1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20
21 #define BITS_PER_BYTE 8
22 #define OFDM_PLCP_BITS 22
23 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
24 #define L_STF 8
25 #define L_LTF 8
26 #define L_SIG 4
27 #define HT_SIG 8
28 #define HT_STF 4
29 #define HT_LTF(_ns) (4 * (_ns))
30 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
32 #define TIME_SYMBOLS(t) ((t) >> 2)
33 #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18)
34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
36
37
38 static u16 bits_per_symbol[][2] = {
39 /* 20MHz 40MHz */
40 { 26, 54 }, /* 0: BPSK */
41 { 52, 108 }, /* 1: QPSK 1/2 */
42 { 78, 162 }, /* 2: QPSK 3/4 */
43 { 104, 216 }, /* 3: 16-QAM 1/2 */
44 { 156, 324 }, /* 4: 16-QAM 3/4 */
45 { 208, 432 }, /* 5: 64-QAM 2/3 */
46 { 234, 486 }, /* 6: 64-QAM 3/4 */
47 { 260, 540 }, /* 7: 64-QAM 5/6 */
48 };
49
50 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
51 struct ath_atx_tid *tid, struct sk_buff *skb);
52 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
53 int tx_flags, struct ath_txq *txq);
54 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
55 struct ath_txq *txq, struct list_head *bf_q,
56 struct ath_tx_status *ts, int txok);
57 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
58 struct list_head *head, bool internal);
59 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
60 struct ath_tx_status *ts, int nframes, int nbad,
61 int txok);
62 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
63 int seqno);
64 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
65 struct ath_txq *txq,
66 struct ath_atx_tid *tid,
67 struct sk_buff *skb);
68
69 enum {
70 MCS_HT20,
71 MCS_HT20_SGI,
72 MCS_HT40,
73 MCS_HT40_SGI,
74 };
75
76 /*********************/
77 /* Aggregation logic */
78 /*********************/
79
ath_txq_lock(struct ath_softc * sc,struct ath_txq * txq)80 void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
81 __acquires(&txq->axq_lock)
82 {
83 spin_lock_bh(&txq->axq_lock);
84 }
85
ath_txq_unlock(struct ath_softc * sc,struct ath_txq * txq)86 void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
87 __releases(&txq->axq_lock)
88 {
89 spin_unlock_bh(&txq->axq_lock);
90 }
91
ath_txq_unlock_complete(struct ath_softc * sc,struct ath_txq * txq)92 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
93 __releases(&txq->axq_lock)
94 {
95 struct sk_buff_head q;
96 struct sk_buff *skb;
97
98 __skb_queue_head_init(&q);
99 skb_queue_splice_init(&txq->complete_q, &q);
100 spin_unlock_bh(&txq->axq_lock);
101
102 while ((skb = __skb_dequeue(&q)))
103 ieee80211_tx_status(sc->hw, skb);
104 }
105
ath_tx_queue_tid(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid)106 static void ath_tx_queue_tid(struct ath_softc *sc, struct ath_txq *txq,
107 struct ath_atx_tid *tid)
108 {
109 struct ath_atx_ac *ac = tid->ac;
110 struct list_head *list;
111 struct ath_vif *avp = (struct ath_vif *) tid->an->vif->drv_priv;
112 struct ath_chanctx *ctx = avp->chanctx;
113
114 if (!ctx)
115 return;
116
117 if (tid->sched)
118 return;
119
120 tid->sched = true;
121 list_add_tail(&tid->list, &ac->tid_q);
122
123 if (ac->sched)
124 return;
125
126 ac->sched = true;
127
128 list = &ctx->acq[TID_TO_WME_AC(tid->tidno)];
129 list_add_tail(&ac->list, list);
130 }
131
get_frame_info(struct sk_buff * skb)132 static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
133 {
134 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
135 BUILD_BUG_ON(sizeof(struct ath_frame_info) >
136 sizeof(tx_info->rate_driver_data));
137 return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
138 }
139
ath_send_bar(struct ath_atx_tid * tid,u16 seqno)140 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
141 {
142 if (!tid->an->sta)
143 return;
144
145 ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
146 seqno << IEEE80211_SEQ_SEQ_SHIFT);
147 }
148
ath_set_rates(struct ieee80211_vif * vif,struct ieee80211_sta * sta,struct ath_buf * bf)149 static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta,
150 struct ath_buf *bf)
151 {
152 ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates,
153 ARRAY_SIZE(bf->rates));
154 }
155
ath_txq_skb_done(struct ath_softc * sc,struct ath_txq * txq,struct sk_buff * skb)156 static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq,
157 struct sk_buff *skb)
158 {
159 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
160 struct ath_frame_info *fi = get_frame_info(skb);
161 int q = fi->txq;
162
163 if (q < 0)
164 return;
165
166 txq = sc->tx.txq_map[q];
167 if (WARN_ON(--txq->pending_frames < 0))
168 txq->pending_frames = 0;
169
170 if (txq->stopped &&
171 txq->pending_frames < sc->tx.txq_max_pending[q]) {
172 if (ath9k_is_chanctx_enabled())
173 ieee80211_wake_queue(sc->hw, info->hw_queue);
174 else
175 ieee80211_wake_queue(sc->hw, q);
176 txq->stopped = false;
177 }
178 }
179
180 static struct ath_atx_tid *
ath_get_skb_tid(struct ath_softc * sc,struct ath_node * an,struct sk_buff * skb)181 ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb)
182 {
183 u8 tidno = skb->priority & IEEE80211_QOS_CTL_TID_MASK;
184 return ATH_AN_2_TID(an, tidno);
185 }
186
ath_tid_has_buffered(struct ath_atx_tid * tid)187 static bool ath_tid_has_buffered(struct ath_atx_tid *tid)
188 {
189 return !skb_queue_empty(&tid->buf_q) || !skb_queue_empty(&tid->retry_q);
190 }
191
ath_tid_dequeue(struct ath_atx_tid * tid)192 static struct sk_buff *ath_tid_dequeue(struct ath_atx_tid *tid)
193 {
194 struct sk_buff *skb;
195
196 skb = __skb_dequeue(&tid->retry_q);
197 if (!skb)
198 skb = __skb_dequeue(&tid->buf_q);
199
200 return skb;
201 }
202
203 /*
204 * ath_tx_tid_change_state:
205 * - clears a-mpdu flag of previous session
206 * - force sequence number allocation to fix next BlockAck Window
207 */
208 static void
ath_tx_tid_change_state(struct ath_softc * sc,struct ath_atx_tid * tid)209 ath_tx_tid_change_state(struct ath_softc *sc, struct ath_atx_tid *tid)
210 {
211 struct ath_txq *txq = tid->ac->txq;
212 struct ieee80211_tx_info *tx_info;
213 struct sk_buff *skb, *tskb;
214 struct ath_buf *bf;
215 struct ath_frame_info *fi;
216
217 skb_queue_walk_safe(&tid->buf_q, skb, tskb) {
218 fi = get_frame_info(skb);
219 bf = fi->bf;
220
221 tx_info = IEEE80211_SKB_CB(skb);
222 tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
223
224 if (bf)
225 continue;
226
227 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
228 if (!bf) {
229 __skb_unlink(skb, &tid->buf_q);
230 ath_txq_skb_done(sc, txq, skb);
231 ieee80211_free_txskb(sc->hw, skb);
232 continue;
233 }
234 }
235
236 }
237
ath_tx_flush_tid(struct ath_softc * sc,struct ath_atx_tid * tid)238 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
239 {
240 struct ath_txq *txq = tid->ac->txq;
241 struct sk_buff *skb;
242 struct ath_buf *bf;
243 struct list_head bf_head;
244 struct ath_tx_status ts;
245 struct ath_frame_info *fi;
246 bool sendbar = false;
247
248 INIT_LIST_HEAD(&bf_head);
249
250 memset(&ts, 0, sizeof(ts));
251
252 while ((skb = __skb_dequeue(&tid->retry_q))) {
253 fi = get_frame_info(skb);
254 bf = fi->bf;
255 if (!bf) {
256 ath_txq_skb_done(sc, txq, skb);
257 ieee80211_free_txskb(sc->hw, skb);
258 continue;
259 }
260
261 if (fi->baw_tracked) {
262 ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
263 sendbar = true;
264 }
265
266 list_add_tail(&bf->list, &bf_head);
267 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
268 }
269
270 if (sendbar) {
271 ath_txq_unlock(sc, txq);
272 ath_send_bar(tid, tid->seq_start);
273 ath_txq_lock(sc, txq);
274 }
275 }
276
ath_tx_update_baw(struct ath_softc * sc,struct ath_atx_tid * tid,int seqno)277 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
278 int seqno)
279 {
280 int index, cindex;
281
282 index = ATH_BA_INDEX(tid->seq_start, seqno);
283 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
284
285 __clear_bit(cindex, tid->tx_buf);
286
287 while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
288 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
289 INCR(tid->baw_head, ATH_TID_MAX_BUFS);
290 if (tid->bar_index >= 0)
291 tid->bar_index--;
292 }
293 }
294
ath_tx_addto_baw(struct ath_softc * sc,struct ath_atx_tid * tid,struct ath_buf * bf)295 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
296 struct ath_buf *bf)
297 {
298 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
299 u16 seqno = bf->bf_state.seqno;
300 int index, cindex;
301
302 index = ATH_BA_INDEX(tid->seq_start, seqno);
303 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
304 __set_bit(cindex, tid->tx_buf);
305 fi->baw_tracked = 1;
306
307 if (index >= ((tid->baw_tail - tid->baw_head) &
308 (ATH_TID_MAX_BUFS - 1))) {
309 tid->baw_tail = cindex;
310 INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
311 }
312 }
313
ath_tid_drain(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid)314 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
315 struct ath_atx_tid *tid)
316
317 {
318 struct sk_buff *skb;
319 struct ath_buf *bf;
320 struct list_head bf_head;
321 struct ath_tx_status ts;
322 struct ath_frame_info *fi;
323
324 memset(&ts, 0, sizeof(ts));
325 INIT_LIST_HEAD(&bf_head);
326
327 while ((skb = ath_tid_dequeue(tid))) {
328 fi = get_frame_info(skb);
329 bf = fi->bf;
330
331 if (!bf) {
332 ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
333 continue;
334 }
335
336 list_add_tail(&bf->list, &bf_head);
337 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
338 }
339 }
340
ath_tx_set_retry(struct ath_softc * sc,struct ath_txq * txq,struct sk_buff * skb,int count)341 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
342 struct sk_buff *skb, int count)
343 {
344 struct ath_frame_info *fi = get_frame_info(skb);
345 struct ath_buf *bf = fi->bf;
346 struct ieee80211_hdr *hdr;
347 int prev = fi->retries;
348
349 TX_STAT_INC(txq->axq_qnum, a_retries);
350 fi->retries += count;
351
352 if (prev > 0)
353 return;
354
355 hdr = (struct ieee80211_hdr *)skb->data;
356 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
357 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
358 sizeof(*hdr), DMA_TO_DEVICE);
359 }
360
ath_tx_get_buffer(struct ath_softc * sc)361 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
362 {
363 struct ath_buf *bf = NULL;
364
365 spin_lock_bh(&sc->tx.txbuflock);
366
367 if (unlikely(list_empty(&sc->tx.txbuf))) {
368 spin_unlock_bh(&sc->tx.txbuflock);
369 return NULL;
370 }
371
372 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
373 list_del(&bf->list);
374
375 spin_unlock_bh(&sc->tx.txbuflock);
376
377 return bf;
378 }
379
ath_tx_return_buffer(struct ath_softc * sc,struct ath_buf * bf)380 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
381 {
382 spin_lock_bh(&sc->tx.txbuflock);
383 list_add_tail(&bf->list, &sc->tx.txbuf);
384 spin_unlock_bh(&sc->tx.txbuflock);
385 }
386
ath_clone_txbuf(struct ath_softc * sc,struct ath_buf * bf)387 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
388 {
389 struct ath_buf *tbf;
390
391 tbf = ath_tx_get_buffer(sc);
392 if (WARN_ON(!tbf))
393 return NULL;
394
395 ATH_TXBUF_RESET(tbf);
396
397 tbf->bf_mpdu = bf->bf_mpdu;
398 tbf->bf_buf_addr = bf->bf_buf_addr;
399 memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
400 tbf->bf_state = bf->bf_state;
401 tbf->bf_state.stale = false;
402
403 return tbf;
404 }
405
ath_tx_count_frames(struct ath_softc * sc,struct ath_buf * bf,struct ath_tx_status * ts,int txok,int * nframes,int * nbad)406 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
407 struct ath_tx_status *ts, int txok,
408 int *nframes, int *nbad)
409 {
410 struct ath_frame_info *fi;
411 u16 seq_st = 0;
412 u32 ba[WME_BA_BMP_SIZE >> 5];
413 int ba_index;
414 int isaggr = 0;
415
416 *nbad = 0;
417 *nframes = 0;
418
419 isaggr = bf_isaggr(bf);
420 if (isaggr) {
421 seq_st = ts->ts_seqnum;
422 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
423 }
424
425 while (bf) {
426 fi = get_frame_info(bf->bf_mpdu);
427 ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
428
429 (*nframes)++;
430 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
431 (*nbad)++;
432
433 bf = bf->bf_next;
434 }
435 }
436
437
ath_tx_complete_aggr(struct ath_softc * sc,struct ath_txq * txq,struct ath_buf * bf,struct list_head * bf_q,struct ath_tx_status * ts,int txok)438 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
439 struct ath_buf *bf, struct list_head *bf_q,
440 struct ath_tx_status *ts, int txok)
441 {
442 struct ath_node *an = NULL;
443 struct sk_buff *skb;
444 struct ieee80211_sta *sta;
445 struct ieee80211_hw *hw = sc->hw;
446 struct ieee80211_hdr *hdr;
447 struct ieee80211_tx_info *tx_info;
448 struct ath_atx_tid *tid = NULL;
449 struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
450 struct list_head bf_head;
451 struct sk_buff_head bf_pending;
452 u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
453 u32 ba[WME_BA_BMP_SIZE >> 5];
454 int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
455 bool rc_update = true, isba;
456 struct ieee80211_tx_rate rates[4];
457 struct ath_frame_info *fi;
458 int nframes;
459 bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
460 int i, retries;
461 int bar_index = -1;
462
463 skb = bf->bf_mpdu;
464 hdr = (struct ieee80211_hdr *)skb->data;
465
466 tx_info = IEEE80211_SKB_CB(skb);
467
468 memcpy(rates, bf->rates, sizeof(rates));
469
470 retries = ts->ts_longretry + 1;
471 for (i = 0; i < ts->ts_rateindex; i++)
472 retries += rates[i].count;
473
474 rcu_read_lock();
475
476 sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
477 if (!sta) {
478 rcu_read_unlock();
479
480 INIT_LIST_HEAD(&bf_head);
481 while (bf) {
482 bf_next = bf->bf_next;
483
484 if (!bf->bf_state.stale || bf_next != NULL)
485 list_move_tail(&bf->list, &bf_head);
486
487 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
488
489 bf = bf_next;
490 }
491 return;
492 }
493
494 an = (struct ath_node *)sta->drv_priv;
495 tid = ath_get_skb_tid(sc, an, skb);
496 seq_first = tid->seq_start;
497 isba = ts->ts_flags & ATH9K_TX_BA;
498
499 /*
500 * The hardware occasionally sends a tx status for the wrong TID.
