1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *	Eric Anholt <eric@anholt.net>
25  */
26 
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
47 
48 /* Primary plane formats for gen <= 3 */
49 static const uint32_t i8xx_primary_formats[] = {
50 	DRM_FORMAT_C8,
51 	DRM_FORMAT_RGB565,
52 	DRM_FORMAT_XRGB1555,
53 	DRM_FORMAT_XRGB8888,
54 };
55 
56 /* Primary plane formats for gen >= 4 */
57 static const uint32_t i965_primary_formats[] = {
58 	DRM_FORMAT_C8,
59 	DRM_FORMAT_RGB565,
60 	DRM_FORMAT_XRGB8888,
61 	DRM_FORMAT_XBGR8888,
62 	DRM_FORMAT_XRGB2101010,
63 	DRM_FORMAT_XBGR2101010,
64 };
65 
66 static const uint32_t skl_primary_formats[] = {
67 	DRM_FORMAT_C8,
68 	DRM_FORMAT_RGB565,
69 	DRM_FORMAT_XRGB8888,
70 	DRM_FORMAT_XBGR8888,
71 	DRM_FORMAT_ARGB8888,
72 	DRM_FORMAT_ABGR8888,
73 	DRM_FORMAT_XRGB2101010,
74 	DRM_FORMAT_XBGR2101010,
75 	DRM_FORMAT_YUYV,
76 	DRM_FORMAT_YVYU,
77 	DRM_FORMAT_UYVY,
78 	DRM_FORMAT_VYUY,
79 };
80 
81 /* Cursor formats */
82 static const uint32_t intel_cursor_formats[] = {
83 	DRM_FORMAT_ARGB8888,
84 };
85 
86 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
87 
88 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
89 				struct intel_crtc_state *pipe_config);
90 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
91 				   struct intel_crtc_state *pipe_config);
92 
93 static int intel_framebuffer_init(struct drm_device *dev,
94 				  struct intel_framebuffer *ifb,
95 				  struct drm_mode_fb_cmd2 *mode_cmd,
96 				  struct drm_i915_gem_object *obj);
97 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
98 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
99 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
100 					 struct intel_link_m_n *m_n,
101 					 struct intel_link_m_n *m2_n2);
102 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
103 static void haswell_set_pipeconf(struct drm_crtc *crtc);
104 static void intel_set_pipe_csc(struct drm_crtc *crtc);
105 static void vlv_prepare_pll(struct intel_crtc *crtc,
106 			    const struct intel_crtc_state *pipe_config);
107 static void chv_prepare_pll(struct intel_crtc *crtc,
108 			    const struct intel_crtc_state *pipe_config);
109 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
110 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
111 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
112 	struct intel_crtc_state *crtc_state);
113 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
114 			   int num_connectors);
115 static void skylake_pfit_enable(struct intel_crtc *crtc);
116 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
117 static void ironlake_pfit_enable(struct intel_crtc *crtc);
118 static void intel_modeset_setup_hw_state(struct drm_device *dev);
119 static void intel_pre_disable_primary(struct drm_crtc *crtc);
120 
121 typedef struct {
122 	int	min, max;
123 } intel_range_t;
124 
125 typedef struct {
126 	int	dot_limit;
127 	int	p2_slow, p2_fast;
128 } intel_p2_t;
129 
130 typedef struct intel_limit intel_limit_t;
131 struct intel_limit {
132 	intel_range_t   dot, vco, n, m, m1, m2, p, p1;
133 	intel_p2_t	    p2;
134 };
135 
136 /* returns HPLL frequency in kHz */
valleyview_get_vco(struct drm_i915_private * dev_priv)137 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
138 {
139 	int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
140 
141 	/* Obtain SKU information */
142 	mutex_lock(&dev_priv->sb_lock);
143 	hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
144 		CCK_FUSE_HPLL_FREQ_MASK;
145 	mutex_unlock(&dev_priv->sb_lock);
146 
147 	return vco_freq[hpll_freq] * 1000;
148 }
149 
vlv_get_cck_clock_hpll(struct drm_i915_private * dev_priv,const char * name,u32 reg)150 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
151 				  const char *name, u32 reg)
152 {
153 	u32 val;
154 	int divider;
155 
156 	if (dev_priv->hpll_freq == 0)
157 		dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
158 
159 	mutex_lock(&dev_priv->sb_lock);
160 	val = vlv_cck_read(dev_priv, reg);
161 	mutex_unlock(&dev_priv->sb_lock);
162 
163 	divider = val & CCK_FREQUENCY_VALUES;
164 
165 	WARN((val & CCK_FREQUENCY_STATUS) !=
166 	     (divider << CCK_FREQUENCY_STATUS_SHIFT),
167 	     "%s change in progress\n", name);
168 
169 	return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
170 }
171 
172 int
intel_pch_rawclk(struct drm_device * dev)173 intel_pch_rawclk(struct drm_device *dev)
174 {
175 	struct drm_i915_private *dev_priv = dev->dev_private;
176 
177 	WARN_ON(!HAS_PCH_SPLIT(dev));
178 
179 	return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
180 }
181 
182 /* hrawclock is 1/4 the FSB frequency */
intel_hrawclk(struct drm_device * dev)183 int intel_hrawclk(struct drm_device *dev)
184 {
185 	struct drm_i915_private *dev_priv = dev->dev_private;
186 	uint32_t clkcfg;
187 
188 	/* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
189 	if (IS_VALLEYVIEW(dev))
190 		return 200;
191 
192 	clkcfg = I915_READ(CLKCFG);
193 	switch (clkcfg & CLKCFG_FSB_MASK) {
194 	case CLKCFG_FSB_400:
195 		return 100;
196 	case CLKCFG_FSB_533:
197 		return 133;
198 	case CLKCFG_FSB_667:
199 		return 166;
200 	case CLKCFG_FSB_800:
201 		return 200;
202 	case CLKCFG_FSB_1067:
203 		return 266;
204 	case CLKCFG_FSB_1333:
205 		return 333;
206 	/* these two are just a guess; one of them might be right */
207 	case CLKCFG_FSB_1600:
208 	case CLKCFG_FSB_1600_ALT:
209 		return 400;
210 	default:
211 		return 133;
212 	}
213 }
214 
intel_update_czclk(struct drm_i915_private * dev_priv)215 static void intel_update_czclk(struct drm_i915_private *dev_priv)
216 {
217 	if (!IS_VALLEYVIEW(dev_priv))
218 		return;
219 
220 	dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
221 						      CCK_CZ_CLOCK_CONTROL);
222 
223 	DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
224 }
225 
226 static inline u32 /* units of 100MHz */
intel_fdi_link_freq(struct drm_device * dev)227 intel_fdi_link_freq(struct drm_device *dev)
228 {
229 	if (IS_GEN5(dev)) {
230 		struct drm_i915_private *dev_priv = dev->dev_private;
231 		return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
232 	} else
233 		return 27;
234 }
235 
236 static const intel_limit_t intel_limits_i8xx_dac = {
237 	.dot = { .min = 25000, .max = 350000 },
238 	.vco = { .min = 908000, .max = 1512000 },
239 	.n = { .min = 2, .max = 16 },
240 	.m = { .min = 96, .max = 140 },
241 	.m1 = { .min = 18, .max = 26 },
242 	.m2 = { .min = 6, .max = 16 },
243 	.p = { .min = 4, .max = 128 },
244 	.p1 = { .min = 2, .max = 33 },
245 	.p2 = { .dot_limit = 165000,
246 		.p2_slow = 4, .p2_fast = 2 },
247 };
248 
249 static const intel_limit_t intel_limits_i8xx_dvo = {
250 	.dot = { .min = 25000, .max = 350000 },
251 	.vco = { .min = 908000, .max = 1512000 },
252 	.n = { .min = 2, .max = 16 },
253 	.m = { .min = 96, .max = 140 },
254 	.m1 = { .min = 18, .max = 26 },
255 	.m2 = { .min = 6, .max = 16 },
256 	.p = { .min = 4, .max = 128 },
257 	.p1 = { .min = 2, .max = 33 },
258 	.p2 = { .dot_limit = 165000,
259 		.p2_slow = 4, .p2_fast = 4 },
260 };
261 
262 static const intel_limit_t intel_limits_i8xx_lvds = {
263 	.dot = { .min = 25000, .max = 350000 },
264 	.vco = { .min = 908000, .max = 1512000 },
265 	.n = { .min = 2, .max = 16 },
266 	.m = { .min = 96, .max = 140 },
267 	.m1 = { .min = 18, .max = 26 },
268 	.m2 = { .min = 6, .max = 16 },
269 	.p = { .min = 4, .max = 128 },
270 	.p1 = { .min = 1, .max = 6 },
271 	.p2 = { .dot_limit = 165000,
272 		.p2_slow = 14, .p2_fast = 7 },
273 };
274 
275 static const intel_limit_t intel_limits_i9xx_sdvo = {
276 	.dot = { .min = 20000, .max = 400000 },
277 	.vco = { .min = 1400000, .max = 2800000 },
278 	.n = { .min = 1, .max = 6 },
279 	.m = { .min = 70, .max = 120 },
280 	.m1 = { .min = 8, .max = 18 },
281 	.m2 = { .min = 3, .max = 7 },
282 	.p = { .min = 5, .max = 80 },
283 	.p1 = { .min = 1, .max = 8 },
284 	.p2 = { .dot_limit = 200000,
285 		.p2_slow = 10, .p2_fast = 5 },
286 };
287 
288 static const intel_limit_t intel_limits_i9xx_lvds = {
289 	.dot = { .min = 20000, .max = 400000 },
290 	.vco = { .min = 1400000, .max = 2800000 },
291 	.n = { .min = 1, .max = 6 },
292 	.m = { .min = 70, .max = 120 },
293 	.m1 = { .min = 8, .max = 18 },
294 	.m2 = { .min = 3, .max = 7 },
295 	.p = { .min = 7, .max = 98 },
296 	.p1 = { .min = 1, .max = 8 },
297 	.p2 = { .dot_limit = 112000,
298 		.p2_slow = 14, .p2_fast = 7 },
299 };
300 
301 
302 static const intel_limit_t intel_limits_g4x_sdvo = {
303 	.dot = { .min = 25000, .max = 270000 },
304 	.vco = { .min = 1750000, .max = 3500000},
305 	.n = { .min = 1, .max = 4 },
306 	.m = { .min = 104, .max = 138 },
307 	.m1 = { .min = 17, .max = 23 },
308 	.m2 = { .min = 5, .max = 11 },
309 	.p = { .min = 10, .max = 30 },
310 	.p1 = { .min = 1, .max = 3},
311 	.p2 = { .dot_limit = 270000,
312 		.p2_slow = 10,
313 		.p2_fast = 10
314 	},
315 };
316 
317 static const intel_limit_t intel_limits_g4x_hdmi = {
318 	.dot = { .min = 22000, .max = 400000 },
319 	.vco = { .min = 1750000, .max = 3500000},
320 	.n = { .min = 1, .max = 4 },
321 	.m = { .min = 104, .max = 138 },
322 	.m1 = { .min = 16, .max = 23 },
323 	.m2 = { .min = 5, .max = 11 },
324 	.p = { .min = 5, .max = 80 },
325 	.p1 = { .min = 1, .max = 8},
326 	.p2 = { .dot_limit = 165000,
327 		.p2_slow = 10, .p2_fast = 5 },
328 };
329 
330 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
331 	.dot = { .min = 20000, .max = 115000 },
332 	.vco = { .min = 1750000, .max = 3500000 },
333 	.n = { .min = 1, .max = 3 },
334 	.m = { .min = 104, .max = 138 },
335 	.m1 = { .min = 17, .max = 23 },
336 	.m2 = { .min = 5, .max = 11 },
337 	.p = { .min = 28, .max = 112 },
338 	.p1 = { .min = 2, .max = 8 },
339 	.p2 = { .dot_limit = 0,
340 		.p2_slow = 14, .p2_fast = 14
341 	},
342 };
343 
344 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
345 	.dot = { .min = 80000, .max = 224000 },
346 	.vco = { .min = 1750000, .max = 3500000 },
347 	.n = { .min = 1, .max = 3 },
348 	.m = { .min = 104, .max = 138 },
349 	.m1 = { .min = 17, .max = 23 },
350 	.m2 = { .min = 5, .max = 11 },
351 	.p = { .min = 14, .max = 42 },
352 	.p1 = { .min = 2, .max = 6 },
353 	.p2 = { .dot_limit = 0,
354 		.p2_slow = 7, .p2_fast = 7
355 	},
356 };
357 
358 static const intel_limit_t intel_limits_pineview_sdvo = {
359 	.dot = { .min = 20000, .max = 400000},
360 	.vco = { .min = 1700000, .max = 3500000 },
361 	/* Pineview's Ncounter is a ring counter */
362 	.n = { .min = 3, .max = 6 },
363 	.m = { .min = 2, .max = 256 },
364 	/* Pineview only has one combined m divider, which we treat as m2. */
365 	.m1 = { .min = 0, .max = 0 },
366 	.m2 = { .min = 0, .max = 254 },
367 	.p = { .min = 5, .max = 80 },
368 	.p1 = { .min = 1, .max = 8 },
369 	.p2 = { .dot_limit = 200000,
370 		.p2_slow = 10, .p2_fast = 5 },
371 };
372 
373 static const intel_limit_t intel_limits_pineview_lvds = {
374 	.dot = { .min = 20000, .max = 400000 },
375 	.vco = { .min = 1700000, .max = 3500000 },
376 	.n = { .min = 3, .max = 6 },
377 	.m = { .min = 2, .max = 256 },
378 	.m1 = { .min = 0, .max = 0 },
379 	.m2 = { .min = 0, .max = 254 },
380 	.p = { .min = 7, .max = 112 },
381 	.p1 = { .min = 1, .max = 8 },
382 	.p2 = { .dot_limit = 112000,
383 		.p2_slow = 14, .p2_fast = 14 },
384 };
385 
386 /* Ironlake / Sandybridge
387  *
388  * We calculate clock using (register_value + 2) for N/M1/M2, so here
389  * the range value for them is (actual_value - 2).
390  */
391 static const intel_limit_t intel_limits_ironlake_dac = {
392 	.dot = { .min = 25000, .max = 350000 },
393 	.vco = { .min = 1760000, .max = 3510000 },
394 	.n = { .min = 1, .max = 5 },
395 	.m = { .min = 79, .max = 127 },
396 	.m1 = { .min = 12, .max = 22 },
397 	.m2 = { .min = 5, .max = 9 },
398 	.p = { .min = 5, .max = 80 },
399 	.p1 = { .min = 1, .max = 8 },
400 	.p2 = { .dot_limit = 225000,
401 		.p2_slow = 10, .p2_fast = 5 },
402 };
403 
404 static const intel_limit_t intel_limits_ironlake_single_lvds = {
405 	.dot = { .min = 25000, .max = 350000 },
406 	.vco = { .min = 1760000, .max = 3510000 },
407 	.n = { .min = 1, .max = 3 },
408 	.m = { .min = 79, .max = 118 },
409 	.m1 = { .min = 12, .max = 22 },
410 	.m2 = { .min = 5, .max = 9 },
411 	.p = { .min = 28, .max = 112 },
412 	.p1 = { .min = 2, .max = 8 },
413 	.p2 = { .dot_limit = 225000,
414 		.p2_slow = 14, .p2_fast = 14 },
415 };
416 
417 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
418 	.dot = { .min = 25000, .max = 350000 },
419 	.vco = { .min = 1760000, .max = 3510000 },
420 	.n = { .min = 1, .max = 3 },
421 	.m = { .min = 79, .max = 127 },
422 	.m1 = { .min = 12, .max = 22 },
423 	.m2 = { .min = 5, .max = 9 },
424 	.p = { .min = 14, .max = 56 },
425 	.p1 = { .min = 2, .max = 8 },
426 	.p2 = { .dot_limit = 225000,
427 		.p2_slow = 7, .p2_fast = 7 },
428 };
429 
430 /* LVDS 100mhz refclk limits. */
431 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
432 	.dot = { .min = 25000, .max = 350000 },
433 	.vco = { .min = 1760000, .max = 3510000 },
434 	.n = { .min = 1, .max = 2 },
435 	.m = { .min = 79, .max = 126 },
436 	.m1 = { .min = 12, .max = 22 },
437 	.m2 = { .min = 5, .max = 9 },
438 	.p = { .min = 28, .max = 112 },
439 	.p1 = { .min = 2, .max = 8 },
440 	.p2 = { .dot_limit = 225000,
441 		.p2_slow = 14, .p2_fast = 14 },
442 };
443 
444 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
445 	.dot = { .min = 25000, .max = 350000 },
446 	.vco = { .min = 1760000, .max = 3510000 },
447 	.n = { .min = 1, .max = 3 },
448 	.m = { .min = 79, .max = 126 },
449 	.m1 = { .min = 12, .max = 22 },
450 	.m2 = { .min = 5, .max = 9 },
451 	.p = { .min = 14, .max = 42 },
452 	.p1 = { .min = 2, .max = 6 },
453 	.p2 = { .dot_limit = 225000,
454 		.p2_slow = 7, .p2_fast = 7 },
455 };
456 
457 static const intel_limit_t intel_limits_vlv = {
458 	 /*
459 	  * These are the data rate limits (measured in fast clocks)
460 	  * since those are the strictest limits we have. The fast
461 	  * clock and actual rate limits are more relaxed, so checking
462 	  * them would make no difference.
463 	  */
464 	.dot = { .min = 25000 * 5, .max = 270000 * 5 },
465 	.vco = { .min = 4000000, .max = 6000000 },
466 	.n = { .min = 1, .max = 7 },
467 	.m1 = { .min = 2, .max = 3 },
468 	.m2 = { .min = 11, .max = 156 },
469 	.p1 = { .min = 2, .max = 3 },
470 	.p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
471 };
472 
473 static const intel_limit_t intel_limits_chv = {
474 	/*
475 	 * These are the data rate limits (measured in fast clocks)
476 	 * since those are the strictest limits we have.  The fast
477 	 * clock and actual rate limits are more relaxed, so checking
478 	 * them would make no difference.
479 	 */
480 	.dot = { .min = 25000 * 5, .max = 540000 * 5},
481 	.vco = { .min = 4800000, .max = 6480000 },
482 	.n = { .min = 1, .max = 1 },
483 	.m1 = { .min = 2, .max = 2 },
484 	.m2 = { .min = 24 << 22, .max = 175 << 22 },
485 	.p1 = { .min = 2, .max = 4 },
486 	.p2 = {	.p2_slow = 1, .p2_fast = 14 },
487 };
488 
489 static const intel_limit_t intel_limits_bxt = {
490 	/* FIXME: find real dot limits */
491 	.dot = { .min = 0, .max = INT_MAX },
492 	.vco = { .min = 4800000, .max = 6700000 },
493 	.n = { .min = 1, .max = 1 },
494 	.m1 = { .min = 2, .max = 2 },
495 	/* FIXME: find real m2 limits */
496 	.m2 = { .min = 2 << 22, .max = 255 << 22 },
497 	.p1 = { .min = 2, .max = 4 },
498 	.p2 = { .p2_slow = 1, .p2_fast = 20 },
499 };
500 
501 static bool
needs_modeset(struct drm_crtc_state * state)502 needs_modeset(struct drm_crtc_state *state)
503 {
504 	return drm_atomic_crtc_needs_modeset(state);
505 }
506 
507 /**
508  * Returns whether any output on the specified pipe is of the specified type
509  */
intel_pipe_has_type(struct intel_crtc * crtc,enum intel_output_type type)510 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
511 {
512 	struct drm_device *dev = crtc->base.dev;
513 	struct intel_encoder *encoder;
514 
515 	for_each_encoder_on_crtc(dev, &crtc->base, encoder)
516 		if (encoder->type == type)
517 			return true;
518 
519 	return false;
520 }
521 
522 /**
523  * Returns whether any output on the specified pipe will have the specified
524  * type after a staged modeset is complete, i.e., the same as
525  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
526  * encoder->crtc.
527  */
intel_pipe_will_have_type(const struct intel_crtc_state * crtc_state,int type)528 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
529 				      int type)
530 {
531 	struct drm_atomic_state *state = crtc_state->base.state;
532 	struct drm_connector *connector;
533 	struct drm_connector_state *connector_state;
534 	struct intel_encoder *encoder;
535 	int i, num_connectors = 0;
536 
537 	for_each_connector_in_state(state, connector, connector_state, i) {
538 		if (connector_state->crtc != crtc_state->base.crtc)
539 			continue;
540 
541 		num_connectors++;
542 
543 		encoder = to_intel_encoder(connector_state->best_encoder);
544 		if (encoder->type == type)
545 			return true;
546 	}
547 
548 	WARN_ON(num_connectors == 0);
549 
550 	return false;
551 }
552 
553 static const intel_limit_t *
intel_ironlake_limit(struct intel_crtc_state * crtc_state,int refclk)554 intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
555 {
556 	struct drm_device *dev = crtc_state->base.crtc->dev;
557 	const intel_limit_t *limit;
558 
559 	if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
560 		if (intel_is_dual_link_lvds(dev)) {
561 			if (refclk == 100000)
562 				limit = &intel_limits_ironlake_dual_lvds_100m;
563 			else
564 				limit = &intel_limits_ironlake_dual_lvds;
565 		} else {
566 			if (refclk == 100000)
567 				limit = &intel_limits_ironlake_single_lvds_100m;
568 			else
569 				limit = &intel_limits_ironlake_single_lvds;
570 		}
571 	} else
572 		limit = &intel_limits_ironlake_dac;
573 
574 	return limit;
575 }
576 
577 static const intel_limit_t *
intel_g4x_limit(struct intel_crtc_state * crtc_state)578 intel_g4x_limit(struct intel_crtc_state *crtc_state)
579 {
580 	struct drm_device *dev = crtc_state->base.crtc->dev;
581 	const intel_limit_t *limit;
582 
583 	if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
584 		if (intel_is_dual_link_lvds(dev))
585 			limit = &intel_limits_g4x_dual_channel_lvds;
586 		else
587 			limit = &intel_limits_g4x_single_channel_lvds;
588 	} else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
589 		   intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
590 		limit = &intel_limits_g4x_hdmi;
591 	} else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
592 		limit = &intel_limits_g4x_sdvo;
593 	} else /* The option is for other outputs */
594 		limit = &intel_limits_i9xx_sdvo;
595 
596 	return limit;
597 }
598 
599 static const intel_limit_t *
intel_limit(struct intel_crtc_state * crtc_state,int refclk)600 intel_limit(struct intel_crtc_state *crtc_state, int refclk)
601 {
602 	struct drm_device *dev = crtc_state->base.crtc->dev;
603 	const intel_limit_t *limit;
604 
605 	if (IS_BROXTON(dev))
606 		limit = &intel_limits_bxt;
607 	else if (HAS_PCH_SPLIT(dev))
608 		limit = intel_ironlake_limit(crtc_state, refclk);
609 	else if (IS_G4X(dev)) {
610 		limit = intel_g4x_limit(crtc_state);
611 	} else if (IS_PINEVIEW(dev)) {
612 		if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
613 			limit = &intel_limits_pineview_lvds;
614 		else
615 			limit = &intel_limits_pineview_sdvo;
616 	} else if (IS_CHERRYVIEW(dev)) {
617 		limit = &intel_limits_chv;
618 	} else if (IS_VALLEYVIEW(dev)) {
619 		limit = &intel_limits_vlv;
620 	} else if (!IS_GEN2(dev)) {
621 		if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
622 			limit = &intel_limits_i9xx_lvds;
623 		else
624 			limit = &intel_limits_i9xx_sdvo;
625 	} else {
626 		if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
627 			limit = &intel_limits_i8xx_lvds;
628 		else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
629 			limit = &intel_limits_i8xx_dvo;
630 		else
631 			limit = &intel_limits_i8xx_dac;
632 	}
633 	return limit;
634 }
635 
636 /*
637  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
638  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
639  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
640  * The helpers' return value is the rate of the clock that is fed to the
641  * display engine's pipe which can be the above fast dot clock rate or a
642  * divided-down version of it.
643  */
644 /* m1 is reserved as 0 in Pineview, n is a ring counter */
pnv_calc_dpll_params(int refclk,intel_clock_t * clock)645 static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
646 {
647 	clock->m = clock->m2 + 2;
648 	clock->p = clock->p1 * clock->p2;
649 	if (WARN_ON(clock->n == 0 || clock->p == 0))
650 		return 0;
651 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
652 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
653 
654 	return clock->dot;
655 }
656 
i9xx_dpll_compute_m(struct dpll * dpll)657 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
658 {
659 	return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
660 }
661 
i9xx_calc_dpll_params(int refclk,intel_clock_t * clock)662 static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
663 {
664 	clock->m = i9xx_dpll_compute_m(clock);
665 	clock->p = clock->p1 * clock->p2;
666 	if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
667 		return 0;
668 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
669 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
670 
671 	return clock->dot;
672 }
673 
vlv_calc_dpll_params(int refclk,intel_clock_t * clock)674 static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
675 {
676 	clock->m = clock->m1 * clock->m2;
677 	clock->p = clock->p1 * clock->p2;
678 	if (WARN_ON(clock->n == 0 || clock->p == 0))
679 		return 0;
680 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
681 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
682 
683 	return clock->dot / 5;
684 }
685 
chv_calc_dpll_params(int refclk,intel_clock_t * clock)686 int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
687 {
688 	clock->m = clock->m1 * clock->m2;
689 	clock->p = clock->p1 * clock->p2;
690 	if (WARN_ON(clock->n == 0 || clock->p == 0))
691 		return 0;
692 	clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
693 			clock->n << 22);
694 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
695 
696 	return clock->dot / 5;
697 }
698 
699 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
700 /**
701  * Returns whether the given set of divisors are valid for a given refclk with
702  * the given connectors.
703  */
704 
intel_PLL_is_valid(struct drm_device * dev,const intel_limit_t * limit,const intel_clock_t * clock)705 static bool intel_PLL_is_valid(struct drm_device *dev,
706 			       const intel_limit_t *limit,
707 			       const intel_clock_t *clock)
708 {
709 	if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
710 		INTELPllInvalid("n out of range\n");
711 	if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
712 		INTELPllInvalid("p1 out of range\n");
713 	if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
714 		INTELPllInvalid("m2 out of range\n");
715 	if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
716 		INTELPllInvalid("m1 out of range\n");
717 
718 	if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
719 		if (clock->m1 <= clock->m2)
720 			INTELPllInvalid("m1 <= m2\n");
721 
722 	if (!IS_VALLEYVIEW(dev) && !IS_BROXTON(dev)) {
723 		if (clock->p < limit->p.min || limit->p.max < clock->p)
724 			INTELPllInvalid("p out of range\n");
725 		if (clock->m < limit->m.min || limit->m.max < clock->m)
726 			INTELPllInvalid("m out of range\n");
727 	}
728 
729 	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
730 		INTELPllInvalid("vco out of range\n");
731 	/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
732 	 * connector, etc., rather than just a single range.
733 	 */
734 	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
735 		INTELPllInvalid("dot out of range\n");
736 
737 	return true;
738 }
739 
740 static int
i9xx_select_p2_div(const intel_limit_t * limit,const struct intel_crtc_state * crtc_state,int target)741 i9xx_select_p2_div(const intel_limit_t *limit,
742 		   const struct intel_crtc_state *crtc_state,
743 		   int target)
744 {
745 	struct drm_device *dev = crtc_state->base.crtc->dev;
746 
747 	if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
748 		/*
749 		 * For LVDS just rely on its current settings for dual-channel.
750 		 * We haven't figured out how to reliably set up different
751 		 * single/dual channel state, if we even can.
752 		 */
753 		if (intel_is_dual_link_lvds(dev))
754 			return limit->p2.p2_fast;
755 		else
756 			return limit->p2.p2_slow;
757 	} else {
758 		if (target < limit->p2.dot_limit)
759 			return limit->p2.p2_slow;
760 		else
761 			return limit->p2.p2_fast;
762 	}
763 }
764 
765 static bool
i9xx_find_best_dpll(const intel_limit_t * limit,struct intel_crtc_state * crtc_state,int target,int refclk,intel_clock_t * match_clock,intel_clock_t * best_clock)766 i9xx_find_best_dpll(const intel_limit_t *limit,
767 		    struct intel_crtc_state *crtc_state,
768 		    int target, int refclk, intel_clock_t *match_clock,
769 		    intel_clock_t *best_clock)
770 {
771 	struct drm_device *dev = crtc_state->base.crtc->dev;
772 	intel_clock_t clock;
773 	int err = target;
774 
775 	memset(best_clock, 0, sizeof(*best_clock));
776 
777 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
778 
779 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
780 	     clock.m1++) {
781 		for (clock.m2 = limit->m2.min;
782 		     clock.m2 <= limit->m2.max; clock.m2++) {
783 			if (clock.m2 >= clock.m1)
784 				break;
785 			for (clock.n = limit->n.min;
786 			     clock.n <= limit->n.max; clock.n++) {
787 				for (clock.p1 = limit->p1.min;
788 					clock.p1 <= limit->p1.max; clock.p1++) {
789 					int this_err;
790 
791 					i9xx_calc_dpll_params(refclk, &clock);
792 					if (!intel_PLL_is_valid(dev, limit,
793 								&clock))
794 						continue;
795 					if (match_clock &&
796 					    clock.p != match_clock->p)
797 						continue;
798 
799 					this_err = abs(clock.dot - target);
800 					if (this_err < err) {
801 						*best_clock = clock;
802 						err = this_err;
803 					}
804 				}
805 			}
806 		}
807 	}
808 
809 	return (err != target);
810 }
811 
812 static bool
pnv_find_best_dpll(const intel_limit_t * limit,struct intel_crtc_state * crtc_state,int target,int refclk,intel_clock_t * match_clock,intel_clock_t * best_clock)813 pnv_find_best_dpll(const intel_limit_t *limit,
814 		   struct intel_crtc_state *crtc_state,
815 		   int target, int refclk, intel_clock_t *match_clock,
816 		   intel_clock_t *best_clock)
817 {
818 	struct drm_device *dev = crtc_state->base.crtc->dev;
819 	intel_clock_t clock;
820 	int err = target;
821 
822 	memset(best_clock, 0, sizeof(*best_clock));
823 
824 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
825 
826 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
827 	     clock.m1++) {
828 		for (clock.m2 = limit->m2.min;
829 		     clock.m2 <= limit->m2.max; clock.m2++) {
830 			for (clock.n = limit->n.min;
831 			     clock.n <= limit->n.max; clock.n++) {
832 				for (clock.p1 = limit->p1.min;
833 					clock.p1 <= limit->p1.max; clock.p1++) {
834 					int this_err;
835 
836 					pnv_calc_dpll_params(refclk, &clock);
837 					if (!intel_PLL_is_valid(dev, limit,
838 								&clock))
839 						continue;
840 					if (match_clock &&
841 					    clock.p != match_clock->p)
842 						continue;
843 
844 					this_err = abs(clock.dot - target);
845 					if (this_err < err) {
846 						*best_clock = clock;
847 						err = this_err;
848 					}
849 				}
850 			}
851 		}
852 	}
853 
854 	return (err != target);
855 }
856 
857 static bool
g4x_find_best_dpll(const intel_limit_t * limit,struct intel_crtc_state * crtc_state,int target,int refclk,intel_clock_t * match_clock,intel_clock_t * best_clock)858 g4x_find_best_dpll(const intel_limit_t *limit,
859 		   struct intel_crtc_state *crtc_state,
860 		   int target, int refclk, intel_clock_t *match_clock,
861 		   intel_clock_t *best_clock)
862 {
863 	struct drm_device *dev = crtc_state->base.crtc->dev;
864 	intel_clock_t clock;
865 	int max_n;
866 	bool found = false;
867 	/* approximately equals target * 0.00585 */
868 	int err_most = (target >> 8) + (target >> 9);
869 
870 	memset(best_clock, 0, sizeof(*best_clock));
871 
872 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
873 
874 	max_n = limit->n.max;
875 	/* based on hardware requirement, prefer smaller n to precision */
876 	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
877 		/* based on hardware requirement, prefere larger m1,m2 */
878 		for (clock.m1 = limit->m1.max;
879 		     clock.m1 >= limit->m1.min; clock.m1--) {
880 			for (clock.m2 = limit->m2.max;
881 			     clock.m2 >= limit->m2.min; clock.m2--) {
882 				for (clock.p1 = limit->p1.max;
883 				     clock.p1 >= limit->p1.min; clock.p1--) {
884 					int this_err;
885 
886 					i9xx_calc_dpll_params(refclk, &clock);
887 					if (!intel_PLL_is_valid(dev, limit,
888 								&clock))
889 						continue;
890 
891 					this_err = abs(clock.dot - target);
892 					if (this_err < err_most) {
893 						*best_clock = clock;
894 						err_most = this_err;
895 						max_n = clock.n;
896 						found = true;
897 					}
898 				}
899 			}
900 		}
901 	}
902 	return found;
903 }
904 
905 /*
906  * Check if the calculated PLL configuration is more optimal compared to the
907  * best configuration and error found so far. Return the calculated error.
908  */
vlv_PLL_is_optimal(struct drm_device * dev,int target_freq,const intel_clock_t * calculated_clock,const intel_clock_t * best_clock,unsigned int best_error_ppm,unsigned int * error_ppm)909 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
910 			       const intel_clock_t *calculated_clock,
911 			       const intel_clock_t *best_clock,
912 			       unsigned int best_error_ppm,
913 			       unsigned int *error_ppm)
914 {
915 	/*
916 	 * For CHV ignore the error and consider only the P value.
917 	 * Prefer a bigger P value based on HW requirements.
918 	 */
919 	if (IS_CHERRYVIEW(dev)) {
920 		*error_ppm = 0;
921 
922 		return calculated_clock->p > best_clock->p;
923 	}
924 
925 	if (WARN_ON_ONCE(!target_freq))
926 		return false;
927 
928 	*error_ppm = div_u64(1000000ULL *
929 				abs(target_freq - calculated_clock->dot),
930 			     target_freq);
931 	/*
932 	 * Prefer a better P value over a better (smaller) error if the error
933 	 * is small. Ensure this preference for future configurations too by
934 	 * setting the error to 0.
935 	 */
936 	if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
937 		*error_ppm = 0;
938 
939 		return true;
940 	}
941 
942 	return *error_ppm + 10 < best_error_ppm;
943 }
944 
945 static bool
vlv_find_best_dpll(const intel_limit_t * limit,struct intel_crtc_state * crtc_state,int target,int refclk,intel_clock_t * match_clock,intel_clock_t * best_clock)946 vlv_find_best_dpll(const intel_limit_t *limit,
947 		   struct intel_crtc_state *crtc_state,
948 		   int target, int refclk, intel_clock_t *match_clock,
949 		   intel_clock_t *best_clock)
950 {
951 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
952 	struct drm_device *dev = crtc->base.dev;
953 	intel_clock_t clock;
954 	unsigned int bestppm = 1000000;
955 	/* min update 19.2 MHz */
956 	int max_n = min(limit->n.max, refclk / 19200);
957 	bool found = false;
958 
959 	target *= 5; /* fast clock */
960 
961 	memset(best_clock, 0, sizeof(*best_clock));
962 
963 	/* based on hardware requirement, prefer smaller n to precision */
964 	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
965 		for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
966 			for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
967 			     clock.p2 -= clock.p2 > 10 ? 2 : 1) {
968 				clock.p = clock.p1 * clock.p2;
969 				/* based on hardware requirement, prefer bigger m1,m2 values */
970 				for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
971 					unsigned int ppm;
972 
973 					clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
974 								     refclk * clock.m1);
975 
976 					vlv_calc_dpll_params(refclk, &clock);
977 
978 					if (!intel_PLL_is_valid(dev, limit,
979 								&clock))
980 						continue;
981 
982 					if (!vlv_PLL_is_optimal(dev, target,
983 								&clock,
984 								best_clock,
985 								bestppm, &ppm))
986 						continue;
987 
988 					*best_clock = clock;
989 					bestppm = ppm;
990 					found = true;
991 				}
992 			}
993 		}
994 	}
995 
996 	return found;
997 }
998 
999 static bool
chv_find_best_dpll(const intel_limit_t * limit,struct intel_crtc_state * crtc_state,int target,int refclk,intel_clock_t * match_clock,intel_clock_t * best_clock)1000 chv_find_best_dpll(const intel_limit_t *limit,
1001 		   struct intel_crtc_state *crtc_state,
1002 		   int target, int refclk, intel_clock_t *match_clock,
1003 		   intel_clock_t *best_clock)
1004 {
1005 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1006 	struct drm_device *dev = crtc->base.dev;
1007 	unsigned int best_error_ppm;
1008 	intel_clock_t clock;
1009 	uint64_t m2;
1010 	int found = false;
1011 
1012 	memset(best_clock, 0, sizeof(*best_clock));
1013 	best_error_ppm = 1000000;
1014 
1015 	/*
1016 	 * Based on hardware doc, the n always set to 1, and m1 always
1017 	 * set to 2.  If requires to support 200Mhz refclk, we need to
1018 	 * revisit this because n may not 1 anymore.
1019 	 */
1020 	clock.n = 1, clock.m1 = 2;
1021 	target *= 5;	/* fast clock */
1022 
1023 	for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
1024 		for (clock.p2 = limit->p2.p2_fast;
1025 				clock.p2 >= limit->p2.p2_slow;
1026 				clock.p2 -= clock.p2 > 10 ? 2 : 1) {
1027 			unsigned int error_ppm;
1028 
1029 			clock.p = clock.p1 * clock.p2;
1030 
1031 			m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
1032 					clock.n) << 22, refclk * clock.m1);
1033 
1034 			if (m2 > INT_MAX/clock.m1)
1035 				continue;
1036 
1037 			clock.m2 = m2;
1038 
1039 			chv_calc_dpll_params(refclk, &clock);
1040 
1041 			if (!intel_PLL_is_valid(dev, limit, &clock))
1042 				continue;
1043 
1044 			if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1045 						best_error_ppm, &error_ppm))
1046 				continue;
1047 
1048 			*best_clock = clock;
1049 			best_error_ppm = error_ppm;
1050 			found = true;
1051 		}
1052 	}
1053 
1054 	return found;
1055 }
1056 
bxt_find_best_dpll(struct intel_crtc_state * crtc_state,int target_clock,intel_clock_t * best_clock)1057 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1058 			intel_clock_t *best_clock)
1059 {
1060 	int refclk = i9xx_get_refclk(crtc_state, 0);
1061 
1062 	return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
1063 				  target_clock, refclk, NULL, best_clock);
1064 }
1065 
intel_crtc_active(struct drm_crtc * crtc)1066 bool intel_crtc_active(struct drm_crtc *crtc)
1067 {
1068 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1069 
1070 	/* Be paranoid as we can arrive here with only partial
1071 	 * state retrieved from the hardware during setup.
1072 	 *
1073 	 * We can ditch the adjusted_mode.crtc_clock check as soon
1074 	 * as Haswell has gained clock readout/fastboot support.
1075 	 *
1076 	 * We can ditch the crtc->primary->fb check as soon as we can
1077 	 * properly reconstruct framebuffers.
1078 	 *
1079 	 * FIXME: The intel_crtc->active here should be switched to
1080 	 * crtc->state->active once we have proper CRTC states wired up
1081 	 * for atomic.
1082 	 */
1083 	return intel_crtc->active && crtc->primary->state->fb &&
1084 		intel_crtc->config->base.adjusted_mode.crtc_clock;
1085 }
1086 
intel_pipe_to_cpu_transcoder(struct drm_i915_private * dev_priv,enum pipe pipe)1087 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1088 					     enum pipe pipe)
1089 {
1090 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1091 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1092 
1093 	return intel_crtc->config->cpu_transcoder;
1094 }
1095 
pipe_dsl_stopped(struct drm_device * dev,enum pipe pipe)1096 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1097 {
1098 	struct drm_i915_private *dev_priv = dev->dev_private;
1099 	u32 reg = PIPEDSL(pipe);
1100 	u32 line1, line2;
1101 	u32 line_mask;
1102 
1103 	if (IS_GEN2(dev))
1104 		line_mask = DSL_LINEMASK_GEN2;
1105 	else
1106 		line_mask = DSL_LINEMASK_GEN3;
1107 
1108 	line1 = I915_READ(reg) & line_mask;
1109 	msleep(5);
1110 	line2 = I915_READ(reg) & line_mask;
1111 
1112 	return line1 == line2;
1113 }
1114 
1115 /*
1116  * intel_wait_for_pipe_off - wait for pipe to turn off
1117  * @crtc: crtc whose pipe to wait for
1118  *
1119  * After disabling a pipe, we can't wait for vblank in the usual way,
1120  * spinning on the vblank interrupt status bit, since we won't actually
1121  * see an interrupt when the pipe is disabled.
1122  *
1123  * On Gen4 and above:
1124  *   wait for the pipe register state bit to turn off
1125  *
1126  * Otherwise:
1127  *   wait for the display line value to settle (it usually
1128  *   ends up stopping at the start of the next frame).
1129  *
1130  */
intel_wait_for_pipe_off(struct intel_crtc * crtc)1131 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1132 {
1133 	struct drm_device *dev = crtc->base.dev;
1134 	struct drm_i915_private *dev_priv = dev->dev_private;
1135 	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1136 	enum pipe pipe = crtc->pipe;
1137 
1138 	if (INTEL_INFO(dev)->gen >= 4) {
1139 		int reg = PIPECONF(cpu_transcoder);
1140 
1141 		/* Wait for the Pipe State to go off */
1142 		if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1143 			     100))
1144 			WARN(1, "pipe_off wait timed out\n");
1145 	} else {
1146 		/* Wait for the display line to settle */
1147 		if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1148 			WARN(1, "pipe_off wait timed out\n");
1149 	}
1150 }
1151 
state_string(bool enabled)1152 static const char *state_string(bool enabled)
1153 {
1154 	return enabled ? "on" : "off";
1155 }
1156 
1157 /* Only for pre-ILK configs */
assert_pll(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)1158 void assert_pll(struct drm_i915_private *dev_priv,
1159 		enum pipe pipe, bool state)
1160 {
1161 	u32 val;
1162 	bool cur_state;
1163 
1164 	val = I915_READ(DPLL(pipe));
1165 	cur_state = !!(val & DPLL_VCO_ENABLE);
1166 	I915_STATE_WARN(cur_state != state,
1167 	     "PLL state assertion failure (expected %s, current %s)\n",
1168 	     state_string(state), state_string(cur_state));
1169 }
1170 
1171 /* XXX: the dsi pll is shared between MIPI DSI ports */
assert_dsi_pll(struct drm_i915_private * dev_priv,bool state)1172 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1173 {
1174 	u32 val;
1175 	bool cur_state;
1176 
1177 	mutex_lock(&dev_priv->sb_lock);
1178 	val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1179 	mutex_unlock(&dev_priv->sb_lock);
1180 
1181 	cur_state = val & DSI_PLL_VCO_EN;
1182 	I915_STATE_WARN(cur_state != state,
1183 	     "DSI PLL state assertion failure (expected %s, current %s)\n",
1184 	     state_string(state), state_string(cur_state));
1185 }
1186 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1187 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1188 
1189 struct intel_shared_dpll *
intel_crtc_to_shared_dpll(struct intel_crtc * crtc)1190 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1191 {
1192 	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1193 
1194 	if (crtc->config->shared_dpll < 0)
1195 		return NULL;
1196 
1197 	return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1198 }
1199 
1200 /* For ILK+ */
assert_shared_dpll(struct drm_i915_private * dev_priv,struct intel_shared_dpll * pll,bool state)1201 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1202 			struct intel_shared_dpll *pll,
1203 			bool state)
1204 {
1205 	bool cur_state;
1206 	struct intel_dpll_hw_state hw_state;
1207 
1208 	if (WARN (!pll,
1209 		  "asserting DPLL %s with no DPLL\n", state_string(state)))
1210 		return;
1211 
1212 	cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1213 	I915_STATE_WARN(cur_state != state,
1214 	     "%s assertion failure (expected %s, current %s)\n",
1215 	     pll->name, state_string(state), state_string(cur_state));
1216 }
1217 
assert_fdi_tx(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)1218 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1219 			  enum pipe pipe, bool state)
1220 {
1221 	bool cur_state;
1222 	enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1223 								      pipe);
1224 
1225 	if (HAS_DDI(dev_priv->dev)) {
1226 		/* DDI does not have a specific FDI_TX register */
1227 		u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1228 		cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1229 	} else {
1230 		u32 val = I915_READ(FDI_TX_CTL(pipe));
1231 		cur_state = !!(val & FDI_TX_ENABLE);
1232 	}
1233 	I915_STATE_WARN(cur_state != state,
1234 	     "FDI TX state assertion failure (expected %s, current %s)\n",
1235 	     state_string(state), state_string(cur_state));
1236 }
1237 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1238 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1239 
assert_fdi_rx(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)1240 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1241 			  enum pipe pipe, bool state)
1242 {
1243 	u32 val;
1244 	bool cur_state;
1245 
1246 	val = I915_READ(FDI_RX_CTL(pipe));
1247 	cur_state = !!(val & FDI_RX_ENABLE);
1248 	I915_STATE_WARN(cur_state != state,
1249 	     "FDI RX state assertion failure (expected %s, current %s)\n",
1250 	     state_string(state), state_string(cur_state));
1251 }
1252 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1253 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1254 
assert_fdi_tx_pll_enabled(struct drm_i915_private * dev_priv,enum pipe pipe)1255 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1256 				      enum pipe pipe)
1257 {
1258 	u32 val;
1259 
1260 	/* ILK FDI PLL is always enabled */
1261 	if (INTEL_INFO(dev_priv->dev)->gen == 5)
1262 		return;
1263 
1264 	/* On Haswell, DDI ports are responsible for the FDI PLL setup */
1265 	if (HAS_DDI(dev_priv->dev))
1266 		return;
1267 
1268 	val = I915_READ(FDI_TX_CTL(pipe));
1269 	I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1270 }
1271 
assert_fdi_rx_pll(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)1272 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1273 		       enum pipe pipe, bool state)
1274 {
1275 	u32 val;
1276 	bool cur_state;
1277 
1278 	val = I915_READ(FDI_RX_CTL(pipe));
1279 	cur_state = !!(val & FDI_RX_PLL_ENABLE);
1280 	I915_STATE_WARN(cur_state != state,
1281 	     "FDI RX PLL assertion failure (expected %s, current %s)\n",
1282 	     state_string(state), state_string(cur_state));
1283 }
1284 
assert_panel_unlocked(struct drm_i915_private * dev_priv,enum pipe pipe)1285 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1286 			   enum pipe pipe)
1287 {
1288 	struct drm_device *dev = dev_priv->dev;
1289 	int pp_reg;
1290 	u32 val;
1291 	enum pipe panel_pipe = PIPE_A;
1292 	bool locked = true;
1293 
1294 	if (WARN_ON(HAS_DDI(dev)))
1295 		return;
1296 
1297 	if (HAS_PCH_SPLIT(dev)) {
1298 		u32 port_sel;
1299 
1300 		pp_reg = PCH_PP_CONTROL;
1301 		port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1302 
1303 		if (port_sel == PANEL_PORT_SELECT_LVDS &&
1304 		    I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1305 			panel_pipe = PIPE_B;
1306 		/* XXX: else fix for eDP */
1307 	} else if (IS_VALLEYVIEW(dev)) {
1308 		/* presumably write lock depends on pipe, not port select */
1309 		pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1310 		panel_pipe = pipe;
1311 	} else {
1312 		pp_reg = PP_CONTROL;
1313 		if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1314 			panel_pipe = PIPE_B;
1315 	}
1316 
1317 	val = I915_READ(pp_reg);
1318 	if (!(val & PANEL_POWER_ON) ||
1319 	    ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1320 		locked = false;
1321 
1322 	I915_STATE_WARN(panel_pipe == pipe && locked,
1323 	     "panel assertion failure, pipe %c regs locked\n",
1324 	     pipe_name(pipe));
1325 }
1326 
assert_cursor(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)1327 static void assert_cursor(struct drm_i915_private *dev_priv,
1328 			  enum pipe pipe, bool state)
1329 {
1330 	struct drm_device *dev = dev_priv->dev;
1331 	bool cur_state;
1332 
1333 	if (IS_845G(dev) || IS_I865G(dev))
1334 		cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1335 	else
1336 		cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1337 
1338 	I915_STATE_WARN(cur_state != state,
1339 	     "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1340 	     pipe_name(pipe), state_string(state), state_string(cur_state));
1341 }
1342 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1343 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1344 
assert_pipe(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)1345 void assert_pipe(struct drm_i915_private *dev_priv,
1346 		 enum pipe pipe, bool state)
1347 {
1348 	bool cur_state;
1349 	enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1350 								      pipe);
1351 
1352 	/* if we need the pipe quirk it must be always on */
1353 	if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1354 	    (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1355 		state = true;
1356 
1357 	if (!intel_display_power_is_enabled(dev_priv,
1358 				POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1359 		cur_state = false;
1360 	} else {
1361 		u32 val = I915_READ(PIPECONF(cpu_transcoder));
1362 		cur_state = !!(val & PIPECONF_ENABLE);
1363 	}
1364 
1365 	I915_STATE_WARN(cur_state != state,
1366 	     "pipe %c assertion failure (expected %s, current %s)\n",
1367 	     pipe_name(pipe), state_string(state), state_string(cur_state));
1368 }
1369 
assert_plane(struct drm_i915_private * dev_priv,enum plane plane,bool state)1370 static void assert_plane(struct drm_i915_private *dev_priv,
1371 			 enum plane plane, bool state)
1372 {
1373 	u32 val;
1374 	bool cur_state;
1375 
1376 	val = I915_READ(DSPCNTR(plane));
1377 	cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1378 	I915_STATE_WARN(cur_state != state,
1379 	     "plane %c assertion failure (expected %s, current %s)\n",
1380 	     plane_name(plane), state_string(state), state_string(cur_state));
1381 }
1382 
1383 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1384 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1385 
assert_planes_disabled(struct drm_i915_private * dev_priv,enum pipe pipe)1386 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1387 				   enum pipe pipe)
1388 {
1389 	struct drm_device *dev = dev_priv->dev;
1390 	int i;
1391 
1392 	/* Primary planes are fixed to pipes on gen4+ */
1393 	if (INTEL_INFO(dev)->gen >= 4) {
1394 		u32 val = I915_READ(DSPCNTR(pipe));
1395 		I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1396 		     "plane %c assertion failure, should be disabled but not\n",
1397 		     plane_name(pipe));
1398 		return;
1399 	}
1400 
1401 	/* Need to check both planes against the pipe */
1402 	for_each_pipe(dev_priv, i) {
1403 		u32 val = I915_READ(DSPCNTR(i));
1404 		enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1405 			DISPPLANE_SEL_PIPE_SHIFT;
1406 		I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1407 		     "plane %c assertion failure, should be off on pipe %c but is still active\n",
1408 		     plane_name(i), pipe_name(pipe));
1409 	}
1410 }
1411 
assert_sprites_disabled(struct drm_i915_private * dev_priv,enum pipe pipe)1412 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1413 				    enum pipe pipe)
1414 {
1415 	struct drm_device *dev = dev_priv->dev;
1416 	int sprite;
1417 
1418 	if (INTEL_INFO(dev)->gen >= 9) {
1419 		for_each_sprite(dev_priv, pipe, sprite) {
1420 			u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1421 			I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1422 			     "plane %d assertion failure, should be off on pipe %c but is still active\n",
1423 			     sprite, pipe_name(pipe));
1424 		}
1425 	} else if (IS_VALLEYVIEW(dev)) {
1426 		for_each_sprite(dev_priv, pipe, sprite) {
1427 			u32 val = I915_READ(SPCNTR(pipe, sprite));
1428 			I915_STATE_WARN(val & SP_ENABLE,
1429 			     "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1430 			     sprite_name(pipe, sprite), pipe_name(pipe));
1431 		}
1432 	} else if (INTEL_INFO(dev)->gen >= 7) {
1433 		u32 val = I915_READ(SPRCTL(pipe));
1434 		I915_STATE_WARN(val & SPRITE_ENABLE,
1435 		     "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1436 		     plane_name(pipe), pipe_name(pipe));
1437 	} else if (INTEL_INFO(dev)->gen >= 5) {
1438 		u32 val = I915_READ(DVSCNTR(pipe));
1439 		I915_STATE_WARN(val & DVS_ENABLE,
1440 		     "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1441 		     plane_name(pipe), pipe_name(pipe));
1442 	}
1443 }
1444 
assert_vblank_disabled(struct drm_crtc * crtc)1445 static void assert_vblank_disabled(struct drm_crtc *crtc)
1446 {
1447 	if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1448 		drm_crtc_vblank_put(crtc);
1449 }
1450 
ibx_assert_pch_refclk_enabled(struct drm_i915_private * dev_priv)1451 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1452 {
1453 	u32 val;
1454 	bool enabled;
1455 
1456 	I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1457 
1458 	val = I915_READ(PCH_DREF_CONTROL);
1459 	enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1460 			    DREF_SUPERSPREAD_SOURCE_MASK));
1461 	I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1462 }
1463 
assert_pch_transcoder_disabled(struct drm_i915_private * dev_priv,enum pipe pipe)1464 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1465 					   enum pipe pipe)
1466 {
1467 	u32 val;
1468 	bool enabled;
1469 
1470 	val = I915_READ(PCH_TRANSCONF(pipe));
1471 	enabled = !!(val & TRANS_ENABLE);
1472 	I915_STATE_WARN(enabled,
1473 	     "transcoder assertion failed, should be off on pipe %c but is still active\n",
1474 	     pipe_name(pipe));
1475 }
1476 
dp_pipe_enabled(struct drm_i915_private * dev_priv,enum pipe pipe,u32 port_sel,u32 val)1477 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1478 			    enum pipe pipe, u32 port_sel, u32 val)
1479 {
1480 	if ((val & DP_PORT_EN) == 0)
1481 		return false;
1482 
1483 	if (HAS_PCH_CPT(dev_priv->dev)) {
1484 		u32	trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1485 		u32	trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1486 		if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1487 			return false;
1488 	} else if (IS_CHERRYVIEW(dev_priv->dev)) {
1489 		if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1490 			return false;
1491 	} else {
1492 		if ((val & DP_PIPE_MASK) != (pipe << 30))
1493 			return false;
1494 	}
1495 	return true;
1496 }
1497 
hdmi_pipe_enabled(struct drm_i915_private * dev_priv,enum pipe pipe,u32 val)1498 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1499 			      enum pipe pipe, u32 val)
1500 {
1501 	if ((val & SDVO_ENABLE) == 0)
1502 		return false;
1503 
1504 	if (HAS_PCH_CPT(dev_priv->dev)) {
1505 		if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1506 			return false;
1507 	} else if (IS_CHERRYVIEW(dev_priv->dev)) {
1508 		if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1509 			return false;
1510 	} else {
1511 		if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1512 			return false;
1513 	}
1514 	return true;
1515 }
1516 
lvds_pipe_enabled(struct drm_i915_private * dev_priv,enum pipe pipe,u32 val)1517 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1518 			      enum pipe pipe, u32 val)
1519 {
1520 	if ((val & LVDS_PORT_EN) == 0)
1521 		return false;
1522 
1523 	if (HAS_PCH_CPT(dev_priv->dev)) {
1524 		if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1525 			return false;
1526 	} else {
1527 		if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1528 			return false;
1529 	}
1530 	return true;
1531 }
1532 
adpa_pipe_enabled(struct drm_i915_private * dev_priv,enum pipe pipe,u32 val)1533 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1534 			      enum pipe pipe, u32 val)
1535 {
1536 	if ((val & ADPA_DAC_ENABLE) == 0)
1537 		return false;
1538 	if (HAS_PCH_CPT(dev_priv->dev)) {
1539 		if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1540 			return false;
1541 	} else {
1542 		if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1543 			return false;
1544 	}
1545 	return true;
1546 }
1547 
assert_pch_dp_disabled(struct drm_i915_private * dev_priv,enum pipe pipe,int reg,u32 port_sel)1548 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1549 				   enum pipe pipe, int reg, u32 port_sel)
1550 {
1551 	u32 val = I915_READ(reg);
1552 	I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1553 	     "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1554 	     reg, pipe_name(pipe));
1555 
1556 	I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1557 	     && (val & DP_PIPEB_SELECT),
1558 	     "IBX PCH dp port still using transcoder B\n");
1559 }
1560 
assert_pch_hdmi_disabled(struct drm_i915_private * dev_priv,enum pipe pipe,int reg)1561 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1562 				     enum pipe pipe, int reg)
1563 {
1564 	u32 val = I915_READ(reg);
1565 	I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1566 	     "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1567 	     reg, pipe_name(pipe));
1568 
1569 	I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1570 	     && (val & SDVO_PIPE_B_SELECT),
1571 	     "IBX PCH hdmi port still using transcoder B\n");
1572 }
1573 
assert_pch_ports_disabled(struct drm_i915_private * dev_priv,enum pipe pipe)1574 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1575 				      enum pipe pipe)
1576 {
1577 	u32 val;
1578 
1579 	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1580 	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1581 	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1582 
1583 	val = I915_READ(PCH_ADPA);
1584 	I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1585 	     "PCH VGA enabled on transcoder %c, should be disabled\n",
1586 	     pipe_name(pipe));
1587 
1588 	val = I915_READ(PCH_LVDS);
1589 	I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1590 	     "PCH LVDS enabled on transcoder %c, should be disabled\n",
1591 	     pipe_name(pipe));
1592 
1593 	assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1594 	assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1595 	assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1596 }
1597 
vlv_enable_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)1598 static void vlv_enable_pll(struct intel_crtc *crtc,
1599 			   const struct intel_crtc_state *pipe_config)
1600 {
1601 	struct drm_device *dev = crtc->base.dev;
1602 	struct drm_i915_private *dev_priv = dev->dev_private;
1603 	int reg = DPLL(crtc->pipe);
1604 	u32 dpll = pipe_config->dpll_hw_state.dpll;
1605 
1606 	assert_pipe_disabled(dev_priv, crtc->pipe);
1607 
1608 	/* No really, not for ILK+ */
1609 	BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1610 
1611 	/* PLL is protected by panel, make sure we can write it */
1612 	if (IS_MOBILE(dev_priv->dev))
1613 		assert_panel_unlocked(dev_priv, crtc->pipe);
1614 
1615 	I915_WRITE(reg, dpll);
1616 	POSTING_READ(reg);
1617 	udelay(150);
1618 
1619 	if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1620 		DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1621 
1622 	I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1623 	POSTING_READ(DPLL_MD(crtc->pipe));
1624 
1625 	/* We do this three times for luck */
1626 	I915_WRITE(reg, dpll);
1627 	POSTING_READ(reg);
1628 	udelay(150); /* wait for warmup */
1629 	I915_WRITE(reg, dpll);
1630 	POSTING_READ(reg);
1631 	udelay(150); /* wait for warmup */
1632 	I915_WRITE(reg, dpll);
1633 	POSTING_READ(reg);
1634 	udelay(150); /* wait for warmup */
1635 }
1636 
chv_enable_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)1637 static void chv_enable_pll(struct intel_crtc *crtc,
1638 			   const struct intel_crtc_state *pipe_config)
1639 {
1640 	struct drm_device *dev = crtc->base.dev;
1641 	struct drm_i915_private *dev_priv = dev->dev_private;
1642 	int pipe = crtc->pipe;
1643 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
1644 	u32 tmp;
1645 
1646 	assert_pipe_disabled(dev_priv, crtc->pipe);
1647 
1648 	BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1649 
1650 	mutex_lock(&dev_priv->sb_lock);
1651 
1652 	/* Enable back the 10bit clock to display controller */
1653 	tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1654 	tmp |= DPIO_DCLKP_EN;
1655 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1656 
1657 	mutex_unlock(&dev_priv->sb_lock);
1658 
1659 	/*
1660 	 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1661 	 */
1662 	udelay(1);
1663 
1664 	/* Enable PLL */
1665 	I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1666 
1667 	/* Check PLL is locked */
1668 	if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1669 		DRM_ERROR("PLL %d failed to lock\n", pipe);
1670 
1671 	/* not sure when this should be written */
1672 	I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1673 	POSTING_READ(DPLL_MD(pipe));
1674 }
1675 
intel_num_dvo_pipes(struct drm_device * dev)1676 static int intel_num_dvo_pipes(struct drm_device *dev)
1677 {
1678 	struct intel_crtc *crtc;
1679 	int count = 0;
1680 
1681 	for_each_intel_crtc(dev, crtc)
1682 		count += crtc->base.state->active &&
1683 			intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1684 
1685 	return count;
1686 }
1687 
i9xx_enable_pll(struct intel_crtc * crtc)1688 static void i9xx_enable_pll(struct intel_crtc *crtc)
1689 {
1690 	struct drm_device *dev = crtc->base.dev;
1691 	struct drm_i915_private *dev_priv = dev->dev_private;
1692 	int reg = DPLL(crtc->pipe);
1693 	u32 dpll = crtc->config->dpll_hw_state.dpll;
1694 
1695 	assert_pipe_disabled(dev_priv, crtc->pipe);
1696 
1697 	/* No really, not for ILK+ */
1698 	BUG_ON(INTEL_INFO(dev)->gen >= 5);
1699 
1700 	/* PLL is protected by panel, make sure we can write it */
1701 	if (IS_MOBILE(dev) && !IS_I830(dev))
1702 		assert_panel_unlocked(dev_priv, crtc->pipe);
1703 
1704 	/* Enable DVO 2x clock on both PLLs if necessary */
1705 	if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1706 		/*
1707 		 * It appears to be important that we don't enable this
1708 		 * for the current pipe before otherwise configuring the
1709 		 * PLL. No idea how this should be handled if multiple
1710 		 * DVO outputs are enabled simultaneosly.
1711 		 */
1712 		dpll |= DPLL_DVO_2X_MODE;
1713 		I915_WRITE(DPLL(!crtc->pipe),
1714 			   I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1715 	}
1716 
1717 	/*
1718 	 * Apparently we need to have VGA mode enabled prior to changing
1719 	 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1720 	 * dividers, even though the register value does change.
1721 	 */
1722 	I915_WRITE(reg, 0);
1723 
1724 	I915_WRITE(reg, dpll);
1725 
1726 	/* Wait for the clocks to stabilize. */
1727 	POSTING_READ(reg);
1728 	udelay(150);
1729 
1730 	if (INTEL_INFO(dev)->gen >= 4) {
1731 		I915_WRITE(DPLL_MD(crtc->pipe),
1732 			   crtc->config->dpll_hw_state.dpll_md);
1733 	} else {
1734 		/* The pixel multiplier can only be updated once the
1735 		 * DPLL is enabled and the clocks are stable.
1736 		 *
1737 		 * So write it again.
1738 		 */
1739 		I915_WRITE(reg, dpll);
1740 	}
1741 
1742 	/* We do this three times for luck */
1743 	I915_WRITE(reg, dpll);
1744 	POSTING_READ(reg);
1745 	udelay(150); /* wait for warmup */
1746 	I915_WRITE(reg, dpll);
1747 	POSTING_READ(reg);
1748 	udelay(150); /* wait for warmup */
1749 	I915_WRITE(reg, dpll);
1750 	POSTING_READ(reg);
1751 	udelay(150); /* wait for warmup */
1752 }
1753 
1754 /**
1755  * i9xx_disable_pll - disable a PLL
1756  * @dev_priv: i915 private structure
1757  * @pipe: pipe PLL to disable
1758  *
1759  * Disable the PLL for @pipe, making sure the pipe is off first.
1760  *
1761  * Note!  This is for pre-ILK only.
1762  */
i9xx_disable_pll(struct intel_crtc * crtc)1763 static void i9xx_disable_pll(struct intel_crtc *crtc)
1764 {
1765 	struct drm_device *dev = crtc->base.dev;
1766 	struct drm_i915_private *dev_priv = dev->dev_private;
1767 	enum pipe pipe = crtc->pipe;
1768 
1769 	/* Disable DVO 2x clock on both PLLs if necessary */
1770 	if (IS_I830(dev) &&
1771 	    intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1772 	    !intel_num_dvo_pipes(dev)) {
1773 		I915_WRITE(DPLL(PIPE_B),
1774 			   I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1775 		I915_WRITE(DPLL(PIPE_A),
1776 			   I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1777 	}
1778 
1779 	/* Don't disable pipe or pipe PLLs if needed */
1780 	if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1781 	    (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1782 		return;
1783 
1784 	/* Make sure the pipe isn't still relying on us */
1785 	assert_pipe_disabled(dev_priv, pipe);
1786 
1787 	I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1788 	POSTING_READ(DPLL(pipe));
1789 }
1790 
vlv_disable_pll(struct drm_i915_private * dev_priv,enum pipe pipe)1791 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1792 {
1793 	u32 val;
1794 
1795 	/* Make sure the pipe isn't still relying on us */
1796 	assert_pipe_disabled(dev_priv, pipe);
1797 
1798 	/*
1799 	 * Leave integrated clock source and reference clock enabled for pipe B.
1800 	 * The latter is needed for VGA hotplug / manual detection.
1801 	 */
1802 	val = DPLL_VGA_MODE_DIS;
1803 	if (pipe == PIPE_B)
1804 		val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REF_CLK_ENABLE_VLV;
1805 	I915_WRITE(DPLL(pipe), val);
1806 	POSTING_READ(DPLL(pipe));
1807 
1808 }
1809 
chv_disable_pll(struct drm_i915_private * dev_priv,enum pipe pipe)1810 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1811 {
1812 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
1813 	u32 val;
1814 
1815 	/* Make sure the pipe isn't still relying on us */
1816 	assert_pipe_disabled(dev_priv, pipe);
1817 
1818 	/* Set PLL en = 0 */
1819 	val = DPLL_SSC_REF_CLK_CHV |
1820 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1821 	if (pipe != PIPE_A)
1822 		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1823 	I915_WRITE(DPLL(pipe), val);
1824 	POSTING_READ(DPLL(pipe));
1825 
1826 	mutex_lock(&dev_priv->sb_lock);
1827 
1828 	/* Disable 10bit clock to display controller */
1829 	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1830 	val &= ~DPIO_DCLKP_EN;
1831 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1832 
1833 	mutex_unlock(&dev_priv->sb_lock);
1834 }
1835 
vlv_wait_port_ready(struct drm_i915_private * dev_priv,struct intel_digital_port * dport,unsigned int expected_mask)1836 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1837 			 struct intel_digital_port *dport,
1838 			 unsigned int expected_mask)
1839 {
1840 	u32 port_mask;
1841 	int dpll_reg;
1842 
1843 	switch (dport->port) {
1844 	case PORT_B:
1845 		port_mask = DPLL_PORTB_READY_MASK;
1846 		dpll_reg = DPLL(0);
1847 		break;
1848 	case PORT_C:
1849 		port_mask = DPLL_PORTC_READY_MASK;
1850 		dpll_reg = DPLL(0);
1851 		expected_mask <<= 4;
1852 		break;
1853 	case PORT_D:
1854 		port_mask = DPLL_PORTD_READY_MASK;
1855 		dpll_reg = DPIO_PHY_STATUS;
1856 		break;
1857 	default:
1858 		BUG();
1859 	}
1860 
1861 	if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1862 		WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1863 		     port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1864 }
1865 
intel_prepare_shared_dpll(struct intel_crtc * crtc)1866 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1867 {
1868 	struct drm_device *dev = crtc->base.dev;
1869 	struct drm_i915_private *dev_priv = dev->dev_private;
1870 	struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1871 
1872 	if (WARN_ON(pll == NULL))
1873 		return;
1874 
1875 	WARN_ON(!pll->config.crtc_mask);
1876 	if (pll->active == 0) {
1877 		DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1878 		WARN_ON(pll->on);
1879 		assert_shared_dpll_disabled(dev_priv, pll);
1880 
1881 		pll->mode_set(dev_priv, pll);
1882 	}
1883 }
1884 
1885 /**
1886  * intel_enable_shared_dpll - enable PCH PLL
1887  * @dev_priv: i915 private structure
1888  * @pipe: pipe PLL to enable
1889  *
1890  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1891  * drives the transcoder clock.
1892  */
intel_enable_shared_dpll(struct intel_crtc * crtc)1893 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1894 {
1895 	struct drm_device *dev = crtc->base.dev;
1896 	struct drm_i915_private *dev_priv = dev->dev_private;
1897 	struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1898 
1899 	if (WARN_ON(pll == NULL))
1900 		return;
1901 
1902 	if (WARN_ON(pll->config.crtc_mask == 0))
1903 		return;
1904 
1905 	DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1906 		      pll->name, pll->active, pll->on,
1907 		      crtc->base.base.id);
1908 
1909 	if (pll->active++) {
1910 		WARN_ON(!pll->on);
1911 		assert_shared_dpll_enabled(dev_priv, pll);
1912 		return;
1913 	}
1914 	WARN_ON(pll->on);
1915 
1916 	intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1917 
1918 	DRM_DEBUG_KMS("enabling %s\n", pll->name);
1919 	pll->enable(dev_priv, pll);
1920 	pll->on = true;
1921 }
1922 
intel_disable_shared_dpll(struct intel_crtc * crtc)1923 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1924 {
1925 	struct drm_device *dev = crtc->base.dev;
1926 	struct drm_i915_private *dev_priv = dev->dev_private;
1927 	struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1928 
1929 	/* PCH only available on ILK+ */
1930 	if (INTEL_INFO(dev)->gen < 5)
1931 		return;
1932 
1933 	if (pll == NULL)
1934 		return;
1935 
1936 	if (WARN_ON(!(pll->config.crtc_mask & (1 << drm_crtc_index(&crtc->base)))))
1937 		return;
1938 
1939 	DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1940 		      pll->name, pll->active, pll->on,
1941 		      crtc->base.base.id);
1942 
1943 	if (WARN_ON(pll->active == 0)) {
1944 		assert_shared_dpll_disabled(dev_priv, pll);
1945 		return;
1946 	}
1947 
1948 	assert_shared_dpll_enabled(dev_priv, pll);
1949 	WARN_ON(!pll->on);
1950 	if (--pll->active)
1951 		return;
1952 
1953 	DRM_DEBUG_KMS("disabling %s\n", pll->name);
1954 	pll->disable(dev_priv, pll);
1955 	pll->on = false;
1956 
1957 	intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1958 }
1959 
ironlake_enable_pch_transcoder(struct drm_i915_private * dev_priv,enum pipe pipe)1960 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1961 					   enum pipe pipe)
1962 {
1963 	struct drm_device *dev = dev_priv->dev;
1964 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1965 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1966 	uint32_t reg, val, pipeconf_val;
1967 
1968 	/* PCH only available on ILK+ */
1969 	BUG_ON(!HAS_PCH_SPLIT(dev));
1970 
1971 	/* Make sure PCH DPLL is enabled */
1972 	assert_shared_dpll_enabled(dev_priv,
1973 				   intel_crtc_to_shared_dpll(intel_crtc));
1974 
1975 	/* FDI must be feeding us bits for PCH ports */
1976 	assert_fdi_tx_enabled(dev_priv, pipe);
1977 	assert_fdi_rx_enabled(dev_priv, pipe);
1978 
1979 	if (HAS_PCH_CPT(dev)) {
1980 		/* Workaround: Set the timing override bit before enabling the
1981 		 * pch transcoder. */
1982 		reg = TRANS_CHICKEN2(pipe);
1983 		val = I915_READ(reg);
1984 		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1985 		I915_WRITE(reg, val);
1986 	}
1987 
1988 	reg = PCH_TRANSCONF(pipe);
1989 	val = I915_READ(reg);
1990 	pipeconf_val = I915_READ(PIPECONF(pipe));
1991 
1992 	if (HAS_PCH_IBX(dev_priv->dev)) {
1993 		/*
1994 		 * Make the BPC in transcoder be consistent with
1995 		 * that in pipeconf reg. For HDMI we must use 8bpc
1996 		 * here for both 8bpc and 12bpc.
