1 /*
2  * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3  * Author: Joerg Roedel <jroedel@suse.de>
4  *         Leo Duran <leo.duran@amd.com>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
18  */
19 
20 #include <linux/ratelimit.h>
21 #include <linux/pci.h>
22 #include <linux/pci-ats.h>
23 #include <linux/bitmap.h>
24 #include <linux/slab.h>
25 #include <linux/debugfs.h>
26 #include <linux/scatterlist.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/iommu-helper.h>
29 #include <linux/iommu.h>
30 #include <linux/delay.h>
31 #include <linux/amd-iommu.h>
32 #include <linux/notifier.h>
33 #include <linux/export.h>
34 #include <linux/irq.h>
35 #include <linux/msi.h>
36 #include <linux/dma-contiguous.h>
37 #include <asm/irq_remapping.h>
38 #include <asm/io_apic.h>
39 #include <asm/apic.h>
40 #include <asm/hw_irq.h>
41 #include <asm/msidef.h>
42 #include <asm/proto.h>
43 #include <asm/iommu.h>
44 #include <asm/gart.h>
45 #include <asm/dma.h>
46 
47 #include "amd_iommu_proto.h"
48 #include "amd_iommu_types.h"
49 #include "irq_remapping.h"
50 
51 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
52 
53 #define LOOP_TIMEOUT	100000
54 
55 /*
56  * This bitmap is used to advertise the page sizes our hardware support
57  * to the IOMMU core, which will then use this information to split
58  * physically contiguous memory regions it is mapping into page sizes
59  * that we support.
60  *
61  * 512GB Pages are not supported due to a hardware bug
62  */
63 #define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
64 
65 static DEFINE_RWLOCK(amd_iommu_devtable_lock);
66 
67 /* A list of preallocated protection domains */
68 static LIST_HEAD(iommu_pd_list);
69 static DEFINE_SPINLOCK(iommu_pd_list_lock);
70 
71 /* List of all available dev_data structures */
72 static LIST_HEAD(dev_data_list);
73 static DEFINE_SPINLOCK(dev_data_list_lock);
74 
75 LIST_HEAD(ioapic_map);
76 LIST_HEAD(hpet_map);
77 
78 /*
79  * Domain for untranslated devices - only allocated
80  * if iommu=pt passed on kernel cmd line.
81  */
82 static struct protection_domain *pt_domain;
83 
84 static const struct iommu_ops amd_iommu_ops;
85 
86 static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
87 int amd_iommu_max_glx_val = -1;
88 
89 static struct dma_map_ops amd_iommu_dma_ops;
90 
91 /*
92  * This struct contains device specific data for the IOMMU
93  */
94 struct iommu_dev_data {
95 	struct list_head list;		  /* For domain->dev_list */
96 	struct list_head dev_data_list;	  /* For global dev_data_list */
97 	struct list_head alias_list;      /* Link alias-groups together */
98 	struct iommu_dev_data *alias_data;/* The alias dev_data */
99 	struct protection_domain *domain; /* Domain the device is bound to */
100 	u16 devid;			  /* PCI Device ID */
101 	bool iommu_v2;			  /* Device can make use of IOMMUv2 */
102 	bool passthrough;		  /* Default for device is pt_domain */
103 	struct {
104 		bool enabled;
105 		int qdep;
106 	} ats;				  /* ATS state */
107 	bool pri_tlp;			  /* PASID TLB required for
108 					     PPR completions */
109 	u32 errata;			  /* Bitmap for errata to apply */
110 };
111 
112 /*
113  * general struct to manage commands send to an IOMMU
114  */
115 struct iommu_cmd {
116 	u32 data[4];
117 };
118 
119 struct kmem_cache *amd_iommu_irq_cache;
120 
121 static void update_domain(struct protection_domain *domain);
122 static int __init alloc_passthrough_domain(void);
123 
124 /****************************************************************************
125  *
126  * Helper functions
127  *
128  ****************************************************************************/
129 
to_pdomain(struct iommu_domain * dom)130 static struct protection_domain *to_pdomain(struct iommu_domain *dom)
131 {
132 	return container_of(dom, struct protection_domain, domain);
133 }
134 
alloc_dev_data(u16 devid)135 static struct iommu_dev_data *alloc_dev_data(u16 devid)
136 {
137 	struct iommu_dev_data *dev_data;
138 	unsigned long flags;
139 
140 	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
141 	if (!dev_data)
142 		return NULL;
143 
144 	INIT_LIST_HEAD(&dev_data->alias_list);
145 
146 	dev_data->devid = devid;
147 
148 	spin_lock_irqsave(&dev_data_list_lock, flags);
149 	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
150 	spin_unlock_irqrestore(&dev_data_list_lock, flags);
151 
152 	return dev_data;
153 }
154 
free_dev_data(struct iommu_dev_data * dev_data)155 static void free_dev_data(struct iommu_dev_data *dev_data)
156 {
157 	unsigned long flags;
158 
159 	spin_lock_irqsave(&dev_data_list_lock, flags);
160 	list_del(&dev_data->dev_data_list);
161 	spin_unlock_irqrestore(&dev_data_list_lock, flags);
162 
163 	kfree(dev_data);
164 }
165 
search_dev_data(u16 devid)166 static struct iommu_dev_data *search_dev_data(u16 devid)
167 {
168 	struct iommu_dev_data *dev_data;
169 	unsigned long flags;
170 
171 	spin_lock_irqsave(&dev_data_list_lock, flags);
172 	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
173 		if (dev_data->devid == devid)
174 			goto out_unlock;
175 	}
176 
177 	dev_data = NULL;
178 
179 out_unlock:
180 	spin_unlock_irqrestore(&dev_data_list_lock, flags);
181 
182 	return dev_data;
183 }
184 
find_dev_data(u16 devid)185 static struct iommu_dev_data *find_dev_data(u16 devid)
186 {
187 	struct iommu_dev_data *dev_data;
188 
189 	dev_data = search_dev_data(devid);
190 
191 	if (dev_data == NULL)
192 		dev_data = alloc_dev_data(devid);
193 
194 	return dev_data;
195 }
196 
get_device_id(struct device * dev)197 static inline u16 get_device_id(struct device *dev)
198 {
199 	struct pci_dev *pdev = to_pci_dev(dev);
200 
201 	return PCI_DEVID(pdev->bus->number, pdev->devfn);
202 }
203 
get_dev_data(struct device * dev)204 static struct iommu_dev_data *get_dev_data(struct device *dev)
205 {
206 	return dev->archdata.iommu;
207 }
208 
pci_iommuv2_capable(struct pci_dev * pdev)209 static bool pci_iommuv2_capable(struct pci_dev *pdev)
210 {
211 	static const int caps[] = {
212 		PCI_EXT_CAP_ID_ATS,
213 		PCI_EXT_CAP_ID_PRI,
214 		PCI_EXT_CAP_ID_PASID,
215 	};
216 	int i, pos;
217 
218 	for (i = 0; i < 3; ++i) {
219 		pos = pci_find_ext_capability(pdev, caps[i]);
220 		if (pos == 0)
221 			return false;
222 	}
223 
224 	return true;
225 }
226 
pdev_pri_erratum(struct pci_dev * pdev,u32 erratum)227 static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
228 {
229 	struct iommu_dev_data *dev_data;
230 
231 	dev_data = get_dev_data(&pdev->dev);
232 
233 	return dev_data->errata & (1 << erratum) ? true : false;
234 }
235 
236 /*
237  * In this function the list of preallocated protection domains is traversed to
238  * find the domain for a specific device
239  */
find_protection_domain(u16 devid)240 static struct dma_ops_domain *find_protection_domain(u16 devid)
241 {
242 	struct dma_ops_domain *entry, *ret = NULL;
243 	unsigned long flags;
244 	u16 alias = amd_iommu_alias_table[devid];
245 
246 	if (list_empty(&iommu_pd_list))
247 		return NULL;
248 
249 	spin_lock_irqsave(&iommu_pd_list_lock, flags);
250 
251 	list_for_each_entry(entry, &iommu_pd_list, list) {
252 		if (entry->target_dev == devid ||
253 		    entry->target_dev == alias) {
254 			ret = entry;
255 			break;
256 		}
257 	}
258 
259 	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
260 
261 	return ret;
262 }
263 
264 /*
265  * This function checks if the driver got a valid device from the caller to
266  * avoid dereferencing invalid pointers.
267  */
check_device(struct device * dev)268 static bool check_device(struct device *dev)
269 {
270 	u16 devid;
271 
272 	if (!dev || !dev->dma_mask)
273 		return false;
274 
275 	/* No PCI device */
276 	if (!dev_is_pci(dev))
277 		return false;
278 
279 	devid = get_device_id(dev);
280 
281 	/* Out of our scope? */
282 	if (devid > amd_iommu_last_bdf)
283 		return false;
284 
285 	if (amd_iommu_rlookup_table[devid] == NULL)
286 		return false;
287 
288 	return true;
289 }
290 
init_iommu_group(struct device * dev)291 static void init_iommu_group(struct device *dev)
292 {
293 	struct iommu_group *group;
294 
295 	group = iommu_group_get_for_dev(dev);
296 	if (!IS_ERR(group))
297 		iommu_group_put(group);
298 }
299 
__last_alias(struct pci_dev * pdev,u16 alias,void * data)300 static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
301 {
302 	*(u16 *)data = alias;
303 	return 0;
304 }
305 
get_alias(struct device * dev)306 static u16 get_alias(struct device *dev)
307 {
308 	struct pci_dev *pdev = to_pci_dev(dev);
309 	u16 devid, ivrs_alias, pci_alias;
310 
311 	devid = get_device_id(dev);
312 	ivrs_alias = amd_iommu_alias_table[devid];
313 	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);
314 
315 	if (ivrs_alias == pci_alias)
316 		return ivrs_alias;
317 
318 	/*
319 	 * DMA alias showdown
320 	 *
321 	 * The IVRS is fairly reliable in telling us about aliases, but it
322 	 * can't know about every screwy device.  If we don't have an IVRS
323 	 * reported alias, use the PCI reported alias.  In that case we may
324 	 * still need to initialize the rlookup and dev_table entries if the
325 	 * alias is to a non-existent device.
326 	 */
327 	if (ivrs_alias == devid) {
328 		if (!amd_iommu_rlookup_table[pci_alias]) {
329 			amd_iommu_rlookup_table[pci_alias] =
330 				amd_iommu_rlookup_table[devid];
331 			memcpy(amd_iommu_dev_table[pci_alias].data,
332 			       amd_iommu_dev_table[devid].data,
333 			       sizeof(amd_iommu_dev_table[pci_alias].data));
334 		}
335 
336 		return pci_alias;
337 	}
338 
339 	pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
340 		"for device %s[%04x:%04x], kernel reported alias "
341 		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
342 		PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
343 		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
344 		PCI_FUNC(pci_alias));
345 
346 	/*
347 	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
348 	 * bus, then the IVRS table may know about a quirk that we don't.
349 	 */
350 	if (pci_alias == devid &&
351 	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
352 		pdev->dev_flags |= PCI_DEV_FLAGS_DMA_ALIAS_DEVFN;
353 		pdev->dma_alias_devfn = ivrs_alias & 0xff;
354 		pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
355 			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
356 			dev_name(dev));
357 	}
358 
359 	return ivrs_alias;
360 }
361 
iommu_init_device(struct device * dev)362 static int iommu_init_device(struct device *dev)
363 {
364 	struct pci_dev *pdev = to_pci_dev(dev);
365 	struct iommu_dev_data *dev_data;
366 	u16 alias;
367 
368 	if (dev->archdata.iommu)
369 		return 0;
370 
371 	dev_data = find_dev_data(get_device_id(dev));
372 	if (!dev_data)
373 		return -ENOMEM;
374 
375 	alias = get_alias(dev);
376 
377 	if (alias != dev_data->devid) {
378 		struct iommu_dev_data *alias_data;
379 
380 		alias_data = find_dev_data(alias);
381 		if (alias_data == NULL) {
382 			pr_err("AMD-Vi: Warning: Unhandled device %s\n",
383 					dev_name(dev));
384 			free_dev_data(dev_data);
385 			return -ENOTSUPP;
386 		}
387 		dev_data->alias_data = alias_data;
388 
389 		/* Add device to the alias_list */
390 		list_add(&dev_data->alias_list, &alias_data->alias_list);
391 	}
392 
393 	if (pci_iommuv2_capable(pdev)) {
394 		struct amd_iommu *iommu;
395 
396 		iommu              = amd_iommu_rlookup_table[dev_data->devid];
397 		dev_data->iommu_v2 = iommu->is_iommu_v2;
398 	}
399 
400 	dev->archdata.iommu = dev_data;
401 
402 	iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
403 			  dev);
404 
405 	return 0;
406 }
407 
iommu_ignore_device(struct device * dev)408 static void iommu_ignore_device(struct device *dev)
409 {
410 	u16 devid, alias;
411 
412 	devid = get_device_id(dev);
413 	alias = amd_iommu_alias_table[devid];
414 
415 	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
416 	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
417 
418 	amd_iommu_rlookup_table[devid] = NULL;
419 	amd_iommu_rlookup_table[alias] = NULL;
420 }
421 
iommu_uninit_device(struct device * dev)422 static void iommu_uninit_device(struct device *dev)
423 {
424 	struct iommu_dev_data *dev_data = search_dev_data(get_device_id(dev));
425 
426 	if (!dev_data)
427 		return;
428 
429 	iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
430 			    dev);
431 
432 	iommu_group_remove_device(dev);
433 
434 	/* Unlink from alias, it may change if another device is re-plugged */
435 	dev_data->alias_data = NULL;
436 
437 	/*
438 	 * We keep dev_data around for unplugged devices and reuse it when the
439 	 * device is re-plugged - not doing so would introduce a ton of races.
440 	 */
441 }
442 
amd_iommu_uninit_devices(void)443 void __init amd_iommu_uninit_devices(void)
444 {
445 	struct iommu_dev_data *dev_data, *n;
446 	struct pci_dev *pdev = NULL;
447 
448 	for_each_pci_dev(pdev) {
449 
450 		if (!check_device(&pdev->dev))
451 			continue;
452 
453 		iommu_uninit_device(&pdev->dev);
454 	}
455 
456 	/* Free all of our dev_data structures */
457 	list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
458 		free_dev_data(dev_data);
459 }
460 
amd_iommu_init_devices(void)461 int __init amd_iommu_init_devices(void)
462 {
463 	struct pci_dev *pdev = NULL;
464 	int ret = 0;
465 
466 	for_each_pci_dev(pdev) {
467 
468 		if (!check_device(&pdev->dev))
469 			continue;
470 
471 		ret = iommu_init_device(&pdev->dev);
472 		if (ret == -ENOTSUPP)
473 			iommu_ignore_device(&pdev->dev);
474 		else if (ret)
475 			goto out_free;
476 	}
477 
478 	/*
479 	 * Initialize IOMMU groups only after iommu_init_device() has
480 	 * had a chance to populate any IVRS defined aliases.