501 * In this case, the BA status cannot be considered valid and all
502 * subframes need to be retransmitted
503 *
504 * Only BlockAcks have a TID and therefore normal Acks cannot be
505 * checked
506 */
507 if (isba && tid->tidno != ts->tid)
508 txok = false;
509
510 isaggr = bf_isaggr(bf);
511 memset(ba, 0, WME_BA_BMP_SIZE >> 3);
512
513 if (isaggr && txok) {
514 if (ts->ts_flags & ATH9K_TX_BA) {
515 seq_st = ts->ts_seqnum;
516 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
517 } else {
518 /*
519 * AR5416 can become deaf/mute when BA
520 * issue happens. Chip needs to be reset.
521 * But AP code may have sychronization issues
522 * when perform internal reset in this routine.
523 * Only enable reset in STA mode for now.
524 */
525 if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
526 needreset = 1;
527 }
528 }
529
530 __skb_queue_head_init(&bf_pending);
531
532 ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
533 while (bf) {
534 u16 seqno = bf->bf_state.seqno;
535
536 txfail = txpending = sendbar = 0;
537 bf_next = bf->bf_next;
538
539 skb = bf->bf_mpdu;
540 tx_info = IEEE80211_SKB_CB(skb);
541 fi = get_frame_info(skb);
542
543 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) ||
544 !tid->active) {
545 /*
546 * Outside of the current BlockAck window,
547 * maybe part of a previous session
548 */
549 txfail = 1;
550 } else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
551 /* transmit completion, subframe is
552 * acked by block ack */
553 acked_cnt++;
554 } else if (!isaggr && txok) {
555 /* transmit completion */
556 acked_cnt++;
557 } else if (flush) {
558 txpending = 1;
559 } else if (fi->retries < ATH_MAX_SW_RETRIES) {
560 if (txok || !an->sleeping)
561 ath_tx_set_retry(sc, txq, bf->bf_mpdu,
562 retries);
563
564 txpending = 1;
565 } else {
566 txfail = 1;
567 txfail_cnt++;
568 bar_index = max_t(int, bar_index,
569 ATH_BA_INDEX(seq_first, seqno));
570 }
571
572 /*
573 * Make sure the last desc is reclaimed if it
574 * not a holding desc.
575 */
576 INIT_LIST_HEAD(&bf_head);
577 if (bf_next != NULL || !bf_last->bf_state.stale)
578 list_move_tail(&bf->list, &bf_head);
579
580 if (!txpending) {
581 /*
582 * complete the acked-ones/xretried ones; update
583 * block-ack window
584 */
585 ath_tx_update_baw(sc, tid, seqno);
586
587 if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
588 memcpy(tx_info->control.rates, rates, sizeof(rates));
589 ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
590 rc_update = false;
591 if (bf == bf->bf_lastbf)
592 ath_dynack_sample_tx_ts(sc->sc_ah,
593 bf->bf_mpdu,
594 ts);
595 }
596
597 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
598 !txfail);
599 } else {
600 if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) {
601 tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP;
602 ieee80211_sta_eosp(sta);
603 }
604 /* retry the un-acked ones */
605 if (bf->bf_next == NULL && bf_last->bf_state.stale) {
606 struct ath_buf *tbf;
607
608 tbf = ath_clone_txbuf(sc, bf_last);
609 /*
610 * Update tx baw and complete the
611 * frame with failed status if we
612 * run out of tx buf.
613 */
614 if (!tbf) {
615 ath_tx_update_baw(sc, tid, seqno);
616
617 ath_tx_complete_buf(sc, bf, txq,
618 &bf_head, ts, 0);
619 bar_index = max_t(int, bar_index,
620 ATH_BA_INDEX(seq_first, seqno));
621 break;
622 }
623
624 fi->bf = tbf;
625 }
626
627 /*
628 * Put this buffer to the temporary pending
629 * queue to retain ordering
630 */
631 __skb_queue_tail(&bf_pending, skb);
632 }
633
634 bf = bf_next;
635 }
636
637 /* prepend un-acked frames to the beginning of the pending frame queue */
638 if (!skb_queue_empty(&bf_pending)) {
639 if (an->sleeping)
640 ieee80211_sta_set_buffered(sta, tid->tidno, true);
641
642 skb_queue_splice_tail(&bf_pending, &tid->retry_q);
643 if (!an->sleeping) {
644 ath_tx_queue_tid(sc, txq, tid);
645
646 if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
647 tid->ac->clear_ps_filter = true;
648 }
649 }
650
651 if (bar_index >= 0) {
652 u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
653
654 if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
655 tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
656
657 ath_txq_unlock(sc, txq);
658 ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
659 ath_txq_lock(sc, txq);
660 }
661
662 rcu_read_unlock();
663
664 if (needreset)
665 ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
666 }
667
bf_is_ampdu_not_probing(struct ath_buf * bf)668 static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
669 {
670 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
671 return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
672 }
673
ath_tx_process_buffer(struct ath_softc * sc,struct ath_txq * txq,struct ath_tx_status * ts,struct ath_buf * bf,struct list_head * bf_head)674 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
675 struct ath_tx_status *ts, struct ath_buf *bf,
676 struct list_head *bf_head)
677 {
678 struct ieee80211_tx_info *info;
679 bool txok, flush;
680
681 txok = !(ts->ts_status & ATH9K_TXERR_MASK);
682 flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
683 txq->axq_tx_inprogress = false;
684
685 txq->axq_depth--;
686 if (bf_is_ampdu_not_probing(bf))
687 txq->axq_ampdu_depth--;
688
689 ts->duration = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc,
690 ts->ts_rateindex);
691 if (!bf_isampdu(bf)) {
692 if (!flush) {
693 info = IEEE80211_SKB_CB(bf->bf_mpdu);
694 memcpy(info->control.rates, bf->rates,
695 sizeof(info->control.rates));
696 ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
697 ath_dynack_sample_tx_ts(sc->sc_ah, bf->bf_mpdu, ts);
698 }
699 ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
700 } else
701 ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok);
702
703 if (!flush)
704 ath_txq_schedule(sc, txq);
705 }
706
ath_lookup_legacy(struct ath_buf * bf)707 static bool ath_lookup_legacy(struct ath_buf *bf)
708 {
709 struct sk_buff *skb;
710 struct ieee80211_tx_info *tx_info;
711 struct ieee80211_tx_rate *rates;
712 int i;
713
714 skb = bf->bf_mpdu;
715 tx_info = IEEE80211_SKB_CB(skb);
716 rates = tx_info->control.rates;
717
718 for (i = 0; i < 4; i++) {
719 if (!rates[i].count || rates[i].idx < 0)
720 break;
721
722 if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
723 return true;
724 }
725
726 return false;
727 }
728
ath_lookup_rate(struct ath_softc * sc,struct ath_buf * bf,struct ath_atx_tid * tid)729 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
730 struct ath_atx_tid *tid)
731 {
732 struct sk_buff *skb;
733 struct ieee80211_tx_info *tx_info;
734 struct ieee80211_tx_rate *rates;
735 u32 max_4ms_framelen, frmlen;
736 u16 aggr_limit, bt_aggr_limit, legacy = 0;
737 int q = tid->ac->txq->mac80211_qnum;
738 int i;
739
740 skb = bf->bf_mpdu;
741 tx_info = IEEE80211_SKB_CB(skb);
742 rates = bf->rates;
743
744 /*
745 * Find the lowest frame length among the rate series that will have a
746 * 4ms (or TXOP limited) transmit duration.
747 */
748 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
749
750 for (i = 0; i < 4; i++) {
751 int modeidx;
752
753 if (!rates[i].count)
754 continue;
755
756 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
757 legacy = 1;
758 break;
759 }
760
761 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
762 modeidx = MCS_HT40;
763 else
764 modeidx = MCS_HT20;
765
766 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
767 modeidx++;
768
769 frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
770 max_4ms_framelen = min(max_4ms_framelen, frmlen);
771 }
772
773 /*
774 * limit aggregate size by the minimum rate if rate selected is
775 * not a probe rate, if rate selected is a probe rate then
776 * avoid aggregation of this packet.
777 */
778 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
779 return 0;
780
781 aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
782
783 /*
784 * Override the default aggregation limit for BTCOEX.
785 */
786 bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
787 if (bt_aggr_limit)
788 aggr_limit = bt_aggr_limit;
789
790 if (tid->an->maxampdu)
791 aggr_limit = min(aggr_limit, tid->an->maxampdu);
792
793 return aggr_limit;
794 }
795
796 /*
797 * Returns the number of delimiters to be added to
798 * meet the minimum required mpdudensity.
799 */
ath_compute_num_delims(struct ath_softc * sc,struct ath_atx_tid * tid,struct ath_buf * bf,u16 frmlen,bool first_subfrm)800 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
801 struct ath_buf *bf, u16 frmlen,
802 bool first_subfrm)
803 {
804 #define FIRST_DESC_NDELIMS 60
805 u32 nsymbits, nsymbols;
806 u16 minlen;
807 u8 flags, rix;
808 int width, streams, half_gi, ndelim, mindelim;
809 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
810
811 /* Select standard number of delimiters based on frame length alone */
812 ndelim = ATH_AGGR_GET_NDELIM(frmlen);
813
814 /*
815 * If encryption enabled, hardware requires some more padding between
816 * subframes.
