
870 
871 	list_for_each_entry(holder, &bdev->bd_holder_disks, list)
872 		if (holder->disk == disk)
873 			return holder;
874 	return NULL;
875 }
876 
add_symlink(struct kobject * from,struct kobject * to)877 static int add_symlink(struct kobject *from, struct kobject *to)
878 {
879 	return sysfs_create_link(from, to, kobject_name(to));
880 }
881 
del_symlink(struct kobject * from,struct kobject * to)882 static void del_symlink(struct kobject *from, struct kobject *to)
883 {
884 	sysfs_remove_link(from, kobject_name(to));
885 }
886 
887 /**
888  * bd_link_disk_holder - create symlinks between holding disk and slave bdev
889  * @bdev: the claimed slave bdev
890  * @disk: the holding disk
891  *
892  * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
893  *
894  * This functions creates the following sysfs symlinks.
895  *
896  * - from "slaves" directory of the holder @disk to the claimed @bdev
897  * - from "holders" directory of the @bdev to the holder @disk
898  *
899  * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
900  * passed to bd_link_disk_holder(), then:
901  *
902  *   /sys/block/dm-0/slaves/sda --> /sys/block/sda
903  *   /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
904  *
905  * The caller must have claimed @bdev before calling this function and
906  * ensure that both @bdev and @disk are valid during the creation and
907  * lifetime of these symlinks.
908  *
909  * CONTEXT:
910  * Might sleep.
911  *
912  * RETURNS:
913  * 0 on success, -errno on failure.
914  */
bd_link_disk_holder(struct block_device * bdev,struct gendisk * disk)915 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
916 {
917 	struct bd_holder_disk *holder;
918 	int ret = 0;
919 
920 	mutex_lock(&bdev->bd_mutex);
921 
922 	WARN_ON_ONCE(!bdev->bd_holder);
923 
924 	/* FIXME: remove the following once add_disk() handles errors */
925 	if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
926 		goto out_unlock;
927 
928 	holder = bd_find_holder_disk(bdev, disk);
929 	if (holder) {
930 		holder->refcnt++;
931 		goto out_unlock;
932 	}
933 
934 	holder = kzalloc(sizeof(*holder), GFP_KERNEL);
935 	if (!holder) {
936 		ret = -ENOMEM;
937 		goto out_unlock;
938 	}
939 
940 	INIT_LIST_HEAD(&holder->list);
941 	holder->disk = disk;
942 	holder->refcnt = 1;
943 
944 	ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
945 	if (ret)
946 		goto out_free;
947 
948 	ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
949 	if (ret)
950 		goto out_del;
951 	/*
952 	 * bdev could be deleted beneath us which would implicitly destroy
953 	 * the holder directory.  Hold on to it.
954 	 */
955 	kobject_get(bdev->bd_part->holder_dir);
956 
957 	list_add(&holder->list, &bdev->bd_holder_disks);
958 	goto out_unlock;
959 
960 out_del:
961 	del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
962 out_free:
963 	kfree(holder);
964 out_unlock:
965 	mutex_unlock(&bdev->bd_mutex);
966 	return ret;
967 }
968 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
969 
970 /**
971  * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
972  * @bdev: the calimed slave bdev
973  * @disk: the holding disk
974  *
975  * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
976  *
977  * CONTEXT:
978  * Might sleep.
979  */
bd_unlink_disk_holder(struct block_device * bdev,struct gendisk * disk)980 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
981 {
982 	struct bd_holder_disk *holder;
983 
984 	mutex_lock(&bdev->bd_mutex);
985 
986 	holder = bd_find_holder_disk(bdev, disk);
987 
988 	if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
989 		del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
990 		del_symlink(bdev->bd_part->holder_dir,
991 			    &disk_to_dev(disk)->kobj);
992 		kobject_put(bdev->bd_part->holder_dir);
993 		list_del_init(&holder->list);
994 		kfree(holder);
995 	}
996 
997 	mutex_unlock(&bdev->bd_mutex);
998 }
999 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1000 #endif
1001 
1002 /**
1003  * flush_disk - invalidates all buffer-cache entries on a disk
1004  *
1005  * @bdev:      struct block device to be flushed
1006  * @kill_dirty: flag to guide handling of dirty inodes
1007  *
1008  * Invalidates all buffer-cache entries on a disk. It should be called
1009  * when a disk has been changed -- either by a media change or online
1010  * resize.