1997 		 */
1998 		val &= ~PIPECONF_BPC_MASK;
1999 		if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
2000 			val |= PIPECONF_8BPC;
2001 		else
2002 			val |= pipeconf_val & PIPECONF_BPC_MASK;
2003 	}
2004 
2005 	val &= ~TRANS_INTERLACE_MASK;
2006 	if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
2007 		if (HAS_PCH_IBX(dev_priv->dev) &&
2008 		    intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
2009 			val |= TRANS_LEGACY_INTERLACED_ILK;
2010 		else
2011 			val |= TRANS_INTERLACED;
2012 	else
2013 		val |= TRANS_PROGRESSIVE;
2014 
2015 	I915_WRITE(reg, val | TRANS_ENABLE);
2016 	if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2017 		DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
2018 }
2019 
lpt_enable_pch_transcoder(struct drm_i915_private * dev_priv,enum transcoder cpu_transcoder)2020 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
2021 				      enum transcoder cpu_transcoder)
2022 {
2023 	u32 val, pipeconf_val;
2024 
2025 	/* PCH only available on ILK+ */
2026 	BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
2027 
2028 	/* FDI must be feeding us bits for PCH ports */
2029 	assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
2030 	assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
2031 
2032 	/* Workaround: set timing override bit. */
2033 	val = I915_READ(TRANS_CHICKEN2(PIPE_A));
2034 	val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2035 	I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
2036 
2037 	val = TRANS_ENABLE;
2038 	pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
2039 
2040 	if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2041 	    PIPECONF_INTERLACED_ILK)
2042 		val |= TRANS_INTERLACED;
2043 	else
2044 		val |= TRANS_PROGRESSIVE;
2045 
2046 	I915_WRITE(LPT_TRANSCONF, val);
2047 	if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
2048 		DRM_ERROR("Failed to enable PCH transcoder\n");
2049 }
2050 
ironlake_disable_pch_transcoder(struct drm_i915_private * dev_priv,enum pipe pipe)2051 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2052 					    enum pipe pipe)
2053 {
2054 	struct drm_device *dev = dev_priv->dev;
2055 	uint32_t reg, val;
2056 
2057 	/* FDI relies on the transcoder */
2058 	assert_fdi_tx_disabled(dev_priv, pipe);
2059 	assert_fdi_rx_disabled(dev_priv, pipe);
2060 
2061 	/* Ports must be off as well */
2062 	assert_pch_ports_disabled(dev_priv, pipe);
2063 
2064 	reg = PCH_TRANSCONF(pipe);
2065 	val = I915_READ(reg);
2066 	val &= ~TRANS_ENABLE;
2067 	I915_WRITE(reg, val);
2068 	/* wait for PCH transcoder off, transcoder state */
2069 	if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2070 		DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2071 
2072 	if (!HAS_PCH_IBX(dev)) {
2073 		/* Workaround: Clear the timing override chicken bit again. */
2074 		reg = TRANS_CHICKEN2(pipe);
2075 		val = I915_READ(reg);
2076 		val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2077 		I915_WRITE(reg, val);
2078 	}
2079 }
2080 
lpt_disable_pch_transcoder(struct drm_i915_private * dev_priv)2081 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2082 {
2083 	u32 val;
2084 
2085 	val = I915_READ(LPT_TRANSCONF);
2086 	val &= ~TRANS_ENABLE;
2087 	I915_WRITE(LPT_TRANSCONF, val);
2088 	/* wait for PCH transcoder off, transcoder state */
2089 	if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2090 		DRM_ERROR("Failed to disable PCH transcoder\n");
2091 
2092 	/* Workaround: clear timing override bit. */
2093 	val = I915_READ(TRANS_CHICKEN2(PIPE_A));
2094 	val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2095 	I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
2096 }
2097 
2098 /**
2099  * intel_enable_pipe - enable a pipe, asserting requirements
2100  * @crtc: crtc responsible for the pipe
2101  *
2102  * Enable @crtc's pipe, making sure that various hardware specific requirements
2103  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2104  */
intel_enable_pipe(struct intel_crtc * crtc)2105 static void intel_enable_pipe(struct intel_crtc *crtc)
2106 {
2107 	struct drm_device *dev = crtc->base.dev;
2108 	struct drm_i915_private *dev_priv = dev->dev_private;
2109 	enum pipe pipe = crtc->pipe;
2110 	enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2111 								      pipe);
2112 	enum pipe pch_transcoder;
2113 	int reg;
2114 	u32 val;
2115 
2116 	DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
2117 
2118 	assert_planes_disabled(dev_priv, pipe);
2119 	assert_cursor_disabled(dev_priv, pipe);
2120 	assert_sprites_disabled(dev_priv, pipe);
2121 
2122 	if (HAS_PCH_LPT(dev_priv->dev))
2123 		pch_transcoder = TRANSCODER_A;
2124 	else
2125 		pch_transcoder = pipe;
2126 
2127 	/*
2128 	 * A pipe without a PLL won't actually be able to drive bits from
2129 	 * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2130 	 * need the check.
2131 	 */
2132 	if (HAS_GMCH_DISPLAY(dev_priv->dev))
2133 		if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2134 			assert_dsi_pll_enabled(dev_priv);
2135 		else
2136 			assert_pll_enabled(dev_priv, pipe);
2137 	else {
2138 		if (crtc->config->has_pch_encoder) {
2139 			/* if driving the PCH, we need FDI enabled */
2140 			assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2141 			assert_fdi_tx_pll_enabled(dev_priv,
2142 						  (enum pipe) cpu_transcoder);
2143 		}
2144 		/* FIXME: assert CPU port conditions for SNB+ */
2145 	}
2146 
2147 	reg = PIPECONF(cpu_transcoder);
2148 	val = I915_READ(reg);
2149 	if (val & PIPECONF_ENABLE) {
2150 		WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2151 			  (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2152 		return;
2153 	}
2154 
2155 	I915_WRITE(reg, val | PIPECONF_ENABLE);
2156 	POSTING_READ(reg);
2157 }
2158 
2159 /**
2160  * intel_disable_pipe - disable a pipe, asserting requirements
2161  * @crtc: crtc whose pipes is to be disabled
2162  *
2163  * Disable the pipe of @crtc, making sure that various hardware
2164  * specific requirements are met, if applicable, e.g. plane
2165  * disabled, panel fitter off, etc.
2166  *
2167  * Will wait until the pipe has shut down before returning.
2168  */
intel_disable_pipe(struct intel_crtc * crtc)2169 static void intel_disable_pipe(struct intel_crtc *crtc)
2170 {
2171 	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2172 	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2173 	enum pipe pipe = crtc->pipe;
2174 	int reg;
2175 	u32 val;
2176 
2177 	DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2178 
2179 	/*
2180 	 * Make sure planes won't keep trying to pump pixels to us,
2181 	 * or we might hang the display.
2182 	 */
2183 	assert_planes_disabled(dev_priv, pipe);
2184 	assert_cursor_disabled(dev_priv, pipe);
2185 	assert_sprites_disabled(dev_priv, pipe);
2186 
2187 	reg = PIPECONF(cpu_transcoder);
2188 	val = I915_READ(reg);
2189 	if ((val & PIPECONF_ENABLE) == 0)
2190 		return;
2191 
2192 	/*
2193 	 * Double wide has implications for planes
2194 	 * so best keep it disabled when not needed.
2195 	 */
2196 	if (crtc->config->double_wide)
2197 		val &= ~PIPECONF_DOUBLE_WIDE;
2198 
2199 	/* Don't disable pipe or pipe PLLs if needed */
2200 	if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2201 	    !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2202 		val &= ~PIPECONF_ENABLE;
2203 
2204 	I915_WRITE(reg, val);
2205 	if ((val & PIPECONF_ENABLE) == 0)
2206 		intel_wait_for_pipe_off(crtc);
2207 }
2208 
need_vtd_wa(struct drm_device * dev)2209 static bool need_vtd_wa(struct drm_device *dev)
2210 {
2211 #ifdef CONFIG_INTEL_IOMMU
2212 	if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2213 		return true;
2214 #endif
2215 	return false;
2216 }
2217 
2218 unsigned int
intel_tile_height(struct drm_device * dev,uint32_t pixel_format,uint64_t fb_format_modifier,unsigned int plane)2219 intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2220 		  uint64_t fb_format_modifier, unsigned int plane)
2221 {
2222 	unsigned int tile_height;
2223 	uint32_t pixel_bytes;
2224 
2225 	switch (fb_format_modifier) {
2226 	case DRM_FORMAT_MOD_NONE:
2227 		tile_height = 1;
2228 		break;
2229 	case I915_FORMAT_MOD_X_TILED:
2230 		tile_height = IS_GEN2(dev) ? 16 : 8;
2231 		break;
2232 	case I915_FORMAT_MOD_Y_TILED:
2233 		tile_height = 32;
2234 		break;
2235 	case I915_FORMAT_MOD_Yf_TILED:
2236 		pixel_bytes = drm_format_plane_cpp(pixel_format, plane);
2237 		switch (pixel_bytes) {
2238 		default:
2239 		case 1:
2240 			tile_height = 64;
2241 			break;
2242 		case 2:
2243 		case 4:
2244 			tile_height = 32;
2245 			break;
2246 		case 8:
2247 			tile_height = 16;
2248 			break;
2249 		case 16:
2250 			WARN_ONCE(1,
2251 				  "128-bit pixels are not supported for display!");
2252 			tile_height = 16;
2253 			break;
2254 		}
2255 		break;
2256 	default:
2257 		MISSING_CASE(fb_format_modifier);
2258 		tile_height = 1;
2259 		break;
2260 	}
2261 
2262 	return tile_height;
2263 }
2264 
2265 unsigned int
intel_fb_align_height(struct drm_device * dev,unsigned int height,uint32_t pixel_format,uint64_t fb_format_modifier)2266 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2267 		      uint32_t pixel_format, uint64_t fb_format_modifier)
2268 {
2269 	return ALIGN(height, intel_tile_height(dev, pixel_format,
2270 					       fb_format_modifier, 0));
2271 }
2272 
2273 static int
intel_fill_fb_ggtt_view(struct i915_ggtt_view * view,struct drm_framebuffer * fb,const struct drm_plane_state * plane_state)2274 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2275 			const struct drm_plane_state *plane_state)
2276 {
2277 	struct intel_rotation_info *info = &view->rotation_info;
2278 	unsigned int tile_height, tile_pitch;
2279 
2280 	*view = i915_ggtt_view_normal;
2281 
2282 	if (!plane_state)
2283 		return 0;
2284 
2285 	if (!intel_rotation_90_or_270(plane_state->rotation))
2286 		return 0;
2287 
2288 	*view = i915_ggtt_view_rotated;
2289 
2290 	info->height = fb->height;
2291 	info->pixel_format = fb->pixel_format;
2292 	info->pitch = fb->pitches[0];
2293 	info->uv_offset = fb->offsets[1];
2294 	info->fb_modifier = fb->modifier[0];
2295 
2296 	tile_height = intel_tile_height(fb->dev, fb->pixel_format,
2297 					fb->modifier[0], 0);
2298 	tile_pitch = PAGE_SIZE / tile_height;
2299 	info->width_pages = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2300 	info->height_pages = DIV_ROUND_UP(fb->height, tile_height);
2301 	info->size = info->width_pages * info->height_pages * PAGE_SIZE;
2302 
2303 	if (info->pixel_format == DRM_FORMAT_NV12) {
2304 		tile_height = intel_tile_height(fb->dev, fb->pixel_format,
2305 						fb->modifier[0], 1);
2306 		tile_pitch = PAGE_SIZE / tile_height;
2307 		info->width_pages_uv = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2308 		info->height_pages_uv = DIV_ROUND_UP(fb->height / 2,
2309 						     tile_height);
2310 		info->size_uv = info->width_pages_uv * info->height_pages_uv *
2311 				PAGE_SIZE;
2312 	}
2313 
2314 	return 0;
2315 }
2316 
intel_linear_alignment(struct drm_i915_private * dev_priv)2317 static unsigned int intel_linear_alignment(struct drm_i915_private *dev_priv)
2318 {
2319 	if (INTEL_INFO(dev_priv)->gen >= 9)
2320 		return 256 * 1024;
2321 	else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2322 		 IS_VALLEYVIEW(dev_priv))
2323 		return 128 * 1024;
2324 	else if (INTEL_INFO(dev_priv)->gen >= 4)
2325 		return 4 * 1024;
2326 	else
2327 		return 0;
2328 }
2329 
2330 int
intel_pin_and_fence_fb_obj(struct drm_plane * plane,struct drm_framebuffer * fb,const struct drm_plane_state * plane_state,struct intel_engine_cs * pipelined,struct drm_i915_gem_request ** pipelined_request)2331 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2332 			   struct drm_framebuffer *fb,
2333 			   const struct drm_plane_state *plane_state,
2334 			   struct intel_engine_cs *pipelined,
2335 			   struct drm_i915_gem_request **pipelined_request)
2336 {
2337 	struct drm_device *dev = fb->dev;
2338 	struct drm_i915_private *dev_priv = dev->dev_private;
2339 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2340 	struct i915_ggtt_view view;
2341 	u32 alignment;
2342 	int ret;
2343 
2344 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2345 
2346 	switch (fb->modifier[0]) {
2347 	case DRM_FORMAT_MOD_NONE:
2348 		alignment = intel_linear_alignment(dev_priv);
2349 		break;
2350 	case I915_FORMAT_MOD_X_TILED:
2351 		if (INTEL_INFO(dev)->gen >= 9)
2352 			alignment = 256 * 1024;
2353 		else {
2354 			/* pin() will align the object as required by fence */
2355 			alignment = 0;
2356 		}
2357 		break;
2358 	case I915_FORMAT_MOD_Y_TILED:
2359 	case I915_FORMAT_MOD_Yf_TILED:
2360 		if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2361 			  "Y tiling bo slipped through, driver bug!\n"))
2362 			return -EINVAL;
2363 		alignment = 1 * 1024 * 1024;
2364 		break;
2365 	default:
2366 		MISSING_CASE(fb->modifier[0]);
2367 		return -EINVAL;
2368 	}
2369 
2370 	ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2371 	if (ret)
2372 		return ret;
2373 
2374 	/* Note that the w/a also requires 64 PTE of padding following the
2375 	 * bo. We currently fill all unused PTE with the shadow page and so
2376 	 * we should always have valid PTE following the scanout preventing
2377 	 * the VT-d warning.
2378 	 */
2379 	if (need_vtd_wa(dev) && alignment < 256 * 1024)
2380 		alignment = 256 * 1024;
2381 
2382 	/*
2383 	 * Global gtt pte registers are special registers which actually forward
2384 	 * writes to a chunk of system memory. Which means that there is no risk
2385 	 * that the register values disappear as soon as we call
2386 	 * intel_runtime_pm_put(), so it is correct to wrap only the
2387 	 * pin/unpin/fence and not more.
2388 	 */
2389 	intel_runtime_pm_get(dev_priv);
2390 
2391 	dev_priv->mm.interruptible = false;
2392 	ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
2393 						   pipelined_request, &view);
2394 	if (ret)
2395 		goto err_interruptible;
2396 
2397 	/* Install a fence for tiled scan-out. Pre-i965 always needs a
2398 	 * fence, whereas 965+ only requires a fence if using
2399 	 * framebuffer compression.  For simplicity, we always install
2400 	 * a fence as the cost is not that onerous.
2401 	 */
2402 	if (view.type == I915_GGTT_VIEW_NORMAL) {
2403 		ret = i915_gem_object_get_fence(obj);
2404 		if (ret == -EDEADLK) {
2405 			/*
2406 			 * -EDEADLK means there are no free fences
2407 			 * no pending flips.
2408 			 *
2409 			 * This is propagated to atomic, but it uses
2410 			 * -EDEADLK to force a locking recovery, so
2411 			 * change the returned error to -EBUSY.
2412 			 */
2413 			ret = -EBUSY;
2414 			goto err_unpin;
2415 		} else if (ret)
2416 			goto err_unpin;
2417 
2418 		i915_gem_object_pin_fence(obj);
2419 	}
2420 
2421 	dev_priv->mm.interruptible = true;
2422 	intel_runtime_pm_put(dev_priv);
2423 	return 0;
2424 
2425 err_unpin:
2426 	i915_gem_object_unpin_from_display_plane(obj, &view);
2427 err_interruptible:
2428 	dev_priv->mm.interruptible = true;
2429 	intel_runtime_pm_put(dev_priv);
2430 	return ret;
2431 }
2432 
intel_unpin_fb_obj(struct drm_framebuffer * fb,const struct drm_plane_state * plane_state)2433 static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2434 			       const struct drm_plane_state *plane_state)
2435 {
2436 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2437 	struct i915_ggtt_view view;
2438 	int ret;
2439 
2440 	WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2441 
2442 	ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2443 	WARN_ONCE(ret, "Couldn't get view from plane state!");
2444 
2445 	if (view.type == I915_GGTT_VIEW_NORMAL)
2446 		i915_gem_object_unpin_fence(obj);
2447 
2448 	i915_gem_object_unpin_from_display_plane(obj, &view);
2449 }
2450 
2451 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2452  * is assumed to be a power-of-two. */
intel_gen4_compute_page_offset(struct drm_i915_private * dev_priv,int * x,int * y,unsigned int tiling_mode,unsigned int cpp,unsigned int pitch)2453 unsigned long intel_gen4_compute_page_offset(struct drm_i915_private *dev_priv,
2454 					     int *x, int *y,
2455 					     unsigned int tiling_mode,
2456 					     unsigned int cpp,
2457 					     unsigned int pitch)
2458 {
2459 	if (tiling_mode != I915_TILING_NONE) {
2460 		unsigned int tile_rows, tiles;
2461 
2462 		tile_rows = *y / 8;
2463 		*y %= 8;
2464 
2465 		tiles = *x / (512/cpp);
2466 		*x %= 512/cpp;
2467 
2468 		return tile_rows * pitch * 8 + tiles * 4096;
2469 	} else {
2470 		unsigned int alignment = intel_linear_alignment(dev_priv) - 1;
2471 		unsigned int offset;
2472 
2473 		offset = *y * pitch + *x * cpp;
2474 		*y = (offset & alignment) / pitch;
2475 		*x = ((offset & alignment) - *y * pitch) / cpp;
2476 		return offset & ~alignment;
2477 	}
2478 }
2479 
i9xx_format_to_fourcc(int format)2480 static int i9xx_format_to_fourcc(int format)
2481 {
2482 	switch (format) {
2483 	case DISPPLANE_8BPP:
2484 		return DRM_FORMAT_C8;
2485 	case DISPPLANE_BGRX555:
2486 		return DRM_FORMAT_XRGB1555;
2487 	case DISPPLANE_BGRX565:
2488 		return DRM_FORMAT_RGB565;
2489 	default:
2490 	case DISPPLANE_BGRX888:
2491 		return DRM_FORMAT_XRGB8888;
2492 	case DISPPLANE_RGBX888:
2493 		return DRM_FORMAT_XBGR8888;
2494 	case DISPPLANE_BGRX101010:
2495 		return DRM_FORMAT_XRGB2101010;
2496 	case DISPPLANE_RGBX101010:
2497 		return DRM_FORMAT_XBGR2101010;
2498 	}
2499 }
2500 
skl_format_to_fourcc(int format,bool rgb_order,bool alpha)2501 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2502 {
2503 	switch (format) {
2504 	case PLANE_CTL_FORMAT_RGB_565:
2505 		return DRM_FORMAT_RGB565;
2506 	default:
2507 	case PLANE_CTL_FORMAT_XRGB_8888:
2508 		if (rgb_order) {
2509 			if (alpha)
2510 				return DRM_FORMAT_ABGR8888;
2511 			else
2512 				return DRM_FORMAT_XBGR8888;
2513 		} else {
2514 			if (alpha)
2515 				return DRM_FORMAT_ARGB8888;
2516 			else
2517 				return DRM_FORMAT_XRGB8888;
2518 		}
2519 	case PLANE_CTL_FORMAT_XRGB_2101010:
2520 		if (rgb_order)
2521 			return DRM_FORMAT_XBGR2101010;
2522 		else
2523 			return DRM_FORMAT_XRGB2101010;
2524 	}
2525 }
2526 
2527 static bool
intel_alloc_initial_plane_obj(struct intel_crtc * crtc,struct intel_initial_plane_config * plane_config)2528 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2529 			      struct intel_initial_plane_config *plane_config)
2530 {
2531 	struct drm_device *dev = crtc->base.dev;
2532 	struct drm_i915_private *dev_priv = to_i915(dev);
2533 	struct drm_i915_gem_object *obj = NULL;
2534 	struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2535 	struct drm_framebuffer *fb = &plane_config->fb->base;
2536 	u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2537 	u32 size_aligned = round_up(plane_config->base + plane_config->size,
2538 				    PAGE_SIZE);
2539 
2540 	size_aligned -= base_aligned;
2541 
2542 	if (plane_config->size == 0)
2543 		return false;
2544 
2545 	/* If the FB is too big, just don't use it since fbdev is not very
2546 	 * important and we should probably use that space with FBC or other
2547 	 * features. */
2548 	if (size_aligned * 2 > dev_priv->gtt.stolen_usable_size)
2549 		return false;
2550 
2551 	obj = i915_gem_object_create_stolen_for_preallocated(dev,
2552 							     base_aligned,
2553 							     base_aligned,
2554 							     size_aligned);
2555 	if (!obj)
2556 		return false;
2557 
2558 	obj->tiling_mode = plane_config->tiling;
2559 	if (obj->tiling_mode == I915_TILING_X)
2560 		obj->stride = fb->pitches[0];
2561 
2562 	mode_cmd.pixel_format = fb->pixel_format;
2563 	mode_cmd.width = fb->width;
2564 	mode_cmd.height = fb->height;
2565 	mode_cmd.pitches[0] = fb->pitches[0];
2566 	mode_cmd.modifier[0] = fb->modifier[0];
2567 	mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2568 
2569 	mutex_lock(&dev->struct_mutex);
2570 	if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2571 				   &mode_cmd, obj)) {
2572 		DRM_DEBUG_KMS("intel fb init failed\n");
2573 		goto out_unref_obj;
2574 	}
2575 	mutex_unlock(&dev->struct_mutex);
2576 
2577 	DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2578 	return true;
2579 
2580 out_unref_obj:
2581 	drm_gem_object_unreference(&obj->base);
2582 	mutex_unlock(&dev->struct_mutex);
2583 	return false;
2584 }
2585 
2586 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2587 static void
update_state_fb(struct drm_plane * plane)2588 update_state_fb(struct drm_plane *plane)
2589 {
2590 	if (plane->fb == plane->state->fb)
2591 		return;
2592 
2593 	if (plane->state->fb)
2594 		drm_framebuffer_unreference(plane->state->fb);
2595 	plane->state->fb = plane->fb;
2596 	if (plane->state->fb)
2597 		drm_framebuffer_reference(plane->state->fb);
2598 }
2599 
2600 static void
intel_find_initial_plane_obj(struct intel_crtc * intel_crtc,struct intel_initial_plane_config * plane_config)2601 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2602 			     struct intel_initial_plane_config *plane_config)
2603 {
2604 	struct drm_device *dev = intel_crtc->base.dev;
2605 	struct drm_i915_private *dev_priv = dev->dev_private;
2606 	struct drm_crtc *c;
2607 	struct intel_crtc *i;
2608 	struct drm_i915_gem_object *obj;
2609 	struct drm_plane *primary = intel_crtc->base.primary;
2610 	struct drm_plane_state *plane_state = primary->state;
2611 	struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2612 	struct intel_plane *intel_plane = to_intel_plane(primary);
2613 	struct drm_framebuffer *fb;
2614 
2615 	if (!plane_config->fb)
2616 		return;
2617 
2618 	if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2619 		fb = &plane_config->fb->base;
2620 		goto valid_fb;
2621 	}
2622 
2623 	kfree(plane_config->fb);
2624 
2625 	/*
2626 	 * Failed to alloc the obj, check to see if we should share
2627 	 * an fb with another CRTC instead
2628 	 */
2629 	for_each_crtc(dev, c) {
2630 		i = to_intel_crtc(c);
2631 
2632 		if (c == &intel_crtc->base)
2633 			continue;
2634 
2635 		if (!i->active)
2636 			continue;
2637 
2638 		fb = c->primary->fb;
2639 		if (!fb)
2640 			continue;
2641 
2642 		obj = intel_fb_obj(fb);
2643 		if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2644 			drm_framebuffer_reference(fb);
2645 			goto valid_fb;
2646 		}
2647 	}
2648 
2649 	/*
2650 	 * We've failed to reconstruct the BIOS FB.  Current display state
2651 	 * indicates that the primary plane is visible, but has a NULL FB,
2652 	 * which will lead to problems later if we don't fix it up.  The
2653 	 * simplest solution is to just disable the primary plane now and
2654 	 * pretend the BIOS never had it enabled.
2655 	 */
2656 	to_intel_plane_state(plane_state)->visible = false;
2657 	crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2658 	intel_pre_disable_primary(&intel_crtc->base);
2659 	intel_plane->disable_plane(primary, &intel_crtc->base);
2660 
2661 	return;
2662 
2663 valid_fb:
2664 	plane_state->src_x = 0;
2665 	plane_state->src_y = 0;
2666 	plane_state->src_w = fb->width << 16;
2667 	plane_state->src_h = fb->height << 16;
2668 
2669 	plane_state->crtc_x = 0;
2670 	plane_state->crtc_y = 0;
2671 	plane_state->crtc_w = fb->width;
2672 	plane_state->crtc_h = fb->height;
2673 
2674 	obj = intel_fb_obj(fb);
2675 	if (obj->tiling_mode != I915_TILING_NONE)
2676 		dev_priv->preserve_bios_swizzle = true;
2677 
2678 	drm_framebuffer_reference(fb);
2679 	primary->fb = primary->state->fb = fb;
2680 	primary->crtc = primary->state->crtc = &intel_crtc->base;
2681 	intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2682 	obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
2683 }
2684 
i9xx_update_primary_plane(struct drm_crtc * crtc,struct drm_framebuffer * fb,int x,int y)2685 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2686 				      struct drm_framebuffer *fb,
2687 				      int x, int y)
2688 {
2689 	struct drm_device *dev = crtc->dev;
2690 	struct drm_i915_private *dev_priv = dev->dev_private;
2691 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2692 	struct drm_plane *primary = crtc->primary;
2693 	bool visible = to_intel_plane_state(primary->state)->visible;
2694 	struct drm_i915_gem_object *obj;
2695 	int plane = intel_crtc->plane;
2696 	unsigned long linear_offset;
2697 	u32 dspcntr;
2698 	u32 reg = DSPCNTR(plane);
2699 	int pixel_size;
2700 
2701 	if (!visible || !fb) {
2702 		I915_WRITE(reg, 0);
2703 		if (INTEL_INFO(dev)->gen >= 4)
2704 			I915_WRITE(DSPSURF(plane), 0);
2705 		else
2706 			I915_WRITE(DSPADDR(plane), 0);
2707 		POSTING_READ(reg);
2708 		return;
2709 	}
2710 
2711 	obj = intel_fb_obj(fb);
2712 	if (WARN_ON(obj == NULL))
2713 		return;
2714 
2715 	pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2716 
2717 	dspcntr = DISPPLANE_GAMMA_ENABLE;
2718 
2719 	dspcntr |= DISPLAY_PLANE_ENABLE;
2720 
2721 	if (INTEL_INFO(dev)->gen < 4) {
2722 		if (intel_crtc->pipe == PIPE_B)
2723 			dspcntr |= DISPPLANE_SEL_PIPE_B;
2724 
2725 		/* pipesrc and dspsize control the size that is scaled from,
2726 		 * which should always be the user's requested size.
2727 		 */
2728 		I915_WRITE(DSPSIZE(plane),
2729 			   ((intel_crtc->config->pipe_src_h - 1) << 16) |
2730 			   (intel_crtc->config->pipe_src_w - 1));
2731 		I915_WRITE(DSPPOS(plane), 0);
2732 	} else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2733 		I915_WRITE(PRIMSIZE(plane),
2734 			   ((intel_crtc->config->pipe_src_h - 1) << 16) |
2735 			   (intel_crtc->config->pipe_src_w - 1));
2736 		I915_WRITE(PRIMPOS(plane), 0);
2737 		I915_WRITE(PRIMCNSTALPHA(plane), 0);
2738 	}
2739 
2740 	switch (fb->pixel_format) {
2741 	case DRM_FORMAT_C8:
2742 		dspcntr |= DISPPLANE_8BPP;
2743 		break;
2744 	case DRM_FORMAT_XRGB1555:
2745 		dspcntr |= DISPPLANE_BGRX555;
2746 		break;
2747 	case DRM_FORMAT_RGB565:
2748 		dspcntr |= DISPPLANE_BGRX565;
2749 		break;
2750 	case DRM_FORMAT_XRGB8888:
2751 		dspcntr |= DISPPLANE_BGRX888;
2752 		break;
2753 	case DRM_FORMAT_XBGR8888:
2754 		dspcntr |= DISPPLANE_RGBX888;
2755 		break;
2756 	case DRM_FORMAT_XRGB2101010:
2757 		dspcntr |= DISPPLANE_BGRX101010;
2758 		break;
2759 	case DRM_FORMAT_XBGR2101010:
2760 		dspcntr |= DISPPLANE_RGBX101010;
2761 		break;
2762 	default:
2763 		BUG();
2764 	}
2765 
2766 	if (INTEL_INFO(dev)->gen >= 4 &&
2767 	    obj->tiling_mode != I915_TILING_NONE)
2768 		dspcntr |= DISPPLANE_TILED;
2769 
2770 	if (IS_G4X(dev))
2771 		dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2772 
2773 	linear_offset = y * fb->pitches[0] + x * pixel_size;
2774 
2775 	if (INTEL_INFO(dev)->gen >= 4) {
2776 		intel_crtc->dspaddr_offset =
2777 			intel_gen4_compute_page_offset(dev_priv,
2778 						       &x, &y, obj->tiling_mode,
2779 						       pixel_size,
2780 						       fb->pitches[0]);
2781 		linear_offset -= intel_crtc->dspaddr_offset;
2782 	} else {
2783 		intel_crtc->dspaddr_offset = linear_offset;
2784 	}
2785 
2786 	if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2787 		dspcntr |= DISPPLANE_ROTATE_180;
2788 
2789 		x += (intel_crtc->config->pipe_src_w - 1);
2790 		y += (intel_crtc->config->pipe_src_h - 1);
2791 
2792 		/* Finding the last pixel of the last line of the display
2793 		data and adding to linear_offset*/
2794 		linear_offset +=
2795 			(intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2796 			(intel_crtc->config->pipe_src_w - 1) * pixel_size;
2797 	}
2798 
2799 	intel_crtc->adjusted_x = x;
2800 	intel_crtc->adjusted_y = y;
2801 
2802 	I915_WRITE(reg, dspcntr);
2803 
2804 	I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2805 	if (INTEL_INFO(dev)->gen >= 4) {
2806 		I915_WRITE(DSPSURF(plane),
2807 			   i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2808 		I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2809 		I915_WRITE(DSPLINOFF(plane), linear_offset);
2810 	} else
2811 		I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2812 	POSTING_READ(reg);
2813 }
2814 
ironlake_update_primary_plane(struct drm_crtc * crtc,struct drm_framebuffer * fb,int x,int y)2815 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2816 					  struct drm_framebuffer *fb,
2817 					  int x, int y)
2818 {
2819 	struct drm_device *dev = crtc->dev;
2820 	struct drm_i915_private *dev_priv = dev->dev_private;
2821 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2822 	struct drm_plane *primary = crtc->primary;
2823 	bool visible = to_intel_plane_state(primary->state)->visible;
2824 	struct drm_i915_gem_object *obj;
2825 	int plane = intel_crtc->plane;
2826 	unsigned long linear_offset;
2827 	u32 dspcntr;
2828 	u32 reg = DSPCNTR(plane);
2829 	int pixel_size;
2830 
2831 	if (!visible || !fb) {
2832 		I915_WRITE(reg, 0);
2833 		I915_WRITE(DSPSURF(plane), 0);
2834 		POSTING_READ(reg);
2835 		return;
2836 	}
2837 
2838 	obj = intel_fb_obj(fb);
2839 	if (WARN_ON(obj == NULL))
2840 		return;
2841 
2842 	pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2843 
2844 	dspcntr = DISPPLANE_GAMMA_ENABLE;
2845 
2846 	dspcntr |= DISPLAY_PLANE_ENABLE;
2847 
2848 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2849 		dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2850 
2851 	switch (fb->pixel_format) {
2852 	case DRM_FORMAT_C8:
2853 		dspcntr |= DISPPLANE_8BPP;
2854 		break;
2855 	case DRM_FORMAT_RGB565:
2856 		dspcntr |= DISPPLANE_BGRX565;
2857 		break;
2858 	case DRM_FORMAT_XRGB8888:
2859 		dspcntr |= DISPPLANE_BGRX888;
2860 		break;
2861 	case DRM_FORMAT_XBGR8888:
2862 		dspcntr |= DISPPLANE_RGBX888;
2863 		break;
2864 	case DRM_FORMAT_XRGB2101010:
2865 		dspcntr |= DISPPLANE_BGRX101010;
2866 		break;
2867 	case DRM_FORMAT_XBGR2101010:
2868 		dspcntr |= DISPPLANE_RGBX101010;
2869 		break;
2870 	default:
2871 		BUG();
2872 	}
2873 
2874 	if (obj->tiling_mode != I915_TILING_NONE)
2875 		dspcntr |= DISPPLANE_TILED;
2876 
2877 	if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2878 		dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2879 
2880 	linear_offset = y * fb->pitches[0] + x * pixel_size;
2881 	intel_crtc->dspaddr_offset =
2882 		intel_gen4_compute_page_offset(dev_priv,
2883 					       &x, &y, obj->tiling_mode,
2884 					       pixel_size,
2885 					       fb->pitches[0]);
2886 	linear_offset -= intel_crtc->dspaddr_offset;
2887 	if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2888 		dspcntr |= DISPPLANE_ROTATE_180;
2889 
2890 		if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2891 			x += (intel_crtc->config->pipe_src_w - 1);
2892 			y += (intel_crtc->config->pipe_src_h - 1);
2893 
2894 			/* Finding the last pixel of the last line of the display
2895 			data and adding to linear_offset*/
2896 			linear_offset +=
2897 				(intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2898 				(intel_crtc->config->pipe_src_w - 1) * pixel_size;
2899 		}
2900 	}
2901 
2902 	intel_crtc->adjusted_x = x;
2903 	intel_crtc->adjusted_y = y;
2904 
2905 	I915_WRITE(reg, dspcntr);
2906 
2907 	I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2908 	I915_WRITE(DSPSURF(plane),
2909 		   i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2910 	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2911 		I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2912 	} else {
2913 		I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2914 		I915_WRITE(DSPLINOFF(plane), linear_offset);
2915 	}
2916 	POSTING_READ(reg);
2917 }
2918 
intel_fb_stride_alignment(struct drm_device * dev,uint64_t fb_modifier,uint32_t pixel_format)2919 u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2920 			      uint32_t pixel_format)
2921 {
2922 	u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2923 
2924 	/*
2925 	 * The stride is either expressed as a multiple of 64 bytes
2926 	 * chunks for linear buffers or in number of tiles for tiled
2927 	 * buffers.
2928 	 */
2929 	switch (fb_modifier) {
2930 	case DRM_FORMAT_MOD_NONE:
2931 		return 64;
2932 	case I915_FORMAT_MOD_X_TILED:
2933 		if (INTEL_INFO(dev)->gen == 2)
2934 			return 128;
2935 		return 512;
2936 	case I915_FORMAT_MOD_Y_TILED:
2937 		/* No need to check for old gens and Y tiling since this is
2938 		 * about the display engine and those will be blocked before
2939 		 * we get here.
2940 		 */
2941 		return 128;
2942 	case I915_FORMAT_MOD_Yf_TILED:
2943 		if (bits_per_pixel == 8)
2944 			return 64;
2945 		else
2946 			return 128;
2947 	default:
2948 		MISSING_CASE(fb_modifier);
2949 		return 64;
2950 	}
2951 }
2952 
intel_plane_obj_offset(struct intel_plane * intel_plane,struct drm_i915_gem_object * obj,unsigned int plane)2953 unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
2954 				     struct drm_i915_gem_object *obj,
2955 				     unsigned int plane)
2956 {
2957 	const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
2958 	struct i915_vma *vma;
2959 	unsigned char *offset;
2960 
2961 	if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
2962 		view = &i915_ggtt_view_rotated;
2963 
2964 	vma = i915_gem_obj_to_ggtt_view(obj, view);
2965 	if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
2966 		view->type))
2967 		return -1;
2968 
2969 	offset = (unsigned char *)vma->node.start;
2970 
2971 	if (plane == 1) {
2972 		offset += vma->ggtt_view.rotation_info.uv_start_page *
2973 			  PAGE_SIZE;
2974 	}
2975 
2976 	return (unsigned long)offset;
2977 }
2978 
skl_detach_scaler(struct intel_crtc * intel_crtc,int id)2979 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2980 {
2981 	struct drm_device *dev = intel_crtc->base.dev;
2982 	struct drm_i915_private *dev_priv = dev->dev_private;
2983 
2984 	I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2985 	I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2986 	I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2987 }
2988 
2989 /*
2990  * This function detaches (aka. unbinds) unused scalers in hardware
2991  */
skl_detach_scalers(struct intel_crtc * intel_crtc)2992 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2993 {
2994 	struct intel_crtc_scaler_state *scaler_state;
2995 	int i;
2996 
2997 	scaler_state = &intel_crtc->config->scaler_state;
2998 
2999 	/* loop through and disable scalers that aren't in use */
3000 	for (i = 0; i < intel_crtc->num_scalers; i++) {
3001 		if (!scaler_state->scalers[i].in_use)
3002 			skl_detach_scaler(intel_crtc, i);
3003 	}
3004 }
3005 
skl_plane_ctl_format(uint32_t pixel_format)3006 u32 skl_plane_ctl_format(uint32_t pixel_format)
3007 {
3008 	switch (pixel_format) {
3009 	case DRM_FORMAT_C8:
3010 		return PLANE_CTL_FORMAT_INDEXED;
3011 	case DRM_FORMAT_RGB565:
3012 		return PLANE_CTL_FORMAT_RGB_565;
3013 	case DRM_FORMAT_XBGR8888:
3014 		return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
3015 	case DRM_FORMAT_XRGB8888:
3016 		return PLANE_CTL_FORMAT_XRGB_8888;
3017 	/*
3018 	 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
3019 	 * to be already pre-multiplied. We need to add a knob (or a different
3020 	 * DRM_FORMAT) for user-space to configure that.
3021 	 */
3022 	case DRM_FORMAT_ABGR8888:
3023 		return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
3024 			PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3025 	case DRM_FORMAT_ARGB8888:
3026 		return PLANE_CTL_FORMAT_XRGB_8888 |
3027 			PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3028 	case DRM_FORMAT_XRGB2101010:
3029 		return PLANE_CTL_FORMAT_XRGB_2101010;
3030 	case DRM_FORMAT_XBGR2101010:
3031 		return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
3032 	case DRM_FORMAT_YUYV:
3033 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
3034 	case DRM_FORMAT_YVYU:
3035 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
3036 	case DRM_FORMAT_UYVY:
3037 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3038 	case DRM_FORMAT_VYUY:
3039 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3040 	default:
3041 		MISSING_CASE(pixel_format);
3042 	}
3043 
3044 	return 0;
3045 }
3046 
skl_plane_ctl_tiling(uint64_t fb_modifier)3047 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3048 {
3049 	switch (fb_modifier) {
3050 	case DRM_FORMAT_MOD_NONE:
3051 		break;
3052 	case I915_FORMAT_MOD_X_TILED:
3053 		return PLANE_CTL_TILED_X;
3054 	case I915_FORMAT_MOD_Y_TILED:
3055 		return PLANE_CTL_TILED_Y;
3056 	case I915_FORMAT_MOD_Yf_TILED:
3057 		return PLANE_CTL_TILED_YF;
3058 	default:
3059 		MISSING_CASE(fb_modifier);
3060 	}
3061 
3062 	return 0;
3063 }
3064 
skl_plane_ctl_rotation(unsigned int rotation)3065 u32 skl_plane_ctl_rotation(unsigned int rotation)
3066 {
3067 	switch (rotation) {
3068 	case BIT(DRM_ROTATE_0):
3069 		break;
3070 	/*
3071 	 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3072 	 * while i915 HW rotation is clockwise, thats why this swapping.
3073 	 */
3074 	case BIT(DRM_ROTATE_90):
3075 		return PLANE_CTL_ROTATE_270;
3076 	case BIT(DRM_ROTATE_180):
3077 		return PLANE_CTL_ROTATE_180;
3078 	case BIT(DRM_ROTATE_270):
3079 		return PLANE_CTL_ROTATE_90;
3080 	default:
3081 		MISSING_CASE(rotation);
3082 	}
3083 
3084 	return 0;
3085 }
3086 
skylake_update_primary_plane(struct drm_crtc * crtc,struct drm_framebuffer * fb,int x,int y)3087 static void skylake_update_primary_plane(struct drm_crtc *crtc,
3088 					 struct drm_framebuffer *fb,
3089 					 int x, int y)
3090 {
3091 	struct drm_device *dev = crtc->dev;
3092 	struct drm_i915_private *dev_priv = dev->dev_private;
3093 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3094 	struct drm_plane *plane = crtc->primary;
3095 	bool visible = to_intel_plane_state(plane->state)->visible;
3096 	struct drm_i915_gem_object *obj;
3097 	int pipe = intel_crtc->pipe;
3098 	u32 plane_ctl, stride_div, stride;
3099 	u32 tile_height, plane_offset, plane_size;
3100 	unsigned int rotation;
3101 	int x_offset, y_offset;
3102 	unsigned long surf_addr;
3103 	struct intel_crtc_state *crtc_state = intel_crtc->config;
3104 	struct intel_plane_state *plane_state;
3105 	int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
3106 	int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
3107 	int scaler_id = -1;
3108 
3109 	plane_state = to_intel_plane_state(plane->state);
3110 
3111 	if (!visible || !fb) {
3112 		I915_WRITE(PLANE_CTL(pipe, 0), 0);
3113 		I915_WRITE(PLANE_SURF(pipe, 0), 0);
3114 		POSTING_READ(PLANE_CTL(pipe, 0));
3115 		return;
3116 	}
3117 
3118 	plane_ctl = PLANE_CTL_ENABLE |
3119 		    PLANE_CTL_PIPE_GAMMA_ENABLE |
3120 		    PLANE_CTL_PIPE_CSC_ENABLE;
3121 
3122 	plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3123 	plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3124 	plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3125 
3126 	rotation = plane->state->rotation;
3127 	plane_ctl |= skl_plane_ctl_rotation(rotation);
3128 
3129 	obj = intel_fb_obj(fb);
3130 	stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3131 					       fb->pixel_format);
3132 	surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
3133 
3134 	WARN_ON(drm_rect_width(&plane_state->src) == 0);
3135 
3136 	scaler_id = plane_state->scaler_id;
3137 	src_x = plane_state->src.x1 >> 16;
3138 	src_y = plane_state->src.y1 >> 16;
3139 	src_w = drm_rect_width(&plane_state->src) >> 16;
3140 	src_h = drm_rect_height(&plane_state->src) >> 16;
3141 	dst_x = plane_state->dst.x1;
3142 	dst_y = plane_state->dst.y1;
3143 	dst_w = drm_rect_width(&plane_state->dst);
3144 	dst_h = drm_rect_height(&plane_state->dst);
3145 
3146 	WARN_ON(x != src_x || y != src_y);
3147 
3148 	if (intel_rotation_90_or_270(rotation)) {
3149 		/* stride = Surface height in tiles */
3150 		tile_height = intel_tile_height(dev, fb->pixel_format,
3151 						fb->modifier[0], 0);
3152 		stride = DIV_ROUND_UP(fb->height, tile_height);
3153 		x_offset = stride * tile_height - y - src_h;
3154 		y_offset = x;
3155 		plane_size = (src_w - 1) << 16 | (src_h - 1);
3156 	} else {
3157 		stride = fb->pitches[0] / stride_div;
3158 		x_offset = x;
3159 		y_offset = y;
3160 		plane_size = (src_h - 1) << 16 | (src_w - 1);
3161 	}
3162 	plane_offset = y_offset << 16 | x_offset;
3163 
3164 	intel_crtc->adjusted_x = x_offset;
3165 	intel_crtc->adjusted_y = y_offset;
3166 
3167 	I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3168 	I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3169 	I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3170 	I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3171 
3172 	if (scaler_id >= 0) {
3173 		uint32_t ps_ctrl = 0;
3174 
3175 		WARN_ON(!dst_w || !dst_h);
3176 		ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3177 			crtc_state->scaler_state.scalers[scaler_id].mode;
3178 		I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3179 		I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3180 		I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3181 		I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3182 		I915_WRITE(PLANE_POS(pipe, 0), 0);
3183 	} else {
3184 		I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3185 	}
3186 
3187 	I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3188 
3189 	POSTING_READ(PLANE_SURF(pipe, 0));
3190 }
3191 
3192 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3193 static int
intel_pipe_set_base_atomic(struct drm_crtc * crtc,struct drm_framebuffer * fb,int x,int y,enum mode_set_atomic state)3194 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3195 			   int x, int y, enum mode_set_atomic state)
3196 {
3197 	struct drm_device *dev = crtc->dev;
3198 	struct drm_i915_private *dev_priv = dev->dev_private;
3199 
3200 	if (dev_priv->fbc.disable_fbc)
3201 		dev_priv->fbc.disable_fbc(dev_priv);
3202 
3203 	dev_priv->display.update_primary_plane(crtc, fb, x, y);
3204 
3205 	return 0;
3206 }
3207 
intel_complete_page_flips(struct drm_device * dev)3208 static void intel_complete_page_flips(struct drm_device *dev)
3209 {
3210 	struct drm_crtc *crtc;
3211 
3212 	for_each_crtc(dev, crtc) {
3213 		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3214 		enum plane plane = intel_crtc->plane;
3215 
3216 		intel_prepare_page_flip(dev, plane);
3217 		intel_finish_page_flip_plane(dev, plane);
3218 	}
3219 }
3220 
intel_update_primary_planes(struct drm_device * dev)3221 static void intel_update_primary_planes(struct drm_device *dev)
3222 {
3223 	struct drm_crtc *crtc;
3224 
3225 	for_each_crtc(dev, crtc) {
3226 		struct intel_plane *plane = to_intel_plane(crtc->primary);
3227 		struct intel_plane_state *plane_state;
3228 
3229 		drm_modeset_lock_crtc(crtc, &plane->base);
3230 
3231 		plane_state = to_intel_plane_state(plane->base.state);
3232 
3233 		if (plane_state->base.fb)
3234 			plane->commit_plane(&plane->base, plane_state);
3235 
3236 		drm_modeset_unlock_crtc(crtc);
3237 	}
3238 }
3239 
intel_prepare_reset(struct drm_device * dev)3240 void intel_prepare_reset(struct drm_device *dev)
3241 {
3242 	/* no reset support for gen2 */
3243 	if (IS_GEN2(dev))
3244 		return;
3245 
3246 	/* reset doesn't touch the display */
3247 	if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3248 		return;
3249 
3250 	drm_modeset_lock_all(dev);
3251 	/*
3252 	 * Disabling the crtcs gracefully seems nicer. Also the
3253 	 * g33 docs say we should at least disable all the planes.
3254 	 */
3255 	intel_display_suspend(dev);
3256 }
3257 
intel_finish_reset(struct drm_device * dev)3258 void intel_finish_reset(struct drm_device *dev)
3259 {
3260 	struct drm_i915_private *dev_priv = to_i915(dev);
3261 
3262 	/*
3263 	 * Flips in the rings will be nuked by the reset,
3264 	 * so complete all pending flips so that user space
3265 	 * will get its events and not get stuck.
3266 	 */
3267 	intel_complete_page_flips(dev);
3268 
3269 	/* no reset support for gen2 */
3270 	if (IS_GEN2(dev))
3271 		return;
3272 
3273 	/* reset doesn't touch the display */
3274 	if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3275 		/*
3276 		 * Flips in the rings have been nuked by the reset,
3277 		 * so update the base address of all primary
3278 		 * planes to the the last fb to make sure we're
3279 		 * showing the correct fb after a reset.
3280 		 *
3281 		 * FIXME: Atomic will make this obsolete since we won't schedule
3282 		 * CS-based flips (which might get lost in gpu resets) any more.
3283 		 */
3284 		intel_update_primary_planes(dev);
3285 		return;
3286 	}
3287 
3288 	/*
3289 	 * The display has been reset as well,
3290 	 * so need a full re-initialization.
3291 	 */
3292 	intel_runtime_pm_disable_interrupts(dev_priv);
3293 	intel_runtime_pm_enable_interrupts(dev_priv);
3294 
3295 	intel_modeset_init_hw(dev);
3296 
3297 	spin_lock_irq(&dev_priv->irq_lock);
3298 	if (dev_priv->display.hpd_irq_setup)
3299 		dev_priv->display.hpd_irq_setup(dev);
3300 	spin_unlock_irq(&dev_priv->irq_lock);
3301 
3302 	intel_display_resume(dev);
3303 
3304 	intel_hpd_init(dev_priv);
3305 
3306 	drm_modeset_unlock_all(dev);
3307 }
3308 
3309 static void
intel_finish_fb(struct drm_framebuffer * old_fb)3310 intel_finish_fb(struct drm_framebuffer *old_fb)
3311 {
3312 	struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
3313 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3314 	bool was_interruptible = dev_priv->mm.interruptible;
3315 	int ret;
3316 
3317 	/* Big Hammer, we also need to ensure that any pending
3318 	 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3319 	 * current scanout is retired before unpinning the old
3320 	 * framebuffer. Note that we rely on userspace rendering
3321 	 * into the buffer attached to the pipe they are waiting
3322 	 * on. If not, userspace generates a GPU hang with IPEHR
3323 	 * point to the MI_WAIT_FOR_EVENT.
3324 	 *
3325 	 * This should only fail upon a hung GPU, in which case we
3326 	 * can safely continue.
3327 	 */
3328 	dev_priv->mm.interruptible = false;
3329 	ret = i915_gem_object_wait_rendering(obj, true);
3330 	dev_priv->mm.interruptible = was_interruptible;
3331 
3332 	WARN_ON(ret);
3333 }
3334 
intel_crtc_has_pending_flip(struct drm_crtc * crtc)3335 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3336 {
3337 	struct drm_device *dev = crtc->dev;
3338 	struct drm_i915_private *dev_priv = dev->dev_private;
3339 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3340 	bool pending;
3341 
3342 	if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3343 	    intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3344 		return false;
3345 
3346 	spin_lock_irq(&dev->event_lock);
3347 	pending = to_intel_crtc(crtc)->unpin_work != NULL;
3348 	spin_unlock_irq(&dev->event_lock);
3349 
3350 	return pending;
3351 }
3352 
intel_update_pipe_config(struct intel_crtc * crtc,struct intel_crtc_state * old_crtc_state)3353 static void intel_update_pipe_config(struct intel_crtc *crtc,
3354 				     struct intel_crtc_state *old_crtc_state)
3355 {
3356 	struct drm_device *dev = crtc->base.dev;
3357 	struct drm_i915_private *dev_priv = dev->dev_private;
3358 	struct intel_crtc_state *pipe_config =
3359 		to_intel_crtc_state(crtc->base.state);
3360 
3361 	/* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3362 	crtc->base.mode = crtc->base.state->mode;
3363 
3364 	DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3365 		      old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3366 		      pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3367 
3368 	if (HAS_DDI(dev))
3369 		intel_set_pipe_csc(&crtc->base);
3370 
3371 	/*
3372 	 * Update pipe size and adjust fitter if needed: the reason for this is
3373 	 * that in compute_mode_changes we check the native mode (not the pfit
3374 	 * mode) to see if we can flip rather than do a full mode set. In the
3375 	 * fastboot case, we'll flip, but if we don't update the pipesrc and
3376 	 * pfit state, we'll end up with a big fb scanned out into the wrong
3377 	 * sized surface.
3378 	 */
3379 
3380 	I915_WRITE(PIPESRC(crtc->pipe),
3381 		   ((pipe_config->pipe_src_w - 1) << 16) |
3382 		   (pipe_config->pipe_src_h - 1));
3383 
3384 	/* on skylake this is done by detaching scalers */
3385 	if (INTEL_INFO(dev)->gen >= 9) {
3386 		skl_detach_scalers(crtc);
3387 
3388 		if (pipe_config->pch_pfit.enabled)
3389 			skylake_pfit_enable(crtc);
3390 	} else if (HAS_PCH_SPLIT(dev)) {
3391 		if (pipe_config->pch_pfit.enabled)
3392 			ironlake_pfit_enable(crtc);
3393 		else if (old_crtc_state->pch_pfit.enabled)
3394 			ironlake_pfit_disable(crtc, true);
3395 	}
3396 }
3397 
intel_fdi_normal_train(struct drm_crtc * crtc)3398 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3399 {
3400 	struct drm_device *dev = crtc->dev;
3401 	struct drm_i915_private *dev_priv = dev->dev_private;
3402 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3403 	int pipe = intel_crtc->pipe;
3404 	u32 reg, temp;
3405 
3406 	/* enable normal train */
3407 	reg = FDI_TX_CTL(pipe);
3408 	temp = I915_READ(reg);
3409 	if (IS_IVYBRIDGE(dev)) {
3410 		temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3411 		temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3412 	} else {
3413 		temp &= ~FDI_LINK_TRAIN_NONE;
3414 		temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3415 	}
3416 	I915_WRITE(reg, temp);
3417 
3418 	reg = FDI_RX_CTL(pipe);
3419 	temp = I915_READ(reg);
3420 	if (HAS_PCH_CPT(dev)) {
3421 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3422 		temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3423 	} else {
3424 		temp &= ~FDI_LINK_TRAIN_NONE;
3425 		temp |= FDI_LINK_TRAIN_NONE;
3426 	}
3427 	I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3428 
3429 	/* wait one idle pattern time */
3430 	POSTING_READ(reg);
3431 	udelay(1000);
3432 
3433 	/* IVB wants error correction enabled */
3434 	if (IS_IVYBRIDGE(dev))
3435 		I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3436 			   FDI_FE_ERRC_ENABLE);
3437 }
3438 
3439 /* The FDI link training functions for ILK/Ibexpeak. */
ironlake_fdi_link_train(struct drm_crtc * crtc)3440 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3441 {
3442 	struct drm_device *dev = crtc->dev;
3443 	struct drm_i915_private *dev_priv = dev->dev_private;
3444 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3445 	int pipe = intel_crtc->pipe;
3446 	u32 reg, temp, tries;
3447 
3448 	/* FDI needs bits from pipe first */
3449 	assert_pipe_enabled(dev_priv, pipe);
3450 
3451 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3452 	   for train result */
3453 	reg = FDI_RX_IMR(pipe);
3454 	temp = I915_READ(reg);
3455 	temp &= ~FDI_RX_SYMBOL_LOCK;
3456 	temp &= ~FDI_RX_BIT_LOCK;
3457 	I915_WRITE(reg, temp);
3458 	I915_READ(reg);
3459 	udelay(150);
3460 
3461 	/* enable CPU FDI TX and PCH FDI RX */
3462 	reg = FDI_TX_CTL(pipe);
3463 	temp = I915_READ(reg);
3464 	temp &= ~FDI_DP_PORT_WIDTH_MASK;
3465 	temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3466 	temp &= ~FDI_LINK_TRAIN_NONE;
3467 	temp |= FDI_LINK_TRAIN_PATTERN_1;
3468 	I915_WRITE(reg, temp | FDI_TX_ENABLE);
3469 
3470 	reg = FDI_RX_CTL(pipe);
3471 	temp = I915_READ(reg);
3472 	temp &= ~FDI_LINK_TRAIN_NONE;
3473 	temp |= FDI_LINK_TRAIN_PATTERN_1;
3474 	I915_WRITE(reg, temp | FDI_RX_ENABLE);
3475 
3476 	POSTING_READ(reg);
3477 	udelay(150);
3478 
3479 	/* Ironlake workaround, enable clock pointer after FDI enable*/
3480 	I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3481 	I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3482 		   FDI_RX_PHASE_SYNC_POINTER_EN);
3483 
3484 	reg = FDI_RX_IIR(pipe);
3485 	for (tries = 0; tries < 5; tries++) {
3486 		temp = I915_READ(reg);
3487 		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3488 
3489 		if ((temp & FDI_RX_BIT_LOCK)) {
3490 			DRM_DEBUG_KMS("FDI train 1 done.\n");
3491 			I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3492 			break;
3493 		}
3494 	}
3495 	if (tries == 5)
3496 		DRM_ERROR("FDI train 1 fail!\n");
3497 
3498 	/* Train 2 */
3499 	reg = FDI_TX_CTL(pipe);
3500 	temp = I915_READ(reg);
3501 	temp &= ~FDI_LINK_TRAIN_NONE;
3502 	temp |= FDI_LINK_TRAIN_PATTERN_2;
3503 	I915_WRITE(reg, temp);
3504 
3505 	reg = FDI_RX_CTL(pipe);
3506 	temp = I915_READ(reg);
3507 	temp &= ~FDI_LINK_TRAIN_NONE;
3508 	temp |= FDI_LINK_TRAIN_PATTERN_2;
3509 	I915_WRITE(reg, temp);
3510 
3511 	POSTING_READ(reg);
3512 	udelay(150);
3513 
3514 	reg = FDI_RX_IIR(pipe);
3515 	for (tries = 0; tries < 5; tries++) {
3516 		temp = I915_READ(reg);
3517 		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3518 
3519 		if (temp & FDI_RX_SYMBOL_LOCK) {
3520 			I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3521 			DRM_DEBUG_KMS("FDI train 2 done.\n");
3522 			break;
3523 		}
3524 	}
3525 	if (tries == 5)
3526 		DRM_ERROR("FDI train 2 fail!\n");
3527 
3528 	DRM_DEBUG_KMS("FDI train done\n");
3529 
3530 }
3531 
3532 static const int snb_b_fdi_train_param[] = {
3533 	FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3534 	FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3535 	FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3536 	FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3537 };
3538 
3539 /* The FDI link training functions for SNB/Cougarpoint. */
gen6_fdi_link_train(struct drm_crtc * crtc)3540 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3541 {
3542 	struct drm_device *dev = crtc->dev;
3543 	struct drm_i915_private *dev_priv = dev->dev_private;
3544 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3545 	int pipe = intel_crtc->pipe;
3546 	u32 reg, temp, i, retry;
3547 
3548 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3549 	   for train result */
3550 	reg = FDI_RX_IMR(pipe);
3551 	temp = I915_READ(reg);
3552 	temp &= ~FDI_RX_SYMBOL_LOCK;
3553 	temp &= ~FDI_RX_BIT_LOCK;
3554 	I915_WRITE(reg, temp);
3555 
3556 	POSTING_READ(reg);
3557 	udelay(150);
3558 
3559 	/* enable CPU FDI TX and PCH FDI RX */
3560 	reg = FDI_TX_CTL(pipe);
3561 	temp = I915_READ(reg);
3562 	temp &= ~FDI_DP_PORT_WIDTH_MASK;
3563 	temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3564 	temp &= ~FDI_LINK_TRAIN_NONE;
3565 	temp |= FDI_LINK_TRAIN_PATTERN_1;
3566 	temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3567 	/* SNB-B */
3568 	temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3569 	I915_WRITE(reg, temp | FDI_TX_ENABLE);
3570 
3571 	I915_WRITE(FDI_RX_MISC(pipe),
3572 		   FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3573 
3574 	reg = FDI_RX_CTL(pipe);
3575 	temp = I915_READ(reg);
3576 	if (HAS_PCH_CPT(dev)) {
3577 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3578 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3579 	} else {
3580 		temp &= ~FDI_LINK_TRAIN_NONE;
3581 		temp |= FDI_LINK_TRAIN_PATTERN_1;
3582 	}
3583 	I915_WRITE(reg, temp | FDI_RX_ENABLE);
3584 
3585 	POSTING_READ(reg);
3586 	udelay(150);
3587 
3588 	for (i = 0; i < 4; i++) {
3589 		reg = FDI_TX_CTL(pipe);
3590 		temp = I915_READ(reg);
3591 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3592 		temp |= snb_b_fdi_train_param[i];
3593 		I915_WRITE(reg, temp);
3594 
3595 		POSTING_READ(reg);
3596 		udelay(500);
3597 
3598 		for (retry = 0; retry < 5; retry++) {
3599 			reg = FDI_RX_IIR(pipe);
3600 			temp = I915_READ(reg);
3601 			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3602 			if (temp & FDI_RX_BIT_LOCK) {
3603 				I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3604 				DRM_DEBUG_KMS("FDI train 1 done.\n");
3605 				break;
3606 			}
3607 			udelay(50);
3608 		}
3609 		if (retry < 5)
3610 			break;
3611 	}
3612 	if (i == 4)
3613 		DRM_ERROR("FDI train 1 fail!\n");
3614 
3615 	/* Train 2 */
3616 	reg = FDI_TX_CTL(pipe);
3617 	temp = I915_READ(reg);
3618 	temp &= ~FDI_LINK_TRAIN_NONE;
3619 	temp |= FDI_LINK_TRAIN_PATTERN_2;
3620 	if (IS_GEN6(dev)) {
3621 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3622 		/* SNB-B */
3623 		temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3624 	}
3625 	I915_WRITE(reg, temp);
3626 
3627 	reg = FDI_RX_CTL(pipe);
3628 	temp = I915_READ(reg);
3629 	if (HAS_PCH_CPT(dev)) {
3630 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3631 		temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3632 	} else {
3633 		temp &= ~FDI_LINK_TRAIN_NONE;
3634 		temp |= FDI_LINK_TRAIN_PATTERN_2;
3635 	}
3636 	I915_WRITE(reg, temp);
3637 
3638 	POSTING_READ(reg);
3639 	udelay(150);
3640 
3641 	for (i = 0; i < 4; i++) {
3642 		reg = FDI_TX_CTL(pipe);
3643 		temp = I915_READ(reg);
3644 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3645 		temp |= snb_b_fdi_train_param[i];
3646 		I915_WRITE(reg, temp);
3647 
3648 		POSTING_READ(reg);
3649 		udelay(500);
3650 
3651 		for (retry = 0; retry < 5; retry++) {
3652 			reg = FDI_RX_IIR(pipe);
3653 			temp = I915_READ(reg);
3654 			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3655 			if (temp & FDI_RX_SYMBOL_LOCK) {
3656 				I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3657 				DRM_DEBUG_KMS("FDI train 2 done.\n");
3658 				break;
3659 			}
3660 			udelay(50);
3661 		}
3662 		if (retry < 5)
3663 			break;
3664 	}
3665 	if (i == 4)
3666 		DRM_ERROR("FDI train 2 fail!\n");
3667 
3668 	DRM_DEBUG_KMS("FDI train done.\n");
3669 }
3670 
3671 /* Manual link training for Ivy Bridge A0 parts */
ivb_manual_fdi_link_train(struct drm_crtc * crtc)3672 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3673 {
3674 	struct drm_device *dev = crtc->dev;
3675 	struct drm_i915_private *dev_priv = dev->dev_private;
3676 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3677 	int pipe = intel_crtc->pipe;
3678 	u32 reg, temp, i, j;
3679 
3680 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3681 	   for train result */
3682 	reg = FDI_RX_IMR(pipe);
3683 	temp = I915_READ(reg);
3684 	temp &= ~FDI_RX_SYMBOL_LOCK;
3685 	temp &= ~FDI_RX_BIT_LOCK;
3686 	I915_WRITE(reg, temp);
3687 
3688 	POSTING_READ(reg);
3689 	udelay(150);
3690 
3691 	DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3692 		      I915_READ(FDI_RX_IIR(pipe)));
3693 
3694 	/* Try each vswing and preemphasis setting twice before moving on */
3695 	for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3696 		/* disable first in case we need to retry */
3697 		reg = FDI_TX_CTL(pipe);
3698 		temp = I915_READ(reg);
3699 		temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3700 		temp &= ~FDI_TX_ENABLE;
3701 		I915_WRITE(reg, temp);
3702 
3703 		reg = FDI_RX_CTL(pipe);
3704 		temp = I915_READ(reg);
3705 		temp &= ~FDI_LINK_TRAIN_AUTO;
3706 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3707 		temp &= ~FDI_RX_ENABLE;
3708 		I915_WRITE(reg, temp);
3709 
3710 		/* enable CPU FDI TX and PCH FDI RX */
3711 		reg = FDI_TX_CTL(pipe);
3712 		temp = I915_READ(reg);
3713 		temp &= ~FDI_DP_PORT_WIDTH_MASK;
3714 		temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3715 		temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3716 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3717 		temp |= snb_b_fdi_train_param[j/2];
3718 		temp |= FDI_COMPOSITE_SYNC;
3719 		I915_WRITE(reg, temp | FDI_TX_ENABLE);
3720 
3721 		I915_WRITE(FDI_RX_MISC(pipe),
3722 			   FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3723 
3724 		reg = FDI_RX_CTL(pipe);
3725 		temp = I915_READ(reg);
3726 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3727 		temp |= FDI_COMPOSITE_SYNC;
3728 		I915_WRITE(reg, temp | FDI_RX_ENABLE);
3729 
3730 		POSTING_READ(reg);
3731 		udelay(1); /* should be 0.5us */
3732 
3733 		for (i = 0; i < 4; i++) {
3734 			reg = FDI_RX_IIR(pipe);
3735 			temp = I915_READ(reg);
3736 			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3737 
3738 			if (temp & FDI_RX_BIT_LOCK ||
3739 			    (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3740 				I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3741 				DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3742 					      i);
3743 				break;
3744 			}
3745 			udelay(1); /* should be 0.5us */
3746 		}
3747 		if (i == 4) {
3748 			DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3749 			continue;
3750 		}
3751 
3752 		/* Train 2 */
3753 		reg = FDI_TX_CTL(pipe);
3754 		temp = I915_READ(reg);
3755 		temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3756 		temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3757 		I915_WRITE(reg, temp);
3758 
3759 		reg = FDI_RX_CTL(pipe);
3760 		temp = I915_READ(reg);
3761 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3762 		temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3763 		I915_WRITE(reg, temp);
3764 
3765 		POSTING_READ(reg);
3766 		udelay(2); /* should be 1.5us */
3767 
3768 		for (i = 0; i < 4; i++) {
3769 			reg = FDI_RX_IIR(pipe);
3770 			temp = I915_READ(reg);
3771 			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3772 
3773 			if (temp & FDI_RX_SYMBOL_LOCK ||
3774 			    (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3775 				I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3776 				DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3777 					      i);
3778 				goto train_done;
3779 			}
3780 			udelay(2); /* should be 1.5us */
3781 		}
3782 		if (i == 4)
3783 			DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3784 	}
3785 
3786 train_done:
3787 	DRM_DEBUG_KMS("FDI train done.\n");
3788 }
3789 
ironlake_fdi_pll_enable(struct intel_crtc * intel_crtc)3790 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3791 {
3792 	struct drm_device *dev = intel_crtc->base.dev;
3793 	struct drm_i915_private *dev_priv = dev->dev_private;
3794 	int pipe = intel_crtc->pipe;
3795 	u32 reg, temp;
3796 
3797 
3798 	/* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3799 	reg = FDI_RX_CTL(pipe);
3800 	temp = I915_READ(reg);
3801 	temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3802 	temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3803 	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3804 	I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3805 
3806 	POSTING_READ(reg);
3807 	udelay(200);
3808 
3809 	/* Switch from Rawclk to PCDclk */
3810 	temp = I915_READ(reg);
3811 	I915_WRITE(reg, temp | FDI_PCDCLK);
3812 
3813 	POSTING_READ(reg);
3814 	udelay(200);
3815 
3816 	/* Enable CPU FDI TX PLL, always on for Ironlake */
3817 	reg = FDI_TX_CTL(pipe);
3818 	temp = I915_READ(reg);
3819 	if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3820 		I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3821 
3822 		POSTING_READ(reg);
3823 		udelay(100);
3824 	}
3825 }
3826 
ironlake_fdi_pll_disable(struct intel_crtc * intel_crtc)3827 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3828 {
3829 	struct drm_device *dev = intel_crtc->base.dev;
3830 	struct drm_i915_private *dev_priv = dev->dev_private;
3831 	int pipe = intel_crtc->pipe;
3832 	u32 reg, temp;
3833 
3834 	/* Switch from PCDclk to Rawclk */
3835 	reg = FDI_RX_CTL(pipe);
3836 	temp = I915_READ(reg);
3837 	I915_WRITE(reg, temp & ~FDI_PCDCLK);
3838 
3839 	/* Disable CPU FDI TX PLL */
3840 	reg = FDI_TX_CTL(pipe);
3841 	temp = I915_READ(reg);
3842 	I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3843 
3844 	POSTING_READ(reg);
3845 	udelay(100);
3846 
3847 	reg = FDI_RX_CTL(pipe);
3848 	temp = I915_READ(reg);
3849 	I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3850 
3851 	/* Wait for the clocks to turn off. */
3852 	POSTING_READ(reg);
3853 	udelay(100);
3854 }
3855 
ironlake_fdi_disable(struct drm_crtc * crtc)3856 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3857 {
3858 	struct drm_device *dev = crtc->dev;
3859 	struct drm_i915_private *dev_priv = dev->dev_private;
3860 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3861 	int pipe = intel_crtc->pipe;
3862 	u32 reg, temp;
3863 
3864 	/* disable CPU FDI tx and PCH FDI rx */
3865 	reg = FDI_TX_CTL(pipe);
3866 	temp = I915_READ(reg);
3867 	I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3868 	POSTING_READ(reg);
3869 
3870 	reg = FDI_RX_CTL(pipe);
3871 	temp = I915_READ(reg);
3872 	temp &= ~(0x7 << 16);
3873 	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3874 	I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3875 
3876 	POSTING_READ(reg);
3877 	udelay(100);
3878 
3879 	/* Ironlake workaround, disable clock pointer after downing FDI */
3880 	if (HAS_PCH_IBX(dev))
3881 		I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3882 
3883 	/* still set train pattern 1 */
3884 	reg = FDI_TX_CTL(pipe);
3885 	temp = I915_READ(reg);
3886 	temp &= ~FDI_LINK_TRAIN_NONE;
3887 	temp |= FDI_LINK_TRAIN_PATTERN_1;
3888 	I915_WRITE(reg, temp);
3889 
3890 	reg = FDI_RX_CTL(pipe);
3891 	temp = I915_READ(reg);
3892 	if (HAS_PCH_CPT(dev)) {
3893 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3894 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3895 	} else {
3896 		temp &= ~FDI_LINK_TRAIN_NONE;
3897 		temp |= FDI_LINK_TRAIN_PATTERN_1;
3898 	}
3899 	/* BPC in FDI rx is consistent with that in PIPECONF */
3900 	temp &= ~(0x07 << 16);
3901 	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3902 	I915_WRITE(reg, temp);
3903 
3904 	POSTING_READ(reg);
3905 	udelay(100);
3906 }
3907 
intel_has_pending_fb_unpin(struct drm_device * dev)3908 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3909 {
3910 	struct intel_crtc *crtc;
3911 
3912 	/* Note that we don't need to be called with mode_config.lock here
3913 	 * as our list of CRTC objects is static for the lifetime of the
3914 	 * device and so cannot disappear as we iterate. Similarly, we can
3915 	 * happily treat the predicates as racy, atomic checks as userspace
3916 	 * cannot claim and pin a new fb without at least acquring the
3917 	 * struct_mutex and so serialising with us.