817 * TODO - this could be improved to be dependent on the rate.
818 * The hardware can keep up at lower rates, but not higher rates
819 */
820 if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
821 !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
822 ndelim += ATH_AGGR_ENCRYPTDELIM;
823
824 /*
825 * Add delimiter when using RTS/CTS with aggregation
826 * and non enterprise AR9003 card
827 */
828 if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
829 (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
830 ndelim = max(ndelim, FIRST_DESC_NDELIMS);
831
832 /*
833 * Convert desired mpdu density from microeconds to bytes based
834 * on highest rate in rate series (i.e. first rate) to determine
835 * required minimum length for subframe. Take into account
836 * whether high rate is 20 or 40Mhz and half or full GI.
837 *
838 * If there is no mpdu density restriction, no further calculation
839 * is needed.
840 */
841
842 if (tid->an->mpdudensity == 0)
843 return ndelim;
844
845 rix = bf->rates[0].idx;
846 flags = bf->rates[0].flags;
847 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
848 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
849
850 if (half_gi)
851 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
852 else
853 nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
854
855 if (nsymbols == 0)
856 nsymbols = 1;
857
858 streams = HT_RC_2_STREAMS(rix);
859 nsymbits = bits_per_symbol[rix % 8][width] * streams;
860 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
861
862 if (frmlen < minlen) {
863 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
864 ndelim = max(mindelim, ndelim);
865 }
866
867 return ndelim;
868 }
869
870 static struct ath_buf *
ath_tx_get_tid_subframe(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid,struct sk_buff_head ** q)871 ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq,
872 struct ath_atx_tid *tid, struct sk_buff_head **q)
873 {
874 struct ieee80211_tx_info *tx_info;
875 struct ath_frame_info *fi;
876 struct sk_buff *skb;
877 struct ath_buf *bf;
878 u16 seqno;
879
880 while (1) {
881 *q = &tid->retry_q;
882 if (skb_queue_empty(*q))
883 *q = &tid->buf_q;
884
885 skb = skb_peek(*q);
886 if (!skb)
887 break;
888
889 fi = get_frame_info(skb);
890 bf = fi->bf;
891 if (!fi->bf)
892 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
893 else
894 bf->bf_state.stale = false;
895
896 if (!bf) {
897 __skb_unlink(skb, *q);
898 ath_txq_skb_done(sc, txq, skb);
899 ieee80211_free_txskb(sc->hw, skb);
900 continue;
901 }
902
903 bf->bf_next = NULL;
904 bf->bf_lastbf = bf;
905
906 tx_info = IEEE80211_SKB_CB(skb);
907 tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
908
909 /*
910 * No aggregation session is running, but there may be frames
911 * from a previous session or a failed attempt in the queue.
912 * Send them out as normal data frames
913 */
914 if (!tid->active)
915 tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
916
917 if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
918 bf->bf_state.bf_type = 0;
919 return bf;
920 }
921
922 bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
923 seqno = bf->bf_state.seqno;
924
925 /* do not step over block-ack window */
926 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno))
927 break;
928
929 if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
930 struct ath_tx_status ts = {};
931 struct list_head bf_head;
932
933 INIT_LIST_HEAD(&bf_head);
934 list_add(&bf->list, &bf_head);
935 __skb_unlink(skb, *q);
936 ath_tx_update_baw(sc, tid, seqno);
937 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
938 continue;
939 }
940
941 return bf;
942 }
943
944 return NULL;
945 }
946
947 static bool
ath_tx_form_aggr(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid,struct list_head * bf_q,struct ath_buf * bf_first,struct sk_buff_head * tid_q,int * aggr_len)948 ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq,
949 struct ath_atx_tid *tid, struct list_head *bf_q,
950 struct ath_buf *bf_first, struct sk_buff_head *tid_q,
951 int *aggr_len)
952 {
953 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
954 struct ath_buf *bf = bf_first, *bf_prev = NULL;
955 int nframes = 0, ndelim;
956 u16 aggr_limit = 0, al = 0, bpad = 0,
957 al_delta, h_baw = tid->baw_size / 2;
958 struct ieee80211_tx_info *tx_info;
959 struct ath_frame_info *fi;
960 struct sk_buff *skb;
961 bool closed = false;
962
963 bf = bf_first;
964 aggr_limit = ath_lookup_rate(sc, bf, tid);
965
966 do {
967 skb = bf->bf_mpdu;
968 fi = get_frame_info(skb);
969
970 /* do not exceed aggregation limit */
971 al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
972 if (nframes) {
973 if (aggr_limit < al + bpad + al_delta ||
974 ath_lookup_legacy(bf) || nframes >= h_baw)
975 break;
976
977 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
978 if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) ||
979 !(tx_info->flags & IEEE80211_TX_CTL_AMPDU))
980 break;
981 }
982
983 /* add padding for previous frame to aggregation length */
984 al += bpad + al_delta;
985
986 /*
987 * Get the delimiters needed to meet the MPDU
988 * density for this node.
989 */
990 ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
991 !nframes);
992 bpad = PADBYTES(al_delta) + (ndelim << 2);
993
994 nframes++;
995 bf->bf_next = NULL;
996
997 /* link buffers of this frame to the aggregate */
998 if (!fi->baw_tracked)
999 ath_tx_addto_baw(sc, tid, bf);
1000 bf->bf_state.ndelim = ndelim;
1001
1002 __skb_unlink(skb, tid_q);
1003 list_add_tail(&bf->list, bf_q);
1004 if (bf_prev)
1005 bf_prev->bf_next = bf;
1006
1007 bf_prev = bf;
1008
1009 bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
1010 if (!bf) {
1011 closed = true;
1012 break;
1013 }
1014 } while (ath_tid_has_buffered(tid));
1015
1016 bf = bf_first;
1017 bf->bf_lastbf = bf_prev;
1018
1019 if (bf == bf_prev) {
1020 al = get_frame_info(bf->bf_mpdu)->framelen;
1021 bf->bf_state.bf_type = BUF_AMPDU;
1022 } else {
1023 TX_STAT_INC(txq->axq_qnum, a_aggr);
1024 }
1025
1026 *aggr_len = al;
1027
1028 return closed;
1029 #undef PADBYTES
1030 }
1031
1032 /*
1033 * rix - rate index
1034 * pktlen - total bytes (delims + data + fcs + pads + pad delims)
1035 * width - 0 for 20 MHz, 1 for 40 MHz
1036 * half_gi - to use 4us v/s 3.6 us for symbol time
1037 */
ath_pkt_duration(struct ath_softc * sc,u8 rix,int pktlen,int width,int half_gi,bool shortPreamble)1038 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
1039 int width, int half_gi, bool shortPreamble)
1040 {
1041 u32 nbits, nsymbits, duration, nsymbols;
1042 int streams;
1043
1044 /* find number of symbols: PLCP + data */
1045 streams = HT_RC_2_STREAMS(rix);
1046 nbits = (pktlen << 3) + OFDM_PLCP_BITS;
1047 nsymbits = bits_per_symbol[rix % 8][width] * streams;
1048 nsymbols = (nbits + nsymbits - 1) / nsymbits;
1049
1050 if (!half_gi)
1051 duration = SYMBOL_TIME(nsymbols);
1052 else
1053 duration = SYMBOL_TIME_HALFGI(nsymbols);
1054
1055 /* addup duration for legacy/ht training and signal fields */
1056 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1057
1058 return duration;
1059 }
1060
ath_max_framelen(int usec,int mcs,bool ht40,bool sgi)1061 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
1062 {
1063 int streams = HT_RC_2_STREAMS(mcs);
1064 int symbols, bits;
1065 int bytes = 0;
1066
1067 usec -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1068 symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
1069 bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
1070 bits -= OFDM_PLCP_BITS;
1071 bytes = bits / 8;
1072 if (bytes > 65532)
1073 bytes = 65532;
1074
1075 return bytes;
1076 }
1077
ath_update_max_aggr_framelen(struct ath_softc * sc,int queue,int txop)1078 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
1079 {
1080 u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
1081 int mcs;
1082
1083 /* 4ms is the default (and maximum) duration */
1084 if (!txop || txop > 4096)
1085 txop = 4096;
1086
1087 cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
1088 cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
1089 cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
1090 cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
1091 for (mcs = 0; mcs < 32; mcs++) {
1092 cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
1093 cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
1094 cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
1095 cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
1096 }
1097 }
1098
ath_get_rate_txpower(struct ath_softc * sc,struct ath_buf * bf,u8 rateidx,bool is_40,bool is_cck)1099 static u8 ath_get_rate_txpower(struct ath_softc *sc, struct ath_buf *bf,
1100 u8 rateidx, bool is_40, bool is_cck)
1101 {
1102 u8 max_power;
1103 struct sk_buff *skb;
1104 struct ath_frame_info *fi;
1105 struct ieee80211_tx_info *info;
1106 struct ath_hw *ah = sc->sc_ah;
1107
1108 if (sc->tx99_state || !ah->tpc_enabled)
1109 return MAX_RATE_POWER;
1110
1111 skb = bf->bf_mpdu;
1112 fi = get_frame_info(skb);
1113 info = IEEE80211_SKB_CB(skb);
1114
1115 if (!AR_SREV_9300_20_OR_LATER(ah)) {
1116 int txpower = fi->tx_power;
1117
1118 if (is_40) {
1119 u8 power_ht40delta;
1120 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
1121
1122 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_2) {
1123 bool is_2ghz;
1124 struct modal_eep_header *pmodal;
1125
1126 is_2ghz = info->band == IEEE80211_BAND_2GHZ;
1127 pmodal = &eep->modalHeader[is_2ghz];
1128 power_ht40delta = pmodal->ht40PowerIncForPdadc;
1129 } else {
1130 power_ht40delta = 2;
1131 }
1132 txpower += power_ht40delta;
1133 }
1134
1135 if (AR_SREV_9287(ah) || AR_SREV_9285(ah) ||
1136 AR_SREV_9271(ah)) {
1137 txpower -= 2 * AR9287_PWR_TABLE_OFFSET_DB;
1138 } else if (AR_SREV_9280_20_OR_LATER(ah)) {
1139 s8 power_offset;
1140
1141 power_offset = ah->eep_ops->get_eeprom(ah,
1142 EEP_PWR_TABLE_OFFSET);
1143 txpower -= 2 * power_offset;
1144 }
1145
1146 if (OLC_FOR_AR9280_20_LATER && is_cck)
1147 txpower -= 2;
1148
1149 txpower = max(txpower, 0);
1150 max_power = min_t(u8, ah->tx_power[rateidx], txpower);
1151
1152 /* XXX: clamp minimum TX power at 1 for AR9160 since if
1153 * max_power is set to 0, frames are transmitted at max
1154 * TX power
1155 */
1156 if (!max_power && !AR_SREV_9280_20_OR_LATER(ah))
1157 max_power = 1;
1158 } else if (!bf->bf_state.bfs_paprd) {
1159 if (rateidx < 8 && (info->flags & IEEE80211_TX_CTL_STBC))
1160 max_power = min_t(u8, ah->tx_power_stbc[rateidx],
1161 fi->tx_power);
1162 else
1163 max_power = min_t(u8, ah->tx_power[rateidx],
1164 fi->tx_power);
1165 } else {
1166 max_power = ah->paprd_training_power;
1167 }
1168
1169 return max_power;
1170 }
1171
ath_buf_set_rate(struct ath_softc * sc,struct ath_buf * bf,struct ath_tx_info * info,int len,bool rts)1172 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
1173 struct ath_tx_info *info, int len, bool rts)
1174 {
1175 struct ath_hw *ah = sc->sc_ah;
1176 struct ath_common *common = ath9k_hw_common(ah);
1177 struct sk_buff *skb;
1178 struct ieee80211_tx_info *tx_info;
1179 struct ieee80211_tx_rate *rates;
1180 const struct ieee80211_rate *rate;
1181 struct ieee80211_hdr *hdr;
1182 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
1183 u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1184 int i;
1185 u8 rix = 0;
1186
1187 skb = bf->bf_mpdu;
1188 tx_info = IEEE80211_SKB_CB(skb);
1189 rates = bf->rates;
1190 hdr = (struct ieee80211_hdr *)skb->data;
1191
1192 /* set dur_update_en for l-sig computation except for PS-Poll frames */
1193 info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
1194 info->rtscts_rate = fi->rtscts_rate;
1195
1196 for (i = 0; i < ARRAY_SIZE(bf->rates); i++) {
1197 bool is_40, is_sgi, is_sp, is_cck;
1198 int phy;
1199
1200 if (!rates[i].count || (rates[i].idx < 0))
1201 continue;
1202
1203 rix = rates[i].idx;
1204 info->rates[i].Tries = rates[i].count;
1205
1206 /*
1207 * Handle RTS threshold for unaggregated HT frames.