1011  */
flush_disk(struct block_device * bdev,bool kill_dirty)1012 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1013 {
1014 	if (__invalidate_device(bdev, kill_dirty)) {
1015 		char name[BDEVNAME_SIZE] = "";
1016 
1017 		if (bdev->bd_disk)
1018 			disk_name(bdev->bd_disk, 0, name);
1019 		printk(KERN_WARNING "VFS: busy inodes on changed media or "
1020 		       "resized disk %s\n", name);
1021 	}
1022 
1023 	if (!bdev->bd_disk)
1024 		return;
1025 	if (disk_part_scan_enabled(bdev->bd_disk))
1026 		bdev->bd_invalidated = 1;
1027 }
1028 
1029 /**
1030  * check_disk_size_change - checks for disk size change and adjusts bdev size.
1031  * @disk: struct gendisk to check
1032  * @bdev: struct bdev to adjust.
1033  *
1034  * This routine checks to see if the bdev size does not match the disk size
1035  * and adjusts it if it differs.
1036  */
check_disk_size_change(struct gendisk * disk,struct block_device * bdev)1037 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
1038 {
1039 	loff_t disk_size, bdev_size;
1040 
1041 	disk_size = (loff_t)get_capacity(disk) << 9;
1042 	bdev_size = i_size_read(bdev->bd_inode);
1043 	if (disk_size != bdev_size) {
1044 		char name[BDEVNAME_SIZE];
1045 
1046 		disk_name(disk, 0, name);
1047 		printk(KERN_INFO
1048 		       "%s: detected capacity change from %lld to %lld\n",
1049 		       name, bdev_size, disk_size);
1050 		i_size_write(bdev->bd_inode, disk_size);
1051 		flush_disk(bdev, false);
1052 	}
1053 }
1054 EXPORT_SYMBOL(check_disk_size_change);
1055 
1056 /**
1057  * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1058  * @disk: struct gendisk to be revalidated
1059  *
1060  * This routine is a wrapper for lower-level driver's revalidate_disk
1061  * call-backs.  It is used to do common pre and post operations needed
1062  * for all revalidate_disk operations.
1063  */
revalidate_disk(struct gendisk * disk)1064 int revalidate_disk(struct gendisk *disk)
1065 {
1066 	struct block_device *bdev;
1067 	int ret = 0;
1068 
1069 	if (disk->fops->revalidate_disk)
1070 		ret = disk->fops->revalidate_disk(disk);
1071 
1072 	bdev = bdget_disk(disk, 0);
1073 	if (!bdev)
1074 		return ret;
1075 
1076 	mutex_lock(&bdev->bd_mutex);
1077 	check_disk_size_change(disk, bdev);
1078 	bdev->bd_invalidated = 0;
1079 	mutex_unlock(&bdev->bd_mutex);
1080 	bdput(bdev);
1081 	return ret;
1082 }
1083 EXPORT_SYMBOL(revalidate_disk);
1084 
1085 /*
1086  * This routine checks whether a removable media has been changed,
1087  * and invalidates all buffer-cache-entries in that case. This
1088  * is a relatively slow routine, so we have to try to minimize using
1089  * it. Thus it is called only upon a 'mount' or 'open'. This
1090  * is the best way of combining speed and utility, I think.