481 	 */
482 	for_each_pci_dev(pdev) {
483 		if (check_device(&pdev->dev))
484 			init_iommu_group(&pdev->dev);
485 	}
486 
487 	return 0;
488 
489 out_free:
490 
491 	amd_iommu_uninit_devices();
492 
493 	return ret;
494 }
495 #ifdef CONFIG_AMD_IOMMU_STATS
496 
497 /*
498  * Initialization code for statistics collection
499  */
500 
501 DECLARE_STATS_COUNTER(compl_wait);
502 DECLARE_STATS_COUNTER(cnt_map_single);
503 DECLARE_STATS_COUNTER(cnt_unmap_single);
504 DECLARE_STATS_COUNTER(cnt_map_sg);
505 DECLARE_STATS_COUNTER(cnt_unmap_sg);
506 DECLARE_STATS_COUNTER(cnt_alloc_coherent);
507 DECLARE_STATS_COUNTER(cnt_free_coherent);
508 DECLARE_STATS_COUNTER(cross_page);
509 DECLARE_STATS_COUNTER(domain_flush_single);
510 DECLARE_STATS_COUNTER(domain_flush_all);
511 DECLARE_STATS_COUNTER(alloced_io_mem);
512 DECLARE_STATS_COUNTER(total_map_requests);
513 DECLARE_STATS_COUNTER(complete_ppr);
514 DECLARE_STATS_COUNTER(invalidate_iotlb);
515 DECLARE_STATS_COUNTER(invalidate_iotlb_all);
516 DECLARE_STATS_COUNTER(pri_requests);
517 
518 static struct dentry *stats_dir;
519 static struct dentry *de_fflush;
520 
amd_iommu_stats_add(struct __iommu_counter * cnt)521 static void amd_iommu_stats_add(struct __iommu_counter *cnt)
522 {
523 	if (stats_dir == NULL)
524 		return;
525 
526 	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
527 				       &cnt->value);
528 }
529 
amd_iommu_stats_init(void)530 static void amd_iommu_stats_init(void)
531 {
532 	stats_dir = debugfs_create_dir("amd-iommu", NULL);
533 	if (stats_dir == NULL)
534 		return;
535 
536 	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
537 					 &amd_iommu_unmap_flush);
538 
539 	amd_iommu_stats_add(&compl_wait);
540 	amd_iommu_stats_add(&cnt_map_single);
541 	amd_iommu_stats_add(&cnt_unmap_single);
542 	amd_iommu_stats_add(&cnt_map_sg);
543 	amd_iommu_stats_add(&cnt_unmap_sg);
544 	amd_iommu_stats_add(&cnt_alloc_coherent);
545 	amd_iommu_stats_add(&cnt_free_coherent);
546 	amd_iommu_stats_add(&cross_page);
547 	amd_iommu_stats_add(&domain_flush_single);
548 	amd_iommu_stats_add(&domain_flush_all);
549 	amd_iommu_stats_add(&alloced_io_mem);
550 	amd_iommu_stats_add(&total_map_requests);
551 	amd_iommu_stats_add(&complete_ppr);
552 	amd_iommu_stats_add(&invalidate_iotlb);
553 	amd_iommu_stats_add(&invalidate_iotlb_all);
554 	amd_iommu_stats_add(&pri_requests);
555 }
556 
557 #endif
558 
559 /****************************************************************************
560  *
561  * Interrupt handling functions
562  *
563  ****************************************************************************/
564 
dump_dte_entry(u16 devid)565 static void dump_dte_entry(u16 devid)
566 {
567 	int i;
568 
569 	for (i = 0; i < 4; ++i)
570 		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
571 			amd_iommu_dev_table[devid].data[i]);
572 }
573 
dump_command(unsigned long phys_addr)574 static void dump_command(unsigned long phys_addr)
575 {
576 	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
577 	int i;
578 
579 	for (i = 0; i < 4; ++i)
580 		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
581 }
582 
iommu_print_event(struct amd_iommu * iommu,void * __evt)583 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
584 {
585 	int type, devid, domid, flags;
586 	volatile u32 *event = __evt;
587 	int count = 0;
588 	u64 address;
589 
590 retry:
591 	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
592 	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
593 	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
594 	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
595 	address = (u64)(((u64)event[3]) << 32) | event[2];
596 
597 	if (type == 0) {
598 		/* Did we hit the erratum? */
599 		if (++count == LOOP_TIMEOUT) {
600 			pr_err("AMD-Vi: No event written to event log\n");
601 			return;
602 		}
603 		udelay(1);
604 		goto retry;
605 	}
606 
607 	printk(KERN_ERR "AMD-Vi: Event logged [");
608 
609 	switch (type) {
610 	case EVENT_TYPE_ILL_DEV:
611 		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
612 		       "address=0x%016llx flags=0x%04x]\n",
613 		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
614 		       address, flags);
615 		dump_dte_entry(devid);
616 		break;
617 	case EVENT_TYPE_IO_FAULT:
618 		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
619 		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
620 		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
621 		       domid, address, flags);
622 		break;
623 	case EVENT_TYPE_DEV_TAB_ERR:
624 		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
625 		       "address=0x%016llx flags=0x%04x]\n",
626 		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
627 		       address, flags);
628 		break;
629 	case EVENT_TYPE_PAGE_TAB_ERR:
630 		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
631 		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
632 		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
633 		       domid, address, flags);
634 		break;
635 	case EVENT_TYPE_ILL_CMD:
636 		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
637 		dump_command(address);
638 		break;
639 	case EVENT_TYPE_CMD_HARD_ERR:
640 		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
641 		       "flags=0x%04x]\n", address, flags);
642 		break;
643 	case EVENT_TYPE_IOTLB_INV_TO:
644 		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
645 		       "address=0x%016llx]\n",
646 		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
647 		       address);
648 		break;
649 	case EVENT_TYPE_INV_DEV_REQ:
650 		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
651 		       "address=0x%016llx flags=0x%04x]\n",
652 		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
653 		       address, flags);
654 		break;
655 	default:
656 		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
657 	}
658 
659 	memset(__evt, 0, 4 * sizeof(u32));
660 }
661 
iommu_poll_events(struct amd_iommu * iommu)662 static void iommu_poll_events(struct amd_iommu *iommu)
663 {
664 	u32 head, tail;
665 
666 	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
667 	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
668 
669 	while (head != tail) {
670 		iommu_print_event(iommu, iommu->evt_buf + head);
671 		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
672 	}
673 
674 	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
675 }
676 
iommu_handle_ppr_entry(struct amd_iommu * iommu,u64 * raw)677 static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
678 {
679 	struct amd_iommu_fault fault;
680 
681 	INC_STATS_COUNTER(pri_requests);
682 
683 	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
684 		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
685 		return;
686 	}
687 
688 	fault.address   = raw[1];
689 	fault.pasid     = PPR_PASID(raw[0]);
690 	fault.device_id = PPR_DEVID(raw[0]);
691 	fault.tag       = PPR_TAG(raw[0]);
692 	fault.flags     = PPR_FLAGS(raw[0]);
693 
694 	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
695 }
696 
iommu_poll_ppr_log(struct amd_iommu * iommu)697 static void iommu_poll_ppr_log(struct amd_iommu *iommu)
698 {
699 	u32 head, tail;
700 
701 	if (iommu->ppr_log == NULL)
702 		return;
703 
704 	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
705 	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
706 
707 	while (head != tail) {
708 		volatile u64 *raw;
709 		u64 entry[2];
710 		int i;
711 
712 		raw = (u64 *)(iommu->ppr_log + head);
713 
714 		/*
715 		 * Hardware bug: Interrupt may arrive before the entry is
716 		 * written to memory. If this happens we need to wait for the
717 		 * entry to arrive.
718 		 */
719 		for (i = 0; i < LOOP_TIMEOUT; ++i) {
720 			if (PPR_REQ_TYPE(raw[0]) != 0)
721 				break;
722 			udelay(1);
723 		}
724 
725 		/* Avoid memcpy function-call overhead */
726 		entry[0] = raw[0];
727 		entry[1] = raw[1];
728 
729 		/*
730 		 * To detect the hardware bug we need to clear the entry
731 		 * back to zero.
732 		 */
733 		raw[0] = raw[1] = 0UL;
734 
735 		/* Update head pointer of hardware ring-buffer */
736 		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
737 		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
738 
739 		/* Handle PPR entry */
740 		iommu_handle_ppr_entry(iommu, entry);
741 
742 		/* Refresh ring-buffer information */
743 		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
744 		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
745 	}
746 }
747 
amd_iommu_int_thread(int irq,void * data)748 irqreturn_t amd_iommu_int_thread(int irq, void *data)
749 {
750 	struct amd_iommu *iommu = (struct amd_iommu *) data;
751 	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
752 
753 	while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
754 		/* Enable EVT and PPR interrupts again */
755 		writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
756 			iommu->mmio_base + MMIO_STATUS_OFFSET);
757 
758 		if (status & MMIO_STATUS_EVT_INT_MASK) {
759 			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
760 			iommu_poll_events(iommu);
761 		}
762 
763 		if (status & MMIO_STATUS_PPR_INT_MASK) {
764 			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
765 			iommu_poll_ppr_log(iommu);
766 		}
767 
768 		/*
769 		 * Hardware bug: ERBT1312
770 		 * When re-enabling interrupt (by writing 1
771 		 * to clear the bit), the hardware might also try to set
772 		 * the interrupt bit in the event status register.
773 		 * In this scenario, the bit will be set, and disable
774 		 * subsequent interrupts.
775 		 *
776 		 * Workaround: The IOMMU driver should read back the
777 		 * status register and check if the interrupt bits are cleared.
778 		 * If not, driver will need to go through the interrupt handler
779 		 * again and re-clear the bits
780 		 */
781 		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
782 	}
783 	return IRQ_HANDLED;
784 }
785 
amd_iommu_int_handler(int irq,void * data)786 irqreturn_t amd_iommu_int_handler(int irq, void *data)
787 {
788 	return IRQ_WAKE_THREAD;
789 }
790 
791 /****************************************************************************
792  *
793  * IOMMU command queuing functions
794  *
795  ****************************************************************************/
796 
wait_on_sem(volatile u64 * sem)797 static int wait_on_sem(volatile u64 *sem)
798 {
799 	int i = 0;
800 
801 	while (*sem == 0 && i < LOOP_TIMEOUT) {
802 		udelay(1);
803 		i += 1;
804 	}
805 
806 	if (i == LOOP_TIMEOUT) {
807 		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
808 		return -EIO;
809 	}
810 
811 	return 0;
812 }
813 
copy_cmd_to_buffer(struct amd_iommu * iommu,struct iommu_cmd * cmd,u32 tail)814 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
815 			       struct iommu_cmd *cmd,
816 			       u32 tail)
817 {
818 	u8 *target;
819 
820 	target = iommu->cmd_buf + tail;
821 	tail   = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
822 
823 	/* Copy command to buffer */
824 	memcpy(target, cmd, sizeof(*cmd));
825 
826 	/* Tell the IOMMU about it */
827 	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
828 }
829 
build_completion_wait(struct iommu_cmd * cmd,u64 address)830 static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
831 {
832 	WARN_ON(address & 0x7ULL);
833 
834 	memset(cmd, 0, sizeof(*cmd));
835 	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
836 	cmd->data[1] = upper_32_bits(__pa(address));
837 	cmd->data[2] = 1;
838 	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
839 }
840 
build_inv_dte(struct iommu_cmd * cmd,u16 devid)841 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
842 {
843 	memset(cmd, 0, sizeof(*cmd));
844 	cmd->data[0] = devid;
845 	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
846 }
847 
build_inv_iommu_pages(struct iommu_cmd * cmd,u64 address,size_t size,u16 domid,int pde)848 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
849 				  size_t size, u16 domid, int pde)
850 {
851 	u64 pages;
852 	bool s;
853 
854 	pages = iommu_num_pages(address, size, PAGE_SIZE);
855 	s     = false;
856 
857 	if (pages > 1) {
858 		/*
859 		 * If we have to flush more than one page, flush all
860 		 * TLB entries for this domain
861 		 */
862 		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
863 		s = true;
864 	}
865 
866 	address &= PAGE_MASK;
867 
868 	memset(cmd, 0, sizeof(*cmd));
869 	cmd->data[1] |= domid;
870 	cmd->data[2]  = lower_32_bits(address);
871 	cmd->data[3]  = upper_32_bits(address);
872 	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
873 	if (s) /* size bit - we flush more than one 4kb page */
874 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
875 	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
876 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
877 }
878 
build_inv_iotlb_pages(struct iommu_cmd * cmd,u16 devid,int qdep,u64 address,size_t size)879 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
880 				  u64 address, size_t size)
881 {
882 	u64 pages;
883 	bool s;
884 
885 	pages = iommu_num_pages(address, size, PAGE_SIZE);
886 	s     = false;
887 
888 	if (pages > 1) {
889 		/*
890 		 * If we have to flush more than one page, flush all
891 		 * TLB entries for this domain
892 		 */
893 		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
894 		s = true;
895 	}
896 
897 	address &= PAGE_MASK;
898 
899 	memset(cmd, 0, sizeof(*cmd));
900 	cmd->data[0]  = devid;
901 	cmd->data[0] |= (qdep & 0xff) << 24;
902 	cmd->data[1]  = devid;
903 	cmd->data[2]  = lower_32_bits(address);
904 	cmd->data[3]  = upper_32_bits(address);
905 	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
906 	if (s)
907 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
908 }
909 
build_inv_iommu_pasid(struct iommu_cmd * cmd,u16 domid,int pasid,u64 address,bool size)910 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
911 				  u64 address, bool size)
912 {
913 	memset(cmd, 0, sizeof(*cmd));
914 
915 	address &= ~(0xfffULL);
916 
917 	cmd->data[0]  = pasid;
918 	cmd->data[1]  = domid;
919 	cmd->data[2]  = lower_32_bits(address);
920 	cmd->data[3]  = upper_32_bits(address);
921 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
922 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
923 	if (size)
924 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
925 	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
926 }
927 
build_inv_iotlb_pasid(struct iommu_cmd * cmd,u16 devid,int pasid,int qdep,u64 address,bool size)928 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
929 				  int qdep, u64 address, bool size)
930 {
931 	memset(cmd, 0, sizeof(*cmd));
932 
933 	address &= ~(0xfffULL);
934 
935 	cmd->data[0]  = devid;
936 	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
937 	cmd->data[0] |= (qdep  & 0xff) << 24;
938 	cmd->data[1]  = devid;
939 	cmd->data[1] |= (pasid & 0xff) << 16;
940 	cmd->data[2]  = lower_32_bits(address);
941 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
942 	cmd->data[3]  = upper_32_bits(address);
943 	if (size)
944 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
945 	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
946 }
947 
build_complete_ppr(struct iommu_cmd * cmd,u16 devid,int pasid,int status,int tag,bool gn)948 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
949 			       int status, int tag, bool gn)
950 {
951 	memset(cmd, 0, sizeof(*cmd));
952 
953 	cmd->data[0]  = devid;
954 	if (gn) {
955 		cmd->data[1]  = pasid;
956 		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
957 	}
958 	cmd->data[3]  = tag & 0x1ff;
959 	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
960 
961 	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
962 }
963 
build_inv_all(struct iommu_cmd * cmd)964 static void build_inv_all(struct iommu_cmd *cmd)
965 {
966 	memset(cmd, 0, sizeof(*cmd));
967 	CMD_SET_TYPE(cmd, CMD_INV_ALL);
968 }
969 
build_inv_irt(struct iommu_cmd * cmd,u16 devid)970 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
971 {
972 	memset(cmd, 0, sizeof(*cmd));
973 	cmd->data[0] = devid;
974 	CMD_SET_TYPE(cmd, CMD_INV_IRT);
975 }
976 
977 /*
978  * Writes the command to the IOMMUs command buffer and informs the
979  * hardware about the new command.
980  */
iommu_queue_command_sync(struct amd_iommu * iommu,struct iommu_cmd * cmd,bool sync)981 static int iommu_queue_command_sync(struct amd_iommu *iommu,
982 				    struct iommu_cmd *cmd,
983 				    bool sync)
984 {
985 	u32 left, tail, head, next_tail;
986 	unsigned long flags;
987 
988 	WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
989 
990 again:
991 	spin_lock_irqsave(&iommu->lock, flags);
992 
993 	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
994 	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
995 	next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
996 	left      = (head - next_tail) % iommu->cmd_buf_size;
997 
998 	if (left <= 2) {
999 		struct iommu_cmd sync_cmd;
1000 		volatile u64 sem = 0;
1001 		int ret;
1002 
1003 		build_completion_wait(&sync_cmd, (u64)&sem);
1004 		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
1005 
1006 		spin_unlock_irqrestore(&iommu->lock, flags);
1007 
1008 		if ((ret = wait_on_sem(&sem)) != 0)
1009 			return ret;
1010 
1011 		goto again;
1012 	}
1013 
1014 	copy_cmd_to_buffer(iommu, cmd, tail);
1015 
1016 	/* We need to sync now to make sure all commands are processed */
1017 	iommu->need_sync = sync;
1018 
1019 	spin_unlock_irqrestore(&iommu->lock, flags);
1020 
1021 	return 0;
1022 }
1023 
iommu_queue_command(struct amd_iommu * iommu,struct iommu_cmd * cmd)1024 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1025 {
1026 	return iommu_queue_command_sync(iommu, cmd, true);
1027 }
1028 
1029 /*
1030  * This function queues a completion wait command into the command
1031  * buffer of an IOMMU
1032  */
iommu_completion_wait(struct amd_iommu * iommu)1033 static int iommu_completion_wait(struct amd_iommu *iommu)
1034 {
1035 	struct iommu_cmd cmd;
1036 	volatile u64 sem = 0;
1037 	int ret;
1038 
1039 	if (!iommu->need_sync)
1040 		return 0;
1041 
1042 	build_completion_wait(&cmd, (u64)&sem);
1043 
1044 	ret = iommu_queue_command_sync(iommu, &cmd, false);
1045 	if (ret)
1046 		return ret;
1047 
1048 	return wait_on_sem(&sem);
1049 }
1050 
iommu_flush_dte(struct amd_iommu * iommu,u16 devid)1051 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1052 {
1053 	struct iommu_cmd cmd;
1054 
1055 	build_inv_dte(&cmd, devid);
1056 
1057 	return iommu_queue_command(iommu, &cmd);
1058 }
1059 
iommu_flush_dte_all(struct amd_iommu * iommu)1060 static void iommu_flush_dte_all(struct amd_iommu *iommu)
1061 {
1062 	u32 devid;
1063 
1064 	for (devid = 0; devid <= 0xffff; ++devid)
1065 		iommu_flush_dte(iommu, devid);
1066 
1067 	iommu_completion_wait(iommu);
1068 }
1069 
1070 /*
1071  * This function uses heavy locking and may disable irqs for some time. But
1072  * this is no issue because it is only called during resume.