1208 */
1209 if (bf_isampdu(bf) && !bf_isaggr(bf) &&
1210 (rates[i].flags & IEEE80211_TX_RC_MCS) &&
1211 unlikely(rts_thresh != (u32) -1)) {
1212 if (!rts_thresh || (len > rts_thresh))
1213 rts = true;
1214 }
1215
1216 if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
1217 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1218 info->flags |= ATH9K_TXDESC_RTSENA;
1219 } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1220 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1221 info->flags |= ATH9K_TXDESC_CTSENA;
1222 }
1223
1224 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1225 info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
1226 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
1227 info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
1228
1229 is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
1230 is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
1231 is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
1232
1233 if (rates[i].flags & IEEE80211_TX_RC_MCS) {
1234 /* MCS rates */
1235 info->rates[i].Rate = rix | 0x80;
1236 info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1237 ah->txchainmask, info->rates[i].Rate);
1238 info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
1239 is_40, is_sgi, is_sp);
1240 if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
1241 info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
1242
1243 info->txpower[i] = ath_get_rate_txpower(sc, bf, rix,
1244 is_40, false);
1245 continue;
1246 }
1247
1248 /* legacy rates */
1249 rate = &common->sbands[tx_info->band].bitrates[rates[i].idx];
1250 if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
1251 !(rate->flags & IEEE80211_RATE_ERP_G))
1252 phy = WLAN_RC_PHY_CCK;
1253 else
1254 phy = WLAN_RC_PHY_OFDM;
1255
1256 info->rates[i].Rate = rate->hw_value;
1257 if (rate->hw_value_short) {
1258 if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1259 info->rates[i].Rate |= rate->hw_value_short;
1260 } else {
1261 is_sp = false;
1262 }
1263
1264 if (bf->bf_state.bfs_paprd)
1265 info->rates[i].ChSel = ah->txchainmask;
1266 else
1267 info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1268 ah->txchainmask, info->rates[i].Rate);
1269
1270 info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1271 phy, rate->bitrate * 100, len, rix, is_sp);
1272
1273 is_cck = IS_CCK_RATE(info->rates[i].Rate);
1274 info->txpower[i] = ath_get_rate_txpower(sc, bf, rix, false,
1275 is_cck);
1276 }
1277
1278 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1279 if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
1280 info->flags &= ~ATH9K_TXDESC_RTSENA;
1281
1282 /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1283 if (info->flags & ATH9K_TXDESC_RTSENA)
1284 info->flags &= ~ATH9K_TXDESC_CTSENA;
1285 }
1286
get_hw_packet_type(struct sk_buff * skb)1287 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1288 {
1289 struct ieee80211_hdr *hdr;
1290 enum ath9k_pkt_type htype;
1291 __le16 fc;
1292
1293 hdr = (struct ieee80211_hdr *)skb->data;
1294 fc = hdr->frame_control;
1295
1296 if (ieee80211_is_beacon(fc))
1297 htype = ATH9K_PKT_TYPE_BEACON;
1298 else if (ieee80211_is_probe_resp(fc))
1299 htype = ATH9K_PKT_TYPE_PROBE_RESP;
1300 else if (ieee80211_is_atim(fc))
1301 htype = ATH9K_PKT_TYPE_ATIM;
1302 else if (ieee80211_is_pspoll(fc))
1303 htype = ATH9K_PKT_TYPE_PSPOLL;
1304 else
1305 htype = ATH9K_PKT_TYPE_NORMAL;
1306
1307 return htype;
1308 }
1309
ath_tx_fill_desc(struct ath_softc * sc,struct ath_buf * bf,struct ath_txq * txq,int len)1310 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
1311 struct ath_txq *txq, int len)
1312 {
1313 struct ath_hw *ah = sc->sc_ah;
1314 struct ath_buf *bf_first = NULL;
1315 struct ath_tx_info info;
1316 u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1317 bool rts = false;
1318
1319 memset(&info, 0, sizeof(info));
1320 info.is_first = true;
1321 info.is_last = true;
1322 info.qcu = txq->axq_qnum;
1323
1324 while (bf) {
1325 struct sk_buff *skb = bf->bf_mpdu;
1326 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1327 struct ath_frame_info *fi = get_frame_info(skb);
1328 bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
1329
1330 info.type = get_hw_packet_type(skb);
1331 if (bf->bf_next)
1332 info.link = bf->bf_next->bf_daddr;
1333 else
1334 info.link = (sc->tx99_state) ? bf->bf_daddr : 0;
1335
1336 if (!bf_first) {
1337 bf_first = bf;
1338
1339 if (!sc->tx99_state)
1340 info.flags = ATH9K_TXDESC_INTREQ;
1341 if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) ||
1342 txq == sc->tx.uapsdq)
1343 info.flags |= ATH9K_TXDESC_CLRDMASK;
1344
1345 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1346 info.flags |= ATH9K_TXDESC_NOACK;
1347 if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
1348 info.flags |= ATH9K_TXDESC_LDPC;
1349
1350 if (bf->bf_state.bfs_paprd)
1351 info.flags |= (u32) bf->bf_state.bfs_paprd <<
1352 ATH9K_TXDESC_PAPRD_S;
1353
1354 /*
1355 * mac80211 doesn't handle RTS threshold for HT because
1356 * the decision has to be taken based on AMPDU length
1357 * and aggregation is done entirely inside ath9k.
1358 * Set the RTS/CTS flag for the first subframe based
1359 * on the threshold.
1360 */
1361 if (aggr && (bf == bf_first) &&
1362 unlikely(rts_thresh != (u32) -1)) {
1363 /*
1364 * "len" is the size of the entire AMPDU.
1365 */
1366 if (!rts_thresh || (len > rts_thresh))
1367 rts = true;
1368 }
1369
1370 if (!aggr)
1371 len = fi->framelen;
1372
1373 ath_buf_set_rate(sc, bf, &info, len, rts);
1374 }
1375
1376 info.buf_addr[0] = bf->bf_buf_addr;
1377 info.buf_len[0] = skb->len;
1378 info.pkt_len = fi->framelen;
1379 info.keyix = fi->keyix;
1380 info.keytype = fi->keytype;
1381
1382 if (aggr) {
1383 if (bf == bf_first)
1384 info.aggr = AGGR_BUF_FIRST;
1385 else if (bf == bf_first->bf_lastbf)
1386 info.aggr = AGGR_BUF_LAST;
1387 else
1388 info.aggr = AGGR_BUF_MIDDLE;
1389
1390 info.ndelim = bf->bf_state.ndelim;
1391 info.aggr_len = len;
1392 }
1393
1394 if (bf == bf_first->bf_lastbf)
1395 bf_first = NULL;
1396
1397 ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
1398 bf = bf->bf_next;
1399 }
1400 }
1401
1402 static void
ath_tx_form_burst(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid,struct list_head * bf_q,struct ath_buf * bf_first,struct sk_buff_head * tid_q)1403 ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq,
1404 struct ath_atx_tid *tid, struct list_head *bf_q,
1405 struct ath_buf *bf_first, struct sk_buff_head *tid_q)
1406 {
1407 struct ath_buf *bf = bf_first, *bf_prev = NULL;
1408 struct sk_buff *skb;
1409 int nframes = 0;
1410
1411 do {
1412 struct ieee80211_tx_info *tx_info;
1413 skb = bf->bf_mpdu;
1414
1415 nframes++;
1416 __skb_unlink(skb, tid_q);
1417 list_add_tail(&bf->list, bf_q);
1418 if (bf_prev)
1419 bf_prev->bf_next = bf;
1420 bf_prev = bf;
1421
1422 if (nframes >= 2)
1423 break;
1424
1425 bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
1426 if (!bf)
1427 break;
1428
1429 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1430 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU)
1431 break;
1432
1433 ath_set_rates(tid->an->vif, tid->an->sta, bf);
1434 } while (1);
1435 }
1436
ath_tx_sched_aggr(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid,bool * stop)1437 static bool ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
1438 struct ath_atx_tid *tid, bool *stop)
1439 {
1440 struct ath_buf *bf;
1441 struct ieee80211_tx_info *tx_info;
1442 struct sk_buff_head *tid_q;
1443 struct list_head bf_q;
1444 int aggr_len = 0;
1445 bool aggr, last = true;
1446
1447 if (!ath_tid_has_buffered(tid))
1448 return false;
1449
1450 INIT_LIST_HEAD(&bf_q);
1451
1452 bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
1453 if (!bf)
1454 return false;
1455
1456 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1457 aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU);
1458 if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) ||
1459 (!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) {
1460 *stop = true;
1461 return false;
1462 }
1463
1464 ath_set_rates(tid->an->vif, tid->an->sta, bf);
1465 if (aggr)
1466 last = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf,
1467 tid_q, &aggr_len);
1468 else
1469 ath_tx_form_burst(sc, txq, tid, &bf_q, bf, tid_q);
1470
1471 if (list_empty(&bf_q))
1472 return false;
1473
1474 if (tid->ac->clear_ps_filter || tid->an->no_ps_filter) {
1475 tid->ac->clear_ps_filter = false;
1476 tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1477 }
1478
1479 ath_tx_fill_desc(sc, bf, txq, aggr_len);
1480 ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1481 return true;
1482 }
1483
ath_tx_aggr_start(struct ath_softc * sc,struct ieee80211_sta * sta,u16 tid,u16 * ssn)1484 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
1485 u16 tid, u16 *ssn)
1486 {
1487 struct ath_atx_tid *txtid;
1488 struct ath_txq *txq;
1489 struct ath_node *an;
1490 u8 density;
1491
1492 an = (struct ath_node *)sta->drv_priv;
1493 txtid = ATH_AN_2_TID(an, tid);
1494 txq = txtid->ac->txq;
1495
1496 ath_txq_lock(sc, txq);
1497
1498 /* update ampdu factor/density, they may have changed. This may happen
1499 * in HT IBSS when a beacon with HT-info is received after the station
1500 * has already been added.