3918 	 */
3919 	for_each_intel_crtc(dev, crtc) {
3920 		if (atomic_read(&crtc->unpin_work_count) == 0)
3921 			continue;
3922 
3923 		if (crtc->unpin_work)
3924 			intel_wait_for_vblank(dev, crtc->pipe);
3925 
3926 		return true;
3927 	}
3928 
3929 	return false;
3930 }
3931 
page_flip_completed(struct intel_crtc * intel_crtc)3932 static void page_flip_completed(struct intel_crtc *intel_crtc)
3933 {
3934 	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3935 	struct intel_unpin_work *work = intel_crtc->unpin_work;
3936 
3937 	/* ensure that the unpin work is consistent wrt ->pending. */
3938 	smp_rmb();
3939 	intel_crtc->unpin_work = NULL;
3940 
3941 	if (work->event)
3942 		drm_send_vblank_event(intel_crtc->base.dev,
3943 				      intel_crtc->pipe,
3944 				      work->event);
3945 
3946 	drm_crtc_vblank_put(&intel_crtc->base);
3947 
3948 	wake_up_all(&dev_priv->pending_flip_queue);
3949 	queue_work(dev_priv->wq, &work->work);
3950 
3951 	trace_i915_flip_complete(intel_crtc->plane,
3952 				 work->pending_flip_obj);
3953 }
3954 
intel_crtc_wait_for_pending_flips(struct drm_crtc * crtc)3955 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3956 {
3957 	struct drm_device *dev = crtc->dev;
3958 	struct drm_i915_private *dev_priv = dev->dev_private;
3959 
3960 	WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3961 	if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3962 				       !intel_crtc_has_pending_flip(crtc),
3963 				       60*HZ) == 0)) {
3964 		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3965 
3966 		spin_lock_irq(&dev->event_lock);
3967 		if (intel_crtc->unpin_work) {
3968 			WARN_ONCE(1, "Removing stuck page flip\n");
3969 			page_flip_completed(intel_crtc);
3970 		}
3971 		spin_unlock_irq(&dev->event_lock);
3972 	}
3973 
3974 	if (crtc->primary->fb) {
3975 		mutex_lock(&dev->struct_mutex);
3976 		intel_finish_fb(crtc->primary->fb);
3977 		mutex_unlock(&dev->struct_mutex);
3978 	}
3979 }
3980 
3981 /* Program iCLKIP clock to the desired frequency */
lpt_program_iclkip(struct drm_crtc * crtc)3982 static void lpt_program_iclkip(struct drm_crtc *crtc)
3983 {
3984 	struct drm_device *dev = crtc->dev;
3985 	struct drm_i915_private *dev_priv = dev->dev_private;
3986 	int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3987 	u32 divsel, phaseinc, auxdiv, phasedir = 0;
3988 	u32 temp;
3989 
3990 	mutex_lock(&dev_priv->sb_lock);
3991 
3992 	/* It is necessary to ungate the pixclk gate prior to programming
3993 	 * the divisors, and gate it back when it is done.
3994 	 */
3995 	I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3996 
3997 	/* Disable SSCCTL */
3998 	intel_sbi_write(dev_priv, SBI_SSCCTL6,
3999 			intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
4000 				SBI_SSCCTL_DISABLE,
4001 			SBI_ICLK);
4002 
4003 	/* 20MHz is a corner case which is out of range for the 7-bit divisor */
4004 	if (clock == 20000) {
4005 		auxdiv = 1;
4006 		divsel = 0x41;
4007 		phaseinc = 0x20;
4008 	} else {
4009 		/* The iCLK virtual clock root frequency is in MHz,
4010 		 * but the adjusted_mode->crtc_clock in in KHz. To get the
4011 		 * divisors, it is necessary to divide one by another, so we
4012 		 * convert the virtual clock precision to KHz here for higher
4013 		 * precision.
4014 		 */
4015 		u32 iclk_virtual_root_freq = 172800 * 1000;
4016 		u32 iclk_pi_range = 64;
4017 		u32 desired_divisor, msb_divisor_value, pi_value;
4018 
4019 		desired_divisor = (iclk_virtual_root_freq / clock);
4020 		msb_divisor_value = desired_divisor / iclk_pi_range;
4021 		pi_value = desired_divisor % iclk_pi_range;
4022 
4023 		auxdiv = 0;
4024 		divsel = msb_divisor_value - 2;
4025 		phaseinc = pi_value;
4026 	}
4027 
4028 	/* This should not happen with any sane values */
4029 	WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
4030 		~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
4031 	WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
4032 		~SBI_SSCDIVINTPHASE_INCVAL_MASK);
4033 
4034 	DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
4035 			clock,
4036 			auxdiv,
4037 			divsel,
4038 			phasedir,
4039 			phaseinc);
4040 
4041 	/* Program SSCDIVINTPHASE6 */
4042 	temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4043 	temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4044 	temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4045 	temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4046 	temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4047 	temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4048 	temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4049 	intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4050 
4051 	/* Program SSCAUXDIV */
4052 	temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4053 	temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4054 	temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4055 	intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4056 
4057 	/* Enable modulator and associated divider */
4058 	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4059 	temp &= ~SBI_SSCCTL_DISABLE;
4060 	intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4061 
4062 	/* Wait for initialization time */
4063 	udelay(24);
4064 
4065 	I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4066 
4067 	mutex_unlock(&dev_priv->sb_lock);
4068 }
4069 
ironlake_pch_transcoder_set_timings(struct intel_crtc * crtc,enum pipe pch_transcoder)4070 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4071 						enum pipe pch_transcoder)
4072 {
4073 	struct drm_device *dev = crtc->base.dev;
4074 	struct drm_i915_private *dev_priv = dev->dev_private;
4075 	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4076 
4077 	I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4078 		   I915_READ(HTOTAL(cpu_transcoder)));
4079 	I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4080 		   I915_READ(HBLANK(cpu_transcoder)));
4081 	I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4082 		   I915_READ(HSYNC(cpu_transcoder)));
4083 
4084 	I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4085 		   I915_READ(VTOTAL(cpu_transcoder)));
4086 	I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4087 		   I915_READ(VBLANK(cpu_transcoder)));
4088 	I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4089 		   I915_READ(VSYNC(cpu_transcoder)));
4090 	I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4091 		   I915_READ(VSYNCSHIFT(cpu_transcoder)));
4092 }
4093 
cpt_set_fdi_bc_bifurcation(struct drm_device * dev,bool enable)4094 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4095 {
4096 	struct drm_i915_private *dev_priv = dev->dev_private;
4097 	uint32_t temp;
4098 
4099 	temp = I915_READ(SOUTH_CHICKEN1);
4100 	if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4101 		return;
4102 
4103 	WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4104 	WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4105 
4106 	temp &= ~FDI_BC_BIFURCATION_SELECT;
4107 	if (enable)
4108 		temp |= FDI_BC_BIFURCATION_SELECT;
4109 
4110 	DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4111 	I915_WRITE(SOUTH_CHICKEN1, temp);
4112 	POSTING_READ(SOUTH_CHICKEN1);
4113 }
4114 
ivybridge_update_fdi_bc_bifurcation(struct intel_crtc * intel_crtc)4115 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4116 {
4117 	struct drm_device *dev = intel_crtc->base.dev;
4118 
4119 	switch (intel_crtc->pipe) {
4120 	case PIPE_A:
4121 		break;
4122 	case PIPE_B:
4123 		if (intel_crtc->config->fdi_lanes > 2)
4124 			cpt_set_fdi_bc_bifurcation(dev, false);
4125 		else
4126 			cpt_set_fdi_bc_bifurcation(dev, true);
4127 
4128 		break;
4129 	case PIPE_C:
4130 		cpt_set_fdi_bc_bifurcation(dev, true);
4131 
4132 		break;
4133 	default:
4134 		BUG();
4135 	}
4136 }
4137 
4138 /*
4139  * Enable PCH resources required for PCH ports:
4140  *   - PCH PLLs
4141  *   - FDI training & RX/TX
4142  *   - update transcoder timings
4143  *   - DP transcoding bits
4144  *   - transcoder
4145  */
ironlake_pch_enable(struct drm_crtc * crtc)4146 static void ironlake_pch_enable(struct drm_crtc *crtc)
4147 {
4148 	struct drm_device *dev = crtc->dev;
4149 	struct drm_i915_private *dev_priv = dev->dev_private;
4150 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4151 	int pipe = intel_crtc->pipe;
4152 	u32 reg, temp;
4153 
4154 	assert_pch_transcoder_disabled(dev_priv, pipe);
4155 
4156 	if (IS_IVYBRIDGE(dev))
4157 		ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4158 
4159 	/* Write the TU size bits before fdi link training, so that error
4160 	 * detection works. */
4161 	I915_WRITE(FDI_RX_TUSIZE1(pipe),
4162 		   I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4163 
4164 	/* For PCH output, training FDI link */
4165 	dev_priv->display.fdi_link_train(crtc);
4166 
4167 	/* We need to program the right clock selection before writing the pixel
4168 	 * mutliplier into the DPLL. */
4169 	if (HAS_PCH_CPT(dev)) {
4170 		u32 sel;
4171 
4172 		temp = I915_READ(PCH_DPLL_SEL);
4173 		temp |= TRANS_DPLL_ENABLE(pipe);
4174 		sel = TRANS_DPLLB_SEL(pipe);
4175 		if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
4176 			temp |= sel;
4177 		else
4178 			temp &= ~sel;
4179 		I915_WRITE(PCH_DPLL_SEL, temp);
4180 	}
4181 
4182 	/* XXX: pch pll's can be enabled any time before we enable the PCH
4183 	 * transcoder, and we actually should do this to not upset any PCH
4184 	 * transcoder that already use the clock when we share it.
4185 	 *
4186 	 * Note that enable_shared_dpll tries to do the right thing, but
4187 	 * get_shared_dpll unconditionally resets the pll - we need that to have
4188 	 * the right LVDS enable sequence. */
4189 	intel_enable_shared_dpll(intel_crtc);
4190 
4191 	/* set transcoder timing, panel must allow it */
4192 	assert_panel_unlocked(dev_priv, pipe);
4193 	ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4194 
4195 	intel_fdi_normal_train(crtc);
4196 
4197 	/* For PCH DP, enable TRANS_DP_CTL */
4198 	if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4199 		u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4200 		reg = TRANS_DP_CTL(pipe);
4201 		temp = I915_READ(reg);
4202 		temp &= ~(TRANS_DP_PORT_SEL_MASK |
4203 			  TRANS_DP_SYNC_MASK |
4204 			  TRANS_DP_BPC_MASK);
4205 		temp |= TRANS_DP_OUTPUT_ENABLE;
4206 		temp |= bpc << 9; /* same format but at 11:9 */
4207 
4208 		if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
4209 			temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4210 		if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
4211 			temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4212 
4213 		switch (intel_trans_dp_port_sel(crtc)) {
4214 		case PCH_DP_B:
4215 			temp |= TRANS_DP_PORT_SEL_B;
4216 			break;
4217 		case PCH_DP_C:
4218 			temp |= TRANS_DP_PORT_SEL_C;
4219 			break;
4220 		case PCH_DP_D:
4221 			temp |= TRANS_DP_PORT_SEL_D;
4222 			break;
4223 		default:
4224 			BUG();
4225 		}
4226 
4227 		I915_WRITE(reg, temp);
4228 	}
4229 
4230 	ironlake_enable_pch_transcoder(dev_priv, pipe);
4231 }
4232 
lpt_pch_enable(struct drm_crtc * crtc)4233 static void lpt_pch_enable(struct drm_crtc *crtc)
4234 {
4235 	struct drm_device *dev = crtc->dev;
4236 	struct drm_i915_private *dev_priv = dev->dev_private;
4237 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4238 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4239 
4240 	assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4241 
4242 	lpt_program_iclkip(crtc);
4243 
4244 	/* Set transcoder timing. */
4245 	ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4246 
4247 	lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4248 }
4249 
intel_get_shared_dpll(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)4250 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4251 						struct intel_crtc_state *crtc_state)
4252 {
4253 	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4254 	struct intel_shared_dpll *pll;
4255 	struct intel_shared_dpll_config *shared_dpll;
4256 	enum intel_dpll_id i;
4257 	int max = dev_priv->num_shared_dpll;
4258 
4259 	shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
4260 
4261 	if (HAS_PCH_IBX(dev_priv->dev)) {
4262 		/* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4263 		i = (enum intel_dpll_id) crtc->pipe;
4264 		pll = &dev_priv->shared_dplls[i];
4265 
4266 		DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4267 			      crtc->base.base.id, pll->name);
4268 
4269 		WARN_ON(shared_dpll[i].crtc_mask);
4270 
4271 		goto found;
4272 	}
4273 
4274 	if (IS_BROXTON(dev_priv->dev)) {
4275 		/* PLL is attached to port in bxt */
4276 		struct intel_encoder *encoder;
4277 		struct intel_digital_port *intel_dig_port;
4278 
4279 		encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4280 		if (WARN_ON(!encoder))
4281 			return NULL;
4282 
4283 		intel_dig_port = enc_to_dig_port(&encoder->base);
4284 		/* 1:1 mapping between ports and PLLs */
4285 		i = (enum intel_dpll_id)intel_dig_port->port;
4286 		pll = &dev_priv->shared_dplls[i];
4287 		DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4288 			crtc->base.base.id, pll->name);
4289 		WARN_ON(shared_dpll[i].crtc_mask);
4290 
4291 		goto found;
4292 	} else if (INTEL_INFO(dev_priv)->gen < 9 && HAS_DDI(dev_priv))
4293 		/* Do not consider SPLL */
4294 		max = 2;
4295 
4296 	for (i = 0; i < max; i++) {
4297 		pll = &dev_priv->shared_dplls[i];
4298 
4299 		/* Only want to check enabled timings first */
4300 		if (shared_dpll[i].crtc_mask == 0)
4301 			continue;
4302 
4303 		if (memcmp(&crtc_state->dpll_hw_state,
4304 			   &shared_dpll[i].hw_state,
4305 			   sizeof(crtc_state->dpll_hw_state)) == 0) {
4306 			DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4307 				      crtc->base.base.id, pll->name,
4308 				      shared_dpll[i].crtc_mask,
4309 				      pll->active);
4310 			goto found;
4311 		}
4312 	}
4313 
4314 	/* Ok no matching timings, maybe there's a free one? */
4315 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4316 		pll = &dev_priv->shared_dplls[i];
4317 		if (shared_dpll[i].crtc_mask == 0) {
4318 			DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4319 				      crtc->base.base.id, pll->name);
4320 			goto found;
4321 		}
4322 	}
4323 
4324 	return NULL;
4325 
4326 found:
4327 	if (shared_dpll[i].crtc_mask == 0)
4328 		shared_dpll[i].hw_state =
4329 			crtc_state->dpll_hw_state;
4330 
4331 	crtc_state->shared_dpll = i;
4332 	DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4333 			 pipe_name(crtc->pipe));
4334 
4335 	shared_dpll[i].crtc_mask |= 1 << crtc->pipe;
4336 
4337 	return pll;
4338 }
4339 
intel_shared_dpll_commit(struct drm_atomic_state * state)4340 static void intel_shared_dpll_commit(struct drm_atomic_state *state)
4341 {
4342 	struct drm_i915_private *dev_priv = to_i915(state->dev);
4343 	struct intel_shared_dpll_config *shared_dpll;
4344 	struct intel_shared_dpll *pll;
4345 	enum intel_dpll_id i;
4346 
4347 	if (!to_intel_atomic_state(state)->dpll_set)
4348 		return;
4349 
4350 	shared_dpll = to_intel_atomic_state(state)->shared_dpll;
4351 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4352 		pll = &dev_priv->shared_dplls[i];
4353 		pll->config = shared_dpll[i];
4354 	}
4355 }
4356 
cpt_verify_modeset(struct drm_device * dev,int pipe)4357 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4358 {
4359 	struct drm_i915_private *dev_priv = dev->dev_private;
4360 	int dslreg = PIPEDSL(pipe);
4361 	u32 temp;
4362 
4363 	temp = I915_READ(dslreg);
4364 	udelay(500);
4365 	if (wait_for(I915_READ(dslreg) != temp, 5)) {
4366 		if (wait_for(I915_READ(dslreg) != temp, 5))
4367 			DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4368 	}
4369 }
4370 
4371 static int
skl_update_scaler(struct intel_crtc_state * crtc_state,bool force_detach,unsigned scaler_user,int * scaler_id,unsigned int rotation,int src_w,int src_h,int dst_w,int dst_h)4372 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4373 		  unsigned scaler_user, int *scaler_id, unsigned int rotation,
4374 		  int src_w, int src_h, int dst_w, int dst_h)
4375 {
4376 	struct intel_crtc_scaler_state *scaler_state =
4377 		&crtc_state->scaler_state;
4378 	struct intel_crtc *intel_crtc =
4379 		to_intel_crtc(crtc_state->base.crtc);
4380 	int need_scaling;
4381 
4382 	need_scaling = intel_rotation_90_or_270(rotation) ?
4383 		(src_h != dst_w || src_w != dst_h):
4384 		(src_w != dst_w || src_h != dst_h);
4385 
4386 	/*
4387 	 * if plane is being disabled or scaler is no more required or force detach
4388 	 *  - free scaler binded to this plane/crtc
4389 	 *  - in order to do this, update crtc->scaler_usage
4390 	 *
4391 	 * Here scaler state in crtc_state is set free so that
4392 	 * scaler can be assigned to other user. Actual register
4393 	 * update to free the scaler is done in plane/panel-fit programming.
4394 	 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4395 	 */
4396 	if (force_detach || !need_scaling) {
4397 		if (*scaler_id >= 0) {
4398 			scaler_state->scaler_users &= ~(1 << scaler_user);
4399 			scaler_state->scalers[*scaler_id].in_use = 0;
4400 
4401 			DRM_DEBUG_KMS("scaler_user index %u.%u: "
4402 				"Staged freeing scaler id %d scaler_users = 0x%x\n",
4403 				intel_crtc->pipe, scaler_user, *scaler_id,
4404 				scaler_state->scaler_users);
4405 			*scaler_id = -1;
4406 		}
4407 		return 0;
4408 	}
4409 
4410 	/* range checks */
4411 	if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4412 		dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4413 
4414 		src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4415 		dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4416 		DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4417 			"size is out of scaler range\n",
4418 			intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4419 		return -EINVAL;
4420 	}
4421 
4422 	/* mark this plane as a scaler user in crtc_state */
4423 	scaler_state->scaler_users |= (1 << scaler_user);
4424 	DRM_DEBUG_KMS("scaler_user index %u.%u: "
4425 		"staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4426 		intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4427 		scaler_state->scaler_users);
4428 
4429 	return 0;
4430 }
4431 
4432 /**
4433  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4434  *
4435  * @state: crtc's scaler state
4436  *
4437  * Return
4438  *     0 - scaler_usage updated successfully
4439  *    error - requested scaling cannot be supported or other error condition
4440  */
skl_update_scaler_crtc(struct intel_crtc_state * state)4441 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4442 {
4443 	struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4444 	const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4445 
4446 	DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4447 		      intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4448 
4449 	return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4450 		&state->scaler_state.scaler_id, BIT(DRM_ROTATE_0),
4451 		state->pipe_src_w, state->pipe_src_h,
4452 		adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4453 }
4454 
4455 /**
4456  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4457  *
4458  * @state: crtc's scaler state
4459  * @plane_state: atomic plane state to update
4460  *
4461  * Return
4462  *     0 - scaler_usage updated successfully
4463  *    error - requested scaling cannot be supported or other error condition
4464  */
skl_update_scaler_plane(struct intel_crtc_state * crtc_state,struct intel_plane_state * plane_state)4465 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4466 				   struct intel_plane_state *plane_state)
4467 {
4468 
4469 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4470 	struct intel_plane *intel_plane =
4471 		to_intel_plane(plane_state->base.plane);
4472 	struct drm_framebuffer *fb = plane_state->base.fb;
4473 	int ret;
4474 
4475 	bool force_detach = !fb || !plane_state->visible;
4476 
4477 	DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4478 		      intel_plane->base.base.id, intel_crtc->pipe,
4479 		      drm_plane_index(&intel_plane->base));
4480 
4481 	ret = skl_update_scaler(crtc_state, force_detach,
4482 				drm_plane_index(&intel_plane->base),
4483 				&plane_state->scaler_id,
4484 				plane_state->base.rotation,
4485 				drm_rect_width(&plane_state->src) >> 16,
4486 				drm_rect_height(&plane_state->src) >> 16,
4487 				drm_rect_width(&plane_state->dst),
4488 				drm_rect_height(&plane_state->dst));
4489 
4490 	if (ret || plane_state->scaler_id < 0)
4491 		return ret;
4492 
4493 	/* check colorkey */
4494 	if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4495 		DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
4496 			      intel_plane->base.base.id);
4497 		return -EINVAL;
4498 	}
4499 
4500 	/* Check src format */
4501 	switch (fb->pixel_format) {
4502 	case DRM_FORMAT_RGB565:
4503 	case DRM_FORMAT_XBGR8888:
4504 	case DRM_FORMAT_XRGB8888:
4505 	case DRM_FORMAT_ABGR8888:
4506 	case DRM_FORMAT_ARGB8888:
4507 	case DRM_FORMAT_XRGB2101010:
4508 	case DRM_FORMAT_XBGR2101010:
4509 	case DRM_FORMAT_YUYV:
4510 	case DRM_FORMAT_YVYU:
4511 	case DRM_FORMAT_UYVY:
4512 	case DRM_FORMAT_VYUY:
4513 		break;
4514 	default:
4515 		DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4516 			intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4517 		return -EINVAL;
4518 	}
4519 
4520 	return 0;
4521 }
4522 
skylake_scaler_disable(struct intel_crtc * crtc)4523 static void skylake_scaler_disable(struct intel_crtc *crtc)
4524 {
4525 	int i;
4526 
4527 	for (i = 0; i < crtc->num_scalers; i++)
4528 		skl_detach_scaler(crtc, i);
4529 }
4530 
skylake_pfit_enable(struct intel_crtc * crtc)4531 static void skylake_pfit_enable(struct intel_crtc *crtc)
4532 {
4533 	struct drm_device *dev = crtc->base.dev;
4534 	struct drm_i915_private *dev_priv = dev->dev_private;
4535 	int pipe = crtc->pipe;
4536 	struct intel_crtc_scaler_state *scaler_state =
4537 		&crtc->config->scaler_state;
4538 
4539 	DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4540 
4541 	if (crtc->config->pch_pfit.enabled) {
4542 		int id;
4543 
4544 		if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4545 			DRM_ERROR("Requesting pfit without getting a scaler first\n");
4546 			return;
4547 		}
4548 
4549 		id = scaler_state->scaler_id;
4550 		I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4551 			PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4552 		I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4553 		I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4554 
4555 		DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4556 	}
4557 }
4558 
ironlake_pfit_enable(struct intel_crtc * crtc)4559 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4560 {
4561 	struct drm_device *dev = crtc->base.dev;
4562 	struct drm_i915_private *dev_priv = dev->dev_private;
4563 	int pipe = crtc->pipe;
4564 
4565 	if (crtc->config->pch_pfit.enabled) {
4566 		/* Force use of hard-coded filter coefficients
4567 		 * as some pre-programmed values are broken,
4568 		 * e.g. x201.
4569 		 */
4570 		if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4571 			I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4572 						 PF_PIPE_SEL_IVB(pipe));
4573 		else
4574 			I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4575 		I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4576 		I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4577 	}
4578 }
4579 
hsw_enable_ips(struct intel_crtc * crtc)4580 void hsw_enable_ips(struct intel_crtc *crtc)
4581 {
4582 	struct drm_device *dev = crtc->base.dev;
4583 	struct drm_i915_private *dev_priv = dev->dev_private;
4584 
4585 	if (!crtc->config->ips_enabled)
4586 		return;
4587 
4588 	/* We can only enable IPS after we enable a plane and wait for a vblank */
4589 	intel_wait_for_vblank(dev, crtc->pipe);
4590 
4591 	assert_plane_enabled(dev_priv, crtc->plane);
4592 	if (IS_BROADWELL(dev)) {
4593 		mutex_lock(&dev_priv->rps.hw_lock);
4594 		WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4595 		mutex_unlock(&dev_priv->rps.hw_lock);
4596 		/* Quoting Art Runyan: "its not safe to expect any particular
4597 		 * value in IPS_CTL bit 31 after enabling IPS through the
4598 		 * mailbox." Moreover, the mailbox may return a bogus state,
4599 		 * so we need to just enable it and continue on.
4600 		 */
4601 	} else {
4602 		I915_WRITE(IPS_CTL, IPS_ENABLE);
4603 		/* The bit only becomes 1 in the next vblank, so this wait here
4604 		 * is essentially intel_wait_for_vblank. If we don't have this
4605 		 * and don't wait for vblanks until the end of crtc_enable, then
4606 		 * the HW state readout code will complain that the expected
4607 		 * IPS_CTL value is not the one we read. */
4608 		if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4609 			DRM_ERROR("Timed out waiting for IPS enable\n");
4610 	}
4611 }
4612 
hsw_disable_ips(struct intel_crtc * crtc)4613 void hsw_disable_ips(struct intel_crtc *crtc)
4614 {
4615 	struct drm_device *dev = crtc->base.dev;
4616 	struct drm_i915_private *dev_priv = dev->dev_private;
4617 
4618 	if (!crtc->config->ips_enabled)
4619 		return;
4620 
4621 	assert_plane_enabled(dev_priv, crtc->plane);
4622 	if (IS_BROADWELL(dev)) {
4623 		mutex_lock(&dev_priv->rps.hw_lock);
4624 		WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4625 		mutex_unlock(&dev_priv->rps.hw_lock);
4626 		/* wait for pcode to finish disabling IPS, which may take up to 42ms */
4627 		if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4628 			DRM_ERROR("Timed out waiting for IPS disable\n");
4629 	} else {
4630 		I915_WRITE(IPS_CTL, 0);
4631 		POSTING_READ(IPS_CTL);
4632 	}
4633 
4634 	/* We need to wait for a vblank before we can disable the plane. */
4635 	intel_wait_for_vblank(dev, crtc->pipe);
4636 }
4637 
4638 /** Loads the palette/gamma unit for the CRTC with the prepared values */
intel_crtc_load_lut(struct drm_crtc * crtc)4639 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4640 {
4641 	struct drm_device *dev = crtc->dev;
4642 	struct drm_i915_private *dev_priv = dev->dev_private;
4643 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4644 	enum pipe pipe = intel_crtc->pipe;
4645 	int i;
4646 	bool reenable_ips = false;
4647 
4648 	/* The clocks have to be on to load the palette. */
4649 	if (!crtc->state->active)
4650 		return;
4651 
4652 	if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
4653 		if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4654 			assert_dsi_pll_enabled(dev_priv);
4655 		else
4656 			assert_pll_enabled(dev_priv, pipe);
4657 	}
4658 
4659 	/* Workaround : Do not read or write the pipe palette/gamma data while
4660 	 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4661 	 */
4662 	if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4663 	    ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4664 	     GAMMA_MODE_MODE_SPLIT)) {
4665 		hsw_disable_ips(intel_crtc);
4666 		reenable_ips = true;
4667 	}
4668 
4669 	for (i = 0; i < 256; i++) {
4670 		u32 palreg;
4671 
4672 		if (HAS_GMCH_DISPLAY(dev))
4673 			palreg = PALETTE(pipe, i);
4674 		else
4675 			palreg = LGC_PALETTE(pipe, i);
4676 
4677 		I915_WRITE(palreg,
4678 			   (intel_crtc->lut_r[i] << 16) |
4679 			   (intel_crtc->lut_g[i] << 8) |
4680 			   intel_crtc->lut_b[i]);
4681 	}
4682 
4683 	if (reenable_ips)
4684 		hsw_enable_ips(intel_crtc);
4685 }
4686 
intel_crtc_dpms_overlay_disable(struct intel_crtc * intel_crtc)4687 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4688 {
4689 	if (intel_crtc->overlay) {
4690 		struct drm_device *dev = intel_crtc->base.dev;
4691 		struct drm_i915_private *dev_priv = dev->dev_private;
4692 
4693 		mutex_lock(&dev->struct_mutex);
4694 		dev_priv->mm.interruptible = false;
4695 		(void) intel_overlay_switch_off(intel_crtc->overlay);
4696 		dev_priv->mm.interruptible = true;
4697 		mutex_unlock(&dev->struct_mutex);
4698 	}
4699 
4700 	/* Let userspace switch the overlay on again. In most cases userspace
4701 	 * has to recompute where to put it anyway.
4702 	 */
4703 }
4704 
4705 /**
4706  * intel_post_enable_primary - Perform operations after enabling primary plane
4707  * @crtc: the CRTC whose primary plane was just enabled
4708  *
4709  * Performs potentially sleeping operations that must be done after the primary
4710  * plane is enabled, such as updating FBC and IPS.  Note that this may be
4711  * called due to an explicit primary plane update, or due to an implicit
4712  * re-enable that is caused when a sprite plane is updated to no longer
4713  * completely hide the primary plane.
4714  */
4715 static void
intel_post_enable_primary(struct drm_crtc * crtc)4716 intel_post_enable_primary(struct drm_crtc *crtc)
4717 {
4718 	struct drm_device *dev = crtc->dev;
4719 	struct drm_i915_private *dev_priv = dev->dev_private;
4720 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4721 	int pipe = intel_crtc->pipe;
4722 
4723 	/*
4724 	 * BDW signals flip done immediately if the plane
4725 	 * is disabled, even if the plane enable is already
4726 	 * armed to occur at the next vblank :(
4727 	 */
4728 	if (IS_BROADWELL(dev))
4729 		intel_wait_for_vblank(dev, pipe);
4730 
4731 	/*
4732 	 * FIXME IPS should be fine as long as one plane is
4733 	 * enabled, but in practice it seems to have problems
4734 	 * when going from primary only to sprite only and vice
4735 	 * versa.
4736 	 */
4737 	hsw_enable_ips(intel_crtc);
4738 
4739 	/*
4740 	 * Gen2 reports pipe underruns whenever all planes are disabled.
4741 	 * So don't enable underrun reporting before at least some planes
4742 	 * are enabled.
4743 	 * FIXME: Need to fix the logic to work when we turn off all planes
4744 	 * but leave the pipe running.
4745 	 */
4746 	if (IS_GEN2(dev))
4747 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4748 
4749 	/* Underruns don't raise interrupts, so check manually. */
4750 	if (HAS_GMCH_DISPLAY(dev))
4751 		i9xx_check_fifo_underruns(dev_priv);
4752 }
4753 
4754 /**
4755  * intel_pre_disable_primary - Perform operations before disabling primary plane
4756  * @crtc: the CRTC whose primary plane is to be disabled
4757  *
4758  * Performs potentially sleeping operations that must be done before the
4759  * primary plane is disabled, such as updating FBC and IPS.  Note that this may
4760  * be called due to an explicit primary plane update, or due to an implicit
4761  * disable that is caused when a sprite plane completely hides the primary
4762  * plane.
4763  */
4764 static void
intel_pre_disable_primary(struct drm_crtc * crtc)4765 intel_pre_disable_primary(struct drm_crtc *crtc)
4766 {
4767 	struct drm_device *dev = crtc->dev;
4768 	struct drm_i915_private *dev_priv = dev->dev_private;
4769 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4770 	int pipe = intel_crtc->pipe;
4771 
4772 	/*
4773 	 * Gen2 reports pipe underruns whenever all planes are disabled.
4774 	 * So diasble underrun reporting before all the planes get disabled.
4775 	 * FIXME: Need to fix the logic to work when we turn off all planes
4776 	 * but leave the pipe running.
4777 	 */
4778 	if (IS_GEN2(dev))
4779 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4780 
4781 	/*
4782 	 * Vblank time updates from the shadow to live plane control register
4783 	 * are blocked if the memory self-refresh mode is active at that
4784 	 * moment. So to make sure the plane gets truly disabled, disable
4785 	 * first the self-refresh mode. The self-refresh enable bit in turn
4786 	 * will be checked/applied by the HW only at the next frame start
4787 	 * event which is after the vblank start event, so we need to have a
4788 	 * wait-for-vblank between disabling the plane and the pipe.
4789 	 */
4790 	if (HAS_GMCH_DISPLAY(dev)) {
4791 		intel_set_memory_cxsr(dev_priv, false);
4792 		dev_priv->wm.vlv.cxsr = false;
4793 		intel_wait_for_vblank(dev, pipe);
4794 	}
4795 
4796 	/*
4797 	 * FIXME IPS should be fine as long as one plane is
4798 	 * enabled, but in practice it seems to have problems
4799 	 * when going from primary only to sprite only and vice
4800 	 * versa.
4801 	 */
4802 	hsw_disable_ips(intel_crtc);
4803 }
4804 
intel_post_plane_update(struct intel_crtc * crtc)4805 static void intel_post_plane_update(struct intel_crtc *crtc)
4806 {
4807 	struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4808 	struct drm_device *dev = crtc->base.dev;
4809 	struct drm_i915_private *dev_priv = dev->dev_private;
4810 	struct drm_plane *plane;
4811 
4812 	if (atomic->wait_vblank)
4813 		intel_wait_for_vblank(dev, crtc->pipe);
4814 
4815 	intel_frontbuffer_flip(dev, atomic->fb_bits);
4816 
4817 	if (atomic->disable_cxsr)
4818 		crtc->wm.cxsr_allowed = true;
4819 
4820 	if (crtc->atomic.update_wm_post)
4821 		intel_update_watermarks(&crtc->base);
4822 
4823 	if (atomic->update_fbc)
4824 		intel_fbc_update(dev_priv);
4825 
4826 	if (atomic->post_enable_primary)
4827 		intel_post_enable_primary(&crtc->base);
4828 
4829 	drm_for_each_plane_mask(plane, dev, atomic->update_sprite_watermarks)
4830 		intel_update_sprite_watermarks(plane, &crtc->base,
4831 					       0, 0, 0, false, false);
4832 
4833 	memset(atomic, 0, sizeof(*atomic));
4834 }
4835 
intel_pre_plane_update(struct intel_crtc * crtc)4836 static void intel_pre_plane_update(struct intel_crtc *crtc)
4837 {
4838 	struct drm_device *dev = crtc->base.dev;
4839 	struct drm_i915_private *dev_priv = dev->dev_private;
4840 	struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4841 	struct drm_plane *p;
4842 
4843 	/* Track fb's for any planes being disabled */
4844 	drm_for_each_plane_mask(p, dev, atomic->disabled_planes) {
4845 		struct intel_plane *plane = to_intel_plane(p);
4846 
4847 		mutex_lock(&dev->struct_mutex);
4848 		i915_gem_track_fb(intel_fb_obj(plane->base.fb), NULL,
4849 				  plane->frontbuffer_bit);
4850 		mutex_unlock(&dev->struct_mutex);
4851 	}
4852 
4853 	if (atomic->wait_for_flips)
4854 		intel_crtc_wait_for_pending_flips(&crtc->base);
4855 
4856 	if (atomic->disable_fbc)
4857 		intel_fbc_disable_crtc(crtc);
4858 
4859 	if (crtc->atomic.disable_ips)
4860 		hsw_disable_ips(crtc);
4861 
4862 	if (atomic->pre_disable_primary)
4863 		intel_pre_disable_primary(&crtc->base);
4864 
4865 	if (atomic->disable_cxsr) {
4866 		crtc->wm.cxsr_allowed = false;
4867 		intel_set_memory_cxsr(dev_priv, false);
4868 	}
4869 }
4870 
intel_crtc_disable_planes(struct drm_crtc * crtc,unsigned plane_mask)4871 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4872 {
4873 	struct drm_device *dev = crtc->dev;
4874 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4875 	struct drm_plane *p;
4876 	int pipe = intel_crtc->pipe;
4877 
4878 	intel_crtc_dpms_overlay_disable(intel_crtc);
4879 
4880 	drm_for_each_plane_mask(p, dev, plane_mask)
4881 		to_intel_plane(p)->disable_plane(p, crtc);
4882 
4883 	/*
4884 	 * FIXME: Once we grow proper nuclear flip support out of this we need
4885 	 * to compute the mask of flip planes precisely. For the time being
4886 	 * consider this a flip to a NULL plane.
4887 	 */
4888 	intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4889 }
4890 
ironlake_crtc_enable(struct drm_crtc * crtc)4891 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4892 {
4893 	struct drm_device *dev = crtc->dev;
4894 	struct drm_i915_private *dev_priv = dev->dev_private;
4895 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4896 	struct intel_encoder *encoder;
4897 	int pipe = intel_crtc->pipe;
4898 
4899 	if (WARN_ON(intel_crtc->active))
4900 		return;
4901 
4902 	if (intel_crtc->config->has_pch_encoder)
4903 		intel_prepare_shared_dpll(intel_crtc);
4904 
4905 	if (intel_crtc->config->has_dp_encoder)
4906 		intel_dp_set_m_n(intel_crtc, M1_N1);
4907 
4908 	intel_set_pipe_timings(intel_crtc);
4909 
4910 	if (intel_crtc->config->has_pch_encoder) {
4911 		intel_cpu_transcoder_set_m_n(intel_crtc,
4912 				     &intel_crtc->config->fdi_m_n, NULL);
4913 	}
4914 
4915 	ironlake_set_pipeconf(crtc);
4916 
4917 	intel_crtc->active = true;
4918 
4919 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4920 	intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4921 
4922 	for_each_encoder_on_crtc(dev, crtc, encoder)
4923 		if (encoder->pre_enable)
4924 			encoder->pre_enable(encoder);
4925 
4926 	if (intel_crtc->config->has_pch_encoder) {
4927 		/* Note: FDI PLL enabling _must_ be done before we enable the
4928 		 * cpu pipes, hence this is separate from all the other fdi/pch
4929 		 * enabling. */
4930 		ironlake_fdi_pll_enable(intel_crtc);
4931 	} else {
4932 		assert_fdi_tx_disabled(dev_priv, pipe);
4933 		assert_fdi_rx_disabled(dev_priv, pipe);
4934 	}
4935 
4936 	ironlake_pfit_enable(intel_crtc);
4937 
4938 	/*
4939 	 * On ILK+ LUT must be loaded before the pipe is running but with
4940 	 * clocks enabled
4941 	 */
4942 	intel_crtc_load_lut(crtc);
4943 
4944 	intel_update_watermarks(crtc);
4945 	intel_enable_pipe(intel_crtc);
4946 
4947 	if (intel_crtc->config->has_pch_encoder)
4948 		ironlake_pch_enable(crtc);
4949 
4950 	assert_vblank_disabled(crtc);
4951 	drm_crtc_vblank_on(crtc);
4952 
4953 	for_each_encoder_on_crtc(dev, crtc, encoder)
4954 		encoder->enable(encoder);
4955 
4956 	if (HAS_PCH_CPT(dev))
4957 		cpt_verify_modeset(dev, intel_crtc->pipe);
4958 }
4959 
4960 /* IPS only exists on ULT machines and is tied to pipe A. */
hsw_crtc_supports_ips(struct intel_crtc * crtc)4961 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4962 {
4963 	return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4964 }
4965 
haswell_crtc_enable(struct drm_crtc * crtc)4966 static void haswell_crtc_enable(struct drm_crtc *crtc)
4967 {
4968 	struct drm_device *dev = crtc->dev;
4969 	struct drm_i915_private *dev_priv = dev->dev_private;
4970 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4971 	struct intel_encoder *encoder;
4972 	int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4973 	struct intel_crtc_state *pipe_config =
4974 		to_intel_crtc_state(crtc->state);
4975 	bool is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
4976 
4977 	if (WARN_ON(intel_crtc->active))
4978 		return;
4979 
4980 	if (intel_crtc_to_shared_dpll(intel_crtc))
4981 		intel_enable_shared_dpll(intel_crtc);
4982 
4983 	if (intel_crtc->config->has_dp_encoder)
4984 		intel_dp_set_m_n(intel_crtc, M1_N1);
4985 
4986 	intel_set_pipe_timings(intel_crtc);
4987 
4988 	if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4989 		I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4990 			   intel_crtc->config->pixel_multiplier - 1);
4991 	}
4992 
4993 	if (intel_crtc->config->has_pch_encoder) {
4994 		intel_cpu_transcoder_set_m_n(intel_crtc,
4995 				     &intel_crtc->config->fdi_m_n, NULL);
4996 	}
4997 
4998 	haswell_set_pipeconf(crtc);
4999 
5000 	intel_set_pipe_csc(crtc);
5001 
5002 	intel_crtc->active = true;
5003 
5004 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5005 	for_each_encoder_on_crtc(dev, crtc, encoder) {
5006 		if (encoder->pre_pll_enable)
5007 			encoder->pre_pll_enable(encoder);
5008 		if (encoder->pre_enable)
5009 			encoder->pre_enable(encoder);
5010 	}
5011 
5012 	if (intel_crtc->config->has_pch_encoder) {
5013 		intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5014 						      true);
5015 		dev_priv->display.fdi_link_train(crtc);
5016 	}
5017 
5018 	if (!is_dsi)
5019 		intel_ddi_enable_pipe_clock(intel_crtc);
5020 
5021 	if (INTEL_INFO(dev)->gen >= 9)
5022 		skylake_pfit_enable(intel_crtc);
5023 	else
5024 		ironlake_pfit_enable(intel_crtc);
5025 
5026 	/*
5027 	 * On ILK+ LUT must be loaded before the pipe is running but with
5028 	 * clocks enabled
5029 	 */
5030 	intel_crtc_load_lut(crtc);
5031 
5032 	intel_ddi_set_pipe_settings(crtc);
5033 	if (!is_dsi)
5034 		intel_ddi_enable_transcoder_func(crtc);
5035 
5036 	intel_update_watermarks(crtc);
5037 	intel_enable_pipe(intel_crtc);
5038 
5039 	if (intel_crtc->config->has_pch_encoder)
5040 		lpt_pch_enable(crtc);
5041 
5042 	if (intel_crtc->config->dp_encoder_is_mst && !is_dsi)
5043 		intel_ddi_set_vc_payload_alloc(crtc, true);
5044 
5045 	assert_vblank_disabled(crtc);
5046 	drm_crtc_vblank_on(crtc);
5047 
5048 	for_each_encoder_on_crtc(dev, crtc, encoder) {
5049 		encoder->enable(encoder);
5050 		intel_opregion_notify_encoder(encoder, true);
5051 	}
5052 
5053 	/* If we change the relative order between pipe/planes enabling, we need
5054 	 * to change the workaround. */
5055 	hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5056 	if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
5057 		intel_wait_for_vblank(dev, hsw_workaround_pipe);
5058 		intel_wait_for_vblank(dev, hsw_workaround_pipe);
5059 	}
5060 }
5061 
ironlake_pfit_disable(struct intel_crtc * crtc,bool force)5062 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
5063 {
5064 	struct drm_device *dev = crtc->base.dev;
5065 	struct drm_i915_private *dev_priv = dev->dev_private;
5066 	int pipe = crtc->pipe;
5067 
5068 	/* To avoid upsetting the power well on haswell only disable the pfit if
5069 	 * it's in use. The hw state code will make sure we get this right. */
5070 	if (force || crtc->config->pch_pfit.enabled) {
5071 		I915_WRITE(PF_CTL(pipe), 0);
5072 		I915_WRITE(PF_WIN_POS(pipe), 0);
5073 		I915_WRITE(PF_WIN_SZ(pipe), 0);
5074 	}
5075 }
5076 
ironlake_crtc_disable(struct drm_crtc * crtc)5077 static void ironlake_crtc_disable(struct drm_crtc *crtc)
5078 {
5079 	struct drm_device *dev = crtc->dev;
5080 	struct drm_i915_private *dev_priv = dev->dev_private;
5081 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5082 	struct intel_encoder *encoder;
5083 	int pipe = intel_crtc->pipe;
5084 	u32 reg, temp;
5085 
5086 	for_each_encoder_on_crtc(dev, crtc, encoder)
5087 		encoder->disable(encoder);
5088 
5089 	drm_crtc_vblank_off(crtc);
5090 	assert_vblank_disabled(crtc);
5091 
5092 	if (intel_crtc->config->has_pch_encoder)
5093 		intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5094 
5095 	intel_disable_pipe(intel_crtc);
5096 
5097 	ironlake_pfit_disable(intel_crtc, false);
5098 
5099 	if (intel_crtc->config->has_pch_encoder)
5100 		ironlake_fdi_disable(crtc);
5101 
5102 	for_each_encoder_on_crtc(dev, crtc, encoder)
5103 		if (encoder->post_disable)
5104 			encoder->post_disable(encoder);
5105 
5106 	if (intel_crtc->config->has_pch_encoder) {
5107 		ironlake_disable_pch_transcoder(dev_priv, pipe);
5108 
5109 		if (HAS_PCH_CPT(dev)) {
5110 			/* disable TRANS_DP_CTL */
5111 			reg = TRANS_DP_CTL(pipe);
5112 			temp = I915_READ(reg);
5113 			temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5114 				  TRANS_DP_PORT_SEL_MASK);
5115 			temp |= TRANS_DP_PORT_SEL_NONE;
5116 			I915_WRITE(reg, temp);
5117 
5118 			/* disable DPLL_SEL */
5119 			temp = I915_READ(PCH_DPLL_SEL);
5120 			temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5121 			I915_WRITE(PCH_DPLL_SEL, temp);
5122 		}
5123 
5124 		ironlake_fdi_pll_disable(intel_crtc);
5125 	}
5126 }
5127 
haswell_crtc_disable(struct drm_crtc * crtc)5128 static void haswell_crtc_disable(struct drm_crtc *crtc)
5129 {
5130 	struct drm_device *dev = crtc->dev;
5131 	struct drm_i915_private *dev_priv = dev->dev_private;
5132 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5133 	struct intel_encoder *encoder;
5134 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5135 	bool is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
5136 
5137 	for_each_encoder_on_crtc(dev, crtc, encoder) {
5138 		intel_opregion_notify_encoder(encoder, false);
5139 		encoder->disable(encoder);
5140 	}
5141 
5142 	drm_crtc_vblank_off(crtc);
5143 	assert_vblank_disabled(crtc);
5144 
5145 	if (intel_crtc->config->has_pch_encoder)
5146 		intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5147 						      false);
5148 	intel_disable_pipe(intel_crtc);
5149 
5150 	if (intel_crtc->config->dp_encoder_is_mst)
5151 		intel_ddi_set_vc_payload_alloc(crtc, false);
5152 
5153 	if (!is_dsi)
5154 		intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5155 
5156 	if (INTEL_INFO(dev)->gen >= 9)
5157 		skylake_scaler_disable(intel_crtc);
5158 	else
5159 		ironlake_pfit_disable(intel_crtc, false);
5160 
5161 	if (!is_dsi)
5162 		intel_ddi_disable_pipe_clock(intel_crtc);
5163 
5164 	if (intel_crtc->config->has_pch_encoder) {
5165 		lpt_disable_pch_transcoder(dev_priv);
5166 		intel_ddi_fdi_disable(crtc);
5167 	}
5168 
5169 	for_each_encoder_on_crtc(dev, crtc, encoder)
5170 		if (encoder->post_disable)
5171 			encoder->post_disable(encoder);
5172 }
5173 
i9xx_pfit_enable(struct intel_crtc * crtc)5174 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5175 {
5176 	struct drm_device *dev = crtc->base.dev;
5177 	struct drm_i915_private *dev_priv = dev->dev_private;
5178 	struct intel_crtc_state *pipe_config = crtc->config;
5179 
5180 	if (!pipe_config->gmch_pfit.control)
5181 		return;
5182 
5183 	/*
5184 	 * The panel fitter should only be adjusted whilst the pipe is disabled,
5185 	 * according to register description and PRM.
5186 	 */
5187 	WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5188 	assert_pipe_disabled(dev_priv, crtc->pipe);
5189 
5190 	I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5191 	I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5192 
5193 	/* Border color in case we don't scale up to the full screen. Black by
5194 	 * default, change to something else for debugging. */
5195 	I915_WRITE(BCLRPAT(crtc->pipe), 0);
5196 }
5197 
port_to_power_domain(enum port port)5198 static enum intel_display_power_domain port_to_power_domain(enum port port)
5199 {
5200 	switch (port) {
5201 	case PORT_A:
5202 		return POWER_DOMAIN_PORT_DDI_A_4_LANES;
5203 	case PORT_B:
5204 		return POWER_DOMAIN_PORT_DDI_B_4_LANES;
5205 	case PORT_C:
5206 		return POWER_DOMAIN_PORT_DDI_C_4_LANES;
5207 	case PORT_D:
5208 		return POWER_DOMAIN_PORT_DDI_D_4_LANES;
5209 	case PORT_E:
5210 		return POWER_DOMAIN_PORT_DDI_E_2_LANES;
5211 	default:
5212 		MISSING_CASE(port);
5213 		return POWER_DOMAIN_PORT_OTHER;
5214 	}
5215 }
5216 
port_to_aux_power_domain(enum port port)5217 static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5218 {
5219 	switch (port) {
5220 	case PORT_A:
5221 		return POWER_DOMAIN_AUX_A;
5222 	case PORT_B:
5223 		return POWER_DOMAIN_AUX_B;
5224 	case PORT_C:
5225 		return POWER_DOMAIN_AUX_C;
5226 	case PORT_D:
5227 		return POWER_DOMAIN_AUX_D;
5228 	case PORT_E:
5229 		/* FIXME: Check VBT for actual wiring of PORT E */
5230 		return POWER_DOMAIN_AUX_D;
5231 	default:
5232 		MISSING_CASE(port);
5233 		return POWER_DOMAIN_AUX_A;
5234 	}
5235 }
5236 
5237 #define for_each_power_domain(domain, mask)				\
5238 	for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)	\
5239 		if ((1 << (domain)) & (mask))
5240 
5241 enum intel_display_power_domain
intel_display_port_power_domain(struct intel_encoder * intel_encoder)5242 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5243 {
5244 	struct drm_device *dev = intel_encoder->base.dev;
5245 	struct intel_digital_port *intel_dig_port;
5246 
5247 	switch (intel_encoder->type) {
5248 	case INTEL_OUTPUT_UNKNOWN:
5249 		/* Only DDI platforms should ever use this output type */
5250 		WARN_ON_ONCE(!HAS_DDI(dev));
5251 	case INTEL_OUTPUT_DISPLAYPORT:
5252 	case INTEL_OUTPUT_HDMI:
5253 	case INTEL_OUTPUT_EDP:
5254 		intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5255 		return port_to_power_domain(intel_dig_port->port);
5256 	case INTEL_OUTPUT_DP_MST:
5257 		intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5258 		return port_to_power_domain(intel_dig_port->port);
5259 	case INTEL_OUTPUT_ANALOG:
5260 		return POWER_DOMAIN_PORT_CRT;
5261 	case INTEL_OUTPUT_DSI:
5262 		return POWER_DOMAIN_PORT_DSI;
5263 	default:
5264 		return POWER_DOMAIN_PORT_OTHER;
5265 	}
5266 }
5267 
5268 enum intel_display_power_domain
intel_display_port_aux_power_domain(struct intel_encoder * intel_encoder)5269 intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5270 {
5271 	struct drm_device *dev = intel_encoder->base.dev;
5272 	struct intel_digital_port *intel_dig_port;
5273 
5274 	switch (intel_encoder->type) {
5275 	case INTEL_OUTPUT_UNKNOWN:
5276 	case INTEL_OUTPUT_HDMI:
5277 		/*
5278 		 * Only DDI platforms should ever use these output types.
5279 		 * We can get here after the HDMI detect code has already set
5280 		 * the type of the shared encoder. Since we can't be sure
5281 		 * what's the status of the given connectors, play safe and
5282 		 * run the DP detection too.
5283 		 */
5284 		WARN_ON_ONCE(!HAS_DDI(dev));
5285 	case INTEL_OUTPUT_DISPLAYPORT:
5286 	case INTEL_OUTPUT_EDP:
5287 		intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5288 		return port_to_aux_power_domain(intel_dig_port->port);
5289 	case INTEL_OUTPUT_DP_MST:
5290 		intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5291 		return port_to_aux_power_domain(intel_dig_port->port);
5292 	default:
5293 		MISSING_CASE(intel_encoder->type);
5294 		return POWER_DOMAIN_AUX_A;
5295 	}
5296 }
5297 
get_crtc_power_domains(struct drm_crtc * crtc)5298 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
5299 {
5300 	struct drm_device *dev = crtc->dev;
5301 	struct intel_encoder *intel_encoder;
5302 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5303 	enum pipe pipe = intel_crtc->pipe;
5304 	unsigned long mask;
5305 	enum transcoder transcoder;
5306 
5307 	if (!crtc->state->active)
5308 		return 0;
5309 
5310 	transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
5311 
5312 	mask = BIT(POWER_DOMAIN_PIPE(pipe));
5313 	mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5314 	if (intel_crtc->config->pch_pfit.enabled ||
5315 	    intel_crtc->config->pch_pfit.force_thru)
5316 		mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5317 
5318 	for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5319 		mask |= BIT(intel_display_port_power_domain(intel_encoder));
5320 
5321 	return mask;
5322 }
5323 
modeset_get_crtc_power_domains(struct drm_crtc * crtc)5324 static unsigned long modeset_get_crtc_power_domains(struct drm_crtc *crtc)
5325 {
5326 	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5327 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5328 	enum intel_display_power_domain domain;
5329 	unsigned long domains, new_domains, old_domains;
5330 
5331 	old_domains = intel_crtc->enabled_power_domains;
5332 	intel_crtc->enabled_power_domains = new_domains = get_crtc_power_domains(crtc);
5333 
5334 	domains = new_domains & ~old_domains;
5335 
5336 	for_each_power_domain(domain, domains)
5337 		intel_display_power_get(dev_priv, domain);
5338 
5339 	return old_domains & ~new_domains;
5340 }
5341 
modeset_put_power_domains(struct drm_i915_private * dev_priv,unsigned long domains)5342 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5343 				      unsigned long domains)
5344 {
5345 	enum intel_display_power_domain domain;
5346 
5347 	for_each_power_domain(domain, domains)
5348 		intel_display_power_put(dev_priv, domain);
5349 }
5350 
modeset_update_crtc_power_domains(struct drm_atomic_state * state)5351 static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
5352 {
5353 	struct drm_device *dev = state->dev;
5354 	struct drm_i915_private *dev_priv = dev->dev_private;
5355 	unsigned long put_domains[I915_MAX_PIPES] = {};
5356 	struct drm_crtc_state *crtc_state;
5357 	struct drm_crtc *crtc;
5358 	int i;
5359 
5360 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
5361 		if (needs_modeset(crtc->state))
5362 			put_domains[to_intel_crtc(crtc)->pipe] =
5363 				modeset_get_crtc_power_domains(crtc);
5364 	}
5365 
5366 	if (dev_priv->display.modeset_commit_cdclk) {
5367 		unsigned int cdclk = to_intel_atomic_state(state)->cdclk;
5368 
5369 		if (cdclk != dev_priv->cdclk_freq &&
5370 		    !WARN_ON(!state->allow_modeset))
5371 			dev_priv->display.modeset_commit_cdclk(state);
5372 	}
5373 
5374 	for (i = 0; i < I915_MAX_PIPES; i++)
5375 		if (put_domains[i])
5376 			modeset_put_power_domains(dev_priv, put_domains[i]);
5377 }
5378 
intel_compute_max_dotclk(struct drm_i915_private * dev_priv)5379 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5380 {
5381 	int max_cdclk_freq = dev_priv->max_cdclk_freq;
5382 
5383 	if (INTEL_INFO(dev_priv)->gen >= 9 ||
5384 	    IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5385 		return max_cdclk_freq;
5386 	else if (IS_CHERRYVIEW(dev_priv))
5387 		return max_cdclk_freq*95/100;
5388 	else if (INTEL_INFO(dev_priv)->gen < 4)
5389 		return 2*max_cdclk_freq*90/100;
5390 	else
5391 		return max_cdclk_freq*90/100;
5392 }
5393 
intel_update_max_cdclk(struct drm_device * dev)5394 static void intel_update_max_cdclk(struct drm_device *dev)
5395 {
5396 	struct drm_i915_private *dev_priv = dev->dev_private;
5397 
5398 	if (IS_SKYLAKE(dev)) {
5399 		u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5400 
5401 		if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5402 			dev_priv->max_cdclk_freq = 675000;
5403 		else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5404 			dev_priv->max_cdclk_freq = 540000;
5405 		else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5406 			dev_priv->max_cdclk_freq = 450000;
5407 		else
5408 			dev_priv->max_cdclk_freq = 337500;
5409 	} else if (IS_BROADWELL(dev))  {
5410 		/*
5411 		 * FIXME with extra cooling we can allow
5412 		 * 540 MHz for ULX and 675 Mhz for ULT.
5413 		 * How can we know if extra cooling is
5414 		 * available? PCI ID, VTB, something else?
5415 		 */
5416 		if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5417 			dev_priv->max_cdclk_freq = 450000;
5418 		else if (IS_BDW_ULX(dev))
5419 			dev_priv->max_cdclk_freq = 450000;
5420 		else if (IS_BDW_ULT(dev))
5421 			dev_priv->max_cdclk_freq = 540000;
5422 		else
5423 			dev_priv->max_cdclk_freq = 675000;
5424 	} else if (IS_CHERRYVIEW(dev)) {
5425 		dev_priv->max_cdclk_freq = 320000;
5426 	} else if (IS_VALLEYVIEW(dev)) {
5427 		dev_priv->max_cdclk_freq = 400000;
5428 	} else {
5429 		/* otherwise assume cdclk is fixed */
5430 		dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5431 	}
5432 
5433 	dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5434 
5435 	DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5436 			 dev_priv->max_cdclk_freq);
5437 
5438 	DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5439 			 dev_priv->max_dotclk_freq);
5440 }
5441 
intel_update_cdclk(struct drm_device * dev)5442 static void intel_update_cdclk(struct drm_device *dev)
5443 {
5444 	struct drm_i915_private *dev_priv = dev->dev_private;
5445 
5446 	dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5447 	DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5448 			 dev_priv->cdclk_freq);
5449 
5450 	/*
5451 	 * Program the gmbus_freq based on the cdclk frequency.
5452 	 * BSpec erroneously claims we should aim for 4MHz, but
5453 	 * in fact 1MHz is the correct frequency.
5454 	 */
5455 	if (IS_VALLEYVIEW(dev)) {
5456 		/*
5457 		 * Program the gmbus_freq based on the cdclk frequency.
5458 		 * BSpec erroneously claims we should aim for 4MHz, but
5459 		 * in fact 1MHz is the correct frequency.
5460 		 */
5461 		I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5462 	}
5463 
5464 	if (dev_priv->max_cdclk_freq == 0)
5465 		intel_update_max_cdclk(dev);
5466 }
5467 
broxton_set_cdclk(struct drm_device * dev,int frequency)5468 static void broxton_set_cdclk(struct drm_device *dev, int frequency)
5469 {
5470 	struct drm_i915_private *dev_priv = dev->dev_private;
5471 	uint32_t divider;
5472 	uint32_t ratio;
5473 	uint32_t current_freq;
5474 	int ret;
5475 
5476 	/* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5477 	switch (frequency) {
5478 	case 144000:
5479 		divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5480 		ratio = BXT_DE_PLL_RATIO(60);
5481 		break;
5482 	case 288000:
5483 		divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5484 		ratio = BXT_DE_PLL_RATIO(60);
5485 		break;
5486 	case 384000:
5487 		divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5488 		ratio = BXT_DE_PLL_RATIO(60);
5489 		break;
5490 	case 576000:
5491 		divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5492 		ratio = BXT_DE_PLL_RATIO(60);
5493 		break;
5494 	case 624000:
5495 		divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5496 		ratio = BXT_DE_PLL_RATIO(65);
5497 		break;
5498 	case 19200:
5499 		/*
5500 		 * Bypass frequency with DE PLL disabled. Init ratio, divider
5501 		 * to suppress GCC warning.
5502 		 */
5503 		ratio = 0;
5504 		divider = 0;
5505 		break;
5506 	default:
5507 		DRM_ERROR("unsupported CDCLK freq %d", frequency);
5508 
5509 		return;
5510 	}
5511 
5512 	mutex_lock(&dev_priv->rps.hw_lock);
5513 	/* Inform power controller of upcoming frequency change */
5514 	ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5515 				      0x80000000);
5516 	mutex_unlock(&dev_priv->rps.hw_lock);
5517 
5518 	if (ret) {
5519 		DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5520 			  ret, frequency);
5521 		return;
5522 	}
5523 
5524 	current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5525 	/* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5526 	current_freq = current_freq * 500 + 1000;
5527 
5528 	/*
5529 	 * DE PLL has to be disabled when
5530 	 * - setting to 19.2MHz (bypass, PLL isn't used)
5531 	 * - before setting to 624MHz (PLL needs toggling)
5532 	 * - before setting to any frequency from 624MHz (PLL needs toggling)
5533 	 */
5534 	if (frequency == 19200 || frequency == 624000 ||
5535 	    current_freq == 624000) {
5536 		I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5537 		/* Timeout 200us */
5538 		if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5539 			     1))
5540 			DRM_ERROR("timout waiting for DE PLL unlock\n");
5541 	}
5542 
5543 	if (frequency != 19200) {
5544 		uint32_t val;
5545 
5546 		val = I915_READ(BXT_DE_PLL_CTL);
5547 		val &= ~BXT_DE_PLL_RATIO_MASK;
5548 		val |= ratio;
5549 		I915_WRITE(BXT_DE_PLL_CTL, val);
5550 
5551 		I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5552 		/* Timeout 200us */
5553 		if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5554 			DRM_ERROR("timeout waiting for DE PLL lock\n");
5555 
5556 		val = I915_READ(CDCLK_CTL);
5557 		val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5558 		val |= divider;
5559 		/*
5560 		 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5561 		 * enable otherwise.
5562 		 */
5563 		val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5564 		if (frequency >= 500000)
5565 			val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5566 
5567 		val &= ~CDCLK_FREQ_DECIMAL_MASK;
5568 		/* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5569 		val |= (frequency - 1000) / 500;
5570 		I915_WRITE(CDCLK_CTL, val);
5571 	}
5572 
5573 	mutex_lock(&dev_priv->rps.hw_lock);
5574 	ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5575 				      DIV_ROUND_UP(frequency, 25000));
5576 	mutex_unlock(&dev_priv->rps.hw_lock);
5577 
5578 	if (ret) {
5579 		DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5580 			  ret, frequency);
5581 		return;
5582 	}
5583 
5584 	intel_update_cdclk(dev);
5585 }
5586 
broxton_init_cdclk(struct drm_device * dev)5587 void broxton_init_cdclk(struct drm_device *dev)
5588 {
5589 	struct drm_i915_private *dev_priv = dev->dev_private;
5590 	uint32_t val;
5591 
5592 	/*
5593 	 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5594 	 * or else the reset will hang because there is no PCH to respond.
5595 	 * Move the handshake programming to initialization sequence.
5596 	 * Previously was left up to BIOS.
5597 	 */
5598 	val = I915_READ(HSW_NDE_RSTWRN_OPT);
5599 	val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5600 	I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5601 
5602 	/* Enable PG1 for cdclk */
5603 	intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5604 
5605 	/* check if cd clock is enabled */
5606 	if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5607 		DRM_DEBUG_KMS("Display already initialized\n");
5608 		return;
5609 	}
5610 
5611 	/*
5612 	 * FIXME:
5613 	 * - The initial CDCLK needs to be read from VBT.
5614 	 *   Need to make this change after VBT has changes for BXT.
5615 	 * - check if setting the max (or any) cdclk freq is really necessary
5616 	 *   here, it belongs to modeset time
5617 	 */
5618 	broxton_set_cdclk(dev, 624000);
5619 
5620 	I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5621 	POSTING_READ(DBUF_CTL);
5622 
5623 	udelay(10);
5624 
5625 	if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5626 		DRM_ERROR("DBuf power enable timeout!\n");
5627 }
5628 
broxton_uninit_cdclk(struct drm_device * dev)5629 void broxton_uninit_cdclk(struct drm_device *dev)
5630 {
5631 	struct drm_i915_private *dev_priv = dev->dev_private;
5632 
5633 	I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5634 	POSTING_READ(DBUF_CTL);
5635 
5636 	udelay(10);
5637 
5638 	if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5639 		DRM_ERROR("DBuf power disable timeout!\n");
5640 
5641 	/* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5642 	broxton_set_cdclk(dev, 19200);
5643 
5644 	intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5645 }
5646 
5647 static const struct skl_cdclk_entry {
5648 	unsigned int freq;
5649 	unsigned int vco;
5650 } skl_cdclk_frequencies[] = {
5651 	{ .freq = 308570, .vco = 8640 },
5652 	{ .freq = 337500, .vco = 8100 },
5653 	{ .freq = 432000, .vco = 8640 },
5654 	{ .freq = 450000, .vco = 8100 },
5655 	{ .freq = 540000, .vco = 8100 },
5656 	{ .freq = 617140, .vco = 8640 },
5657 	{ .freq = 675000, .vco = 8100 },
5658 };
5659 
skl_cdclk_decimal(unsigned int freq)5660 static unsigned int skl_cdclk_decimal(unsigned int freq)
5661 {
5662 	return (freq - 1000) / 500;
5663 }
5664 
skl_cdclk_get_vco(unsigned int freq)5665 static unsigned int skl_cdclk_get_vco(unsigned int freq)
5666 {
5667 	unsigned int i;
5668 
5669 	for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5670 		const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5671 
5672 		if (e->freq == freq)
5673 			return e->vco;
5674 	}
5675 
5676 	return 8100;
5677 }
5678 
5679 static void
skl_dpll0_enable(struct drm_i915_private * dev_priv,unsigned int required_vco)5680 skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5681 {
5682 	unsigned int min_freq;
5683 	u32 val;
5684 
5685 	/* select the minimum CDCLK before enabling DPLL 0 */
5686 	val = I915_READ(CDCLK_CTL);
5687 	val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5688 	val |= CDCLK_FREQ_337_308;
5689 
5690 	if (required_vco == 8640)
5691 		min_freq = 308570;
5692 	else
5693 		min_freq = 337500;
5694 
5695 	val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5696 
5697 	I915_WRITE(CDCLK_CTL, val);
5698 	POSTING_READ(CDCLK_CTL);
5699 
5700 	/*
5701 	 * We always enable DPLL0 with the lowest link rate possible, but still
5702 	 * taking into account the VCO required to operate the eDP panel at the
5703 	 * desired frequency. The usual DP link rates operate with a VCO of
5704 	 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5705 	 * The modeset code is responsible for the selection of the exact link
5706 	 * rate later on, with the constraint of choosing a frequency that
5707 	 * works with required_vco.
5708 	 */
5709 	val = I915_READ(DPLL_CTRL1);
5710 
5711 	val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5712 		 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5713 	val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5714 	if (required_vco == 8640)
5715 		val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5716 					    SKL_DPLL0);
5717 	else
5718 		val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5719 					    SKL_DPLL0);
5720 
5721 	I915_WRITE(DPLL_CTRL1, val);
5722 	POSTING_READ(DPLL_CTRL1);
5723 
5724 	I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5725 
5726 	if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5727 		DRM_ERROR("DPLL0 not locked\n");
5728 }
5729 
skl_cdclk_pcu_ready(struct drm_i915_private * dev_priv)5730 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5731 {
5732 	int ret;
5733 	u32 val;
5734 
5735 	/* inform PCU we want to change CDCLK */
5736 	val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5737 	mutex_lock(&dev_priv->rps.hw_lock);
5738 	ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5739 	mutex_unlock(&dev_priv->rps.hw_lock);
5740 
5741 	return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5742 }
5743 
skl_cdclk_wait_for_pcu_ready(struct drm_i915_private * dev_priv)5744 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5745 {
5746 	unsigned int i;
5747 
5748 	for (i = 0; i < 15; i++) {
5749 		if (skl_cdclk_pcu_ready(dev_priv))
5750 			return true;
5751 		udelay(10);
5752 	}
5753 
5754 	return false;
5755 }
5756 
skl_set_cdclk(struct drm_i915_private * dev_priv,unsigned int freq)5757 static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5758 {
5759 	struct drm_device *dev = dev_priv->dev;
5760 	u32 freq_select, pcu_ack;
5761 
5762 	DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5763 
5764 	if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5765 		DRM_ERROR("failed to inform PCU about cdclk change\n");
5766 		return;
5767 	}
5768 
5769 	/* set CDCLK_CTL */
5770 	switch(freq) {
5771 	case 450000:
5772 	case 432000:
5773 		freq_select = CDCLK_FREQ_450_432;
5774 		pcu_ack = 1;
5775 		break;
5776 	case 540000:
5777 		freq_select = CDCLK_FREQ_540;
5778 		pcu_ack = 2;
5779 		break;
5780 	case 308570:
5781 	case 337500:
5782 	default:
5783 		freq_select = CDCLK_FREQ_337_308;
5784 		pcu_ack = 0;
5785 		break;
5786 	case 617140:
5787 	case 675000:
5788 		freq_select = CDCLK_FREQ_675_617;
5789 		pcu_ack = 3;
5790 		break;
5791 	}
5792 
5793 	I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5794 	POSTING_READ(CDCLK_CTL);
5795 
5796 	/* inform PCU of the change */
5797 	mutex_lock(&dev_priv->rps.hw_lock);
5798 	sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5799 	mutex_unlock(&dev_priv->rps.hw_lock);
5800 
5801 	intel_update_cdclk(dev);
5802 }
5803 
skl_uninit_cdclk(struct drm_i915_private * dev_priv)5804 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5805 {
5806 	/* disable DBUF power */
5807 	I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5808 	POSTING_READ(DBUF_CTL);
5809 
5810 	udelay(10);
5811 
5812 	if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5813 		DRM_ERROR("DBuf power disable timeout\n");
5814 
5815 	/*
5816 	 * DMC assumes ownership of LCPLL and will get confused if we touch it.