1073  */
iommu_flush_tlb_all(struct amd_iommu * iommu)1074 static void iommu_flush_tlb_all(struct amd_iommu *iommu)
1075 {
1076 	u32 dom_id;
1077 
1078 	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1079 		struct iommu_cmd cmd;
1080 		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1081 				      dom_id, 1);
1082 		iommu_queue_command(iommu, &cmd);
1083 	}
1084 
1085 	iommu_completion_wait(iommu);
1086 }
1087 
iommu_flush_all(struct amd_iommu * iommu)1088 static void iommu_flush_all(struct amd_iommu *iommu)
1089 {
1090 	struct iommu_cmd cmd;
1091 
1092 	build_inv_all(&cmd);
1093 
1094 	iommu_queue_command(iommu, &cmd);
1095 	iommu_completion_wait(iommu);
1096 }
1097 
iommu_flush_irt(struct amd_iommu * iommu,u16 devid)1098 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1099 {
1100 	struct iommu_cmd cmd;
1101 
1102 	build_inv_irt(&cmd, devid);
1103 
1104 	iommu_queue_command(iommu, &cmd);
1105 }
1106 
iommu_flush_irt_all(struct amd_iommu * iommu)1107 static void iommu_flush_irt_all(struct amd_iommu *iommu)
1108 {
1109 	u32 devid;
1110 
1111 	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1112 		iommu_flush_irt(iommu, devid);
1113 
1114 	iommu_completion_wait(iommu);
1115 }
1116 
iommu_flush_all_caches(struct amd_iommu * iommu)1117 void iommu_flush_all_caches(struct amd_iommu *iommu)
1118 {
1119 	if (iommu_feature(iommu, FEATURE_IA)) {
1120 		iommu_flush_all(iommu);
1121 	} else {
1122 		iommu_flush_dte_all(iommu);
1123 		iommu_flush_irt_all(iommu);
1124 		iommu_flush_tlb_all(iommu);
1125 	}
1126 }
1127 
1128 /*
1129  * Command send function for flushing on-device TLB
1130  */
device_flush_iotlb(struct iommu_dev_data * dev_data,u64 address,size_t size)1131 static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1132 			      u64 address, size_t size)
1133 {
1134 	struct amd_iommu *iommu;
1135 	struct iommu_cmd cmd;
1136 	int qdep;
1137 
1138 	qdep     = dev_data->ats.qdep;
1139 	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1140 
1141 	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1142 
1143 	return iommu_queue_command(iommu, &cmd);
1144 }
1145 
1146 /*
1147  * Command send function for invalidating a device table entry
1148  */
device_flush_dte(struct iommu_dev_data * dev_data)1149 static int device_flush_dte(struct iommu_dev_data *dev_data)
1150 {
1151 	struct amd_iommu *iommu;
1152 	int ret;
1153 
1154 	iommu = amd_iommu_rlookup_table[dev_data->devid];
1155 
1156 	ret = iommu_flush_dte(iommu, dev_data->devid);
1157 	if (ret)
1158 		return ret;
1159 
1160 	if (dev_data->ats.enabled)
1161 		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1162 
1163 	return ret;
1164 }
1165 
1166 /*
1167  * TLB invalidation function which is called from the mapping functions.
1168  * It invalidates a single PTE if the range to flush is within a single
1169  * page. Otherwise it flushes the whole TLB of the IOMMU.
1170  */
__domain_flush_pages(struct protection_domain * domain,u64 address,size_t size,int pde)1171 static void __domain_flush_pages(struct protection_domain *domain,
1172 				 u64 address, size_t size, int pde)
1173 {
1174 	struct iommu_dev_data *dev_data;
1175 	struct iommu_cmd cmd;
1176 	int ret = 0, i;
1177 
1178 	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1179 
1180 	for (i = 0; i < amd_iommus_present; ++i) {
1181 		if (!domain->dev_iommu[i])
1182 			continue;
1183 
1184 		/*
1185 		 * Devices of this domain are behind this IOMMU
1186 		 * We need a TLB flush
1187 		 */
1188 		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1189 	}
1190 
1191 	list_for_each_entry(dev_data, &domain->dev_list, list) {
1192 
1193 		if (!dev_data->ats.enabled)
1194 			continue;
1195 
1196 		ret |= device_flush_iotlb(dev_data, address, size);
1197 	}
1198 
1199 	WARN_ON(ret);
1200 }
1201 
domain_flush_pages(struct protection_domain * domain,u64 address,size_t size)1202 static void domain_flush_pages(struct protection_domain *domain,
1203 			       u64 address, size_t size)
1204 {
1205 	__domain_flush_pages(domain, address, size, 0);
1206 }
1207 
1208 /* Flush the whole IO/TLB for a given protection domain */
domain_flush_tlb(struct protection_domain * domain)1209 static void domain_flush_tlb(struct protection_domain *domain)
1210 {
1211 	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1212 }
1213 
1214 /* Flush the whole IO/TLB for a given protection domain - including PDE */
domain_flush_tlb_pde(struct protection_domain * domain)1215 static void domain_flush_tlb_pde(struct protection_domain *domain)
1216 {
1217 	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1218 }
1219 
domain_flush_complete(struct protection_domain * domain)1220 static void domain_flush_complete(struct protection_domain *domain)
1221 {
1222 	int i;
1223 
1224 	for (i = 0; i < amd_iommus_present; ++i) {
1225 		if (!domain->dev_iommu[i])
1226 			continue;
1227 
1228 		/*
1229 		 * Devices of this domain are behind this IOMMU
1230 		 * We need to wait for completion of all commands.
1231 		 */
1232 		iommu_completion_wait(amd_iommus[i]);
1233 	}
1234 }
1235 
1236 
1237 /*
1238  * This function flushes the DTEs for all devices in domain
1239  */
domain_flush_devices(struct protection_domain * domain)1240 static void domain_flush_devices(struct protection_domain *domain)
1241 {
1242 	struct iommu_dev_data *dev_data;
1243 
1244 	list_for_each_entry(dev_data, &domain->dev_list, list)
1245 		device_flush_dte(dev_data);
1246 }
1247 
1248 /****************************************************************************
1249  *
1250  * The functions below are used the create the page table mappings for
1251  * unity mapped regions.
1252  *
1253  ****************************************************************************/
1254 
1255 /*
1256  * This function is used to add another level to an IO page table. Adding
1257  * another level increases the size of the address space by 9 bits to a size up
1258  * to 64 bits.
1259  */
increase_address_space(struct protection_domain * domain,gfp_t gfp)1260 static bool increase_address_space(struct protection_domain *domain,
1261 				   gfp_t gfp)
1262 {
1263 	u64 *pte;
1264 
1265 	if (domain->mode == PAGE_MODE_6_LEVEL)
1266 		/* address space already 64 bit large */
1267 		return false;
1268 
1269 	pte = (void *)get_zeroed_page(gfp);
1270 	if (!pte)
1271 		return false;
1272 
1273 	*pte             = PM_LEVEL_PDE(domain->mode,
1274 					virt_to_phys(domain->pt_root));
1275 	domain->pt_root  = pte;
1276 	domain->mode    += 1;
1277 	domain->updated  = true;
1278 
1279 	return true;
1280 }
1281 
alloc_pte(struct protection_domain * domain,unsigned long address,unsigned long page_size,u64 ** pte_page,gfp_t gfp)1282 static u64 *alloc_pte(struct protection_domain *domain,
1283 		      unsigned long address,
1284 		      unsigned long page_size,
1285 		      u64 **pte_page,
1286 		      gfp_t gfp)
1287 {
1288 	int level, end_lvl;
1289 	u64 *pte, *page;
1290 
1291 	BUG_ON(!is_power_of_2(page_size));
1292 
1293 	while (address > PM_LEVEL_SIZE(domain->mode))
1294 		increase_address_space(domain, gfp);
1295 
1296 	level   = domain->mode - 1;
1297 	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1298 	address = PAGE_SIZE_ALIGN(address, page_size);
1299 	end_lvl = PAGE_SIZE_LEVEL(page_size);
1300 
1301 	while (level > end_lvl) {
1302 		if (!IOMMU_PTE_PRESENT(*pte)) {
1303 			page = (u64 *)get_zeroed_page(gfp);
1304 			if (!page)
1305 				return NULL;
1306 			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
1307 		}
1308 
1309 		/* No level skipping support yet */
1310 		if (PM_PTE_LEVEL(*pte) != level)
1311 			return NULL;
1312 
1313 		level -= 1;
1314 
1315 		pte = IOMMU_PTE_PAGE(*pte);
1316 
1317 		if (pte_page && level == end_lvl)
1318 			*pte_page = pte;
1319 
1320 		pte = &pte[PM_LEVEL_INDEX(level, address)];
1321 	}
1322 
1323 	return pte;
1324 }
1325 
1326 /*
1327  * This function checks if there is a PTE for a given dma address. If
1328  * there is one, it returns the pointer to it.
1329  */
fetch_pte(struct protection_domain * domain,unsigned long address,unsigned long * page_size)1330 static u64 *fetch_pte(struct protection_domain *domain,
1331 		      unsigned long address,
1332 		      unsigned long *page_size)
1333 {
1334 	int level;
1335 	u64 *pte;
1336 
1337 	if (address > PM_LEVEL_SIZE(domain->mode))
1338 		return NULL;
1339 
1340 	level	   =  domain->mode - 1;
1341 	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1342 	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1343 
1344 	while (level > 0) {
1345 
1346 		/* Not Present */
1347 		if (!IOMMU_PTE_PRESENT(*pte))
1348 			return NULL;
1349 
1350 		/* Large PTE */
1351 		if (PM_PTE_LEVEL(*pte) == 7 ||
1352 		    PM_PTE_LEVEL(*pte) == 0)
1353 			break;
1354 
1355 		/* No level skipping support yet */
1356 		if (PM_PTE_LEVEL(*pte) != level)
1357 			return NULL;
1358 
1359 		level -= 1;
1360 
1361 		/* Walk to the next level */
1362 		pte	   = IOMMU_PTE_PAGE(*pte);
1363 		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
1364 		*page_size = PTE_LEVEL_PAGE_SIZE(level);
1365 	}
1366 
1367 	if (PM_PTE_LEVEL(*pte) == 0x07) {
1368 		unsigned long pte_mask;
1369 
1370 		/*
1371 		 * If we have a series of large PTEs, make
1372 		 * sure to return a pointer to the first one.
1373 		 */
1374 		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
1375 		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1376 		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1377 	}
1378 
1379 	return pte;
1380 }
1381 
1382 /*
1383  * Generic mapping functions. It maps a physical address into a DMA
1384  * address space. It allocates the page table pages if necessary.
1385  * In the future it can be extended to a generic mapping function
1386  * supporting all features of AMD IOMMU page tables like level skipping
1387  * and full 64 bit address spaces.
1388  */
iommu_map_page(struct protection_domain * dom,unsigned long bus_addr,unsigned long phys_addr,int prot,unsigned long page_size)1389 static int iommu_map_page(struct protection_domain *dom,
1390 			  unsigned long bus_addr,
1391 			  unsigned long phys_addr,
1392 			  int prot,
1393 			  unsigned long page_size)
1394 {
1395 	u64 __pte, *pte;
1396 	int i, count;
1397 
1398 	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
1399 	BUG_ON(!IS_ALIGNED(phys_addr, page_size));
1400 
1401 	if (!(prot & IOMMU_PROT_MASK))
1402 		return -EINVAL;
1403 
1404 	count = PAGE_SIZE_PTE_COUNT(page_size);
1405 	pte   = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1406 
1407 	if (!pte)
1408 		return -ENOMEM;
1409 
1410 	for (i = 0; i < count; ++i)
1411 		if (IOMMU_PTE_PRESENT(pte[i]))
1412 			return -EBUSY;
1413 
1414 	if (count > 1) {
1415 		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
1416 		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1417 	} else
1418 		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1419 
1420 	if (prot & IOMMU_PROT_IR)
1421 		__pte |= IOMMU_PTE_IR;
1422 	if (prot & IOMMU_PROT_IW)
1423 		__pte |= IOMMU_PTE_IW;
1424 
1425 	for (i = 0; i < count; ++i)
1426 		pte[i] = __pte;
1427 
1428 	update_domain(dom);
1429 
1430 	return 0;
1431 }
1432 
iommu_unmap_page(struct protection_domain * dom,unsigned long bus_addr,unsigned long page_size)1433 static unsigned long iommu_unmap_page(struct protection_domain *dom,
1434 				      unsigned long bus_addr,
1435 				      unsigned long page_size)
1436 {
1437 	unsigned long long unmapped;
1438 	unsigned long unmap_size;
1439 	u64 *pte;
1440 
1441 	BUG_ON(!is_power_of_2(page_size));
1442 
1443 	unmapped = 0;
1444 
1445 	while (unmapped < page_size) {
1446 
1447 		pte = fetch_pte(dom, bus_addr, &unmap_size);
1448 
1449 		if (pte) {
1450 			int i, count;
1451 
1452 			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1453 			for (i = 0; i < count; i++)
1454 				pte[i] = 0ULL;
1455 		}
1456 
1457 		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1458 		unmapped += unmap_size;
1459 	}
1460 
1461 	BUG_ON(unmapped && !is_power_of_2(unmapped));
1462 
1463 	return unmapped;
1464 }
1465 
1466 /*
1467  * This function checks if a specific unity mapping entry is needed for
1468  * this specific IOMMU.
1469  */
iommu_for_unity_map(struct amd_iommu * iommu,struct unity_map_entry * entry)1470 static int iommu_for_unity_map(struct amd_iommu *iommu,
1471 			       struct unity_map_entry *entry)
1472 {
1473 	u16 bdf, i;
1474 
1475 	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
1476 		bdf = amd_iommu_alias_table[i];
1477 		if (amd_iommu_rlookup_table[bdf] == iommu)
1478 			return 1;
1479 	}
1480 
1481 	return 0;
1482 }
1483 
1484 /*
1485  * This function actually applies the mapping to the page table of the
1486  * dma_ops domain.
1487  */
dma_ops_unity_map(struct dma_ops_domain * dma_dom,struct unity_map_entry * e)1488 static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
1489 			     struct unity_map_entry *e)
1490 {
1491 	u64 addr;
1492 	int ret;
1493 
1494 	for (addr = e->address_start; addr < e->address_end;
1495 	     addr += PAGE_SIZE) {
1496 		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1497 				     PAGE_SIZE);
1498 		if (ret)
1499 			return ret;
1500 		/*
1501 		 * if unity mapping is in aperture range mark the page
1502 		 * as allocated in the aperture
1503 		 */
1504 		if (addr < dma_dom->aperture_size)
1505 			__set_bit(addr >> PAGE_SHIFT,
1506 				  dma_dom->aperture[0]->bitmap);
1507 	}
1508 
1509 	return 0;
1510 }
1511 
1512 /*
1513  * Init the unity mappings for a specific IOMMU in the system
1514  *
1515  * Basically iterates over all unity mapping entries and applies them to
1516  * the default domain DMA of that IOMMU if necessary.