1501 */
1502 if (sta->ht_cap.ht_supported) {
1503 an->maxampdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
1504 sta->ht_cap.ampdu_factor)) - 1;
1505 density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density);
1506 an->mpdudensity = density;
1507 }
1508
1509 /* force sequence number allocation for pending frames */
1510 ath_tx_tid_change_state(sc, txtid);
1511
1512 txtid->active = true;
1513 *ssn = txtid->seq_start = txtid->seq_next;
1514 txtid->bar_index = -1;
1515
1516 memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
1517 txtid->baw_head = txtid->baw_tail = 0;
1518
1519 ath_txq_unlock_complete(sc, txq);
1520
1521 return 0;
1522 }
1523
ath_tx_aggr_stop(struct ath_softc * sc,struct ieee80211_sta * sta,u16 tid)1524 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1525 {
1526 struct ath_node *an = (struct ath_node *)sta->drv_priv;
1527 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
1528 struct ath_txq *txq = txtid->ac->txq;
1529
1530 ath_txq_lock(sc, txq);
1531 txtid->active = false;
1532 ath_tx_flush_tid(sc, txtid);
1533 ath_tx_tid_change_state(sc, txtid);
1534 ath_txq_unlock_complete(sc, txq);
1535 }
1536
ath_tx_aggr_sleep(struct ieee80211_sta * sta,struct ath_softc * sc,struct ath_node * an)1537 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
1538 struct ath_node *an)
1539 {
1540 struct ath_atx_tid *tid;
1541 struct ath_atx_ac *ac;
1542 struct ath_txq *txq;
1543 bool buffered;
1544 int tidno;
1545
1546 for (tidno = 0, tid = &an->tid[tidno];
1547 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
1548
1549 ac = tid->ac;
1550 txq = ac->txq;
1551
1552 ath_txq_lock(sc, txq);
1553
1554 if (!tid->sched) {
1555 ath_txq_unlock(sc, txq);
1556 continue;
1557 }
1558
1559 buffered = ath_tid_has_buffered(tid);
1560
1561 tid->sched = false;
1562 list_del(&tid->list);
1563
1564 if (ac->sched) {
1565 ac->sched = false;
1566 list_del(&ac->list);
1567 }
1568
1569 ath_txq_unlock(sc, txq);
1570
1571 ieee80211_sta_set_buffered(sta, tidno, buffered);
1572 }
1573 }
1574
ath_tx_aggr_wakeup(struct ath_softc * sc,struct ath_node * an)1575 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
1576 {
1577 struct ath_atx_tid *tid;
1578 struct ath_atx_ac *ac;
1579 struct ath_txq *txq;
1580 int tidno;
1581
1582 for (tidno = 0, tid = &an->tid[tidno];
1583 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
1584
1585 ac = tid->ac;
1586 txq = ac->txq;
1587
1588 ath_txq_lock(sc, txq);
1589 ac->clear_ps_filter = true;
1590
1591 if (ath_tid_has_buffered(tid)) {
1592 ath_tx_queue_tid(sc, txq, tid);
1593 ath_txq_schedule(sc, txq);
1594 }
1595
1596 ath_txq_unlock_complete(sc, txq);
1597 }
1598 }
1599
ath_tx_aggr_resume(struct ath_softc * sc,struct ieee80211_sta * sta,u16 tidno)1600 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta,
1601 u16 tidno)
1602 {
1603 struct ath_atx_tid *tid;
1604 struct ath_node *an;
1605 struct ath_txq *txq;
1606
1607 an = (struct ath_node *)sta->drv_priv;
1608 tid = ATH_AN_2_TID(an, tidno);
1609 txq = tid->ac->txq;
1610
1611 ath_txq_lock(sc, txq);
1612
1613 tid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
1614
1615 if (ath_tid_has_buffered(tid)) {
1616 ath_tx_queue_tid(sc, txq, tid);
1617 ath_txq_schedule(sc, txq);
1618 }
1619
1620 ath_txq_unlock_complete(sc, txq);
1621 }
1622
ath9k_release_buffered_frames(struct ieee80211_hw * hw,struct ieee80211_sta * sta,u16 tids,int nframes,enum ieee80211_frame_release_type reason,bool more_data)1623 void ath9k_release_buffered_frames(struct ieee80211_hw *hw,
1624 struct ieee80211_sta *sta,
1625 u16 tids, int nframes,
1626 enum ieee80211_frame_release_type reason,
1627 bool more_data)
1628 {
1629 struct ath_softc *sc = hw->priv;
1630 struct ath_node *an = (struct ath_node *)sta->drv_priv;
1631 struct ath_txq *txq = sc->tx.uapsdq;
1632 struct ieee80211_tx_info *info;
1633 struct list_head bf_q;
1634 struct ath_buf *bf_tail = NULL, *bf;
1635 struct sk_buff_head *tid_q;
1636 int sent = 0;
1637 int i;
1638
1639 INIT_LIST_HEAD(&bf_q);
1640 for (i = 0; tids && nframes; i++, tids >>= 1) {
1641 struct ath_atx_tid *tid;
1642
1643 if (!(tids & 1))
1644 continue;
1645
1646 tid = ATH_AN_2_TID(an, i);
1647
1648 ath_txq_lock(sc, tid->ac->txq);
1649 while (nframes > 0) {
1650 bf = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq, tid, &tid_q);
1651 if (!bf)
1652 break;
1653
1654 __skb_unlink(bf->bf_mpdu, tid_q);
1655 list_add_tail(&bf->list, &bf_q);
1656 ath_set_rates(tid->an->vif, tid->an->sta, bf);
1657 if (bf_isampdu(bf)) {
1658 ath_tx_addto_baw(sc, tid, bf);
1659 bf->bf_state.bf_type &= ~BUF_AGGR;
1660 }
1661 if (bf_tail)
1662 bf_tail->bf_next = bf;
1663
1664 bf_tail = bf;
1665 nframes--;
1666 sent++;
1667 TX_STAT_INC(txq->axq_qnum, a_queued_hw);
1668
1669 if (an->sta && !ath_tid_has_buffered(tid))
1670 ieee80211_sta_set_buffered(an->sta, i, false);
1671 }
1672 ath_txq_unlock_complete(sc, tid->ac->txq);
1673 }
1674
1675 if (list_empty(&bf_q))
1676 return;
1677
1678 info = IEEE80211_SKB_CB(bf_tail->bf_mpdu);
1679 info->flags |= IEEE80211_TX_STATUS_EOSP;
1680
1681 bf = list_first_entry(&bf_q, struct ath_buf, list);
1682 ath_txq_lock(sc, txq);
1683 ath_tx_fill_desc(sc, bf, txq, 0);
1684 ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1685 ath_txq_unlock(sc, txq);
1686 }
1687
1688 /********************/
1689 /* Queue Management */
1690 /********************/
1691
ath_txq_setup(struct ath_softc * sc,int qtype,int subtype)1692 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
1693 {
1694 struct ath_hw *ah = sc->sc_ah;
1695 struct ath9k_tx_queue_info qi;
1696 static const int subtype_txq_to_hwq[] = {
1697 [IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
1698 [IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
1699 [IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
1700 [IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
1701 };
1702 int axq_qnum, i;
1703
1704 memset(&qi, 0, sizeof(qi));
1705 qi.tqi_subtype = subtype_txq_to_hwq[subtype];
1706 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
1707 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
1708 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
1709 qi.tqi_physCompBuf = 0;
1710
1711 /*
1712 * Enable interrupts only for EOL and DESC conditions.
1713 * We mark tx descriptors to receive a DESC interrupt
1714 * when a tx queue gets deep; otherwise waiting for the
1715 * EOL to reap descriptors. Note that this is done to
1716 * reduce interrupt load and this only defers reaping
1717 * descriptors, never transmitting frames. Aside from
1718 * reducing interrupts this also permits more concurrency.
1719 * The only potential downside is if the tx queue backs
1720 * up in which case the top half of the kernel may backup
1721 * due to a lack of tx descriptors.
1722 *
1723 * The UAPSD queue is an exception, since we take a desc-
1724 * based intr on the EOSP frames.
1725 */
1726 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1727 qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
1728 } else {
1729 if (qtype == ATH9K_TX_QUEUE_UAPSD)
1730 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1731 else
1732 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
1733 TXQ_FLAG_TXDESCINT_ENABLE;
1734 }
1735 axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
1736 if (axq_qnum == -1) {
1737 /*
1738 * NB: don't print a message, this happens
1739 * normally on parts with too few tx queues
1740 */
1741 return NULL;
1742 }
1743 if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
1744 struct ath_txq *txq = &sc->tx.txq[axq_qnum];
1745
1746 txq->axq_qnum = axq_qnum;
1747 txq->mac80211_qnum = -1;
1748 txq->axq_link = NULL;
1749 __skb_queue_head_init(&txq->complete_q);
1750 INIT_LIST_HEAD(&txq->axq_q);
1751 spin_lock_init(&txq->axq_lock);
1752 txq->axq_depth = 0;
1753 txq->axq_ampdu_depth = 0;
1754 txq->axq_tx_inprogress = false;
1755 sc->tx.txqsetup |= 1<<axq_qnum;
1756
1757 txq->txq_headidx = txq->txq_tailidx = 0;
1758 for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
1759 INIT_LIST_HEAD(&txq->txq_fifo[i]);
1760 }
1761 return &sc->tx.txq[axq_qnum];
1762 }
1763
ath_txq_update(struct ath_softc * sc,int qnum,struct ath9k_tx_queue_info * qinfo)1764 int ath_txq_update(struct ath_softc *sc, int qnum,
1765 struct ath9k_tx_queue_info *qinfo)
1766 {
1767 struct ath_hw *ah = sc->sc_ah;
1768 int error = 0;
1769 struct ath9k_tx_queue_info qi;
1770
1771 BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
1772
1773 ath9k_hw_get_txq_props(ah, qnum, &qi);
1774 qi.tqi_aifs = qinfo->tqi_aifs;
1775 qi.tqi_cwmin = qinfo->tqi_cwmin;
1776 qi.tqi_cwmax = qinfo->tqi_cwmax;
1777 qi.tqi_burstTime = qinfo->tqi_burstTime;
1778 qi.tqi_readyTime = qinfo->tqi_readyTime;
1779
1780 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
1781 ath_err(ath9k_hw_common(sc->sc_ah),
1782 "Unable to update hardware queue %u!\n", qnum);
1783 error = -EIO;
1784 } else {
1785 ath9k_hw_resettxqueue(ah, qnum);
1786 }
1787
1788 return error;
1789 }
1790
ath_cabq_update(struct ath_softc * sc)1791 int ath_cabq_update(struct ath_softc *sc)
1792 {
1793 struct ath9k_tx_queue_info qi;
1794 struct ath_beacon_config *cur_conf = &sc->cur_chan->beacon;
1795 int qnum = sc->beacon.cabq->axq_qnum;
1796
1797 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1798
1799 qi.tqi_readyTime = (TU_TO_USEC(cur_conf->beacon_interval) *
1800 ATH_CABQ_READY_TIME) / 100;
1801 ath_txq_update(sc, qnum, &qi);
1802
1803 return 0;
1804 }
1805
ath_drain_txq_list(struct ath_softc * sc,struct ath_txq * txq,struct list_head * list)1806 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
1807 struct list_head *list)
1808 {
1809 struct ath_buf *bf, *lastbf;
1810 struct list_head bf_head;
1811 struct ath_tx_status ts;
1812
1813 memset(&ts, 0, sizeof(ts));
1814 ts.ts_status = ATH9K_TX_FLUSH;
1815 INIT_LIST_HEAD(&bf_head);
1816
1817 while (!list_empty(list)) {
1818 bf = list_first_entry(list, struct ath_buf, list);
1819
1820 if (bf->bf_state.stale) {
1821 list_del(&bf->list);
1822
1823 ath_tx_return_buffer(sc, bf);
1824 continue;
1825 }
1826
1827 lastbf = bf->bf_lastbf;
1828 list_cut_position(&bf_head, list, &lastbf->list);
1829 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
1830 }
1831 }
1832
1833 /*
1834 * Drain a given TX queue (could be Beacon or Data)
1835 *
1836 * This assumes output has been stopped and
1837 * we do not need to block ath_tx_tasklet.
1838 */
ath_draintxq(struct ath_softc * sc,struct ath_txq * txq)1839 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
1840 {
1841 ath_txq_lock(sc, txq);
1842
1843 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1844 int idx = txq->txq_tailidx;
1845
1846 while (!list_empty(&txq->txq_fifo[idx])) {
1847 ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
1848
1849 INCR(idx, ATH_TXFIFO_DEPTH);
1850 }
1851 txq->txq_tailidx = idx;
1852 }
1853
1854 txq->axq_link = NULL;
1855 txq->axq_tx_inprogress = false;
1856 ath_drain_txq_list(sc, txq, &txq->axq_q);
1857
1858 ath_txq_unlock_complete(sc, txq);
1859 }
1860
ath_drain_all_txq(struct ath_softc * sc)1861 bool ath_drain_all_txq(struct ath_softc *sc)
1862 {
1863 struct ath_hw *ah = sc->sc_ah;
1864 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1865 struct ath_txq *txq;
1866 int i;
1867 u32 npend = 0;
1868
1869 if (test_bit(ATH_OP_INVALID, &common->op_flags))
1870 return true;
1871
1872 ath9k_hw_abort_tx_dma(ah);
1873
1874 /* Check if any queue remains active */
1875 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1876 if (!ATH_TXQ_SETUP(sc, i))
1877 continue;
1878
1879 if (!sc->tx.txq[i].axq_depth)
1880 continue;
1881
1882 if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
1883 npend |= BIT(i);
1884 }
1885
1886 if (npend)
1887 ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend);
1888
1889 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1890 if (!ATH_TXQ_SETUP(sc, i))
1891 continue;
1892
1893 /*
1894 * The caller will resume queues with ieee80211_wake_queues.
1895 * Mark the queue as not stopped to prevent ath_tx_complete
1896 * from waking the queue too early.