5817 	 */
5818 	if (dev_priv->csr.dmc_payload) {
5819 		/* disable DPLL0 */
5820 		I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) &
5821 					~LCPLL_PLL_ENABLE);
5822 		if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5823 			DRM_ERROR("Couldn't disable DPLL0\n");
5824 	}
5825 
5826 	intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5827 }
5828 
skl_init_cdclk(struct drm_i915_private * dev_priv)5829 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5830 {
5831 	u32 val;
5832 	unsigned int required_vco;
5833 
5834 	/* enable PCH reset handshake */
5835 	val = I915_READ(HSW_NDE_RSTWRN_OPT);
5836 	I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
5837 
5838 	/* enable PG1 and Misc I/O */
5839 	intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5840 
5841 	/* DPLL0 not enabled (happens on early BIOS versions) */
5842 	if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) {
5843 		/* enable DPLL0 */
5844 		required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5845 		skl_dpll0_enable(dev_priv, required_vco);
5846 	}
5847 
5848 	/* set CDCLK to the frequency the BIOS chose */
5849 	skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5850 
5851 	/* enable DBUF power */
5852 	I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5853 	POSTING_READ(DBUF_CTL);
5854 
5855 	udelay(10);
5856 
5857 	if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5858 		DRM_ERROR("DBuf power enable timeout\n");
5859 }
5860 
5861 /* Adjust CDclk dividers to allow high res or save power if possible */
valleyview_set_cdclk(struct drm_device * dev,int cdclk)5862 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5863 {
5864 	struct drm_i915_private *dev_priv = dev->dev_private;
5865 	u32 val, cmd;
5866 
5867 	WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5868 					!= dev_priv->cdclk_freq);
5869 
5870 	if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5871 		cmd = 2;
5872 	else if (cdclk == 266667)
5873 		cmd = 1;
5874 	else
5875 		cmd = 0;
5876 
5877 	mutex_lock(&dev_priv->rps.hw_lock);
5878 	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5879 	val &= ~DSPFREQGUAR_MASK;
5880 	val |= (cmd << DSPFREQGUAR_SHIFT);
5881 	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5882 	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5883 		      DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5884 		     50)) {
5885 		DRM_ERROR("timed out waiting for CDclk change\n");
5886 	}
5887 	mutex_unlock(&dev_priv->rps.hw_lock);
5888 
5889 	mutex_lock(&dev_priv->sb_lock);
5890 
5891 	if (cdclk == 400000) {
5892 		u32 divider;
5893 
5894 		divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5895 
5896 		/* adjust cdclk divider */
5897 		val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5898 		val &= ~CCK_FREQUENCY_VALUES;
5899 		val |= divider;
5900 		vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5901 
5902 		if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5903 			      CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
5904 			     50))
5905 			DRM_ERROR("timed out waiting for CDclk change\n");
5906 	}
5907 
5908 	/* adjust self-refresh exit latency value */
5909 	val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5910 	val &= ~0x7f;
5911 
5912 	/*
5913 	 * For high bandwidth configs, we set a higher latency in the bunit
5914 	 * so that the core display fetch happens in time to avoid underruns.
5915 	 */
5916 	if (cdclk == 400000)
5917 		val |= 4500 / 250; /* 4.5 usec */
5918 	else
5919 		val |= 3000 / 250; /* 3.0 usec */
5920 	vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5921 
5922 	mutex_unlock(&dev_priv->sb_lock);
5923 
5924 	intel_update_cdclk(dev);
5925 }
5926 
cherryview_set_cdclk(struct drm_device * dev,int cdclk)5927 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5928 {
5929 	struct drm_i915_private *dev_priv = dev->dev_private;
5930 	u32 val, cmd;
5931 
5932 	WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5933 						!= dev_priv->cdclk_freq);
5934 
5935 	switch (cdclk) {
5936 	case 333333:
5937 	case 320000:
5938 	case 266667:
5939 	case 200000:
5940 		break;
5941 	default:
5942 		MISSING_CASE(cdclk);
5943 		return;
5944 	}
5945 
5946 	/*
5947 	 * Specs are full of misinformation, but testing on actual
5948 	 * hardware has shown that we just need to write the desired
5949 	 * CCK divider into the Punit register.
5950 	 */
5951 	cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5952 
5953 	mutex_lock(&dev_priv->rps.hw_lock);
5954 	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5955 	val &= ~DSPFREQGUAR_MASK_CHV;
5956 	val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5957 	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5958 	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5959 		      DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5960 		     50)) {
5961 		DRM_ERROR("timed out waiting for CDclk change\n");
5962 	}
5963 	mutex_unlock(&dev_priv->rps.hw_lock);
5964 
5965 	intel_update_cdclk(dev);
5966 }
5967 
valleyview_calc_cdclk(struct drm_i915_private * dev_priv,int max_pixclk)5968 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5969 				 int max_pixclk)
5970 {
5971 	int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
5972 	int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5973 
5974 	/*
5975 	 * Really only a few cases to deal with, as only 4 CDclks are supported:
5976 	 *   200MHz
5977 	 *   267MHz
5978 	 *   320/333MHz (depends on HPLL freq)
5979 	 *   400MHz (VLV only)
5980 	 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5981 	 * of the lower bin and adjust if needed.
5982 	 *
5983 	 * We seem to get an unstable or solid color picture at 200MHz.
5984 	 * Not sure what's wrong. For now use 200MHz only when all pipes
5985 	 * are off.
5986 	 */
5987 	if (!IS_CHERRYVIEW(dev_priv) &&
5988 	    max_pixclk > freq_320*limit/100)
5989 		return 400000;
5990 	else if (max_pixclk > 266667*limit/100)
5991 		return freq_320;
5992 	else if (max_pixclk > 0)
5993 		return 266667;
5994 	else
5995 		return 200000;
5996 }
5997 
broxton_calc_cdclk(struct drm_i915_private * dev_priv,int max_pixclk)5998 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5999 			      int max_pixclk)
6000 {
6001 	/*
6002 	 * FIXME:
6003 	 * - remove the guardband, it's not needed on BXT
6004 	 * - set 19.2MHz bypass frequency if there are no active pipes
6005 	 */
6006 	if (max_pixclk > 576000*9/10)
6007 		return 624000;
6008 	else if (max_pixclk > 384000*9/10)
6009 		return 576000;
6010 	else if (max_pixclk > 288000*9/10)
6011 		return 384000;
6012 	else if (max_pixclk > 144000*9/10)
6013 		return 288000;
6014 	else
6015 		return 144000;
6016 }
6017 
6018 /* Compute the max pixel clock for new configuration. Uses atomic state if
6019  * that's non-NULL, look at current state otherwise. */
intel_mode_max_pixclk(struct drm_device * dev,struct drm_atomic_state * state)6020 static int intel_mode_max_pixclk(struct drm_device *dev,
6021 				 struct drm_atomic_state *state)
6022 {
6023 	struct intel_crtc *intel_crtc;
6024 	struct intel_crtc_state *crtc_state;
6025 	int max_pixclk = 0;
6026 
6027 	for_each_intel_crtc(dev, intel_crtc) {
6028 		crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
6029 		if (IS_ERR(crtc_state))
6030 			return PTR_ERR(crtc_state);
6031 
6032 		if (!crtc_state->base.enable)
6033 			continue;
6034 
6035 		max_pixclk = max(max_pixclk,
6036 				 crtc_state->base.adjusted_mode.crtc_clock);
6037 	}
6038 
6039 	return max_pixclk;
6040 }
6041 
valleyview_modeset_calc_cdclk(struct drm_atomic_state * state)6042 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
6043 {
6044 	struct drm_device *dev = state->dev;
6045 	struct drm_i915_private *dev_priv = dev->dev_private;
6046 	int max_pixclk = intel_mode_max_pixclk(dev, state);
6047 
6048 	if (max_pixclk < 0)
6049 		return max_pixclk;
6050 
6051 	to_intel_atomic_state(state)->cdclk =
6052 		valleyview_calc_cdclk(dev_priv, max_pixclk);
6053 
6054 	return 0;
6055 }
6056 
broxton_modeset_calc_cdclk(struct drm_atomic_state * state)6057 static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
6058 {
6059 	struct drm_device *dev = state->dev;
6060 	struct drm_i915_private *dev_priv = dev->dev_private;
6061 	int max_pixclk = intel_mode_max_pixclk(dev, state);
6062 
6063 	if (max_pixclk < 0)
6064 		return max_pixclk;
6065 
6066 	to_intel_atomic_state(state)->cdclk =
6067 		broxton_calc_cdclk(dev_priv, max_pixclk);
6068 
6069 	return 0;
6070 }
6071 
vlv_program_pfi_credits(struct drm_i915_private * dev_priv)6072 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6073 {
6074 	unsigned int credits, default_credits;
6075 
6076 	if (IS_CHERRYVIEW(dev_priv))
6077 		default_credits = PFI_CREDIT(12);
6078 	else
6079 		default_credits = PFI_CREDIT(8);
6080 
6081 	if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
6082 		/* CHV suggested value is 31 or 63 */
6083 		if (IS_CHERRYVIEW(dev_priv))
6084 			credits = PFI_CREDIT_63;
6085 		else
6086 			credits = PFI_CREDIT(15);
6087 	} else {
6088 		credits = default_credits;
6089 	}
6090 
6091 	/*
6092 	 * WA - write default credits before re-programming
6093 	 * FIXME: should we also set the resend bit here?
6094 	 */
6095 	I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6096 		   default_credits);
6097 
6098 	I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6099 		   credits | PFI_CREDIT_RESEND);
6100 
6101 	/*
6102 	 * FIXME is this guaranteed to clear
6103 	 * immediately or should we poll for it?
6104 	 */
6105 	WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6106 }
6107 
valleyview_modeset_commit_cdclk(struct drm_atomic_state * old_state)6108 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6109 {
6110 	struct drm_device *dev = old_state->dev;
6111 	unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
6112 	struct drm_i915_private *dev_priv = dev->dev_private;
6113 
6114 	/*
6115 	 * FIXME: We can end up here with all power domains off, yet
6116 	 * with a CDCLK frequency other than the minimum. To account
6117 	 * for this take the PIPE-A power domain, which covers the HW
6118 	 * blocks needed for the following programming. This can be
6119 	 * removed once it's guaranteed that we get here either with
6120 	 * the minimum CDCLK set, or the required power domains
6121 	 * enabled.
6122 	 */
6123 	intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6124 
6125 	if (IS_CHERRYVIEW(dev))
6126 		cherryview_set_cdclk(dev, req_cdclk);
6127 	else
6128 		valleyview_set_cdclk(dev, req_cdclk);
6129 
6130 	vlv_program_pfi_credits(dev_priv);
6131 
6132 	intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6133 }
6134 
valleyview_crtc_enable(struct drm_crtc * crtc)6135 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6136 {
6137 	struct drm_device *dev = crtc->dev;
6138 	struct drm_i915_private *dev_priv = to_i915(dev);
6139 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6140 	struct intel_encoder *encoder;
6141 	int pipe = intel_crtc->pipe;
6142 	bool is_dsi;
6143 
6144 	if (WARN_ON(intel_crtc->active))
6145 		return;
6146 
6147 	is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
6148 
6149 	if (intel_crtc->config->has_dp_encoder)
6150 		intel_dp_set_m_n(intel_crtc, M1_N1);
6151 
6152 	intel_set_pipe_timings(intel_crtc);
6153 
6154 	if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6155 		struct drm_i915_private *dev_priv = dev->dev_private;
6156 
6157 		I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6158 		I915_WRITE(CHV_CANVAS(pipe), 0);
6159 	}
6160 
6161 	i9xx_set_pipeconf(intel_crtc);
6162 
6163 	intel_crtc->active = true;
6164 
6165 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6166 
6167 	for_each_encoder_on_crtc(dev, crtc, encoder)
6168 		if (encoder->pre_pll_enable)
6169 			encoder->pre_pll_enable(encoder);
6170 
6171 	if (!is_dsi) {
6172 		if (IS_CHERRYVIEW(dev)) {
6173 			chv_prepare_pll(intel_crtc, intel_crtc->config);
6174 			chv_enable_pll(intel_crtc, intel_crtc->config);
6175 		} else {
6176 			vlv_prepare_pll(intel_crtc, intel_crtc->config);
6177 			vlv_enable_pll(intel_crtc, intel_crtc->config);
6178 		}
6179 	}
6180 
6181 	for_each_encoder_on_crtc(dev, crtc, encoder)
6182 		if (encoder->pre_enable)
6183 			encoder->pre_enable(encoder);
6184 
6185 	i9xx_pfit_enable(intel_crtc);
6186 
6187 	intel_crtc_load_lut(crtc);
6188 
6189 	intel_enable_pipe(intel_crtc);
6190 
6191 	assert_vblank_disabled(crtc);
6192 	drm_crtc_vblank_on(crtc);
6193 
6194 	for_each_encoder_on_crtc(dev, crtc, encoder)
6195 		encoder->enable(encoder);
6196 }
6197 
i9xx_set_pll_dividers(struct intel_crtc * crtc)6198 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6199 {
6200 	struct drm_device *dev = crtc->base.dev;
6201 	struct drm_i915_private *dev_priv = dev->dev_private;
6202 
6203 	I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6204 	I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6205 }
6206 
i9xx_crtc_enable(struct drm_crtc * crtc)6207 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6208 {
6209 	struct drm_device *dev = crtc->dev;
6210 	struct drm_i915_private *dev_priv = to_i915(dev);
6211 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6212 	struct intel_encoder *encoder;
6213 	int pipe = intel_crtc->pipe;
6214 
6215 	if (WARN_ON(intel_crtc->active))
6216 		return;
6217 
6218 	i9xx_set_pll_dividers(intel_crtc);
6219 
6220 	if (intel_crtc->config->has_dp_encoder)
6221 		intel_dp_set_m_n(intel_crtc, M1_N1);
6222 
6223 	intel_set_pipe_timings(intel_crtc);
6224 
6225 	i9xx_set_pipeconf(intel_crtc);
6226 
6227 	intel_crtc->active = true;
6228 
6229 	if (!IS_GEN2(dev))
6230 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6231 
6232 	for_each_encoder_on_crtc(dev, crtc, encoder)
6233 		if (encoder->pre_enable)
6234 			encoder->pre_enable(encoder);
6235 
6236 	i9xx_enable_pll(intel_crtc);
6237 
6238 	i9xx_pfit_enable(intel_crtc);
6239 
6240 	intel_crtc_load_lut(crtc);
6241 
6242 	intel_update_watermarks(crtc);
6243 	intel_enable_pipe(intel_crtc);
6244 
6245 	assert_vblank_disabled(crtc);
6246 	drm_crtc_vblank_on(crtc);
6247 
6248 	for_each_encoder_on_crtc(dev, crtc, encoder)
6249 		encoder->enable(encoder);
6250 }
6251 
i9xx_pfit_disable(struct intel_crtc * crtc)6252 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6253 {
6254 	struct drm_device *dev = crtc->base.dev;
6255 	struct drm_i915_private *dev_priv = dev->dev_private;
6256 
6257 	if (!crtc->config->gmch_pfit.control)
6258 		return;
6259 
6260 	assert_pipe_disabled(dev_priv, crtc->pipe);
6261 
6262 	DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6263 			 I915_READ(PFIT_CONTROL));
6264 	I915_WRITE(PFIT_CONTROL, 0);
6265 }
6266 
i9xx_crtc_disable(struct drm_crtc * crtc)6267 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6268 {
6269 	struct drm_device *dev = crtc->dev;
6270 	struct drm_i915_private *dev_priv = dev->dev_private;
6271 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6272 	struct intel_encoder *encoder;
6273 	int pipe = intel_crtc->pipe;
6274 
6275 	/*
6276 	 * On gen2 planes are double buffered but the pipe isn't, so we must
6277 	 * wait for planes to fully turn off before disabling the pipe.
6278 	 * We also need to wait on all gmch platforms because of the
6279 	 * self-refresh mode constraint explained above.
6280 	 */
6281 	intel_wait_for_vblank(dev, pipe);
6282 
6283 	for_each_encoder_on_crtc(dev, crtc, encoder)
6284 		encoder->disable(encoder);
6285 
6286 	drm_crtc_vblank_off(crtc);
6287 	assert_vblank_disabled(crtc);
6288 
6289 	intel_disable_pipe(intel_crtc);
6290 
6291 	i9xx_pfit_disable(intel_crtc);
6292 
6293 	for_each_encoder_on_crtc(dev, crtc, encoder)
6294 		if (encoder->post_disable)
6295 			encoder->post_disable(encoder);
6296 
6297 	if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
6298 		if (IS_CHERRYVIEW(dev))
6299 			chv_disable_pll(dev_priv, pipe);
6300 		else if (IS_VALLEYVIEW(dev))
6301 			vlv_disable_pll(dev_priv, pipe);
6302 		else
6303 			i9xx_disable_pll(intel_crtc);
6304 	}
6305 
6306 	for_each_encoder_on_crtc(dev, crtc, encoder)
6307 		if (encoder->post_pll_disable)
6308 			encoder->post_pll_disable(encoder);
6309 
6310 	if (!IS_GEN2(dev))
6311 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6312 }
6313 
intel_crtc_disable_noatomic(struct drm_crtc * crtc)6314 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6315 {
6316 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6317 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6318 	enum intel_display_power_domain domain;
6319 	unsigned long domains;
6320 
6321 	if (!intel_crtc->active)
6322 		return;
6323 
6324 	if (to_intel_plane_state(crtc->primary->state)->visible) {
6325 		intel_crtc_wait_for_pending_flips(crtc);
6326 		intel_pre_disable_primary(crtc);
6327 
6328 		intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6329 		to_intel_plane_state(crtc->primary->state)->visible = false;
6330 	}
6331 
6332 	dev_priv->display.crtc_disable(crtc);
6333 	intel_crtc->active = false;
6334 	intel_update_watermarks(crtc);
6335 	intel_disable_shared_dpll(intel_crtc);
6336 
6337 	domains = intel_crtc->enabled_power_domains;
6338 	for_each_power_domain(domain, domains)
6339 		intel_display_power_put(dev_priv, domain);
6340 	intel_crtc->enabled_power_domains = 0;
6341 }
6342 
6343 /*
6344  * turn all crtc's off, but do not adjust state
6345  * This has to be paired with a call to intel_modeset_setup_hw_state.
6346  */
intel_display_suspend(struct drm_device * dev)6347 int intel_display_suspend(struct drm_device *dev)
6348 {
6349 	struct drm_mode_config *config = &dev->mode_config;
6350 	struct drm_modeset_acquire_ctx *ctx = config->acquire_ctx;
6351 	struct drm_atomic_state *state;
6352 	struct drm_crtc *crtc;
6353 	unsigned crtc_mask = 0;
6354 	int ret = 0;
6355 
6356 	if (WARN_ON(!ctx))
6357 		return 0;
6358 
6359 	lockdep_assert_held(&ctx->ww_ctx);
6360 	state = drm_atomic_state_alloc(dev);
6361 	if (WARN_ON(!state))
6362 		return -ENOMEM;
6363 
6364 	state->acquire_ctx = ctx;
6365 	state->allow_modeset = true;
6366 
6367 	for_each_crtc(dev, crtc) {
6368 		struct drm_crtc_state *crtc_state =
6369 			drm_atomic_get_crtc_state(state, crtc);
6370 
6371 		ret = PTR_ERR_OR_ZERO(crtc_state);
6372 		if (ret)
6373 			goto free;
6374 
6375 		if (!crtc_state->active)
6376 			continue;
6377 
6378 		crtc_state->active = false;
6379 		crtc_mask |= 1 << drm_crtc_index(crtc);
6380 	}
6381 
6382 	if (crtc_mask) {
6383 		ret = drm_atomic_commit(state);
6384 
6385 		if (!ret) {
6386 			for_each_crtc(dev, crtc)
6387 				if (crtc_mask & (1 << drm_crtc_index(crtc)))
6388 					crtc->state->active = true;
6389 
6390 			return ret;
6391 		}
6392 	}
6393 
6394 free:
6395 	if (ret)
6396 		DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6397 	drm_atomic_state_free(state);
6398 	return ret;
6399 }
6400 
intel_encoder_destroy(struct drm_encoder * encoder)6401 void intel_encoder_destroy(struct drm_encoder *encoder)
6402 {
6403 	struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6404 
6405 	drm_encoder_cleanup(encoder);
6406 	kfree(intel_encoder);
6407 }
6408 
6409 /* Cross check the actual hw state with our own modeset state tracking (and it's
6410  * internal consistency). */
intel_connector_check_state(struct intel_connector * connector)6411 static void intel_connector_check_state(struct intel_connector *connector)
6412 {
6413 	struct drm_crtc *crtc = connector->base.state->crtc;
6414 
6415 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6416 		      connector->base.base.id,
6417 		      connector->base.name);
6418 
6419 	if (connector->get_hw_state(connector)) {
6420 		struct intel_encoder *encoder = connector->encoder;
6421 		struct drm_connector_state *conn_state = connector->base.state;
6422 
6423 		I915_STATE_WARN(!crtc,
6424 			 "connector enabled without attached crtc\n");
6425 
6426 		if (!crtc)
6427 			return;
6428 
6429 		I915_STATE_WARN(!crtc->state->active,
6430 		      "connector is active, but attached crtc isn't\n");
6431 
6432 		if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6433 			return;
6434 
6435 		I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6436 			"atomic encoder doesn't match attached encoder\n");
6437 
6438 		I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6439 			"attached encoder crtc differs from connector crtc\n");
6440 	} else {
6441 		I915_STATE_WARN(crtc && crtc->state->active,
6442 			"attached crtc is active, but connector isn't\n");
6443 		I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6444 			"best encoder set without crtc!\n");
6445 	}
6446 }
6447 
intel_connector_init(struct intel_connector * connector)6448 int intel_connector_init(struct intel_connector *connector)
6449 {
6450 	struct drm_connector_state *connector_state;
6451 
6452 	connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
6453 	if (!connector_state)
6454 		return -ENOMEM;
6455 
6456 	connector->base.state = connector_state;
6457 	return 0;
6458 }
6459 
intel_connector_alloc(void)6460 struct intel_connector *intel_connector_alloc(void)
6461 {
6462 	struct intel_connector *connector;
6463 
6464 	connector = kzalloc(sizeof *connector, GFP_KERNEL);
6465 	if (!connector)
6466 		return NULL;
6467 
6468 	if (intel_connector_init(connector) < 0) {
6469 		kfree(connector);
6470 		return NULL;
6471 	}
6472 
6473 	return connector;
6474 }
6475 
6476 /* Simple connector->get_hw_state implementation for encoders that support only
6477  * one connector and no cloning and hence the encoder state determines the state
6478  * of the connector. */
intel_connector_get_hw_state(struct intel_connector * connector)6479 bool intel_connector_get_hw_state(struct intel_connector *connector)
6480 {
6481 	enum pipe pipe = 0;
6482 	struct intel_encoder *encoder = connector->encoder;
6483 
6484 	return encoder->get_hw_state(encoder, &pipe);
6485 }
6486 
pipe_required_fdi_lanes(struct intel_crtc_state * crtc_state)6487 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6488 {
6489 	if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6490 		return crtc_state->fdi_lanes;
6491 
6492 	return 0;
6493 }
6494 
ironlake_check_fdi_lanes(struct drm_device * dev,enum pipe pipe,struct intel_crtc_state * pipe_config)6495 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6496 				     struct intel_crtc_state *pipe_config)
6497 {
6498 	struct drm_atomic_state *state = pipe_config->base.state;
6499 	struct intel_crtc *other_crtc;
6500 	struct intel_crtc_state *other_crtc_state;
6501 
6502 	DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6503 		      pipe_name(pipe), pipe_config->fdi_lanes);
6504 	if (pipe_config->fdi_lanes > 4) {
6505 		DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6506 			      pipe_name(pipe), pipe_config->fdi_lanes);
6507 		return -EINVAL;
6508 	}
6509 
6510 	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6511 		if (pipe_config->fdi_lanes > 2) {
6512 			DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6513 				      pipe_config->fdi_lanes);
6514 			return -EINVAL;
6515 		} else {
6516 			return 0;
6517 		}
6518 	}
6519 
6520 	if (INTEL_INFO(dev)->num_pipes == 2)
6521 		return 0;
6522 
6523 	/* Ivybridge 3 pipe is really complicated */
6524 	switch (pipe) {
6525 	case PIPE_A:
6526 		return 0;
6527 	case PIPE_B:
6528 		if (pipe_config->fdi_lanes <= 2)
6529 			return 0;
6530 
6531 		other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6532 		other_crtc_state =
6533 			intel_atomic_get_crtc_state(state, other_crtc);
6534 		if (IS_ERR(other_crtc_state))
6535 			return PTR_ERR(other_crtc_state);
6536 
6537 		if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6538 			DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6539 				      pipe_name(pipe), pipe_config->fdi_lanes);
6540 			return -EINVAL;
6541 		}
6542 		return 0;
6543 	case PIPE_C:
6544 		if (pipe_config->fdi_lanes > 2) {
6545 			DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6546 				      pipe_name(pipe), pipe_config->fdi_lanes);
6547 			return -EINVAL;
6548 		}
6549 
6550 		other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6551 		other_crtc_state =
6552 			intel_atomic_get_crtc_state(state, other_crtc);
6553 		if (IS_ERR(other_crtc_state))
6554 			return PTR_ERR(other_crtc_state);
6555 
6556 		if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6557 			DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6558 			return -EINVAL;
6559 		}
6560 		return 0;
6561 	default:
6562 		BUG();
6563 	}
6564 }
6565 
6566 #define RETRY 1
ironlake_fdi_compute_config(struct intel_crtc * intel_crtc,struct intel_crtc_state * pipe_config)6567 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6568 				       struct intel_crtc_state *pipe_config)
6569 {
6570 	struct drm_device *dev = intel_crtc->base.dev;
6571 	const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6572 	int lane, link_bw, fdi_dotclock, ret;
6573 	bool needs_recompute = false;
6574 
6575 retry:
6576 	/* FDI is a binary signal running at ~2.7GHz, encoding
6577 	 * each output octet as 10 bits. The actual frequency
6578 	 * is stored as a divider into a 100MHz clock, and the
6579 	 * mode pixel clock is stored in units of 1KHz.
6580 	 * Hence the bw of each lane in terms of the mode signal
6581 	 * is:
6582 	 */
6583 	link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6584 
6585 	fdi_dotclock = adjusted_mode->crtc_clock;
6586 
6587 	lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6588 					   pipe_config->pipe_bpp);
6589 
6590 	pipe_config->fdi_lanes = lane;
6591 
6592 	intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6593 			       link_bw, &pipe_config->fdi_m_n);
6594 
6595 	ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6596 				       intel_crtc->pipe, pipe_config);
6597 	if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6598 		pipe_config->pipe_bpp -= 2*3;
6599 		DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6600 			      pipe_config->pipe_bpp);
6601 		needs_recompute = true;
6602 		pipe_config->bw_constrained = true;
6603 
6604 		goto retry;
6605 	}
6606 
6607 	if (needs_recompute)
6608 		return RETRY;
6609 
6610 	return ret;
6611 }
6612 
pipe_config_supports_ips(struct drm_i915_private * dev_priv,struct intel_crtc_state * pipe_config)6613 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6614 				     struct intel_crtc_state *pipe_config)
6615 {
6616 	if (pipe_config->pipe_bpp > 24)
6617 		return false;
6618 
6619 	/* HSW can handle pixel rate up to cdclk? */
6620 	if (IS_HASWELL(dev_priv->dev))
6621 		return true;
6622 
6623 	/*
6624 	 * We compare against max which means we must take
6625 	 * the increased cdclk requirement into account when
6626 	 * calculating the new cdclk.
6627 	 *
6628 	 * Should measure whether using a lower cdclk w/o IPS
6629 	 */
6630 	return ilk_pipe_pixel_rate(pipe_config) <=
6631 		dev_priv->max_cdclk_freq * 95 / 100;
6632 }
6633 
hsw_compute_ips_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)6634 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6635 				   struct intel_crtc_state *pipe_config)
6636 {
6637 	struct drm_device *dev = crtc->base.dev;
6638 	struct drm_i915_private *dev_priv = dev->dev_private;
6639 
6640 	pipe_config->ips_enabled = i915.enable_ips &&
6641 		hsw_crtc_supports_ips(crtc) &&
6642 		pipe_config_supports_ips(dev_priv, pipe_config);
6643 }
6644 
intel_crtc_compute_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)6645 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6646 				     struct intel_crtc_state *pipe_config)
6647 {
6648 	struct drm_device *dev = crtc->base.dev;
6649 	struct drm_i915_private *dev_priv = dev->dev_private;
6650 	const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6651 
6652 	/* FIXME should check pixel clock limits on all platforms */
6653 	if (INTEL_INFO(dev)->gen < 4) {
6654 		int clock_limit = dev_priv->max_cdclk_freq;
6655 
6656 		/*
6657 		 * Enable pixel doubling when the dot clock
6658 		 * is > 90% of the (display) core speed.
6659 		 *
6660 		 * GDG double wide on either pipe,
6661 		 * otherwise pipe A only.
6662 		 */
6663 		if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
6664 		    adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
6665 			clock_limit *= 2;
6666 			pipe_config->double_wide = true;
6667 		}
6668 
6669 		if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
6670 			return -EINVAL;
6671 	}
6672 
6673 	/*
6674 	 * Pipe horizontal size must be even in:
6675 	 * - DVO ganged mode
6676 	 * - LVDS dual channel mode
6677 	 * - Double wide pipe
6678 	 */
6679 	if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6680 	     intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6681 		pipe_config->pipe_src_w &= ~1;
6682 
6683 	/* Cantiga+ cannot handle modes with a hsync front porch of 0.
6684 	 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6685 	 */
6686 	if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6687 		adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6688 		return -EINVAL;
6689 
6690 	if (HAS_IPS(dev))
6691 		hsw_compute_ips_config(crtc, pipe_config);
6692 
6693 	if (pipe_config->has_pch_encoder)
6694 		return ironlake_fdi_compute_config(crtc, pipe_config);
6695 
6696 	return 0;
6697 }
6698 
skylake_get_display_clock_speed(struct drm_device * dev)6699 static int skylake_get_display_clock_speed(struct drm_device *dev)
6700 {
6701 	struct drm_i915_private *dev_priv = to_i915(dev);
6702 	uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6703 	uint32_t cdctl = I915_READ(CDCLK_CTL);
6704 	uint32_t linkrate;
6705 
6706 	if (!(lcpll1 & LCPLL_PLL_ENABLE))
6707 		return 24000; /* 24MHz is the cd freq with NSSC ref */
6708 
6709 	if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6710 		return 540000;
6711 
6712 	linkrate = (I915_READ(DPLL_CTRL1) &
6713 		    DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6714 
6715 	if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6716 	    linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6717 		/* vco 8640 */
6718 		switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6719 		case CDCLK_FREQ_450_432:
6720 			return 432000;
6721 		case CDCLK_FREQ_337_308:
6722 			return 308570;
6723 		case CDCLK_FREQ_675_617:
6724 			return 617140;
6725 		default:
6726 			WARN(1, "Unknown cd freq selection\n");
6727 		}
6728 	} else {
6729 		/* vco 8100 */
6730 		switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6731 		case CDCLK_FREQ_450_432:
6732 			return 450000;
6733 		case CDCLK_FREQ_337_308:
6734 			return 337500;
6735 		case CDCLK_FREQ_675_617:
6736 			return 675000;
6737 		default:
6738 			WARN(1, "Unknown cd freq selection\n");
6739 		}
6740 	}
6741 
6742 	/* error case, do as if DPLL0 isn't enabled */
6743 	return 24000;
6744 }
6745 
broxton_get_display_clock_speed(struct drm_device * dev)6746 static int broxton_get_display_clock_speed(struct drm_device *dev)
6747 {
6748 	struct drm_i915_private *dev_priv = to_i915(dev);
6749 	uint32_t cdctl = I915_READ(CDCLK_CTL);
6750 	uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6751 	uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6752 	int cdclk;
6753 
6754 	if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6755 		return 19200;
6756 
6757 	cdclk = 19200 * pll_ratio / 2;
6758 
6759 	switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6760 	case BXT_CDCLK_CD2X_DIV_SEL_1:
6761 		return cdclk;  /* 576MHz or 624MHz */
6762 	case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6763 		return cdclk * 2 / 3; /* 384MHz */
6764 	case BXT_CDCLK_CD2X_DIV_SEL_2:
6765 		return cdclk / 2; /* 288MHz */
6766 	case BXT_CDCLK_CD2X_DIV_SEL_4:
6767 		return cdclk / 4; /* 144MHz */
6768 	}
6769 
6770 	/* error case, do as if DE PLL isn't enabled */
6771 	return 19200;
6772 }
6773 
broadwell_get_display_clock_speed(struct drm_device * dev)6774 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6775 {
6776 	struct drm_i915_private *dev_priv = dev->dev_private;
6777 	uint32_t lcpll = I915_READ(LCPLL_CTL);
6778 	uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6779 
6780 	if (lcpll & LCPLL_CD_SOURCE_FCLK)
6781 		return 800000;
6782 	else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6783 		return 450000;
6784 	else if (freq == LCPLL_CLK_FREQ_450)
6785 		return 450000;
6786 	else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6787 		return 540000;
6788 	else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6789 		return 337500;
6790 	else
6791 		return 675000;
6792 }
6793 
haswell_get_display_clock_speed(struct drm_device * dev)6794 static int haswell_get_display_clock_speed(struct drm_device *dev)
6795 {
6796 	struct drm_i915_private *dev_priv = dev->dev_private;
6797 	uint32_t lcpll = I915_READ(LCPLL_CTL);
6798 	uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6799 
6800 	if (lcpll & LCPLL_CD_SOURCE_FCLK)
6801 		return 800000;
6802 	else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6803 		return 450000;
6804 	else if (freq == LCPLL_CLK_FREQ_450)
6805 		return 450000;
6806 	else if (IS_HSW_ULT(dev))
6807 		return 337500;
6808 	else
6809 		return 540000;
6810 }
6811 
valleyview_get_display_clock_speed(struct drm_device * dev)6812 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6813 {
6814 	return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
6815 				      CCK_DISPLAY_CLOCK_CONTROL);
6816 }
6817 
ilk_get_display_clock_speed(struct drm_device * dev)6818 static int ilk_get_display_clock_speed(struct drm_device *dev)
6819 {
6820 	return 450000;
6821 }
6822 
i945_get_display_clock_speed(struct drm_device * dev)6823 static int i945_get_display_clock_speed(struct drm_device *dev)
6824 {
6825 	return 400000;
6826 }
6827 
i915_get_display_clock_speed(struct drm_device * dev)6828 static int i915_get_display_clock_speed(struct drm_device *dev)
6829 {
6830 	return 333333;
6831 }
6832 
i9xx_misc_get_display_clock_speed(struct drm_device * dev)6833 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6834 {
6835 	return 200000;
6836 }
6837 
pnv_get_display_clock_speed(struct drm_device * dev)6838 static int pnv_get_display_clock_speed(struct drm_device *dev)
6839 {
6840 	u16 gcfgc = 0;
6841 
6842 	pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6843 
6844 	switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6845 	case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6846 		return 266667;
6847 	case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6848 		return 333333;
6849 	case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6850 		return 444444;
6851 	case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6852 		return 200000;
6853 	default:
6854 		DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6855 	case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6856 		return 133333;
6857 	case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6858 		return 166667;
6859 	}
6860 }
6861 
i915gm_get_display_clock_speed(struct drm_device * dev)6862 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6863 {
6864 	u16 gcfgc = 0;
6865 
6866 	pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6867 
6868 	if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6869 		return 133333;
6870 	else {
6871 		switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6872 		case GC_DISPLAY_CLOCK_333_MHZ:
6873 			return 333333;
6874 		default:
6875 		case GC_DISPLAY_CLOCK_190_200_MHZ:
6876 			return 190000;
6877 		}
6878 	}
6879 }
6880 
i865_get_display_clock_speed(struct drm_device * dev)6881 static int i865_get_display_clock_speed(struct drm_device *dev)
6882 {
6883 	return 266667;
6884 }
6885 
i85x_get_display_clock_speed(struct drm_device * dev)6886 static int i85x_get_display_clock_speed(struct drm_device *dev)
6887 {
6888 	u16 hpllcc = 0;
6889 
6890 	/*
6891 	 * 852GM/852GMV only supports 133 MHz and the HPLLCC
6892 	 * encoding is different :(
6893 	 * FIXME is this the right way to detect 852GM/852GMV?
6894 	 */
6895 	if (dev->pdev->revision == 0x1)
6896 		return 133333;
6897 
6898 	pci_bus_read_config_word(dev->pdev->bus,
6899 				 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6900 
6901 	/* Assume that the hardware is in the high speed state.  This
6902 	 * should be the default.
6903 	 */
6904 	switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6905 	case GC_CLOCK_133_200:
6906 	case GC_CLOCK_133_200_2:
6907 	case GC_CLOCK_100_200:
6908 		return 200000;
6909 	case GC_CLOCK_166_250:
6910 		return 250000;
6911 	case GC_CLOCK_100_133:
6912 		return 133333;
6913 	case GC_CLOCK_133_266:
6914 	case GC_CLOCK_133_266_2:
6915 	case GC_CLOCK_166_266:
6916 		return 266667;
6917 	}
6918 
6919 	/* Shouldn't happen */
6920 	return 0;
6921 }
6922 
i830_get_display_clock_speed(struct drm_device * dev)6923 static int i830_get_display_clock_speed(struct drm_device *dev)
6924 {
6925 	return 133333;
6926 }
6927 
intel_hpll_vco(struct drm_device * dev)6928 static unsigned int intel_hpll_vco(struct drm_device *dev)
6929 {
6930 	struct drm_i915_private *dev_priv = dev->dev_private;
6931 	static const unsigned int blb_vco[8] = {
6932 		[0] = 3200000,
6933 		[1] = 4000000,
6934 		[2] = 5333333,
6935 		[3] = 4800000,
6936 		[4] = 6400000,
6937 	};
6938 	static const unsigned int pnv_vco[8] = {
6939 		[0] = 3200000,
6940 		[1] = 4000000,
6941 		[2] = 5333333,
6942 		[3] = 4800000,
6943 		[4] = 2666667,
6944 	};
6945 	static const unsigned int cl_vco[8] = {
6946 		[0] = 3200000,
6947 		[1] = 4000000,
6948 		[2] = 5333333,
6949 		[3] = 6400000,
6950 		[4] = 3333333,
6951 		[5] = 3566667,
6952 		[6] = 4266667,
6953 	};
6954 	static const unsigned int elk_vco[8] = {
6955 		[0] = 3200000,
6956 		[1] = 4000000,
6957 		[2] = 5333333,
6958 		[3] = 4800000,
6959 	};
6960 	static const unsigned int ctg_vco[8] = {
6961 		[0] = 3200000,
6962 		[1] = 4000000,
6963 		[2] = 5333333,
6964 		[3] = 6400000,
6965 		[4] = 2666667,
6966 		[5] = 4266667,
6967 	};
6968 	const unsigned int *vco_table;
6969 	unsigned int vco;
6970 	uint8_t tmp = 0;
6971 
6972 	/* FIXME other chipsets? */
6973 	if (IS_GM45(dev))
6974 		vco_table = ctg_vco;
6975 	else if (IS_G4X(dev))
6976 		vco_table = elk_vco;
6977 	else if (IS_CRESTLINE(dev))
6978 		vco_table = cl_vco;
6979 	else if (IS_PINEVIEW(dev))
6980 		vco_table = pnv_vco;
6981 	else if (IS_G33(dev))
6982 		vco_table = blb_vco;
6983 	else
6984 		return 0;
6985 
6986 	tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6987 
6988 	vco = vco_table[tmp & 0x7];
6989 	if (vco == 0)
6990 		DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6991 	else
6992 		DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6993 
6994 	return vco;
6995 }
6996 
gm45_get_display_clock_speed(struct drm_device * dev)6997 static int gm45_get_display_clock_speed(struct drm_device *dev)
6998 {
6999 	unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7000 	uint16_t tmp = 0;
7001 
7002 	pci_read_config_word(dev->pdev, GCFGC, &tmp);
7003 
7004 	cdclk_sel = (tmp >> 12) & 0x1;
7005 
7006 	switch (vco) {
7007 	case 2666667:
7008 	case 4000000:
7009 	case 5333333:
7010 		return cdclk_sel ? 333333 : 222222;
7011 	case 3200000:
7012 		return cdclk_sel ? 320000 : 228571;
7013 	default:
7014 		DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
7015 		return 222222;
7016 	}
7017 }
7018 
i965gm_get_display_clock_speed(struct drm_device * dev)7019 static int i965gm_get_display_clock_speed(struct drm_device *dev)
7020 {
7021 	static const uint8_t div_3200[] = { 16, 10,  8 };
7022 	static const uint8_t div_4000[] = { 20, 12, 10 };
7023 	static const uint8_t div_5333[] = { 24, 16, 14 };
7024 	const uint8_t *div_table;
7025 	unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7026 	uint16_t tmp = 0;
7027 
7028 	pci_read_config_word(dev->pdev, GCFGC, &tmp);
7029 
7030 	cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7031 
7032 	if (cdclk_sel >= ARRAY_SIZE(div_3200))
7033 		goto fail;
7034 
7035 	switch (vco) {
7036 	case 3200000:
7037 		div_table = div_3200;
7038 		break;
7039 	case 4000000:
7040 		div_table = div_4000;
7041 		break;
7042 	case 5333333:
7043 		div_table = div_5333;
7044 		break;
7045 	default:
7046 		goto fail;
7047 	}
7048 
7049 	return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7050 
7051 fail:
7052 	DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7053 	return 200000;
7054 }
7055 
g33_get_display_clock_speed(struct drm_device * dev)7056 static int g33_get_display_clock_speed(struct drm_device *dev)
7057 {
7058 	static const uint8_t div_3200[] = { 12, 10,  8,  7, 5, 16 };
7059 	static const uint8_t div_4000[] = { 14, 12, 10,  8, 6, 20 };
7060 	static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7061 	static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7062 	const uint8_t *div_table;
7063 	unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7064 	uint16_t tmp = 0;
7065 
7066 	pci_read_config_word(dev->pdev, GCFGC, &tmp);
7067 
7068 	cdclk_sel = (tmp >> 4) & 0x7;
7069 
7070 	if (cdclk_sel >= ARRAY_SIZE(div_3200))
7071 		goto fail;
7072 
7073 	switch (vco) {
7074 	case 3200000:
7075 		div_table = div_3200;
7076 		break;
7077 	case 4000000:
7078 		div_table = div_4000;
7079 		break;
7080 	case 4800000:
7081 		div_table = div_4800;
7082 		break;
7083 	case 5333333:
7084 		div_table = div_5333;
7085 		break;
7086 	default:
7087 		goto fail;
7088 	}
7089 
7090 	return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7091 
7092 fail:
7093 	DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7094 	return 190476;
7095 }
7096 
7097 static void
intel_reduce_m_n_ratio(uint32_t * num,uint32_t * den)7098 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7099 {
7100 	while (*num > DATA_LINK_M_N_MASK ||
7101 	       *den > DATA_LINK_M_N_MASK) {
7102 		*num >>= 1;
7103 		*den >>= 1;
7104 	}
7105 }
7106 
compute_m_n(unsigned int m,unsigned int n,uint32_t * ret_m,uint32_t * ret_n)7107 static void compute_m_n(unsigned int m, unsigned int n,
7108 			uint32_t *ret_m, uint32_t *ret_n)
7109 {
7110 	*ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7111 	*ret_m = div_u64((uint64_t) m * *ret_n, n);
7112 	intel_reduce_m_n_ratio(ret_m, ret_n);
7113 }
7114 
7115 void
intel_link_compute_m_n(int bits_per_pixel,int nlanes,int pixel_clock,int link_clock,struct intel_link_m_n * m_n)7116 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7117 		       int pixel_clock, int link_clock,
7118 		       struct intel_link_m_n *m_n)
7119 {
7120 	m_n->tu = 64;
7121 
7122 	compute_m_n(bits_per_pixel * pixel_clock,
7123 		    link_clock * nlanes * 8,
7124 		    &m_n->gmch_m, &m_n->gmch_n);
7125 
7126 	compute_m_n(pixel_clock, link_clock,
7127 		    &m_n->link_m, &m_n->link_n);
7128 }
7129 
intel_panel_use_ssc(struct drm_i915_private * dev_priv)7130 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7131 {
7132 	if (i915.panel_use_ssc >= 0)
7133 		return i915.panel_use_ssc != 0;
7134 	return dev_priv->vbt.lvds_use_ssc
7135 		&& !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7136 }
7137 
i9xx_get_refclk(const struct intel_crtc_state * crtc_state,int num_connectors)7138 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
7139 			   int num_connectors)
7140 {
7141 	struct drm_device *dev = crtc_state->base.crtc->dev;
7142 	struct drm_i915_private *dev_priv = dev->dev_private;
7143 	int refclk;
7144 
7145 	WARN_ON(!crtc_state->base.state);
7146 
7147 	if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
7148 		refclk = 100000;
7149 	} else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7150 	    intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7151 		refclk = dev_priv->vbt.lvds_ssc_freq;
7152 		DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7153 	} else if (!IS_GEN2(dev)) {
7154 		refclk = 96000;
7155 	} else {
7156 		refclk = 48000;
7157 	}
7158 
7159 	return refclk;
7160 }
7161 
pnv_dpll_compute_fp(struct dpll * dpll)7162 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7163 {
7164 	return (1 << dpll->n) << 16 | dpll->m2;
7165 }
7166 
i9xx_dpll_compute_fp(struct dpll * dpll)7167 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7168 {
7169 	return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7170 }
7171 
i9xx_update_pll_dividers(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state,intel_clock_t * reduced_clock)7172 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7173 				     struct intel_crtc_state *crtc_state,
7174 				     intel_clock_t *reduced_clock)
7175 {
7176 	struct drm_device *dev = crtc->base.dev;
7177 	u32 fp, fp2 = 0;
7178 
7179 	if (IS_PINEVIEW(dev)) {
7180 		fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7181 		if (reduced_clock)
7182 			fp2 = pnv_dpll_compute_fp(reduced_clock);
7183 	} else {
7184 		fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7185 		if (reduced_clock)
7186 			fp2 = i9xx_dpll_compute_fp(reduced_clock);
7187 	}
7188 
7189 	crtc_state->dpll_hw_state.fp0 = fp;
7190 
7191 	crtc->lowfreq_avail = false;
7192 	if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7193 	    reduced_clock) {
7194 		crtc_state->dpll_hw_state.fp1 = fp2;
7195 		crtc->lowfreq_avail = true;
7196 	} else {
7197 		crtc_state->dpll_hw_state.fp1 = fp;
7198 	}
7199 }
7200 
vlv_pllb_recal_opamp(struct drm_i915_private * dev_priv,enum pipe pipe)7201 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7202 		pipe)
7203 {
7204 	u32 reg_val;
7205 
7206 	/*
7207 	 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7208 	 * and set it to a reasonable value instead.
7209 	 */
7210 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7211 	reg_val &= 0xffffff00;
7212 	reg_val |= 0x00000030;
7213 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7214 
7215 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7216 	reg_val &= 0x8cffffff;
7217 	reg_val = 0x8c000000;
7218 	vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7219 
7220 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7221 	reg_val &= 0xffffff00;
7222 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7223 
7224 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7225 	reg_val &= 0x00ffffff;
7226 	reg_val |= 0xb0000000;
7227 	vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7228 }
7229 
intel_pch_transcoder_set_m_n(struct intel_crtc * crtc,struct intel_link_m_n * m_n)7230 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7231 					 struct intel_link_m_n *m_n)
7232 {
7233 	struct drm_device *dev = crtc->base.dev;
7234 	struct drm_i915_private *dev_priv = dev->dev_private;
7235 	int pipe = crtc->pipe;
7236 
7237 	I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7238 	I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7239 	I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7240 	I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7241 }
7242 
intel_cpu_transcoder_set_m_n(struct intel_crtc * crtc,struct intel_link_m_n * m_n,struct intel_link_m_n * m2_n2)7243 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7244 					 struct intel_link_m_n *m_n,
7245 					 struct intel_link_m_n *m2_n2)
7246 {
7247 	struct drm_device *dev = crtc->base.dev;
7248 	struct drm_i915_private *dev_priv = dev->dev_private;
7249 	int pipe = crtc->pipe;
7250 	enum transcoder transcoder = crtc->config->cpu_transcoder;
7251 
7252 	if (INTEL_INFO(dev)->gen >= 5) {
7253 		I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7254 		I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7255 		I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7256 		I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7257 		/* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7258 		 * for gen < 8) and if DRRS is supported (to make sure the
7259 		 * registers are not unnecessarily accessed).
7260 		 */
7261 		if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7262 			crtc->config->has_drrs) {
7263 			I915_WRITE(PIPE_DATA_M2(transcoder),
7264 					TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7265 			I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7266 			I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7267 			I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7268 		}
7269 	} else {
7270 		I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7271 		I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7272 		I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7273 		I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7274 	}
7275 }
7276 
intel_dp_set_m_n(struct intel_crtc * crtc,enum link_m_n_set m_n)7277 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7278 {
7279 	struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7280 
7281 	if (m_n == M1_N1) {
7282 		dp_m_n = &crtc->config->dp_m_n;
7283 		dp_m2_n2 = &crtc->config->dp_m2_n2;
7284 	} else if (m_n == M2_N2) {
7285 
7286 		/*
7287 		 * M2_N2 registers are not supported. Hence m2_n2 divider value
7288 		 * needs to be programmed into M1_N1.
7289 		 */
7290 		dp_m_n = &crtc->config->dp_m2_n2;
7291 	} else {
7292 		DRM_ERROR("Unsupported divider value\n");
7293 		return;
7294 	}
7295 
7296 	if (crtc->config->has_pch_encoder)
7297 		intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7298 	else
7299 		intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7300 }
7301 
vlv_compute_dpll(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)7302 static void vlv_compute_dpll(struct intel_crtc *crtc,
7303 			     struct intel_crtc_state *pipe_config)
7304 {
7305 	u32 dpll, dpll_md;
7306 
7307 	/*
7308 	 * Enable DPIO clock input. We should never disable the reference
7309 	 * clock for pipe B, since VGA hotplug / manual detection depends
7310 	 * on it.
7311 	 */
7312 	dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REF_CLK_ENABLE_VLV |
7313 		DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_REF_CLK_VLV;
7314 	/* We should never disable this, set it here for state tracking */
7315 	if (crtc->pipe == PIPE_B)
7316 		dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7317 	dpll |= DPLL_VCO_ENABLE;
7318 	pipe_config->dpll_hw_state.dpll = dpll;
7319 
7320 	dpll_md = (pipe_config->pixel_multiplier - 1)
7321 		<< DPLL_MD_UDI_MULTIPLIER_SHIFT;
7322 	pipe_config->dpll_hw_state.dpll_md = dpll_md;
7323 }
7324 
vlv_prepare_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)7325 static void vlv_prepare_pll(struct intel_crtc *crtc,
7326 			    const struct intel_crtc_state *pipe_config)
7327 {
7328 	struct drm_device *dev = crtc->base.dev;
7329 	struct drm_i915_private *dev_priv = dev->dev_private;
7330 	int pipe = crtc->pipe;
7331 	u32 mdiv;
7332 	u32 bestn, bestm1, bestm2, bestp1, bestp2;
7333 	u32 coreclk, reg_val;
7334 
7335 	mutex_lock(&dev_priv->sb_lock);
7336 
7337 	bestn = pipe_config->dpll.n;
7338 	bestm1 = pipe_config->dpll.m1;
7339 	bestm2 = pipe_config->dpll.m2;
7340 	bestp1 = pipe_config->dpll.p1;
7341 	bestp2 = pipe_config->dpll.p2;
7342 
7343 	/* See eDP HDMI DPIO driver vbios notes doc */
7344 
7345 	/* PLL B needs special handling */
7346 	if (pipe == PIPE_B)
7347 		vlv_pllb_recal_opamp(dev_priv, pipe);
7348 
7349 	/* Set up Tx target for periodic Rcomp update */
7350 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7351 
7352 	/* Disable target IRef on PLL */
7353 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7354 	reg_val &= 0x00ffffff;
7355 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7356 
7357 	/* Disable fast lock */
7358 	vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7359 
7360 	/* Set idtafcrecal before PLL is enabled */
7361 	mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7362 	mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7363 	mdiv |= ((bestn << DPIO_N_SHIFT));
7364 	mdiv |= (1 << DPIO_K_SHIFT);
7365 
7366 	/*
7367 	 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7368 	 * but we don't support that).
7369 	 * Note: don't use the DAC post divider as it seems unstable.
7370 	 */
7371 	mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7372 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7373 
7374 	mdiv |= DPIO_ENABLE_CALIBRATION;
7375 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7376 
7377 	/* Set HBR and RBR LPF coefficients */
7378 	if (pipe_config->port_clock == 162000 ||
7379 	    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7380 	    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7381 		vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7382 				 0x009f0003);
7383 	else
7384 		vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7385 				 0x00d0000f);
7386 
7387 	if (pipe_config->has_dp_encoder) {
7388 		/* Use SSC source */
7389 		if (pipe == PIPE_A)
7390 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7391 					 0x0df40000);
7392 		else
7393 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7394 					 0x0df70000);
7395 	} else { /* HDMI or VGA */
7396 		/* Use bend source */
7397 		if (pipe == PIPE_A)
7398 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7399 					 0x0df70000);
7400 		else
7401 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7402 					 0x0df40000);
7403 	}
7404 
7405 	coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7406 	coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7407 	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7408 	    intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7409 		coreclk |= 0x01000000;
7410 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7411 
7412 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7413 	mutex_unlock(&dev_priv->sb_lock);
7414 }
7415 
chv_compute_dpll(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)7416 static void chv_compute_dpll(struct intel_crtc *crtc,
7417 			     struct intel_crtc_state *pipe_config)
7418 {
7419 	pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7420 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
7421 		DPLL_VCO_ENABLE;
7422 	if (crtc->pipe != PIPE_A)
7423 		pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7424 
7425 	pipe_config->dpll_hw_state.dpll_md =
7426 		(pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7427 }
7428 
chv_prepare_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)7429 static void chv_prepare_pll(struct intel_crtc *crtc,
7430 			    const struct intel_crtc_state *pipe_config)
7431 {
7432 	struct drm_device *dev = crtc->base.dev;
7433 	struct drm_i915_private *dev_priv = dev->dev_private;
7434 	int pipe = crtc->pipe;
7435 	int dpll_reg = DPLL(crtc->pipe);
7436 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
7437 	u32 loopfilter, tribuf_calcntr;
7438 	u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7439 	u32 dpio_val;
7440 	int vco;
7441 
7442 	bestn = pipe_config->dpll.n;
7443 	bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7444 	bestm1 = pipe_config->dpll.m1;
7445 	bestm2 = pipe_config->dpll.m2 >> 22;
7446 	bestp1 = pipe_config->dpll.p1;
7447 	bestp2 = pipe_config->dpll.p2;
7448 	vco = pipe_config->dpll.vco;
7449 	dpio_val = 0;
7450 	loopfilter = 0;
7451 
7452 	/*
7453 	 * Enable Refclk and SSC
7454 	 */
7455 	I915_WRITE(dpll_reg,
7456 		   pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7457 
7458 	mutex_lock(&dev_priv->sb_lock);
7459 
7460 	/* p1 and p2 divider */
7461 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7462 			5 << DPIO_CHV_S1_DIV_SHIFT |
7463 			bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7464 			bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7465 			1 << DPIO_CHV_K_DIV_SHIFT);
7466 
7467 	/* Feedback post-divider - m2 */
7468 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7469 
7470 	/* Feedback refclk divider - n and m1 */
7471 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7472 			DPIO_CHV_M1_DIV_BY_2 |
7473 			1 << DPIO_CHV_N_DIV_SHIFT);
7474 
7475 	/* M2 fraction division */
7476 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7477 
7478 	/* M2 fraction division enable */
7479 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7480 	dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7481 	dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7482 	if (bestm2_frac)
7483 		dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7484 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7485 
7486 	/* Program digital lock detect threshold */
7487 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7488 	dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7489 					DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7490 	dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7491 	if (!bestm2_frac)
7492 		dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7493 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7494 
7495 	/* Loop filter */
7496 	if (vco == 5400000) {
7497 		loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7498 		loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7499 		loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7500 		tribuf_calcntr = 0x9;
7501 	} else if (vco <= 6200000) {
7502 		loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7503 		loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7504 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7505 		tribuf_calcntr = 0x9;
7506 	} else if (vco <= 6480000) {
7507 		loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7508 		loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7509 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7510 		tribuf_calcntr = 0x8;
7511 	} else {
7512 		/* Not supported. Apply the same limits as in the max case */
7513 		loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7514 		loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7515 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7516 		tribuf_calcntr = 0;
7517 	}
7518 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7519 
7520 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7521 	dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7522 	dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7523 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7524 
7525 	/* AFC Recal */
7526 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7527 			vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7528 			DPIO_AFC_RECAL);
7529 
7530 	mutex_unlock(&dev_priv->sb_lock);
7531 }
7532 
7533 /**
7534  * vlv_force_pll_on - forcibly enable just the PLL
7535  * @dev_priv: i915 private structure
7536  * @pipe: pipe PLL to enable
7537  * @dpll: PLL configuration
7538  *
7539  * Enable the PLL for @pipe using the supplied @dpll config. To be used
7540  * in cases where we need the PLL enabled even when @pipe is not going to
7541  * be enabled.
7542  */
vlv_force_pll_on(struct drm_device * dev,enum pipe pipe,const struct dpll * dpll)7543 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7544 		      const struct dpll *dpll)
7545 {
7546 	struct intel_crtc *crtc =
7547 		to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7548 	struct intel_crtc_state pipe_config = {
7549 		.base.crtc = &crtc->base,
7550 		.pixel_multiplier = 1,
7551 		.dpll = *dpll,
7552 	};
7553 
7554 	if (IS_CHERRYVIEW(dev)) {
7555 		chv_compute_dpll(crtc, &pipe_config);
7556 		chv_prepare_pll(crtc, &pipe_config);
7557 		chv_enable_pll(crtc, &pipe_config);
7558 	} else {
7559 		vlv_compute_dpll(crtc, &pipe_config);
7560 		vlv_prepare_pll(crtc, &pipe_config);
7561 		vlv_enable_pll(crtc, &pipe_config);
7562 	}
7563 }
7564 
7565 /**
7566  * vlv_force_pll_off - forcibly disable just the PLL
7567  * @dev_priv: i915 private structure
7568  * @pipe: pipe PLL to disable
7569  *
7570  * Disable the PLL for @pipe. To be used in cases where we need
7571  * the PLL enabled even when @pipe is not going to be enabled.
7572  */
vlv_force_pll_off(struct drm_device * dev,enum pipe pipe)7573 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7574 {
7575 	if (IS_CHERRYVIEW(dev))
7576 		chv_disable_pll(to_i915(dev), pipe);
7577 	else
7578 		vlv_disable_pll(to_i915(dev), pipe);
7579 }
7580 
i9xx_compute_dpll(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state,intel_clock_t * reduced_clock,int num_connectors)7581 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7582 			      struct intel_crtc_state *crtc_state,
7583 			      intel_clock_t *reduced_clock,
7584 			      int num_connectors)
7585 {
7586 	struct drm_device *dev = crtc->base.dev;
7587 	struct drm_i915_private *dev_priv = dev->dev_private;
7588 	u32 dpll;
7589 	bool is_sdvo;
7590 	struct dpll *clock = &crtc_state->dpll;
7591 
7592 	i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7593 
7594 	is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7595 		intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7596 
7597 	dpll = DPLL_VGA_MODE_DIS;
7598 
7599 	if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7600 		dpll |= DPLLB_MODE_LVDS;
7601 	else
7602 		dpll |= DPLLB_MODE_DAC_SERIAL;
7603 
7604 	if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7605 		dpll |= (crtc_state->pixel_multiplier - 1)
7606 			<< SDVO_MULTIPLIER_SHIFT_HIRES;
7607 	}
7608 
7609 	if (is_sdvo)
7610 		dpll |= DPLL_SDVO_HIGH_SPEED;
7611 
7612 	if (crtc_state->has_dp_encoder)
7613 		dpll |= DPLL_SDVO_HIGH_SPEED;
7614 
7615 	/* compute bitmask from p1 value */
7616 	if (IS_PINEVIEW(dev))
7617 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7618 	else {
7619 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7620 		if (IS_G4X(dev) && reduced_clock)
7621 			dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7622 	}
7623 	switch (clock->p2) {
7624 	case 5:
7625 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7626 		break;
7627 	case 7:
7628 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7629 		break;
7630 	case 10:
7631 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7632 		break;
7633 	case 14:
7634 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7635 		break;
7636 	}
7637 	if (INTEL_INFO(dev)->gen >= 4)
7638 		dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7639 
7640 	if (crtc_state->sdvo_tv_clock)
7641 		dpll |= PLL_REF_INPUT_TVCLKINBC;
7642 	else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7643 		 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7644 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7645 	else
7646 		dpll |= PLL_REF_INPUT_DREFCLK;
7647 
7648 	dpll |= DPLL_VCO_ENABLE;
7649 	crtc_state->dpll_hw_state.dpll = dpll;
7650 
7651 	if (INTEL_INFO(dev)->gen >= 4) {
7652 		u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7653 			<< DPLL_MD_UDI_MULTIPLIER_SHIFT;
7654 		crtc_state->dpll_hw_state.dpll_md = dpll_md;
7655 	}
7656 }
7657 
i8xx_compute_dpll(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state,intel_clock_t * reduced_clock,int num_connectors)7658 static void i8xx_compute_dpll(struct intel_crtc *crtc,
7659 			      struct intel_crtc_state *crtc_state,
7660 			      intel_clock_t *reduced_clock,
7661 			      int num_connectors)
7662 {
7663 	struct drm_device *dev = crtc->base.dev;
7664 	struct drm_i915_private *dev_priv = dev->dev_private;
7665 	u32 dpll;
7666 	struct dpll *clock = &crtc_state->dpll;
7667 
7668 	i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7669 
7670 	dpll = DPLL_VGA_MODE_DIS;
7671 
7672 	if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7673 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7674 	} else {
7675 		if (clock->p1 == 2)
7676 			dpll |= PLL_P1_DIVIDE_BY_TWO;
7677 		else
7678 			dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7679 		if (clock->p2 == 4)
7680 			dpll |= PLL_P2_DIVIDE_BY_4;
7681 	}
7682 
7683 	if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7684 		dpll |= DPLL_DVO_2X_MODE;
7685 
7686 	if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7687 		 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7688 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7689 	else
7690 		dpll |= PLL_REF_INPUT_DREFCLK;
7691 
7692 	dpll |= DPLL_VCO_ENABLE;
7693 	crtc_state->dpll_hw_state.dpll = dpll;
7694 }
7695 
intel_set_pipe_timings(struct intel_crtc * intel_crtc)7696 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7697 {
7698 	struct drm_device *dev = intel_crtc->base.dev;
7699 	struct drm_i915_private *dev_priv = dev->dev_private;
7700 	enum pipe pipe = intel_crtc->pipe;
7701 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7702 	const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
7703 	uint32_t crtc_vtotal, crtc_vblank_end;
7704 	int vsyncshift = 0;
7705 
7706 	/* We need to be careful not to changed the adjusted mode, for otherwise
7707 	 * the hw state checker will get angry at the mismatch. */
7708 	crtc_vtotal = adjusted_mode->crtc_vtotal;
7709 	crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7710 
7711 	if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7712 		/* the chip adds 2 halflines automatically */
7713 		crtc_vtotal -= 1;
7714 		crtc_vblank_end -= 1;
7715 
7716 		if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7717 			vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7718 		else
7719 			vsyncshift = adjusted_mode->crtc_hsync_start -
7720 				adjusted_mode->crtc_htotal / 2;
7721 		if (vsyncshift < 0)
7722 			vsyncshift += adjusted_mode->crtc_htotal;
7723 	}
7724 
7725 	if (INTEL_INFO(dev)->gen > 3)
7726 		I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7727 
7728 	I915_WRITE(HTOTAL(cpu_transcoder),
7729 		   (adjusted_mode->crtc_hdisplay - 1) |
7730 		   ((adjusted_mode->crtc_htotal - 1) << 16));
7731 	I915_WRITE(HBLANK(cpu_transcoder),
7732 		   (adjusted_mode->crtc_hblank_start - 1) |
7733 		   ((adjusted_mode->crtc_hblank_end - 1) << 16));
7734 	I915_WRITE(HSYNC(cpu_transcoder),
7735 		   (adjusted_mode->crtc_hsync_start - 1) |
7736 		   ((adjusted_mode->crtc_hsync_end - 1) << 16));
7737 
7738 	I915_WRITE(VTOTAL(cpu_transcoder),
7739 		   (adjusted_mode->crtc_vdisplay - 1) |
7740 		   ((crtc_vtotal - 1) << 16));
7741 	I915_WRITE(VBLANK(cpu_transcoder),
7742 		   (adjusted_mode->crtc_vblank_start - 1) |
7743 		   ((crtc_vblank_end - 1) << 16));
7744 	I915_WRITE(VSYNC(cpu_transcoder),
7745 		   (adjusted_mode->crtc_vsync_start - 1) |
7746 		   ((adjusted_mode->crtc_vsync_end - 1) << 16));
7747 
7748 	/* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7749 	 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7750 	 * documented on the DDI_FUNC_CTL register description, EDP Input Select
7751 	 * bits. */
7752 	if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7753 	    (pipe == PIPE_B || pipe == PIPE_C))
7754 		I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7755 
7756 	/* pipesrc controls the size that is scaled from, which should
7757 	 * always be the user's requested size.
7758 	 */
7759 	I915_WRITE(PIPESRC(pipe),
7760 		   ((intel_crtc->config->pipe_src_w - 1) << 16) |
7761 		   (intel_crtc->config->pipe_src_h - 1));
7762 }
7763 
intel_get_pipe_timings(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)7764 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7765 				   struct intel_crtc_state *pipe_config)
7766 {
7767 	struct drm_device *dev = crtc->base.dev;
7768 	struct drm_i915_private *dev_priv = dev->dev_private;
7769 	enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7770 	uint32_t tmp;
7771 
7772 	tmp = I915_READ(HTOTAL(cpu_transcoder));
7773 	pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7774 	pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7775 	tmp = I915_READ(HBLANK(cpu_transcoder));
7776 	pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7777 	pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7778 	tmp = I915_READ(HSYNC(cpu_transcoder));
7779 	pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7780 	pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7781 
7782 	tmp = I915_READ(VTOTAL(cpu_transcoder));
7783 	pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7784 	pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7785 	tmp = I915_READ(VBLANK(cpu_transcoder));
7786 	pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7787 	pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7788 	tmp = I915_READ(VSYNC(cpu_transcoder));
7789 	pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7790 	pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7791 
7792 	if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7793 		pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7794 		pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7795 		pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7796 	}
7797 
7798 	tmp = I915_READ(PIPESRC(crtc->pipe));
7799 	pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7800 	pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7801 
7802 	pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7803 	pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7804 }
7805 
intel_mode_from_pipe_config(struct drm_display_mode * mode,struct intel_crtc_state * pipe_config)7806 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7807 				 struct intel_crtc_state *pipe_config)
7808 {
7809 	mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7810 	mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7811 	mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7812 	mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7813 
7814 	mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7815 	mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7816 	mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7817 	mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7818 
7819 	mode->flags = pipe_config->base.adjusted_mode.flags;
7820 	mode->type = DRM_MODE_TYPE_DRIVER;
7821 
7822 	mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7823 	mode->flags |= pipe_config->base.adjusted_mode.flags;
7824 
7825 	mode->hsync = drm_mode_hsync(mode);
7826 	mode->vrefresh = drm_mode_vrefresh(mode);
7827 	drm_mode_set_name(mode);
7828 }
7829 
i9xx_set_pipeconf(struct intel_crtc * intel_crtc)7830 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7831 {
7832 	struct drm_device *dev = intel_crtc->base.dev;
7833 	struct drm_i915_private *dev_priv = dev->dev_private;
7834 	uint32_t pipeconf;
7835 
7836 	pipeconf = 0;
7837 
7838 	if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7839 	    (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7840 		pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7841 
7842 	if (intel_crtc->config->double_wide)
7843 		pipeconf |= PIPECONF_DOUBLE_WIDE;
7844 
7845 	/* only g4x and later have fancy bpc/dither controls */
7846 	if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7847 		/* Bspec claims that we can't use dithering for 30bpp pipes. */
7848 		if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7849 			pipeconf |= PIPECONF_DITHER_EN |
7850 				    PIPECONF_DITHER_TYPE_SP;
7851 
7852 		switch (intel_crtc->config->pipe_bpp) {
7853 		case 18:
7854 			pipeconf |= PIPECONF_6BPC;
7855 			break;
7856 		case 24:
7857 			pipeconf |= PIPECONF_8BPC;
7858 			break;
7859 		case 30:
7860 			pipeconf |= PIPECONF_10BPC;
7861 			break;
7862 		default:
7863 			/* Case prevented by intel_choose_pipe_bpp_dither. */
7864 			BUG();
7865 		}
7866 	}
7867 
7868 	if (HAS_PIPE_CXSR(dev)) {
7869 		if (intel_crtc->lowfreq_avail) {
7870 			DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7871 			pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7872 		} else {
7873 			DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7874 		}
7875 	}
7876 
7877 	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7878 		if (INTEL_INFO(dev)->gen < 4 ||
7879 		    intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7880 			pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7881 		else
7882 			pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7883 	} else
7884 		pipeconf |= PIPECONF_PROGRESSIVE;
7885 
7886 	if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
7887 		pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7888 
7889 	I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7890 	POSTING_READ(PIPECONF(intel_crtc->pipe));
7891 }
7892 
i9xx_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)7893 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7894 				   struct intel_crtc_state *crtc_state)
7895 {
7896 	struct drm_device *dev = crtc->base.dev;
7897 	struct drm_i915_private *dev_priv = dev->dev_private;
7898 	int refclk, num_connectors = 0;
7899 	intel_clock_t clock;
7900 	bool ok;
7901 	bool is_dsi = false;
7902 	struct intel_encoder *encoder;
7903 	const intel_limit_t *limit;
7904 	struct drm_atomic_state *state = crtc_state->base.state;
7905 	struct drm_connector *connector;
7906 	struct drm_connector_state *connector_state;
7907 	int i;
7908 
7909 	memset(&crtc_state->dpll_hw_state, 0,
7910 	       sizeof(crtc_state->dpll_hw_state));
7911 
7912 	for_each_connector_in_state(state, connector, connector_state, i) {
7913 		if (connector_state->crtc != &crtc->base)
7914 			continue;
7915 
7916 		encoder = to_intel_encoder(connector_state->best_encoder);
7917 
7918 		switch (encoder->type) {
7919 		case INTEL_OUTPUT_DSI:
7920 			is_dsi = true;
7921 			break;
7922 		default:
7923 			break;
7924 		}
7925 
7926 		num_connectors++;
7927 	}
7928 
7929 	if (is_dsi)
7930 		return 0;
7931 
7932 	if (!crtc_state->clock_set) {
7933 		refclk = i9xx_get_refclk(crtc_state, num_connectors);
7934 
7935 		/*
7936 		 * Returns a set of divisors for the desired target clock with
7937 		 * the given refclk, or FALSE.  The returned values represent
7938 		 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7939 		 * 2) / p1 / p2.