1517  */
iommu_init_unity_mappings(struct amd_iommu * iommu)1518 static int iommu_init_unity_mappings(struct amd_iommu *iommu)
1519 {
1520 	struct unity_map_entry *entry;
1521 	int ret;
1522 
1523 	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
1524 		if (!iommu_for_unity_map(iommu, entry))
1525 			continue;
1526 		ret = dma_ops_unity_map(iommu->default_dom, entry);
1527 		if (ret)
1528 			return ret;
1529 	}
1530 
1531 	return 0;
1532 }
1533 
1534 /*
1535  * Inits the unity mappings required for a specific device
1536  */
init_unity_mappings_for_device(struct dma_ops_domain * dma_dom,u16 devid)1537 static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
1538 					  u16 devid)
1539 {
1540 	struct unity_map_entry *e;
1541 	int ret;
1542 
1543 	list_for_each_entry(e, &amd_iommu_unity_map, list) {
1544 		if (!(devid >= e->devid_start && devid <= e->devid_end))
1545 			continue;
1546 		ret = dma_ops_unity_map(dma_dom, e);
1547 		if (ret)
1548 			return ret;
1549 	}
1550 
1551 	return 0;
1552 }
1553 
1554 /****************************************************************************
1555  *
1556  * The next functions belong to the address allocator for the dma_ops
1557  * interface functions. They work like the allocators in the other IOMMU
1558  * drivers. Its basically a bitmap which marks the allocated pages in
1559  * the aperture. Maybe it could be enhanced in the future to a more
1560  * efficient allocator.
1561  *
1562  ****************************************************************************/
1563 
1564 /*
1565  * The address allocator core functions.
1566  *
1567  * called with domain->lock held
1568  */
1569 
1570 /*
1571  * Used to reserve address ranges in the aperture (e.g. for exclusion
1572  * ranges.
1573  */
dma_ops_reserve_addresses(struct dma_ops_domain * dom,unsigned long start_page,unsigned int pages)1574 static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1575 				      unsigned long start_page,
1576 				      unsigned int pages)
1577 {
1578 	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1579 
1580 	if (start_page + pages > last_page)
1581 		pages = last_page - start_page;
1582 
1583 	for (i = start_page; i < start_page + pages; ++i) {
1584 		int index = i / APERTURE_RANGE_PAGES;
1585 		int page  = i % APERTURE_RANGE_PAGES;
1586 		__set_bit(page, dom->aperture[index]->bitmap);
1587 	}
1588 }
1589 
1590 /*
1591  * This function is used to add a new aperture range to an existing
1592  * aperture in case of dma_ops domain allocation or address allocation
1593  * failure.
1594  */
alloc_new_range(struct dma_ops_domain * dma_dom,bool populate,gfp_t gfp)1595 static int alloc_new_range(struct dma_ops_domain *dma_dom,
1596 			   bool populate, gfp_t gfp)
1597 {
1598 	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1599 	struct amd_iommu *iommu;
1600 	unsigned long i, old_size, pte_pgsize;
1601 
1602 #ifdef CONFIG_IOMMU_STRESS
1603 	populate = false;
1604 #endif
1605 
1606 	if (index >= APERTURE_MAX_RANGES)
1607 		return -ENOMEM;
1608 
1609 	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1610 	if (!dma_dom->aperture[index])
1611 		return -ENOMEM;
1612 
1613 	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1614 	if (!dma_dom->aperture[index]->bitmap)
1615 		goto out_free;
1616 
1617 	dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1618 
1619 	if (populate) {
1620 		unsigned long address = dma_dom->aperture_size;
1621 		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1622 		u64 *pte, *pte_page;
1623 
1624 		for (i = 0; i < num_ptes; ++i) {
1625 			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1626 					&pte_page, gfp);
1627 			if (!pte)
1628 				goto out_free;
1629 
1630 			dma_dom->aperture[index]->pte_pages[i] = pte_page;
1631 
1632 			address += APERTURE_RANGE_SIZE / 64;
1633 		}
1634 	}
1635 
1636 	old_size                = dma_dom->aperture_size;
1637 	dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1638 
1639 	/* Reserve address range used for MSI messages */
1640 	if (old_size < MSI_ADDR_BASE_LO &&
1641 	    dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
1642 		unsigned long spage;
1643 		int pages;
1644 
1645 		pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
1646 		spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
1647 
1648 		dma_ops_reserve_addresses(dma_dom, spage, pages);
1649 	}
1650 
1651 	/* Initialize the exclusion range if necessary */
1652 	for_each_iommu(iommu) {
1653 		if (iommu->exclusion_start &&
1654 		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
1655 		    && iommu->exclusion_start < dma_dom->aperture_size) {
1656 			unsigned long startpage;
1657 			int pages = iommu_num_pages(iommu->exclusion_start,
1658 						    iommu->exclusion_length,
1659 						    PAGE_SIZE);
1660 			startpage = iommu->exclusion_start >> PAGE_SHIFT;
1661 			dma_ops_reserve_addresses(dma_dom, startpage, pages);
1662 		}
1663 	}
1664 
1665 	/*
1666 	 * Check for areas already mapped as present in the new aperture
1667 	 * range and mark those pages as reserved in the allocator. Such
1668 	 * mappings may already exist as a result of requested unity
1669 	 * mappings for devices.
1670 	 */
1671 	for (i = dma_dom->aperture[index]->offset;
1672 	     i < dma_dom->aperture_size;
1673 	     i += pte_pgsize) {
1674 		u64 *pte = fetch_pte(&dma_dom->domain, i, &pte_pgsize);
1675 		if (!pte || !IOMMU_PTE_PRESENT(*pte))
1676 			continue;
1677 
1678 		dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT,
1679 					  pte_pgsize >> 12);
1680 	}
1681 
1682 	update_domain(&dma_dom->domain);
1683 
1684 	return 0;
1685 
1686 out_free:
1687 	update_domain(&dma_dom->domain);
1688 
1689 	free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1690 
1691 	kfree(dma_dom->aperture[index]);
1692 	dma_dom->aperture[index] = NULL;
1693 
1694 	return -ENOMEM;
1695 }
1696 
dma_ops_area_alloc(struct device * dev,struct dma_ops_domain * dom,unsigned int pages,unsigned long align_mask,u64 dma_mask,unsigned long start)1697 static unsigned long dma_ops_area_alloc(struct device *dev,
1698 					struct dma_ops_domain *dom,
1699 					unsigned int pages,
1700 					unsigned long align_mask,
1701 					u64 dma_mask,
1702 					unsigned long start)
1703 {
1704 	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1705 	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1706 	int i = start >> APERTURE_RANGE_SHIFT;
1707 	unsigned long boundary_size;
1708 	unsigned long address = -1;
1709 	unsigned long limit;
1710 
1711 	next_bit >>= PAGE_SHIFT;
1712 
1713 	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1714 			PAGE_SIZE) >> PAGE_SHIFT;
1715 
1716 	for (;i < max_index; ++i) {
1717 		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1718 
1719 		if (dom->aperture[i]->offset >= dma_mask)
1720 			break;
1721 
1722 		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1723 					       dma_mask >> PAGE_SHIFT);
1724 
1725 		address = iommu_area_alloc(dom->aperture[i]->bitmap,
1726 					   limit, next_bit, pages, 0,
1727 					    boundary_size, align_mask);
1728 		if (address != -1) {
1729 			address = dom->aperture[i]->offset +
1730 				  (address << PAGE_SHIFT);
1731 			dom->next_address = address + (pages << PAGE_SHIFT);
1732 			break;
1733 		}
1734 
1735 		next_bit = 0;
1736 	}
1737 
1738 	return address;
1739 }
1740 
dma_ops_alloc_addresses(struct device * dev,struct dma_ops_domain * dom,unsigned int pages,unsigned long align_mask,u64 dma_mask)1741 static unsigned long dma_ops_alloc_addresses(struct device *dev,
1742 					     struct dma_ops_domain *dom,
1743 					     unsigned int pages,
1744 					     unsigned long align_mask,
1745 					     u64 dma_mask)
1746 {
1747 	unsigned long address;
1748 
1749 #ifdef CONFIG_IOMMU_STRESS
1750 	dom->next_address = 0;
1751 	dom->need_flush = true;
1752 #endif
1753 
1754 	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1755 				     dma_mask, dom->next_address);
1756 
1757 	if (address == -1) {
1758 		dom->next_address = 0;
1759 		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1760 					     dma_mask, 0);
1761 		dom->need_flush = true;
1762 	}
1763 
1764 	if (unlikely(address == -1))
1765 		address = DMA_ERROR_CODE;
1766 
1767 	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1768 
1769 	return address;
1770 }
1771 
1772 /*
1773  * The address free function.
1774  *
1775  * called with domain->lock held
1776  */
dma_ops_free_addresses(struct dma_ops_domain * dom,unsigned long address,unsigned int pages)1777 static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1778 				   unsigned long address,
1779 				   unsigned int pages)
1780 {
1781 	unsigned i = address >> APERTURE_RANGE_SHIFT;
1782 	struct aperture_range *range = dom->aperture[i];
1783 
1784 	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1785 
1786 #ifdef CONFIG_IOMMU_STRESS
1787 	if (i < 4)
1788 		return;
1789 #endif
1790 
1791 	if (address >= dom->next_address)
1792 		dom->need_flush = true;
1793 
1794 	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1795 
1796 	bitmap_clear(range->bitmap, address, pages);
1797 
1798 }
1799 
1800 /****************************************************************************
1801  *
1802  * The next functions belong to the domain allocation. A domain is
1803  * allocated for every IOMMU as the default domain. If device isolation
1804  * is enabled, every device get its own domain. The most important thing
1805  * about domains is the page table mapping the DMA address space they
1806  * contain.
1807  *
1808  ****************************************************************************/
1809 
1810 /*
1811  * This function adds a protection domain to the global protection domain list
1812  */
add_domain_to_list(struct protection_domain * domain)1813 static void add_domain_to_list(struct protection_domain *domain)
1814 {
1815 	unsigned long flags;
1816 
1817 	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1818 	list_add(&domain->list, &amd_iommu_pd_list);
1819 	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1820 }
1821 
1822 /*
1823  * This function removes a protection domain to the global
1824  * protection domain list
1825  */
del_domain_from_list(struct protection_domain * domain)1826 static void del_domain_from_list(struct protection_domain *domain)
1827 {
1828 	unsigned long flags;
1829 
1830 	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1831 	list_del(&domain->list);
1832 	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1833 }
1834 
domain_id_alloc(void)1835 static u16 domain_id_alloc(void)
1836 {
1837 	unsigned long flags;
1838 	int id;
1839 
1840 	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1841 	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1842 	BUG_ON(id == 0);
1843 	if (id > 0 && id < MAX_DOMAIN_ID)
1844 		__set_bit(id, amd_iommu_pd_alloc_bitmap);
1845 	else
1846 		id = 0;
1847 	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1848 
1849 	return id;
1850 }
1851 
domain_id_free(int id)1852 static void domain_id_free(int id)
1853 {
1854 	unsigned long flags;
1855 
1856 	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1857 	if (id > 0 && id < MAX_DOMAIN_ID)
1858 		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
1859 	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1860 }
1861 
1862 #define DEFINE_FREE_PT_FN(LVL, FN)				\
1863 static void free_pt_##LVL (unsigned long __pt)			\
1864 {								\
1865 	unsigned long p;					\
1866 	u64 *pt;						\
1867 	int i;							\
1868 								\
1869 	pt = (u64 *)__pt;					\
1870 								\
1871 	for (i = 0; i < 512; ++i) {				\
1872 		/* PTE present? */				\
1873 		if (!IOMMU_PTE_PRESENT(pt[i]))			\
1874 			continue;				\
1875 								\
1876 		/* Large PTE? */				\
1877 		if (PM_PTE_LEVEL(pt[i]) == 0 ||			\
1878 		    PM_PTE_LEVEL(pt[i]) == 7)			\
1879 			continue;				\
1880 								\
1881 		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
1882 		FN(p);						\
1883 	}							\
1884 	free_page((unsigned long)pt);				\
1885 }
1886 
DEFINE_FREE_PT_FN(l2,free_page)1887 DEFINE_FREE_PT_FN(l2, free_page)
1888 DEFINE_FREE_PT_FN(l3, free_pt_l2)
1889 DEFINE_FREE_PT_FN(l4, free_pt_l3)
1890 DEFINE_FREE_PT_FN(l5, free_pt_l4)
1891 DEFINE_FREE_PT_FN(l6, free_pt_l5)
1892 
1893 static void free_pagetable(struct protection_domain *domain)
1894 {
1895 	unsigned long root = (unsigned long)domain->pt_root;
1896 
1897 	switch (domain->mode) {
1898 	case PAGE_MODE_NONE:
1899 		break;
1900 	case PAGE_MODE_1_LEVEL:
1901 		free_page(root);
1902 		break;
1903 	case PAGE_MODE_2_LEVEL:
1904 		free_pt_l2(root);
1905 		break;
1906 	case PAGE_MODE_3_LEVEL:
1907 		free_pt_l3(root);
1908 		break;
1909 	case PAGE_MODE_4_LEVEL:
1910 		free_pt_l4(root);
1911 		break;
1912 	case PAGE_MODE_5_LEVEL:
1913 		free_pt_l5(root);
1914 		break;
1915 	case PAGE_MODE_6_LEVEL:
1916 		free_pt_l6(root);
1917 		break;
1918 	default:
1919 		BUG();
1920 	}
1921 }
1922 
free_gcr3_tbl_level1(u64 * tbl)1923 static void free_gcr3_tbl_level1(u64 *tbl)
1924 {
1925 	u64 *ptr;
1926 	int i;
1927 
1928 	for (i = 0; i < 512; ++i) {
1929 		if (!(tbl[i] & GCR3_VALID))
1930 			continue;
1931 
1932 		ptr = __va(tbl[i] & PAGE_MASK);
1933 
1934 		free_page((unsigned long)ptr);
1935 	}
1936 }
1937 
free_gcr3_tbl_level2(u64 * tbl)1938 static void free_gcr3_tbl_level2(u64 *tbl)
1939 {
1940 	u64 *ptr;
1941 	int i;
1942 
1943 	for (i = 0; i < 512; ++i) {
1944 		if (!(tbl[i] & GCR3_VALID))
1945 			continue;
1946 
1947 		ptr = __va(tbl[i] & PAGE_MASK);
1948 
1949 		free_gcr3_tbl_level1(ptr);
1950 	}
1951 }
1952 
free_gcr3_table(struct protection_domain * domain)1953 static void free_gcr3_table(struct protection_domain *domain)
1954 {
1955 	if (domain->glx == 2)
1956 		free_gcr3_tbl_level2(domain->gcr3_tbl);
1957 	else if (domain->glx == 1)
1958 		free_gcr3_tbl_level1(domain->gcr3_tbl);
1959 	else if (domain->glx != 0)
1960 		BUG();
1961 
1962 	free_page((unsigned long)domain->gcr3_tbl);
1963 }
1964 
1965 /*
1966  * Free a domain, only used if something went wrong in the
1967  * allocation path and we need to free an already allocated page table
1968  */
dma_ops_domain_free(struct dma_ops_domain * dom)1969 static void dma_ops_domain_free(struct dma_ops_domain *dom)
1970 {
1971 	int i;
1972 
1973 	if (!dom)
1974 		return;
1975 
1976 	del_domain_from_list(&dom->domain);
1977 
1978 	free_pagetable(&dom->domain);
1979 
1980 	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1981 		if (!dom->aperture[i])
1982 			continue;
1983 		free_page((unsigned long)dom->aperture[i]->bitmap);
1984 		kfree(dom->aperture[i]);
1985 	}
1986 
1987 	kfree(dom);
1988 }
1989 
1990 /*
1991  * Allocates a new protection domain usable for the dma_ops functions.