1897 */
1898 txq = &sc->tx.txq[i];
1899 txq->stopped = false;
1900 ath_draintxq(sc, txq);
1901 }
1902
1903 return !npend;
1904 }
1905
ath_tx_cleanupq(struct ath_softc * sc,struct ath_txq * txq)1906 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1907 {
1908 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1909 sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1910 }
1911
1912 /* For each acq entry, for each tid, try to schedule packets
1913 * for transmit until ampdu_depth has reached min Q depth.
1914 */
ath_txq_schedule(struct ath_softc * sc,struct ath_txq * txq)1915 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1916 {
1917 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1918 struct ath_atx_ac *ac, *last_ac;
1919 struct ath_atx_tid *tid, *last_tid;
1920 struct list_head *ac_list;
1921 bool sent = false;
1922
1923 if (txq->mac80211_qnum < 0)
1924 return;
1925
1926 if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
1927 return;
1928
1929 spin_lock_bh(&sc->chan_lock);
1930 ac_list = &sc->cur_chan->acq[txq->mac80211_qnum];
1931
1932 if (list_empty(ac_list)) {
1933 spin_unlock_bh(&sc->chan_lock);
1934 return;
1935 }
1936
1937 rcu_read_lock();
1938
1939 last_ac = list_entry(ac_list->prev, struct ath_atx_ac, list);
1940 while (!list_empty(ac_list)) {
1941 bool stop = false;
1942
1943 if (sc->cur_chan->stopped)
1944 break;
1945
1946 ac = list_first_entry(ac_list, struct ath_atx_ac, list);
1947 last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
1948 list_del(&ac->list);
1949 ac->sched = false;
1950
1951 while (!list_empty(&ac->tid_q)) {
1952
1953 tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
1954 list);
1955 list_del(&tid->list);
1956 tid->sched = false;
1957
1958 if (ath_tx_sched_aggr(sc, txq, tid, &stop))
1959 sent = true;
1960
1961 /*
1962 * add tid to round-robin queue if more frames
1963 * are pending for the tid
1964 */
1965 if (ath_tid_has_buffered(tid))
1966 ath_tx_queue_tid(sc, txq, tid);
1967
1968 if (stop || tid == last_tid)
1969 break;
1970 }
1971
1972 if (!list_empty(&ac->tid_q) && !ac->sched) {
1973 ac->sched = true;
1974 list_add_tail(&ac->list, ac_list);
1975 }
1976
1977 if (stop)
1978 break;
1979
1980 if (ac == last_ac) {
1981 if (!sent)
1982 break;
1983
1984 sent = false;
1985 last_ac = list_entry(ac_list->prev,
1986 struct ath_atx_ac, list);
1987 }
1988 }
1989
1990 rcu_read_unlock();
1991 spin_unlock_bh(&sc->chan_lock);
1992 }
1993
ath_txq_schedule_all(struct ath_softc * sc)1994 void ath_txq_schedule_all(struct ath_softc *sc)
1995 {
1996 struct ath_txq *txq;
1997 int i;
1998
1999 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
2000 txq = sc->tx.txq_map[i];
2001
2002 spin_lock_bh(&txq->axq_lock);
2003 ath_txq_schedule(sc, txq);
2004 spin_unlock_bh(&txq->axq_lock);
2005 }
2006 }
2007
2008 /***********/
2009 /* TX, DMA */
2010 /***********/
2011
2012 /*
2013 * Insert a chain of ath_buf (descriptors) on a txq and
2014 * assume the descriptors are already chained together by caller.
2015 */
ath_tx_txqaddbuf(struct ath_softc * sc,struct ath_txq * txq,struct list_head * head,bool internal)2016 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
2017 struct list_head *head, bool internal)
2018 {
2019 struct ath_hw *ah = sc->sc_ah;
2020 struct ath_common *common = ath9k_hw_common(ah);
2021 struct ath_buf *bf, *bf_last;
2022 bool puttxbuf = false;
2023 bool edma;
2024
2025 /*
2026 * Insert the frame on the outbound list and
2027 * pass it on to the hardware.
2028 */
2029
2030 if (list_empty(head))
2031 return;
2032
2033 edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
2034 bf = list_first_entry(head, struct ath_buf, list);
2035 bf_last = list_entry(head->prev, struct ath_buf, list);
2036
2037 ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
2038 txq->axq_qnum, txq->axq_depth);
2039
2040 if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
2041 list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
2042 INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
2043 puttxbuf = true;
2044 } else {
2045 list_splice_tail_init(head, &txq->axq_q);
2046
2047 if (txq->axq_link) {
2048 ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
2049 ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
2050 txq->axq_qnum, txq->axq_link,
2051 ito64(bf->bf_daddr), bf->bf_desc);
2052 } else if (!edma)
2053 puttxbuf = true;
2054
2055 txq->axq_link = bf_last->bf_desc;
2056 }
2057
2058 if (puttxbuf) {
2059 TX_STAT_INC(txq->axq_qnum, puttxbuf);
2060 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
2061 ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
2062 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
2063 }
2064
2065 if (!edma || sc->tx99_state) {
2066 TX_STAT_INC(txq->axq_qnum, txstart);
2067 ath9k_hw_txstart(ah, txq->axq_qnum);
2068 }
2069
2070 if (!internal) {
2071 while (bf) {
2072 txq->axq_depth++;
2073 if (bf_is_ampdu_not_probing(bf))
2074 txq->axq_ampdu_depth++;
2075
2076 bf_last = bf->bf_lastbf;
2077 bf = bf_last->bf_next;
2078 bf_last->bf_next = NULL;
2079 }
2080 }
2081 }
2082
ath_tx_send_normal(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid,struct sk_buff * skb)2083 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
2084 struct ath_atx_tid *tid, struct sk_buff *skb)
2085 {
2086 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2087 struct ath_frame_info *fi = get_frame_info(skb);
2088 struct list_head bf_head;
2089 struct ath_buf *bf = fi->bf;
2090
2091 INIT_LIST_HEAD(&bf_head);
2092 list_add_tail(&bf->list, &bf_head);
2093 bf->bf_state.bf_type = 0;
2094 if (tid && (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
2095 bf->bf_state.bf_type = BUF_AMPDU;
2096 ath_tx_addto_baw(sc, tid, bf);
2097 }
2098
2099 bf->bf_next = NULL;
2100 bf->bf_lastbf = bf;
2101 ath_tx_fill_desc(sc, bf, txq, fi->framelen);
2102 ath_tx_txqaddbuf(sc, txq, &bf_head, false);
2103 TX_STAT_INC(txq->axq_qnum, queued);
2104 }
2105
setup_frame_info(struct ieee80211_hw * hw,struct ieee80211_sta * sta,struct sk_buff * skb,int framelen)2106 static void setup_frame_info(struct ieee80211_hw *hw,
2107 struct ieee80211_sta *sta,
2108 struct sk_buff *skb,
2109 int framelen)
2110 {
2111 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2112 struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
2113 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2114 const struct ieee80211_rate *rate;
2115 struct ath_frame_info *fi = get_frame_info(skb);
2116 struct ath_node *an = NULL;
2117 enum ath9k_key_type keytype;
2118 bool short_preamble = false;
2119 u8 txpower;
2120
2121 /*
2122 * We check if Short Preamble is needed for the CTS rate by
2123 * checking the BSS's global flag.
2124 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
2125 */
2126 if (tx_info->control.vif &&
2127 tx_info->control.vif->bss_conf.use_short_preamble)
2128 short_preamble = true;
2129
2130 rate = ieee80211_get_rts_cts_rate(hw, tx_info);
2131 keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
2132
2133 if (sta)
2134 an = (struct ath_node *) sta->drv_priv;
2135
2136 if (tx_info->control.vif) {
2137 struct ieee80211_vif *vif = tx_info->control.vif;
2138
2139 txpower = 2 * vif->bss_conf.txpower;
2140 } else {
2141 struct ath_softc *sc = hw->priv;
2142
2143 txpower = sc->cur_chan->cur_txpower;
2144 }
2145
2146 memset(fi, 0, sizeof(*fi));
2147 fi->txq = -1;
2148 if (hw_key)
2149 fi->keyix = hw_key->hw_key_idx;
2150 else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
2151 fi->keyix = an->ps_key;
2152 else
2153 fi->keyix = ATH9K_TXKEYIX_INVALID;
2154 fi->keytype = keytype;
2155 fi->framelen = framelen;
2156 fi->tx_power = txpower;
2157
2158 if (!rate)
2159 return;
2160 fi->rtscts_rate = rate->hw_value;
2161 if (short_preamble)
2162 fi->rtscts_rate |= rate->hw_value_short;
2163 }
2164
ath_txchainmask_reduction(struct ath_softc * sc,u8 chainmask,u32 rate)2165 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
2166 {
2167 struct ath_hw *ah = sc->sc_ah;
2168 struct ath9k_channel *curchan = ah->curchan;
2169
2170 if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && IS_CHAN_5GHZ(curchan) &&
2171 (chainmask == 0x7) && (rate < 0x90))
2172 return 0x3;
2173 else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
2174 IS_CCK_RATE(rate))
2175 return 0x2;
2176 else
2177 return chainmask;
2178 }
2179
2180 /*
2181 * Assign a descriptor (and sequence number if necessary,
2182 * and map buffer for DMA. Frees skb on error
2183 */
ath_tx_setup_buffer(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid,struct sk_buff * skb)2184 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
2185 struct ath_txq *txq,
2186 struct ath_atx_tid *tid,
2187 struct sk_buff *skb)
2188 {
2189 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2190 struct ath_frame_info *fi = get_frame_info(skb);
2191 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2192 struct ath_buf *bf;
2193 int fragno;
2194 u16 seqno;
2195
2196 bf = ath_tx_get_buffer(sc);
2197 if (!bf) {
2198 ath_dbg(common, XMIT, "TX buffers are full\n");
2199 return NULL;
2200 }
2201
2202 ATH_TXBUF_RESET(bf);
2203
2204 if (tid && ieee80211_is_data_present(hdr->frame_control)) {
2205 fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
2206 seqno = tid->seq_next;
2207 hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
2208
2209 if (fragno)
2210 hdr->seq_ctrl |= cpu_to_le16(fragno);
2211
2212 if (!ieee80211_has_morefrags(hdr->frame_control))
2213 INCR(tid->seq_next, IEEE80211_SEQ_MAX);
2214
2215 bf->bf_state.seqno = seqno;
2216 }
2217
2218 bf->bf_mpdu = skb;
2219
2220 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
2221 skb->len, DMA_TO_DEVICE);
2222 if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
2223 bf->bf_mpdu = NULL;
2224 bf->bf_buf_addr = 0;
2225 ath_err(ath9k_hw_common(sc->sc_ah),
2226 "dma_mapping_error() on TX\n");
2227 ath_tx_return_buffer(sc, bf);
2228 return NULL;
2229 }
2230
2231 fi->bf = bf;
2232
2233 return bf;
2234 }
2235
ath_assign_seq(struct ath_common * common,struct sk_buff * skb)2236 void ath_assign_seq(struct ath_common *common, struct sk_buff *skb)
2237 {
2238 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2239 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2240 struct ieee80211_vif *vif = info->control.vif;
2241 struct ath_vif *avp;
2242
2243 if (!(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
2244 return;
2245
2246 if (!vif)
2247 return;
2248
2249 avp = (struct ath_vif *)vif->drv_priv;
2250
2251 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2252 avp->seq_no += 0x10;
2253
2254 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2255 hdr->seq_ctrl |= cpu_to_le16(avp->seq_no);
2256 }
2257
ath_tx_prepare(struct ieee80211_hw * hw,struct sk_buff * skb,struct ath_tx_control * txctl)2258 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
2259 struct ath_tx_control *txctl)
2260 {
2261 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2262 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2263 struct ieee80211_sta *sta = txctl->sta;
2264 struct ieee80211_vif *vif = info->control.vif;
2265 struct ath_vif *avp;
2266 struct ath_softc *sc = hw->priv;
2267 int frmlen = skb->len + FCS_LEN;
2268 int padpos, padsize;
2269
2270 /* NOTE: sta can be NULL according to net/mac80211.h */
2271 if (sta)
2272 txctl->an = (struct ath_node *)sta->drv_priv;
2273 else if (vif && ieee80211_is_data(hdr->frame_control)) {
2274 avp = (void *)vif->drv_priv;
2275 txctl->an = &avp->mcast_node;
2276 }
2277
2278 if (info->control.hw_key)
2279 frmlen += info->control.hw_key->icv_len;
2280
2281 ath_assign_seq(ath9k_hw_common(sc->sc_ah), skb);
2282
2283 if ((vif && vif->type != NL80211_IFTYPE_AP &&
2284 vif->type != NL80211_IFTYPE_AP_VLAN) ||
2285 !ieee80211_is_data(hdr->frame_control))
2286 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
2287
2288 /* Add the padding after the header if this is not already done */
2289 padpos = ieee80211_hdrlen(hdr->frame_control);
2290 padsize = padpos & 3;
2291 if (padsize && skb->len > padpos) {
2292 if (skb_headroom(skb) < padsize)
2293 return -ENOMEM;
2294
2295 skb_push(skb, padsize);
2296 memmove(skb->data, skb->data + padsize, padpos);
2297 }
2298
2299 setup_frame_info(hw, sta, skb, frmlen);
2300 return 0;
2301 }
2302
2303
2304 /* Upon failure caller should free skb */
ath_tx_start(struct ieee80211_hw * hw,struct sk_buff * skb,struct ath_tx_control * txctl)2305 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
2306 struct ath_tx_control *txctl)
2307 {
2308 struct ieee80211_hdr *hdr;
2309 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2310 struct ieee80211_sta *sta = txctl->sta;
2311 struct ieee80211_vif *vif = info->control.vif;
2312 struct ath_frame_info *fi = get_frame_info(skb);
2313 struct ath_vif *avp = NULL;
2314 struct ath_softc *sc = hw->priv;
2315 struct ath_txq *txq = txctl->txq;
2316 struct ath_atx_tid *tid = NULL;
2317 struct ath_buf *bf;
2318 bool queue, skip_uapsd = false, ps_resp;
2319 int q, ret;
2320
2321 if (vif)
2322 avp = (void *)vif->drv_priv;
2323
2324 if (info->flags & IEEE80211_TX_CTL_TX_OFFCHAN)
2325 txctl->force_channel = true;
2326
2327 ps_resp = !!(info->control.flags & IEEE80211_TX_CTRL_PS_RESPONSE);
2328
2329 ret = ath_tx_prepare(hw, skb, txctl);
2330 if (ret)
2331 return ret;
2332
2333 hdr = (struct ieee80211_hdr *) skb->data;
2334 /*
2335 * At this point, the vif, hw_key and sta pointers in the tx control
2336 * info are no longer valid (overwritten by the ath_frame_info data.