1091  * People changing diskettes in the middle of an operation deserve
1092  * to lose :-)
1093  */
check_disk_change(struct block_device * bdev)1094 int check_disk_change(struct block_device *bdev)
1095 {
1096 	struct gendisk *disk = bdev->bd_disk;
1097 	const struct block_device_operations *bdops = disk->fops;
1098 	unsigned int events;
1099 
1100 	events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1101 				   DISK_EVENT_EJECT_REQUEST);
1102 	if (!(events & DISK_EVENT_MEDIA_CHANGE))
1103 		return 0;
1104 
1105 	flush_disk(bdev, true);
1106 	if (bdops->revalidate_disk)
1107 		bdops->revalidate_disk(bdev->bd_disk);
1108 	return 1;
1109 }
1110 
1111 EXPORT_SYMBOL(check_disk_change);
1112 
bd_set_size(struct block_device * bdev,loff_t size)1113 void bd_set_size(struct block_device *bdev, loff_t size)
1114 {
1115 	unsigned bsize = bdev_logical_block_size(bdev);
1116 
1117 	mutex_lock(&bdev->bd_inode->i_mutex);
1118 	i_size_write(bdev->bd_inode, size);
1119 	mutex_unlock(&bdev->bd_inode->i_mutex);
1120 	while (bsize < PAGE_CACHE_SIZE) {
1121 		if (size & bsize)
1122 			break;
1123 		bsize <<= 1;
1124 	}
1125 	bdev->bd_block_size = bsize;
1126 	bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1127 }
1128 EXPORT_SYMBOL(bd_set_size);
1129 
1130 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1131 
1132 /*
1133  * bd_mutex locking:
1134  *
1135  *  mutex_lock(part->bd_mutex)
1136  *    mutex_lock_nested(whole->bd_mutex, 1)
1137  */
1138 
__blkdev_get(struct block_device * bdev,fmode_t mode,int for_part)1139 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1140 {
1141 	struct gendisk *disk;
1142 	struct module *owner;
1143 	int ret;
1144 	int partno;
1145 	int perm = 0;
1146 
1147 	if (mode & FMODE_READ)
1148 		perm |= MAY_READ;
1149 	if (mode & FMODE_WRITE)
1150 		perm |= MAY_WRITE;
1151 	/*
1152 	 * hooks: /n/, see "layering violations".
1153 	 */
1154 	if (!for_part) {
1155 		ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1156 		if (ret != 0) {
1157 			bdput(bdev);
1158 			return ret;
1159 		}
1160 	}
1161 
1162  restart:
1163 
1164 	ret = -ENXIO;
1165 	disk = get_gendisk(bdev->bd_dev, &partno);
1166 	if (!disk)
1167 		goto out;
1168 	owner = disk->fops->owner;
1169 
1170 	disk_block_events(disk);
1171 	mutex_lock_nested(&bdev->bd_mutex, for_part);
1172 	if (!bdev->bd_openers) {
1173 		bdev->bd_disk = disk;
1174 		bdev->bd_queue = disk->queue;
1175 		bdev->bd_contains = bdev;
1176 		if (!partno) {
1177 			ret = -ENXIO;
1178 			bdev->bd_part = disk_get_part(disk, partno);
1179 			if (!bdev->bd_part)
1180 				goto out_clear;
1181 
1182 			ret = 0;
1183 			if (disk->fops->open) {
1184 				ret = disk->fops->open(bdev, mode);
1185 				if (ret == -ERESTARTSYS) {
1186 					/* Lost a race with 'disk' being
1187 					 * deleted, try again.
1188 					 * See md.c
1189 					 */
1190 					disk_put_part(bdev->bd_part);
1191 					bdev->bd_part = NULL;
1192 					bdev->bd_disk = NULL;
1193 					bdev->bd_queue = NULL;
1194 					mutex_unlock(&bdev->bd_mutex);
1195 					disk_unblock_events(disk);
1196 					put_disk(disk);
1197 					module_put(owner);
1198 					goto restart;
1199 				}
1200 			}
1201 
1202 			if (!ret)
1203 				bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1204 
1205 			/*
1206 			 * If the device is invalidated, rescan partition
1207 			 * if open succeeded or failed with -ENOMEDIUM.
1208 			 * The latter is necessary to prevent ghost
1209 			 * partitions on a removed medium.
1210 			 */
1211 			if (bdev->bd_invalidated) {
1212 				if (!ret)
1213 					rescan_partitions(disk, bdev);
1214 				else if (ret == -ENOMEDIUM)
1215 					invalidate_partitions(disk, bdev);
1216 			}
1217 			if (ret)
1218 				goto out_clear;
1219 		} else {
1220 			struct block_device *whole;
1221 			whole = bdget_disk(disk, 0);
1222 			ret = -ENOMEM;
1223 			if (!whole)
1224 				goto out_clear;
1225 			BUG_ON(for_part);
1226 			ret = __blkdev_get(whole, mode, 1);
1227 			if (ret)
1228 				goto out_clear;
1229 			bdev->bd_contains = whole;
1230 			bdev->bd_part = disk_get_part(disk, partno);
1231 			if (!(disk->flags & GENHD_FL_UP) ||
1232 			    !bdev->bd_part || !bdev->bd_part->nr_sects) {
1233 				ret = -ENXIO;
1234 				goto out_clear;
1235 			}
1236 			bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1237 			/*
1238 			 * If the partition is not aligned on a page
1239 			 * boundary, we can't do dax I/O to it.