1992  * It also initializes the page table and the address allocator data
1993  * structures required for the dma_ops interface
1994  */
dma_ops_domain_alloc(void)1995 static struct dma_ops_domain *dma_ops_domain_alloc(void)
1996 {
1997 	struct dma_ops_domain *dma_dom;
1998 
1999 	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
2000 	if (!dma_dom)
2001 		return NULL;
2002 
2003 	spin_lock_init(&dma_dom->domain.lock);
2004 
2005 	dma_dom->domain.id = domain_id_alloc();
2006 	if (dma_dom->domain.id == 0)
2007 		goto free_dma_dom;
2008 	INIT_LIST_HEAD(&dma_dom->domain.dev_list);
2009 	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
2010 	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2011 	dma_dom->domain.flags = PD_DMA_OPS_MASK;
2012 	dma_dom->domain.priv = dma_dom;
2013 	if (!dma_dom->domain.pt_root)
2014 		goto free_dma_dom;
2015 
2016 	dma_dom->need_flush = false;
2017 	dma_dom->target_dev = 0xffff;
2018 
2019 	add_domain_to_list(&dma_dom->domain);
2020 
2021 	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
2022 		goto free_dma_dom;
2023 
2024 	/*
2025 	 * mark the first page as allocated so we never return 0 as
2026 	 * a valid dma-address. So we can use 0 as error value
2027 	 */
2028 	dma_dom->aperture[0]->bitmap[0] = 1;
2029 	dma_dom->next_address = 0;
2030 
2031 
2032 	return dma_dom;
2033 
2034 free_dma_dom:
2035 	dma_ops_domain_free(dma_dom);
2036 
2037 	return NULL;
2038 }
2039 
2040 /*
2041  * little helper function to check whether a given protection domain is a
2042  * dma_ops domain
2043  */
dma_ops_domain(struct protection_domain * domain)2044 static bool dma_ops_domain(struct protection_domain *domain)
2045 {
2046 	return domain->flags & PD_DMA_OPS_MASK;
2047 }
2048 
set_dte_entry(u16 devid,struct protection_domain * domain,bool ats)2049 static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
2050 {
2051 	u64 pte_root = 0;
2052 	u64 flags = 0;
2053 
2054 	if (domain->mode != PAGE_MODE_NONE)
2055 		pte_root = virt_to_phys(domain->pt_root);
2056 
2057 	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
2058 		    << DEV_ENTRY_MODE_SHIFT;
2059 	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
2060 
2061 	flags = amd_iommu_dev_table[devid].data[1];
2062 
2063 	if (ats)
2064 		flags |= DTE_FLAG_IOTLB;
2065 
2066 	if (domain->flags & PD_IOMMUV2_MASK) {
2067 		u64 gcr3 = __pa(domain->gcr3_tbl);
2068 		u64 glx  = domain->glx;
2069 		u64 tmp;
2070 
2071 		pte_root |= DTE_FLAG_GV;
2072 		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
2073 
2074 		/* First mask out possible old values for GCR3 table */
2075 		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
2076 		flags    &= ~tmp;
2077 
2078 		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
2079 		flags    &= ~tmp;
2080 
2081 		/* Encode GCR3 table into DTE */
2082 		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
2083 		pte_root |= tmp;
2084 
2085 		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
2086 		flags    |= tmp;
2087 
2088 		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
2089 		flags    |= tmp;
2090 	}
2091 
2092 	flags &= ~(0xffffUL);
2093 	flags |= domain->id;
2094 
2095 	amd_iommu_dev_table[devid].data[1]  = flags;
2096 	amd_iommu_dev_table[devid].data[0]  = pte_root;
2097 }
2098 
clear_dte_entry(u16 devid)2099 static void clear_dte_entry(u16 devid)
2100 {
2101 	/* remove entry from the device table seen by the hardware */
2102 	amd_iommu_dev_table[devid].data[0]  = IOMMU_PTE_P | IOMMU_PTE_TV;
2103 	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
2104 
2105 	amd_iommu_apply_erratum_63(devid);
2106 }
2107 
do_attach(struct iommu_dev_data * dev_data,struct protection_domain * domain)2108 static void do_attach(struct iommu_dev_data *dev_data,
2109 		      struct protection_domain *domain)
2110 {
2111 	struct amd_iommu *iommu;
2112 	bool ats;
2113 
2114 	iommu = amd_iommu_rlookup_table[dev_data->devid];
2115 	ats   = dev_data->ats.enabled;
2116 
2117 	/* Update data structures */
2118 	dev_data->domain = domain;
2119 	list_add(&dev_data->list, &domain->dev_list);
2120 	set_dte_entry(dev_data->devid, domain, ats);
2121 
2122 	/* Do reference counting */
2123 	domain->dev_iommu[iommu->index] += 1;
2124 	domain->dev_cnt                 += 1;
2125 
2126 	/* Flush the DTE entry */
2127 	device_flush_dte(dev_data);
2128 }
2129 
do_detach(struct iommu_dev_data * dev_data)2130 static void do_detach(struct iommu_dev_data *dev_data)
2131 {
2132 	struct amd_iommu *iommu;
2133 
2134 	iommu = amd_iommu_rlookup_table[dev_data->devid];
2135 
2136 	/* decrease reference counters */
2137 	dev_data->domain->dev_iommu[iommu->index] -= 1;
2138 	dev_data->domain->dev_cnt                 -= 1;
2139 
2140 	/* Update data structures */
2141 	dev_data->domain = NULL;
2142 	list_del(&dev_data->list);
2143 	clear_dte_entry(dev_data->devid);
2144 
2145 	/* Flush the DTE entry */
2146 	device_flush_dte(dev_data);
2147 }
2148 
2149 /*
2150  * If a device is not yet associated with a domain, this function does
2151  * assigns it visible for the hardware
2152  */
__attach_device(struct iommu_dev_data * dev_data,struct protection_domain * domain)2153 static int __attach_device(struct iommu_dev_data *dev_data,
2154 			   struct protection_domain *domain)
2155 {
2156 	struct iommu_dev_data *head, *entry;
2157 	int ret;
2158 
2159 	/* lock domain */
2160 	spin_lock(&domain->lock);
2161 
2162 	head = dev_data;
2163 
2164 	if (head->alias_data != NULL)
2165 		head = head->alias_data;
2166 
2167 	/* Now we have the root of the alias group, if any */
2168 
2169 	ret = -EBUSY;
2170 	if (head->domain != NULL)
2171 		goto out_unlock;
2172 
2173 	/* Attach alias group root */
2174 	do_attach(head, domain);
2175 
2176 	/* Attach other devices in the alias group */
2177 	list_for_each_entry(entry, &head->alias_list, alias_list)
2178 		do_attach(entry, domain);
2179 
2180 	ret = 0;
2181 
2182 out_unlock:
2183 
2184 	/* ready */
2185 	spin_unlock(&domain->lock);
2186 
2187 	return ret;
2188 }
2189 
2190 
pdev_iommuv2_disable(struct pci_dev * pdev)2191 static void pdev_iommuv2_disable(struct pci_dev *pdev)
2192 {
2193 	pci_disable_ats(pdev);
2194 	pci_disable_pri(pdev);
2195 	pci_disable_pasid(pdev);
2196 }
2197 
2198 /* FIXME: Change generic reset-function to do the same */
pri_reset_while_enabled(struct pci_dev * pdev)2199 static int pri_reset_while_enabled(struct pci_dev *pdev)
2200 {
2201 	u16 control;
2202 	int pos;
2203 
2204 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2205 	if (!pos)
2206 		return -EINVAL;
2207 
2208 	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2209 	control |= PCI_PRI_CTRL_RESET;
2210 	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2211 
2212 	return 0;
2213 }
2214 
pdev_iommuv2_enable(struct pci_dev * pdev)2215 static int pdev_iommuv2_enable(struct pci_dev *pdev)
2216 {
2217 	bool reset_enable;
2218 	int reqs, ret;
2219 
2220 	/* FIXME: Hardcode number of outstanding requests for now */
2221 	reqs = 32;
2222 	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2223 		reqs = 1;
2224 	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2225 
2226 	/* Only allow access to user-accessible pages */
2227 	ret = pci_enable_pasid(pdev, 0);
2228 	if (ret)
2229 		goto out_err;
2230 
2231 	/* First reset the PRI state of the device */
2232 	ret = pci_reset_pri(pdev);
2233 	if (ret)
2234 		goto out_err;
2235 
2236 	/* Enable PRI */
2237 	ret = pci_enable_pri(pdev, reqs);
2238 	if (ret)
2239 		goto out_err;
2240 
2241 	if (reset_enable) {
2242 		ret = pri_reset_while_enabled(pdev);
2243 		if (ret)
2244 			goto out_err;
2245 	}
2246 
2247 	ret = pci_enable_ats(pdev, PAGE_SHIFT);
2248 	if (ret)
2249 		goto out_err;
2250 
2251 	return 0;
2252 
2253 out_err:
2254 	pci_disable_pri(pdev);
2255 	pci_disable_pasid(pdev);
2256 
2257 	return ret;
2258 }
2259 
2260 /* FIXME: Move this to PCI code */
2261 #define PCI_PRI_TLP_OFF		(1 << 15)
2262 
pci_pri_tlp_required(struct pci_dev * pdev)2263 static bool pci_pri_tlp_required(struct pci_dev *pdev)
2264 {
2265 	u16 status;
2266 	int pos;
2267 
2268 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2269 	if (!pos)
2270 		return false;
2271 
2272 	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2273 
2274 	return (status & PCI_PRI_TLP_OFF) ? true : false;
2275 }
2276 
2277 /*
2278  * If a device is not yet associated with a domain, this function
2279  * assigns it visible for the hardware
2280  */
attach_device(struct device * dev,struct protection_domain * domain)2281 static int attach_device(struct device *dev,
2282 			 struct protection_domain *domain)
2283 {
2284 	struct pci_dev *pdev = to_pci_dev(dev);
2285 	struct iommu_dev_data *dev_data;
2286 	unsigned long flags;
2287 	int ret;
2288 
2289 	dev_data = get_dev_data(dev);
2290 
2291 	if (domain->flags & PD_IOMMUV2_MASK) {
2292 		if (!dev_data->iommu_v2 || !dev_data->passthrough)
2293 			return -EINVAL;
2294 
2295 		if (pdev_iommuv2_enable(pdev) != 0)
2296 			return -EINVAL;
2297 
2298 		dev_data->ats.enabled = true;
2299 		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2300 		dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
2301 	} else if (amd_iommu_iotlb_sup &&
2302 		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2303 		dev_data->ats.enabled = true;
2304 		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2305 	}
2306 
2307 	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2308 	ret = __attach_device(dev_data, domain);
2309 	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2310 
2311 	/*
2312 	 * We might boot into a crash-kernel here. The crashed kernel
2313 	 * left the caches in the IOMMU dirty. So we have to flush
2314 	 * here to evict all dirty stuff.
2315 	 */
2316 	domain_flush_tlb_pde(domain);
2317 
2318 	return ret;
2319 }
2320 
2321 /*
2322  * Removes a device from a protection domain (unlocked)
2323  */
__detach_device(struct iommu_dev_data * dev_data)2324 static void __detach_device(struct iommu_dev_data *dev_data)
2325 {
2326 	struct iommu_dev_data *head, *entry;
2327 	struct protection_domain *domain;
2328 	unsigned long flags;
2329 
2330 	BUG_ON(!dev_data->domain);
2331 
2332 	domain = dev_data->domain;
2333 
2334 	spin_lock_irqsave(&domain->lock, flags);
2335 
2336 	head = dev_data;
2337 	if (head->alias_data != NULL)
2338 		head = head->alias_data;
2339 
2340 	list_for_each_entry(entry, &head->alias_list, alias_list)
2341 		do_detach(entry);
2342 
2343 	do_detach(head);
2344 
2345 	spin_unlock_irqrestore(&domain->lock, flags);
2346 
2347 	/*
2348 	 * If we run in passthrough mode the device must be assigned to the
2349 	 * passthrough domain if it is detached from any other domain.
2350 	 * Make sure we can deassign from the pt_domain itself.
2351 	 */
2352 	if (dev_data->passthrough &&
2353 	    (dev_data->domain == NULL && domain != pt_domain))
2354 		__attach_device(dev_data, pt_domain);
2355 }
2356 
2357 /*
2358  * Removes a device from a protection domain (with devtable_lock held)
2359  */
detach_device(struct device * dev)2360 static void detach_device(struct device *dev)
2361 {
2362 	struct protection_domain *domain;
2363 	struct iommu_dev_data *dev_data;
2364 	unsigned long flags;
2365 
2366 	dev_data = get_dev_data(dev);
2367 	domain   = dev_data->domain;
2368 
2369 	/* lock device table */
2370 	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2371 	__detach_device(dev_data);
2372 	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2373 
2374 	if (domain->flags & PD_IOMMUV2_MASK)
2375 		pdev_iommuv2_disable(to_pci_dev(dev));
2376 	else if (dev_data->ats.enabled)
2377 		pci_disable_ats(to_pci_dev(dev));
2378 
2379 	dev_data->ats.enabled = false;
2380 }
2381 
2382 /*
2383  * Find out the protection domain structure for a given PCI device. This
2384  * will give us the pointer to the page table root for example.
2385  */
domain_for_device(struct device * dev)2386 static struct protection_domain *domain_for_device(struct device *dev)
2387 {
2388 	struct iommu_dev_data *dev_data;
2389 	struct protection_domain *dom = NULL;
2390 	unsigned long flags;
2391 
2392 	dev_data   = get_dev_data(dev);
2393 
2394 	if (dev_data->domain)
2395 		return dev_data->domain;
2396 
2397 	if (dev_data->alias_data != NULL) {
2398 		struct iommu_dev_data *alias_data = dev_data->alias_data;
2399 
2400 		read_lock_irqsave(&amd_iommu_devtable_lock, flags);
2401 		if (alias_data->domain != NULL) {
2402 			__attach_device(dev_data, alias_data->domain);
2403 			dom = alias_data->domain;
2404 		}
2405 		read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2406 	}
2407 
2408 	return dom;
2409 }
2410 
device_change_notifier(struct notifier_block * nb,unsigned long action,void * data)2411 static int device_change_notifier(struct notifier_block *nb,
2412 				  unsigned long action, void *data)
2413 {
2414 	struct dma_ops_domain *dma_domain;
2415 	struct protection_domain *domain;
2416 	struct iommu_dev_data *dev_data;
2417 	struct device *dev = data;
2418 	struct amd_iommu *iommu;
2419 	unsigned long flags;
2420 	u16 devid;
2421 
2422 	if (!check_device(dev))
2423 		return 0;
2424 
2425 	devid    = get_device_id(dev);
2426 	iommu    = amd_iommu_rlookup_table[devid];
2427 	dev_data = get_dev_data(dev);
2428 
2429 	switch (action) {
2430 	case BUS_NOTIFY_ADD_DEVICE:
2431 
2432 		iommu_init_device(dev);
2433 		init_iommu_group(dev);
2434 
2435 		/*
2436 		 * dev_data is still NULL and
2437 		 * got initialized in iommu_init_device
2438 		 */
2439 		dev_data = get_dev_data(dev);
2440 
2441 		if (iommu_pass_through || dev_data->iommu_v2) {
2442 			dev_data->passthrough = true;
2443 			attach_device(dev, pt_domain);
2444 			break;
2445 		}
2446 
2447 		domain = domain_for_device(dev);
2448 
2449 		/* allocate a protection domain if a device is added */
2450 		dma_domain = find_protection_domain(devid);
2451 		if (!dma_domain) {
2452 			dma_domain = dma_ops_domain_alloc();
2453 			if (!dma_domain)
2454 				goto out;
2455 			dma_domain->target_dev = devid;
2456 
2457 			spin_lock_irqsave(&iommu_pd_list_lock, flags);
2458 			list_add_tail(&dma_domain->list, &iommu_pd_list);
2459 			spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
2460 		}
2461 
2462 		dev->archdata.dma_ops = &amd_iommu_dma_ops;
2463 
2464 		break;
2465 	case BUS_NOTIFY_REMOVED_DEVICE:
2466 
2467 		iommu_uninit_device(dev);
2468 
2469 	default:
2470 		goto out;
2471 	}
2472 
2473 	iommu_completion_wait(iommu);
2474 
2475 out:
2476 	return 0;
2477 }
2478 
2479 static struct notifier_block device_nb = {
2480 	.notifier_call = device_change_notifier,
2481 };
2482 
amd_iommu_init_notifier(void)2483 void amd_iommu_init_notifier(void)
2484 {
2485 	bus_register_notifier(&pci_bus_type, &device_nb);
2486 }
2487 
2488 /*****************************************************************************
2489  *
2490  * The next functions belong to the dma_ops mapping/unmapping code.
2491  *
2492  *****************************************************************************/
2493 
2494 /*
2495  * In the dma_ops path we only have the struct device. This function
2496  * finds the corresponding IOMMU, the protection domain and the
2497  * requestor id for a given device.
2498  * If the device is not yet associated with a domain this is also done
2499  * in this function.