2337 */
2338
2339 q = skb_get_queue_mapping(skb);
2340
2341 ath_txq_lock(sc, txq);
2342 if (txq == sc->tx.txq_map[q]) {
2343 fi->txq = q;
2344 if (++txq->pending_frames > sc->tx.txq_max_pending[q] &&
2345 !txq->stopped) {
2346 if (ath9k_is_chanctx_enabled())
2347 ieee80211_stop_queue(sc->hw, info->hw_queue);
2348 else
2349 ieee80211_stop_queue(sc->hw, q);
2350 txq->stopped = true;
2351 }
2352 }
2353
2354 queue = ieee80211_is_data_present(hdr->frame_control);
2355
2356 /* Force queueing of all frames that belong to a virtual interface on
2357 * a different channel context, to ensure that they are sent on the
2358 * correct channel.
2359 */
2360 if (((avp && avp->chanctx != sc->cur_chan) ||
2361 sc->cur_chan->stopped) && !txctl->force_channel) {
2362 if (!txctl->an)
2363 txctl->an = &avp->mcast_node;
2364 queue = true;
2365 skip_uapsd = true;
2366 }
2367
2368 if (txctl->an && queue)
2369 tid = ath_get_skb_tid(sc, txctl->an, skb);
2370
2371 if (!skip_uapsd && ps_resp) {
2372 ath_txq_unlock(sc, txq);
2373 txq = sc->tx.uapsdq;
2374 ath_txq_lock(sc, txq);
2375 } else if (txctl->an && queue) {
2376 WARN_ON(tid->ac->txq != txctl->txq);
2377
2378 if (info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
2379 tid->ac->clear_ps_filter = true;
2380
2381 /*
2382 * Add this frame to software queue for scheduling later
2383 * for aggregation.
2384 */
2385 TX_STAT_INC(txq->axq_qnum, a_queued_sw);
2386 __skb_queue_tail(&tid->buf_q, skb);
2387 if (!txctl->an->sleeping)
2388 ath_tx_queue_tid(sc, txq, tid);
2389
2390 ath_txq_schedule(sc, txq);
2391 goto out;
2392 }
2393
2394 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
2395 if (!bf) {
2396 ath_txq_skb_done(sc, txq, skb);
2397 if (txctl->paprd)
2398 dev_kfree_skb_any(skb);
2399 else
2400 ieee80211_free_txskb(sc->hw, skb);
2401 goto out;
2402 }
2403
2404 bf->bf_state.bfs_paprd = txctl->paprd;
2405
2406 if (txctl->paprd)
2407 bf->bf_state.bfs_paprd_timestamp = jiffies;
2408
2409 ath_set_rates(vif, sta, bf);
2410 ath_tx_send_normal(sc, txq, tid, skb);
2411
2412 out:
2413 ath_txq_unlock(sc, txq);
2414
2415 return 0;
2416 }
2417
ath_tx_cabq(struct ieee80211_hw * hw,struct ieee80211_vif * vif,struct sk_buff * skb)2418 void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2419 struct sk_buff *skb)
2420 {
2421 struct ath_softc *sc = hw->priv;
2422 struct ath_tx_control txctl = {
2423 .txq = sc->beacon.cabq
2424 };
2425 struct ath_tx_info info = {};
2426 struct ieee80211_hdr *hdr;
2427 struct ath_buf *bf_tail = NULL;
2428 struct ath_buf *bf;
2429 LIST_HEAD(bf_q);
2430 int duration = 0;
2431 int max_duration;
2432
2433 max_duration =
2434 sc->cur_chan->beacon.beacon_interval * 1000 *
2435 sc->cur_chan->beacon.dtim_period / ATH_BCBUF;
2436
2437 do {
2438 struct ath_frame_info *fi = get_frame_info(skb);
2439
2440 if (ath_tx_prepare(hw, skb, &txctl))
2441 break;
2442
2443 bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb);
2444 if (!bf)
2445 break;
2446
2447 bf->bf_lastbf = bf;
2448 ath_set_rates(vif, NULL, bf);
2449 ath_buf_set_rate(sc, bf, &info, fi->framelen, false);
2450 duration += info.rates[0].PktDuration;
2451 if (bf_tail)
2452 bf_tail->bf_next = bf;
2453
2454 list_add_tail(&bf->list, &bf_q);
2455 bf_tail = bf;
2456 skb = NULL;
2457
2458 if (duration > max_duration)
2459 break;
2460
2461 skb = ieee80211_get_buffered_bc(hw, vif);
2462 } while(skb);
2463
2464 if (skb)
2465 ieee80211_free_txskb(hw, skb);
2466
2467 if (list_empty(&bf_q))
2468 return;
2469
2470 bf = list_first_entry(&bf_q, struct ath_buf, list);
2471 hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
2472
2473 if (hdr->frame_control & IEEE80211_FCTL_MOREDATA) {
2474 hdr->frame_control &= ~IEEE80211_FCTL_MOREDATA;
2475 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
2476 sizeof(*hdr), DMA_TO_DEVICE);
2477 }
2478
2479 ath_txq_lock(sc, txctl.txq);
2480 ath_tx_fill_desc(sc, bf, txctl.txq, 0);
2481 ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false);
2482 TX_STAT_INC(txctl.txq->axq_qnum, queued);
2483 ath_txq_unlock(sc, txctl.txq);
2484 }
2485
2486 /*****************/
2487 /* TX Completion */
2488 /*****************/
2489
ath_tx_complete(struct ath_softc * sc,struct sk_buff * skb,int tx_flags,struct ath_txq * txq)2490 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
2491 int tx_flags, struct ath_txq *txq)
2492 {
2493 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2494 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2495 struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
2496 int padpos, padsize;
2497 unsigned long flags;
2498
2499 ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
2500
2501 if (sc->sc_ah->caldata)
2502 set_bit(PAPRD_PACKET_SENT, &sc->sc_ah->caldata->cal_flags);
2503
2504 if (!(tx_flags & ATH_TX_ERROR)) {
2505 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
2506 tx_info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED;
2507 else
2508 tx_info->flags |= IEEE80211_TX_STAT_ACK;
2509 }
2510
2511 padpos = ieee80211_hdrlen(hdr->frame_control);
2512 padsize = padpos & 3;
2513 if (padsize && skb->len>padpos+padsize) {
2514 /*
2515 * Remove MAC header padding before giving the frame back to
2516 * mac80211.
2517 */
2518 memmove(skb->data + padsize, skb->data, padpos);
2519 skb_pull(skb, padsize);
2520 }
2521
2522 spin_lock_irqsave(&sc->sc_pm_lock, flags);
2523 if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
2524 sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
2525 ath_dbg(common, PS,
2526 "Going back to sleep after having received TX status (0x%lx)\n",
2527 sc->ps_flags & (PS_WAIT_FOR_BEACON |
2528 PS_WAIT_FOR_CAB |
2529 PS_WAIT_FOR_PSPOLL_DATA |
2530 PS_WAIT_FOR_TX_ACK));
2531 }
2532 spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2533
2534 __skb_queue_tail(&txq->complete_q, skb);
2535 ath_txq_skb_done(sc, txq, skb);
2536 }
2537
ath_tx_complete_buf(struct ath_softc * sc,struct ath_buf * bf,struct ath_txq * txq,struct list_head * bf_q,struct ath_tx_status * ts,int txok)2538 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
2539 struct ath_txq *txq, struct list_head *bf_q,
2540 struct ath_tx_status *ts, int txok)
2541 {
2542 struct sk_buff *skb = bf->bf_mpdu;
2543 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2544 unsigned long flags;
2545 int tx_flags = 0;
2546
2547 if (!txok)
2548 tx_flags |= ATH_TX_ERROR;
2549
2550 if (ts->ts_status & ATH9K_TXERR_FILT)
2551 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
2552
2553 dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
2554 bf->bf_buf_addr = 0;
2555 if (sc->tx99_state)
2556 goto skip_tx_complete;
2557
2558 if (bf->bf_state.bfs_paprd) {
2559 if (time_after(jiffies,
2560 bf->bf_state.bfs_paprd_timestamp +
2561 msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
2562 dev_kfree_skb_any(skb);
2563 else
2564 complete(&sc->paprd_complete);
2565 } else {
2566 ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
2567 ath_tx_complete(sc, skb, tx_flags, txq);
2568 }
2569 skip_tx_complete:
2570 /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
2571 * accidentally reference it later.
2572 */
2573 bf->bf_mpdu = NULL;
2574
2575 /*
2576 * Return the list of ath_buf of this mpdu to free queue
2577 */
2578 spin_lock_irqsave(&sc->tx.txbuflock, flags);
2579 list_splice_tail_init(bf_q, &sc->tx.txbuf);
2580 spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
2581 }
2582
ath_tx_rc_status(struct ath_softc * sc,struct ath_buf * bf,struct ath_tx_status * ts,int nframes,int nbad,int txok)2583 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
2584 struct ath_tx_status *ts, int nframes, int nbad,
2585 int txok)
2586 {
2587 struct sk_buff *skb = bf->bf_mpdu;
2588 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2589 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2590 struct ieee80211_hw *hw = sc->hw;
2591 struct ath_hw *ah = sc->sc_ah;
2592 u8 i, tx_rateindex;
2593
2594 if (txok)
2595 tx_info->status.ack_signal = ts->ts_rssi;
2596
2597 tx_rateindex = ts->ts_rateindex;
2598 WARN_ON(tx_rateindex >= hw->max_rates);
2599
2600 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
2601 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
2602
2603 BUG_ON(nbad > nframes);
2604 }
2605 tx_info->status.ampdu_len = nframes;
2606 tx_info->status.ampdu_ack_len = nframes - nbad;
2607
2608 if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2609 (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
2610 /*
2611 * If an underrun error is seen assume it as an excessive
2612 * retry only if max frame trigger level has been reached
2613 * (2 KB for single stream, and 4 KB for dual stream).