1240 			 */
1241 			if ((bdev->bd_part->start_sect % (PAGE_SIZE / 512)) ||
1242 			    (bdev->bd_part->nr_sects % (PAGE_SIZE / 512)))
1243 				bdev->bd_inode->i_flags &= ~S_DAX;
1244 		}
1245 	} else {
1246 		if (bdev->bd_contains == bdev) {
1247 			ret = 0;
1248 			if (bdev->bd_disk->fops->open)
1249 				ret = bdev->bd_disk->fops->open(bdev, mode);
1250 			/* the same as first opener case, read comment there */
1251 			if (bdev->bd_invalidated) {
1252 				if (!ret)
1253 					rescan_partitions(bdev->bd_disk, bdev);
1254 				else if (ret == -ENOMEDIUM)
1255 					invalidate_partitions(bdev->bd_disk, bdev);
1256 			}
1257 			if (ret)
1258 				goto out_unlock_bdev;
1259 		}
1260 		/* only one opener holds refs to the module and disk */
1261 		put_disk(disk);
1262 		module_put(owner);
1263 	}
1264 	bdev->bd_openers++;
1265 	if (for_part)
1266 		bdev->bd_part_count++;
1267 	mutex_unlock(&bdev->bd_mutex);
1268 	disk_unblock_events(disk);
1269 	return 0;
1270 
1271  out_clear:
1272 	disk_put_part(bdev->bd_part);
1273 	bdev->bd_disk = NULL;
1274 	bdev->bd_part = NULL;
1275 	bdev->bd_queue = NULL;
1276 	if (bdev != bdev->bd_contains)
1277 		__blkdev_put(bdev->bd_contains, mode, 1);
1278 	bdev->bd_contains = NULL;
1279  out_unlock_bdev:
1280 	mutex_unlock(&bdev->bd_mutex);
1281 	disk_unblock_events(disk);
1282 	put_disk(disk);
1283 	module_put(owner);
1284  out:
1285 	bdput(bdev);
1286 
1287 	return ret;
1288 }
1289 
1290 /**
1291  * blkdev_get - open a block device
1292  * @bdev: block_device to open
1293  * @mode: FMODE_* mask
1294  * @holder: exclusive holder identifier
1295  *
1296  * Open @bdev with @mode.  If @mode includes %FMODE_EXCL, @bdev is
1297  * open with exclusive access.  Specifying %FMODE_EXCL with %NULL
1298  * @holder is invalid.  Exclusive opens may nest for the same @holder.
1299  *
1300  * On success, the reference count of @bdev is unchanged.  On failure,
1301  * @bdev is put.
1302  *
1303  * CONTEXT:
1304  * Might sleep.
1305  *
1306  * RETURNS:
1307  * 0 on success, -errno on failure.
1308  */
blkdev_get(struct block_device * bdev,fmode_t mode,void * holder)1309 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1310 {
1311 	struct block_device *whole = NULL;
1312 	int res;
1313 
1314 	WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1315 
1316 	if ((mode & FMODE_EXCL) && holder) {
1317 		whole = bd_start_claiming(bdev, holder);
1318 		if (IS_ERR(whole)) {
1319 			bdput(bdev);
1320 			return PTR_ERR(whole);
1321 		}
1322 	}
1323 
1324 	res = __blkdev_get(bdev, mode, 0);
1325 
1326 	if (whole) {
1327 		struct gendisk *disk = whole->bd_disk;
1328 
1329 		/* finish claiming */
1330 		mutex_lock(&bdev->bd_mutex);
1331 		spin_lock(&bdev_lock);
1332 
1333 		if (!res) {
1334 			BUG_ON(!bd_may_claim(bdev, whole, holder));
1335 			/*
1336 			 * Note that for a whole device bd_holders
1337 			 * will be incremented twice, and bd_holder
1338 			 * will be set to bd_may_claim before being
1339 			 * set to holder
1340 			 */
1341 			whole->bd_holders++;
1342 			whole->bd_holder = bd_may_claim;
1343 			bdev->bd_holders++;
1344 			bdev->bd_holder = holder;
1345 		}
1346 
1347 		/* tell others that we're done */
1348 		BUG_ON(whole->bd_claiming != holder);
1349 		whole->bd_claiming = NULL;
1350 		wake_up_bit(&whole->bd_claiming, 0);
1351 
1352 		spin_unlock(&bdev_lock);
1353 
1354 		/*
1355 		 * Block event polling for write claims if requested.  Any
1356 		 * write holder makes the write_holder state stick until
1357 		 * all are released.  This is good enough and tracking
1358 		 * individual writeable reference is too fragile given the
1359 		 * way @mode is used in blkdev_get/put().