2500  */
get_domain(struct device * dev)2501 static struct protection_domain *get_domain(struct device *dev)
2502 {
2503 	struct protection_domain *domain;
2504 	struct dma_ops_domain *dma_dom;
2505 	u16 devid = get_device_id(dev);
2506 
2507 	if (!check_device(dev))
2508 		return ERR_PTR(-EINVAL);
2509 
2510 	domain = domain_for_device(dev);
2511 	if (domain != NULL && !dma_ops_domain(domain))
2512 		return ERR_PTR(-EBUSY);
2513 
2514 	if (domain != NULL)
2515 		return domain;
2516 
2517 	/* Device not bound yet - bind it */
2518 	dma_dom = find_protection_domain(devid);
2519 	if (!dma_dom)
2520 		dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
2521 	attach_device(dev, &dma_dom->domain);
2522 	DUMP_printk("Using protection domain %d for device %s\n",
2523 		    dma_dom->domain.id, dev_name(dev));
2524 
2525 	return &dma_dom->domain;
2526 }
2527 
update_device_table(struct protection_domain * domain)2528 static void update_device_table(struct protection_domain *domain)
2529 {
2530 	struct iommu_dev_data *dev_data;
2531 
2532 	list_for_each_entry(dev_data, &domain->dev_list, list)
2533 		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2534 }
2535 
update_domain(struct protection_domain * domain)2536 static void update_domain(struct protection_domain *domain)
2537 {
2538 	if (!domain->updated)
2539 		return;
2540 
2541 	update_device_table(domain);
2542 
2543 	domain_flush_devices(domain);
2544 	domain_flush_tlb_pde(domain);
2545 
2546 	domain->updated = false;
2547 }
2548 
2549 /*
2550  * This function fetches the PTE for a given address in the aperture
2551  */
dma_ops_get_pte(struct dma_ops_domain * dom,unsigned long address)2552 static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
2553 			    unsigned long address)
2554 {
2555 	struct aperture_range *aperture;
2556 	u64 *pte, *pte_page;
2557 
2558 	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2559 	if (!aperture)
2560 		return NULL;
2561 
2562 	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2563 	if (!pte) {
2564 		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2565 				GFP_ATOMIC);
2566 		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
2567 	} else
2568 		pte += PM_LEVEL_INDEX(0, address);
2569 
2570 	update_domain(&dom->domain);
2571 
2572 	return pte;
2573 }
2574 
2575 /*
2576  * This is the generic map function. It maps one 4kb page at paddr to
2577  * the given address in the DMA address space for the domain.
2578  */
dma_ops_domain_map(struct dma_ops_domain * dom,unsigned long address,phys_addr_t paddr,int direction)2579 static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2580 				     unsigned long address,
2581 				     phys_addr_t paddr,
2582 				     int direction)
2583 {
2584 	u64 *pte, __pte;
2585 
2586 	WARN_ON(address > dom->aperture_size);
2587 
2588 	paddr &= PAGE_MASK;
2589 
2590 	pte  = dma_ops_get_pte(dom, address);
2591 	if (!pte)
2592 		return DMA_ERROR_CODE;
2593 
2594 	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
2595 
2596 	if (direction == DMA_TO_DEVICE)
2597 		__pte |= IOMMU_PTE_IR;
2598 	else if (direction == DMA_FROM_DEVICE)
2599 		__pte |= IOMMU_PTE_IW;
2600 	else if (direction == DMA_BIDIRECTIONAL)
2601 		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
2602 
2603 	WARN_ON(*pte);
2604 
2605 	*pte = __pte;
2606 
2607 	return (dma_addr_t)address;
2608 }
2609 
2610 /*
2611  * The generic unmapping function for on page in the DMA address space.
2612  */
dma_ops_domain_unmap(struct dma_ops_domain * dom,unsigned long address)2613 static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2614 				 unsigned long address)
2615 {
2616 	struct aperture_range *aperture;
2617 	u64 *pte;
2618 
2619 	if (address >= dom->aperture_size)
2620 		return;
2621 
2622 	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2623 	if (!aperture)
2624 		return;
2625 
2626 	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2627 	if (!pte)
2628 		return;
2629 
2630 	pte += PM_LEVEL_INDEX(0, address);
2631 
2632 	WARN_ON(!*pte);
2633 
2634 	*pte = 0ULL;
2635 }
2636 
2637 /*
2638  * This function contains common code for mapping of a physically
2639  * contiguous memory region into DMA address space. It is used by all
2640  * mapping functions provided with this IOMMU driver.
2641  * Must be called with the domain lock held.
2642  */
__map_single(struct device * dev,struct dma_ops_domain * dma_dom,phys_addr_t paddr,size_t size,int dir,bool align,u64 dma_mask)2643 static dma_addr_t __map_single(struct device *dev,
2644 			       struct dma_ops_domain *dma_dom,
2645 			       phys_addr_t paddr,
2646 			       size_t size,
2647 			       int dir,
2648 			       bool align,
2649 			       u64 dma_mask)
2650 {
2651 	dma_addr_t offset = paddr & ~PAGE_MASK;
2652 	dma_addr_t address, start, ret;
2653 	unsigned int pages;
2654 	unsigned long align_mask = 0;
2655 	int i;
2656 
2657 	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2658 	paddr &= PAGE_MASK;
2659 
2660 	INC_STATS_COUNTER(total_map_requests);
2661 
2662 	if (pages > 1)
2663 		INC_STATS_COUNTER(cross_page);
2664 
2665 	if (align)
2666 		align_mask = (1UL << get_order(size)) - 1;
2667 
2668 retry:
2669 	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2670 					  dma_mask);
2671 	if (unlikely(address == DMA_ERROR_CODE)) {
2672 		/*
2673 		 * setting next_address here will let the address
2674 		 * allocator only scan the new allocated range in the
2675 		 * first run. This is a small optimization.
2676 		 */
2677 		dma_dom->next_address = dma_dom->aperture_size;
2678 
2679 		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2680 			goto out;
2681 
2682 		/*
2683 		 * aperture was successfully enlarged by 128 MB, try
2684 		 * allocation again
2685 		 */
2686 		goto retry;
2687 	}
2688 
2689 	start = address;
2690 	for (i = 0; i < pages; ++i) {
2691 		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2692 		if (ret == DMA_ERROR_CODE)
2693 			goto out_unmap;
2694 
2695 		paddr += PAGE_SIZE;
2696 		start += PAGE_SIZE;
2697 	}
2698 	address += offset;
2699 
2700 	ADD_STATS_COUNTER(alloced_io_mem, size);
2701 
2702 	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2703 		domain_flush_tlb(&dma_dom->domain);
2704 		dma_dom->need_flush = false;
2705 	} else if (unlikely(amd_iommu_np_cache))
2706 		domain_flush_pages(&dma_dom->domain, address, size);
2707 
2708 out:
2709 	return address;
2710 
2711 out_unmap:
2712 
2713 	for (--i; i >= 0; --i) {
2714 		start -= PAGE_SIZE;
2715 		dma_ops_domain_unmap(dma_dom, start);
2716 	}
2717 
2718 	dma_ops_free_addresses(dma_dom, address, pages);
2719 
2720 	return DMA_ERROR_CODE;
2721 }
2722 
2723 /*
2724  * Does the reverse of the __map_single function. Must be called with
2725  * the domain lock held too
2726  */
__unmap_single(struct dma_ops_domain * dma_dom,dma_addr_t dma_addr,size_t size,int dir)2727 static void __unmap_single(struct dma_ops_domain *dma_dom,
2728 			   dma_addr_t dma_addr,
2729 			   size_t size,
2730 			   int dir)
2731 {
2732 	dma_addr_t flush_addr;
2733 	dma_addr_t i, start;
2734 	unsigned int pages;
2735 
2736 	if ((dma_addr == DMA_ERROR_CODE) ||
2737 	    (dma_addr + size > dma_dom->aperture_size))
2738 		return;
2739 
2740 	flush_addr = dma_addr;
2741 	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2742 	dma_addr &= PAGE_MASK;
2743 	start = dma_addr;
2744 
2745 	for (i = 0; i < pages; ++i) {
2746 		dma_ops_domain_unmap(dma_dom, start);
2747 		start += PAGE_SIZE;
2748 	}
2749 
2750 	SUB_STATS_COUNTER(alloced_io_mem, size);
2751 
2752 	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2753 
2754 	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2755 		domain_flush_pages(&dma_dom->domain, flush_addr, size);
2756 		dma_dom->need_flush = false;
2757 	}
2758 }
2759 
2760 /*
2761  * The exported map_single function for dma_ops.
2762  */
map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,struct dma_attrs * attrs)2763 static dma_addr_t map_page(struct device *dev, struct page *page,
2764 			   unsigned long offset, size_t size,
2765 			   enum dma_data_direction dir,
2766 			   struct dma_attrs *attrs)
2767 {
2768 	unsigned long flags;
2769 	struct protection_domain *domain;
2770 	dma_addr_t addr;
2771 	u64 dma_mask;
2772 	phys_addr_t paddr = page_to_phys(page) + offset;
2773 
2774 	INC_STATS_COUNTER(cnt_map_single);
2775 
2776 	domain = get_domain(dev);
2777 	if (PTR_ERR(domain) == -EINVAL)
2778 		return (dma_addr_t)paddr;
2779 	else if (IS_ERR(domain))
2780 		return DMA_ERROR_CODE;
2781 
2782 	dma_mask = *dev->dma_mask;
2783 
2784 	spin_lock_irqsave(&domain->lock, flags);
2785 
2786 	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2787 			    dma_mask);
2788 	if (addr == DMA_ERROR_CODE)
2789 		goto out;
2790 
2791 	domain_flush_complete(domain);
2792 
2793 out:
2794 	spin_unlock_irqrestore(&domain->lock, flags);
2795 
2796 	return addr;
2797 }
2798 
2799 /*
2800  * The exported unmap_single function for dma_ops.
2801  */
unmap_page(struct device * dev,dma_addr_t dma_addr,size_t size,enum dma_data_direction dir,struct dma_attrs * attrs)2802 static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2803 		       enum dma_data_direction dir, struct dma_attrs *attrs)
2804 {
2805 	unsigned long flags;
2806 	struct protection_domain *domain;
2807 
2808 	INC_STATS_COUNTER(cnt_unmap_single);
2809 
2810 	domain = get_domain(dev);
2811 	if (IS_ERR(domain))
2812 		return;
2813 
2814 	spin_lock_irqsave(&domain->lock, flags);
2815 
2816 	__unmap_single(domain->priv, dma_addr, size, dir);
2817 
2818 	domain_flush_complete(domain);
2819 
2820 	spin_unlock_irqrestore(&domain->lock, flags);
2821 }
2822 
2823 /*
2824  * The exported map_sg function for dma_ops (handles scatter-gather
2825  * lists).
2826  */
map_sg(struct device * dev,struct scatterlist * sglist,int nelems,enum dma_data_direction dir,struct dma_attrs * attrs)2827 static int map_sg(struct device *dev, struct scatterlist *sglist,
2828 		  int nelems, enum dma_data_direction dir,
2829 		  struct dma_attrs *attrs)
2830 {
2831 	unsigned long flags;
2832 	struct protection_domain *domain;
2833 	int i;
2834 	struct scatterlist *s;
2835 	phys_addr_t paddr;
2836 	int mapped_elems = 0;
2837 	u64 dma_mask;
2838 
2839 	INC_STATS_COUNTER(cnt_map_sg);
2840 
2841 	domain = get_domain(dev);
2842 	if (IS_ERR(domain))
2843 		return 0;
2844 
2845 	dma_mask = *dev->dma_mask;
2846 
2847 	spin_lock_irqsave(&domain->lock, flags);
2848 
2849 	for_each_sg(sglist, s, nelems, i) {
2850 		paddr = sg_phys(s);
2851 
2852 		s->dma_address = __map_single(dev, domain->priv,
2853 					      paddr, s->length, dir, false,
2854 					      dma_mask);
2855 
2856 		if (s->dma_address) {
2857 			s->dma_length = s->length;
2858 			mapped_elems++;
2859 		} else
2860 			goto unmap;
2861 	}
2862 
2863 	domain_flush_complete(domain);
2864 
2865 out:
2866 	spin_unlock_irqrestore(&domain->lock, flags);
2867 
2868 	return mapped_elems;
2869 unmap:
2870 	for_each_sg(sglist, s, mapped_elems, i) {
2871 		if (s->dma_address)
2872 			__unmap_single(domain->priv, s->dma_address,
2873 				       s->dma_length, dir);
2874 		s->dma_address = s->dma_length = 0;
2875 	}
2876 
2877 	mapped_elems = 0;
2878 
2879 	goto out;
2880 }
2881 
2882 /*
2883  * The exported map_sg function for dma_ops (handles scatter-gather
2884  * lists).
2885  */
unmap_sg(struct device * dev,struct scatterlist * sglist,int nelems,enum dma_data_direction dir,struct dma_attrs * attrs)2886 static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2887 		     int nelems, enum dma_data_direction dir,
2888 		     struct dma_attrs *attrs)
2889 {
2890 	unsigned long flags;
2891 	struct protection_domain *domain;
2892 	struct scatterlist *s;
2893 	int i;
2894 
2895 	INC_STATS_COUNTER(cnt_unmap_sg);
2896 
2897 	domain = get_domain(dev);
2898 	if (IS_ERR(domain))
2899 		return;
2900 
2901 	spin_lock_irqsave(&domain->lock, flags);
2902 
2903 	for_each_sg(sglist, s, nelems, i) {
2904 		__unmap_single(domain->priv, s->dma_address,
2905 			       s->dma_length, dir);
2906 		s->dma_address = s->dma_length = 0;
2907 	}
2908 
2909 	domain_flush_complete(domain);
2910 
2911 	spin_unlock_irqrestore(&domain->lock, flags);
2912 }
2913 
2914 /*
2915  * The exported alloc_coherent function for dma_ops.
2916  */
alloc_coherent(struct device * dev,size_t size,dma_addr_t * dma_addr,gfp_t flag,struct dma_attrs * attrs)2917 static void *alloc_coherent(struct device *dev, size_t size,
2918 			    dma_addr_t *dma_addr, gfp_t flag,
2919 			    struct dma_attrs *attrs)
2920 {
2921 	u64 dma_mask = dev->coherent_dma_mask;
2922 	struct protection_domain *domain;
2923 	unsigned long flags;
2924 	struct page *page;
2925 
2926 	INC_STATS_COUNTER(cnt_alloc_coherent);
2927 
2928 	domain = get_domain(dev);
2929 	if (PTR_ERR(domain) == -EINVAL) {
2930 		page = alloc_pages(flag, get_order(size));
2931 		*dma_addr = page_to_phys(page);
2932 		return page_address(page);
2933 	} else if (IS_ERR(domain))
2934 		return NULL;
2935 
2936 	size	  = PAGE_ALIGN(size);
2937 	dma_mask  = dev->coherent_dma_mask;
2938 	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2939 	flag     |= __GFP_ZERO;
2940 
2941 	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
2942 	if (!page) {
2943 		if (!(flag & __GFP_WAIT))
2944 			return NULL;
2945 
2946 		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2947 						 get_order(size));
2948 		if (!page)
2949 			return NULL;
2950 	}
2951 
2952 	if (!dma_mask)
2953 		dma_mask = *dev->dma_mask;
2954 
2955 	spin_lock_irqsave(&domain->lock, flags);
2956 
2957 	*dma_addr = __map_single(dev, domain->priv, page_to_phys(page),
2958 				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2959 
2960 	if (*dma_addr == DMA_ERROR_CODE) {
2961 		spin_unlock_irqrestore(&domain->lock, flags);
2962 		goto out_free;
2963 	}
2964 
2965 	domain_flush_complete(domain);
2966 
2967 	spin_unlock_irqrestore(&domain->lock, flags);
2968 
2969 	return page_address(page);
2970 
2971 out_free:
2972 
2973 	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2974 		__free_pages(page, get_order(size));
2975 
2976 	return NULL;
2977 }
2978 
2979 /*
2980  * The exported free_coherent function for dma_ops.
2981  */
free_coherent(struct device * dev,size_t size,void * virt_addr,dma_addr_t dma_addr,struct dma_attrs * attrs)2982 static void free_coherent(struct device *dev, size_t size,
2983 			  void *virt_addr, dma_addr_t dma_addr,
2984 			  struct dma_attrs *attrs)
2985 {
2986 	struct protection_domain *domain;
2987 	unsigned long flags;
2988 	struct page *page;
2989 
2990 	INC_STATS_COUNTER(cnt_free_coherent);
2991 
2992 	page = virt_to_page(virt_addr);
2993 	size = PAGE_ALIGN(size);
2994 
2995 	domain = get_domain(dev);
2996 	if (IS_ERR(domain))
2997 		goto free_mem;
2998 
2999 	spin_lock_irqsave(&domain->lock, flags);
3000 
3001 	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
3002 
3003 	domain_flush_complete(domain);
3004 
3005 	spin_unlock_irqrestore(&domain->lock, flags);
3006 
3007 free_mem:
3008 	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3009 		__free_pages(page, get_order(size));
3010 }
3011 
3012 /*
3013  * This function is called by the DMA layer to find out if we can handle a
3014  * particular device. It is part of the dma_ops.