7940 		 */
7941 		limit = intel_limit(crtc_state, refclk);
7942 		ok = dev_priv->display.find_dpll(limit, crtc_state,
7943 						 crtc_state->port_clock,
7944 						 refclk, NULL, &clock);
7945 		if (!ok) {
7946 			DRM_ERROR("Couldn't find PLL settings for mode!\n");
7947 			return -EINVAL;
7948 		}
7949 
7950 		/* Compat-code for transition, will disappear. */
7951 		crtc_state->dpll.n = clock.n;
7952 		crtc_state->dpll.m1 = clock.m1;
7953 		crtc_state->dpll.m2 = clock.m2;
7954 		crtc_state->dpll.p1 = clock.p1;
7955 		crtc_state->dpll.p2 = clock.p2;
7956 	}
7957 
7958 	if (IS_GEN2(dev)) {
7959 		i8xx_compute_dpll(crtc, crtc_state, NULL,
7960 				  num_connectors);
7961 	} else if (IS_CHERRYVIEW(dev)) {
7962 		chv_compute_dpll(crtc, crtc_state);
7963 	} else if (IS_VALLEYVIEW(dev)) {
7964 		vlv_compute_dpll(crtc, crtc_state);
7965 	} else {
7966 		i9xx_compute_dpll(crtc, crtc_state, NULL,
7967 				  num_connectors);
7968 	}
7969 
7970 	return 0;
7971 }
7972 
i9xx_get_pfit_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)7973 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7974 				 struct intel_crtc_state *pipe_config)
7975 {
7976 	struct drm_device *dev = crtc->base.dev;
7977 	struct drm_i915_private *dev_priv = dev->dev_private;
7978 	uint32_t tmp;
7979 
7980 	if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7981 		return;
7982 
7983 	tmp = I915_READ(PFIT_CONTROL);
7984 	if (!(tmp & PFIT_ENABLE))
7985 		return;
7986 
7987 	/* Check whether the pfit is attached to our pipe. */
7988 	if (INTEL_INFO(dev)->gen < 4) {
7989 		if (crtc->pipe != PIPE_B)
7990 			return;
7991 	} else {
7992 		if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7993 			return;
7994 	}
7995 
7996 	pipe_config->gmch_pfit.control = tmp;
7997 	pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7998 	if (INTEL_INFO(dev)->gen < 5)
7999 		pipe_config->gmch_pfit.lvds_border_bits =
8000 			I915_READ(LVDS) & LVDS_BORDER_ENABLE;
8001 }
8002 
vlv_crtc_clock_get(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)8003 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
8004 			       struct intel_crtc_state *pipe_config)
8005 {
8006 	struct drm_device *dev = crtc->base.dev;
8007 	struct drm_i915_private *dev_priv = dev->dev_private;
8008 	int pipe = pipe_config->cpu_transcoder;
8009 	intel_clock_t clock;
8010 	u32 mdiv;
8011 	int refclk = 100000;
8012 
8013 	/* In case of MIPI DPLL will not even be used */
8014 	if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
8015 		return;
8016 
8017 	mutex_lock(&dev_priv->sb_lock);
8018 	mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8019 	mutex_unlock(&dev_priv->sb_lock);
8020 
8021 	clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8022 	clock.m2 = mdiv & DPIO_M2DIV_MASK;
8023 	clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8024 	clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8025 	clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8026 
8027 	pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8028 }
8029 
8030 static void
i9xx_get_initial_plane_config(struct intel_crtc * crtc,struct intel_initial_plane_config * plane_config)8031 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8032 			      struct intel_initial_plane_config *plane_config)
8033 {
8034 	struct drm_device *dev = crtc->base.dev;
8035 	struct drm_i915_private *dev_priv = dev->dev_private;
8036 	u32 val, base, offset;
8037 	int pipe = crtc->pipe, plane = crtc->plane;
8038 	int fourcc, pixel_format;
8039 	unsigned int aligned_height;
8040 	struct drm_framebuffer *fb;
8041 	struct intel_framebuffer *intel_fb;
8042 
8043 	val = I915_READ(DSPCNTR(plane));
8044 	if (!(val & DISPLAY_PLANE_ENABLE))
8045 		return;
8046 
8047 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8048 	if (!intel_fb) {
8049 		DRM_DEBUG_KMS("failed to alloc fb\n");
8050 		return;
8051 	}
8052 
8053 	fb = &intel_fb->base;
8054 
8055 	if (INTEL_INFO(dev)->gen >= 4) {
8056 		if (val & DISPPLANE_TILED) {
8057 			plane_config->tiling = I915_TILING_X;
8058 			fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8059 		}
8060 	}
8061 
8062 	pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8063 	fourcc = i9xx_format_to_fourcc(pixel_format);
8064 	fb->pixel_format = fourcc;
8065 	fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8066 
8067 	if (INTEL_INFO(dev)->gen >= 4) {
8068 		if (plane_config->tiling)
8069 			offset = I915_READ(DSPTILEOFF(plane));
8070 		else
8071 			offset = I915_READ(DSPLINOFF(plane));
8072 		base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8073 	} else {
8074 		base = I915_READ(DSPADDR(plane));
8075 	}
8076 	plane_config->base = base;
8077 
8078 	val = I915_READ(PIPESRC(pipe));
8079 	fb->width = ((val >> 16) & 0xfff) + 1;
8080 	fb->height = ((val >> 0) & 0xfff) + 1;
8081 
8082 	val = I915_READ(DSPSTRIDE(pipe));
8083 	fb->pitches[0] = val & 0xffffffc0;
8084 
8085 	aligned_height = intel_fb_align_height(dev, fb->height,
8086 					       fb->pixel_format,
8087 					       fb->modifier[0]);
8088 
8089 	plane_config->size = fb->pitches[0] * aligned_height;
8090 
8091 	DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8092 		      pipe_name(pipe), plane, fb->width, fb->height,
8093 		      fb->bits_per_pixel, base, fb->pitches[0],
8094 		      plane_config->size);
8095 
8096 	plane_config->fb = intel_fb;
8097 }
8098 
chv_crtc_clock_get(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)8099 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8100 			       struct intel_crtc_state *pipe_config)
8101 {
8102 	struct drm_device *dev = crtc->base.dev;
8103 	struct drm_i915_private *dev_priv = dev->dev_private;
8104 	int pipe = pipe_config->cpu_transcoder;
8105 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
8106 	intel_clock_t clock;
8107 	u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8108 	int refclk = 100000;
8109 
8110 	mutex_lock(&dev_priv->sb_lock);
8111 	cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8112 	pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8113 	pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8114 	pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8115 	pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8116 	mutex_unlock(&dev_priv->sb_lock);
8117 
8118 	clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8119 	clock.m2 = (pll_dw0 & 0xff) << 22;
8120 	if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8121 		clock.m2 |= pll_dw2 & 0x3fffff;
8122 	clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8123 	clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8124 	clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8125 
8126 	pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8127 }
8128 
i9xx_get_pipe_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)8129 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8130 				 struct intel_crtc_state *pipe_config)
8131 {
8132 	struct drm_device *dev = crtc->base.dev;
8133 	struct drm_i915_private *dev_priv = dev->dev_private;
8134 	uint32_t tmp;
8135 
8136 	if (!intel_display_power_is_enabled(dev_priv,
8137 					    POWER_DOMAIN_PIPE(crtc->pipe)))
8138 		return false;
8139 
8140 	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8141 	pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8142 
8143 	tmp = I915_READ(PIPECONF(crtc->pipe));
8144 	if (!(tmp & PIPECONF_ENABLE))
8145 		return false;
8146 
8147 	if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
8148 		switch (tmp & PIPECONF_BPC_MASK) {
8149 		case PIPECONF_6BPC:
8150 			pipe_config->pipe_bpp = 18;
8151 			break;
8152 		case PIPECONF_8BPC:
8153 			pipe_config->pipe_bpp = 24;
8154 			break;
8155 		case PIPECONF_10BPC:
8156 			pipe_config->pipe_bpp = 30;
8157 			break;
8158 		default:
8159 			break;
8160 		}
8161 	}
8162 
8163 	if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
8164 		pipe_config->limited_color_range = true;
8165 
8166 	if (INTEL_INFO(dev)->gen < 4)
8167 		pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8168 
8169 	intel_get_pipe_timings(crtc, pipe_config);
8170 
8171 	i9xx_get_pfit_config(crtc, pipe_config);
8172 
8173 	if (INTEL_INFO(dev)->gen >= 4) {
8174 		tmp = I915_READ(DPLL_MD(crtc->pipe));
8175 		pipe_config->pixel_multiplier =
8176 			((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8177 			 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8178 		pipe_config->dpll_hw_state.dpll_md = tmp;
8179 	} else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8180 		tmp = I915_READ(DPLL(crtc->pipe));
8181 		pipe_config->pixel_multiplier =
8182 			((tmp & SDVO_MULTIPLIER_MASK)
8183 			 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8184 	} else {
8185 		/* Note that on i915G/GM the pixel multiplier is in the sdvo
8186 		 * port and will be fixed up in the encoder->get_config
8187 		 * function. */
8188 		pipe_config->pixel_multiplier = 1;
8189 	}
8190 	pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8191 	if (!IS_VALLEYVIEW(dev)) {
8192 		/*
8193 		 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8194 		 * on 830. Filter it out here so that we don't
8195 		 * report errors due to that.
8196 		 */
8197 		if (IS_I830(dev))
8198 			pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8199 
8200 		pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8201 		pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8202 	} else {
8203 		/* Mask out read-only status bits. */
8204 		pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8205 						     DPLL_PORTC_READY_MASK |
8206 						     DPLL_PORTB_READY_MASK);
8207 	}
8208 
8209 	if (IS_CHERRYVIEW(dev))
8210 		chv_crtc_clock_get(crtc, pipe_config);
8211 	else if (IS_VALLEYVIEW(dev))
8212 		vlv_crtc_clock_get(crtc, pipe_config);
8213 	else
8214 		i9xx_crtc_clock_get(crtc, pipe_config);
8215 
8216 	/*
8217 	 * Normally the dotclock is filled in by the encoder .get_config()
8218 	 * but in case the pipe is enabled w/o any ports we need a sane
8219 	 * default.
8220 	 */
8221 	pipe_config->base.adjusted_mode.crtc_clock =
8222 		pipe_config->port_clock / pipe_config->pixel_multiplier;
8223 
8224 	return true;
8225 }
8226 
ironlake_init_pch_refclk(struct drm_device * dev)8227 static void ironlake_init_pch_refclk(struct drm_device *dev)
8228 {
8229 	struct drm_i915_private *dev_priv = dev->dev_private;
8230 	struct intel_encoder *encoder;
8231 	u32 val, final;
8232 	bool has_lvds = false;
8233 	bool has_cpu_edp = false;
8234 	bool has_panel = false;
8235 	bool has_ck505 = false;
8236 	bool can_ssc = false;
8237 
8238 	/* We need to take the global config into account */
8239 	for_each_intel_encoder(dev, encoder) {
8240 		switch (encoder->type) {
8241 		case INTEL_OUTPUT_LVDS:
8242 			has_panel = true;
8243 			has_lvds = true;
8244 			break;
8245 		case INTEL_OUTPUT_EDP:
8246 			has_panel = true;
8247 			if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8248 				has_cpu_edp = true;
8249 			break;
8250 		default:
8251 			break;
8252 		}
8253 	}
8254 
8255 	if (HAS_PCH_IBX(dev)) {
8256 		has_ck505 = dev_priv->vbt.display_clock_mode;
8257 		can_ssc = has_ck505;
8258 	} else {
8259 		has_ck505 = false;
8260 		can_ssc = true;
8261 	}
8262 
8263 	DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8264 		      has_panel, has_lvds, has_ck505);
8265 
8266 	/* Ironlake: try to setup display ref clock before DPLL
8267 	 * enabling. This is only under driver's control after
8268 	 * PCH B stepping, previous chipset stepping should be
8269 	 * ignoring this setting.
8270 	 */
8271 	val = I915_READ(PCH_DREF_CONTROL);
8272 
8273 	/* As we must carefully and slowly disable/enable each source in turn,
8274 	 * compute the final state we want first and check if we need to
8275 	 * make any changes at all.
8276 	 */
8277 	final = val;
8278 	final &= ~DREF_NONSPREAD_SOURCE_MASK;
8279 	if (has_ck505)
8280 		final |= DREF_NONSPREAD_CK505_ENABLE;
8281 	else
8282 		final |= DREF_NONSPREAD_SOURCE_ENABLE;
8283 
8284 	final &= ~DREF_SSC_SOURCE_MASK;
8285 	final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8286 	final &= ~DREF_SSC1_ENABLE;
8287 
8288 	if (has_panel) {
8289 		final |= DREF_SSC_SOURCE_ENABLE;
8290 
8291 		if (intel_panel_use_ssc(dev_priv) && can_ssc)
8292 			final |= DREF_SSC1_ENABLE;
8293 
8294 		if (has_cpu_edp) {
8295 			if (intel_panel_use_ssc(dev_priv) && can_ssc)
8296 				final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8297 			else
8298 				final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8299 		} else
8300 			final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8301 	} else {
8302 		final |= DREF_SSC_SOURCE_DISABLE;
8303 		final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8304 	}
8305 
8306 	if (final == val)
8307 		return;
8308 
8309 	/* Always enable nonspread source */
8310 	val &= ~DREF_NONSPREAD_SOURCE_MASK;
8311 
8312 	if (has_ck505)
8313 		val |= DREF_NONSPREAD_CK505_ENABLE;
8314 	else
8315 		val |= DREF_NONSPREAD_SOURCE_ENABLE;
8316 
8317 	if (has_panel) {
8318 		val &= ~DREF_SSC_SOURCE_MASK;
8319 		val |= DREF_SSC_SOURCE_ENABLE;
8320 
8321 		/* SSC must be turned on before enabling the CPU output  */
8322 		if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8323 			DRM_DEBUG_KMS("Using SSC on panel\n");
8324 			val |= DREF_SSC1_ENABLE;
8325 		} else
8326 			val &= ~DREF_SSC1_ENABLE;
8327 
8328 		/* Get SSC going before enabling the outputs */
8329 		I915_WRITE(PCH_DREF_CONTROL, val);
8330 		POSTING_READ(PCH_DREF_CONTROL);
8331 		udelay(200);
8332 
8333 		val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8334 
8335 		/* Enable CPU source on CPU attached eDP */
8336 		if (has_cpu_edp) {
8337 			if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8338 				DRM_DEBUG_KMS("Using SSC on eDP\n");
8339 				val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8340 			} else
8341 				val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8342 		} else
8343 			val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8344 
8345 		I915_WRITE(PCH_DREF_CONTROL, val);
8346 		POSTING_READ(PCH_DREF_CONTROL);
8347 		udelay(200);
8348 	} else {
8349 		DRM_DEBUG_KMS("Disabling SSC entirely\n");
8350 
8351 		val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8352 
8353 		/* Turn off CPU output */
8354 		val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8355 
8356 		I915_WRITE(PCH_DREF_CONTROL, val);
8357 		POSTING_READ(PCH_DREF_CONTROL);
8358 		udelay(200);
8359 
8360 		/* Turn off the SSC source */
8361 		val &= ~DREF_SSC_SOURCE_MASK;
8362 		val |= DREF_SSC_SOURCE_DISABLE;
8363 
8364 		/* Turn off SSC1 */
8365 		val &= ~DREF_SSC1_ENABLE;
8366 
8367 		I915_WRITE(PCH_DREF_CONTROL, val);
8368 		POSTING_READ(PCH_DREF_CONTROL);
8369 		udelay(200);
8370 	}
8371 
8372 	BUG_ON(val != final);
8373 }
8374 
lpt_reset_fdi_mphy(struct drm_i915_private * dev_priv)8375 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8376 {
8377 	uint32_t tmp;
8378 
8379 	tmp = I915_READ(SOUTH_CHICKEN2);
8380 	tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8381 	I915_WRITE(SOUTH_CHICKEN2, tmp);
8382 
8383 	if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8384 			       FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8385 		DRM_ERROR("FDI mPHY reset assert timeout\n");
8386 
8387 	tmp = I915_READ(SOUTH_CHICKEN2);
8388 	tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8389 	I915_WRITE(SOUTH_CHICKEN2, tmp);
8390 
8391 	if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8392 				FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8393 		DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8394 }
8395 
8396 /* WaMPhyProgramming:hsw */
lpt_program_fdi_mphy(struct drm_i915_private * dev_priv)8397 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8398 {
8399 	uint32_t tmp;
8400 
8401 	tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8402 	tmp &= ~(0xFF << 24);
8403 	tmp |= (0x12 << 24);
8404 	intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8405 
8406 	tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8407 	tmp |= (1 << 11);
8408 	intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8409 
8410 	tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8411 	tmp |= (1 << 11);
8412 	intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8413 
8414 	tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8415 	tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8416 	intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8417 
8418 	tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8419 	tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8420 	intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8421 
8422 	tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8423 	tmp &= ~(7 << 13);
8424 	tmp |= (5 << 13);
8425 	intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8426 
8427 	tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8428 	tmp &= ~(7 << 13);
8429 	tmp |= (5 << 13);
8430 	intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8431 
8432 	tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8433 	tmp &= ~0xFF;
8434 	tmp |= 0x1C;
8435 	intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8436 
8437 	tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8438 	tmp &= ~0xFF;
8439 	tmp |= 0x1C;
8440 	intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8441 
8442 	tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8443 	tmp &= ~(0xFF << 16);
8444 	tmp |= (0x1C << 16);
8445 	intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8446 
8447 	tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8448 	tmp &= ~(0xFF << 16);
8449 	tmp |= (0x1C << 16);
8450 	intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8451 
8452 	tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8453 	tmp |= (1 << 27);
8454 	intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8455 
8456 	tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8457 	tmp |= (1 << 27);
8458 	intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8459 
8460 	tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8461 	tmp &= ~(0xF << 28);
8462 	tmp |= (4 << 28);
8463 	intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8464 
8465 	tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8466 	tmp &= ~(0xF << 28);
8467 	tmp |= (4 << 28);
8468 	intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8469 }
8470 
8471 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8472  * Programming" based on the parameters passed:
8473  * - Sequence to enable CLKOUT_DP
8474  * - Sequence to enable CLKOUT_DP without spread
8475  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8476  */
lpt_enable_clkout_dp(struct drm_device * dev,bool with_spread,bool with_fdi)8477 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8478 				 bool with_fdi)
8479 {
8480 	struct drm_i915_private *dev_priv = dev->dev_private;
8481 	uint32_t reg, tmp;
8482 
8483 	if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8484 		with_spread = true;
8485 	if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
8486 		with_fdi = false;
8487 
8488 	mutex_lock(&dev_priv->sb_lock);
8489 
8490 	tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8491 	tmp &= ~SBI_SSCCTL_DISABLE;
8492 	tmp |= SBI_SSCCTL_PATHALT;
8493 	intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8494 
8495 	udelay(24);
8496 
8497 	if (with_spread) {
8498 		tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8499 		tmp &= ~SBI_SSCCTL_PATHALT;
8500 		intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8501 
8502 		if (with_fdi) {
8503 			lpt_reset_fdi_mphy(dev_priv);
8504 			lpt_program_fdi_mphy(dev_priv);
8505 		}
8506 	}
8507 
8508 	reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8509 	tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8510 	tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8511 	intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8512 
8513 	mutex_unlock(&dev_priv->sb_lock);
8514 }
8515 
8516 /* Sequence to disable CLKOUT_DP */
lpt_disable_clkout_dp(struct drm_device * dev)8517 static void lpt_disable_clkout_dp(struct drm_device *dev)
8518 {
8519 	struct drm_i915_private *dev_priv = dev->dev_private;
8520 	uint32_t reg, tmp;
8521 
8522 	mutex_lock(&dev_priv->sb_lock);
8523 
8524 	reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8525 	tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8526 	tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8527 	intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8528 
8529 	tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8530 	if (!(tmp & SBI_SSCCTL_DISABLE)) {
8531 		if (!(tmp & SBI_SSCCTL_PATHALT)) {
8532 			tmp |= SBI_SSCCTL_PATHALT;
8533 			intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8534 			udelay(32);
8535 		}
8536 		tmp |= SBI_SSCCTL_DISABLE;
8537 		intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8538 	}
8539 
8540 	mutex_unlock(&dev_priv->sb_lock);
8541 }
8542 
lpt_init_pch_refclk(struct drm_device * dev)8543 static void lpt_init_pch_refclk(struct drm_device *dev)
8544 {
8545 	struct intel_encoder *encoder;
8546 	bool has_vga = false;
8547 
8548 	for_each_intel_encoder(dev, encoder) {
8549 		switch (encoder->type) {
8550 		case INTEL_OUTPUT_ANALOG:
8551 			has_vga = true;
8552 			break;
8553 		default:
8554 			break;
8555 		}
8556 	}
8557 
8558 	if (has_vga)
8559 		lpt_enable_clkout_dp(dev, true, true);
8560 	else
8561 		lpt_disable_clkout_dp(dev);
8562 }
8563 
8564 /*
8565  * Initialize reference clocks when the driver loads
8566  */
intel_init_pch_refclk(struct drm_device * dev)8567 void intel_init_pch_refclk(struct drm_device *dev)
8568 {
8569 	if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8570 		ironlake_init_pch_refclk(dev);
8571 	else if (HAS_PCH_LPT(dev))
8572 		lpt_init_pch_refclk(dev);
8573 }
8574 
ironlake_get_refclk(struct intel_crtc_state * crtc_state)8575 static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
8576 {
8577 	struct drm_device *dev = crtc_state->base.crtc->dev;
8578 	struct drm_i915_private *dev_priv = dev->dev_private;
8579 	struct drm_atomic_state *state = crtc_state->base.state;
8580 	struct drm_connector *connector;
8581 	struct drm_connector_state *connector_state;
8582 	struct intel_encoder *encoder;
8583 	int num_connectors = 0, i;
8584 	bool is_lvds = false;
8585 
8586 	for_each_connector_in_state(state, connector, connector_state, i) {
8587 		if (connector_state->crtc != crtc_state->base.crtc)
8588 			continue;
8589 
8590 		encoder = to_intel_encoder(connector_state->best_encoder);
8591 
8592 		switch (encoder->type) {
8593 		case INTEL_OUTPUT_LVDS:
8594 			is_lvds = true;
8595 			break;
8596 		default:
8597 			break;
8598 		}
8599 		num_connectors++;
8600 	}
8601 
8602 	if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
8603 		DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8604 			      dev_priv->vbt.lvds_ssc_freq);
8605 		return dev_priv->vbt.lvds_ssc_freq;
8606 	}
8607 
8608 	return 120000;
8609 }
8610 
ironlake_set_pipeconf(struct drm_crtc * crtc)8611 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8612 {
8613 	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8614 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8615 	int pipe = intel_crtc->pipe;
8616 	uint32_t val;
8617 
8618 	val = 0;
8619 
8620 	switch (intel_crtc->config->pipe_bpp) {
8621 	case 18:
8622 		val |= PIPECONF_6BPC;
8623 		break;
8624 	case 24:
8625 		val |= PIPECONF_8BPC;
8626 		break;
8627 	case 30:
8628 		val |= PIPECONF_10BPC;
8629 		break;
8630 	case 36:
8631 		val |= PIPECONF_12BPC;
8632 		break;
8633 	default:
8634 		/* Case prevented by intel_choose_pipe_bpp_dither. */
8635 		BUG();
8636 	}
8637 
8638 	if (intel_crtc->config->dither)
8639 		val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8640 
8641 	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8642 		val |= PIPECONF_INTERLACED_ILK;
8643 	else
8644 		val |= PIPECONF_PROGRESSIVE;
8645 
8646 	if (intel_crtc->config->limited_color_range)
8647 		val |= PIPECONF_COLOR_RANGE_SELECT;
8648 
8649 	I915_WRITE(PIPECONF(pipe), val);
8650 	POSTING_READ(PIPECONF(pipe));
8651 }
8652 
8653 /*
8654  * Set up the pipe CSC unit.
8655  *
8656  * Currently only full range RGB to limited range RGB conversion
8657  * is supported, but eventually this should handle various
8658  * RGB<->YCbCr scenarios as well.
8659  */
intel_set_pipe_csc(struct drm_crtc * crtc)8660 static void intel_set_pipe_csc(struct drm_crtc *crtc)
8661 {
8662 	struct drm_device *dev = crtc->dev;
8663 	struct drm_i915_private *dev_priv = dev->dev_private;
8664 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8665 	int pipe = intel_crtc->pipe;
8666 	uint16_t coeff = 0x7800; /* 1.0 */
8667 
8668 	/*
8669 	 * TODO: Check what kind of values actually come out of the pipe
8670 	 * with these coeff/postoff values and adjust to get the best
8671 	 * accuracy. Perhaps we even need to take the bpc value into
8672 	 * consideration.
8673 	 */
8674 
8675 	if (intel_crtc->config->limited_color_range)
8676 		coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8677 
8678 	/*
8679 	 * GY/GU and RY/RU should be the other way around according
8680 	 * to BSpec, but reality doesn't agree. Just set them up in
8681 	 * a way that results in the correct picture.
8682 	 */
8683 	I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8684 	I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8685 
8686 	I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8687 	I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8688 
8689 	I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8690 	I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8691 
8692 	I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8693 	I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8694 	I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8695 
8696 	if (INTEL_INFO(dev)->gen > 6) {
8697 		uint16_t postoff = 0;
8698 
8699 		if (intel_crtc->config->limited_color_range)
8700 			postoff = (16 * (1 << 12) / 255) & 0x1fff;
8701 
8702 		I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8703 		I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8704 		I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8705 
8706 		I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8707 	} else {
8708 		uint32_t mode = CSC_MODE_YUV_TO_RGB;
8709 
8710 		if (intel_crtc->config->limited_color_range)
8711 			mode |= CSC_BLACK_SCREEN_OFFSET;
8712 
8713 		I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8714 	}
8715 }
8716 
haswell_set_pipeconf(struct drm_crtc * crtc)8717 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8718 {
8719 	struct drm_device *dev = crtc->dev;
8720 	struct drm_i915_private *dev_priv = dev->dev_private;
8721 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8722 	enum pipe pipe = intel_crtc->pipe;
8723 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8724 	uint32_t val;
8725 
8726 	val = 0;
8727 
8728 	if (IS_HASWELL(dev) && intel_crtc->config->dither)
8729 		val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8730 
8731 	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8732 		val |= PIPECONF_INTERLACED_ILK;
8733 	else
8734 		val |= PIPECONF_PROGRESSIVE;
8735 
8736 	I915_WRITE(PIPECONF(cpu_transcoder), val);
8737 	POSTING_READ(PIPECONF(cpu_transcoder));
8738 
8739 	I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8740 	POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
8741 
8742 	if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
8743 		val = 0;
8744 
8745 		switch (intel_crtc->config->pipe_bpp) {
8746 		case 18:
8747 			val |= PIPEMISC_DITHER_6_BPC;
8748 			break;
8749 		case 24:
8750 			val |= PIPEMISC_DITHER_8_BPC;
8751 			break;
8752 		case 30:
8753 			val |= PIPEMISC_DITHER_10_BPC;
8754 			break;
8755 		case 36:
8756 			val |= PIPEMISC_DITHER_12_BPC;
8757 			break;
8758 		default:
8759 			/* Case prevented by pipe_config_set_bpp. */
8760 			BUG();
8761 		}
8762 
8763 		if (intel_crtc->config->dither)
8764 			val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8765 
8766 		I915_WRITE(PIPEMISC(pipe), val);
8767 	}
8768 }
8769 
ironlake_compute_clocks(struct drm_crtc * crtc,struct intel_crtc_state * crtc_state,intel_clock_t * clock,bool * has_reduced_clock,intel_clock_t * reduced_clock)8770 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
8771 				    struct intel_crtc_state *crtc_state,
8772 				    intel_clock_t *clock,
8773 				    bool *has_reduced_clock,
8774 				    intel_clock_t *reduced_clock)
8775 {
8776 	struct drm_device *dev = crtc->dev;
8777 	struct drm_i915_private *dev_priv = dev->dev_private;
8778 	int refclk;
8779 	const intel_limit_t *limit;
8780 	bool ret;
8781 
8782 	refclk = ironlake_get_refclk(crtc_state);
8783 
8784 	/*
8785 	 * Returns a set of divisors for the desired target clock with the given
8786 	 * refclk, or FALSE.  The returned values represent the clock equation:
8787 	 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8788 	 */
8789 	limit = intel_limit(crtc_state, refclk);
8790 	ret = dev_priv->display.find_dpll(limit, crtc_state,
8791 					  crtc_state->port_clock,
8792 					  refclk, NULL, clock);
8793 	if (!ret)
8794 		return false;
8795 
8796 	return true;
8797 }
8798 
ironlake_get_lanes_required(int target_clock,int link_bw,int bpp)8799 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8800 {
8801 	/*
8802 	 * Account for spread spectrum to avoid
8803 	 * oversubscribing the link. Max center spread
8804 	 * is 2.5%; use 5% for safety's sake.
8805 	 */
8806 	u32 bps = target_clock * bpp * 21 / 20;
8807 	return DIV_ROUND_UP(bps, link_bw * 8);
8808 }
8809 
ironlake_needs_fb_cb_tune(struct dpll * dpll,int factor)8810 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8811 {
8812 	return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8813 }
8814 
ironlake_compute_dpll(struct intel_crtc * intel_crtc,struct intel_crtc_state * crtc_state,u32 * fp,intel_clock_t * reduced_clock,u32 * fp2)8815 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8816 				      struct intel_crtc_state *crtc_state,
8817 				      u32 *fp,
8818 				      intel_clock_t *reduced_clock, u32 *fp2)
8819 {
8820 	struct drm_crtc *crtc = &intel_crtc->base;
8821 	struct drm_device *dev = crtc->dev;
8822 	struct drm_i915_private *dev_priv = dev->dev_private;
8823 	struct drm_atomic_state *state = crtc_state->base.state;
8824 	struct drm_connector *connector;
8825 	struct drm_connector_state *connector_state;
8826 	struct intel_encoder *encoder;
8827 	uint32_t dpll;
8828 	int factor, num_connectors = 0, i;
8829 	bool is_lvds = false, is_sdvo = false;
8830 
8831 	for_each_connector_in_state(state, connector, connector_state, i) {
8832 		if (connector_state->crtc != crtc_state->base.crtc)
8833 			continue;
8834 
8835 		encoder = to_intel_encoder(connector_state->best_encoder);
8836 
8837 		switch (encoder->type) {
8838 		case INTEL_OUTPUT_LVDS:
8839 			is_lvds = true;
8840 			break;
8841 		case INTEL_OUTPUT_SDVO:
8842 		case INTEL_OUTPUT_HDMI:
8843 			is_sdvo = true;
8844 			break;
8845 		default:
8846 			break;
8847 		}
8848 
8849 		num_connectors++;
8850 	}
8851 
8852 	/* Enable autotuning of the PLL clock (if permissible) */
8853 	factor = 21;
8854 	if (is_lvds) {
8855 		if ((intel_panel_use_ssc(dev_priv) &&
8856 		     dev_priv->vbt.lvds_ssc_freq == 100000) ||
8857 		    (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8858 			factor = 25;
8859 	} else if (crtc_state->sdvo_tv_clock)
8860 		factor = 20;
8861 
8862 	if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8863 		*fp |= FP_CB_TUNE;
8864 
8865 	if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8866 		*fp2 |= FP_CB_TUNE;
8867 
8868 	dpll = 0;
8869 
8870 	if (is_lvds)
8871 		dpll |= DPLLB_MODE_LVDS;
8872 	else
8873 		dpll |= DPLLB_MODE_DAC_SERIAL;
8874 
8875 	dpll |= (crtc_state->pixel_multiplier - 1)
8876 		<< PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8877 
8878 	if (is_sdvo)
8879 		dpll |= DPLL_SDVO_HIGH_SPEED;
8880 	if (crtc_state->has_dp_encoder)
8881 		dpll |= DPLL_SDVO_HIGH_SPEED;
8882 
8883 	/* compute bitmask from p1 value */
8884 	dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8885 	/* also FPA1 */
8886 	dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8887 
8888 	switch (crtc_state->dpll.p2) {
8889 	case 5:
8890 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8891 		break;
8892 	case 7:
8893 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8894 		break;
8895 	case 10:
8896 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8897 		break;
8898 	case 14:
8899 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8900 		break;
8901 	}
8902 
8903 	if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
8904 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8905 	else
8906 		dpll |= PLL_REF_INPUT_DREFCLK;
8907 
8908 	return dpll | DPLL_VCO_ENABLE;
8909 }
8910 
ironlake_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)8911 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8912 				       struct intel_crtc_state *crtc_state)
8913 {
8914 	struct drm_device *dev = crtc->base.dev;
8915 	intel_clock_t clock, reduced_clock;
8916 	u32 dpll = 0, fp = 0, fp2 = 0;
8917 	bool ok, has_reduced_clock = false;
8918 	bool is_lvds = false;
8919 	struct intel_shared_dpll *pll;
8920 
8921 	memset(&crtc_state->dpll_hw_state, 0,
8922 	       sizeof(crtc_state->dpll_hw_state));
8923 
8924 	is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
8925 
8926 	WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8927 	     "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
8928 
8929 	ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
8930 				     &has_reduced_clock, &reduced_clock);
8931 	if (!ok && !crtc_state->clock_set) {
8932 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
8933 		return -EINVAL;
8934 	}
8935 	/* Compat-code for transition, will disappear. */
8936 	if (!crtc_state->clock_set) {
8937 		crtc_state->dpll.n = clock.n;
8938 		crtc_state->dpll.m1 = clock.m1;
8939 		crtc_state->dpll.m2 = clock.m2;
8940 		crtc_state->dpll.p1 = clock.p1;
8941 		crtc_state->dpll.p2 = clock.p2;
8942 	}
8943 
8944 	/* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8945 	if (crtc_state->has_pch_encoder) {
8946 		fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8947 		if (has_reduced_clock)
8948 			fp2 = i9xx_dpll_compute_fp(&reduced_clock);
8949 
8950 		dpll = ironlake_compute_dpll(crtc, crtc_state,
8951 					     &fp, &reduced_clock,
8952 					     has_reduced_clock ? &fp2 : NULL);
8953 
8954 		crtc_state->dpll_hw_state.dpll = dpll;
8955 		crtc_state->dpll_hw_state.fp0 = fp;
8956 		if (has_reduced_clock)
8957 			crtc_state->dpll_hw_state.fp1 = fp2;
8958 		else
8959 			crtc_state->dpll_hw_state.fp1 = fp;
8960 
8961 		pll = intel_get_shared_dpll(crtc, crtc_state);
8962 		if (pll == NULL) {
8963 			DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8964 					 pipe_name(crtc->pipe));
8965 			return -EINVAL;
8966 		}
8967 	}
8968 
8969 	if (is_lvds && has_reduced_clock)
8970 		crtc->lowfreq_avail = true;
8971 	else
8972 		crtc->lowfreq_avail = false;
8973 
8974 	return 0;
8975 }
8976 
intel_pch_transcoder_get_m_n(struct intel_crtc * crtc,struct intel_link_m_n * m_n)8977 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8978 					 struct intel_link_m_n *m_n)
8979 {
8980 	struct drm_device *dev = crtc->base.dev;
8981 	struct drm_i915_private *dev_priv = dev->dev_private;
8982 	enum pipe pipe = crtc->pipe;
8983 
8984 	m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8985 	m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8986 	m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8987 		& ~TU_SIZE_MASK;
8988 	m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8989 	m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8990 		    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8991 }
8992 
intel_cpu_transcoder_get_m_n(struct intel_crtc * crtc,enum transcoder transcoder,struct intel_link_m_n * m_n,struct intel_link_m_n * m2_n2)8993 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8994 					 enum transcoder transcoder,
8995 					 struct intel_link_m_n *m_n,
8996 					 struct intel_link_m_n *m2_n2)
8997 {
8998 	struct drm_device *dev = crtc->base.dev;
8999 	struct drm_i915_private *dev_priv = dev->dev_private;
9000 	enum pipe pipe = crtc->pipe;
9001 
9002 	if (INTEL_INFO(dev)->gen >= 5) {
9003 		m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9004 		m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9005 		m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9006 			& ~TU_SIZE_MASK;
9007 		m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9008 		m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9009 			    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9010 		/* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9011 		 * gen < 8) and if DRRS is supported (to make sure the
9012 		 * registers are not unnecessarily read).
9013 		 */
9014 		if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
9015 			crtc->config->has_drrs) {
9016 			m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9017 			m2_n2->link_n =	I915_READ(PIPE_LINK_N2(transcoder));
9018 			m2_n2->gmch_m =	I915_READ(PIPE_DATA_M2(transcoder))
9019 					& ~TU_SIZE_MASK;
9020 			m2_n2->gmch_n =	I915_READ(PIPE_DATA_N2(transcoder));
9021 			m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9022 					& TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9023 		}
9024 	} else {
9025 		m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9026 		m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9027 		m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9028 			& ~TU_SIZE_MASK;
9029 		m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9030 		m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9031 			    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9032 	}
9033 }
9034 
intel_dp_get_m_n(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)9035 void intel_dp_get_m_n(struct intel_crtc *crtc,
9036 		      struct intel_crtc_state *pipe_config)
9037 {
9038 	if (pipe_config->has_pch_encoder)
9039 		intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9040 	else
9041 		intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9042 					     &pipe_config->dp_m_n,
9043 					     &pipe_config->dp_m2_n2);
9044 }
9045 
ironlake_get_fdi_m_n_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)9046 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9047 					struct intel_crtc_state *pipe_config)
9048 {
9049 	intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9050 				     &pipe_config->fdi_m_n, NULL);
9051 }
9052 
skylake_get_pfit_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)9053 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9054 				    struct intel_crtc_state *pipe_config)
9055 {
9056 	struct drm_device *dev = crtc->base.dev;
9057 	struct drm_i915_private *dev_priv = dev->dev_private;
9058 	struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9059 	uint32_t ps_ctrl = 0;
9060 	int id = -1;
9061 	int i;
9062 
9063 	/* find scaler attached to this pipe */
9064 	for (i = 0; i < crtc->num_scalers; i++) {
9065 		ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9066 		if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9067 			id = i;
9068 			pipe_config->pch_pfit.enabled = true;
9069 			pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9070 			pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9071 			break;
9072 		}
9073 	}
9074 
9075 	scaler_state->scaler_id = id;
9076 	if (id >= 0) {
9077 		scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9078 	} else {
9079 		scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9080 	}
9081 }
9082 
9083 static void
skylake_get_initial_plane_config(struct intel_crtc * crtc,struct intel_initial_plane_config * plane_config)9084 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9085 				 struct intel_initial_plane_config *plane_config)
9086 {
9087 	struct drm_device *dev = crtc->base.dev;
9088 	struct drm_i915_private *dev_priv = dev->dev_private;
9089 	u32 val, base, offset, stride_mult, tiling;
9090 	int pipe = crtc->pipe;
9091 	int fourcc, pixel_format;
9092 	unsigned int aligned_height;
9093 	struct drm_framebuffer *fb;
9094 	struct intel_framebuffer *intel_fb;
9095 
9096 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9097 	if (!intel_fb) {
9098 		DRM_DEBUG_KMS("failed to alloc fb\n");
9099 		return;
9100 	}
9101 
9102 	fb = &intel_fb->base;
9103 
9104 	val = I915_READ(PLANE_CTL(pipe, 0));
9105 	if (!(val & PLANE_CTL_ENABLE))
9106 		goto error;
9107 
9108 	pixel_format = val & PLANE_CTL_FORMAT_MASK;
9109 	fourcc = skl_format_to_fourcc(pixel_format,
9110 				      val & PLANE_CTL_ORDER_RGBX,
9111 				      val & PLANE_CTL_ALPHA_MASK);
9112 	fb->pixel_format = fourcc;
9113 	fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9114 
9115 	tiling = val & PLANE_CTL_TILED_MASK;
9116 	switch (tiling) {
9117 	case PLANE_CTL_TILED_LINEAR:
9118 		fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9119 		break;
9120 	case PLANE_CTL_TILED_X:
9121 		plane_config->tiling = I915_TILING_X;
9122 		fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9123 		break;
9124 	case PLANE_CTL_TILED_Y:
9125 		fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9126 		break;
9127 	case PLANE_CTL_TILED_YF:
9128 		fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9129 		break;
9130 	default:
9131 		MISSING_CASE(tiling);
9132 		goto error;
9133 	}
9134 
9135 	base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9136 	plane_config->base = base;
9137 
9138 	offset = I915_READ(PLANE_OFFSET(pipe, 0));
9139 
9140 	val = I915_READ(PLANE_SIZE(pipe, 0));
9141 	fb->height = ((val >> 16) & 0xfff) + 1;
9142 	fb->width = ((val >> 0) & 0x1fff) + 1;
9143 
9144 	val = I915_READ(PLANE_STRIDE(pipe, 0));
9145 	stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
9146 						fb->pixel_format);
9147 	fb->pitches[0] = (val & 0x3ff) * stride_mult;
9148 
9149 	aligned_height = intel_fb_align_height(dev, fb->height,
9150 					       fb->pixel_format,
9151 					       fb->modifier[0]);
9152 
9153 	plane_config->size = fb->pitches[0] * aligned_height;
9154 
9155 	DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9156 		      pipe_name(pipe), fb->width, fb->height,
9157 		      fb->bits_per_pixel, base, fb->pitches[0],
9158 		      plane_config->size);
9159 
9160 	plane_config->fb = intel_fb;
9161 	return;
9162 
9163 error:
9164 	kfree(fb);
9165 }
9166 
ironlake_get_pfit_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)9167 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9168 				     struct intel_crtc_state *pipe_config)
9169 {
9170 	struct drm_device *dev = crtc->base.dev;
9171 	struct drm_i915_private *dev_priv = dev->dev_private;
9172 	uint32_t tmp;
9173 
9174 	tmp = I915_READ(PF_CTL(crtc->pipe));
9175 
9176 	if (tmp & PF_ENABLE) {
9177 		pipe_config->pch_pfit.enabled = true;
9178 		pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9179 		pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9180 
9181 		/* We currently do not free assignements of panel fitters on
9182 		 * ivb/hsw (since we don't use the higher upscaling modes which
9183 		 * differentiates them) so just WARN about this case for now. */
9184 		if (IS_GEN7(dev)) {
9185 			WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9186 				PF_PIPE_SEL_IVB(crtc->pipe));
9187 		}
9188 	}
9189 }
9190 
9191 static void
ironlake_get_initial_plane_config(struct intel_crtc * crtc,struct intel_initial_plane_config * plane_config)9192 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9193 				  struct intel_initial_plane_config *plane_config)
9194 {
9195 	struct drm_device *dev = crtc->base.dev;
9196 	struct drm_i915_private *dev_priv = dev->dev_private;
9197 	u32 val, base, offset;
9198 	int pipe = crtc->pipe;
9199 	int fourcc, pixel_format;
9200 	unsigned int aligned_height;
9201 	struct drm_framebuffer *fb;
9202 	struct intel_framebuffer *intel_fb;
9203 
9204 	val = I915_READ(DSPCNTR(pipe));
9205 	if (!(val & DISPLAY_PLANE_ENABLE))
9206 		return;
9207 
9208 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9209 	if (!intel_fb) {
9210 		DRM_DEBUG_KMS("failed to alloc fb\n");
9211 		return;
9212 	}
9213 
9214 	fb = &intel_fb->base;
9215 
9216 	if (INTEL_INFO(dev)->gen >= 4) {
9217 		if (val & DISPPLANE_TILED) {
9218 			plane_config->tiling = I915_TILING_X;
9219 			fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9220 		}
9221 	}
9222 
9223 	pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9224 	fourcc = i9xx_format_to_fourcc(pixel_format);
9225 	fb->pixel_format = fourcc;
9226 	fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9227 
9228 	base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9229 	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9230 		offset = I915_READ(DSPOFFSET(pipe));
9231 	} else {
9232 		if (plane_config->tiling)
9233 			offset = I915_READ(DSPTILEOFF(pipe));
9234 		else
9235 			offset = I915_READ(DSPLINOFF(pipe));
9236 	}
9237 	plane_config->base = base;
9238 
9239 	val = I915_READ(PIPESRC(pipe));
9240 	fb->width = ((val >> 16) & 0xfff) + 1;
9241 	fb->height = ((val >> 0) & 0xfff) + 1;
9242 
9243 	val = I915_READ(DSPSTRIDE(pipe));
9244 	fb->pitches[0] = val & 0xffffffc0;
9245 
9246 	aligned_height = intel_fb_align_height(dev, fb->height,
9247 					       fb->pixel_format,
9248 					       fb->modifier[0]);
9249 
9250 	plane_config->size = fb->pitches[0] * aligned_height;
9251 
9252 	DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9253 		      pipe_name(pipe), fb->width, fb->height,
9254 		      fb->bits_per_pixel, base, fb->pitches[0],
9255 		      plane_config->size);
9256 
9257 	plane_config->fb = intel_fb;
9258 }
9259 
ironlake_get_pipe_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)9260 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9261 				     struct intel_crtc_state *pipe_config)
9262 {
9263 	struct drm_device *dev = crtc->base.dev;
9264 	struct drm_i915_private *dev_priv = dev->dev_private;
9265 	uint32_t tmp;
9266 
9267 	if (!intel_display_power_is_enabled(dev_priv,
9268 					    POWER_DOMAIN_PIPE(crtc->pipe)))
9269 		return false;
9270 
9271 	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9272 	pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9273 
9274 	tmp = I915_READ(PIPECONF(crtc->pipe));
9275 	if (!(tmp & PIPECONF_ENABLE))
9276 		return false;
9277 
9278 	switch (tmp & PIPECONF_BPC_MASK) {
9279 	case PIPECONF_6BPC:
9280 		pipe_config->pipe_bpp = 18;
9281 		break;
9282 	case PIPECONF_8BPC:
9283 		pipe_config->pipe_bpp = 24;
9284 		break;
9285 	case PIPECONF_10BPC:
9286 		pipe_config->pipe_bpp = 30;
9287 		break;
9288 	case PIPECONF_12BPC:
9289 		pipe_config->pipe_bpp = 36;
9290 		break;
9291 	default:
9292 		break;
9293 	}
9294 
9295 	if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9296 		pipe_config->limited_color_range = true;
9297 
9298 	if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9299 		struct intel_shared_dpll *pll;
9300 
9301 		pipe_config->has_pch_encoder = true;
9302 
9303 		tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9304 		pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9305 					  FDI_DP_PORT_WIDTH_SHIFT) + 1;
9306 
9307 		ironlake_get_fdi_m_n_config(crtc, pipe_config);
9308 
9309 		if (HAS_PCH_IBX(dev_priv->dev)) {
9310 			pipe_config->shared_dpll =
9311 				(enum intel_dpll_id) crtc->pipe;
9312 		} else {
9313 			tmp = I915_READ(PCH_DPLL_SEL);
9314 			if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9315 				pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
9316 			else
9317 				pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
9318 		}
9319 
9320 		pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9321 
9322 		WARN_ON(!pll->get_hw_state(dev_priv, pll,
9323 					   &pipe_config->dpll_hw_state));
9324 
9325 		tmp = pipe_config->dpll_hw_state.dpll;
9326 		pipe_config->pixel_multiplier =
9327 			((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9328 			 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9329 
9330 		ironlake_pch_clock_get(crtc, pipe_config);
9331 	} else {
9332 		pipe_config->pixel_multiplier = 1;
9333 	}
9334 
9335 	intel_get_pipe_timings(crtc, pipe_config);
9336 
9337 	ironlake_get_pfit_config(crtc, pipe_config);
9338 
9339 	return true;
9340 }
9341 
assert_can_disable_lcpll(struct drm_i915_private * dev_priv)9342 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9343 {
9344 	struct drm_device *dev = dev_priv->dev;
9345 	struct intel_crtc *crtc;
9346 
9347 	for_each_intel_crtc(dev, crtc)
9348 		I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9349 		     pipe_name(crtc->pipe));
9350 
9351 	I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9352 	I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9353 	I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9354 	I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9355 	I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9356 	I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9357 	     "CPU PWM1 enabled\n");
9358 	if (IS_HASWELL(dev))
9359 		I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9360 		     "CPU PWM2 enabled\n");
9361 	I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9362 	     "PCH PWM1 enabled\n");
9363 	I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9364 	     "Utility pin enabled\n");
9365 	I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9366 
9367 	/*
9368 	 * In theory we can still leave IRQs enabled, as long as only the HPD
9369 	 * interrupts remain enabled. We used to check for that, but since it's
9370 	 * gen-specific and since we only disable LCPLL after we fully disable
9371 	 * the interrupts, the check below should be enough.
9372 	 */
9373 	I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9374 }
9375 
hsw_read_dcomp(struct drm_i915_private * dev_priv)9376 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9377 {
9378 	struct drm_device *dev = dev_priv->dev;
9379 
9380 	if (IS_HASWELL(dev))
9381 		return I915_READ(D_COMP_HSW);
9382 	else
9383 		return I915_READ(D_COMP_BDW);
9384 }
9385 
hsw_write_dcomp(struct drm_i915_private * dev_priv,uint32_t val)9386 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9387 {
9388 	struct drm_device *dev = dev_priv->dev;
9389 
9390 	if (IS_HASWELL(dev)) {
9391 		mutex_lock(&dev_priv->rps.hw_lock);
9392 		if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9393 					    val))
9394 			DRM_ERROR("Failed to write to D_COMP\n");
9395 		mutex_unlock(&dev_priv->rps.hw_lock);
9396 	} else {
9397 		I915_WRITE(D_COMP_BDW, val);
9398 		POSTING_READ(D_COMP_BDW);
9399 	}
9400 }
9401 
9402 /*
9403  * This function implements pieces of two sequences from BSpec:
9404  * - Sequence for display software to disable LCPLL
9405  * - Sequence for display software to allow package C8+
9406  * The steps implemented here are just the steps that actually touch the LCPLL
9407  * register. Callers should take care of disabling all the display engine
9408  * functions, doing the mode unset, fixing interrupts, etc.
9409  */
hsw_disable_lcpll(struct drm_i915_private * dev_priv,bool switch_to_fclk,bool allow_power_down)9410 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9411 			      bool switch_to_fclk, bool allow_power_down)
9412 {
9413 	uint32_t val;
9414 
9415 	assert_can_disable_lcpll(dev_priv);
9416 
9417 	val = I915_READ(LCPLL_CTL);
9418 
9419 	if (switch_to_fclk) {
9420 		val |= LCPLL_CD_SOURCE_FCLK;
9421 		I915_WRITE(LCPLL_CTL, val);
9422 
9423 		if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9424 				       LCPLL_CD_SOURCE_FCLK_DONE, 1))
9425 			DRM_ERROR("Switching to FCLK failed\n");
9426 
9427 		val = I915_READ(LCPLL_CTL);
9428 	}
9429 
9430 	val |= LCPLL_PLL_DISABLE;
9431 	I915_WRITE(LCPLL_CTL, val);
9432 	POSTING_READ(LCPLL_CTL);
9433 
9434 	if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9435 		DRM_ERROR("LCPLL still locked\n");
9436 
9437 	val = hsw_read_dcomp(dev_priv);
9438 	val |= D_COMP_COMP_DISABLE;
9439 	hsw_write_dcomp(dev_priv, val);
9440 	ndelay(100);
9441 
9442 	if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9443 		     1))
9444 		DRM_ERROR("D_COMP RCOMP still in progress\n");
9445 
9446 	if (allow_power_down) {
9447 		val = I915_READ(LCPLL_CTL);
9448 		val |= LCPLL_POWER_DOWN_ALLOW;
9449 		I915_WRITE(LCPLL_CTL, val);
9450 		POSTING_READ(LCPLL_CTL);
9451 	}
9452 }
9453 
9454 /*
9455  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9456  * source.
9457  */
hsw_restore_lcpll(struct drm_i915_private * dev_priv)9458 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9459 {
9460 	uint32_t val;
9461 
9462 	val = I915_READ(LCPLL_CTL);
9463 
9464 	if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9465 		    LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9466 		return;
9467 
9468 	/*
9469 	 * Make sure we're not on PC8 state before disabling PC8, otherwise
9470 	 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9471 	 */
9472 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9473 
9474 	if (val & LCPLL_POWER_DOWN_ALLOW) {
9475 		val &= ~LCPLL_POWER_DOWN_ALLOW;
9476 		I915_WRITE(LCPLL_CTL, val);
9477 		POSTING_READ(LCPLL_CTL);
9478 	}
9479 
9480 	val = hsw_read_dcomp(dev_priv);
9481 	val |= D_COMP_COMP_FORCE;
9482 	val &= ~D_COMP_COMP_DISABLE;
9483 	hsw_write_dcomp(dev_priv, val);
9484 
9485 	val = I915_READ(LCPLL_CTL);
9486 	val &= ~LCPLL_PLL_DISABLE;
9487 	I915_WRITE(LCPLL_CTL, val);
9488 
9489 	if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9490 		DRM_ERROR("LCPLL not locked yet\n");
9491 
9492 	if (val & LCPLL_CD_SOURCE_FCLK) {
9493 		val = I915_READ(LCPLL_CTL);
9494 		val &= ~LCPLL_CD_SOURCE_FCLK;
9495 		I915_WRITE(LCPLL_CTL, val);
9496 
9497 		if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9498 					LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9499 			DRM_ERROR("Switching back to LCPLL failed\n");
9500 	}
9501 
9502 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9503 	intel_update_cdclk(dev_priv->dev);
9504 }
9505 
9506 /*
9507  * Package states C8 and deeper are really deep PC states that can only be
9508  * reached when all the devices on the system allow it, so even if the graphics
9509  * device allows PC8+, it doesn't mean the system will actually get to these
9510  * states. Our driver only allows PC8+ when going into runtime PM.
9511  *
9512  * The requirements for PC8+ are that all the outputs are disabled, the power
9513  * well is disabled and most interrupts are disabled, and these are also
9514  * requirements for runtime PM. When these conditions are met, we manually do
9515  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9516  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9517  * hang the machine.
9518  *
9519  * When we really reach PC8 or deeper states (not just when we allow it) we lose
9520  * the state of some registers, so when we come back from PC8+ we need to
9521  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9522  * need to take care of the registers kept by RC6. Notice that this happens even
9523  * if we don't put the device in PCI D3 state (which is what currently happens
9524  * because of the runtime PM support).
9525  *
9526  * For more, read "Display Sequences for Package C8" on the hardware
9527  * documentation.
9528  */
hsw_enable_pc8(struct drm_i915_private * dev_priv)9529 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9530 {
9531 	struct drm_device *dev = dev_priv->dev;
9532 	uint32_t val;
9533 
9534 	DRM_DEBUG_KMS("Enabling package C8+\n");
9535 
9536 	if (HAS_PCH_LPT_LP(dev)) {
9537 		val = I915_READ(SOUTH_DSPCLK_GATE_D);
9538 		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9539 		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9540 	}
9541 
9542 	lpt_disable_clkout_dp(dev);
9543 	hsw_disable_lcpll(dev_priv, true, true);
9544 }
9545 
hsw_disable_pc8(struct drm_i915_private * dev_priv)9546 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9547 {
9548 	struct drm_device *dev = dev_priv->dev;
9549 	uint32_t val;
9550 
9551 	DRM_DEBUG_KMS("Disabling package C8+\n");
9552 
9553 	hsw_restore_lcpll(dev_priv);
9554 	lpt_init_pch_refclk(dev);
9555 
9556 	if (HAS_PCH_LPT_LP(dev)) {
9557 		val = I915_READ(SOUTH_DSPCLK_GATE_D);
9558 		val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9559 		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9560 	}
9561 
9562 	intel_prepare_ddi(dev);
9563 }
9564 
broxton_modeset_commit_cdclk(struct drm_atomic_state * old_state)9565 static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9566 {
9567 	struct drm_device *dev = old_state->dev;
9568 	unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9569 
9570 	broxton_set_cdclk(dev, req_cdclk);
9571 }
9572 
9573 /* compute the max rate for new configuration */
ilk_max_pixel_rate(struct drm_atomic_state * state)9574 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9575 {
9576 	struct intel_crtc *intel_crtc;
9577 	struct intel_crtc_state *crtc_state;
9578 	int max_pixel_rate = 0;
9579 
9580 	for_each_intel_crtc(state->dev, intel_crtc) {
9581 		int pixel_rate;
9582 
9583 		crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
9584 		if (IS_ERR(crtc_state))
9585 			return PTR_ERR(crtc_state);
9586 
9587 		if (!crtc_state->base.enable)
9588 			continue;
9589 
9590 		pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9591 
9592 		/* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9593 		if (IS_BROADWELL(state->dev) && crtc_state->ips_enabled)
9594 			pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9595 
9596 		max_pixel_rate = max(max_pixel_rate, pixel_rate);
9597 	}
9598 
9599 	return max_pixel_rate;
9600 }
9601 
broadwell_set_cdclk(struct drm_device * dev,int cdclk)9602 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9603 {
9604 	struct drm_i915_private *dev_priv = dev->dev_private;
9605 	uint32_t val, data;
9606 	int ret;
9607 
9608 	if (WARN((I915_READ(LCPLL_CTL) &
9609 		  (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9610 		   LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9611 		   LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9612 		   LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9613 		 "trying to change cdclk frequency with cdclk not enabled\n"))
9614 		return;
9615 
9616 	mutex_lock(&dev_priv->rps.hw_lock);
9617 	ret = sandybridge_pcode_write(dev_priv,
9618 				      BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9619 	mutex_unlock(&dev_priv->rps.hw_lock);
9620 	if (ret) {
9621 		DRM_ERROR("failed to inform pcode about cdclk change\n");
9622 		return;
9623 	}
9624 
9625 	val = I915_READ(LCPLL_CTL);
9626 	val |= LCPLL_CD_SOURCE_FCLK;
9627 	I915_WRITE(LCPLL_CTL, val);
9628 
9629 	if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9630 			       LCPLL_CD_SOURCE_FCLK_DONE, 1))
9631 		DRM_ERROR("Switching to FCLK failed\n");
9632 
9633 	val = I915_READ(LCPLL_CTL);
9634 	val &= ~LCPLL_CLK_FREQ_MASK;
9635 
9636 	switch (cdclk) {
9637 	case 450000:
9638 		val |= LCPLL_CLK_FREQ_450;
9639 		data = 0;
9640 		break;
9641 	case 540000:
9642 		val |= LCPLL_CLK_FREQ_54O_BDW;
9643 		data = 1;
9644 		break;
9645 	case 337500:
9646 		val |= LCPLL_CLK_FREQ_337_5_BDW;
9647 		data = 2;
9648 		break;
9649 	case 675000:
9650 		val |= LCPLL_CLK_FREQ_675_BDW;
9651 		data = 3;
9652 		break;
9653 	default:
9654 		WARN(1, "invalid cdclk frequency\n");
9655 		return;
9656 	}
9657 
9658 	I915_WRITE(LCPLL_CTL, val);
9659 
9660 	val = I915_READ(LCPLL_CTL);
9661 	val &= ~LCPLL_CD_SOURCE_FCLK;
9662 	I915_WRITE(LCPLL_CTL, val);
9663 
9664 	if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9665 				LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9666 		DRM_ERROR("Switching back to LCPLL failed\n");
9667 
9668 	mutex_lock(&dev_priv->rps.hw_lock);
9669 	sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9670 	mutex_unlock(&dev_priv->rps.hw_lock);
9671 
9672 	intel_update_cdclk(dev);
9673 
9674 	WARN(cdclk != dev_priv->cdclk_freq,
9675 	     "cdclk requested %d kHz but got %d kHz\n",
9676 	     cdclk, dev_priv->cdclk_freq);
9677 }
9678 
broadwell_modeset_calc_cdclk(struct drm_atomic_state * state)9679 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9680 {
9681 	struct drm_i915_private *dev_priv = to_i915(state->dev);
9682 	int max_pixclk = ilk_max_pixel_rate(state);
9683 	int cdclk;
9684 
9685 	/*
9686 	 * FIXME should also account for plane ratio
9687 	 * once 64bpp pixel formats are supported.
9688 	 */
9689 	if (max_pixclk > 540000)
9690 		cdclk = 675000;
9691 	else if (max_pixclk > 450000)
9692 		cdclk = 540000;
9693 	else if (max_pixclk > 337500)
9694 		cdclk = 450000;
9695 	else
9696 		cdclk = 337500;
9697 
9698 	/*
9699 	 * FIXME move the cdclk caclulation to
9700 	 * compute_config() so we can fail gracegully.
9701 	 */
9702 	if (cdclk > dev_priv->max_cdclk_freq) {
9703 		DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9704 			  cdclk, dev_priv->max_cdclk_freq);
9705 		cdclk = dev_priv->max_cdclk_freq;
9706 	}
9707 
9708 	to_intel_atomic_state(state)->cdclk = cdclk;
9709 
9710 	return 0;
9711 }
9712 
broadwell_modeset_commit_cdclk(struct drm_atomic_state * old_state)9713 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9714 {
9715 	struct drm_device *dev = old_state->dev;
9716 	unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9717 
9718 	broadwell_set_cdclk(dev, req_cdclk);
9719 }
9720 
haswell_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)9721 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9722 				      struct intel_crtc_state *crtc_state)
9723 {
9724 	if (!intel_ddi_pll_select(crtc, crtc_state))
9725 		return -EINVAL;
9726 
9727 	crtc->lowfreq_avail = false;
9728 
9729 	return 0;
9730 }
9731 
bxt_get_ddi_pll(struct drm_i915_private * dev_priv,enum port port,struct intel_crtc_state * pipe_config)9732 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9733 				enum port port,
9734 				struct intel_crtc_state *pipe_config)
9735 {
9736 	switch (port) {
9737 	case PORT_A:
9738 		pipe_config->ddi_pll_sel = SKL_DPLL0;
9739 		pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9740 		break;
9741 	case PORT_B:
9742 		pipe_config->ddi_pll_sel = SKL_DPLL1;
9743 		pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9744 		break;
9745 	case PORT_C:
9746 		pipe_config->ddi_pll_sel = SKL_DPLL2;
9747 		pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9748 		break;
9749 	default:
9750 		DRM_ERROR("Incorrect port type\n");
9751 	}
9752 }
9753 
skylake_get_ddi_pll(struct drm_i915_private * dev_priv,enum port port,struct intel_crtc_state * pipe_config)9754 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9755 				enum port port,
9756 				struct intel_crtc_state *pipe_config)
9757 {
9758 	u32 temp, dpll_ctl1;
9759 
9760 	temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9761 	pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9762 
9763 	switch (pipe_config->ddi_pll_sel) {
9764 	case SKL_DPLL0:
9765 		/*
9766 		 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9767 		 * of the shared DPLL framework and thus needs to be read out
9768 		 * separately
9769 		 */
9770 		dpll_ctl1 = I915_READ(DPLL_CTRL1);
9771 		pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9772 		break;
9773 	case SKL_DPLL1:
9774 		pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9775 		break;
9776 	case SKL_DPLL2:
9777 		pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9778 		break;
9779 	case SKL_DPLL3:
9780 		pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9781 		break;
9782 	}
9783 }
9784 
haswell_get_ddi_pll(struct drm_i915_private * dev_priv,enum port port,struct intel_crtc_state * pipe_config)9785 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9786 				enum port port,
9787 				struct intel_crtc_state *pipe_config)
9788 {
9789 	pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9790 
9791 	switch (pipe_config->ddi_pll_sel) {
9792 	case PORT_CLK_SEL_WRPLL1:
9793 		pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9794 		break;
9795 	case PORT_CLK_SEL_WRPLL2:
9796 		pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9797 		break;
9798 	case PORT_CLK_SEL_SPLL:
9799 		pipe_config->shared_dpll = DPLL_ID_SPLL;
9800 	}
9801 }
9802 
haswell_get_ddi_port_state(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)9803 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9804 				       struct intel_crtc_state *pipe_config)
9805 {
9806 	struct drm_device *dev = crtc->base.dev;
9807 	struct drm_i915_private *dev_priv = dev->dev_private;
9808 	struct intel_shared_dpll *pll;
9809 	enum port port;
9810 	uint32_t tmp;
9811 
9812 	tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9813 
9814 	port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9815 
9816 	if (IS_SKYLAKE(dev))
9817 		skylake_get_ddi_pll(dev_priv, port, pipe_config);
9818 	else if (IS_BROXTON(dev))
9819 		bxt_get_ddi_pll(dev_priv, port, pipe_config);
9820 	else
9821 		haswell_get_ddi_pll(dev_priv, port, pipe_config);
9822 
9823 	if (pipe_config->shared_dpll >= 0) {
9824 		pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9825 
9826 		WARN_ON(!pll->get_hw_state(dev_priv, pll,
9827 					   &pipe_config->dpll_hw_state));
9828 	}
9829 
9830 	/*
9831 	 * Haswell has only FDI/PCH transcoder A. It is which is connected to
9832 	 * DDI E. So just check whether this pipe is wired to DDI E and whether
9833 	 * the PCH transcoder is on.
9834 	 */
9835 	if (INTEL_INFO(dev)->gen < 9 &&
9836 	    (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9837 		pipe_config->has_pch_encoder = true;
9838 
9839 		tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9840 		pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9841 					  FDI_DP_PORT_WIDTH_SHIFT) + 1;
9842 
9843 		ironlake_get_fdi_m_n_config(crtc, pipe_config);
9844 	}
9845 }
9846 
haswell_get_pipe_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)9847 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9848 				    struct intel_crtc_state *pipe_config)
9849 {
9850 	struct drm_device *dev = crtc->base.dev;
9851 	struct drm_i915_private *dev_priv = dev->dev_private;
9852 	enum intel_display_power_domain pfit_domain;
9853 	uint32_t tmp;
9854 
9855 	if (!intel_display_power_is_enabled(dev_priv,
9856 					 POWER_DOMAIN_PIPE(crtc->pipe)))
9857 		return false;
9858 
9859 	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9860 	pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9861 
9862 	tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9863 	if (tmp & TRANS_DDI_FUNC_ENABLE) {
9864 		enum pipe trans_edp_pipe;
9865 		switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9866 		default:
9867 			WARN(1, "unknown pipe linked to edp transcoder\n");
9868 		case TRANS_DDI_EDP_INPUT_A_ONOFF:
9869 		case TRANS_DDI_EDP_INPUT_A_ON:
9870 			trans_edp_pipe = PIPE_A;
9871 			break;
9872 		case TRANS_DDI_EDP_INPUT_B_ONOFF:
9873 			trans_edp_pipe = PIPE_B;
9874 			break;
9875 		case TRANS_DDI_EDP_INPUT_C_ONOFF:
9876 			trans_edp_pipe = PIPE_C;
9877 			break;
9878 		}
9879 
9880 		if (trans_edp_pipe == crtc->pipe)
9881 			pipe_config->cpu_transcoder = TRANSCODER_EDP;
9882 	}
9883 
9884 	if (!intel_display_power_is_enabled(dev_priv,
9885 			POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
9886 		return false;
9887 
9888 	tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9889 	if (!(tmp & PIPECONF_ENABLE))
9890 		return false;
9891 
9892 	haswell_get_ddi_port_state(crtc, pipe_config);
9893 
9894 	intel_get_pipe_timings(crtc, pipe_config);
9895 
9896 	if (INTEL_INFO(dev)->gen >= 9) {
9897 		skl_init_scalers(dev, crtc, pipe_config);
9898 	}
9899 
9900 	pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9901 
9902 	if (INTEL_INFO(dev)->gen >= 9) {
9903 		pipe_config->scaler_state.scaler_id = -1;
9904 		pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9905 	}
9906 
9907 	if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
9908 		if (INTEL_INFO(dev)->gen >= 9)
9909 			skylake_get_pfit_config(crtc, pipe_config);
9910 		else
9911 			ironlake_get_pfit_config(crtc, pipe_config);
9912 	}
9913 
9914 	if (IS_HASWELL(dev))
9915 		pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9916 			(I915_READ(IPS_CTL) & IPS_ENABLE);
9917 
9918 	if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
9919 		pipe_config->pixel_multiplier =
9920 			I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9921 	} else {
9922 		pipe_config->pixel_multiplier = 1;
9923 	}
9924 
9925 	return true;
9926 }
9927 
i845_update_cursor(struct drm_crtc * crtc,u32 base,bool on)9928 static void i845_update_cursor(struct drm_crtc *crtc, u32 base, bool on)
9929 {
9930 	struct drm_device *dev = crtc->dev;
9931 	struct drm_i915_private *dev_priv = dev->dev_private;
9932 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9933 	uint32_t cntl = 0, size = 0;
9934 
9935 	if (on) {
9936 		unsigned int width = intel_crtc->base.cursor->state->crtc_w;
9937 		unsigned int height = intel_crtc->base.cursor->state->crtc_h;
9938 		unsigned int stride = roundup_pow_of_two(width) * 4;
9939 
9940 		switch (stride) {
9941 		default:
9942 			WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
9943 				  width, stride);
9944 			stride = 256;
9945 			/* fallthrough */
9946 		case 256:
9947 		case 512:
9948 		case 1024:
9949 		case 2048:
9950 			break;
9951 		}
9952 
9953 		cntl |= CURSOR_ENABLE |
9954 			CURSOR_GAMMA_ENABLE |
9955 			CURSOR_FORMAT_ARGB |
9956 			CURSOR_STRIDE(stride);
9957 
9958 		size = (height << 12) | width;
9959 	}
9960 
9961 	if (intel_crtc->cursor_cntl != 0 &&
9962 	    (intel_crtc->cursor_base != base ||
9963 	     intel_crtc->cursor_size != size ||
9964 	     intel_crtc->cursor_cntl != cntl)) {
9965 		/* On these chipsets we can only modify the base/size/stride
9966 		 * whilst the cursor is disabled.