1360 		 */
1361 		if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1362 		    (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1363 			bdev->bd_write_holder = true;
1364 			disk_block_events(disk);
1365 		}
1366 
1367 		mutex_unlock(&bdev->bd_mutex);
1368 		bdput(whole);
1369 	}
1370 
1371 	return res;
1372 }
1373 EXPORT_SYMBOL(blkdev_get);
1374 
1375 /**
1376  * blkdev_get_by_path - open a block device by name
1377  * @path: path to the block device to open
1378  * @mode: FMODE_* mask
1379  * @holder: exclusive holder identifier
1380  *
1381  * Open the blockdevice described by the device file at @path.  @mode
1382  * and @holder are identical to blkdev_get().
1383  *
1384  * On success, the returned block_device has reference count of one.
1385  *
1386  * CONTEXT:
1387  * Might sleep.
1388  *
1389  * RETURNS:
1390  * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1391  */
blkdev_get_by_path(const char * path,fmode_t mode,void * holder)1392 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1393 					void *holder)
1394 {
1395 	struct block_device *bdev;
1396 	int err;
1397 
1398 	bdev = lookup_bdev(path);
1399 	if (IS_ERR(bdev))
1400 		return bdev;
1401 
1402 	err = blkdev_get(bdev, mode, holder);
1403 	if (err)
1404 		return ERR_PTR(err);
1405 
1406 	if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1407 		blkdev_put(bdev, mode);
1408 		return ERR_PTR(-EACCES);
1409 	}
1410 
1411 	return bdev;
1412 }
1413 EXPORT_SYMBOL(blkdev_get_by_path);
1414 
1415 /**
1416  * blkdev_get_by_dev - open a block device by device number
1417  * @dev: device number of block device to open
1418  * @mode: FMODE_* mask
1419  * @holder: exclusive holder identifier
1420  *
1421  * Open the blockdevice described by device number @dev.  @mode and
1422  * @holder are identical to blkdev_get().
1423  *
1424  * Use it ONLY if you really do not have anything better - i.e. when
1425  * you are behind a truly sucky interface and all you are given is a
1426  * device number.  _Never_ to be used for internal purposes.  If you
1427  * ever need it - reconsider your API.
1428  *
1429  * On success, the returned block_device has reference count of one.
1430  *
1431  * CONTEXT:
1432  * Might sleep.
1433  *
1434  * RETURNS:
1435  * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1436  */
blkdev_get_by_dev(dev_t dev,fmode_t mode,void * holder)1437 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1438 {
1439 	struct block_device *bdev;
1440 	int err;
1441 
1442 	bdev = bdget(dev);
1443 	if (!bdev)
1444 		return ERR_PTR(-ENOMEM);
1445 
1446 	err = blkdev_get(bdev, mode, holder);
1447 	if (err)
1448 		return ERR_PTR(err);
1449 
1450 	return bdev;
1451 }
1452 EXPORT_SYMBOL(blkdev_get_by_dev);
1453 
blkdev_open(struct inode * inode,struct file * filp)1454 static int blkdev_open(struct inode * inode, struct file * filp)
1455 {
1456 	struct block_device *bdev;
1457 
1458 	/*
1459 	 * Preserve backwards compatibility and allow large file access
1460 	 * even if userspace doesn't ask for it explicitly. Some mkfs
1461 	 * binary needs it. We might want to drop this workaround
1462 	 * during an unstable branch.