2614 * Adjust the long retry as if the frame was tried
2615 * hw->max_rate_tries times to affect how rate control updates
2616 * PER for the failed rate.
2617 * In case of congestion on the bus penalizing this type of
2618 * underruns should help hardware actually transmit new frames
2619 * successfully by eventually preferring slower rates.
2620 * This itself should also alleviate congestion on the bus.
2621 */
2622 if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
2623 ATH9K_TX_DELIM_UNDERRUN)) &&
2624 ieee80211_is_data(hdr->frame_control) &&
2625 ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
2626 tx_info->status.rates[tx_rateindex].count =
2627 hw->max_rate_tries;
2628 }
2629
2630 for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
2631 tx_info->status.rates[i].count = 0;
2632 tx_info->status.rates[i].idx = -1;
2633 }
2634
2635 tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
2636 }
2637
ath_tx_processq(struct ath_softc * sc,struct ath_txq * txq)2638 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2639 {
2640 struct ath_hw *ah = sc->sc_ah;
2641 struct ath_common *common = ath9k_hw_common(ah);
2642 struct ath_buf *bf, *lastbf, *bf_held = NULL;
2643 struct list_head bf_head;
2644 struct ath_desc *ds;
2645 struct ath_tx_status ts;
2646 int status;
2647
2648 ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
2649 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2650 txq->axq_link);
2651
2652 ath_txq_lock(sc, txq);
2653 for (;;) {
2654 if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2655 break;
2656
2657 if (list_empty(&txq->axq_q)) {
2658 txq->axq_link = NULL;
2659 ath_txq_schedule(sc, txq);
2660 break;
2661 }
2662 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2663
2664 /*
2665 * There is a race condition that a BH gets scheduled
2666 * after sw writes TxE and before hw re-load the last
2667 * descriptor to get the newly chained one.
2668 * Software must keep the last DONE descriptor as a
2669 * holding descriptor - software does so by marking
2670 * it with the STALE flag.
2671 */
2672 bf_held = NULL;
2673 if (bf->bf_state.stale) {
2674 bf_held = bf;
2675 if (list_is_last(&bf_held->list, &txq->axq_q))
2676 break;
2677
2678 bf = list_entry(bf_held->list.next, struct ath_buf,
2679 list);
2680 }
2681
2682 lastbf = bf->bf_lastbf;
2683 ds = lastbf->bf_desc;
2684
2685 memset(&ts, 0, sizeof(ts));
2686 status = ath9k_hw_txprocdesc(ah, ds, &ts);
2687 if (status == -EINPROGRESS)
2688 break;
2689
2690 TX_STAT_INC(txq->axq_qnum, txprocdesc);
2691
2692 /*
2693 * Remove ath_buf's of the same transmit unit from txq,
2694 * however leave the last descriptor back as the holding
2695 * descriptor for hw.
2696 */
2697 lastbf->bf_state.stale = true;
2698 INIT_LIST_HEAD(&bf_head);
2699 if (!list_is_singular(&lastbf->list))
2700 list_cut_position(&bf_head,
2701 &txq->axq_q, lastbf->list.prev);
2702
2703 if (bf_held) {
2704 list_del(&bf_held->list);
2705 ath_tx_return_buffer(sc, bf_held);
2706 }
2707
2708 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2709 }
2710 ath_txq_unlock_complete(sc, txq);
2711 }
2712
ath_tx_tasklet(struct ath_softc * sc)2713 void ath_tx_tasklet(struct ath_softc *sc)
2714 {
2715 struct ath_hw *ah = sc->sc_ah;
2716 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
2717 int i;
2718
2719 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2720 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2721 ath_tx_processq(sc, &sc->tx.txq[i]);
2722 }
2723 }
2724
ath_tx_edma_tasklet(struct ath_softc * sc)2725 void ath_tx_edma_tasklet(struct ath_softc *sc)
2726 {
2727 struct ath_tx_status ts;
2728 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2729 struct ath_hw *ah = sc->sc_ah;
2730 struct ath_txq *txq;
2731 struct ath_buf *bf, *lastbf;
2732 struct list_head bf_head;
2733 struct list_head *fifo_list;
2734 int status;
2735
2736 for (;;) {
2737 if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2738 break;
2739
2740 status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
2741 if (status == -EINPROGRESS)
2742 break;
2743 if (status == -EIO) {
2744 ath_dbg(common, XMIT, "Error processing tx status\n");
2745 break;
2746 }
2747
2748 /* Process beacon completions separately */
2749 if (ts.qid == sc->beacon.beaconq) {
2750 sc->beacon.tx_processed = true;
2751 sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
2752
2753 if (ath9k_is_chanctx_enabled()) {
2754 ath_chanctx_event(sc, NULL,
2755 ATH_CHANCTX_EVENT_BEACON_SENT);
2756 }
2757
2758 ath9k_csa_update(sc);
2759 continue;
2760 }
2761
2762 txq = &sc->tx.txq[ts.qid];
2763
2764 ath_txq_lock(sc, txq);
2765
2766 TX_STAT_INC(txq->axq_qnum, txprocdesc);
2767
2768 fifo_list = &txq->txq_fifo[txq->txq_tailidx];
2769 if (list_empty(fifo_list)) {
2770 ath_txq_unlock(sc, txq);
2771 return;
2772 }
2773
2774 bf = list_first_entry(fifo_list, struct ath_buf, list);
2775 if (bf->bf_state.stale) {
2776 list_del(&bf->list);
2777 ath_tx_return_buffer(sc, bf);
2778 bf = list_first_entry(fifo_list, struct ath_buf, list);
2779 }
2780
2781 lastbf = bf->bf_lastbf;
2782
2783 INIT_LIST_HEAD(&bf_head);
2784 if (list_is_last(&lastbf->list, fifo_list)) {
2785 list_splice_tail_init(fifo_list, &bf_head);
2786 INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
2787
2788 if (!list_empty(&txq->axq_q)) {
2789 struct list_head bf_q;
2790
2791 INIT_LIST_HEAD(&bf_q);
2792 txq->axq_link = NULL;
2793 list_splice_tail_init(&txq->axq_q, &bf_q);
2794 ath_tx_txqaddbuf(sc, txq, &bf_q, true);
2795 }
2796 } else {
2797 lastbf->bf_state.stale = true;
2798 if (bf != lastbf)
2799 list_cut_position(&bf_head, fifo_list,
2800 lastbf->list.prev);
2801 }
2802
2803 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2804 ath_txq_unlock_complete(sc, txq);
2805 }
2806 }
2807
2808 /*****************/
2809 /* Init, Cleanup */
2810 /*****************/
2811
ath_txstatus_setup(struct ath_softc * sc,int size)2812 static int ath_txstatus_setup(struct ath_softc *sc, int size)
2813 {
2814 struct ath_descdma *dd = &sc->txsdma;
2815 u8 txs_len = sc->sc_ah->caps.txs_len;
2816
2817 dd->dd_desc_len = size * txs_len;
2818 dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
2819 &dd->dd_desc_paddr, GFP_KERNEL);
2820 if (!dd->dd_desc)
2821 return -ENOMEM;
2822
2823 return 0;
2824 }
2825
ath_tx_edma_init(struct ath_softc * sc)2826 static int ath_tx_edma_init(struct ath_softc *sc)
2827 {
2828 int err;
2829
2830 err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
2831 if (!err)
2832 ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
2833 sc->txsdma.dd_desc_paddr,
2834 ATH_TXSTATUS_RING_SIZE);
2835
2836 return err;
2837 }
2838
ath_tx_init(struct ath_softc * sc,int nbufs)2839 int ath_tx_init(struct ath_softc *sc, int nbufs)
2840 {
2841 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2842 int error = 0;
2843
2844 spin_lock_init(&sc->tx.txbuflock);
2845
2846 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2847 "tx", nbufs, 1, 1);
2848 if (error != 0) {
2849 ath_err(common,
2850 "Failed to allocate tx descriptors: %d\n", error);
2851 return error;
2852 }
2853
2854 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2855 "beacon", ATH_BCBUF, 1, 1);
2856 if (error != 0) {
2857 ath_err(common,
2858 "Failed to allocate beacon descriptors: %d\n", error);
2859 return error;
2860 }
2861
2862 INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
2863
2864 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
2865 error = ath_tx_edma_init(sc);
2866
2867 return error;
2868 }
2869
ath_tx_node_init(struct ath_softc * sc,struct ath_node * an)2870 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2871 {
2872 struct ath_atx_tid *tid;
2873 struct ath_atx_ac *ac;
2874 int tidno, acno;
2875
2876 for (tidno = 0, tid = &an->tid[tidno];
2877 tidno < IEEE80211_NUM_TIDS;
2878 tidno++, tid++) {
2879 tid->an = an;
2880 tid->tidno = tidno;
2881 tid->seq_start = tid->seq_next = 0;
2882 tid->baw_size = WME_MAX_BA;
2883 tid->baw_head = tid->baw_tail = 0;
2884 tid->sched = false;
2885 tid->active = false;
2886 __skb_queue_head_init(&tid->buf_q);
2887 __skb_queue_head_init(&tid->retry_q);
2888 acno = TID_TO_WME_AC(tidno);
2889 tid->ac = &an->ac[acno];
2890 }
2891
2892 for (acno = 0, ac = &an->ac[acno];
2893 acno < IEEE80211_NUM_ACS; acno++, ac++) {
2894 ac->sched = false;
2895 ac->clear_ps_filter = true;
2896 ac->txq = sc->tx.txq_map[acno];
2897 INIT_LIST_HEAD(&ac->tid_q);
2898 }
2899 }
2900
ath_tx_node_cleanup(struct ath_softc * sc,struct ath_node * an)2901 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2902 {
2903 struct ath_atx_ac *ac;
2904 struct ath_atx_tid *tid;
2905 struct ath_txq *txq;
2906 int tidno;
2907
2908 for (tidno = 0, tid = &an->tid[tidno];
2909 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
2910
2911 ac = tid->ac;
2912 txq = ac->txq;
2913
2914 ath_txq_lock(sc, txq);
2915
2916 if (tid->sched) {
2917 list_del(&tid->list);
2918 tid->sched = false;
2919 }
2920
2921 if (ac->sched) {
2922 list_del(&ac->list);
2923 tid->ac->sched = false;
2924 }
2925
2926 ath_tid_drain(sc, txq, tid);
2927 tid->active = false;
2928
2929 ath_txq_unlock(sc, txq);
2930 }
2931 }
2932
2933 #ifdef CONFIG_ATH9K_TX99
2934
ath9k_tx99_send(struct ath_softc * sc,struct sk_buff * skb,struct ath_tx_control * txctl)2935 int ath9k_tx99_send(struct ath_softc *sc, struct sk_buff *skb,
2936 struct ath_tx_control *txctl)
2937 {
2938 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2939 struct ath_frame_info *fi = get_frame_info(skb);
2940 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2941 struct ath_buf *bf;
2942 int padpos, padsize;
2943
2944 padpos = ieee80211_hdrlen(hdr->frame_control);
2945 padsize = padpos & 3;
2946
2947 if (padsize && skb->len > padpos) {
2948 if (skb_headroom(skb) < padsize) {
2949 ath_dbg(common, XMIT,
2950 "tx99 padding failed\n");
2951 return -EINVAL;
2952 }
2953
2954 skb_push(skb, padsize);
2955 memmove(skb->data, skb->data + padsize, padpos);
2956 }
2957
2958 fi->keyix = ATH9K_TXKEYIX_INVALID;
2959 fi->framelen = skb->len + FCS_LEN;
2960 fi->keytype = ATH9K_KEY_TYPE_CLEAR;
2961
2962 bf = ath_tx_setup_buffer(sc, txctl->txq, NULL, skb);
2963 if (!bf) {
2964 ath_dbg(common, XMIT, "tx99 buffer setup failed\n");
2965 return -EINVAL;
2966 }
2967
2968 ath_set_rates(sc->tx99_vif, NULL, bf);
2969
2970 ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, bf->bf_daddr);
2971 ath9k_hw_tx99_start(sc->sc_ah, txctl->txq->axq_qnum);
2972
2973 ath_tx_send_normal(sc, txctl->txq, NULL, skb);
2974
2975 return 0;
2976 }
2977
2978 #endif /* CONFIG_ATH9K_TX99 */
2979