9967 		 */
9968 		I915_WRITE(CURCNTR(PIPE_A), 0);
9969 		POSTING_READ(CURCNTR(PIPE_A));
9970 		intel_crtc->cursor_cntl = 0;
9971 	}
9972 
9973 	if (intel_crtc->cursor_base != base) {
9974 		I915_WRITE(CURBASE(PIPE_A), base);
9975 		intel_crtc->cursor_base = base;
9976 	}
9977 
9978 	if (intel_crtc->cursor_size != size) {
9979 		I915_WRITE(CURSIZE, size);
9980 		intel_crtc->cursor_size = size;
9981 	}
9982 
9983 	if (intel_crtc->cursor_cntl != cntl) {
9984 		I915_WRITE(CURCNTR(PIPE_A), cntl);
9985 		POSTING_READ(CURCNTR(PIPE_A));
9986 		intel_crtc->cursor_cntl = cntl;
9987 	}
9988 }
9989 
i9xx_update_cursor(struct drm_crtc * crtc,u32 base,bool on)9990 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base, bool on)
9991 {
9992 	struct drm_device *dev = crtc->dev;
9993 	struct drm_i915_private *dev_priv = dev->dev_private;
9994 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9995 	int pipe = intel_crtc->pipe;
9996 	uint32_t cntl = 0;
9997 
9998 	if (on) {
9999 		cntl = MCURSOR_GAMMA_ENABLE;
10000 		switch (intel_crtc->base.cursor->state->crtc_w) {
10001 			case 64:
10002 				cntl |= CURSOR_MODE_64_ARGB_AX;
10003 				break;
10004 			case 128:
10005 				cntl |= CURSOR_MODE_128_ARGB_AX;
10006 				break;
10007 			case 256:
10008 				cntl |= CURSOR_MODE_256_ARGB_AX;
10009 				break;
10010 			default:
10011 				MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
10012 				return;
10013 		}
10014 		cntl |= pipe << 28; /* Connect to correct pipe */
10015 
10016 		if (HAS_DDI(dev))
10017 			cntl |= CURSOR_PIPE_CSC_ENABLE;
10018 	}
10019 
10020 	if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
10021 		cntl |= CURSOR_ROTATE_180;
10022 
10023 	if (intel_crtc->cursor_cntl != cntl) {
10024 		I915_WRITE(CURCNTR(pipe), cntl);
10025 		POSTING_READ(CURCNTR(pipe));
10026 		intel_crtc->cursor_cntl = cntl;
10027 	}
10028 
10029 	/* and commit changes on next vblank */
10030 	I915_WRITE(CURBASE(pipe), base);
10031 	POSTING_READ(CURBASE(pipe));
10032 
10033 	intel_crtc->cursor_base = base;
10034 }
10035 
10036 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
intel_crtc_update_cursor(struct drm_crtc * crtc,bool on)10037 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10038 				     bool on)
10039 {
10040 	struct drm_device *dev = crtc->dev;
10041 	struct drm_i915_private *dev_priv = dev->dev_private;
10042 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10043 	int pipe = intel_crtc->pipe;
10044 	struct drm_plane_state *cursor_state = crtc->cursor->state;
10045 	int x = cursor_state->crtc_x;
10046 	int y = cursor_state->crtc_y;
10047 	u32 base = 0, pos = 0;
10048 
10049 	base = intel_crtc->cursor_addr;
10050 
10051 	if (x >= intel_crtc->config->pipe_src_w)
10052 		on = false;
10053 
10054 	if (y >= intel_crtc->config->pipe_src_h)
10055 		on = false;
10056 
10057 	if (x < 0) {
10058 		if (x + cursor_state->crtc_w <= 0)
10059 			on = false;
10060 
10061 		pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10062 		x = -x;
10063 	}
10064 	pos |= x << CURSOR_X_SHIFT;
10065 
10066 	if (y < 0) {
10067 		if (y + cursor_state->crtc_h <= 0)
10068 			on = false;
10069 
10070 		pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10071 		y = -y;
10072 	}
10073 	pos |= y << CURSOR_Y_SHIFT;
10074 
10075 	I915_WRITE(CURPOS(pipe), pos);
10076 
10077 	/* ILK+ do this automagically */
10078 	if (HAS_GMCH_DISPLAY(dev) &&
10079 	    crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
10080 		base += (cursor_state->crtc_h *
10081 			 cursor_state->crtc_w - 1) * 4;
10082 	}
10083 
10084 	if (IS_845G(dev) || IS_I865G(dev))
10085 		i845_update_cursor(crtc, base, on);
10086 	else
10087 		i9xx_update_cursor(crtc, base, on);
10088 }
10089 
cursor_size_ok(struct drm_device * dev,uint32_t width,uint32_t height)10090 static bool cursor_size_ok(struct drm_device *dev,
10091 			   uint32_t width, uint32_t height)
10092 {
10093 	if (width == 0 || height == 0)
10094 		return false;
10095 
10096 	/*
10097 	 * 845g/865g are special in that they are only limited by
10098 	 * the width of their cursors, the height is arbitrary up to
10099 	 * the precision of the register. Everything else requires
10100 	 * square cursors, limited to a few power-of-two sizes.
10101 	 */
10102 	if (IS_845G(dev) || IS_I865G(dev)) {
10103 		if ((width & 63) != 0)
10104 			return false;
10105 
10106 		if (width > (IS_845G(dev) ? 64 : 512))
10107 			return false;
10108 
10109 		if (height > 1023)
10110 			return false;
10111 	} else {
10112 		switch (width | height) {
10113 		case 256:
10114 		case 128:
10115 			if (IS_GEN2(dev))
10116 				return false;
10117 		case 64:
10118 			break;
10119 		default:
10120 			return false;
10121 		}
10122 	}
10123 
10124 	return true;
10125 }
10126 
intel_crtc_gamma_set(struct drm_crtc * crtc,u16 * red,u16 * green,u16 * blue,uint32_t start,uint32_t size)10127 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
10128 				 u16 *blue, uint32_t start, uint32_t size)
10129 {
10130 	int end = (start + size > 256) ? 256 : start + size, i;
10131 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10132 
10133 	for (i = start; i < end; i++) {
10134 		intel_crtc->lut_r[i] = red[i] >> 8;
10135 		intel_crtc->lut_g[i] = green[i] >> 8;
10136 		intel_crtc->lut_b[i] = blue[i] >> 8;
10137 	}
10138 
10139 	intel_crtc_load_lut(crtc);
10140 }
10141 
10142 /* VESA 640x480x72Hz mode to set on the pipe */
10143 static struct drm_display_mode load_detect_mode = {
10144 	DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10145 		 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10146 };
10147 
10148 struct drm_framebuffer *
__intel_framebuffer_create(struct drm_device * dev,struct drm_mode_fb_cmd2 * mode_cmd,struct drm_i915_gem_object * obj)10149 __intel_framebuffer_create(struct drm_device *dev,
10150 			   struct drm_mode_fb_cmd2 *mode_cmd,
10151 			   struct drm_i915_gem_object *obj)
10152 {
10153 	struct intel_framebuffer *intel_fb;
10154 	int ret;
10155 
10156 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10157 	if (!intel_fb) {
10158 		drm_gem_object_unreference(&obj->base);
10159 		return ERR_PTR(-ENOMEM);
10160 	}
10161 
10162 	ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10163 	if (ret)
10164 		goto err;
10165 
10166 	return &intel_fb->base;
10167 err:
10168 	drm_gem_object_unreference(&obj->base);
10169 	kfree(intel_fb);
10170 
10171 	return ERR_PTR(ret);
10172 }
10173 
10174 static struct drm_framebuffer *
intel_framebuffer_create(struct drm_device * dev,struct drm_mode_fb_cmd2 * mode_cmd,struct drm_i915_gem_object * obj)10175 intel_framebuffer_create(struct drm_device *dev,
10176 			 struct drm_mode_fb_cmd2 *mode_cmd,
10177 			 struct drm_i915_gem_object *obj)
10178 {
10179 	struct drm_framebuffer *fb;
10180 	int ret;
10181 
10182 	ret = i915_mutex_lock_interruptible(dev);
10183 	if (ret)
10184 		return ERR_PTR(ret);
10185 	fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10186 	mutex_unlock(&dev->struct_mutex);
10187 
10188 	return fb;
10189 }
10190 
10191 static u32
intel_framebuffer_pitch_for_width(int width,int bpp)10192 intel_framebuffer_pitch_for_width(int width, int bpp)
10193 {
10194 	u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10195 	return ALIGN(pitch, 64);
10196 }
10197 
10198 static u32
intel_framebuffer_size_for_mode(struct drm_display_mode * mode,int bpp)10199 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10200 {
10201 	u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10202 	return PAGE_ALIGN(pitch * mode->vdisplay);
10203 }
10204 
10205 static struct drm_framebuffer *
intel_framebuffer_create_for_mode(struct drm_device * dev,struct drm_display_mode * mode,int depth,int bpp)10206 intel_framebuffer_create_for_mode(struct drm_device *dev,
10207 				  struct drm_display_mode *mode,
10208 				  int depth, int bpp)
10209 {
10210 	struct drm_i915_gem_object *obj;
10211 	struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10212 
10213 	obj = i915_gem_alloc_object(dev,
10214 				    intel_framebuffer_size_for_mode(mode, bpp));
10215 	if (obj == NULL)
10216 		return ERR_PTR(-ENOMEM);
10217 
10218 	mode_cmd.width = mode->hdisplay;
10219 	mode_cmd.height = mode->vdisplay;
10220 	mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10221 								bpp);
10222 	mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10223 
10224 	return intel_framebuffer_create(dev, &mode_cmd, obj);
10225 }
10226 
10227 static struct drm_framebuffer *
mode_fits_in_fbdev(struct drm_device * dev,struct drm_display_mode * mode)10228 mode_fits_in_fbdev(struct drm_device *dev,
10229 		   struct drm_display_mode *mode)
10230 {
10231 #ifdef CONFIG_DRM_FBDEV_EMULATION
10232 	struct drm_i915_private *dev_priv = dev->dev_private;
10233 	struct drm_i915_gem_object *obj;
10234 	struct drm_framebuffer *fb;
10235 
10236 	if (!dev_priv->fbdev)
10237 		return NULL;
10238 
10239 	if (!dev_priv->fbdev->fb)
10240 		return NULL;
10241 
10242 	obj = dev_priv->fbdev->fb->obj;
10243 	BUG_ON(!obj);
10244 
10245 	fb = &dev_priv->fbdev->fb->base;
10246 	if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10247 							       fb->bits_per_pixel))
10248 		return NULL;
10249 
10250 	if (obj->base.size < mode->vdisplay * fb->pitches[0])
10251 		return NULL;
10252 
10253 	return fb;
10254 #else
10255 	return NULL;
10256 #endif
10257 }
10258 
intel_modeset_setup_plane_state(struct drm_atomic_state * state,struct drm_crtc * crtc,struct drm_display_mode * mode,struct drm_framebuffer * fb,int x,int y)10259 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10260 					   struct drm_crtc *crtc,
10261 					   struct drm_display_mode *mode,
10262 					   struct drm_framebuffer *fb,
10263 					   int x, int y)
10264 {
10265 	struct drm_plane_state *plane_state;
10266 	int hdisplay, vdisplay;
10267 	int ret;
10268 
10269 	plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10270 	if (IS_ERR(plane_state))
10271 		return PTR_ERR(plane_state);
10272 
10273 	if (mode)
10274 		drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10275 	else
10276 		hdisplay = vdisplay = 0;
10277 
10278 	ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10279 	if (ret)
10280 		return ret;
10281 	drm_atomic_set_fb_for_plane(plane_state, fb);
10282 	plane_state->crtc_x = 0;
10283 	plane_state->crtc_y = 0;
10284 	plane_state->crtc_w = hdisplay;
10285 	plane_state->crtc_h = vdisplay;
10286 	plane_state->src_x = x << 16;
10287 	plane_state->src_y = y << 16;
10288 	plane_state->src_w = hdisplay << 16;
10289 	plane_state->src_h = vdisplay << 16;
10290 
10291 	return 0;
10292 }
10293 
intel_get_load_detect_pipe(struct drm_connector * connector,struct drm_display_mode * mode,struct intel_load_detect_pipe * old,struct drm_modeset_acquire_ctx * ctx)10294 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10295 				struct drm_display_mode *mode,
10296 				struct intel_load_detect_pipe *old,
10297 				struct drm_modeset_acquire_ctx *ctx)
10298 {
10299 	struct intel_crtc *intel_crtc;
10300 	struct intel_encoder *intel_encoder =
10301 		intel_attached_encoder(connector);
10302 	struct drm_crtc *possible_crtc;
10303 	struct drm_encoder *encoder = &intel_encoder->base;
10304 	struct drm_crtc *crtc = NULL;
10305 	struct drm_device *dev = encoder->dev;
10306 	struct drm_framebuffer *fb;
10307 	struct drm_mode_config *config = &dev->mode_config;
10308 	struct drm_atomic_state *state = NULL;
10309 	struct drm_connector_state *connector_state;
10310 	struct intel_crtc_state *crtc_state;
10311 	int ret, i = -1;
10312 
10313 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10314 		      connector->base.id, connector->name,
10315 		      encoder->base.id, encoder->name);
10316 
10317 retry:
10318 	ret = drm_modeset_lock(&config->connection_mutex, ctx);
10319 	if (ret)
10320 		goto fail;
10321 
10322 	/*
10323 	 * Algorithm gets a little messy:
10324 	 *
10325 	 *   - if the connector already has an assigned crtc, use it (but make
10326 	 *     sure it's on first)
10327 	 *
10328 	 *   - try to find the first unused crtc that can drive this connector,
10329 	 *     and use that if we find one
10330 	 */
10331 
10332 	/* See if we already have a CRTC for this connector */
10333 	if (encoder->crtc) {
10334 		crtc = encoder->crtc;
10335 
10336 		ret = drm_modeset_lock(&crtc->mutex, ctx);
10337 		if (ret)
10338 			goto fail;
10339 		ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10340 		if (ret)
10341 			goto fail;
10342 
10343 		old->dpms_mode = connector->dpms;
10344 		old->load_detect_temp = false;
10345 
10346 		/* Make sure the crtc and connector are running */
10347 		if (connector->dpms != DRM_MODE_DPMS_ON)
10348 			connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
10349 
10350 		return true;
10351 	}
10352 
10353 	/* Find an unused one (if possible) */
10354 	for_each_crtc(dev, possible_crtc) {
10355 		i++;
10356 		if (!(encoder->possible_crtcs & (1 << i)))
10357 			continue;
10358 		if (possible_crtc->state->enable)
10359 			continue;
10360 
10361 		crtc = possible_crtc;
10362 		break;
10363 	}
10364 
10365 	/*
10366 	 * If we didn't find an unused CRTC, don't use any.
10367 	 */
10368 	if (!crtc) {
10369 		DRM_DEBUG_KMS("no pipe available for load-detect\n");
10370 		goto fail;
10371 	}
10372 
10373 	ret = drm_modeset_lock(&crtc->mutex, ctx);
10374 	if (ret)
10375 		goto fail;
10376 	ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10377 	if (ret)
10378 		goto fail;
10379 
10380 	intel_crtc = to_intel_crtc(crtc);
10381 	old->dpms_mode = connector->dpms;
10382 	old->load_detect_temp = true;
10383 	old->release_fb = NULL;
10384 
10385 	state = drm_atomic_state_alloc(dev);
10386 	if (!state)
10387 		return false;
10388 
10389 	state->acquire_ctx = ctx;
10390 
10391 	connector_state = drm_atomic_get_connector_state(state, connector);
10392 	if (IS_ERR(connector_state)) {
10393 		ret = PTR_ERR(connector_state);
10394 		goto fail;
10395 	}
10396 
10397 	connector_state->crtc = crtc;
10398 	connector_state->best_encoder = &intel_encoder->base;
10399 
10400 	crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10401 	if (IS_ERR(crtc_state)) {
10402 		ret = PTR_ERR(crtc_state);
10403 		goto fail;
10404 	}
10405 
10406 	crtc_state->base.active = crtc_state->base.enable = true;
10407 
10408 	if (!mode)
10409 		mode = &load_detect_mode;
10410 
10411 	/* We need a framebuffer large enough to accommodate all accesses
10412 	 * that the plane may generate whilst we perform load detection.
10413 	 * We can not rely on the fbcon either being present (we get called
10414 	 * during its initialisation to detect all boot displays, or it may
10415 	 * not even exist) or that it is large enough to satisfy the
10416 	 * requested mode.
10417 	 */
10418 	fb = mode_fits_in_fbdev(dev, mode);
10419 	if (fb == NULL) {
10420 		DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10421 		fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10422 		old->release_fb = fb;
10423 	} else
10424 		DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10425 	if (IS_ERR(fb)) {
10426 		DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10427 		goto fail;
10428 	}
10429 
10430 	ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10431 	if (ret)
10432 		goto fail;
10433 
10434 	drm_mode_copy(&crtc_state->base.mode, mode);
10435 
10436 	if (drm_atomic_commit(state)) {
10437 		DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10438 		if (old->release_fb)
10439 			old->release_fb->funcs->destroy(old->release_fb);
10440 		goto fail;
10441 	}
10442 	crtc->primary->crtc = crtc;
10443 
10444 	/* let the connector get through one full cycle before testing */
10445 	intel_wait_for_vblank(dev, intel_crtc->pipe);
10446 	return true;
10447 
10448 fail:
10449 	drm_atomic_state_free(state);
10450 	state = NULL;
10451 
10452 	if (ret == -EDEADLK) {
10453 		drm_modeset_backoff(ctx);
10454 		goto retry;
10455 	}
10456 
10457 	return false;
10458 }
10459 
intel_release_load_detect_pipe(struct drm_connector * connector,struct intel_load_detect_pipe * old,struct drm_modeset_acquire_ctx * ctx)10460 void intel_release_load_detect_pipe(struct drm_connector *connector,
10461 				    struct intel_load_detect_pipe *old,
10462 				    struct drm_modeset_acquire_ctx *ctx)
10463 {
10464 	struct drm_device *dev = connector->dev;
10465 	struct intel_encoder *intel_encoder =
10466 		intel_attached_encoder(connector);
10467 	struct drm_encoder *encoder = &intel_encoder->base;
10468 	struct drm_crtc *crtc = encoder->crtc;
10469 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10470 	struct drm_atomic_state *state;
10471 	struct drm_connector_state *connector_state;
10472 	struct intel_crtc_state *crtc_state;
10473 	int ret;
10474 
10475 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10476 		      connector->base.id, connector->name,
10477 		      encoder->base.id, encoder->name);
10478 
10479 	if (old->load_detect_temp) {
10480 		state = drm_atomic_state_alloc(dev);
10481 		if (!state)
10482 			goto fail;
10483 
10484 		state->acquire_ctx = ctx;
10485 
10486 		connector_state = drm_atomic_get_connector_state(state, connector);
10487 		if (IS_ERR(connector_state))
10488 			goto fail;
10489 
10490 		crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10491 		if (IS_ERR(crtc_state))
10492 			goto fail;
10493 
10494 		connector_state->best_encoder = NULL;
10495 		connector_state->crtc = NULL;
10496 
10497 		crtc_state->base.enable = crtc_state->base.active = false;
10498 
10499 		ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
10500 						      0, 0);
10501 		if (ret)
10502 			goto fail;
10503 
10504 		ret = drm_atomic_commit(state);
10505 		if (ret)
10506 			goto fail;
10507 
10508 		if (old->release_fb) {
10509 			drm_framebuffer_unregister_private(old->release_fb);
10510 			drm_framebuffer_unreference(old->release_fb);
10511 		}
10512 
10513 		return;
10514 	}
10515 
10516 	/* Switch crtc and encoder back off if necessary */
10517 	if (old->dpms_mode != DRM_MODE_DPMS_ON)
10518 		connector->funcs->dpms(connector, old->dpms_mode);
10519 
10520 	return;
10521 fail:
10522 	DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
10523 	drm_atomic_state_free(state);
10524 }
10525 
i9xx_pll_refclk(struct drm_device * dev,const struct intel_crtc_state * pipe_config)10526 static int i9xx_pll_refclk(struct drm_device *dev,
10527 			   const struct intel_crtc_state *pipe_config)
10528 {
10529 	struct drm_i915_private *dev_priv = dev->dev_private;
10530 	u32 dpll = pipe_config->dpll_hw_state.dpll;
10531 
10532 	if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10533 		return dev_priv->vbt.lvds_ssc_freq;
10534 	else if (HAS_PCH_SPLIT(dev))
10535 		return 120000;
10536 	else if (!IS_GEN2(dev))
10537 		return 96000;
10538 	else
10539 		return 48000;
10540 }
10541 
10542 /* Returns the clock of the currently programmed mode of the given pipe. */
i9xx_crtc_clock_get(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)10543 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10544 				struct intel_crtc_state *pipe_config)
10545 {
10546 	struct drm_device *dev = crtc->base.dev;
10547 	struct drm_i915_private *dev_priv = dev->dev_private;
10548 	int pipe = pipe_config->cpu_transcoder;
10549 	u32 dpll = pipe_config->dpll_hw_state.dpll;
10550 	u32 fp;
10551 	intel_clock_t clock;
10552 	int port_clock;
10553 	int refclk = i9xx_pll_refclk(dev, pipe_config);
10554 
10555 	if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10556 		fp = pipe_config->dpll_hw_state.fp0;
10557 	else
10558 		fp = pipe_config->dpll_hw_state.fp1;
10559 
10560 	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10561 	if (IS_PINEVIEW(dev)) {
10562 		clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10563 		clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10564 	} else {
10565 		clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10566 		clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10567 	}
10568 
10569 	if (!IS_GEN2(dev)) {
10570 		if (IS_PINEVIEW(dev))
10571 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10572 				DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10573 		else
10574 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10575 			       DPLL_FPA01_P1_POST_DIV_SHIFT);
10576 
10577 		switch (dpll & DPLL_MODE_MASK) {
10578 		case DPLLB_MODE_DAC_SERIAL:
10579 			clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10580 				5 : 10;
10581 			break;
10582 		case DPLLB_MODE_LVDS:
10583 			clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10584 				7 : 14;
10585 			break;
10586 		default:
10587 			DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10588 				  "mode\n", (int)(dpll & DPLL_MODE_MASK));
10589 			return;
10590 		}
10591 
10592 		if (IS_PINEVIEW(dev))
10593 			port_clock = pnv_calc_dpll_params(refclk, &clock);
10594 		else
10595 			port_clock = i9xx_calc_dpll_params(refclk, &clock);
10596 	} else {
10597 		u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10598 		bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10599 
10600 		if (is_lvds) {
10601 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10602 				       DPLL_FPA01_P1_POST_DIV_SHIFT);
10603 
10604 			if (lvds & LVDS_CLKB_POWER_UP)
10605 				clock.p2 = 7;
10606 			else
10607 				clock.p2 = 14;
10608 		} else {
10609 			if (dpll & PLL_P1_DIVIDE_BY_TWO)
10610 				clock.p1 = 2;
10611 			else {
10612 				clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10613 					    DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10614 			}
10615 			if (dpll & PLL_P2_DIVIDE_BY_4)
10616 				clock.p2 = 4;
10617 			else
10618 				clock.p2 = 2;
10619 		}
10620 
10621 		port_clock = i9xx_calc_dpll_params(refclk, &clock);
10622 	}
10623 
10624 	/*
10625 	 * This value includes pixel_multiplier. We will use
10626 	 * port_clock to compute adjusted_mode.crtc_clock in the
10627 	 * encoder's get_config() function.
10628 	 */
10629 	pipe_config->port_clock = port_clock;
10630 }
10631 
intel_dotclock_calculate(int link_freq,const struct intel_link_m_n * m_n)10632 int intel_dotclock_calculate(int link_freq,
10633 			     const struct intel_link_m_n *m_n)
10634 {
10635 	/*
10636 	 * The calculation for the data clock is:
10637 	 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10638 	 * But we want to avoid losing precison if possible, so:
10639 	 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10640 	 *
10641 	 * and the link clock is simpler:
10642 	 * link_clock = (m * link_clock) / n
10643 	 */
10644 
10645 	if (!m_n->link_n)
10646 		return 0;
10647 
10648 	return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10649 }
10650 
ironlake_pch_clock_get(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)10651 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10652 				   struct intel_crtc_state *pipe_config)
10653 {
10654 	struct drm_device *dev = crtc->base.dev;
10655 
10656 	/* read out port_clock from the DPLL */
10657 	i9xx_crtc_clock_get(crtc, pipe_config);
10658 
10659 	/*
10660 	 * This value does not include pixel_multiplier.
10661 	 * We will check that port_clock and adjusted_mode.crtc_clock
10662 	 * agree once we know their relationship in the encoder's
10663 	 * get_config() function.
10664 	 */
10665 	pipe_config->base.adjusted_mode.crtc_clock =
10666 		intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10667 					 &pipe_config->fdi_m_n);
10668 }
10669 
10670 /** Returns the currently programmed mode of the given pipe. */
intel_crtc_mode_get(struct drm_device * dev,struct drm_crtc * crtc)10671 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10672 					     struct drm_crtc *crtc)
10673 {
10674 	struct drm_i915_private *dev_priv = dev->dev_private;
10675 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10676 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10677 	struct drm_display_mode *mode;
10678 	struct intel_crtc_state pipe_config;
10679 	int htot = I915_READ(HTOTAL(cpu_transcoder));
10680 	int hsync = I915_READ(HSYNC(cpu_transcoder));
10681 	int vtot = I915_READ(VTOTAL(cpu_transcoder));
10682 	int vsync = I915_READ(VSYNC(cpu_transcoder));
10683 	enum pipe pipe = intel_crtc->pipe;
10684 
10685 	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10686 	if (!mode)
10687 		return NULL;
10688 
10689 	/*
10690 	 * Construct a pipe_config sufficient for getting the clock info
10691 	 * back out of crtc_clock_get.
10692 	 *
10693 	 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10694 	 * to use a real value here instead.
10695 	 */
10696 	pipe_config.cpu_transcoder = (enum transcoder) pipe;
10697 	pipe_config.pixel_multiplier = 1;
10698 	pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10699 	pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10700 	pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10701 	i9xx_crtc_clock_get(intel_crtc, &pipe_config);
10702 
10703 	mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
10704 	mode->hdisplay = (htot & 0xffff) + 1;
10705 	mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10706 	mode->hsync_start = (hsync & 0xffff) + 1;
10707 	mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10708 	mode->vdisplay = (vtot & 0xffff) + 1;
10709 	mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10710 	mode->vsync_start = (vsync & 0xffff) + 1;
10711 	mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10712 
10713 	drm_mode_set_name(mode);
10714 
10715 	return mode;
10716 }
10717 
intel_mark_busy(struct drm_device * dev)10718 void intel_mark_busy(struct drm_device *dev)
10719 {
10720 	struct drm_i915_private *dev_priv = dev->dev_private;
10721 
10722 	if (dev_priv->mm.busy)
10723 		return;
10724 
10725 	intel_runtime_pm_get(dev_priv);
10726 	i915_update_gfx_val(dev_priv);
10727 	if (INTEL_INFO(dev)->gen >= 6)
10728 		gen6_rps_busy(dev_priv);
10729 	dev_priv->mm.busy = true;
10730 }
10731 
intel_mark_idle(struct drm_device * dev)10732 void intel_mark_idle(struct drm_device *dev)
10733 {
10734 	struct drm_i915_private *dev_priv = dev->dev_private;
10735 
10736 	if (!dev_priv->mm.busy)
10737 		return;
10738 
10739 	dev_priv->mm.busy = false;
10740 
10741 	if (INTEL_INFO(dev)->gen >= 6)
10742 		gen6_rps_idle(dev->dev_private);
10743 
10744 	intel_runtime_pm_put(dev_priv);
10745 }
10746 
intel_crtc_destroy(struct drm_crtc * crtc)10747 static void intel_crtc_destroy(struct drm_crtc *crtc)
10748 {
10749 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10750 	struct drm_device *dev = crtc->dev;
10751 	struct intel_unpin_work *work;
10752 
10753 	spin_lock_irq(&dev->event_lock);
10754 	work = intel_crtc->unpin_work;
10755 	intel_crtc->unpin_work = NULL;
10756 	spin_unlock_irq(&dev->event_lock);
10757 
10758 	if (work) {
10759 		cancel_work_sync(&work->work);
10760 		kfree(work);
10761 	}
10762 
10763 	drm_crtc_cleanup(crtc);
10764 
10765 	kfree(intel_crtc);
10766 }
10767 
intel_unpin_work_fn(struct work_struct * __work)10768 static void intel_unpin_work_fn(struct work_struct *__work)
10769 {
10770 	struct intel_unpin_work *work =
10771 		container_of(__work, struct intel_unpin_work, work);
10772 	struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10773 	struct drm_device *dev = crtc->base.dev;
10774 	struct drm_plane *primary = crtc->base.primary;
10775 
10776 	mutex_lock(&dev->struct_mutex);
10777 	intel_unpin_fb_obj(work->old_fb, primary->state);
10778 	drm_gem_object_unreference(&work->pending_flip_obj->base);
10779 
10780 	if (work->flip_queued_req)
10781 		i915_gem_request_assign(&work->flip_queued_req, NULL);
10782 	mutex_unlock(&dev->struct_mutex);
10783 
10784 	intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
10785 	drm_framebuffer_unreference(work->old_fb);
10786 
10787 	BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10788 	atomic_dec(&crtc->unpin_work_count);
10789 
10790 	kfree(work);
10791 }
10792 
do_intel_finish_page_flip(struct drm_device * dev,struct drm_crtc * crtc)10793 static void do_intel_finish_page_flip(struct drm_device *dev,
10794 				      struct drm_crtc *crtc)
10795 {
10796 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10797 	struct intel_unpin_work *work;
10798 	unsigned long flags;
10799 
10800 	/* Ignore early vblank irqs */
10801 	if (intel_crtc == NULL)
10802 		return;
10803 
10804 	/*
10805 	 * This is called both by irq handlers and the reset code (to complete
10806 	 * lost pageflips) so needs the full irqsave spinlocks.
10807 	 */
10808 	spin_lock_irqsave(&dev->event_lock, flags);
10809 	work = intel_crtc->unpin_work;
10810 
10811 	/* Ensure we don't miss a work->pending update ... */
10812 	smp_rmb();
10813 
10814 	if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10815 		spin_unlock_irqrestore(&dev->event_lock, flags);
10816 		return;
10817 	}
10818 
10819 	page_flip_completed(intel_crtc);
10820 
10821 	spin_unlock_irqrestore(&dev->event_lock, flags);
10822 }
10823 
intel_finish_page_flip(struct drm_device * dev,int pipe)10824 void intel_finish_page_flip(struct drm_device *dev, int pipe)
10825 {
10826 	struct drm_i915_private *dev_priv = dev->dev_private;
10827 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10828 
10829 	do_intel_finish_page_flip(dev, crtc);
10830 }
10831 
intel_finish_page_flip_plane(struct drm_device * dev,int plane)10832 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10833 {
10834 	struct drm_i915_private *dev_priv = dev->dev_private;
10835 	struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10836 
10837 	do_intel_finish_page_flip(dev, crtc);
10838 }
10839 
10840 /* Is 'a' after or equal to 'b'? */
g4x_flip_count_after_eq(u32 a,u32 b)10841 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10842 {
10843 	return !((a - b) & 0x80000000);
10844 }
10845 
page_flip_finished(struct intel_crtc * crtc)10846 static bool page_flip_finished(struct intel_crtc *crtc)
10847 {
10848 	struct drm_device *dev = crtc->base.dev;
10849 	struct drm_i915_private *dev_priv = dev->dev_private;
10850 
10851 	if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10852 	    crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10853 		return true;
10854 
10855 	/*
10856 	 * The relevant registers doen't exist on pre-ctg.
10857 	 * As the flip done interrupt doesn't trigger for mmio
10858 	 * flips on gmch platforms, a flip count check isn't
10859 	 * really needed there. But since ctg has the registers,
10860 	 * include it in the check anyway.
10861 	 */
10862 	if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10863 		return true;
10864 
10865 	/*
10866 	 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10867 	 * used the same base address. In that case the mmio flip might
10868 	 * have completed, but the CS hasn't even executed the flip yet.
10869 	 *
10870 	 * A flip count check isn't enough as the CS might have updated
10871 	 * the base address just after start of vblank, but before we
10872 	 * managed to process the interrupt. This means we'd complete the
10873 	 * CS flip too soon.
10874 	 *
10875 	 * Combining both checks should get us a good enough result. It may
10876 	 * still happen that the CS flip has been executed, but has not
10877 	 * yet actually completed. But in case the base address is the same
10878 	 * anyway, we don't really care.
10879 	 */
10880 	return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10881 		crtc->unpin_work->gtt_offset &&
10882 		g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
10883 				    crtc->unpin_work->flip_count);
10884 }
10885 
intel_prepare_page_flip(struct drm_device * dev,int plane)10886 void intel_prepare_page_flip(struct drm_device *dev, int plane)
10887 {
10888 	struct drm_i915_private *dev_priv = dev->dev_private;
10889 	struct intel_crtc *intel_crtc =
10890 		to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10891 	unsigned long flags;
10892 
10893 
10894 	/*
10895 	 * This is called both by irq handlers and the reset code (to complete
10896 	 * lost pageflips) so needs the full irqsave spinlocks.
10897 	 *
10898 	 * NB: An MMIO update of the plane base pointer will also
10899 	 * generate a page-flip completion irq, i.e. every modeset
10900 	 * is also accompanied by a spurious intel_prepare_page_flip().
10901 	 */
10902 	spin_lock_irqsave(&dev->event_lock, flags);
10903 	if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
10904 		atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
10905 	spin_unlock_irqrestore(&dev->event_lock, flags);
10906 }
10907 
intel_mark_page_flip_active(struct intel_unpin_work * work)10908 static inline void intel_mark_page_flip_active(struct intel_unpin_work *work)
10909 {
10910 	/* Ensure that the work item is consistent when activating it ... */
10911 	smp_wmb();
10912 	atomic_set(&work->pending, INTEL_FLIP_PENDING);
10913 	/* and that it is marked active as soon as the irq could fire. */
10914 	smp_wmb();
10915 }
10916 
intel_gen2_queue_flip(struct drm_device * dev,struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_i915_gem_object * obj,struct drm_i915_gem_request * req,uint32_t flags)10917 static int intel_gen2_queue_flip(struct drm_device *dev,
10918 				 struct drm_crtc *crtc,
10919 				 struct drm_framebuffer *fb,
10920 				 struct drm_i915_gem_object *obj,
10921 				 struct drm_i915_gem_request *req,
10922 				 uint32_t flags)
10923 {
10924 	struct intel_engine_cs *ring = req->ring;
10925 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10926 	u32 flip_mask;
10927 	int ret;
10928 
10929 	ret = intel_ring_begin(req, 6);
10930 	if (ret)
10931 		return ret;
10932 
10933 	/* Can't queue multiple flips, so wait for the previous
10934 	 * one to finish before executing the next.
10935 	 */
10936 	if (intel_crtc->plane)
10937 		flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10938 	else
10939 		flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10940 	intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10941 	intel_ring_emit(ring, MI_NOOP);
10942 	intel_ring_emit(ring, MI_DISPLAY_FLIP |
10943 			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10944 	intel_ring_emit(ring, fb->pitches[0]);
10945 	intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10946 	intel_ring_emit(ring, 0); /* aux display base address, unused */
10947 
10948 	intel_mark_page_flip_active(intel_crtc->unpin_work);
10949 	return 0;
10950 }
10951 
intel_gen3_queue_flip(struct drm_device * dev,struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_i915_gem_object * obj,struct drm_i915_gem_request * req,uint32_t flags)10952 static int intel_gen3_queue_flip(struct drm_device *dev,
10953 				 struct drm_crtc *crtc,
10954 				 struct drm_framebuffer *fb,
10955 				 struct drm_i915_gem_object *obj,
10956 				 struct drm_i915_gem_request *req,
10957 				 uint32_t flags)
10958 {
10959 	struct intel_engine_cs *ring = req->ring;
10960 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10961 	u32 flip_mask;
10962 	int ret;
10963 
10964 	ret = intel_ring_begin(req, 6);
10965 	if (ret)
10966 		return ret;
10967 
10968 	if (intel_crtc->plane)
10969 		flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10970 	else
10971 		flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10972 	intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10973 	intel_ring_emit(ring, MI_NOOP);
10974 	intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
10975 			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10976 	intel_ring_emit(ring, fb->pitches[0]);
10977 	intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10978 	intel_ring_emit(ring, MI_NOOP);
10979 
10980 	intel_mark_page_flip_active(intel_crtc->unpin_work);
10981 	return 0;
10982 }
10983 
intel_gen4_queue_flip(struct drm_device * dev,struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_i915_gem_object * obj,struct drm_i915_gem_request * req,uint32_t flags)10984 static int intel_gen4_queue_flip(struct drm_device *dev,
10985 				 struct drm_crtc *crtc,
10986 				 struct drm_framebuffer *fb,
10987 				 struct drm_i915_gem_object *obj,
10988 				 struct drm_i915_gem_request *req,
10989 				 uint32_t flags)
10990 {
10991 	struct intel_engine_cs *ring = req->ring;
10992 	struct drm_i915_private *dev_priv = dev->dev_private;
10993 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10994 	uint32_t pf, pipesrc;
10995 	int ret;
10996 
10997 	ret = intel_ring_begin(req, 4);
10998 	if (ret)
10999 		return ret;
11000 
11001 	/* i965+ uses the linear or tiled offsets from the
11002 	 * Display Registers (which do not change across a page-flip)
11003 	 * so we need only reprogram the base address.
11004 	 */
11005 	intel_ring_emit(ring, MI_DISPLAY_FLIP |
11006 			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11007 	intel_ring_emit(ring, fb->pitches[0]);
11008 	intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
11009 			obj->tiling_mode);
11010 
11011 	/* XXX Enabling the panel-fitter across page-flip is so far
11012 	 * untested on non-native modes, so ignore it for now.
11013 	 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11014 	 */
11015 	pf = 0;
11016 	pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11017 	intel_ring_emit(ring, pf | pipesrc);
11018 
11019 	intel_mark_page_flip_active(intel_crtc->unpin_work);
11020 	return 0;
11021 }
11022 
intel_gen6_queue_flip(struct drm_device * dev,struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_i915_gem_object * obj,struct drm_i915_gem_request * req,uint32_t flags)11023 static int intel_gen6_queue_flip(struct drm_device *dev,
11024 				 struct drm_crtc *crtc,
11025 				 struct drm_framebuffer *fb,
11026 				 struct drm_i915_gem_object *obj,
11027 				 struct drm_i915_gem_request *req,
11028 				 uint32_t flags)
11029 {
11030 	struct intel_engine_cs *ring = req->ring;
11031 	struct drm_i915_private *dev_priv = dev->dev_private;
11032 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11033 	uint32_t pf, pipesrc;
11034 	int ret;
11035 
11036 	ret = intel_ring_begin(req, 4);
11037 	if (ret)
11038 		return ret;
11039 
11040 	intel_ring_emit(ring, MI_DISPLAY_FLIP |
11041 			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11042 	intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
11043 	intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11044 
11045 	/* Contrary to the suggestions in the documentation,
11046 	 * "Enable Panel Fitter" does not seem to be required when page
11047 	 * flipping with a non-native mode, and worse causes a normal
11048 	 * modeset to fail.
11049 	 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11050 	 */
11051 	pf = 0;
11052 	pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11053 	intel_ring_emit(ring, pf | pipesrc);
11054 
11055 	intel_mark_page_flip_active(intel_crtc->unpin_work);
11056 	return 0;
11057 }
11058 
intel_gen7_queue_flip(struct drm_device * dev,struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_i915_gem_object * obj,struct drm_i915_gem_request * req,uint32_t flags)11059 static int intel_gen7_queue_flip(struct drm_device *dev,
11060 				 struct drm_crtc *crtc,
11061 				 struct drm_framebuffer *fb,
11062 				 struct drm_i915_gem_object *obj,
11063 				 struct drm_i915_gem_request *req,
11064 				 uint32_t flags)
11065 {
11066 	struct intel_engine_cs *ring = req->ring;
11067 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11068 	uint32_t plane_bit = 0;
11069 	int len, ret;
11070 
11071 	switch (intel_crtc->plane) {
11072 	case PLANE_A:
11073 		plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11074 		break;
11075 	case PLANE_B:
11076 		plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11077 		break;
11078 	case PLANE_C:
11079 		plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11080 		break;
11081 	default:
11082 		WARN_ONCE(1, "unknown plane in flip command\n");
11083 		return -ENODEV;
11084 	}
11085 
11086 	len = 4;
11087 	if (ring->id == RCS) {
11088 		len += 6;
11089 		/*
11090 		 * On Gen 8, SRM is now taking an extra dword to accommodate
11091 		 * 48bits addresses, and we need a NOOP for the batch size to
11092 		 * stay even.
11093 		 */
11094 		if (IS_GEN8(dev))
11095 			len += 2;
11096 	}
11097 
11098 	/*
11099 	 * BSpec MI_DISPLAY_FLIP for IVB:
11100 	 * "The full packet must be contained within the same cache line."
11101 	 *
11102 	 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11103 	 * cacheline, if we ever start emitting more commands before
11104 	 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11105 	 * then do the cacheline alignment, and finally emit the
11106 	 * MI_DISPLAY_FLIP.
11107 	 */
11108 	ret = intel_ring_cacheline_align(req);
11109 	if (ret)
11110 		return ret;
11111 
11112 	ret = intel_ring_begin(req, len);
11113 	if (ret)
11114 		return ret;
11115 
11116 	/* Unmask the flip-done completion message. Note that the bspec says that
11117 	 * we should do this for both the BCS and RCS, and that we must not unmask
11118 	 * more than one flip event at any time (or ensure that one flip message
11119 	 * can be sent by waiting for flip-done prior to queueing new flips).
11120 	 * Experimentation says that BCS works despite DERRMR masking all
11121 	 * flip-done completion events and that unmasking all planes at once
11122 	 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11123 	 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11124 	 */
11125 	if (ring->id == RCS) {
11126 		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11127 		intel_ring_emit(ring, DERRMR);
11128 		intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11129 					DERRMR_PIPEB_PRI_FLIP_DONE |
11130 					DERRMR_PIPEC_PRI_FLIP_DONE));
11131 		if (IS_GEN8(dev))
11132 			intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
11133 					      MI_SRM_LRM_GLOBAL_GTT);
11134 		else
11135 			intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
11136 					      MI_SRM_LRM_GLOBAL_GTT);
11137 		intel_ring_emit(ring, DERRMR);
11138 		intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
11139 		if (IS_GEN8(dev)) {
11140 			intel_ring_emit(ring, 0);
11141 			intel_ring_emit(ring, MI_NOOP);
11142 		}
11143 	}
11144 
11145 	intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11146 	intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
11147 	intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11148 	intel_ring_emit(ring, (MI_NOOP));
11149 
11150 	intel_mark_page_flip_active(intel_crtc->unpin_work);
11151 	return 0;
11152 }
11153 
use_mmio_flip(struct intel_engine_cs * ring,struct drm_i915_gem_object * obj)11154 static bool use_mmio_flip(struct intel_engine_cs *ring,
11155 			  struct drm_i915_gem_object *obj)
11156 {
11157 	/*
11158 	 * This is not being used for older platforms, because
11159 	 * non-availability of flip done interrupt forces us to use
11160 	 * CS flips. Older platforms derive flip done using some clever
11161 	 * tricks involving the flip_pending status bits and vblank irqs.
11162 	 * So using MMIO flips there would disrupt this mechanism.
11163 	 */
11164 
11165 	if (ring == NULL)
11166 		return true;
11167 
11168 	if (INTEL_INFO(ring->dev)->gen < 5)
11169 		return false;
11170 
11171 	if (i915.use_mmio_flip < 0)
11172 		return false;
11173 	else if (i915.use_mmio_flip > 0)
11174 		return true;
11175 	else if (i915.enable_execlists)
11176 		return true;
11177 	else
11178 		return ring != i915_gem_request_get_ring(obj->last_write_req);
11179 }
11180 
skl_do_mmio_flip(struct intel_crtc * intel_crtc,struct intel_unpin_work * work)11181 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11182 			     struct intel_unpin_work *work)
11183 {
11184 	struct drm_device *dev = intel_crtc->base.dev;
11185 	struct drm_i915_private *dev_priv = dev->dev_private;
11186 	struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11187 	const enum pipe pipe = intel_crtc->pipe;
11188 	u32 ctl, stride;
11189 
11190 	ctl = I915_READ(PLANE_CTL(pipe, 0));
11191 	ctl &= ~PLANE_CTL_TILED_MASK;
11192 	switch (fb->modifier[0]) {
11193 	case DRM_FORMAT_MOD_NONE:
11194 		break;
11195 	case I915_FORMAT_MOD_X_TILED:
11196 		ctl |= PLANE_CTL_TILED_X;
11197 		break;
11198 	case I915_FORMAT_MOD_Y_TILED:
11199 		ctl |= PLANE_CTL_TILED_Y;
11200 		break;
11201 	case I915_FORMAT_MOD_Yf_TILED:
11202 		ctl |= PLANE_CTL_TILED_YF;
11203 		break;
11204 	default:
11205 		MISSING_CASE(fb->modifier[0]);
11206 	}
11207 
11208 	/*
11209 	 * The stride is either expressed as a multiple of 64 bytes chunks for
11210 	 * linear buffers or in number of tiles for tiled buffers.
11211 	 */
11212 	stride = fb->pitches[0] /
11213 		 intel_fb_stride_alignment(dev, fb->modifier[0],
11214 					   fb->pixel_format);
11215 
11216 	/*
11217 	 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11218 	 * PLANE_SURF updates, the update is then guaranteed to be atomic.
11219 	 */
11220 	I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11221 	I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11222 
11223 	I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
11224 	POSTING_READ(PLANE_SURF(pipe, 0));
11225 }
11226 
ilk_do_mmio_flip(struct intel_crtc * intel_crtc,struct intel_unpin_work * work)11227 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11228 			     struct intel_unpin_work *work)
11229 {
11230 	struct drm_device *dev = intel_crtc->base.dev;
11231 	struct drm_i915_private *dev_priv = dev->dev_private;
11232 	struct intel_framebuffer *intel_fb =
11233 		to_intel_framebuffer(intel_crtc->base.primary->fb);
11234 	struct drm_i915_gem_object *obj = intel_fb->obj;
11235 	u32 dspcntr;
11236 	u32 reg;
11237 
11238 	reg = DSPCNTR(intel_crtc->plane);
11239 	dspcntr = I915_READ(reg);
11240 
11241 	if (obj->tiling_mode != I915_TILING_NONE)
11242 		dspcntr |= DISPPLANE_TILED;
11243 	else
11244 		dspcntr &= ~DISPPLANE_TILED;
11245 
11246 	I915_WRITE(reg, dspcntr);
11247 
11248 	I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
11249 	POSTING_READ(DSPSURF(intel_crtc->plane));
11250 }
11251 
11252 /*
11253  * XXX: This is the temporary way to update the plane registers until we get
11254  * around to using the usual plane update functions for MMIO flips
11255  */
intel_do_mmio_flip(struct intel_mmio_flip * mmio_flip)11256 static void intel_do_mmio_flip(struct intel_mmio_flip *mmio_flip)
11257 {
11258 	struct intel_crtc *crtc = mmio_flip->crtc;
11259 	struct intel_unpin_work *work;
11260 
11261 	spin_lock_irq(&crtc->base.dev->event_lock);
11262 	work = crtc->unpin_work;
11263 	spin_unlock_irq(&crtc->base.dev->event_lock);
11264 	if (work == NULL)
11265 		return;
11266 
11267 	intel_mark_page_flip_active(work);
11268 
11269 	intel_pipe_update_start(crtc);
11270 
11271 	if (INTEL_INFO(mmio_flip->i915)->gen >= 9)
11272 		skl_do_mmio_flip(crtc, work);
11273 	else
11274 		/* use_mmio_flip() retricts MMIO flips to ilk+ */
11275 		ilk_do_mmio_flip(crtc, work);
11276 
11277 	intel_pipe_update_end(crtc);
11278 }
11279 
intel_mmio_flip_work_func(struct work_struct * work)11280 static void intel_mmio_flip_work_func(struct work_struct *work)
11281 {
11282 	struct intel_mmio_flip *mmio_flip =
11283 		container_of(work, struct intel_mmio_flip, work);
11284 
11285 	if (mmio_flip->req) {
11286 		WARN_ON(__i915_wait_request(mmio_flip->req,
11287 					    mmio_flip->crtc->reset_counter,
11288 					    false, NULL,
11289 					    &mmio_flip->i915->rps.mmioflips));
11290 		i915_gem_request_unreference__unlocked(mmio_flip->req);
11291 	}
11292 
11293 	intel_do_mmio_flip(mmio_flip);
11294 	kfree(mmio_flip);
11295 }
11296 
intel_queue_mmio_flip(struct drm_device * dev,struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_i915_gem_object * obj,struct intel_engine_cs * ring,uint32_t flags)11297 static int intel_queue_mmio_flip(struct drm_device *dev,
11298 				 struct drm_crtc *crtc,
11299 				 struct drm_framebuffer *fb,
11300 				 struct drm_i915_gem_object *obj,
11301 				 struct intel_engine_cs *ring,
11302 				 uint32_t flags)
11303 {
11304 	struct intel_mmio_flip *mmio_flip;
11305 
11306 	mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11307 	if (mmio_flip == NULL)
11308 		return -ENOMEM;
11309 
11310 	mmio_flip->i915 = to_i915(dev);
11311 	mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
11312 	mmio_flip->crtc = to_intel_crtc(crtc);
11313 
11314 	INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11315 	schedule_work(&mmio_flip->work);
11316 
11317 	return 0;
11318 }
11319 
intel_default_queue_flip(struct drm_device * dev,struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_i915_gem_object * obj,struct drm_i915_gem_request * req,uint32_t flags)11320 static int intel_default_queue_flip(struct drm_device *dev,
11321 				    struct drm_crtc *crtc,
11322 				    struct drm_framebuffer *fb,
11323 				    struct drm_i915_gem_object *obj,
11324 				    struct drm_i915_gem_request *req,
11325 				    uint32_t flags)
11326 {
11327 	return -ENODEV;
11328 }
11329 
__intel_pageflip_stall_check(struct drm_device * dev,struct drm_crtc * crtc)11330 static bool __intel_pageflip_stall_check(struct drm_device *dev,
11331 					 struct drm_crtc *crtc)
11332 {
11333 	struct drm_i915_private *dev_priv = dev->dev_private;
11334 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11335 	struct intel_unpin_work *work = intel_crtc->unpin_work;
11336 	u32 addr;
11337 
11338 	if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11339 		return true;
11340 
11341 	if (atomic_read(&work->pending) < INTEL_FLIP_PENDING)
11342 		return false;
11343 
11344 	if (!work->enable_stall_check)
11345 		return false;
11346 
11347 	if (work->flip_ready_vblank == 0) {
11348 		if (work->flip_queued_req &&
11349 		    !i915_gem_request_completed(work->flip_queued_req, true))
11350 			return false;
11351 
11352 		work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
11353 	}
11354 
11355 	if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
11356 		return false;
11357 
11358 	/* Potential stall - if we see that the flip has happened,
11359 	 * assume a missed interrupt. */
11360 	if (INTEL_INFO(dev)->gen >= 4)
11361 		addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11362 	else
11363 		addr = I915_READ(DSPADDR(intel_crtc->plane));
11364 
11365 	/* There is a potential issue here with a false positive after a flip
11366 	 * to the same address. We could address this by checking for a
11367 	 * non-incrementing frame counter.
11368 	 */
11369 	return addr == work->gtt_offset;
11370 }
11371 
intel_check_page_flip(struct drm_device * dev,int pipe)11372 void intel_check_page_flip(struct drm_device *dev, int pipe)
11373 {
11374 	struct drm_i915_private *dev_priv = dev->dev_private;
11375 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11376 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11377 	struct intel_unpin_work *work;
11378 
11379 	WARN_ON(!in_interrupt());
11380 
11381 	if (crtc == NULL)
11382 		return;
11383 
11384 	spin_lock(&dev->event_lock);
11385 	work = intel_crtc->unpin_work;
11386 	if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
11387 		WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11388 			 work->flip_queued_vblank, drm_vblank_count(dev, pipe));
11389 		page_flip_completed(intel_crtc);
11390 		work = NULL;
11391 	}
11392 	if (work != NULL &&
11393 	    drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11394 		intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
11395 	spin_unlock(&dev->event_lock);
11396 }
11397 
intel_crtc_page_flip(struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_pending_vblank_event * event,uint32_t page_flip_flags)11398 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11399 				struct drm_framebuffer *fb,
11400 				struct drm_pending_vblank_event *event,
11401 				uint32_t page_flip_flags)
11402 {
11403 	struct drm_device *dev = crtc->dev;
11404 	struct drm_i915_private *dev_priv = dev->dev_private;
11405 	struct drm_framebuffer *old_fb = crtc->primary->fb;
11406 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11407 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11408 	struct drm_plane *primary = crtc->primary;
11409 	enum pipe pipe = intel_crtc->pipe;
11410 	struct intel_unpin_work *work;
11411 	struct intel_engine_cs *ring;
11412 	bool mmio_flip;
11413 	struct drm_i915_gem_request *request = NULL;
11414 	int ret;
11415 
11416 	/*
11417 	 * drm_mode_page_flip_ioctl() should already catch this, but double
11418 	 * check to be safe.  In the future we may enable pageflipping from
11419 	 * a disabled primary plane.
11420 	 */
11421 	if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11422 		return -EBUSY;
11423 
11424 	/* Can't change pixel format via MI display flips. */
11425 	if (fb->pixel_format != crtc->primary->fb->pixel_format)
11426 		return -EINVAL;
11427 
11428 	/*
11429 	 * TILEOFF/LINOFF registers can't be changed via MI display flips.
11430 	 * Note that pitch changes could also affect these register.
11431 	 */
11432 	if (INTEL_INFO(dev)->gen > 3 &&
11433 	    (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11434 	     fb->pitches[0] != crtc->primary->fb->pitches[0]))
11435 		return -EINVAL;
11436 
11437 	if (i915_terminally_wedged(&dev_priv->gpu_error))
11438 		goto out_hang;
11439 
11440 	work = kzalloc(sizeof(*work), GFP_KERNEL);
11441 	if (work == NULL)
11442 		return -ENOMEM;
11443 
11444 	work->event = event;
11445 	work->crtc = crtc;
11446 	work->old_fb = old_fb;
11447 	INIT_WORK(&work->work, intel_unpin_work_fn);
11448 
11449 	ret = drm_crtc_vblank_get(crtc);
11450 	if (ret)
11451 		goto free_work;
11452 
11453 	/* We borrow the event spin lock for protecting unpin_work */
11454 	spin_lock_irq(&dev->event_lock);
11455 	if (intel_crtc->unpin_work) {
11456 		/* Before declaring the flip queue wedged, check if
11457 		 * the hardware completed the operation behind our backs.
11458 		 */
11459 		if (__intel_pageflip_stall_check(dev, crtc)) {
11460 			DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11461 			page_flip_completed(intel_crtc);
11462 		} else {
11463 			DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11464 			spin_unlock_irq(&dev->event_lock);
11465 
11466 			drm_crtc_vblank_put(crtc);
11467 			kfree(work);
11468 			return -EBUSY;
11469 		}
11470 	}
11471 	intel_crtc->unpin_work = work;
11472 	spin_unlock_irq(&dev->event_lock);
11473 
11474 	if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11475 		flush_workqueue(dev_priv->wq);
11476 
11477 	/* Reference the objects for the scheduled work. */
11478 	drm_framebuffer_reference(work->old_fb);
11479 	drm_gem_object_reference(&obj->base);
11480 
11481 	crtc->primary->fb = fb;
11482 	update_state_fb(crtc->primary);
11483 
11484 	work->pending_flip_obj = obj;
11485 
11486 	ret = i915_mutex_lock_interruptible(dev);
11487 	if (ret)
11488 		goto cleanup;
11489 
11490 	atomic_inc(&intel_crtc->unpin_work_count);
11491 	intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
11492 
11493 	if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11494 		work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
11495 
11496 	if (IS_VALLEYVIEW(dev)) {
11497 		ring = &dev_priv->ring[BCS];
11498 		if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11499 			/* vlv: DISPLAY_FLIP fails to change tiling */
11500 			ring = NULL;
11501 	} else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11502 		ring = &dev_priv->ring[BCS];
11503 	} else if (INTEL_INFO(dev)->gen >= 7) {
11504 		ring = i915_gem_request_get_ring(obj->last_write_req);
11505 		if (ring == NULL || ring->id != RCS)
11506 			ring = &dev_priv->ring[BCS];
11507 	} else {
11508 		ring = &dev_priv->ring[RCS];
11509 	}
11510 
11511 	mmio_flip = use_mmio_flip(ring, obj);
11512 
11513 	/* When using CS flips, we want to emit semaphores between rings.
11514 	 * However, when using mmio flips we will create a task to do the
11515 	 * synchronisation, so all we want here is to pin the framebuffer
11516 	 * into the display plane and skip any waits.
11517 	 */
11518 	ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
11519 					 crtc->primary->state,
11520 					 mmio_flip ? i915_gem_request_get_ring(obj->last_write_req) : ring, &request);
11521 	if (ret)
11522 		goto cleanup_pending;
11523 
11524 	work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
11525 						  obj, 0);
11526 	work->gtt_offset += intel_crtc->dspaddr_offset;
11527 
11528 	if (mmio_flip) {
11529 		ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
11530 					    page_flip_flags);
11531 		if (ret)
11532 			goto cleanup_unpin;
11533 
11534 		i915_gem_request_assign(&work->flip_queued_req,
11535 					obj->last_write_req);
11536 	} else {
11537 		if (!request) {
11538 			ret = i915_gem_request_alloc(ring, ring->default_context, &request);
11539 			if (ret)
11540 				goto cleanup_unpin;
11541 		}
11542 
11543 		ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11544 						   page_flip_flags);
11545 		if (ret)
11546 			goto cleanup_unpin;
11547 
11548 		i915_gem_request_assign(&work->flip_queued_req, request);
11549 	}
11550 
11551 	if (request)
11552 		i915_add_request_no_flush(request);
11553 
11554 	work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
11555 	work->enable_stall_check = true;
11556 
11557 	i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11558 			  to_intel_plane(primary)->frontbuffer_bit);
11559 	mutex_unlock(&dev->struct_mutex);
11560 
11561 	intel_fbc_disable_crtc(intel_crtc);
11562 	intel_frontbuffer_flip_prepare(dev,
11563 				       to_intel_plane(primary)->frontbuffer_bit);
11564 
11565 	trace_i915_flip_request(intel_crtc->plane, obj);
11566 
11567 	return 0;
11568 
11569 cleanup_unpin:
11570 	intel_unpin_fb_obj(fb, crtc->primary->state);
11571 cleanup_pending:
11572 	if (request)
11573 		i915_gem_request_cancel(request);
11574 	atomic_dec(&intel_crtc->unpin_work_count);
11575 	mutex_unlock(&dev->struct_mutex);
11576 cleanup:
11577 	crtc->primary->fb = old_fb;
11578 	update_state_fb(crtc->primary);
11579 
11580 	drm_gem_object_unreference_unlocked(&obj->base);
11581 	drm_framebuffer_unreference(work->old_fb);
11582 
11583 	spin_lock_irq(&dev->event_lock);
11584 	intel_crtc->unpin_work = NULL;
11585 	spin_unlock_irq(&dev->event_lock);
11586 
11587 	drm_crtc_vblank_put(crtc);
11588 free_work:
11589 	kfree(work);
11590 
11591 	if (ret == -EIO) {
11592 		struct drm_atomic_state *state;
11593 		struct drm_plane_state *plane_state;
11594 
11595 out_hang:
11596 		state = drm_atomic_state_alloc(dev);
11597 		if (!state)
11598 			return -ENOMEM;
11599 		state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11600 
11601 retry:
11602 		plane_state = drm_atomic_get_plane_state(state, primary);
11603 		ret = PTR_ERR_OR_ZERO(plane_state);
11604 		if (!ret) {
11605 			drm_atomic_set_fb_for_plane(plane_state, fb);
11606 
11607 			ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11608 			if (!ret)
11609 				ret = drm_atomic_commit(state);
11610 		}
11611 
11612 		if (ret == -EDEADLK) {
11613 			drm_modeset_backoff(state->acquire_ctx);
11614 			drm_atomic_state_clear(state);
11615 			goto retry;
11616 		}
11617 
11618 		if (ret)
11619 			drm_atomic_state_free(state);
11620 
11621 		if (ret == 0 && event) {
11622 			spin_lock_irq(&dev->event_lock);
11623 			drm_send_vblank_event(dev, pipe, event);
11624 			spin_unlock_irq(&dev->event_lock);
11625 		}
11626 	}
11627 	return ret;
11628 }
11629 
11630 
11631 /**
11632  * intel_wm_need_update - Check whether watermarks need updating
11633  * @plane: drm plane
11634  * @state: new plane state
11635  *
11636  * Check current plane state versus the new one to determine whether
11637  * watermarks need to be recalculated.
11638  *
11639  * Returns true or false.
11640  */
intel_wm_need_update(struct drm_plane * plane,struct drm_plane_state * state)11641 static bool intel_wm_need_update(struct drm_plane *plane,
11642 				 struct drm_plane_state *state)
11643 {
11644 	/* Update watermarks on tiling changes. */
11645 	if (!plane->state->fb || !state->fb ||
11646 	    plane->state->fb->modifier[0] != state->fb->modifier[0] ||
11647 	    plane->state->rotation != state->rotation)
11648 		return true;
11649 
11650 	if (plane->state->crtc_w != state->crtc_w)
11651 		return true;
11652 
11653 	return false;
11654 }
11655 
intel_plane_atomic_calc_changes(struct drm_crtc_state * crtc_state,struct drm_plane_state * plane_state)11656 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11657 				    struct drm_plane_state *plane_state)
11658 {
11659 	struct drm_crtc *crtc = crtc_state->crtc;
11660 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11661 	struct drm_plane *plane = plane_state->plane;
11662 	struct drm_device *dev = crtc->dev;
11663 	struct drm_i915_private *dev_priv = dev->dev_private;
11664 	struct intel_plane_state *old_plane_state =
11665 		to_intel_plane_state(plane->state);
11666 	int idx = intel_crtc->base.base.id, ret;
11667 	int i = drm_plane_index(plane);
11668 	bool mode_changed = needs_modeset(crtc_state);
11669 	bool was_crtc_enabled = crtc->state->active;
11670 	bool is_crtc_enabled = crtc_state->active;
11671 
11672 	bool turn_off, turn_on, visible, was_visible;
11673 	struct drm_framebuffer *fb = plane_state->fb;
11674 
11675 	if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11676 	    plane->type != DRM_PLANE_TYPE_CURSOR) {
11677 		ret = skl_update_scaler_plane(
11678 			to_intel_crtc_state(crtc_state),
11679 			to_intel_plane_state(plane_state));
11680 		if (ret)
11681 			return ret;
11682 	}
11683 
11684 	/*
11685 	 * Disabling a plane is always okay; we just need to update
11686 	 * fb tracking in a special way since cleanup_fb() won't
11687 	 * get called by the plane helpers.
11688 	 */
11689 	if (old_plane_state->base.fb && !fb)
11690 		intel_crtc->atomic.disabled_planes |= 1 << i;
11691 
11692 	was_visible = old_plane_state->visible;
11693 	visible = to_intel_plane_state(plane_state)->visible;
11694 
11695 	if (!was_crtc_enabled && WARN_ON(was_visible))
11696 		was_visible = false;
11697 
11698 	if (!is_crtc_enabled && WARN_ON(visible))
11699 		visible = false;
11700 
11701 	if (!was_visible && !visible)
11702 		return 0;
11703 
11704 	turn_off = was_visible && (!visible || mode_changed);
11705 	turn_on = visible && (!was_visible || mode_changed);
11706 
11707 	DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11708 			 plane->base.id, fb ? fb->base.id : -1);
11709 
11710 	DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11711 			 plane->base.id, was_visible, visible,
11712 			 turn_off, turn_on, mode_changed);
11713 
11714 	if (turn_on) {
11715 		intel_crtc->atomic.update_wm_pre = true;
11716 		/* must disable cxsr around plane enable/disable */
11717 		if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11718 			intel_crtc->atomic.disable_cxsr = true;
11719 			/* to potentially re-enable cxsr */
11720 			intel_crtc->atomic.wait_vblank = true;
11721 			intel_crtc->atomic.update_wm_post = true;
11722 		}
11723 	} else if (turn_off) {
11724 		intel_crtc->atomic.update_wm_post = true;
11725 		/* must disable cxsr around plane enable/disable */
11726 		if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11727 			if (is_crtc_enabled)
11728 				intel_crtc->atomic.wait_vblank = true;
11729 			intel_crtc->atomic.disable_cxsr = true;
11730 		}
11731 	} else if (intel_wm_need_update(plane, plane_state)) {
11732 		intel_crtc->atomic.update_wm_pre = true;
11733 	}
11734 
11735 	if (visible || was_visible)
11736 		intel_crtc->atomic.fb_bits |=
11737 			to_intel_plane(plane)->frontbuffer_bit;
11738 
11739 	switch (plane->type) {
11740 	case DRM_PLANE_TYPE_PRIMARY:
11741 		intel_crtc->atomic.wait_for_flips = true;
11742 		intel_crtc->atomic.pre_disable_primary = turn_off;
11743 		intel_crtc->atomic.post_enable_primary = turn_on;
11744 
11745 		if (turn_off) {
11746 			/*
11747 			 * FIXME: Actually if we will still have any other
11748 			 * plane enabled on the pipe we could let IPS enabled
11749 			 * still, but for now lets consider that when we make
11750 			 * primary invisible by setting DSPCNTR to 0 on
11751 			 * update_primary_plane function IPS needs to be
11752 			 * disable.
11753 			 */
11754 			intel_crtc->atomic.disable_ips = true;
11755 
11756 			intel_crtc->atomic.disable_fbc = true;
11757 		}
11758 
11759 		/*
11760 		 * FBC does not work on some platforms for rotated
11761 		 * planes, so disable it when rotation is not 0 and
11762 		 * update it when rotation is set back to 0.
11763 		 *
11764 		 * FIXME: This is redundant with the fbc update done in
11765 		 * the primary plane enable function except that that
11766 		 * one is done too late. We eventually need to unify
11767 		 * this.