1463 	 */
1464 	filp->f_flags |= O_LARGEFILE;
1465 
1466 	if (filp->f_flags & O_NDELAY)
1467 		filp->f_mode |= FMODE_NDELAY;
1468 	if (filp->f_flags & O_EXCL)
1469 		filp->f_mode |= FMODE_EXCL;
1470 	if ((filp->f_flags & O_ACCMODE) == 3)
1471 		filp->f_mode |= FMODE_WRITE_IOCTL;
1472 
1473 	bdev = bd_acquire(inode);
1474 	if (bdev == NULL)
1475 		return -ENOMEM;
1476 
1477 	filp->f_mapping = bdev->bd_inode->i_mapping;
1478 
1479 	return blkdev_get(bdev, filp->f_mode, filp);
1480 }
1481 
__blkdev_put(struct block_device * bdev,fmode_t mode,int for_part)1482 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1483 {
1484 	struct gendisk *disk = bdev->bd_disk;
1485 	struct block_device *victim = NULL;
1486 
1487 	mutex_lock_nested(&bdev->bd_mutex, for_part);
1488 	if (for_part)
1489 		bdev->bd_part_count--;
1490 
1491 	if (!--bdev->bd_openers) {
1492 		WARN_ON_ONCE(bdev->bd_holders);
1493 		sync_blockdev(bdev);
1494 		kill_bdev(bdev);
1495 		/*
1496 		 * ->release can cause the queue to disappear, so flush all
1497 		 * dirty data before.
1498 		 */
1499 		bdev_write_inode(bdev->bd_inode);
1500 	}
1501 	if (bdev->bd_contains == bdev) {
1502 		if (disk->fops->release)
1503 			disk->fops->release(disk, mode);
1504 	}
1505 	if (!bdev->bd_openers) {
1506 		struct module *owner = disk->fops->owner;
1507 
1508 		disk_put_part(bdev->bd_part);
1509 		bdev->bd_part = NULL;
1510 		bdev->bd_disk = NULL;
1511 		if (bdev != bdev->bd_contains)
1512 			victim = bdev->bd_contains;
1513 		bdev->bd_contains = NULL;
1514 
1515 		put_disk(disk);
1516 		module_put(owner);
1517 	}
1518 	mutex_unlock(&bdev->bd_mutex);
1519 	bdput(bdev);
1520 	if (victim)
1521 		__blkdev_put(victim, mode, 1);
1522 }
1523 
blkdev_put(struct block_device * bdev,fmode_t mode)1524 void blkdev_put(struct block_device *bdev, fmode_t mode)
1525 {
1526 	mutex_lock(&bdev->bd_mutex);
1527 
1528 	if (mode & FMODE_EXCL) {
1529 		bool bdev_free;
1530 
1531 		/*
1532 		 * Release a claim on the device.  The holder fields
1533 		 * are protected with bdev_lock.  bd_mutex is to
1534 		 * synchronize disk_holder unlinking.
1535 		 */
1536 		spin_lock(&bdev_lock);
1537 
1538 		WARN_ON_ONCE(--bdev->bd_holders < 0);
1539 		WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1540 
1541 		/* bd_contains might point to self, check in a separate step */
1542 		if ((bdev_free = !bdev->bd_holders))
1543 			bdev->bd_holder = NULL;
1544 		if (!bdev->bd_contains->bd_holders)
1545 			bdev->bd_contains->bd_holder = NULL;
1546 
1547 		spin_unlock(&bdev_lock);
1548 
1549 		/*
1550 		 * If this was the last claim, remove holder link and
1551 		 * unblock evpoll if it was a write holder.
1552 		 */
1553 		if (bdev_free && bdev->bd_write_holder) {
1554 			disk_unblock_events(bdev->bd_disk);
1555 			bdev->bd_write_holder = false;
1556 		}
1557 	}
1558 
1559 	/*
1560 	 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1561 	 * event.  This is to ensure detection of media removal commanded
1562 	 * from userland - e.g. eject(1).
1563 	 */
1564 	disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1565 
1566 	mutex_unlock(&bdev->bd_mutex);
1567 
1568 	__blkdev_put(bdev, mode, 0);
1569 }
1570 EXPORT_SYMBOL(blkdev_put);
1571 
blkdev_close(struct inode * inode,struct file * filp)1572 static int blkdev_close(struct inode * inode, struct file * filp)
1573 {
1574 	struct block_device *bdev = I_BDEV(filp->f_mapping->host);
1575 	blkdev_put(bdev, filp->f_mode);
1576 	return 0;
1577 }
1578 
block_ioctl(struct file * file,unsigned cmd,unsigned long arg)1579 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1580 {
1581 	struct block_device *bdev = I_BDEV(file->f_mapping->host);
1582 	fmode_t mode = file->f_mode;
1583 
1584 	/*
1585 	 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1586 	 * to updated it before every ioctl.