3015  */
amd_iommu_dma_supported(struct device * dev,u64 mask)3016 static int amd_iommu_dma_supported(struct device *dev, u64 mask)
3017 {
3018 	return check_device(dev);
3019 }
3020 
3021 /*
3022  * The function for pre-allocating protection domains.
3023  *
3024  * If the driver core informs the DMA layer if a driver grabs a device
3025  * we don't need to preallocate the protection domains anymore.
3026  * For now we have to.
3027  */
prealloc_protection_domains(void)3028 static void __init prealloc_protection_domains(void)
3029 {
3030 	struct iommu_dev_data *dev_data;
3031 	struct dma_ops_domain *dma_dom;
3032 	struct pci_dev *dev = NULL;
3033 	u16 devid;
3034 
3035 	for_each_pci_dev(dev) {
3036 
3037 		/* Do we handle this device? */
3038 		if (!check_device(&dev->dev))
3039 			continue;
3040 
3041 		dev_data = get_dev_data(&dev->dev);
3042 		if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
3043 			/* Make sure passthrough domain is allocated */
3044 			alloc_passthrough_domain();
3045 			dev_data->passthrough = true;
3046 			attach_device(&dev->dev, pt_domain);
3047 			pr_info("AMD-Vi: Using passthrough domain for device %s\n",
3048 				dev_name(&dev->dev));
3049 		}
3050 
3051 		/* Is there already any domain for it? */
3052 		if (domain_for_device(&dev->dev))
3053 			continue;
3054 
3055 		devid = get_device_id(&dev->dev);
3056 
3057 		dma_dom = dma_ops_domain_alloc();
3058 		if (!dma_dom)
3059 			continue;
3060 		init_unity_mappings_for_device(dma_dom, devid);
3061 		dma_dom->target_dev = devid;
3062 
3063 		attach_device(&dev->dev, &dma_dom->domain);
3064 
3065 		list_add_tail(&dma_dom->list, &iommu_pd_list);
3066 	}
3067 }
3068 
3069 static struct dma_map_ops amd_iommu_dma_ops = {
3070 	.alloc = alloc_coherent,
3071 	.free = free_coherent,
3072 	.map_page = map_page,
3073 	.unmap_page = unmap_page,
3074 	.map_sg = map_sg,
3075 	.unmap_sg = unmap_sg,
3076 	.dma_supported = amd_iommu_dma_supported,
3077 };
3078 
device_dma_ops_init(void)3079 static unsigned device_dma_ops_init(void)
3080 {
3081 	struct iommu_dev_data *dev_data;
3082 	struct pci_dev *pdev = NULL;
3083 	unsigned unhandled = 0;
3084 
3085 	for_each_pci_dev(pdev) {
3086 		if (!check_device(&pdev->dev)) {
3087 
3088 			iommu_ignore_device(&pdev->dev);
3089 
3090 			unhandled += 1;
3091 			continue;
3092 		}
3093 
3094 		dev_data = get_dev_data(&pdev->dev);
3095 
3096 		if (!dev_data->passthrough)
3097 			pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
3098 		else
3099 			pdev->dev.archdata.dma_ops = &nommu_dma_ops;
3100 	}
3101 
3102 	return unhandled;
3103 }
3104 
3105 /*
3106  * The function which clues the AMD IOMMU driver into dma_ops.
3107  */
3108 
amd_iommu_init_api(void)3109 void __init amd_iommu_init_api(void)
3110 {
3111 	bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
3112 }
3113 
amd_iommu_init_dma_ops(void)3114 int __init amd_iommu_init_dma_ops(void)
3115 {
3116 	struct amd_iommu *iommu;
3117 	int ret, unhandled;
3118 
3119 	/*
3120 	 * first allocate a default protection domain for every IOMMU we
3121 	 * found in the system. Devices not assigned to any other
3122 	 * protection domain will be assigned to the default one.
3123 	 */
3124 	for_each_iommu(iommu) {
3125 		iommu->default_dom = dma_ops_domain_alloc();
3126 		if (iommu->default_dom == NULL)
3127 			return -ENOMEM;
3128 		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
3129 		ret = iommu_init_unity_mappings(iommu);
3130 		if (ret)
3131 			goto free_domains;
3132 	}
3133 
3134 	/*
3135 	 * Pre-allocate the protection domains for each device.
3136 	 */
3137 	prealloc_protection_domains();
3138 
3139 	iommu_detected = 1;
3140 	swiotlb = 0;
3141 
3142 	/* Make the driver finally visible to the drivers */
3143 	unhandled = device_dma_ops_init();
3144 	if (unhandled && max_pfn > MAX_DMA32_PFN) {
3145 		/* There are unhandled devices - initialize swiotlb for them */
3146 		swiotlb = 1;
3147 	}
3148 
3149 	amd_iommu_stats_init();
3150 
3151 	if (amd_iommu_unmap_flush)
3152 		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
3153 	else
3154 		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
3155 
3156 	return 0;
3157 
3158 free_domains:
3159 
3160 	for_each_iommu(iommu) {
3161 		dma_ops_domain_free(iommu->default_dom);
3162 	}
3163 
3164 	return ret;
3165 }
3166 
3167 /*****************************************************************************
3168  *
3169  * The following functions belong to the exported interface of AMD IOMMU
3170  *
3171  * This interface allows access to lower level functions of the IOMMU
3172  * like protection domain handling and assignement of devices to domains
3173  * which is not possible with the dma_ops interface.
3174  *
3175  *****************************************************************************/
3176 
cleanup_domain(struct protection_domain * domain)3177 static void cleanup_domain(struct protection_domain *domain)
3178 {
3179 	struct iommu_dev_data *entry;
3180 	unsigned long flags;
3181 
3182 	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3183 
3184 	while (!list_empty(&domain->dev_list)) {
3185 		entry = list_first_entry(&domain->dev_list,
3186 					 struct iommu_dev_data, list);
3187 		__detach_device(entry);
3188 	}
3189 
3190 	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3191 }
3192 
protection_domain_free(struct protection_domain * domain)3193 static void protection_domain_free(struct protection_domain *domain)
3194 {
3195 	if (!domain)
3196 		return;
3197 
3198 	del_domain_from_list(domain);
3199 
3200 	if (domain->id)
3201 		domain_id_free(domain->id);
3202 
3203 	kfree(domain);
3204 }
3205 
protection_domain_alloc(void)3206 static struct protection_domain *protection_domain_alloc(void)
3207 {
3208 	struct protection_domain *domain;
3209 
3210 	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
3211 	if (!domain)
3212 		return NULL;
3213 
3214 	spin_lock_init(&domain->lock);
3215 	mutex_init(&domain->api_lock);
3216 	domain->id = domain_id_alloc();
3217 	if (!domain->id)
3218 		goto out_err;
3219 	INIT_LIST_HEAD(&domain->dev_list);
3220 
3221 	add_domain_to_list(domain);
3222 
3223 	return domain;
3224 
3225 out_err:
3226 	kfree(domain);
3227 
3228 	return NULL;
3229 }
3230 
alloc_passthrough_domain(void)3231 static int __init alloc_passthrough_domain(void)
3232 {
3233 	if (pt_domain != NULL)
3234 		return 0;
3235 
3236 	/* allocate passthrough domain */
3237 	pt_domain = protection_domain_alloc();
3238 	if (!pt_domain)
3239 		return -ENOMEM;
3240 
3241 	pt_domain->mode = PAGE_MODE_NONE;
3242 
3243 	return 0;
3244 }
3245 
amd_iommu_domain_alloc(unsigned type)3246 static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
3247 {
3248 	struct protection_domain *pdomain;
3249 
3250 	/* We only support unmanaged domains for now */
3251 	if (type != IOMMU_DOMAIN_UNMANAGED)
3252 		return NULL;
3253 
3254 	pdomain = protection_domain_alloc();
3255 	if (!pdomain)
3256 		goto out_free;
3257 
3258 	pdomain->mode    = PAGE_MODE_3_LEVEL;
3259 	pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
3260 	if (!pdomain->pt_root)
3261 		goto out_free;
3262 
3263 	pdomain->domain.geometry.aperture_start = 0;
3264 	pdomain->domain.geometry.aperture_end   = ~0ULL;
3265 	pdomain->domain.geometry.force_aperture = true;
3266 
3267 	return &pdomain->domain;
3268 
3269 out_free:
3270 	protection_domain_free(pdomain);
3271 
3272 	return NULL;
3273 }
3274 
amd_iommu_domain_free(struct iommu_domain * dom)3275 static void amd_iommu_domain_free(struct iommu_domain *dom)
3276 {
3277 	struct protection_domain *domain;
3278 
3279 	if (!dom)
3280 		return;
3281 
3282 	domain = to_pdomain(dom);
3283 
3284 	if (domain->dev_cnt > 0)
3285 		cleanup_domain(domain);
3286 
3287 	BUG_ON(domain->dev_cnt != 0);
3288 
3289 	if (domain->mode != PAGE_MODE_NONE)
3290 		free_pagetable(domain);
3291 
3292 	if (domain->flags & PD_IOMMUV2_MASK)
3293 		free_gcr3_table(domain);
3294 
3295 	protection_domain_free(domain);
3296 }
3297 
amd_iommu_detach_device(struct iommu_domain * dom,struct device * dev)3298 static void amd_iommu_detach_device(struct iommu_domain *dom,
3299 				    struct device *dev)
3300 {
3301 	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3302 	struct amd_iommu *iommu;
3303 	u16 devid;
3304 
3305 	if (!check_device(dev))
3306 		return;
3307 
3308 	devid = get_device_id(dev);
3309 
3310 	if (dev_data->domain != NULL)
3311 		detach_device(dev);
3312 
3313 	iommu = amd_iommu_rlookup_table[devid];
3314 	if (!iommu)
3315 		return;
3316 
3317 	iommu_completion_wait(iommu);
3318 }
3319 
amd_iommu_attach_device(struct iommu_domain * dom,struct device * dev)3320 static int amd_iommu_attach_device(struct iommu_domain *dom,
3321 				   struct device *dev)
3322 {
3323 	struct protection_domain *domain = to_pdomain(dom);
3324 	struct iommu_dev_data *dev_data;
3325 	struct amd_iommu *iommu;
3326 	int ret;
3327 
3328 	if (!check_device(dev))
3329 		return -EINVAL;
3330 
3331 	dev_data = dev->archdata.iommu;
3332 
3333 	iommu = amd_iommu_rlookup_table[dev_data->devid];
3334 	if (!iommu)
3335 		return -EINVAL;
3336 
3337 	if (dev_data->domain)
3338 		detach_device(dev);
3339 
3340 	ret = attach_device(dev, domain);
3341 
3342 	iommu_completion_wait(iommu);
3343 
3344 	return ret;
3345 }
3346 
amd_iommu_map(struct iommu_domain * dom,unsigned long iova,phys_addr_t paddr,size_t page_size,int iommu_prot)3347 static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3348 			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3349 {
3350 	struct protection_domain *domain = to_pdomain(dom);
3351 	int prot = 0;
3352 	int ret;
3353 
3354 	if (domain->mode == PAGE_MODE_NONE)
3355 		return -EINVAL;
3356 
3357 	if (iommu_prot & IOMMU_READ)
3358 		prot |= IOMMU_PROT_IR;
3359 	if (iommu_prot & IOMMU_WRITE)
3360 		prot |= IOMMU_PROT_IW;
3361 
3362 	mutex_lock(&domain->api_lock);
3363 	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3364 	mutex_unlock(&domain->api_lock);
3365 
3366 	return ret;
3367 }
3368 
amd_iommu_unmap(struct iommu_domain * dom,unsigned long iova,size_t page_size)3369 static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3370 			   size_t page_size)
3371 {
3372 	struct protection_domain *domain = to_pdomain(dom);
3373 	size_t unmap_size;
3374 
3375 	if (domain->mode == PAGE_MODE_NONE)
3376 		return -EINVAL;
3377 
3378 	mutex_lock(&domain->api_lock);
3379 	unmap_size = iommu_unmap_page(domain, iova, page_size);
3380 	mutex_unlock(&domain->api_lock);
3381 
3382 	domain_flush_tlb_pde(domain);
3383 
3384 	return unmap_size;
3385 }
3386 
amd_iommu_iova_to_phys(struct iommu_domain * dom,dma_addr_t iova)3387 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3388 					  dma_addr_t iova)
3389 {
3390 	struct protection_domain *domain = to_pdomain(dom);
3391 	unsigned long offset_mask, pte_pgsize;
3392 	u64 *pte, __pte;
3393 
3394 	if (domain->mode == PAGE_MODE_NONE)
3395 		return iova;
3396 
3397 	pte = fetch_pte(domain, iova, &pte_pgsize);
3398 
3399 	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3400 		return 0;
3401 
3402 	offset_mask = pte_pgsize - 1;
3403 	__pte	    = *pte & PM_ADDR_MASK;
3404 
3405 	return (__pte & ~offset_mask) | (iova & offset_mask);
3406 }
3407 
amd_iommu_capable(enum iommu_cap cap)3408 static bool amd_iommu_capable(enum iommu_cap cap)
3409 {
3410 	switch (cap) {
3411 	case IOMMU_CAP_CACHE_COHERENCY:
3412 		return true;
3413 	case IOMMU_CAP_INTR_REMAP:
3414 		return (irq_remapping_enabled == 1);
3415 	case IOMMU_CAP_NOEXEC:
3416 		return false;
3417 	}
3418 
3419 	return false;
3420 }
3421 
3422 static const struct iommu_ops amd_iommu_ops = {
3423 	.capable = amd_iommu_capable,
3424 	.domain_alloc = amd_iommu_domain_alloc,
3425 	.domain_free  = amd_iommu_domain_free,
3426 	.attach_dev = amd_iommu_attach_device,
3427 	.detach_dev = amd_iommu_detach_device,
3428 	.map = amd_iommu_map,
3429 	.unmap = amd_iommu_unmap,
3430 	.map_sg = default_iommu_map_sg,
3431 	.iova_to_phys = amd_iommu_iova_to_phys,
3432 	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3433 };
3434 
3435 /*****************************************************************************
3436  *
3437  * The next functions do a basic initialization of IOMMU for pass through
3438  * mode
3439  *
3440  * In passthrough mode the IOMMU is initialized and enabled but not used for
3441  * DMA-API translation.
3442  *
3443  *****************************************************************************/
3444 
amd_iommu_init_passthrough(void)3445 int __init amd_iommu_init_passthrough(void)
3446 {
3447 	struct iommu_dev_data *dev_data;
3448 	struct pci_dev *dev = NULL;
3449 	int ret;
3450 
3451 	ret = alloc_passthrough_domain();
3452 	if (ret)
3453 		return ret;
3454 
3455 	for_each_pci_dev(dev) {
3456 		if (!check_device(&dev->dev))
3457 			continue;
3458 
3459 		dev_data = get_dev_data(&dev->dev);
3460 		dev_data->passthrough = true;
3461 
3462 		attach_device(&dev->dev, pt_domain);
3463 	}
3464 
3465 	amd_iommu_stats_init();
3466 
3467 	pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
3468 
3469 	return 0;
3470 }
3471 
3472 /* IOMMUv2 specific functions */
amd_iommu_register_ppr_notifier(struct notifier_block * nb)3473 int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3474 {
3475 	return atomic_notifier_chain_register(&ppr_notifier, nb);
3476 }
3477 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3478 
amd_iommu_unregister_ppr_notifier(struct notifier_block * nb)3479 int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3480 {
3481 	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3482 }
3483 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3484 
amd_iommu_domain_direct_map(struct iommu_domain * dom)3485 void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3486 {
3487 	struct protection_domain *domain = to_pdomain(dom);
3488 	unsigned long flags;
3489 
3490 	spin_lock_irqsave(&domain->lock, flags);
3491 
3492 	/* Update data structure */
3493 	domain->mode    = PAGE_MODE_NONE;
3494 	domain->updated = true;
3495 
3496 	/* Make changes visible to IOMMUs */
3497 	update_domain(domain);
3498 
3499 	/* Page-table is not visible to IOMMU anymore, so free it */
3500 	free_pagetable(domain);
3501 
3502 	spin_unlock_irqrestore(&domain->lock, flags);
3503 }
3504 EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3505 
amd_iommu_domain_enable_v2(struct iommu_domain * dom,int pasids)3506 int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3507 {
3508 	struct protection_domain *domain = to_pdomain(dom);
3509 	unsigned long flags;
3510 	int levels, ret;
3511 
3512 	if (pasids <= 0 || pasids > (PASID_MASK + 1))
3513 		return -EINVAL;
3514 
3515 	/* Number of GCR3 table levels required */
3516 	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3517 		levels += 1;
3518 
3519 	if (levels > amd_iommu_max_glx_val)
3520 		return -EINVAL;
3521 
3522 	spin_lock_irqsave(&domain->lock, flags);
3523 
3524 	/*
3525 	 * Save us all sanity checks whether devices already in the
3526 	 * domain support IOMMUv2. Just force that the domain has no
3527 	 * devices attached when it is switched into IOMMUv2 mode.