11768 		 */
11769 
11770 		if (visible &&
11771 		    INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11772 		    dev_priv->fbc.crtc == intel_crtc &&
11773 		    plane_state->rotation != BIT(DRM_ROTATE_0))
11774 			intel_crtc->atomic.disable_fbc = true;
11775 
11776 		/*
11777 		 * BDW signals flip done immediately if the plane
11778 		 * is disabled, even if the plane enable is already
11779 		 * armed to occur at the next vblank :(
11780 		 */
11781 		if (turn_on && IS_BROADWELL(dev))
11782 			intel_crtc->atomic.wait_vblank = true;
11783 
11784 		intel_crtc->atomic.update_fbc |= visible || mode_changed;
11785 		break;
11786 	case DRM_PLANE_TYPE_CURSOR:
11787 		break;
11788 	case DRM_PLANE_TYPE_OVERLAY:
11789 		if (turn_off && !mode_changed) {
11790 			intel_crtc->atomic.wait_vblank = true;
11791 			intel_crtc->atomic.update_sprite_watermarks |=
11792 				1 << i;
11793 		}
11794 	}
11795 	return 0;
11796 }
11797 
encoders_cloneable(const struct intel_encoder * a,const struct intel_encoder * b)11798 static bool encoders_cloneable(const struct intel_encoder *a,
11799 			       const struct intel_encoder *b)
11800 {
11801 	/* masks could be asymmetric, so check both ways */
11802 	return a == b || (a->cloneable & (1 << b->type) &&
11803 			  b->cloneable & (1 << a->type));
11804 }
11805 
check_single_encoder_cloning(struct drm_atomic_state * state,struct intel_crtc * crtc,struct intel_encoder * encoder)11806 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11807 					 struct intel_crtc *crtc,
11808 					 struct intel_encoder *encoder)
11809 {
11810 	struct intel_encoder *source_encoder;
11811 	struct drm_connector *connector;
11812 	struct drm_connector_state *connector_state;
11813 	int i;
11814 
11815 	for_each_connector_in_state(state, connector, connector_state, i) {
11816 		if (connector_state->crtc != &crtc->base)
11817 			continue;
11818 
11819 		source_encoder =
11820 			to_intel_encoder(connector_state->best_encoder);
11821 		if (!encoders_cloneable(encoder, source_encoder))
11822 			return false;
11823 	}
11824 
11825 	return true;
11826 }
11827 
check_encoder_cloning(struct drm_atomic_state * state,struct intel_crtc * crtc)11828 static bool check_encoder_cloning(struct drm_atomic_state *state,
11829 				  struct intel_crtc *crtc)
11830 {
11831 	struct intel_encoder *encoder;
11832 	struct drm_connector *connector;
11833 	struct drm_connector_state *connector_state;
11834 	int i;
11835 
11836 	for_each_connector_in_state(state, connector, connector_state, i) {
11837 		if (connector_state->crtc != &crtc->base)
11838 			continue;
11839 
11840 		encoder = to_intel_encoder(connector_state->best_encoder);
11841 		if (!check_single_encoder_cloning(state, crtc, encoder))
11842 			return false;
11843 	}
11844 
11845 	return true;
11846 }
11847 
intel_crtc_atomic_check(struct drm_crtc * crtc,struct drm_crtc_state * crtc_state)11848 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11849 				   struct drm_crtc_state *crtc_state)
11850 {
11851 	struct drm_device *dev = crtc->dev;
11852 	struct drm_i915_private *dev_priv = dev->dev_private;
11853 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11854 	struct intel_crtc_state *pipe_config =
11855 		to_intel_crtc_state(crtc_state);
11856 	struct drm_atomic_state *state = crtc_state->state;
11857 	int ret;
11858 	bool mode_changed = needs_modeset(crtc_state);
11859 
11860 	if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
11861 		DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11862 		return -EINVAL;
11863 	}
11864 
11865 	if (mode_changed && !crtc_state->active)
11866 		intel_crtc->atomic.update_wm_post = true;
11867 
11868 	if (mode_changed && crtc_state->enable &&
11869 	    dev_priv->display.crtc_compute_clock &&
11870 	    !WARN_ON(pipe_config->shared_dpll != DPLL_ID_PRIVATE)) {
11871 		ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11872 							   pipe_config);
11873 		if (ret)
11874 			return ret;
11875 	}
11876 
11877 	ret = 0;
11878 	if (INTEL_INFO(dev)->gen >= 9) {
11879 		if (mode_changed)
11880 			ret = skl_update_scaler_crtc(pipe_config);
11881 
11882 		if (!ret)
11883 			ret = intel_atomic_setup_scalers(dev, intel_crtc,
11884 							 pipe_config);
11885 	}
11886 
11887 	return ret;
11888 }
11889 
11890 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11891 	.mode_set_base_atomic = intel_pipe_set_base_atomic,
11892 	.load_lut = intel_crtc_load_lut,
11893 	.atomic_begin = intel_begin_crtc_commit,
11894 	.atomic_flush = intel_finish_crtc_commit,
11895 	.atomic_check = intel_crtc_atomic_check,
11896 };
11897 
intel_modeset_update_connector_atomic_state(struct drm_device * dev)11898 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11899 {
11900 	struct intel_connector *connector;
11901 
11902 	for_each_intel_connector(dev, connector) {
11903 		if (connector->base.encoder) {
11904 			connector->base.state->best_encoder =
11905 				connector->base.encoder;
11906 			connector->base.state->crtc =
11907 				connector->base.encoder->crtc;
11908 		} else {
11909 			connector->base.state->best_encoder = NULL;
11910 			connector->base.state->crtc = NULL;
11911 		}
11912 	}
11913 }
11914 
11915 static void
connected_sink_compute_bpp(struct intel_connector * connector,struct intel_crtc_state * pipe_config)11916 connected_sink_compute_bpp(struct intel_connector *connector,
11917 			   struct intel_crtc_state *pipe_config)
11918 {
11919 	int bpp = pipe_config->pipe_bpp;
11920 
11921 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11922 		connector->base.base.id,
11923 		connector->base.name);
11924 
11925 	/* Don't use an invalid EDID bpc value */
11926 	if (connector->base.display_info.bpc &&
11927 	    connector->base.display_info.bpc * 3 < bpp) {
11928 		DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11929 			      bpp, connector->base.display_info.bpc*3);
11930 		pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
11931 	}
11932 
11933 	/* Clamp bpp to default limit on screens without EDID 1.4 */
11934 	if (connector->base.display_info.bpc == 0) {
11935 		int type = connector->base.connector_type;
11936 		int clamp_bpp = 24;
11937 
11938 		/* Fall back to 18 bpp when DP sink capability is unknown. */
11939 		if (type == DRM_MODE_CONNECTOR_DisplayPort ||
11940 		    type == DRM_MODE_CONNECTOR_eDP)
11941 			clamp_bpp = 18;
11942 
11943 		if (bpp > clamp_bpp) {
11944 			DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of %d\n",
11945 				      bpp, clamp_bpp);
11946 			pipe_config->pipe_bpp = clamp_bpp;
11947 		}
11948 	}
11949 }
11950 
11951 static int
compute_baseline_pipe_bpp(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)11952 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
11953 			  struct intel_crtc_state *pipe_config)
11954 {
11955 	struct drm_device *dev = crtc->base.dev;
11956 	struct drm_atomic_state *state;
11957 	struct drm_connector *connector;
11958 	struct drm_connector_state *connector_state;
11959 	int bpp, i;
11960 
11961 	if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
11962 		bpp = 10*3;
11963 	else if (INTEL_INFO(dev)->gen >= 5)
11964 		bpp = 12*3;
11965 	else
11966 		bpp = 8*3;
11967 
11968 
11969 	pipe_config->pipe_bpp = bpp;
11970 
11971 	state = pipe_config->base.state;
11972 
11973 	/* Clamp display bpp to EDID value */
11974 	for_each_connector_in_state(state, connector, connector_state, i) {
11975 		if (connector_state->crtc != &crtc->base)
11976 			continue;
11977 
11978 		connected_sink_compute_bpp(to_intel_connector(connector),
11979 					   pipe_config);
11980 	}
11981 
11982 	return bpp;
11983 }
11984 
intel_dump_crtc_timings(const struct drm_display_mode * mode)11985 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
11986 {
11987 	DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11988 			"type: 0x%x flags: 0x%x\n",
11989 		mode->crtc_clock,
11990 		mode->crtc_hdisplay, mode->crtc_hsync_start,
11991 		mode->crtc_hsync_end, mode->crtc_htotal,
11992 		mode->crtc_vdisplay, mode->crtc_vsync_start,
11993 		mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
11994 }
11995 
intel_dump_pipe_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config,const char * context)11996 static void intel_dump_pipe_config(struct intel_crtc *crtc,
11997 				   struct intel_crtc_state *pipe_config,
11998 				   const char *context)
11999 {
12000 	struct drm_device *dev = crtc->base.dev;
12001 	struct drm_plane *plane;
12002 	struct intel_plane *intel_plane;
12003 	struct intel_plane_state *state;
12004 	struct drm_framebuffer *fb;
12005 
12006 	DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
12007 		      context, pipe_config, pipe_name(crtc->pipe));
12008 
12009 	DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
12010 	DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12011 		      pipe_config->pipe_bpp, pipe_config->dither);
12012 	DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12013 		      pipe_config->has_pch_encoder,
12014 		      pipe_config->fdi_lanes,
12015 		      pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12016 		      pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12017 		      pipe_config->fdi_m_n.tu);
12018 	DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12019 		      pipe_config->has_dp_encoder,
12020 		      pipe_config->lane_count,
12021 		      pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12022 		      pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12023 		      pipe_config->dp_m_n.tu);
12024 
12025 	DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
12026 		      pipe_config->has_dp_encoder,
12027 		      pipe_config->lane_count,
12028 		      pipe_config->dp_m2_n2.gmch_m,
12029 		      pipe_config->dp_m2_n2.gmch_n,
12030 		      pipe_config->dp_m2_n2.link_m,
12031 		      pipe_config->dp_m2_n2.link_n,
12032 		      pipe_config->dp_m2_n2.tu);
12033 
12034 	DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12035 		      pipe_config->has_audio,
12036 		      pipe_config->has_infoframe);
12037 
12038 	DRM_DEBUG_KMS("requested mode:\n");
12039 	drm_mode_debug_printmodeline(&pipe_config->base.mode);
12040 	DRM_DEBUG_KMS("adjusted mode:\n");
12041 	drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12042 	intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12043 	DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
12044 	DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12045 		      pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12046 	DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12047 		      crtc->num_scalers,
12048 		      pipe_config->scaler_state.scaler_users,
12049 		      pipe_config->scaler_state.scaler_id);
12050 	DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12051 		      pipe_config->gmch_pfit.control,
12052 		      pipe_config->gmch_pfit.pgm_ratios,
12053 		      pipe_config->gmch_pfit.lvds_border_bits);
12054 	DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12055 		      pipe_config->pch_pfit.pos,
12056 		      pipe_config->pch_pfit.size,
12057 		      pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
12058 	DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
12059 	DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
12060 
12061 	if (IS_BROXTON(dev)) {
12062 		DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12063 			      "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12064 			      "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12065 			      pipe_config->ddi_pll_sel,
12066 			      pipe_config->dpll_hw_state.ebb0,
12067 			      pipe_config->dpll_hw_state.ebb4,
12068 			      pipe_config->dpll_hw_state.pll0,
12069 			      pipe_config->dpll_hw_state.pll1,
12070 			      pipe_config->dpll_hw_state.pll2,
12071 			      pipe_config->dpll_hw_state.pll3,
12072 			      pipe_config->dpll_hw_state.pll6,
12073 			      pipe_config->dpll_hw_state.pll8,
12074 			      pipe_config->dpll_hw_state.pll9,
12075 			      pipe_config->dpll_hw_state.pll10,
12076 			      pipe_config->dpll_hw_state.pcsdw12);
12077 	} else if (IS_SKYLAKE(dev)) {
12078 		DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12079 			      "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12080 			      pipe_config->ddi_pll_sel,
12081 			      pipe_config->dpll_hw_state.ctrl1,
12082 			      pipe_config->dpll_hw_state.cfgcr1,
12083 			      pipe_config->dpll_hw_state.cfgcr2);
12084 	} else if (HAS_DDI(dev)) {
12085 		DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
12086 			      pipe_config->ddi_pll_sel,
12087 			      pipe_config->dpll_hw_state.wrpll,
12088 			      pipe_config->dpll_hw_state.spll);
12089 	} else {
12090 		DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12091 			      "fp0: 0x%x, fp1: 0x%x\n",
12092 			      pipe_config->dpll_hw_state.dpll,
12093 			      pipe_config->dpll_hw_state.dpll_md,
12094 			      pipe_config->dpll_hw_state.fp0,
12095 			      pipe_config->dpll_hw_state.fp1);
12096 	}
12097 
12098 	DRM_DEBUG_KMS("planes on this crtc\n");
12099 	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12100 		intel_plane = to_intel_plane(plane);
12101 		if (intel_plane->pipe != crtc->pipe)
12102 			continue;
12103 
12104 		state = to_intel_plane_state(plane->state);
12105 		fb = state->base.fb;
12106 		if (!fb) {
12107 			DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
12108 				"disabled, scaler_id = %d\n",
12109 				plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12110 				plane->base.id, intel_plane->pipe,
12111 				(crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12112 				drm_plane_index(plane), state->scaler_id);
12113 			continue;
12114 		}
12115 
12116 		DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12117 			plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12118 			plane->base.id, intel_plane->pipe,
12119 			crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12120 			drm_plane_index(plane));
12121 		DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12122 			fb->base.id, fb->width, fb->height, fb->pixel_format);
12123 		DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12124 			state->scaler_id,
12125 			state->src.x1 >> 16, state->src.y1 >> 16,
12126 			drm_rect_width(&state->src) >> 16,
12127 			drm_rect_height(&state->src) >> 16,
12128 			state->dst.x1, state->dst.y1,
12129 			drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12130 	}
12131 }
12132 
check_digital_port_conflicts(struct drm_atomic_state * state)12133 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12134 {
12135 	struct drm_device *dev = state->dev;
12136 	struct drm_connector *connector;
12137 	unsigned int used_ports = 0;
12138 
12139 	/*
12140 	 * Walk the connector list instead of the encoder
12141 	 * list to detect the problem on ddi platforms
12142 	 * where there's just one encoder per digital port.
12143 	 */
12144 	drm_for_each_connector(connector, dev) {
12145 		struct drm_connector_state *connector_state;
12146 		struct intel_encoder *encoder;
12147 
12148 		connector_state = drm_atomic_get_existing_connector_state(state, connector);
12149 		if (!connector_state)
12150 			connector_state = connector->state;
12151 
12152 		if (!connector_state->best_encoder)
12153 			continue;
12154 
12155 		encoder = to_intel_encoder(connector_state->best_encoder);
12156 
12157 		WARN_ON(!connector_state->crtc);
12158 
12159 		switch (encoder->type) {
12160 			unsigned int port_mask;
12161 		case INTEL_OUTPUT_UNKNOWN:
12162 			if (WARN_ON(!HAS_DDI(dev)))
12163 				break;
12164 		case INTEL_OUTPUT_DISPLAYPORT:
12165 		case INTEL_OUTPUT_HDMI:
12166 		case INTEL_OUTPUT_EDP:
12167 			port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12168 
12169 			/* the same port mustn't appear more than once */
12170 			if (used_ports & port_mask)
12171 				return false;
12172 
12173 			used_ports |= port_mask;
12174 		default:
12175 			break;
12176 		}
12177 	}
12178 
12179 	return true;
12180 }
12181 
12182 static void
clear_intel_crtc_state(struct intel_crtc_state * crtc_state)12183 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12184 {
12185 	struct drm_crtc_state tmp_state;
12186 	struct intel_crtc_scaler_state scaler_state;
12187 	struct intel_dpll_hw_state dpll_hw_state;
12188 	enum intel_dpll_id shared_dpll;
12189 	uint32_t ddi_pll_sel;
12190 	bool force_thru;
12191 
12192 	/* FIXME: before the switch to atomic started, a new pipe_config was
12193 	 * kzalloc'd. Code that depends on any field being zero should be
12194 	 * fixed, so that the crtc_state can be safely duplicated. For now,
12195 	 * only fields that are know to not cause problems are preserved. */
12196 
12197 	tmp_state = crtc_state->base;
12198 	scaler_state = crtc_state->scaler_state;
12199 	shared_dpll = crtc_state->shared_dpll;
12200 	dpll_hw_state = crtc_state->dpll_hw_state;
12201 	ddi_pll_sel = crtc_state->ddi_pll_sel;
12202 	force_thru = crtc_state->pch_pfit.force_thru;
12203 
12204 	memset(crtc_state, 0, sizeof *crtc_state);
12205 
12206 	crtc_state->base = tmp_state;
12207 	crtc_state->scaler_state = scaler_state;
12208 	crtc_state->shared_dpll = shared_dpll;
12209 	crtc_state->dpll_hw_state = dpll_hw_state;
12210 	crtc_state->ddi_pll_sel = ddi_pll_sel;
12211 	crtc_state->pch_pfit.force_thru = force_thru;
12212 }
12213 
12214 static int
intel_modeset_pipe_config(struct drm_crtc * crtc,struct intel_crtc_state * pipe_config)12215 intel_modeset_pipe_config(struct drm_crtc *crtc,
12216 			  struct intel_crtc_state *pipe_config)
12217 {
12218 	struct drm_atomic_state *state = pipe_config->base.state;
12219 	struct intel_encoder *encoder;
12220 	struct drm_connector *connector;
12221 	struct drm_connector_state *connector_state;
12222 	int base_bpp, ret = -EINVAL;
12223 	int i;
12224 	bool retry = true;
12225 
12226 	clear_intel_crtc_state(pipe_config);
12227 
12228 	pipe_config->cpu_transcoder =
12229 		(enum transcoder) to_intel_crtc(crtc)->pipe;
12230 
12231 	/*
12232 	 * Sanitize sync polarity flags based on requested ones. If neither
12233 	 * positive or negative polarity is requested, treat this as meaning
12234 	 * negative polarity.
12235 	 */
12236 	if (!(pipe_config->base.adjusted_mode.flags &
12237 	      (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12238 		pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12239 
12240 	if (!(pipe_config->base.adjusted_mode.flags &
12241 	      (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12242 		pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12243 
12244 	base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12245 					     pipe_config);
12246 	if (base_bpp < 0)
12247 		goto fail;
12248 
12249 	/*
12250 	 * Determine the real pipe dimensions. Note that stereo modes can
12251 	 * increase the actual pipe size due to the frame doubling and
12252 	 * insertion of additional space for blanks between the frame. This
12253 	 * is stored in the crtc timings. We use the requested mode to do this
12254 	 * computation to clearly distinguish it from the adjusted mode, which
12255 	 * can be changed by the connectors in the below retry loop.
12256 	 */
12257 	drm_crtc_get_hv_timing(&pipe_config->base.mode,
12258 			       &pipe_config->pipe_src_w,
12259 			       &pipe_config->pipe_src_h);
12260 
12261 encoder_retry:
12262 	/* Ensure the port clock defaults are reset when retrying. */
12263 	pipe_config->port_clock = 0;
12264 	pipe_config->pixel_multiplier = 1;
12265 
12266 	/* Fill in default crtc timings, allow encoders to overwrite them. */
12267 	drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12268 			      CRTC_STEREO_DOUBLE);
12269 
12270 	/* Pass our mode to the connectors and the CRTC to give them a chance to
12271 	 * adjust it according to limitations or connector properties, and also
12272 	 * a chance to reject the mode entirely.
12273 	 */
12274 	for_each_connector_in_state(state, connector, connector_state, i) {
12275 		if (connector_state->crtc != crtc)
12276 			continue;
12277 
12278 		encoder = to_intel_encoder(connector_state->best_encoder);
12279 
12280 		if (!(encoder->compute_config(encoder, pipe_config))) {
12281 			DRM_DEBUG_KMS("Encoder config failure\n");
12282 			goto fail;
12283 		}
12284 	}
12285 
12286 	/* Set default port clock if not overwritten by the encoder. Needs to be
12287 	 * done afterwards in case the encoder adjusts the mode. */
12288 	if (!pipe_config->port_clock)
12289 		pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12290 			* pipe_config->pixel_multiplier;
12291 
12292 	ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12293 	if (ret < 0) {
12294 		DRM_DEBUG_KMS("CRTC fixup failed\n");
12295 		goto fail;
12296 	}
12297 
12298 	if (ret == RETRY) {
12299 		if (WARN(!retry, "loop in pipe configuration computation\n")) {
12300 			ret = -EINVAL;
12301 			goto fail;
12302 		}
12303 
12304 		DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12305 		retry = false;
12306 		goto encoder_retry;
12307 	}
12308 
12309 	/* Dithering seems to not pass-through bits correctly when it should, so
12310 	 * only enable it on 6bpc panels. */
12311 	pipe_config->dither = pipe_config->pipe_bpp == 6*3;
12312 	DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
12313 		      base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12314 
12315 fail:
12316 	return ret;
12317 }
12318 
12319 static void
intel_modeset_update_crtc_state(struct drm_atomic_state * state)12320 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
12321 {
12322 	struct drm_crtc *crtc;
12323 	struct drm_crtc_state *crtc_state;
12324 	int i;
12325 
12326 	/* Double check state. */
12327 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
12328 		to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12329 
12330 		/* Update hwmode for vblank functions */
12331 		if (crtc->state->active)
12332 			crtc->hwmode = crtc->state->adjusted_mode;
12333 		else
12334 			crtc->hwmode.crtc_clock = 0;
12335 	}
12336 }
12337 
intel_fuzzy_clock_check(int clock1,int clock2)12338 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12339 {
12340 	int diff;
12341 
12342 	if (clock1 == clock2)
12343 		return true;
12344 
12345 	if (!clock1 || !clock2)
12346 		return false;
12347 
12348 	diff = abs(clock1 - clock2);
12349 
12350 	if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12351 		return true;
12352 
12353 	return false;
12354 }
12355 
12356 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12357 	list_for_each_entry((intel_crtc), \
12358 			    &(dev)->mode_config.crtc_list, \
12359 			    base.head) \
12360 		if (mask & (1 <<(intel_crtc)->pipe))
12361 
12362 static bool
intel_compare_m_n(unsigned int m,unsigned int n,unsigned int m2,unsigned int n2,bool exact)12363 intel_compare_m_n(unsigned int m, unsigned int n,
12364 		  unsigned int m2, unsigned int n2,
12365 		  bool exact)
12366 {
12367 	if (m == m2 && n == n2)
12368 		return true;
12369 
12370 	if (exact || !m || !n || !m2 || !n2)
12371 		return false;
12372 
12373 	BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12374 
12375 	if (m > m2) {
12376 		while (m > m2) {
12377 			m2 <<= 1;
12378 			n2 <<= 1;
12379 		}
12380 	} else if (m < m2) {
12381 		while (m < m2) {
12382 			m <<= 1;
12383 			n <<= 1;
12384 		}
12385 	}
12386 
12387 	return m == m2 && n == n2;
12388 }
12389 
12390 static bool
intel_compare_link_m_n(const struct intel_link_m_n * m_n,struct intel_link_m_n * m2_n2,bool adjust)12391 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12392 		       struct intel_link_m_n *m2_n2,
12393 		       bool adjust)
12394 {
12395 	if (m_n->tu == m2_n2->tu &&
12396 	    intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12397 			      m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12398 	    intel_compare_m_n(m_n->link_m, m_n->link_n,
12399 			      m2_n2->link_m, m2_n2->link_n, !adjust)) {
12400 		if (adjust)
12401 			*m2_n2 = *m_n;
12402 
12403 		return true;
12404 	}
12405 
12406 	return false;
12407 }
12408 
12409 static bool
intel_pipe_config_compare(struct drm_device * dev,struct intel_crtc_state * current_config,struct intel_crtc_state * pipe_config,bool adjust)12410 intel_pipe_config_compare(struct drm_device *dev,
12411 			  struct intel_crtc_state *current_config,
12412 			  struct intel_crtc_state *pipe_config,
12413 			  bool adjust)
12414 {
12415 	bool ret = true;
12416 
12417 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12418 	do { \
12419 		if (!adjust) \
12420 			DRM_ERROR(fmt, ##__VA_ARGS__); \
12421 		else \
12422 			DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12423 	} while (0)
12424 
12425 #define PIPE_CONF_CHECK_X(name)	\
12426 	if (current_config->name != pipe_config->name) { \
12427 		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12428 			  "(expected 0x%08x, found 0x%08x)\n", \
12429 			  current_config->name, \
12430 			  pipe_config->name); \
12431 		ret = false; \
12432 	}
12433 
12434 #define PIPE_CONF_CHECK_I(name)	\
12435 	if (current_config->name != pipe_config->name) { \
12436 		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12437 			  "(expected %i, found %i)\n", \
12438 			  current_config->name, \
12439 			  pipe_config->name); \
12440 		ret = false; \
12441 	}
12442 
12443 #define PIPE_CONF_CHECK_M_N(name) \
12444 	if (!intel_compare_link_m_n(&current_config->name, \
12445 				    &pipe_config->name,\
12446 				    adjust)) { \
12447 		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12448 			  "(expected tu %i gmch %i/%i link %i/%i, " \
12449 			  "found tu %i, gmch %i/%i link %i/%i)\n", \
12450 			  current_config->name.tu, \
12451 			  current_config->name.gmch_m, \
12452 			  current_config->name.gmch_n, \
12453 			  current_config->name.link_m, \
12454 			  current_config->name.link_n, \
12455 			  pipe_config->name.tu, \
12456 			  pipe_config->name.gmch_m, \
12457 			  pipe_config->name.gmch_n, \
12458 			  pipe_config->name.link_m, \
12459 			  pipe_config->name.link_n); \
12460 		ret = false; \
12461 	}
12462 
12463 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12464 	if (!intel_compare_link_m_n(&current_config->name, \
12465 				    &pipe_config->name, adjust) && \
12466 	    !intel_compare_link_m_n(&current_config->alt_name, \
12467 				    &pipe_config->name, adjust)) { \
12468 		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12469 			  "(expected tu %i gmch %i/%i link %i/%i, " \
12470 			  "or tu %i gmch %i/%i link %i/%i, " \
12471 			  "found tu %i, gmch %i/%i link %i/%i)\n", \
12472 			  current_config->name.tu, \
12473 			  current_config->name.gmch_m, \
12474 			  current_config->name.gmch_n, \
12475 			  current_config->name.link_m, \
12476 			  current_config->name.link_n, \
12477 			  current_config->alt_name.tu, \
12478 			  current_config->alt_name.gmch_m, \
12479 			  current_config->alt_name.gmch_n, \
12480 			  current_config->alt_name.link_m, \
12481 			  current_config->alt_name.link_n, \
12482 			  pipe_config->name.tu, \
12483 			  pipe_config->name.gmch_m, \
12484 			  pipe_config->name.gmch_n, \
12485 			  pipe_config->name.link_m, \
12486 			  pipe_config->name.link_n); \
12487 		ret = false; \
12488 	}
12489 
12490 /* This is required for BDW+ where there is only one set of registers for
12491  * switching between high and low RR.
12492  * This macro can be used whenever a comparison has to be made between one
12493  * hw state and multiple sw state variables.
12494  */
12495 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
12496 	if ((current_config->name != pipe_config->name) && \
12497 		(current_config->alt_name != pipe_config->name)) { \
12498 			INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12499 				  "(expected %i or %i, found %i)\n", \
12500 				  current_config->name, \
12501 				  current_config->alt_name, \
12502 				  pipe_config->name); \
12503 			ret = false; \
12504 	}
12505 
12506 #define PIPE_CONF_CHECK_FLAGS(name, mask)	\
12507 	if ((current_config->name ^ pipe_config->name) & (mask)) { \
12508 		INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
12509 			  "(expected %i, found %i)\n", \
12510 			  current_config->name & (mask), \
12511 			  pipe_config->name & (mask)); \
12512 		ret = false; \
12513 	}
12514 
12515 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12516 	if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12517 		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12518 			  "(expected %i, found %i)\n", \
12519 			  current_config->name, \
12520 			  pipe_config->name); \
12521 		ret = false; \
12522 	}
12523 
12524 #define PIPE_CONF_QUIRK(quirk)	\
12525 	((current_config->quirks | pipe_config->quirks) & (quirk))
12526 
12527 	PIPE_CONF_CHECK_I(cpu_transcoder);
12528 
12529 	PIPE_CONF_CHECK_I(has_pch_encoder);
12530 	PIPE_CONF_CHECK_I(fdi_lanes);
12531 	PIPE_CONF_CHECK_M_N(fdi_m_n);
12532 
12533 	PIPE_CONF_CHECK_I(has_dp_encoder);
12534 	PIPE_CONF_CHECK_I(lane_count);
12535 
12536 	if (INTEL_INFO(dev)->gen < 8) {
12537 		PIPE_CONF_CHECK_M_N(dp_m_n);
12538 
12539 		if (current_config->has_drrs)
12540 			PIPE_CONF_CHECK_M_N(dp_m2_n2);
12541 	} else
12542 		PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
12543 
12544 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12545 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12546 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12547 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12548 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12549 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12550 
12551 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12552 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12553 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12554 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12555 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12556 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12557 
12558 	PIPE_CONF_CHECK_I(pixel_multiplier);
12559 	PIPE_CONF_CHECK_I(has_hdmi_sink);
12560 	if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12561 	    IS_VALLEYVIEW(dev))
12562 		PIPE_CONF_CHECK_I(limited_color_range);
12563 	PIPE_CONF_CHECK_I(has_infoframe);
12564 
12565 	PIPE_CONF_CHECK_I(has_audio);
12566 
12567 	PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12568 			      DRM_MODE_FLAG_INTERLACE);
12569 
12570 	if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12571 		PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12572 				      DRM_MODE_FLAG_PHSYNC);
12573 		PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12574 				      DRM_MODE_FLAG_NHSYNC);
12575 		PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12576 				      DRM_MODE_FLAG_PVSYNC);
12577 		PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12578 				      DRM_MODE_FLAG_NVSYNC);
12579 	}
12580 
12581 	PIPE_CONF_CHECK_X(gmch_pfit.control);
12582 	/* pfit ratios are autocomputed by the hw on gen4+ */
12583 	if (INTEL_INFO(dev)->gen < 4)
12584 		PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
12585 	PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
12586 
12587 	if (!adjust) {
12588 		PIPE_CONF_CHECK_I(pipe_src_w);
12589 		PIPE_CONF_CHECK_I(pipe_src_h);
12590 
12591 		PIPE_CONF_CHECK_I(pch_pfit.enabled);
12592 		if (current_config->pch_pfit.enabled) {
12593 			PIPE_CONF_CHECK_X(pch_pfit.pos);
12594 			PIPE_CONF_CHECK_X(pch_pfit.size);
12595 		}
12596 
12597 		PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12598 	}
12599 
12600 	/* BDW+ don't expose a synchronous way to read the state */
12601 	if (IS_HASWELL(dev))
12602 		PIPE_CONF_CHECK_I(ips_enabled);
12603 
12604 	PIPE_CONF_CHECK_I(double_wide);
12605 
12606 	PIPE_CONF_CHECK_X(ddi_pll_sel);
12607 
12608 	PIPE_CONF_CHECK_I(shared_dpll);
12609 	PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12610 	PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12611 	PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12612 	PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12613 	PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12614 	PIPE_CONF_CHECK_X(dpll_hw_state.spll);
12615 	PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12616 	PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12617 	PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12618 
12619 	if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12620 		PIPE_CONF_CHECK_I(pipe_bpp);
12621 
12622 	PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12623 	PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12624 
12625 #undef PIPE_CONF_CHECK_X
12626 #undef PIPE_CONF_CHECK_I
12627 #undef PIPE_CONF_CHECK_I_ALT
12628 #undef PIPE_CONF_CHECK_FLAGS
12629 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12630 #undef PIPE_CONF_QUIRK
12631 #undef INTEL_ERR_OR_DBG_KMS
12632 
12633 	return ret;
12634 }
12635 
check_wm_state(struct drm_device * dev)12636 static void check_wm_state(struct drm_device *dev)
12637 {
12638 	struct drm_i915_private *dev_priv = dev->dev_private;
12639 	struct skl_ddb_allocation hw_ddb, *sw_ddb;
12640 	struct intel_crtc *intel_crtc;
12641 	int plane;
12642 
12643 	if (INTEL_INFO(dev)->gen < 9)
12644 		return;
12645 
12646 	skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12647 	sw_ddb = &dev_priv->wm.skl_hw.ddb;
12648 
12649 	for_each_intel_crtc(dev, intel_crtc) {
12650 		struct skl_ddb_entry *hw_entry, *sw_entry;
12651 		const enum pipe pipe = intel_crtc->pipe;
12652 
12653 		if (!intel_crtc->active)
12654 			continue;
12655 
12656 		/* planes */
12657 		for_each_plane(dev_priv, pipe, plane) {
12658 			hw_entry = &hw_ddb.plane[pipe][plane];
12659 			sw_entry = &sw_ddb->plane[pipe][plane];
12660 
12661 			if (skl_ddb_entry_equal(hw_entry, sw_entry))
12662 				continue;
12663 
12664 			DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12665 				  "(expected (%u,%u), found (%u,%u))\n",
12666 				  pipe_name(pipe), plane + 1,
12667 				  sw_entry->start, sw_entry->end,
12668 				  hw_entry->start, hw_entry->end);
12669 		}
12670 
12671 		/* cursor */
12672 		hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
12673 		sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
12674 
12675 		if (skl_ddb_entry_equal(hw_entry, sw_entry))
12676 			continue;
12677 
12678 		DRM_ERROR("mismatch in DDB state pipe %c cursor "
12679 			  "(expected (%u,%u), found (%u,%u))\n",
12680 			  pipe_name(pipe),
12681 			  sw_entry->start, sw_entry->end,
12682 			  hw_entry->start, hw_entry->end);
12683 	}
12684 }
12685 
12686 static void
check_connector_state(struct drm_device * dev,struct drm_atomic_state * old_state)12687 check_connector_state(struct drm_device *dev,
12688 		      struct drm_atomic_state *old_state)
12689 {
12690 	struct drm_connector_state *old_conn_state;
12691 	struct drm_connector *connector;
12692 	int i;
12693 
12694 	for_each_connector_in_state(old_state, connector, old_conn_state, i) {
12695 		struct drm_encoder *encoder = connector->encoder;
12696 		struct drm_connector_state *state = connector->state;
12697 
12698 		/* This also checks the encoder/connector hw state with the
12699 		 * ->get_hw_state callbacks. */
12700 		intel_connector_check_state(to_intel_connector(connector));
12701 
12702 		I915_STATE_WARN(state->best_encoder != encoder,
12703 		     "connector's atomic encoder doesn't match legacy encoder\n");
12704 	}
12705 }
12706 
12707 static void
check_encoder_state(struct drm_device * dev)12708 check_encoder_state(struct drm_device *dev)
12709 {
12710 	struct intel_encoder *encoder;
12711 	struct intel_connector *connector;
12712 
12713 	for_each_intel_encoder(dev, encoder) {
12714 		bool enabled = false;
12715 		enum pipe pipe;
12716 
12717 		DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12718 			      encoder->base.base.id,
12719 			      encoder->base.name);
12720 
12721 		for_each_intel_connector(dev, connector) {
12722 			if (connector->base.state->best_encoder != &encoder->base)
12723 				continue;
12724 			enabled = true;
12725 
12726 			I915_STATE_WARN(connector->base.state->crtc !=
12727 					encoder->base.crtc,
12728 			     "connector's crtc doesn't match encoder crtc\n");
12729 		}
12730 
12731 		I915_STATE_WARN(!!encoder->base.crtc != enabled,
12732 		     "encoder's enabled state mismatch "
12733 		     "(expected %i, found %i)\n",
12734 		     !!encoder->base.crtc, enabled);
12735 
12736 		if (!encoder->base.crtc) {
12737 			bool active;
12738 
12739 			active = encoder->get_hw_state(encoder, &pipe);
12740 			I915_STATE_WARN(active,
12741 			     "encoder detached but still enabled on pipe %c.\n",
12742 			     pipe_name(pipe));
12743 		}
12744 	}
12745 }
12746 
12747 static void
check_crtc_state(struct drm_device * dev,struct drm_atomic_state * old_state)12748 check_crtc_state(struct drm_device *dev, struct drm_atomic_state *old_state)
12749 {
12750 	struct drm_i915_private *dev_priv = dev->dev_private;
12751 	struct intel_encoder *encoder;
12752 	struct drm_crtc_state *old_crtc_state;
12753 	struct drm_crtc *crtc;
12754 	int i;
12755 
12756 	for_each_crtc_in_state(old_state, crtc, old_crtc_state, i) {
12757 		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12758 		struct intel_crtc_state *pipe_config, *sw_config;
12759 		bool active;
12760 
12761 		if (!needs_modeset(crtc->state) &&
12762 		    !to_intel_crtc_state(crtc->state)->update_pipe)
12763 			continue;
12764 
12765 		__drm_atomic_helper_crtc_destroy_state(crtc, old_crtc_state);
12766 		pipe_config = to_intel_crtc_state(old_crtc_state);
12767 		memset(pipe_config, 0, sizeof(*pipe_config));
12768 		pipe_config->base.crtc = crtc;
12769 		pipe_config->base.state = old_state;
12770 
12771 		DRM_DEBUG_KMS("[CRTC:%d]\n",
12772 			      crtc->base.id);
12773 
12774 		active = dev_priv->display.get_pipe_config(intel_crtc,
12775 							   pipe_config);
12776 
12777 		/* hw state is inconsistent with the pipe quirk */
12778 		if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12779 		    (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12780 			active = crtc->state->active;
12781 
12782 		I915_STATE_WARN(crtc->state->active != active,
12783 		     "crtc active state doesn't match with hw state "
12784 		     "(expected %i, found %i)\n", crtc->state->active, active);
12785 
12786 		I915_STATE_WARN(intel_crtc->active != crtc->state->active,
12787 		     "transitional active state does not match atomic hw state "
12788 		     "(expected %i, found %i)\n", crtc->state->active, intel_crtc->active);
12789 
12790 		for_each_encoder_on_crtc(dev, crtc, encoder) {
12791 			enum pipe pipe;
12792 
12793 			active = encoder->get_hw_state(encoder, &pipe);
12794 			I915_STATE_WARN(active != crtc->state->active,
12795 				"[ENCODER:%i] active %i with crtc active %i\n",
12796 				encoder->base.base.id, active, crtc->state->active);
12797 
12798 			I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12799 					"Encoder connected to wrong pipe %c\n",
12800 					pipe_name(pipe));
12801 
12802 			if (active)
12803 				encoder->get_config(encoder, pipe_config);
12804 		}
12805 
12806 		if (!crtc->state->active)
12807 			continue;
12808 
12809 		sw_config = to_intel_crtc_state(crtc->state);
12810 		if (!intel_pipe_config_compare(dev, sw_config,
12811 					       pipe_config, false)) {
12812 			I915_STATE_WARN(1, "pipe state doesn't match!\n");
12813 			intel_dump_pipe_config(intel_crtc, pipe_config,
12814 					       "[hw state]");
12815 			intel_dump_pipe_config(intel_crtc, sw_config,
12816 					       "[sw state]");
12817 		}
12818 	}
12819 }
12820 
12821 static void
check_shared_dpll_state(struct drm_device * dev)12822 check_shared_dpll_state(struct drm_device *dev)
12823 {
12824 	struct drm_i915_private *dev_priv = dev->dev_private;
12825 	struct intel_crtc *crtc;
12826 	struct intel_dpll_hw_state dpll_hw_state;
12827 	int i;
12828 
12829 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12830 		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12831 		int enabled_crtcs = 0, active_crtcs = 0;
12832 		bool active;
12833 
12834 		memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12835 
12836 		DRM_DEBUG_KMS("%s\n", pll->name);
12837 
12838 		active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12839 
12840 		I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
12841 		     "more active pll users than references: %i vs %i\n",
12842 		     pll->active, hweight32(pll->config.crtc_mask));
12843 		I915_STATE_WARN(pll->active && !pll->on,
12844 		     "pll in active use but not on in sw tracking\n");
12845 		I915_STATE_WARN(pll->on && !pll->active,
12846 		     "pll in on but not on in use in sw tracking\n");
12847 		I915_STATE_WARN(pll->on != active,
12848 		     "pll on state mismatch (expected %i, found %i)\n",
12849 		     pll->on, active);
12850 
12851 		for_each_intel_crtc(dev, crtc) {
12852 			if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
12853 				enabled_crtcs++;
12854 			if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12855 				active_crtcs++;
12856 		}
12857 		I915_STATE_WARN(pll->active != active_crtcs,
12858 		     "pll active crtcs mismatch (expected %i, found %i)\n",
12859 		     pll->active, active_crtcs);
12860 		I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
12861 		     "pll enabled crtcs mismatch (expected %i, found %i)\n",
12862 		     hweight32(pll->config.crtc_mask), enabled_crtcs);
12863 
12864 		I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
12865 				       sizeof(dpll_hw_state)),
12866 		     "pll hw state mismatch\n");
12867 	}
12868 }
12869 
12870 static void
intel_modeset_check_state(struct drm_device * dev,struct drm_atomic_state * old_state)12871 intel_modeset_check_state(struct drm_device *dev,
12872 			  struct drm_atomic_state *old_state)
12873 {
12874 	check_wm_state(dev);
12875 	check_connector_state(dev, old_state);
12876 	check_encoder_state(dev);
12877 	check_crtc_state(dev, old_state);
12878 	check_shared_dpll_state(dev);
12879 }
12880 
ironlake_check_encoder_dotclock(const struct intel_crtc_state * pipe_config,int dotclock)12881 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
12882 				     int dotclock)
12883 {
12884 	/*
12885 	 * FDI already provided one idea for the dotclock.
12886 	 * Yell if the encoder disagrees.
12887 	 */
12888 	WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
12889 	     "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12890 	     pipe_config->base.adjusted_mode.crtc_clock, dotclock);
12891 }
12892 
update_scanline_offset(struct intel_crtc * crtc)12893 static void update_scanline_offset(struct intel_crtc *crtc)
12894 {
12895 	struct drm_device *dev = crtc->base.dev;
12896 
12897 	/*
12898 	 * The scanline counter increments at the leading edge of hsync.
12899 	 *
12900 	 * On most platforms it starts counting from vtotal-1 on the
12901 	 * first active line. That means the scanline counter value is
12902 	 * always one less than what we would expect. Ie. just after
12903 	 * start of vblank, which also occurs at start of hsync (on the
12904 	 * last active line), the scanline counter will read vblank_start-1.
12905 	 *
12906 	 * On gen2 the scanline counter starts counting from 1 instead
12907 	 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12908 	 * to keep the value positive), instead of adding one.
12909 	 *
12910 	 * On HSW+ the behaviour of the scanline counter depends on the output
12911 	 * type. For DP ports it behaves like most other platforms, but on HDMI
12912 	 * there's an extra 1 line difference. So we need to add two instead of
12913 	 * one to the value.
12914 	 */
12915 	if (IS_GEN2(dev)) {
12916 		const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
12917 		int vtotal;
12918 
12919 		vtotal = adjusted_mode->crtc_vtotal;
12920 		if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
12921 			vtotal /= 2;
12922 
12923 		crtc->scanline_offset = vtotal - 1;
12924 	} else if (HAS_DDI(dev) &&
12925 		   intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
12926 		crtc->scanline_offset = 2;
12927 	} else
12928 		crtc->scanline_offset = 1;
12929 }
12930 
intel_modeset_clear_plls(struct drm_atomic_state * state)12931 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
12932 {
12933 	struct drm_device *dev = state->dev;
12934 	struct drm_i915_private *dev_priv = to_i915(dev);
12935 	struct intel_shared_dpll_config *shared_dpll = NULL;
12936 	struct intel_crtc *intel_crtc;
12937 	struct intel_crtc_state *intel_crtc_state;
12938 	struct drm_crtc *crtc;
12939 	struct drm_crtc_state *crtc_state;
12940 	int i;
12941 
12942 	if (!dev_priv->display.crtc_compute_clock)
12943 		return;
12944 
12945 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
12946 		int dpll;
12947 
12948 		intel_crtc = to_intel_crtc(crtc);
12949 		intel_crtc_state = to_intel_crtc_state(crtc_state);
12950 		dpll = intel_crtc_state->shared_dpll;
12951 
12952 		if (!needs_modeset(crtc_state) || dpll == DPLL_ID_PRIVATE)
12953 			continue;
12954 
12955 		intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
12956 
12957 		if (!shared_dpll)
12958 			shared_dpll = intel_atomic_get_shared_dpll_state(state);
12959 
12960 		shared_dpll[dpll].crtc_mask &= ~(1 << intel_crtc->pipe);
12961 	}
12962 }
12963 
12964 /*
12965  * This implements the workaround described in the "notes" section of the mode
12966  * set sequence documentation. When going from no pipes or single pipe to
12967  * multiple pipes, and planes are enabled after the pipe, we need to wait at
12968  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
12969  */
haswell_mode_set_planes_workaround(struct drm_atomic_state * state)12970 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
12971 {
12972 	struct drm_crtc_state *crtc_state;
12973 	struct intel_crtc *intel_crtc;
12974 	struct drm_crtc *crtc;
12975 	struct intel_crtc_state *first_crtc_state = NULL;
12976 	struct intel_crtc_state *other_crtc_state = NULL;
12977 	enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
12978 	int i;
12979 
12980 	/* look at all crtc's that are going to be enabled in during modeset */
12981 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
12982 		intel_crtc = to_intel_crtc(crtc);
12983 
12984 		if (!crtc_state->active || !needs_modeset(crtc_state))
12985 			continue;
12986 
12987 		if (first_crtc_state) {
12988 			other_crtc_state = to_intel_crtc_state(crtc_state);
12989 			break;
12990 		} else {
12991 			first_crtc_state = to_intel_crtc_state(crtc_state);
12992 			first_pipe = intel_crtc->pipe;
12993 		}
12994 	}
12995 
12996 	/* No workaround needed? */
12997 	if (!first_crtc_state)
12998 		return 0;
12999 
13000 	/* w/a possibly needed, check how many crtc's are already enabled. */
13001 	for_each_intel_crtc(state->dev, intel_crtc) {
13002 		struct intel_crtc_state *pipe_config;
13003 
13004 		pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13005 		if (IS_ERR(pipe_config))
13006 			return PTR_ERR(pipe_config);
13007 
13008 		pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13009 
13010 		if (!pipe_config->base.active ||
13011 		    needs_modeset(&pipe_config->base))
13012 			continue;
13013 
13014 		/* 2 or more enabled crtcs means no need for w/a */
13015 		if (enabled_pipe != INVALID_PIPE)
13016 			return 0;
13017 
13018 		enabled_pipe = intel_crtc->pipe;
13019 	}
13020 
13021 	if (enabled_pipe != INVALID_PIPE)
13022 		first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13023 	else if (other_crtc_state)
13024 		other_crtc_state->hsw_workaround_pipe = first_pipe;
13025 
13026 	return 0;
13027 }
13028 
intel_modeset_all_pipes(struct drm_atomic_state * state)13029 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13030 {
13031 	struct drm_crtc *crtc;
13032 	struct drm_crtc_state *crtc_state;
13033 	int ret = 0;
13034 
13035 	/* add all active pipes to the state */
13036 	for_each_crtc(state->dev, crtc) {
13037 		crtc_state = drm_atomic_get_crtc_state(state, crtc);
13038 		if (IS_ERR(crtc_state))
13039 			return PTR_ERR(crtc_state);
13040 
13041 		if (!crtc_state->active || needs_modeset(crtc_state))
13042 			continue;
13043 
13044 		crtc_state->mode_changed = true;
13045 
13046 		ret = drm_atomic_add_affected_connectors(state, crtc);
13047 		if (ret)
13048 			break;
13049 
13050 		ret = drm_atomic_add_affected_planes(state, crtc);
13051 		if (ret)
13052 			break;
13053 	}
13054 
13055 	return ret;
13056 }
13057 
intel_modeset_checks(struct drm_atomic_state * state)13058 static int intel_modeset_checks(struct drm_atomic_state *state)
13059 {
13060 	struct drm_device *dev = state->dev;
13061 	struct drm_i915_private *dev_priv = dev->dev_private;
13062 	int ret;
13063 
13064 	if (!check_digital_port_conflicts(state)) {
13065 		DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13066 		return -EINVAL;
13067 	}
13068 
13069 	/*
13070 	 * See if the config requires any additional preparation, e.g.
13071 	 * to adjust global state with pipes off.  We need to do this
13072 	 * here so we can get the modeset_pipe updated config for the new
13073 	 * mode set on this crtc.  For other crtcs we need to use the
13074 	 * adjusted_mode bits in the crtc directly.
13075 	 */
13076 	if (dev_priv->display.modeset_calc_cdclk) {
13077 		unsigned int cdclk;
13078 
13079 		ret = dev_priv->display.modeset_calc_cdclk(state);
13080 
13081 		cdclk = to_intel_atomic_state(state)->cdclk;
13082 		if (!ret && cdclk != dev_priv->cdclk_freq)
13083 			ret = intel_modeset_all_pipes(state);
13084 
13085 		if (ret < 0)
13086 			return ret;
13087 	} else
13088 		to_intel_atomic_state(state)->cdclk = dev_priv->cdclk_freq;
13089 
13090 	intel_modeset_clear_plls(state);
13091 
13092 	if (IS_HASWELL(dev))
13093 		return haswell_mode_set_planes_workaround(state);
13094 
13095 	return 0;
13096 }
13097 
13098 /**
13099  * intel_atomic_check - validate state object
13100  * @dev: drm device
13101  * @state: state to validate
13102  */
intel_atomic_check(struct drm_device * dev,struct drm_atomic_state * state)13103 static int intel_atomic_check(struct drm_device *dev,
13104 			      struct drm_atomic_state *state)
13105 {
13106 	struct drm_crtc *crtc;
13107 	struct drm_crtc_state *crtc_state;
13108 	int ret, i;
13109 	bool any_ms = false;
13110 
13111 	ret = drm_atomic_helper_check_modeset(dev, state);
13112 	if (ret)
13113 		return ret;
13114 
13115 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
13116 		struct intel_crtc_state *pipe_config =
13117 			to_intel_crtc_state(crtc_state);
13118 
13119 		memset(&to_intel_crtc(crtc)->atomic, 0,
13120 		       sizeof(struct intel_crtc_atomic_commit));
13121 
13122 		/* Catch I915_MODE_FLAG_INHERITED */
13123 		if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13124 			crtc_state->mode_changed = true;
13125 
13126 		if (!crtc_state->enable) {
13127 			if (needs_modeset(crtc_state))
13128 				any_ms = true;
13129 			continue;
13130 		}
13131 
13132 		if (!needs_modeset(crtc_state))
13133 			continue;
13134 
13135 		/* FIXME: For only active_changed we shouldn't need to do any
13136 		 * state recomputation at all. */
13137 
13138 		ret = drm_atomic_add_affected_connectors(state, crtc);
13139 		if (ret)
13140 			return ret;
13141 
13142 		ret = intel_modeset_pipe_config(crtc, pipe_config);
13143 		if (ret)
13144 			return ret;
13145 
13146 		if (i915.fastboot &&
13147 		    intel_pipe_config_compare(state->dev,
13148 					to_intel_crtc_state(crtc->state),
13149 					pipe_config, true)) {
13150 			crtc_state->mode_changed = false;
13151 			to_intel_crtc_state(crtc_state)->update_pipe = true;
13152 		}
13153 
13154 		if (needs_modeset(crtc_state)) {
13155 			any_ms = true;
13156 
13157 			ret = drm_atomic_add_affected_planes(state, crtc);
13158 			if (ret)
13159 				return ret;
13160 		}
13161 
13162 		intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13163 				       needs_modeset(crtc_state) ?
13164 				       "[modeset]" : "[fastset]");
13165 	}
13166 
13167 	if (any_ms) {
13168 		ret = intel_modeset_checks(state);
13169 
13170 		if (ret)
13171 			return ret;
13172 	} else
13173 		to_intel_atomic_state(state)->cdclk =
13174 			to_i915(state->dev)->cdclk_freq;
13175 
13176 	return drm_atomic_helper_check_planes(state->dev, state);
13177 }
13178 
13179 /**
13180  * intel_atomic_commit - commit validated state object
13181  * @dev: DRM device
13182  * @state: the top-level driver state object
13183  * @async: asynchronous commit
13184  *
13185  * This function commits a top-level state object that has been validated
13186  * with drm_atomic_helper_check().
13187  *
13188  * FIXME:  Atomic modeset support for i915 is not yet complete.  At the moment
13189  * we can only handle plane-related operations and do not yet support
13190  * asynchronous commit.
13191  *
13192  * RETURNS
13193  * Zero for success or -errno.
13194  */
intel_atomic_commit(struct drm_device * dev,struct drm_atomic_state * state,bool async)13195 static int intel_atomic_commit(struct drm_device *dev,
13196 			       struct drm_atomic_state *state,
13197 			       bool async)
13198 {
13199 	struct drm_i915_private *dev_priv = dev->dev_private;
13200 	struct drm_crtc *crtc;
13201 	struct drm_crtc_state *crtc_state;
13202 	int ret = 0;
13203 	int i;
13204 	bool any_ms = false;
13205 
13206 	if (async) {
13207 		DRM_DEBUG_KMS("i915 does not yet support async commit\n");
13208 		return -EINVAL;
13209 	}
13210 
13211 	ret = drm_atomic_helper_prepare_planes(dev, state);
13212 	if (ret)
13213 		return ret;
13214 
13215 	drm_atomic_helper_swap_state(dev, state);
13216 
13217 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
13218 		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13219 
13220 		if (!needs_modeset(crtc->state))
13221 			continue;
13222 
13223 		any_ms = true;
13224 		intel_pre_plane_update(intel_crtc);
13225 
13226 		if (crtc_state->active) {
13227 			intel_crtc_disable_planes(crtc, crtc_state->plane_mask);
13228 			dev_priv->display.crtc_disable(crtc);
13229 			intel_crtc->active = false;
13230 			intel_disable_shared_dpll(intel_crtc);
13231 		}
13232 	}
13233 
13234 	/* Only after disabling all output pipelines that will be changed can we
13235 	 * update the the output configuration. */
13236 	intel_modeset_update_crtc_state(state);
13237 
13238 	if (any_ms) {
13239 		intel_shared_dpll_commit(state);
13240 
13241 		drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13242 		modeset_update_crtc_power_domains(state);
13243 	}
13244 
13245 	/* Now enable the clocks, plane, pipe, and connectors that we set up. */
13246 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
13247 		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13248 		bool modeset = needs_modeset(crtc->state);
13249 		bool update_pipe = !modeset &&
13250 			to_intel_crtc_state(crtc->state)->update_pipe;
13251 		unsigned long put_domains = 0;
13252 
13253 		if (modeset && crtc->state->active) {
13254 			update_scanline_offset(to_intel_crtc(crtc));
13255 			dev_priv->display.crtc_enable(crtc);
13256 		}
13257 
13258 		if (update_pipe) {
13259 			put_domains = modeset_get_crtc_power_domains(crtc);
13260 
13261 			/* make sure intel_modeset_check_state runs */
13262 			any_ms = true;
13263 		}
13264 
13265 		if (!modeset)
13266 			intel_pre_plane_update(intel_crtc);
13267 
13268 		drm_atomic_helper_commit_planes_on_crtc(crtc_state);
13269 
13270 		if (put_domains)
13271 			modeset_put_power_domains(dev_priv, put_domains);
13272 
13273 		intel_post_plane_update(intel_crtc);
13274 	}
13275 
13276 	/* FIXME: add subpixel order */
13277 
13278 	drm_atomic_helper_wait_for_vblanks(dev, state);
13279 	drm_atomic_helper_cleanup_planes(dev, state);
13280 
13281 	if (any_ms)
13282 		intel_modeset_check_state(dev, state);
13283 
13284 	drm_atomic_state_free(state);
13285 
13286 	return 0;
13287 }
13288 
intel_crtc_restore_mode(struct drm_crtc * crtc)13289 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13290 {
13291 	struct drm_device *dev = crtc->dev;
13292 	struct drm_atomic_state *state;
13293 	struct drm_crtc_state *crtc_state;
13294 	int ret;
13295 
13296 	state = drm_atomic_state_alloc(dev);
13297 	if (!state) {
13298 		DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
13299 			      crtc->base.id);
13300 		return;
13301 	}
13302 
13303 	state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
13304 
13305 retry:
13306 	crtc_state = drm_atomic_get_crtc_state(state, crtc);
13307 	ret = PTR_ERR_OR_ZERO(crtc_state);
13308 	if (!ret) {
13309 		if (!crtc_state->active)
13310 			goto out;
13311 
13312 		crtc_state->mode_changed = true;
13313 		ret = drm_atomic_commit(state);
13314 	}
13315 
13316 	if (ret == -EDEADLK) {
13317 		drm_atomic_state_clear(state);
13318 		drm_modeset_backoff(state->acquire_ctx);
13319 		goto retry;
13320 	}
13321 
13322 	if (ret)
13323 out:
13324 		drm_atomic_state_free(state);
13325 }
13326 
13327 #undef for_each_intel_crtc_masked
13328 
13329 static const struct drm_crtc_funcs intel_crtc_funcs = {
13330 	.gamma_set = intel_crtc_gamma_set,
13331 	.set_config = drm_atomic_helper_set_config,
13332 	.destroy = intel_crtc_destroy,
13333 	.page_flip = intel_crtc_page_flip,
13334 	.atomic_duplicate_state = intel_crtc_duplicate_state,
13335 	.atomic_destroy_state = intel_crtc_destroy_state,
13336 };
13337 
ibx_pch_dpll_get_hw_state(struct drm_i915_private * dev_priv,struct intel_shared_dpll * pll,struct intel_dpll_hw_state * hw_state)13338 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
13339 				      struct intel_shared_dpll *pll,
13340 				      struct intel_dpll_hw_state *hw_state)
13341 {
13342 	uint32_t val;
13343 
13344 	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
13345 		return false;
13346 
13347 	val = I915_READ(PCH_DPLL(pll->id));
13348 	hw_state->dpll = val;
13349 	hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
13350 	hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
13351 
13352 	return val & DPLL_VCO_ENABLE;
13353 }
13354 
ibx_pch_dpll_mode_set(struct drm_i915_private * dev_priv,struct intel_shared_dpll * pll)13355 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
13356 				  struct intel_shared_dpll *pll)
13357 {
13358 	I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
13359 	I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
13360 }
13361 
ibx_pch_dpll_enable(struct drm_i915_private * dev_priv,struct intel_shared_dpll * pll)13362 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
13363 				struct intel_shared_dpll *pll)
13364 {
13365 	/* PCH refclock must be enabled first */
13366 	ibx_assert_pch_refclk_enabled(dev_priv);
13367 
13368 	I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13369 
13370 	/* Wait for the clocks to stabilize. */
13371 	POSTING_READ(PCH_DPLL(pll->id));
13372 	udelay(150);
13373 
13374 	/* The pixel multiplier can only be updated once the
13375 	 * DPLL is enabled and the clocks are stable.
13376 	 *
13377 	 * So write it again.
13378 	 */
13379 	I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13380 	POSTING_READ(PCH_DPLL(pll->id));
13381 	udelay(200);
13382 }
13383 
ibx_pch_dpll_disable(struct drm_i915_private * dev_priv,struct intel_shared_dpll * pll)13384 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
13385 				 struct intel_shared_dpll *pll)
13386 {
13387 	struct drm_device *dev = dev_priv->dev;
13388 	struct intel_crtc *crtc;
13389 
13390 	/* Make sure no transcoder isn't still depending on us. */
13391 	for_each_intel_crtc(dev, crtc) {
13392 		if (intel_crtc_to_shared_dpll(crtc) == pll)
13393 			assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
13394 	}
13395 
13396 	I915_WRITE(PCH_DPLL(pll->id), 0);
13397 	POSTING_READ(PCH_DPLL(pll->id));
13398 	udelay(200);
13399 }
13400 
13401 static char *ibx_pch_dpll_names[] = {
13402 	"PCH DPLL A",
13403 	"PCH DPLL B",
13404 };
13405 
ibx_pch_dpll_init(struct drm_device * dev)13406 static void ibx_pch_dpll_init(struct drm_device *dev)
13407 {
13408 	struct drm_i915_private *dev_priv = dev->dev_private;
13409 	int i;
13410 
13411 	dev_priv->num_shared_dpll = 2;
13412 
13413 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13414 		dev_priv->shared_dplls[i].id = i;
13415 		dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
13416 		dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
13417 		dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
13418 		dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
13419 		dev_priv->shared_dplls[i].get_hw_state =
13420 			ibx_pch_dpll_get_hw_state;
13421 	}
13422 }
13423 
intel_shared_dpll_init(struct drm_device * dev)13424 static void intel_shared_dpll_init(struct drm_device *dev)
13425 {
13426 	struct drm_i915_private *dev_priv = dev->dev_private;
13427 
13428 	if (HAS_DDI(dev))
13429 		intel_ddi_pll_init(dev);
13430 	else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13431 		ibx_pch_dpll_init(dev);
13432 	else
13433 		dev_priv->num_shared_dpll = 0;
13434 
13435 	BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
13436 }
13437 
13438 /**
13439  * intel_prepare_plane_fb - Prepare fb for usage on plane
13440  * @plane: drm plane to prepare for
13441  * @fb: framebuffer to prepare for presentation
13442  *
13443  * Prepares a framebuffer for usage on a display plane.  Generally this
13444  * involves pinning the underlying object and updating the frontbuffer tracking
13445  * bits.  Some older platforms need special physical address handling for
13446  * cursor planes.
13447  *
13448  * Returns 0 on success, negative error code on failure.
13449  */
13450 int
intel_prepare_plane_fb(struct drm_plane * plane,const struct drm_plane_state * new_state)13451 intel_prepare_plane_fb(struct drm_plane *plane,
13452 		       const struct drm_plane_state *new_state)
13453 {
13454 	struct drm_device *dev = plane->dev;
13455 	struct drm_framebuffer *fb = new_state->fb;
13456 	struct intel_plane *intel_plane = to_intel_plane(plane);
13457 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13458 	struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
13459 	int ret = 0;
13460 
13461 	if (!obj)
13462 		return 0;
13463 
13464 	mutex_lock(&dev->struct_mutex);
13465 
13466 	if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13467 	    INTEL_INFO(dev)->cursor_needs_physical) {
13468 		int align = IS_I830(dev) ? 16 * 1024 : 256;
13469 		ret = i915_gem_object_attach_phys(obj, align);
13470 		if (ret)
13471 			DRM_DEBUG_KMS("failed to attach phys object\n");
13472 	} else {
13473 		ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL, NULL);
13474 	}
13475 
13476 	if (ret == 0)
13477 		i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13478 
13479 	mutex_unlock(&dev->struct_mutex);
13480 
13481 	return ret;
13482 }
13483 
13484 /**
13485  * intel_cleanup_plane_fb - Cleans up an fb after plane use
13486  * @plane: drm plane to clean up for
13487  * @fb: old framebuffer that was on plane
13488  *
13489  * Cleans up a framebuffer that has just been removed from a plane.
13490  */
13491 void
intel_cleanup_plane_fb(struct drm_plane * plane,const struct drm_plane_state * old_state)13492 intel_cleanup_plane_fb(struct drm_plane *plane,
13493 		       const struct drm_plane_state *old_state)
13494 {
13495 	struct drm_device *dev = plane->dev;
13496 	struct drm_i915_gem_object *obj = intel_fb_obj(old_state->fb);
13497 
13498 	if (!obj)
13499 		return;
13500 
13501 	if (plane->type != DRM_PLANE_TYPE_CURSOR ||
13502 	    !INTEL_INFO(dev)->cursor_needs_physical) {
13503 		mutex_lock(&dev->struct_mutex);
13504 		intel_unpin_fb_obj(old_state->fb, old_state);
13505 		mutex_unlock(&dev->struct_mutex);
13506 	}
13507 }
13508 
13509 int
skl_max_scale(struct intel_crtc * intel_crtc,struct intel_crtc_state * crtc_state)13510 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13511 {
13512 	int max_scale;
13513 	struct drm_device *dev;
13514 	struct drm_i915_private *dev_priv;
13515 	int crtc_clock, cdclk;
13516 
13517 	if (!intel_crtc || !crtc_state)
13518 		return DRM_PLANE_HELPER_NO_SCALING;
13519 
13520 	dev = intel_crtc->base.dev;
13521 	dev_priv = dev->dev_private;
13522 	crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13523 	cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
13524 
13525 	if (!crtc_clock || !cdclk)
13526 		return DRM_PLANE_HELPER_NO_SCALING;
13527 
13528 	/*
13529 	 * skl max scale is lower of:
13530 	 *    close to 3 but not 3, -1 is for that purpose
13531 	 *            or
13532 	 *    cdclk/crtc_clock
13533 	 */
13534 	max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13535 
13536 	return max_scale;
13537 }
13538 
13539 static int
intel_check_primary_plane(struct drm_plane * plane,struct intel_crtc_state * crtc_state,struct intel_plane_state * state)13540 intel_check_primary_plane(struct drm_plane *plane,
13541 			  struct intel_crtc_state *crtc_state,
13542 			  struct intel_plane_state *state)
13543 {
13544 	struct drm_crtc *crtc = state->base.crtc;
13545 	struct drm_framebuffer *fb = state->base.fb;
13546 	int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13547 	int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13548 	bool can_position = false;
13549 
13550 	if (INTEL_INFO(plane->dev)->gen >= 9) {
13551 		/* use scaler when colorkey is not required */
13552 		if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
13553 			min_scale = 1;
13554 			max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13555 		}
13556 		can_position = true;
13557 	}
13558 
13559 	return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13560 					     &state->dst, &state->clip,
13561 					     min_scale, max_scale,
13562 					     can_position, true,
13563 					     &state->visible);
13564 }
13565 
13566 static void
intel_commit_primary_plane(struct drm_plane * plane,struct intel_plane_state * state)13567 intel_commit_primary_plane(struct drm_plane *plane,
13568 			   struct intel_plane_state *state)
13569 {
13570 	struct drm_crtc *crtc = state->base.crtc;
13571 	struct drm_framebuffer *fb = state->base.fb;
13572 	struct drm_device *dev = plane->dev;
13573 	struct drm_i915_private *dev_priv = dev->dev_private;
13574 	struct intel_crtc *intel_crtc;
13575 	struct drm_rect *src = &state->src;
13576 
13577 	crtc = crtc ? crtc : plane->crtc;
13578 	intel_crtc = to_intel_crtc(crtc);
13579 
13580 	plane->fb = fb;
13581 	crtc->x = src->x1 >> 16;
13582 	crtc->y = src->y1 >> 16;
13583 
13584 	if (!crtc->state->active)
13585 		return;
13586 
13587 	dev_priv->display.update_primary_plane(crtc, fb,
13588 					       state->src.x1 >> 16,
13589 					       state->src.y1 >> 16);
13590 }
13591 
13592 static void
intel_disable_primary_plane(struct drm_plane * plane,struct drm_crtc * crtc)13593 intel_disable_primary_plane(struct drm_plane *plane,
13594 			    struct drm_crtc *crtc)
13595 {
13596 	struct drm_device *dev = plane->dev;
13597 	struct drm_i915_private *dev_priv = dev->dev_private;
13598 
13599 	dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
13600 }
13601 
intel_begin_crtc_commit(struct drm_crtc * crtc,struct drm_crtc_state * old_crtc_state)13602 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13603 				    struct drm_crtc_state *old_crtc_state)
13604 {
13605 	struct drm_device *dev = crtc->dev;
13606 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13607 	struct intel_crtc_state *old_intel_state =
13608 		to_intel_crtc_state(old_crtc_state);
13609 	bool modeset = needs_modeset(crtc->state);
13610 
13611 	if (intel_crtc->atomic.update_wm_pre)
13612 		intel_update_watermarks(crtc);
13613 
13614 	/* Perform vblank evasion around commit operation */
13615 	if (crtc->state->active)
13616 		intel_pipe_update_start(intel_crtc);
13617 
13618 	if (modeset)
13619 		return;
13620 
13621 	if (to_intel_crtc_state(crtc->state)->update_pipe)
13622 		intel_update_pipe_config(intel_crtc, old_intel_state);
13623 	else if (INTEL_INFO(dev)->gen >= 9)
13624 		skl_detach_scalers(intel_crtc);
13625 }
13626 
intel_finish_crtc_commit(struct drm_crtc * crtc,struct drm_crtc_state * old_crtc_state)13627 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13628 				     struct drm_crtc_state *old_crtc_state)
13629 {
13630 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13631 
13632 	if (crtc->state->active)
13633 		intel_pipe_update_end(intel_crtc);
13634 }
13635 
13636 /**
13637  * intel_plane_destroy - destroy a plane
13638  * @plane: plane to destroy
13639  *
13640  * Common destruction function for all types of planes (primary, cursor,
13641  * sprite).
13642  */
intel_plane_destroy(struct drm_plane * plane)13643 void intel_plane_destroy(struct drm_plane *plane)
13644 {
13645 	struct intel_plane *intel_plane = to_intel_plane(plane);
13646 	drm_plane_cleanup(plane);
13647 	kfree(intel_plane);
13648 }
13649 
13650 const struct drm_plane_funcs intel_plane_funcs = {
13651 	.update_plane = drm_atomic_helper_update_plane,
13652 	.disable_plane = drm_atomic_helper_disable_plane,
13653 	.destroy = intel_plane_destroy,
13654 	.set_property = drm_atomic_helper_plane_set_property,
13655 	.atomic_get_property = intel_plane_atomic_get_property,
13656 	.atomic_set_property = intel_plane_atomic_set_property,
13657 	.atomic_duplicate_state = intel_plane_duplicate_state,
13658 	.atomic_destroy_state = intel_plane_destroy_state,
13659 
13660 };
13661 
intel_primary_plane_create(struct drm_device * dev,int pipe)13662 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13663 						    int pipe)
13664 {
13665 	struct intel_plane *primary;
13666 	struct intel_plane_state *state;
13667 	const uint32_t *intel_primary_formats;
13668 	unsigned int num_formats;
13669 
13670 	primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13671 	if (primary == NULL)
13672 		return NULL;
13673 
13674 	state = intel_create_plane_state(&primary->base);
13675 	if (!state) {
13676 		kfree(primary);
13677 		return NULL;
13678 	}
13679 	primary->base.state = &state->base;
13680 
13681 	primary->can_scale = false;
13682 	primary->max_downscale = 1;
13683 	if (INTEL_INFO(dev)->gen >= 9) {
13684 		primary->can_scale = true;
13685 		state->scaler_id = -1;
13686 	}
13687 	primary->pipe = pipe;
13688 	primary->plane = pipe;
13689 	primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
13690 	primary->check_plane = intel_check_primary_plane;
13691 	primary->commit_plane = intel_commit_primary_plane;
13692 	primary->disable_plane = intel_disable_primary_plane;
13693 	if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13694 		primary->plane = !pipe;
13695 
13696 	if (INTEL_INFO(dev)->gen >= 9) {
13697 		intel_primary_formats = skl_primary_formats;
13698 		num_formats = ARRAY_SIZE(skl_primary_formats);
13699 	} else if (INTEL_INFO(dev)->gen >= 4) {
13700 		intel_primary_formats = i965_primary_formats;
13701 		num_formats = ARRAY_SIZE(i965_primary_formats);
13702 	} else {
13703 		intel_primary_formats = i8xx_primary_formats;
13704 		num_formats = ARRAY_SIZE(i8xx_primary_formats);
13705 	}
13706 
13707 	drm_universal_plane_init(dev, &primary->base, 0,
13708 				 &intel_plane_funcs,
13709 				 intel_primary_formats, num_formats,
13710 				 DRM_PLANE_TYPE_PRIMARY);
13711 
13712 	if (INTEL_INFO(dev)->gen >= 4)
13713 		intel_create_rotation_property(dev, primary);
13714 
13715 	drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13716 
13717 	return &primary->base;
13718 }
13719 
intel_create_rotation_property(struct drm_device * dev,struct intel_plane * plane)13720 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
13721 {
13722 	if (!dev->mode_config.rotation_property) {
13723 		unsigned long flags = BIT(DRM_ROTATE_0) |
13724 			BIT(DRM_ROTATE_180);
13725 
13726 		if (INTEL_INFO(dev)->gen >= 9)
13727 			flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
13728 
13729 		dev->mode_config.rotation_property =
13730 			drm_mode_create_rotation_property(dev, flags);
13731 	}
13732 	if (dev->mode_config.rotation_property)
13733 		drm_object_attach_property(&plane->base.base,
13734 				dev->mode_config.rotation_property,
13735 				plane->base.state->rotation);
13736 }
13737 
13738 static int
intel_check_cursor_plane(struct drm_plane * plane,struct intel_crtc_state * crtc_state,struct intel_plane_state * state)13739 intel_check_cursor_plane(struct drm_plane *plane,
13740 			 struct intel_crtc_state *crtc_state,
13741 			 struct intel_plane_state *state)
13742 {
13743 	struct drm_crtc *crtc = crtc_state->base.crtc;
13744 	struct drm_framebuffer *fb = state->base.fb;
13745 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13746 	enum pipe pipe = to_intel_plane(plane)->pipe;
13747 	unsigned stride;
13748 	int ret;
13749 
13750 	ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13751 					    &state->dst, &state->clip,
13752 					    DRM_PLANE_HELPER_NO_SCALING,
13753 					    DRM_PLANE_HELPER_NO_SCALING,
13754 					    true, true, &state->visible);
13755 	if (ret)
13756 		return ret;
13757 
13758 	/* if we want to turn off the cursor ignore width and height */
13759 	if (!obj)
13760 		return 0;
13761 
13762 	/* Check for which cursor types we support */
13763 	if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
13764 		DRM_DEBUG("Cursor dimension %dx%d not supported\n",
13765 			  state->base.crtc_w, state->base.crtc_h);
13766 		return -EINVAL;
13767 	}
13768 
13769 	stride = roundup_pow_of_two(state->base.crtc_w) * 4;
13770 	if (obj->base.size < stride * state->base.crtc_h) {
13771 		DRM_DEBUG_KMS("buffer is too small\n");
13772 		return -ENOMEM;
13773 	}
13774 
13775 	if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
13776 		DRM_DEBUG_KMS("cursor cannot be tiled\n");
13777 		return -EINVAL;
13778 	}
13779 
13780 	/*
13781 	 * There's something wrong with the cursor on CHV pipe C.
13782 	 * If it straddles the left edge of the screen then
13783 	 * moving it away from the edge or disabling it often
13784 	 * results in a pipe underrun, and often that can lead to
13785 	 * dead pipe (constant underrun reported, and it scans
13786 	 * out just a solid color). To recover from that, the
13787 	 * display power well must be turned off and on again.
13788 	 * Refuse the put the cursor into that compromised position.
13789 	 */
13790 	if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
13791 	    state->visible && state->base.crtc_x < 0) {
13792 		DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
13793 		return -EINVAL;
13794 	}
13795 
13796 	return 0;
13797 }
13798 
13799 static void
intel_disable_cursor_plane(struct drm_plane * plane,struct drm_crtc * crtc)13800 intel_disable_cursor_plane(struct drm_plane *plane,
13801 			   struct drm_crtc *crtc)
13802 {
13803 	intel_crtc_update_cursor(crtc, false);
13804 }
13805 
13806 static void
intel_commit_cursor_plane(struct drm_plane * plane,struct intel_plane_state * state)13807 intel_commit_cursor_plane(struct drm_plane *plane,
13808 			  struct intel_plane_state *state)
13809 {
13810 	struct drm_crtc *crtc = state->base.crtc;
13811 	struct drm_device *dev = plane->dev;
13812 	struct intel_crtc *intel_crtc;
13813 	struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
13814 	uint32_t addr;
13815 
13816 	crtc = crtc ? crtc : plane->crtc;
13817 	intel_crtc = to_intel_crtc(crtc);
13818 
13819 	if (!obj)
13820 		addr = 0;
13821 	else if (!INTEL_INFO(dev)->cursor_needs_physical)
13822 		addr = i915_gem_obj_ggtt_offset(obj);
13823 	else
13824 		addr = obj->phys_handle->busaddr;
13825 
13826 	intel_crtc->cursor_addr = addr;
13827 
13828 	if (crtc->state->active)
13829 		intel_crtc_update_cursor(crtc, state->visible);
13830 }
13831 
intel_cursor_plane_create(struct drm_device * dev,int pipe)13832 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
13833 						   int pipe)
13834 {
13835 	struct intel_plane *cursor;
13836 	struct intel_plane_state *state;
13837 
13838 	cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13839 	if (cursor == NULL)
13840 		return NULL;
13841 
13842 	state = intel_create_plane_state(&cursor->base);
13843 	if (!state) {
13844 		kfree(cursor);
13845 		return NULL;
13846 	}
13847 	cursor->base.state = &state->base;
13848 
13849 	cursor->can_scale = false;
13850 	cursor->max_downscale = 1;
13851 	cursor->pipe = pipe;
13852 	cursor->plane = pipe;
13853 	cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
13854 	cursor->check_plane = intel_check_cursor_plane;
13855 	cursor->commit_plane = intel_commit_cursor_plane;
13856 	cursor->disable_plane = intel_disable_cursor_plane;
13857 
13858 	drm_universal_plane_init(dev, &cursor->base, 0,
13859 				 &intel_plane_funcs,
13860 				 intel_cursor_formats,
13861 				 ARRAY_SIZE(intel_cursor_formats),
13862 				 DRM_PLANE_TYPE_CURSOR);
13863 
13864 	if (INTEL_INFO(dev)->gen >= 4) {
13865 		if (!dev->mode_config.rotation_property)
13866 			dev->mode_config.rotation_property =
13867 				drm_mode_create_rotation_property(dev,
13868 							BIT(DRM_ROTATE_0) |
13869 							BIT(DRM_ROTATE_180));
13870 		if (dev->mode_config.rotation_property)
13871 			drm_object_attach_property(&cursor->base.base,
13872 				dev->mode_config.rotation_property,
13873 				state->base.rotation);
13874 	}
13875 
13876 	if (INTEL_INFO(dev)->gen >=9)
13877 		state->scaler_id = -1;
13878 
13879 	drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
13880 
13881 	return &cursor->base;
13882 }
13883 
skl_init_scalers(struct drm_device * dev,struct intel_crtc * intel_crtc,struct intel_crtc_state * crtc_state)13884 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
13885 	struct intel_crtc_state *crtc_state)
13886 {
13887 	int i;
13888 	struct intel_scaler *intel_scaler;
13889 	struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
13890 
13891 	for (i = 0; i < intel_crtc->num_scalers; i++) {
13892 		intel_scaler = &scaler_state->scalers[i];
13893 		intel_scaler->in_use = 0;
13894 		intel_scaler->mode = PS_SCALER_MODE_DYN;
13895 	}
13896 
13897 	scaler_state->scaler_id = -1;
13898 }
13899 
intel_crtc_init(struct drm_device * dev,int pipe)13900 static void intel_crtc_init(struct drm_device *dev, int pipe)
13901 {
13902 	struct drm_i915_private *dev_priv = dev->dev_private;
13903 	struct intel_crtc *intel_crtc;
13904 	struct intel_crtc_state *crtc_state = NULL;
13905 	struct drm_plane *primary = NULL;
13906 	struct drm_plane *cursor = NULL;
13907 	int i, ret;
13908 
13909 	intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
13910 	if (intel_crtc == NULL)
13911 		return;
13912 
13913 	crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
13914 	if (!crtc_state)
13915 		goto fail;
13916 	intel_crtc->config = crtc_state;
13917 	intel_crtc->base.state = &crtc_state->base;
13918 	crtc_state->base.crtc = &intel_crtc->base;
13919 
13920 	/* initialize shared scalers */
13921 	if (INTEL_INFO(dev)->gen >= 9) {
13922 		if (pipe == PIPE_C)
13923 			intel_crtc->num_scalers = 1;
13924 		else
13925 			intel_crtc->num_scalers = SKL_NUM_SCALERS;
13926 
13927 		skl_init_scalers(dev, intel_crtc, crtc_state);
13928 	}
13929 
13930 	primary = intel_primary_plane_create(dev, pipe);
13931 	if (!primary)
13932 		goto fail;
13933 
13934 	cursor = intel_cursor_plane_create(dev, pipe);
13935 	if (!cursor)
13936 		goto fail;
13937 
13938 	ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
13939 					cursor, &intel_crtc_funcs);
13940 	if (ret)
13941 		goto fail;
13942 
13943 	drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
13944 	for (i = 0; i < 256; i++) {
13945 		intel_crtc->lut_r[i] = i;
13946 		intel_crtc->lut_g[i] = i;
13947 		intel_crtc->lut_b[i] = i;
13948 	}
13949 
13950 	/*
13951 	 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
13952 	 * is hooked to pipe B. Hence we want plane A feeding pipe B.