1587 	 */
1588 	if (file->f_flags & O_NDELAY)
1589 		mode |= FMODE_NDELAY;
1590 	else
1591 		mode &= ~FMODE_NDELAY;
1592 
1593 	return blkdev_ioctl(bdev, mode, cmd, arg);
1594 }
1595 
1596 /*
1597  * Write data to the block device.  Only intended for the block device itself
1598  * and the raw driver which basically is a fake block device.
1599  *
1600  * Does not take i_mutex for the write and thus is not for general purpose
1601  * use.
1602  */
blkdev_write_iter(struct kiocb * iocb,struct iov_iter * from)1603 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1604 {
1605 	struct file *file = iocb->ki_filp;
1606 	struct inode *bd_inode = file->f_mapping->host;
1607 	loff_t size = i_size_read(bd_inode);
1608 	struct blk_plug plug;
1609 	ssize_t ret;
1610 
1611 	if (bdev_read_only(I_BDEV(bd_inode)))
1612 		return -EPERM;
1613 
1614 	if (!iov_iter_count(from))
1615 		return 0;
1616 
1617 	if (iocb->ki_pos >= size)
1618 		return -ENOSPC;
1619 
1620 	iov_iter_truncate(from, size - iocb->ki_pos);
1621 
1622 	blk_start_plug(&plug);
1623 	ret = __generic_file_write_iter(iocb, from);
1624 	if (ret > 0) {
1625 		ssize_t err;
1626 		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
1627 		if (err < 0)
1628 			ret = err;
1629 	}
1630 	blk_finish_plug(&plug);
1631 	return ret;
1632 }
1633 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1634 
blkdev_read_iter(struct kiocb * iocb,struct iov_iter * to)1635 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1636 {
1637 	struct file *file = iocb->ki_filp;
1638 	struct inode *bd_inode = file->f_mapping->host;
1639 	loff_t size = i_size_read(bd_inode);
1640 	loff_t pos = iocb->ki_pos;
1641 
1642 	if (pos >= size)
1643 		return 0;
1644 
1645 	size -= pos;
1646 	iov_iter_truncate(to, size);
1647 	return generic_file_read_iter(iocb, to);
1648 }
1649 EXPORT_SYMBOL_GPL(blkdev_read_iter);
1650 
1651 /*
1652  * Try to release a page associated with block device when the system
1653  * is under memory pressure.
1654  */
blkdev_releasepage(struct page * page,gfp_t wait)1655 static int blkdev_releasepage(struct page *page, gfp_t wait)
1656 {
1657 	struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1658 
1659 	if (super && super->s_op->bdev_try_to_free_page)
1660 		return super->s_op->bdev_try_to_free_page(super, page, wait);
1661 
1662 	return try_to_free_buffers(page);
1663 }
1664 
1665 static const struct address_space_operations def_blk_aops = {
1666 	.readpage	= blkdev_readpage,
1667 	.readpages	= blkdev_readpages,
1668 	.writepage	= blkdev_writepage,
1669 	.write_begin	= blkdev_write_begin,
1670 	.write_end	= blkdev_write_end,
1671 	.writepages	= generic_writepages,
1672 	.releasepage	= blkdev_releasepage,
1673 	.direct_IO	= blkdev_direct_IO,
1674 	.is_dirty_writeback = buffer_check_dirty_writeback,
1675 };
1676 
1677 const struct file_operations def_blk_fops = {
1678 	.open		= blkdev_open,
1679 	.release	= blkdev_close,
1680 	.llseek		= block_llseek,
1681 	.read_iter	= blkdev_read_iter,
1682 	.write_iter	= blkdev_write_iter,
1683 	.mmap		= generic_file_mmap,
1684 	.fsync		= blkdev_fsync,
1685 	.unlocked_ioctl	= block_ioctl,
1686 #ifdef CONFIG_COMPAT
1687 	.compat_ioctl	= compat_blkdev_ioctl,
1688 #endif
1689 	.splice_read	= generic_file_splice_read,
1690 	.splice_write	= iter_file_splice_write,
1691 };
1692 
ioctl_by_bdev(struct block_device * bdev,unsigned cmd,unsigned long arg)1693 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
1694 {
1695 	int res;
1696 	mm_segment_t old_fs = get_fs();
1697 	set_fs(KERNEL_DS);
1698 	res = blkdev_ioctl(bdev, 0, cmd, arg);
1699 	set_fs(old_fs);
1700 	return res;
1701 }
1702 
1703 EXPORT_SYMBOL(ioctl_by_bdev);
1704 
1705 /**
1706  * lookup_bdev  - lookup a struct block_device by name
1707  * @pathname:	special file representing the block device
1708  *
1709  * Get a reference to the blockdevice at @pathname in the current
1710  * namespace if possible and return it.  Return ERR_PTR(error)
1711  * otherwise.
1712  */
lookup_bdev(const char * pathname)1713 struct block_device *lookup_bdev(const char *pathname)
1714 {
1715 	struct block_device *bdev;
1716 	struct inode *inode;
1717 	struct path path;
1718 	int error;
1719 
1720 	if (!pathname || !*pathname)
1721 		return ERR_PTR(-EINVAL);
1722 
1723 	error = kern_path(pathname, LOOKUP_FOLLOW, &path);
1724 	if (error)
1725 		return ERR_PTR(error);
1726 
1727 	inode = d_backing_inode(path.dentry);
1728 	error = -ENOTBLK;
1729 	if (!S_ISBLK(inode->i_mode))
1730 		goto fail;
1731 	error = -EACCES;
1732 	if (path.mnt->mnt_flags & MNT_NODEV)
1733 		goto fail;
1734 	error = -ENOMEM;
1735 	bdev = bd_acquire(inode);
1736 	if (!bdev)
1737 		goto fail;
1738 out:
1739 	path_put(&path);
1740 	return bdev;
1741 fail:
1742 	bdev = ERR_PTR(error);
1743 	goto out;
1744 }
1745 EXPORT_SYMBOL(lookup_bdev);
1746 
__invalidate_device(struct block_device * bdev,bool kill_dirty)1747 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
1748 {
1749 	struct super_block *sb = get_super(bdev);
1750 	int res = 0;
1751 
1752 	if (sb) {
1753 		/*
1754 		 * no need to lock the super, get_super holds the
1755 		 * read mutex so the filesystem cannot go away
1756 		 * under us (->put_super runs with the write lock
1757 		 * hold).
1758 		 */
1759 		shrink_dcache_sb(sb);
1760 		res = invalidate_inodes(sb, kill_dirty);
1761 		drop_super(sb);
1762 	}
1763 	invalidate_bdev(bdev);
1764 	return res;
1765 }
1766 EXPORT_SYMBOL(__invalidate_device);
1767 
iterate_bdevs(void (* func)(struct block_device *,void *),void * arg)1768 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
1769 {
1770 	struct inode *inode, *old_inode = NULL;
1771 
1772 	spin_lock(&inode_sb_list_lock);
1773 	list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
1774 		struct address_space *mapping = inode->i_mapping;
1775 
1776 		spin_lock(&inode->i_lock);
1777 		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
1778 		    mapping->nrpages == 0) {
1779 			spin_unlock(&inode->i_lock);
1780 			continue;
1781 		}
1782 		__iget(inode);
1783 		spin_unlock(&inode->i_lock);
1784 		spin_unlock(&inode_sb_list_lock);
1785 		/*
1786 		 * We hold a reference to 'inode' so it couldn't have been
1787 		 * removed from s_inodes list while we dropped the
1788 		 * inode_sb_list_lock.  We cannot iput the inode now as we can
1789 		 * be holding the last reference and we cannot iput it under
1790 		 * inode_sb_list_lock. So we keep the reference and iput it
1791 		 * later.
1792 		 */
1793 		iput(old_inode);
1794 		old_inode = inode;
1795 
1796 		func(I_BDEV(inode), arg);
1797 
1798 		spin_lock(&inode_sb_list_lock);
1799 	}
1800 	spin_unlock(&inode_sb_list_lock);
1801 	iput(old_inode);
1802 }
1803