13953 	 */
13954 	intel_crtc->pipe = pipe;
13955 	intel_crtc->plane = pipe;
13956 	if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
13957 		DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
13958 		intel_crtc->plane = !pipe;
13959 	}
13960 
13961 	intel_crtc->cursor_base = ~0;
13962 	intel_crtc->cursor_cntl = ~0;
13963 	intel_crtc->cursor_size = ~0;
13964 
13965 	intel_crtc->wm.cxsr_allowed = true;
13966 
13967 	BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
13968 	       dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
13969 	dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
13970 	dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
13971 
13972 	drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
13973 
13974 	WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
13975 	return;
13976 
13977 fail:
13978 	if (primary)
13979 		drm_plane_cleanup(primary);
13980 	if (cursor)
13981 		drm_plane_cleanup(cursor);
13982 	kfree(crtc_state);
13983 	kfree(intel_crtc);
13984 }
13985 
intel_get_pipe_from_connector(struct intel_connector * connector)13986 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
13987 {
13988 	struct drm_encoder *encoder = connector->base.encoder;
13989 	struct drm_device *dev = connector->base.dev;
13990 
13991 	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
13992 
13993 	if (!encoder || WARN_ON(!encoder->crtc))
13994 		return INVALID_PIPE;
13995 
13996 	return to_intel_crtc(encoder->crtc)->pipe;
13997 }
13998 
intel_get_pipe_from_crtc_id(struct drm_device * dev,void * data,struct drm_file * file)13999 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
14000 				struct drm_file *file)
14001 {
14002 	struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
14003 	struct drm_crtc *drmmode_crtc;
14004 	struct intel_crtc *crtc;
14005 
14006 	drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
14007 
14008 	if (!drmmode_crtc) {
14009 		DRM_ERROR("no such CRTC id\n");
14010 		return -ENOENT;
14011 	}
14012 
14013 	crtc = to_intel_crtc(drmmode_crtc);
14014 	pipe_from_crtc_id->pipe = crtc->pipe;
14015 
14016 	return 0;
14017 }
14018 
intel_encoder_clones(struct intel_encoder * encoder)14019 static int intel_encoder_clones(struct intel_encoder *encoder)
14020 {
14021 	struct drm_device *dev = encoder->base.dev;
14022 	struct intel_encoder *source_encoder;
14023 	int index_mask = 0;
14024 	int entry = 0;
14025 
14026 	for_each_intel_encoder(dev, source_encoder) {
14027 		if (encoders_cloneable(encoder, source_encoder))
14028 			index_mask |= (1 << entry);
14029 
14030 		entry++;
14031 	}
14032 
14033 	return index_mask;
14034 }
14035 
has_edp_a(struct drm_device * dev)14036 static bool has_edp_a(struct drm_device *dev)
14037 {
14038 	struct drm_i915_private *dev_priv = dev->dev_private;
14039 
14040 	if (!IS_MOBILE(dev))
14041 		return false;
14042 
14043 	if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14044 		return false;
14045 
14046 	if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
14047 		return false;
14048 
14049 	return true;
14050 }
14051 
intel_crt_present(struct drm_device * dev)14052 static bool intel_crt_present(struct drm_device *dev)
14053 {
14054 	struct drm_i915_private *dev_priv = dev->dev_private;
14055 
14056 	if (INTEL_INFO(dev)->gen >= 9)
14057 		return false;
14058 
14059 	if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
14060 		return false;
14061 
14062 	if (IS_CHERRYVIEW(dev))
14063 		return false;
14064 
14065 	if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
14066 		return false;
14067 
14068 	return true;
14069 }
14070 
intel_setup_outputs(struct drm_device * dev)14071 static void intel_setup_outputs(struct drm_device *dev)
14072 {
14073 	struct drm_i915_private *dev_priv = dev->dev_private;
14074 	struct intel_encoder *encoder;
14075 	bool dpd_is_edp = false;
14076 
14077 	intel_lvds_init(dev);
14078 
14079 	if (intel_crt_present(dev))
14080 		intel_crt_init(dev);
14081 
14082 	if (IS_BROXTON(dev)) {
14083 		/*
14084 		 * FIXME: Broxton doesn't support port detection via the
14085 		 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14086 		 * detect the ports.
14087 		 */
14088 		intel_ddi_init(dev, PORT_A);
14089 		intel_ddi_init(dev, PORT_B);
14090 		intel_ddi_init(dev, PORT_C);
14091 	} else if (HAS_DDI(dev)) {
14092 		int found;
14093 
14094 		/*
14095 		 * Haswell uses DDI functions to detect digital outputs.
14096 		 * On SKL pre-D0 the strap isn't connected, so we assume
14097 		 * it's there.
14098 		 */
14099 		found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
14100 		/* WaIgnoreDDIAStrap: skl */
14101 		if (found || IS_SKYLAKE(dev))
14102 			intel_ddi_init(dev, PORT_A);
14103 
14104 		/* DDI B, C and D detection is indicated by the SFUSE_STRAP
14105 		 * register */
14106 		found = I915_READ(SFUSE_STRAP);
14107 
14108 		if (found & SFUSE_STRAP_DDIB_DETECTED)
14109 			intel_ddi_init(dev, PORT_B);
14110 		if (found & SFUSE_STRAP_DDIC_DETECTED)
14111 			intel_ddi_init(dev, PORT_C);
14112 		if (found & SFUSE_STRAP_DDID_DETECTED)
14113 			intel_ddi_init(dev, PORT_D);
14114 		/*
14115 		 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14116 		 */
14117 		if (IS_SKYLAKE(dev) &&
14118 		    (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14119 		     dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14120 		     dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14121 			intel_ddi_init(dev, PORT_E);
14122 
14123 	} else if (HAS_PCH_SPLIT(dev)) {
14124 		int found;
14125 		dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
14126 
14127 		if (has_edp_a(dev))
14128 			intel_dp_init(dev, DP_A, PORT_A);
14129 
14130 		if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14131 			/* PCH SDVOB multiplex with HDMIB */
14132 			found = intel_sdvo_init(dev, PCH_SDVOB, true);
14133 			if (!found)
14134 				intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
14135 			if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14136 				intel_dp_init(dev, PCH_DP_B, PORT_B);
14137 		}
14138 
14139 		if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14140 			intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14141 
14142 		if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14143 			intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14144 
14145 		if (I915_READ(PCH_DP_C) & DP_DETECTED)
14146 			intel_dp_init(dev, PCH_DP_C, PORT_C);
14147 
14148 		if (I915_READ(PCH_DP_D) & DP_DETECTED)
14149 			intel_dp_init(dev, PCH_DP_D, PORT_D);
14150 	} else if (IS_VALLEYVIEW(dev)) {
14151 		/*
14152 		 * The DP_DETECTED bit is the latched state of the DDC
14153 		 * SDA pin at boot. However since eDP doesn't require DDC
14154 		 * (no way to plug in a DP->HDMI dongle) the DDC pins for
14155 		 * eDP ports may have been muxed to an alternate function.
14156 		 * Thus we can't rely on the DP_DETECTED bit alone to detect
14157 		 * eDP ports. Consult the VBT as well as DP_DETECTED to
14158 		 * detect eDP ports.
14159 		 */
14160 		if (I915_READ(VLV_HDMIB) & SDVO_DETECTED &&
14161 		    !intel_dp_is_edp(dev, PORT_B))
14162 			intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
14163 		if (I915_READ(VLV_DP_B) & DP_DETECTED ||
14164 		    intel_dp_is_edp(dev, PORT_B))
14165 			intel_dp_init(dev, VLV_DP_B, PORT_B);
14166 
14167 		if (I915_READ(VLV_HDMIC) & SDVO_DETECTED &&
14168 		    !intel_dp_is_edp(dev, PORT_C))
14169 			intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
14170 		if (I915_READ(VLV_DP_C) & DP_DETECTED ||
14171 		    intel_dp_is_edp(dev, PORT_C))
14172 			intel_dp_init(dev, VLV_DP_C, PORT_C);
14173 
14174 		if (IS_CHERRYVIEW(dev)) {
14175 			/* eDP not supported on port D, so don't check VBT */
14176 			if (I915_READ(CHV_HDMID) & SDVO_DETECTED)
14177 				intel_hdmi_init(dev, CHV_HDMID, PORT_D);
14178 			if (I915_READ(CHV_DP_D) & DP_DETECTED)
14179 				intel_dp_init(dev, CHV_DP_D, PORT_D);
14180 		}
14181 
14182 		intel_dsi_init(dev);
14183 	} else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
14184 		bool found = false;
14185 
14186 		if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14187 			DRM_DEBUG_KMS("probing SDVOB\n");
14188 			found = intel_sdvo_init(dev, GEN3_SDVOB, true);
14189 			if (!found && IS_G4X(dev)) {
14190 				DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14191 				intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14192 			}
14193 
14194 			if (!found && IS_G4X(dev))
14195 				intel_dp_init(dev, DP_B, PORT_B);
14196 		}
14197 
14198 		/* Before G4X SDVOC doesn't have its own detect register */
14199 
14200 		if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14201 			DRM_DEBUG_KMS("probing SDVOC\n");
14202 			found = intel_sdvo_init(dev, GEN3_SDVOC, false);
14203 		}
14204 
14205 		if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14206 
14207 			if (IS_G4X(dev)) {
14208 				DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14209 				intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14210 			}
14211 			if (IS_G4X(dev))
14212 				intel_dp_init(dev, DP_C, PORT_C);
14213 		}
14214 
14215 		if (IS_G4X(dev) &&
14216 		    (I915_READ(DP_D) & DP_DETECTED))
14217 			intel_dp_init(dev, DP_D, PORT_D);
14218 	} else if (IS_GEN2(dev))
14219 		intel_dvo_init(dev);
14220 
14221 	if (SUPPORTS_TV(dev))
14222 		intel_tv_init(dev);
14223 
14224 	intel_psr_init(dev);
14225 
14226 	for_each_intel_encoder(dev, encoder) {
14227 		encoder->base.possible_crtcs = encoder->crtc_mask;
14228 		encoder->base.possible_clones =
14229 			intel_encoder_clones(encoder);
14230 	}
14231 
14232 	intel_init_pch_refclk(dev);
14233 
14234 	drm_helper_move_panel_connectors_to_head(dev);
14235 }
14236 
intel_user_framebuffer_destroy(struct drm_framebuffer * fb)14237 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14238 {
14239 	struct drm_device *dev = fb->dev;
14240 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14241 
14242 	drm_framebuffer_cleanup(fb);
14243 	mutex_lock(&dev->struct_mutex);
14244 	WARN_ON(!intel_fb->obj->framebuffer_references--);
14245 	drm_gem_object_unreference(&intel_fb->obj->base);
14246 	mutex_unlock(&dev->struct_mutex);
14247 	kfree(intel_fb);
14248 }
14249 
intel_user_framebuffer_create_handle(struct drm_framebuffer * fb,struct drm_file * file,unsigned int * handle)14250 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14251 						struct drm_file *file,
14252 						unsigned int *handle)
14253 {
14254 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14255 	struct drm_i915_gem_object *obj = intel_fb->obj;
14256 
14257 	if (obj->userptr.mm) {
14258 		DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14259 		return -EINVAL;
14260 	}
14261 
14262 	return drm_gem_handle_create(file, &obj->base, handle);
14263 }
14264 
intel_user_framebuffer_dirty(struct drm_framebuffer * fb,struct drm_file * file,unsigned flags,unsigned color,struct drm_clip_rect * clips,unsigned num_clips)14265 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14266 					struct drm_file *file,
14267 					unsigned flags, unsigned color,
14268 					struct drm_clip_rect *clips,
14269 					unsigned num_clips)
14270 {
14271 	struct drm_device *dev = fb->dev;
14272 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14273 	struct drm_i915_gem_object *obj = intel_fb->obj;
14274 
14275 	mutex_lock(&dev->struct_mutex);
14276 	intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
14277 	mutex_unlock(&dev->struct_mutex);
14278 
14279 	return 0;
14280 }
14281 
14282 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14283 	.destroy = intel_user_framebuffer_destroy,
14284 	.create_handle = intel_user_framebuffer_create_handle,
14285 	.dirty = intel_user_framebuffer_dirty,
14286 };
14287 
14288 static
intel_fb_pitch_limit(struct drm_device * dev,uint64_t fb_modifier,uint32_t pixel_format)14289 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14290 			 uint32_t pixel_format)
14291 {
14292 	u32 gen = INTEL_INFO(dev)->gen;
14293 
14294 	if (gen >= 9) {
14295 		/* "The stride in bytes must not exceed the of the size of 8K
14296 		 *  pixels and 32K bytes."
14297 		 */
14298 		 return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
14299 	} else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
14300 		return 32*1024;
14301 	} else if (gen >= 4) {
14302 		if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14303 			return 16*1024;
14304 		else
14305 			return 32*1024;
14306 	} else if (gen >= 3) {
14307 		if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14308 			return 8*1024;
14309 		else
14310 			return 16*1024;
14311 	} else {
14312 		/* XXX DSPC is limited to 4k tiled */
14313 		return 8*1024;
14314 	}
14315 }
14316 
intel_framebuffer_init(struct drm_device * dev,struct intel_framebuffer * intel_fb,struct drm_mode_fb_cmd2 * mode_cmd,struct drm_i915_gem_object * obj)14317 static int intel_framebuffer_init(struct drm_device *dev,
14318 				  struct intel_framebuffer *intel_fb,
14319 				  struct drm_mode_fb_cmd2 *mode_cmd,
14320 				  struct drm_i915_gem_object *obj)
14321 {
14322 	unsigned int aligned_height;
14323 	int ret;
14324 	u32 pitch_limit, stride_alignment;
14325 
14326 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14327 
14328 	if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14329 		/* Enforce that fb modifier and tiling mode match, but only for
14330 		 * X-tiled. This is needed for FBC. */
14331 		if (!!(obj->tiling_mode == I915_TILING_X) !=
14332 		    !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14333 			DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14334 			return -EINVAL;
14335 		}
14336 	} else {
14337 		if (obj->tiling_mode == I915_TILING_X)
14338 			mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14339 		else if (obj->tiling_mode == I915_TILING_Y) {
14340 			DRM_DEBUG("No Y tiling for legacy addfb\n");
14341 			return -EINVAL;
14342 		}
14343 	}
14344 
14345 	/* Passed in modifier sanity checking. */
14346 	switch (mode_cmd->modifier[0]) {
14347 	case I915_FORMAT_MOD_Y_TILED:
14348 	case I915_FORMAT_MOD_Yf_TILED:
14349 		if (INTEL_INFO(dev)->gen < 9) {
14350 			DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14351 				  mode_cmd->modifier[0]);
14352 			return -EINVAL;
14353 		}
14354 	case DRM_FORMAT_MOD_NONE:
14355 	case I915_FORMAT_MOD_X_TILED:
14356 		break;
14357 	default:
14358 		DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14359 			  mode_cmd->modifier[0]);
14360 		return -EINVAL;
14361 	}
14362 
14363 	stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
14364 						     mode_cmd->pixel_format);
14365 	if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14366 		DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14367 			  mode_cmd->pitches[0], stride_alignment);
14368 		return -EINVAL;
14369 	}
14370 
14371 	pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14372 					   mode_cmd->pixel_format);
14373 	if (mode_cmd->pitches[0] > pitch_limit) {
14374 		DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14375 			  mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14376 			  "tiled" : "linear",
14377 			  mode_cmd->pitches[0], pitch_limit);
14378 		return -EINVAL;
14379 	}
14380 
14381 	if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14382 	    mode_cmd->pitches[0] != obj->stride) {
14383 		DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14384 			  mode_cmd->pitches[0], obj->stride);
14385 		return -EINVAL;
14386 	}
14387 
14388 	/* Reject formats not supported by any plane early. */
14389 	switch (mode_cmd->pixel_format) {
14390 	case DRM_FORMAT_C8:
14391 	case DRM_FORMAT_RGB565:
14392 	case DRM_FORMAT_XRGB8888:
14393 	case DRM_FORMAT_ARGB8888:
14394 		break;
14395 	case DRM_FORMAT_XRGB1555:
14396 		if (INTEL_INFO(dev)->gen > 3) {
14397 			DRM_DEBUG("unsupported pixel format: %s\n",
14398 				  drm_get_format_name(mode_cmd->pixel_format));
14399 			return -EINVAL;
14400 		}
14401 		break;
14402 	case DRM_FORMAT_ABGR8888:
14403 		if (!IS_VALLEYVIEW(dev) && INTEL_INFO(dev)->gen < 9) {
14404 			DRM_DEBUG("unsupported pixel format: %s\n",
14405 				  drm_get_format_name(mode_cmd->pixel_format));
14406 			return -EINVAL;
14407 		}
14408 		break;
14409 	case DRM_FORMAT_XBGR8888:
14410 	case DRM_FORMAT_XRGB2101010:
14411 	case DRM_FORMAT_XBGR2101010:
14412 		if (INTEL_INFO(dev)->gen < 4) {
14413 			DRM_DEBUG("unsupported pixel format: %s\n",
14414 				  drm_get_format_name(mode_cmd->pixel_format));
14415 			return -EINVAL;
14416 		}
14417 		break;
14418 	case DRM_FORMAT_ABGR2101010:
14419 		if (!IS_VALLEYVIEW(dev)) {
14420 			DRM_DEBUG("unsupported pixel format: %s\n",
14421 				  drm_get_format_name(mode_cmd->pixel_format));
14422 			return -EINVAL;
14423 		}
14424 		break;
14425 	case DRM_FORMAT_YUYV:
14426 	case DRM_FORMAT_UYVY:
14427 	case DRM_FORMAT_YVYU:
14428 	case DRM_FORMAT_VYUY:
14429 		if (INTEL_INFO(dev)->gen < 5) {
14430 			DRM_DEBUG("unsupported pixel format: %s\n",
14431 				  drm_get_format_name(mode_cmd->pixel_format));
14432 			return -EINVAL;
14433 		}
14434 		break;
14435 	default:
14436 		DRM_DEBUG("unsupported pixel format: %s\n",
14437 			  drm_get_format_name(mode_cmd->pixel_format));
14438 		return -EINVAL;
14439 	}
14440 
14441 	/* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14442 	if (mode_cmd->offsets[0] != 0)
14443 		return -EINVAL;
14444 
14445 	aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14446 					       mode_cmd->pixel_format,
14447 					       mode_cmd->modifier[0]);
14448 	/* FIXME drm helper for size checks (especially planar formats)? */
14449 	if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14450 		return -EINVAL;
14451 
14452 	drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14453 	intel_fb->obj = obj;
14454 	intel_fb->obj->framebuffer_references++;
14455 
14456 	ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14457 	if (ret) {
14458 		DRM_ERROR("framebuffer init failed %d\n", ret);
14459 		return ret;
14460 	}
14461 
14462 	return 0;
14463 }
14464 
14465 static struct drm_framebuffer *
intel_user_framebuffer_create(struct drm_device * dev,struct drm_file * filp,struct drm_mode_fb_cmd2 * user_mode_cmd)14466 intel_user_framebuffer_create(struct drm_device *dev,
14467 			      struct drm_file *filp,
14468 			      struct drm_mode_fb_cmd2 *user_mode_cmd)
14469 {
14470 	struct drm_i915_gem_object *obj;
14471 	struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
14472 
14473 	obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14474 						mode_cmd.handles[0]));
14475 	if (&obj->base == NULL)
14476 		return ERR_PTR(-ENOENT);
14477 
14478 	return intel_framebuffer_create(dev, &mode_cmd, obj);
14479 }
14480 
14481 #ifndef CONFIG_DRM_FBDEV_EMULATION
intel_fbdev_output_poll_changed(struct drm_device * dev)14482 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14483 {
14484 }
14485 #endif
14486 
14487 static const struct drm_mode_config_funcs intel_mode_funcs = {
14488 	.fb_create = intel_user_framebuffer_create,
14489 	.output_poll_changed = intel_fbdev_output_poll_changed,
14490 	.atomic_check = intel_atomic_check,
14491 	.atomic_commit = intel_atomic_commit,
14492 	.atomic_state_alloc = intel_atomic_state_alloc,
14493 	.atomic_state_clear = intel_atomic_state_clear,
14494 };
14495 
14496 /* Set up chip specific display functions */
intel_init_display(struct drm_device * dev)14497 static void intel_init_display(struct drm_device *dev)
14498 {
14499 	struct drm_i915_private *dev_priv = dev->dev_private;
14500 
14501 	if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14502 		dev_priv->display.find_dpll = g4x_find_best_dpll;
14503 	else if (IS_CHERRYVIEW(dev))
14504 		dev_priv->display.find_dpll = chv_find_best_dpll;
14505 	else if (IS_VALLEYVIEW(dev))
14506 		dev_priv->display.find_dpll = vlv_find_best_dpll;
14507 	else if (IS_PINEVIEW(dev))
14508 		dev_priv->display.find_dpll = pnv_find_best_dpll;
14509 	else
14510 		dev_priv->display.find_dpll = i9xx_find_best_dpll;
14511 
14512 	if (INTEL_INFO(dev)->gen >= 9) {
14513 		dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14514 		dev_priv->display.get_initial_plane_config =
14515 			skylake_get_initial_plane_config;
14516 		dev_priv->display.crtc_compute_clock =
14517 			haswell_crtc_compute_clock;
14518 		dev_priv->display.crtc_enable = haswell_crtc_enable;
14519 		dev_priv->display.crtc_disable = haswell_crtc_disable;
14520 		dev_priv->display.update_primary_plane =
14521 			skylake_update_primary_plane;
14522 	} else if (HAS_DDI(dev)) {
14523 		dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14524 		dev_priv->display.get_initial_plane_config =
14525 			ironlake_get_initial_plane_config;
14526 		dev_priv->display.crtc_compute_clock =
14527 			haswell_crtc_compute_clock;
14528 		dev_priv->display.crtc_enable = haswell_crtc_enable;
14529 		dev_priv->display.crtc_disable = haswell_crtc_disable;
14530 		dev_priv->display.update_primary_plane =
14531 			ironlake_update_primary_plane;
14532 	} else if (HAS_PCH_SPLIT(dev)) {
14533 		dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14534 		dev_priv->display.get_initial_plane_config =
14535 			ironlake_get_initial_plane_config;
14536 		dev_priv->display.crtc_compute_clock =
14537 			ironlake_crtc_compute_clock;
14538 		dev_priv->display.crtc_enable = ironlake_crtc_enable;
14539 		dev_priv->display.crtc_disable = ironlake_crtc_disable;
14540 		dev_priv->display.update_primary_plane =
14541 			ironlake_update_primary_plane;
14542 	} else if (IS_VALLEYVIEW(dev)) {
14543 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14544 		dev_priv->display.get_initial_plane_config =
14545 			i9xx_get_initial_plane_config;
14546 		dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14547 		dev_priv->display.crtc_enable = valleyview_crtc_enable;
14548 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
14549 		dev_priv->display.update_primary_plane =
14550 			i9xx_update_primary_plane;
14551 	} else {
14552 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14553 		dev_priv->display.get_initial_plane_config =
14554 			i9xx_get_initial_plane_config;
14555 		dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14556 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
14557 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
14558 		dev_priv->display.update_primary_plane =
14559 			i9xx_update_primary_plane;
14560 	}
14561 
14562 	/* Returns the core display clock speed */
14563 	if (IS_SKYLAKE(dev))
14564 		dev_priv->display.get_display_clock_speed =
14565 			skylake_get_display_clock_speed;
14566 	else if (IS_BROXTON(dev))
14567 		dev_priv->display.get_display_clock_speed =
14568 			broxton_get_display_clock_speed;
14569 	else if (IS_BROADWELL(dev))
14570 		dev_priv->display.get_display_clock_speed =
14571 			broadwell_get_display_clock_speed;
14572 	else if (IS_HASWELL(dev))
14573 		dev_priv->display.get_display_clock_speed =
14574 			haswell_get_display_clock_speed;
14575 	else if (IS_VALLEYVIEW(dev))
14576 		dev_priv->display.get_display_clock_speed =
14577 			valleyview_get_display_clock_speed;
14578 	else if (IS_GEN5(dev))
14579 		dev_priv->display.get_display_clock_speed =
14580 			ilk_get_display_clock_speed;
14581 	else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
14582 		 IS_GEN6(dev) || IS_IVYBRIDGE(dev))
14583 		dev_priv->display.get_display_clock_speed =
14584 			i945_get_display_clock_speed;
14585 	else if (IS_GM45(dev))
14586 		dev_priv->display.get_display_clock_speed =
14587 			gm45_get_display_clock_speed;
14588 	else if (IS_CRESTLINE(dev))
14589 		dev_priv->display.get_display_clock_speed =
14590 			i965gm_get_display_clock_speed;
14591 	else if (IS_PINEVIEW(dev))
14592 		dev_priv->display.get_display_clock_speed =
14593 			pnv_get_display_clock_speed;
14594 	else if (IS_G33(dev) || IS_G4X(dev))
14595 		dev_priv->display.get_display_clock_speed =
14596 			g33_get_display_clock_speed;
14597 	else if (IS_I915G(dev))
14598 		dev_priv->display.get_display_clock_speed =
14599 			i915_get_display_clock_speed;
14600 	else if (IS_I945GM(dev) || IS_845G(dev))
14601 		dev_priv->display.get_display_clock_speed =
14602 			i9xx_misc_get_display_clock_speed;
14603 	else if (IS_PINEVIEW(dev))
14604 		dev_priv->display.get_display_clock_speed =
14605 			pnv_get_display_clock_speed;
14606 	else if (IS_I915GM(dev))
14607 		dev_priv->display.get_display_clock_speed =
14608 			i915gm_get_display_clock_speed;
14609 	else if (IS_I865G(dev))
14610 		dev_priv->display.get_display_clock_speed =
14611 			i865_get_display_clock_speed;
14612 	else if (IS_I85X(dev))
14613 		dev_priv->display.get_display_clock_speed =
14614 			i85x_get_display_clock_speed;
14615 	else { /* 830 */
14616 		WARN(!IS_I830(dev), "Unknown platform. Assuming 133 MHz CDCLK\n");
14617 		dev_priv->display.get_display_clock_speed =
14618 			i830_get_display_clock_speed;
14619 	}
14620 
14621 	if (IS_GEN5(dev)) {
14622 		dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14623 	} else if (IS_GEN6(dev)) {
14624 		dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14625 	} else if (IS_IVYBRIDGE(dev)) {
14626 		/* FIXME: detect B0+ stepping and use auto training */
14627 		dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14628 	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
14629 		dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14630 		if (IS_BROADWELL(dev)) {
14631 			dev_priv->display.modeset_commit_cdclk =
14632 				broadwell_modeset_commit_cdclk;
14633 			dev_priv->display.modeset_calc_cdclk =
14634 				broadwell_modeset_calc_cdclk;
14635 		}
14636 	} else if (IS_VALLEYVIEW(dev)) {
14637 		dev_priv->display.modeset_commit_cdclk =
14638 			valleyview_modeset_commit_cdclk;
14639 		dev_priv->display.modeset_calc_cdclk =
14640 			valleyview_modeset_calc_cdclk;
14641 	} else if (IS_BROXTON(dev)) {
14642 		dev_priv->display.modeset_commit_cdclk =
14643 			broxton_modeset_commit_cdclk;
14644 		dev_priv->display.modeset_calc_cdclk =
14645 			broxton_modeset_calc_cdclk;
14646 	}
14647 
14648 	switch (INTEL_INFO(dev)->gen) {
14649 	case 2:
14650 		dev_priv->display.queue_flip = intel_gen2_queue_flip;
14651 		break;
14652 
14653 	case 3:
14654 		dev_priv->display.queue_flip = intel_gen3_queue_flip;
14655 		break;
14656 
14657 	case 4:
14658 	case 5:
14659 		dev_priv->display.queue_flip = intel_gen4_queue_flip;
14660 		break;
14661 
14662 	case 6:
14663 		dev_priv->display.queue_flip = intel_gen6_queue_flip;
14664 		break;
14665 	case 7:
14666 	case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
14667 		dev_priv->display.queue_flip = intel_gen7_queue_flip;
14668 		break;
14669 	case 9:
14670 		/* Drop through - unsupported since execlist only. */
14671 	default:
14672 		/* Default just returns -ENODEV to indicate unsupported */
14673 		dev_priv->display.queue_flip = intel_default_queue_flip;
14674 	}
14675 
14676 	mutex_init(&dev_priv->pps_mutex);
14677 }
14678 
14679 /*
14680  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14681  * resume, or other times.  This quirk makes sure that's the case for
14682  * affected systems.
14683  */
quirk_pipea_force(struct drm_device * dev)14684 static void quirk_pipea_force(struct drm_device *dev)
14685 {
14686 	struct drm_i915_private *dev_priv = dev->dev_private;
14687 
14688 	dev_priv->quirks |= QUIRK_PIPEA_FORCE;
14689 	DRM_INFO("applying pipe a force quirk\n");
14690 }
14691 
quirk_pipeb_force(struct drm_device * dev)14692 static void quirk_pipeb_force(struct drm_device *dev)
14693 {
14694 	struct drm_i915_private *dev_priv = dev->dev_private;
14695 
14696 	dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14697 	DRM_INFO("applying pipe b force quirk\n");
14698 }
14699 
14700 /*
14701  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14702  */
quirk_ssc_force_disable(struct drm_device * dev)14703 static void quirk_ssc_force_disable(struct drm_device *dev)
14704 {
14705 	struct drm_i915_private *dev_priv = dev->dev_private;
14706 	dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14707 	DRM_INFO("applying lvds SSC disable quirk\n");
14708 }
14709 
14710 /*
14711  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14712  * brightness value
14713  */
quirk_invert_brightness(struct drm_device * dev)14714 static void quirk_invert_brightness(struct drm_device *dev)
14715 {
14716 	struct drm_i915_private *dev_priv = dev->dev_private;
14717 	dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14718 	DRM_INFO("applying inverted panel brightness quirk\n");
14719 }
14720 
14721 /* Some VBT's incorrectly indicate no backlight is present */
quirk_backlight_present(struct drm_device * dev)14722 static void quirk_backlight_present(struct drm_device *dev)
14723 {
14724 	struct drm_i915_private *dev_priv = dev->dev_private;
14725 	dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14726 	DRM_INFO("applying backlight present quirk\n");
14727 }
14728 
14729 struct intel_quirk {
14730 	int device;
14731 	int subsystem_vendor;
14732 	int subsystem_device;
14733 	void (*hook)(struct drm_device *dev);
14734 };
14735 
14736 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14737 struct intel_dmi_quirk {
14738 	void (*hook)(struct drm_device *dev);
14739 	const struct dmi_system_id (*dmi_id_list)[];
14740 };
14741 
intel_dmi_reverse_brightness(const struct dmi_system_id * id)14742 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14743 {
14744 	DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14745 	return 1;
14746 }
14747 
14748 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14749 	{
14750 		.dmi_id_list = &(const struct dmi_system_id[]) {
14751 			{
14752 				.callback = intel_dmi_reverse_brightness,
14753 				.ident = "NCR Corporation",
14754 				.matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14755 					    DMI_MATCH(DMI_PRODUCT_NAME, ""),
14756 				},
14757 			},
14758 			{ }  /* terminating entry */
14759 		},
14760 		.hook = quirk_invert_brightness,
14761 	},
14762 };
14763 
14764 static struct intel_quirk intel_quirks[] = {
14765 	/* Toshiba Protege R-205, S-209 needs pipe A force quirk */
14766 	{ 0x2592, 0x1179, 0x0001, quirk_pipea_force },
14767 
14768 	/* ThinkPad T60 needs pipe A force quirk (bug #16494) */
14769 	{ 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
14770 
14771 	/* 830 needs to leave pipe A & dpll A up */
14772 	{ 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
14773 
14774 	/* 830 needs to leave pipe B & dpll B up */
14775 	{ 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
14776 
14777 	/* Lenovo U160 cannot use SSC on LVDS */
14778 	{ 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
14779 
14780 	/* Sony Vaio Y cannot use SSC on LVDS */
14781 	{ 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
14782 
14783 	/* Acer Aspire 5734Z must invert backlight brightness */
14784 	{ 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14785 
14786 	/* Acer/eMachines G725 */
14787 	{ 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14788 
14789 	/* Acer/eMachines e725 */
14790 	{ 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14791 
14792 	/* Acer/Packard Bell NCL20 */
14793 	{ 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14794 
14795 	/* Acer Aspire 4736Z */
14796 	{ 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
14797 
14798 	/* Acer Aspire 5336 */
14799 	{ 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
14800 
14801 	/* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14802 	{ 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
14803 
14804 	/* Acer C720 Chromebook (Core i3 4005U) */
14805 	{ 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14806 
14807 	/* Apple Macbook 2,1 (Core 2 T7400) */
14808 	{ 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14809 
14810 	/* Apple Macbook 4,1 */
14811 	{ 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
14812 
14813 	/* Toshiba CB35 Chromebook (Celeron 2955U) */
14814 	{ 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
14815 
14816 	/* HP Chromebook 14 (Celeron 2955U) */
14817 	{ 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
14818 
14819 	/* Dell Chromebook 11 */
14820 	{ 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
14821 
14822 	/* Dell Chromebook 11 (2015 version) */
14823 	{ 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
14824 };
14825 
intel_init_quirks(struct drm_device * dev)14826 static void intel_init_quirks(struct drm_device *dev)
14827 {
14828 	struct pci_dev *d = dev->pdev;
14829 	int i;
14830 
14831 	for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14832 		struct intel_quirk *q = &intel_quirks[i];
14833 
14834 		if (d->device == q->device &&
14835 		    (d->subsystem_vendor == q->subsystem_vendor ||
14836 		     q->subsystem_vendor == PCI_ANY_ID) &&
14837 		    (d->subsystem_device == q->subsystem_device ||
14838 		     q->subsystem_device == PCI_ANY_ID))
14839 			q->hook(dev);
14840 	}
14841 	for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14842 		if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14843 			intel_dmi_quirks[i].hook(dev);
14844 	}
14845 }
14846 
14847 /* Disable the VGA plane that we never use */
i915_disable_vga(struct drm_device * dev)14848 static void i915_disable_vga(struct drm_device *dev)
14849 {
14850 	struct drm_i915_private *dev_priv = dev->dev_private;
14851 	u8 sr1;
14852 	u32 vga_reg = i915_vgacntrl_reg(dev);
14853 
14854 	/* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
14855 	vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
14856 	outb(SR01, VGA_SR_INDEX);
14857 	sr1 = inb(VGA_SR_DATA);
14858 	outb(sr1 | 1<<5, VGA_SR_DATA);
14859 	vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
14860 	udelay(300);
14861 
14862 	I915_WRITE(vga_reg, VGA_DISP_DISABLE);
14863 	POSTING_READ(vga_reg);
14864 }
14865 
intel_modeset_init_hw(struct drm_device * dev)14866 void intel_modeset_init_hw(struct drm_device *dev)
14867 {
14868 	intel_update_cdclk(dev);
14869 	intel_prepare_ddi(dev);
14870 	intel_init_clock_gating(dev);
14871 	intel_enable_gt_powersave(dev);
14872 }
14873 
intel_modeset_init(struct drm_device * dev)14874 void intel_modeset_init(struct drm_device *dev)
14875 {
14876 	struct drm_i915_private *dev_priv = dev->dev_private;
14877 	int sprite, ret;
14878 	enum pipe pipe;
14879 	struct intel_crtc *crtc;
14880 
14881 	drm_mode_config_init(dev);
14882 
14883 	dev->mode_config.min_width = 0;
14884 	dev->mode_config.min_height = 0;
14885 
14886 	dev->mode_config.preferred_depth = 24;
14887 	dev->mode_config.prefer_shadow = 1;
14888 
14889 	dev->mode_config.allow_fb_modifiers = true;
14890 
14891 	dev->mode_config.funcs = &intel_mode_funcs;
14892 
14893 	intel_init_quirks(dev);
14894 
14895 	intel_init_pm(dev);
14896 
14897 	if (INTEL_INFO(dev)->num_pipes == 0)
14898 		return;
14899 
14900 	/*
14901 	 * There may be no VBT; and if the BIOS enabled SSC we can
14902 	 * just keep using it to avoid unnecessary flicker.  Whereas if the
14903 	 * BIOS isn't using it, don't assume it will work even if the VBT
14904 	 * indicates as much.
14905 	 */
14906 	if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
14907 		bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
14908 					    DREF_SSC1_ENABLE);
14909 
14910 		if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
14911 			DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
14912 				     bios_lvds_use_ssc ? "en" : "dis",
14913 				     dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
14914 			dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
14915 		}
14916 	}
14917 
14918 	intel_init_display(dev);
14919 	intel_init_audio(dev);
14920 
14921 	if (IS_GEN2(dev)) {
14922 		dev->mode_config.max_width = 2048;
14923 		dev->mode_config.max_height = 2048;
14924 	} else if (IS_GEN3(dev)) {
14925 		dev->mode_config.max_width = 4096;
14926 		dev->mode_config.max_height = 4096;
14927 	} else {
14928 		dev->mode_config.max_width = 8192;
14929 		dev->mode_config.max_height = 8192;
14930 	}
14931 
14932 	if (IS_845G(dev) || IS_I865G(dev)) {
14933 		dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
14934 		dev->mode_config.cursor_height = 1023;
14935 	} else if (IS_GEN2(dev)) {
14936 		dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
14937 		dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
14938 	} else {
14939 		dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
14940 		dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
14941 	}
14942 
14943 	dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
14944 
14945 	DRM_DEBUG_KMS("%d display pipe%s available.\n",
14946 		      INTEL_INFO(dev)->num_pipes,
14947 		      INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
14948 
14949 	for_each_pipe(dev_priv, pipe) {
14950 		intel_crtc_init(dev, pipe);
14951 		for_each_sprite(dev_priv, pipe, sprite) {
14952 			ret = intel_plane_init(dev, pipe, sprite);
14953 			if (ret)
14954 				DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
14955 					      pipe_name(pipe), sprite_name(pipe, sprite), ret);
14956 		}
14957 	}
14958 
14959 	intel_update_czclk(dev_priv);
14960 	intel_update_cdclk(dev);
14961 
14962 	intel_shared_dpll_init(dev);
14963 
14964 	/* Just disable it once at startup */
14965 	i915_disable_vga(dev);
14966 	intel_setup_outputs(dev);
14967 
14968 	/* Just in case the BIOS is doing something questionable. */
14969 	intel_fbc_disable(dev_priv);
14970 
14971 	drm_modeset_lock_all(dev);
14972 	intel_modeset_setup_hw_state(dev);
14973 	drm_modeset_unlock_all(dev);
14974 
14975 	for_each_intel_crtc(dev, crtc) {
14976 		struct intel_initial_plane_config plane_config = {};
14977 
14978 		if (!crtc->active)
14979 			continue;
14980 
14981 		/*
14982 		 * Note that reserving the BIOS fb up front prevents us
14983 		 * from stuffing other stolen allocations like the ring
14984 		 * on top.  This prevents some ugliness at boot time, and
14985 		 * can even allow for smooth boot transitions if the BIOS
14986 		 * fb is large enough for the active pipe configuration.
14987 		 */
14988 		dev_priv->display.get_initial_plane_config(crtc,
14989 							   &plane_config);
14990 
14991 		/*
14992 		 * If the fb is shared between multiple heads, we'll
14993 		 * just get the first one.
14994 		 */
14995 		intel_find_initial_plane_obj(crtc, &plane_config);
14996 	}
14997 }
14998 
intel_enable_pipe_a(struct drm_device * dev)14999 static void intel_enable_pipe_a(struct drm_device *dev)
15000 {
15001 	struct intel_connector *connector;
15002 	struct drm_connector *crt = NULL;
15003 	struct intel_load_detect_pipe load_detect_temp;
15004 	struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
15005 
15006 	/* We can't just switch on the pipe A, we need to set things up with a
15007 	 * proper mode and output configuration. As a gross hack, enable pipe A
15008 	 * by enabling the load detect pipe once. */
15009 	for_each_intel_connector(dev, connector) {
15010 		if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15011 			crt = &connector->base;
15012 			break;
15013 		}
15014 	}
15015 
15016 	if (!crt)
15017 		return;
15018 
15019 	if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
15020 		intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
15021 }
15022 
15023 static bool
intel_check_plane_mapping(struct intel_crtc * crtc)15024 intel_check_plane_mapping(struct intel_crtc *crtc)
15025 {
15026 	struct drm_device *dev = crtc->base.dev;
15027 	struct drm_i915_private *dev_priv = dev->dev_private;
15028 	u32 val;
15029 
15030 	if (INTEL_INFO(dev)->num_pipes == 1)
15031 		return true;
15032 
15033 	val = I915_READ(DSPCNTR(!crtc->plane));
15034 
15035 	if ((val & DISPLAY_PLANE_ENABLE) &&
15036 	    (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15037 		return false;
15038 
15039 	return true;
15040 }
15041 
intel_crtc_has_encoders(struct intel_crtc * crtc)15042 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15043 {
15044 	struct drm_device *dev = crtc->base.dev;
15045 	struct intel_encoder *encoder;
15046 
15047 	for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15048 		return true;
15049 
15050 	return false;
15051 }
15052 
intel_sanitize_crtc(struct intel_crtc * crtc)15053 static void intel_sanitize_crtc(struct intel_crtc *crtc)
15054 {
15055 	struct drm_device *dev = crtc->base.dev;
15056 	struct drm_i915_private *dev_priv = dev->dev_private;
15057 	u32 reg;
15058 
15059 	/* Clear any frame start delays used for debugging left by the BIOS */
15060 	reg = PIPECONF(crtc->config->cpu_transcoder);
15061 	I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15062 
15063 	/* restore vblank interrupts to correct state */
15064 	drm_crtc_vblank_reset(&crtc->base);
15065 	if (crtc->active) {
15066 		struct intel_plane *plane;
15067 
15068 		drm_crtc_vblank_on(&crtc->base);
15069 
15070 		/* Disable everything but the primary plane */
15071 		for_each_intel_plane_on_crtc(dev, crtc, plane) {
15072 			if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15073 				continue;
15074 
15075 			plane->disable_plane(&plane->base, &crtc->base);
15076 		}
15077 	}
15078 
15079 	/* We need to sanitize the plane -> pipe mapping first because this will
15080 	 * disable the crtc (and hence change the state) if it is wrong. Note
15081 	 * that gen4+ has a fixed plane -> pipe mapping.  */
15082 	if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
15083 		bool plane;
15084 
15085 		DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
15086 			      crtc->base.base.id);
15087 
15088 		/* Pipe has the wrong plane attached and the plane is active.
15089 		 * Temporarily change the plane mapping and disable everything
15090 		 * ...  */
15091 		plane = crtc->plane;
15092 		to_intel_plane_state(crtc->base.primary->state)->visible = true;
15093 		crtc->plane = !plane;
15094 		intel_crtc_disable_noatomic(&crtc->base);
15095 		crtc->plane = plane;
15096 	}
15097 
15098 	if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15099 	    crtc->pipe == PIPE_A && !crtc->active) {
15100 		/* BIOS forgot to enable pipe A, this mostly happens after
15101 		 * resume. Force-enable the pipe to fix this, the update_dpms
15102 		 * call below we restore the pipe to the right state, but leave
15103 		 * the required bits on. */
15104 		intel_enable_pipe_a(dev);
15105 	}
15106 
15107 	/* Adjust the state of the output pipe according to whether we
15108 	 * have active connectors/encoders. */
15109 	if (!intel_crtc_has_encoders(crtc))
15110 		intel_crtc_disable_noatomic(&crtc->base);
15111 
15112 	if (crtc->active != crtc->base.state->active) {
15113 		struct intel_encoder *encoder;
15114 
15115 		/* This can happen either due to bugs in the get_hw_state
15116 		 * functions or because of calls to intel_crtc_disable_noatomic,
15117 		 * or because the pipe is force-enabled due to the
15118 		 * pipe A quirk. */
15119 		DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
15120 			      crtc->base.base.id,
15121 			      crtc->base.state->enable ? "enabled" : "disabled",
15122 			      crtc->active ? "enabled" : "disabled");
15123 
15124 		WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, NULL) < 0);
15125 		crtc->base.state->active = crtc->active;
15126 		crtc->base.enabled = crtc->active;
15127 
15128 		/* Because we only establish the connector -> encoder ->
15129 		 * crtc links if something is active, this means the
15130 		 * crtc is now deactivated. Break the links. connector
15131 		 * -> encoder links are only establish when things are
15132 		 *  actually up, hence no need to break them. */
15133 		WARN_ON(crtc->active);
15134 
15135 		for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15136 			encoder->base.crtc = NULL;
15137 	}
15138 
15139 	if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
15140 		/*
15141 		 * We start out with underrun reporting disabled to avoid races.
15142 		 * For correct bookkeeping mark this on active crtcs.
15143 		 *
15144 		 * Also on gmch platforms we dont have any hardware bits to
15145 		 * disable the underrun reporting. Which means we need to start
15146 		 * out with underrun reporting disabled also on inactive pipes,
15147 		 * since otherwise we'll complain about the garbage we read when
15148 		 * e.g. coming up after runtime pm.
15149 		 *
15150 		 * No protection against concurrent access is required - at
15151 		 * worst a fifo underrun happens which also sets this to false.
15152 		 */
15153 		crtc->cpu_fifo_underrun_disabled = true;
15154 		crtc->pch_fifo_underrun_disabled = true;
15155 	}
15156 }
15157 
intel_sanitize_encoder(struct intel_encoder * encoder)15158 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15159 {
15160 	struct intel_connector *connector;
15161 	struct drm_device *dev = encoder->base.dev;
15162 	bool active = false;
15163 
15164 	/* We need to check both for a crtc link (meaning that the
15165 	 * encoder is active and trying to read from a pipe) and the
15166 	 * pipe itself being active. */
15167 	bool has_active_crtc = encoder->base.crtc &&
15168 		to_intel_crtc(encoder->base.crtc)->active;
15169 
15170 	for_each_intel_connector(dev, connector) {
15171 		if (connector->base.encoder != &encoder->base)
15172 			continue;
15173 
15174 		active = true;
15175 		break;
15176 	}
15177 
15178 	if (active && !has_active_crtc) {
15179 		DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15180 			      encoder->base.base.id,
15181 			      encoder->base.name);
15182 
15183 		/* Connector is active, but has no active pipe. This is
15184 		 * fallout from our resume register restoring. Disable
15185 		 * the encoder manually again. */
15186 		if (encoder->base.crtc) {
15187 			DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15188 				      encoder->base.base.id,
15189 				      encoder->base.name);
15190 			encoder->disable(encoder);
15191 			if (encoder->post_disable)
15192 				encoder->post_disable(encoder);
15193 		}
15194 		encoder->base.crtc = NULL;
15195 
15196 		/* Inconsistent output/port/pipe state happens presumably due to
15197 		 * a bug in one of the get_hw_state functions. Or someplace else
15198 		 * in our code, like the register restore mess on resume. Clamp
15199 		 * things to off as a safer default. */
15200 		for_each_intel_connector(dev, connector) {
15201 			if (connector->encoder != encoder)
15202 				continue;
15203 			connector->base.dpms = DRM_MODE_DPMS_OFF;
15204 			connector->base.encoder = NULL;
15205 		}
15206 	}
15207 	/* Enabled encoders without active connectors will be fixed in
15208 	 * the crtc fixup. */
15209 }
15210 
i915_redisable_vga_power_on(struct drm_device * dev)15211 void i915_redisable_vga_power_on(struct drm_device *dev)
15212 {
15213 	struct drm_i915_private *dev_priv = dev->dev_private;
15214 	u32 vga_reg = i915_vgacntrl_reg(dev);
15215 
15216 	if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15217 		DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15218 		i915_disable_vga(dev);
15219 	}
15220 }
15221 
i915_redisable_vga(struct drm_device * dev)15222 void i915_redisable_vga(struct drm_device *dev)
15223 {
15224 	struct drm_i915_private *dev_priv = dev->dev_private;
15225 
15226 	/* This function can be called both from intel_modeset_setup_hw_state or
15227 	 * at a very early point in our resume sequence, where the power well
15228 	 * structures are not yet restored. Since this function is at a very
15229 	 * paranoid "someone might have enabled VGA while we were not looking"
15230 	 * level, just check if the power well is enabled instead of trying to
15231 	 * follow the "don't touch the power well if we don't need it" policy
15232 	 * the rest of the driver uses. */
15233 	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
15234 		return;
15235 
15236 	i915_redisable_vga_power_on(dev);
15237 }
15238 
primary_get_hw_state(struct intel_plane * plane)15239 static bool primary_get_hw_state(struct intel_plane *plane)
15240 {
15241 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15242 
15243 	return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
15244 }
15245 
15246 /* FIXME read out full plane state for all planes */
readout_plane_state(struct intel_crtc * crtc)15247 static void readout_plane_state(struct intel_crtc *crtc)
15248 {
15249 	struct drm_plane *primary = crtc->base.primary;
15250 	struct intel_plane_state *plane_state =
15251 		to_intel_plane_state(primary->state);
15252 
15253 	plane_state->visible =
15254 		primary_get_hw_state(to_intel_plane(primary));
15255 
15256 	if (plane_state->visible)
15257 		crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
15258 }
15259 
intel_modeset_readout_hw_state(struct drm_device * dev)15260 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15261 {
15262 	struct drm_i915_private *dev_priv = dev->dev_private;
15263 	enum pipe pipe;
15264 	struct intel_crtc *crtc;
15265 	struct intel_encoder *encoder;
15266 	struct intel_connector *connector;
15267 	int i;
15268 
15269 	for_each_intel_crtc(dev, crtc) {
15270 		__drm_atomic_helper_crtc_destroy_state(&crtc->base, crtc->base.state);
15271 		memset(crtc->config, 0, sizeof(*crtc->config));
15272 		crtc->config->base.crtc = &crtc->base;
15273 
15274 		crtc->active = dev_priv->display.get_pipe_config(crtc,
15275 								 crtc->config);
15276 
15277 		crtc->base.state->active = crtc->active;
15278 		crtc->base.enabled = crtc->active;
15279 
15280 		readout_plane_state(crtc);
15281 
15282 		DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15283 			      crtc->base.base.id,
15284 			      crtc->active ? "enabled" : "disabled");
15285 	}
15286 
15287 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15288 		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15289 
15290 		pll->on = pll->get_hw_state(dev_priv, pll,
15291 					    &pll->config.hw_state);
15292 		pll->active = 0;
15293 		pll->config.crtc_mask = 0;
15294 		for_each_intel_crtc(dev, crtc) {
15295 			if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
15296 				pll->active++;
15297 				pll->config.crtc_mask |= 1 << crtc->pipe;
15298 			}
15299 		}
15300 
15301 		DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15302 			      pll->name, pll->config.crtc_mask, pll->on);
15303 
15304 		if (pll->config.crtc_mask)
15305 			intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
15306 	}
15307 
15308 	for_each_intel_encoder(dev, encoder) {
15309 		pipe = 0;
15310 
15311 		if (encoder->get_hw_state(encoder, &pipe)) {
15312 			crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15313 			encoder->base.crtc = &crtc->base;
15314 			encoder->get_config(encoder, crtc->config);
15315 		} else {
15316 			encoder->base.crtc = NULL;
15317 		}
15318 
15319 		DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15320 			      encoder->base.base.id,
15321 			      encoder->base.name,
15322 			      encoder->base.crtc ? "enabled" : "disabled",
15323 			      pipe_name(pipe));
15324 	}
15325 
15326 	for_each_intel_connector(dev, connector) {
15327 		if (connector->get_hw_state(connector)) {
15328 			connector->base.dpms = DRM_MODE_DPMS_ON;
15329 			connector->base.encoder = &connector->encoder->base;
15330 		} else {
15331 			connector->base.dpms = DRM_MODE_DPMS_OFF;
15332 			connector->base.encoder = NULL;
15333 		}
15334 		DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15335 			      connector->base.base.id,
15336 			      connector->base.name,
15337 			      connector->base.encoder ? "enabled" : "disabled");
15338 	}
15339 
15340 	for_each_intel_crtc(dev, crtc) {
15341 		crtc->base.hwmode = crtc->config->base.adjusted_mode;
15342 
15343 		memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15344 		if (crtc->base.state->active) {
15345 			intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
15346 			intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
15347 			WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15348 
15349 			/*
15350 			 * The initial mode needs to be set in order to keep
15351 			 * the atomic core happy. It wants a valid mode if the
15352 			 * crtc's enabled, so we do the above call.
15353 			 *
15354 			 * At this point some state updated by the connectors
15355 			 * in their ->detect() callback has not run yet, so
15356 			 * no recalculation can be done yet.
15357 			 *
15358 			 * Even if we could do a recalculation and modeset
15359 			 * right now it would cause a double modeset if
15360 			 * fbdev or userspace chooses a different initial mode.
15361 			 *
15362 			 * If that happens, someone indicated they wanted a
15363 			 * mode change, which means it's safe to do a full
15364 			 * recalculation.
15365 			 */
15366 			crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
15367 
15368 			drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
15369 			update_scanline_offset(crtc);
15370 		}
15371 	}
15372 }
15373 
15374 /* Scan out the current hw modeset state,
15375  * and sanitizes it to the current state
15376  */
15377 static void
intel_modeset_setup_hw_state(struct drm_device * dev)15378 intel_modeset_setup_hw_state(struct drm_device *dev)
15379 {
15380 	struct drm_i915_private *dev_priv = dev->dev_private;
15381 	enum pipe pipe;
15382 	struct intel_crtc *crtc;
15383 	struct intel_encoder *encoder;
15384 	int i;
15385 
15386 	intel_modeset_readout_hw_state(dev);
15387 
15388 	/* HW state is read out, now we need to sanitize this mess. */
15389 	for_each_intel_encoder(dev, encoder) {
15390 		intel_sanitize_encoder(encoder);
15391 	}
15392 
15393 	for_each_pipe(dev_priv, pipe) {
15394 		crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15395 		intel_sanitize_crtc(crtc);
15396 		intel_dump_pipe_config(crtc, crtc->config,
15397 				       "[setup_hw_state]");
15398 	}
15399 
15400 	intel_modeset_update_connector_atomic_state(dev);
15401 
15402 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15403 		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15404 
15405 		if (!pll->on || pll->active)
15406 			continue;
15407 
15408 		DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15409 
15410 		pll->disable(dev_priv, pll);
15411 		pll->on = false;
15412 	}
15413 
15414 	if (IS_VALLEYVIEW(dev))
15415 		vlv_wm_get_hw_state(dev);
15416 	else if (IS_GEN9(dev))
15417 		skl_wm_get_hw_state(dev);
15418 	else if (HAS_PCH_SPLIT(dev))
15419 		ilk_wm_get_hw_state(dev);
15420 
15421 	for_each_intel_crtc(dev, crtc) {
15422 		unsigned long put_domains;
15423 
15424 		put_domains = modeset_get_crtc_power_domains(&crtc->base);
15425 		if (WARN_ON(put_domains))
15426 			modeset_put_power_domains(dev_priv, put_domains);
15427 	}
15428 	intel_display_set_init_power(dev_priv, false);
15429 }
15430 
intel_display_resume(struct drm_device * dev)15431 void intel_display_resume(struct drm_device *dev)
15432 {
15433 	struct drm_atomic_state *state = drm_atomic_state_alloc(dev);
15434 	struct intel_connector *conn;
15435 	struct intel_plane *plane;
15436 	struct drm_crtc *crtc;
15437 	int ret;
15438 
15439 	if (!state)
15440 		return;
15441 
15442 	state->acquire_ctx = dev->mode_config.acquire_ctx;
15443 
15444 	/* preserve complete old state, including dpll */
15445 	intel_atomic_get_shared_dpll_state(state);
15446 
15447 	for_each_crtc(dev, crtc) {
15448 		struct drm_crtc_state *crtc_state =
15449 			drm_atomic_get_crtc_state(state, crtc);
15450 
15451 		ret = PTR_ERR_OR_ZERO(crtc_state);
15452 		if (ret)
15453 			goto err;
15454 
15455 		/* force a restore */
15456 		crtc_state->mode_changed = true;
15457 	}
15458 
15459 	for_each_intel_plane(dev, plane) {
15460 		ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(state, &plane->base));
15461 		if (ret)
15462 			goto err;
15463 	}
15464 
15465 	for_each_intel_connector(dev, conn) {
15466 		ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(state, &conn->base));
15467 		if (ret)
15468 			goto err;
15469 	}
15470 
15471 	intel_modeset_setup_hw_state(dev);
15472 
15473 	i915_redisable_vga(dev);
15474 	ret = drm_atomic_commit(state);
15475 	if (!ret)
15476 		return;
15477 
15478 err:
15479 	DRM_ERROR("Restoring old state failed with %i\n", ret);
15480 	drm_atomic_state_free(state);
15481 }
15482 
intel_modeset_gem_init(struct drm_device * dev)15483 void intel_modeset_gem_init(struct drm_device *dev)
15484 {
15485 	struct drm_crtc *c;
15486 	struct drm_i915_gem_object *obj;
15487 	int ret;
15488 
15489 	mutex_lock(&dev->struct_mutex);
15490 	intel_init_gt_powersave(dev);
15491 	mutex_unlock(&dev->struct_mutex);
15492 
15493 	intel_modeset_init_hw(dev);
15494 
15495 	intel_setup_overlay(dev);
15496 
15497 	/*
15498 	 * Make sure any fbs we allocated at startup are properly
15499 	 * pinned & fenced.  When we do the allocation it's too early
15500 	 * for this.
15501 	 */
15502 	for_each_crtc(dev, c) {
15503 		obj = intel_fb_obj(c->primary->fb);
15504 		if (obj == NULL)
15505 			continue;
15506 
15507 		mutex_lock(&dev->struct_mutex);
15508 		ret = intel_pin_and_fence_fb_obj(c->primary,
15509 						 c->primary->fb,
15510 						 c->primary->state,
15511 						 NULL, NULL);
15512 		mutex_unlock(&dev->struct_mutex);
15513 		if (ret) {
15514 			DRM_ERROR("failed to pin boot fb on pipe %d\n",
15515 				  to_intel_crtc(c)->pipe);
15516 			drm_framebuffer_unreference(c->primary->fb);
15517 			c->primary->fb = NULL;
15518 			c->primary->crtc = c->primary->state->crtc = NULL;
15519 			update_state_fb(c->primary);
15520 			c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
15521 		}
15522 	}
15523 
15524 	intel_backlight_register(dev);
15525 }
15526 
intel_connector_unregister(struct intel_connector * intel_connector)15527 void intel_connector_unregister(struct intel_connector *intel_connector)
15528 {
15529 	struct drm_connector *connector = &intel_connector->base;
15530 
15531 	intel_panel_destroy_backlight(connector);
15532 	drm_connector_unregister(connector);
15533 }
15534 
intel_modeset_cleanup(struct drm_device * dev)15535 void intel_modeset_cleanup(struct drm_device *dev)
15536 {
15537 	struct drm_i915_private *dev_priv = dev->dev_private;
15538 	struct drm_connector *connector;
15539 
15540 	intel_disable_gt_powersave(dev);
15541 
15542 	intel_backlight_unregister(dev);
15543 
15544 	/*
15545 	 * Interrupts and polling as the first thing to avoid creating havoc.
15546 	 * Too much stuff here (turning of connectors, ...) would
15547 	 * experience fancy races otherwise.
15548 	 */
15549 	intel_irq_uninstall(dev_priv);
15550 
15551 	/*
15552 	 * Due to the hpd irq storm handling the hotplug work can re-arm the
15553 	 * poll handlers. Hence disable polling after hpd handling is shut down.
15554 	 */
15555 	drm_kms_helper_poll_fini(dev);
15556 
15557 	intel_unregister_dsm_handler();
15558 
15559 	intel_fbc_disable(dev_priv);
15560 
15561 	/* flush any delayed tasks or pending work */
15562 	flush_scheduled_work();
15563 
15564 	/* destroy the backlight and sysfs files before encoders/connectors */
15565 	list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
15566 		struct intel_connector *intel_connector;
15567 
15568 		intel_connector = to_intel_connector(connector);
15569 		intel_connector->unregister(intel_connector);
15570 	}
15571 
15572 	drm_mode_config_cleanup(dev);
15573 
15574 	intel_cleanup_overlay(dev);
15575 
15576 	mutex_lock(&dev->struct_mutex);
15577 	intel_cleanup_gt_powersave(dev);
15578 	mutex_unlock(&dev->struct_mutex);
15579 
15580 	intel_teardown_gmbus(dev);
15581 }
15582 
15583 /*
15584  * Return which encoder is currently attached for connector.
15585  */
intel_best_encoder(struct drm_connector * connector)15586 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
15587 {
15588 	return &intel_attached_encoder(connector)->base;
15589 }
15590 
intel_connector_attach_encoder(struct intel_connector * connector,struct intel_encoder * encoder)15591 void intel_connector_attach_encoder(struct intel_connector *connector,
15592 				    struct intel_encoder *encoder)
15593 {
15594 	connector->encoder = encoder;
15595 	drm_mode_connector_attach_encoder(&connector->base,
15596 					  &encoder->base);
15597 }
15598 
15599 /*
15600  * set vga decode state - true == enable VGA decode
15601  */
intel_modeset_vga_set_state(struct drm_device * dev,bool state)15602 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
15603 {
15604 	struct drm_i915_private *dev_priv = dev->dev_private;
15605 	unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15606 	u16 gmch_ctrl;
15607 
15608 	if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15609 		DRM_ERROR("failed to read control word\n");
15610 		return -EIO;
15611 	}
15612 
15613 	if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15614 		return 0;
15615 
15616 	if (state)
15617 		gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15618 	else
15619 		gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15620 
15621 	if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15622 		DRM_ERROR("failed to write control word\n");
15623 		return -EIO;
15624 	}
15625 
15626 	return 0;
15627 }
15628 
15629 struct intel_display_error_state {
15630 
15631 	u32 power_well_driver;
15632 
15633 	int num_transcoders;
15634 
15635 	struct intel_cursor_error_state {
15636 		u32 control;
15637 		u32 position;
15638 		u32 base;
15639 		u32 size;
15640 	} cursor[I915_MAX_PIPES];
15641 
15642 	struct intel_pipe_error_state {
15643 		bool power_domain_on;
15644 		u32 source;
15645 		u32 stat;
15646 	} pipe[I915_MAX_PIPES];
15647 
15648 	struct intel_plane_error_state {
15649 		u32 control;
15650 		u32 stride;
15651 		u32 size;
15652 		u32 pos;
15653 		u32 addr;
15654 		u32 surface;
15655 		u32 tile_offset;
15656 	} plane[I915_MAX_PIPES];
15657 
15658 	struct intel_transcoder_error_state {
15659 		bool power_domain_on;
15660 		enum transcoder cpu_transcoder;
15661 
15662 		u32 conf;
15663 
15664 		u32 htotal;
15665 		u32 hblank;
15666 		u32 hsync;
15667 		u32 vtotal;
15668 		u32 vblank;
15669 		u32 vsync;
15670 	} transcoder[4];
15671 };
15672 
15673 struct intel_display_error_state *
intel_display_capture_error_state(struct drm_device * dev)15674 intel_display_capture_error_state(struct drm_device *dev)
15675 {
15676 	struct drm_i915_private *dev_priv = dev->dev_private;
15677 	struct intel_display_error_state *error;
15678 	int transcoders[] = {
15679 		TRANSCODER_A,
15680 		TRANSCODER_B,
15681 		TRANSCODER_C,
15682 		TRANSCODER_EDP,
15683 	};
15684 	int i;
15685 
15686 	if (INTEL_INFO(dev)->num_pipes == 0)
15687 		return NULL;
15688 
15689 	error = kzalloc(sizeof(*error), GFP_ATOMIC);
15690 	if (error == NULL)
15691 		return NULL;
15692 
15693 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15694 		error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15695 
15696 	for_each_pipe(dev_priv, i) {
15697 		error->pipe[i].power_domain_on =
15698 			__intel_display_power_is_enabled(dev_priv,
15699 							 POWER_DOMAIN_PIPE(i));
15700 		if (!error->pipe[i].power_domain_on)
15701 			continue;
15702 
15703 		error->cursor[i].control = I915_READ(CURCNTR(i));
15704 		error->cursor[i].position = I915_READ(CURPOS(i));
15705 		error->cursor[i].base = I915_READ(CURBASE(i));
15706 
15707 		error->plane[i].control = I915_READ(DSPCNTR(i));
15708 		error->plane[i].stride = I915_READ(DSPSTRIDE(i));
15709 		if (INTEL_INFO(dev)->gen <= 3) {
15710 			error->plane[i].size = I915_READ(DSPSIZE(i));
15711 			error->plane[i].pos = I915_READ(DSPPOS(i));
15712 		}
15713 		if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15714 			error->plane[i].addr = I915_READ(DSPADDR(i));
15715 		if (INTEL_INFO(dev)->gen >= 4) {
15716 			error->plane[i].surface = I915_READ(DSPSURF(i));
15717 			error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15718 		}
15719 
15720 		error->pipe[i].source = I915_READ(PIPESRC(i));
15721 
15722 		if (HAS_GMCH_DISPLAY(dev))
15723 			error->pipe[i].stat = I915_READ(PIPESTAT(i));
15724 	}
15725 
15726 	error->num_transcoders = INTEL_INFO(dev)->num_pipes;
15727 	if (HAS_DDI(dev_priv->dev))
15728 		error->num_transcoders++; /* Account for eDP. */
15729 
15730 	for (i = 0; i < error->num_transcoders; i++) {
15731 		enum transcoder cpu_transcoder = transcoders[i];
15732 
15733 		error->transcoder[i].power_domain_on =
15734 			__intel_display_power_is_enabled(dev_priv,
15735 				POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15736 		if (!error->transcoder[i].power_domain_on)
15737 			continue;
15738 
15739 		error->transcoder[i].cpu_transcoder = cpu_transcoder;
15740 
15741 		error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15742 		error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15743 		error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15744 		error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15745 		error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15746 		error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15747 		error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15748 	}
15749 
15750 	return error;
15751 }
15752 
15753 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15754 
15755 void
intel_display_print_error_state(struct drm_i915_error_state_buf * m,struct drm_device * dev,struct intel_display_error_state * error)15756 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
15757 				struct drm_device *dev,
15758 				struct intel_display_error_state *error)
15759 {
15760 	struct drm_i915_private *dev_priv = dev->dev_private;
15761 	int i;
15762 
15763 	if (!error)
15764 		return;
15765 
15766 	err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
15767 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15768 		err_printf(m, "PWR_WELL_CTL2: %08x\n",
15769 			   error->power_well_driver);
15770 	for_each_pipe(dev_priv, i) {
15771 		err_printf(m, "Pipe [%d]:\n", i);
15772 		err_printf(m, "  Power: %s\n",
15773 			   error->pipe[i].power_domain_on ? "on" : "off");
15774 		err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
15775 		err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
15776 
15777 		err_printf(m, "Plane [%d]:\n", i);
15778 		err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
15779 		err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
15780 		if (INTEL_INFO(dev)->gen <= 3) {
15781 			err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
15782 			err_printf(m, "  POS: %08x\n", error->plane[i].pos);
15783 		}
15784 		if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15785 			err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
15786 		if (INTEL_INFO(dev)->gen >= 4) {
15787 			err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
15788 			err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
15789 		}
15790 
15791 		err_printf(m, "Cursor [%d]:\n", i);
15792 		err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
15793 		err_printf(m, "  POS: %08x\n", error->cursor[i].position);
15794 		err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
15795 	}
15796 
15797 	for (i = 0; i < error->num_transcoders; i++) {
15798 		err_printf(m, "CPU transcoder: %c\n",
15799 			   transcoder_name(error->transcoder[i].cpu_transcoder));
15800 		err_printf(m, "  Power: %s\n",
15801 			   error->transcoder[i].power_domain_on ? "on" : "off");
15802 		err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
15803 		err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
15804 		err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
15805 		err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
15806 		err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
15807 		err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
15808 		err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
15809 	}
15810 }
15811 
intel_modeset_preclose(struct drm_device * dev,struct drm_file * file)15812 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
15813 {
15814 	struct intel_crtc *crtc;
15815 
15816 	for_each_intel_crtc(dev, crtc) {
15817 		struct intel_unpin_work *work;
15818 
15819 		spin_lock_irq(&dev->event_lock);
15820 
15821 		work = crtc->unpin_work;
15822 
15823 		if (work && work->event &&
15824 		    work->event->base.file_priv == file) {
15825 			kfree(work->event);
15826 			work->event = NULL;
15827 		}
15828 
15829 		spin_unlock_irq(&dev->event_lock);
15830 	}
15831 }
15832