3528 	 */
3529 	ret = -EBUSY;
3530 	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3531 		goto out;
3532 
3533 	ret = -ENOMEM;
3534 	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3535 	if (domain->gcr3_tbl == NULL)
3536 		goto out;
3537 
3538 	domain->glx      = levels;
3539 	domain->flags   |= PD_IOMMUV2_MASK;
3540 	domain->updated  = true;
3541 
3542 	update_domain(domain);
3543 
3544 	ret = 0;
3545 
3546 out:
3547 	spin_unlock_irqrestore(&domain->lock, flags);
3548 
3549 	return ret;
3550 }
3551 EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3552 
__flush_pasid(struct protection_domain * domain,int pasid,u64 address,bool size)3553 static int __flush_pasid(struct protection_domain *domain, int pasid,
3554 			 u64 address, bool size)
3555 {
3556 	struct iommu_dev_data *dev_data;
3557 	struct iommu_cmd cmd;
3558 	int i, ret;
3559 
3560 	if (!(domain->flags & PD_IOMMUV2_MASK))
3561 		return -EINVAL;
3562 
3563 	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3564 
3565 	/*
3566 	 * IOMMU TLB needs to be flushed before Device TLB to
3567 	 * prevent device TLB refill from IOMMU TLB
3568 	 */
3569 	for (i = 0; i < amd_iommus_present; ++i) {
3570 		if (domain->dev_iommu[i] == 0)
3571 			continue;
3572 
3573 		ret = iommu_queue_command(amd_iommus[i], &cmd);
3574 		if (ret != 0)
3575 			goto out;
3576 	}
3577 
3578 	/* Wait until IOMMU TLB flushes are complete */
3579 	domain_flush_complete(domain);
3580 
3581 	/* Now flush device TLBs */
3582 	list_for_each_entry(dev_data, &domain->dev_list, list) {
3583 		struct amd_iommu *iommu;
3584 		int qdep;
3585 
3586 		BUG_ON(!dev_data->ats.enabled);
3587 
3588 		qdep  = dev_data->ats.qdep;
3589 		iommu = amd_iommu_rlookup_table[dev_data->devid];
3590 
3591 		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3592 				      qdep, address, size);
3593 
3594 		ret = iommu_queue_command(iommu, &cmd);
3595 		if (ret != 0)
3596 			goto out;
3597 	}
3598 
3599 	/* Wait until all device TLBs are flushed */
3600 	domain_flush_complete(domain);
3601 
3602 	ret = 0;
3603 
3604 out:
3605 
3606 	return ret;
3607 }
3608 
__amd_iommu_flush_page(struct protection_domain * domain,int pasid,u64 address)3609 static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3610 				  u64 address)
3611 {
3612 	INC_STATS_COUNTER(invalidate_iotlb);
3613 
3614 	return __flush_pasid(domain, pasid, address, false);
3615 }
3616 
amd_iommu_flush_page(struct iommu_domain * dom,int pasid,u64 address)3617 int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3618 			 u64 address)
3619 {
3620 	struct protection_domain *domain = to_pdomain(dom);
3621 	unsigned long flags;
3622 	int ret;
3623 
3624 	spin_lock_irqsave(&domain->lock, flags);
3625 	ret = __amd_iommu_flush_page(domain, pasid, address);
3626 	spin_unlock_irqrestore(&domain->lock, flags);
3627 
3628 	return ret;
3629 }
3630 EXPORT_SYMBOL(amd_iommu_flush_page);
3631 
__amd_iommu_flush_tlb(struct protection_domain * domain,int pasid)3632 static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3633 {
3634 	INC_STATS_COUNTER(invalidate_iotlb_all);
3635 
3636 	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3637 			     true);
3638 }
3639 
amd_iommu_flush_tlb(struct iommu_domain * dom,int pasid)3640 int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3641 {
3642 	struct protection_domain *domain = to_pdomain(dom);
3643 	unsigned long flags;
3644 	int ret;
3645 
3646 	spin_lock_irqsave(&domain->lock, flags);
3647 	ret = __amd_iommu_flush_tlb(domain, pasid);
3648 	spin_unlock_irqrestore(&domain->lock, flags);
3649 
3650 	return ret;
3651 }
3652 EXPORT_SYMBOL(amd_iommu_flush_tlb);
3653 
__get_gcr3_pte(u64 * root,int level,int pasid,bool alloc)3654 static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3655 {
3656 	int index;
3657 	u64 *pte;
3658 
3659 	while (true) {
3660 
3661 		index = (pasid >> (9 * level)) & 0x1ff;
3662 		pte   = &root[index];
3663 
3664 		if (level == 0)
3665 			break;
3666 
3667 		if (!(*pte & GCR3_VALID)) {
3668 			if (!alloc)
3669 				return NULL;
3670 
3671 			root = (void *)get_zeroed_page(GFP_ATOMIC);
3672 			if (root == NULL)
3673 				return NULL;
3674 
3675 			*pte = __pa(root) | GCR3_VALID;
3676 		}
3677 
3678 		root = __va(*pte & PAGE_MASK);
3679 
3680 		level -= 1;
3681 	}
3682 
3683 	return pte;
3684 }
3685 
__set_gcr3(struct protection_domain * domain,int pasid,unsigned long cr3)3686 static int __set_gcr3(struct protection_domain *domain, int pasid,
3687 		      unsigned long cr3)
3688 {
3689 	u64 *pte;
3690 
3691 	if (domain->mode != PAGE_MODE_NONE)
3692 		return -EINVAL;
3693 
3694 	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3695 	if (pte == NULL)
3696 		return -ENOMEM;
3697 
3698 	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3699 
3700 	return __amd_iommu_flush_tlb(domain, pasid);
3701 }
3702 
__clear_gcr3(struct protection_domain * domain,int pasid)3703 static int __clear_gcr3(struct protection_domain *domain, int pasid)
3704 {
3705 	u64 *pte;
3706 
3707 	if (domain->mode != PAGE_MODE_NONE)
3708 		return -EINVAL;
3709 
3710 	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3711 	if (pte == NULL)
3712 		return 0;
3713 
3714 	*pte = 0;
3715 
3716 	return __amd_iommu_flush_tlb(domain, pasid);
3717 }
3718 
amd_iommu_domain_set_gcr3(struct iommu_domain * dom,int pasid,unsigned long cr3)3719 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3720 			      unsigned long cr3)
3721 {
3722 	struct protection_domain *domain = to_pdomain(dom);
3723 	unsigned long flags;
3724 	int ret;
3725 
3726 	spin_lock_irqsave(&domain->lock, flags);
3727 	ret = __set_gcr3(domain, pasid, cr3);
3728 	spin_unlock_irqrestore(&domain->lock, flags);
3729 
3730 	return ret;
3731 }
3732 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3733 
amd_iommu_domain_clear_gcr3(struct iommu_domain * dom,int pasid)3734 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3735 {
3736 	struct protection_domain *domain = to_pdomain(dom);
3737 	unsigned long flags;
3738 	int ret;
3739 
3740 	spin_lock_irqsave(&domain->lock, flags);
3741 	ret = __clear_gcr3(domain, pasid);
3742 	spin_unlock_irqrestore(&domain->lock, flags);
3743 
3744 	return ret;
3745 }
3746 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3747 
amd_iommu_complete_ppr(struct pci_dev * pdev,int pasid,int status,int tag)3748 int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3749 			   int status, int tag)
3750 {
3751 	struct iommu_dev_data *dev_data;
3752 	struct amd_iommu *iommu;
3753 	struct iommu_cmd cmd;
3754 
3755 	INC_STATS_COUNTER(complete_ppr);
3756 
3757 	dev_data = get_dev_data(&pdev->dev);
3758 	iommu    = amd_iommu_rlookup_table[dev_data->devid];
3759 
3760 	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3761 			   tag, dev_data->pri_tlp);
3762 
3763 	return iommu_queue_command(iommu, &cmd);
3764 }
3765 EXPORT_SYMBOL(amd_iommu_complete_ppr);
3766 
amd_iommu_get_v2_domain(struct pci_dev * pdev)3767 struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3768 {
3769 	struct protection_domain *pdomain;
3770 
3771 	pdomain = get_domain(&pdev->dev);
3772 	if (IS_ERR(pdomain))
3773 		return NULL;
3774 
3775 	/* Only return IOMMUv2 domains */
3776 	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3777 		return NULL;
3778 
3779 	return &pdomain->domain;
3780 }
3781 EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3782 
amd_iommu_enable_device_erratum(struct pci_dev * pdev,u32 erratum)3783 void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3784 {
3785 	struct iommu_dev_data *dev_data;
3786 
3787 	if (!amd_iommu_v2_supported())
3788 		return;
3789 
3790 	dev_data = get_dev_data(&pdev->dev);
3791 	dev_data->errata |= (1 << erratum);
3792 }
3793 EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3794 
amd_iommu_device_info(struct pci_dev * pdev,struct amd_iommu_device_info * info)3795 int amd_iommu_device_info(struct pci_dev *pdev,
3796                           struct amd_iommu_device_info *info)
3797 {
3798 	int max_pasids;
3799 	int pos;
3800 
3801 	if (pdev == NULL || info == NULL)
3802 		return -EINVAL;
3803 
3804 	if (!amd_iommu_v2_supported())
3805 		return -EINVAL;
3806 
3807 	memset(info, 0, sizeof(*info));
3808 
3809 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3810 	if (pos)
3811 		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3812 
3813 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3814 	if (pos)
3815 		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3816 
3817 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3818 	if (pos) {
3819 		int features;
3820 
3821 		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3822 		max_pasids = min(max_pasids, (1 << 20));
3823 
3824 		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3825 		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3826 
3827 		features = pci_pasid_features(pdev);
3828 		if (features & PCI_PASID_CAP_EXEC)
3829 			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3830 		if (features & PCI_PASID_CAP_PRIV)
3831 			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3832 	}
3833 
3834 	return 0;
3835 }
3836 EXPORT_SYMBOL(amd_iommu_device_info);
3837 
3838 #ifdef CONFIG_IRQ_REMAP
3839 
3840 /*****************************************************************************
3841  *
3842  * Interrupt Remapping Implementation
3843  *
3844  *****************************************************************************/
3845 
3846 union irte {
3847 	u32 val;
3848 	struct {
3849 		u32 valid	: 1,
3850 		    no_fault	: 1,
3851 		    int_type	: 3,
3852 		    rq_eoi	: 1,
3853 		    dm		: 1,
3854 		    rsvd_1	: 1,
3855 		    destination	: 8,
3856 		    vector	: 8,
3857 		    rsvd_2	: 8;
3858 	} fields;
3859 };
3860 
3861 #define DTE_IRQ_PHYS_ADDR_MASK	(((1ULL << 45)-1) << 6)
3862 #define DTE_IRQ_REMAP_INTCTL    (2ULL << 60)
3863 #define DTE_IRQ_TABLE_LEN       (8ULL << 1)
3864 #define DTE_IRQ_REMAP_ENABLE    1ULL
3865 
set_dte_irq_entry(u16 devid,struct irq_remap_table * table)3866 static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3867 {
3868 	u64 dte;
3869 
3870 	dte	= amd_iommu_dev_table[devid].data[2];
3871 	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
3872 	dte	|= virt_to_phys(table->table);
3873 	dte	|= DTE_IRQ_REMAP_INTCTL;
3874 	dte	|= DTE_IRQ_TABLE_LEN;
3875 	dte	|= DTE_IRQ_REMAP_ENABLE;
3876 
3877 	amd_iommu_dev_table[devid].data[2] = dte;
3878 }
3879 
3880 #define IRTE_ALLOCATED (~1U)
3881 
get_irq_table(u16 devid,bool ioapic)3882 static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
3883 {
3884 	struct irq_remap_table *table = NULL;
3885 	struct amd_iommu *iommu;
3886 	unsigned long flags;
3887 	u16 alias;
3888 
3889 	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3890 
3891 	iommu = amd_iommu_rlookup_table[devid];
3892 	if (!iommu)
3893 		goto out_unlock;
3894 
3895 	table = irq_lookup_table[devid];
3896 	if (table)
3897 		goto out;
3898 
3899 	alias = amd_iommu_alias_table[devid];
3900 	table = irq_lookup_table[alias];
3901 	if (table) {
3902 		irq_lookup_table[devid] = table;
3903 		set_dte_irq_entry(devid, table);
3904 		iommu_flush_dte(iommu, devid);
3905 		goto out;
3906 	}
3907 
3908 	/* Nothing there yet, allocate new irq remapping table */
3909 	table = kzalloc(sizeof(*table), GFP_ATOMIC);
3910 	if (!table)
3911 		goto out;
3912 
3913 	/* Initialize table spin-lock */
3914 	spin_lock_init(&table->lock);
3915 
3916 	if (ioapic)
3917 		/* Keep the first 32 indexes free for IOAPIC interrupts */
3918 		table->min_index = 32;
3919 
3920 	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
3921 	if (!table->table) {
3922 		kfree(table);
3923 		table = NULL;
3924 		goto out;
3925 	}
3926 
3927 	memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));
3928 
3929 	if (ioapic) {
3930 		int i;
3931 
3932 		for (i = 0; i < 32; ++i)
3933 			table->table[i] = IRTE_ALLOCATED;
3934 	}
3935 
3936 	irq_lookup_table[devid] = table;
3937 	set_dte_irq_entry(devid, table);
3938 	iommu_flush_dte(iommu, devid);
3939 	if (devid != alias) {
3940 		irq_lookup_table[alias] = table;
3941 		set_dte_irq_entry(alias, table);
3942 		iommu_flush_dte(iommu, alias);
3943 	}
3944 
3945 out:
3946 	iommu_completion_wait(iommu);
3947 
3948 out_unlock:
3949 	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3950 
3951 	return table;
3952 }
3953 
alloc_irq_index(struct irq_cfg * cfg,u16 devid,int count)3954 static int alloc_irq_index(struct irq_cfg *cfg, u16 devid, int count)
3955 {
3956 	struct irq_remap_table *table;
3957 	unsigned long flags;
3958 	int index, c;
3959 
3960 	table = get_irq_table(devid, false);
3961 	if (!table)
3962 		return -ENODEV;
3963 
3964 	spin_lock_irqsave(&table->lock, flags);
3965 
3966 	/* Scan table for free entries */
3967 	for (c = 0, index = table->min_index;
3968 	     index < MAX_IRQS_PER_TABLE;
3969 	     ++index) {
3970 		if (table->table[index] == 0)
3971 			c += 1;
3972 		else
3973 			c = 0;
3974 
3975 		if (c == count)	{
3976 			struct irq_2_irte *irte_info;
3977 
3978 			for (; c != 0; --c)
3979 				table->table[index - c + 1] = IRTE_ALLOCATED;
3980 
3981 			index -= count - 1;
3982 
3983 			cfg->remapped	      = 1;
3984 			irte_info             = &cfg->irq_2_irte;
3985 			irte_info->devid      = devid;
3986 			irte_info->index      = index;
3987 
3988 			goto out;
3989 		}
3990 	}
3991 
3992 	index = -ENOSPC;
3993 
3994 out:
3995 	spin_unlock_irqrestore(&table->lock, flags);
3996 
3997 	return index;
3998 }
3999 
get_irte(u16 devid,int index,union irte * irte)4000 static int get_irte(u16 devid, int index, union irte *irte)
4001 {
4002 	struct irq_remap_table *table;
4003 	unsigned long flags;
4004 
4005 	table = get_irq_table(devid, false);
4006 	if (!table)
4007 		return -ENOMEM;
4008 
4009 	spin_lock_irqsave(&table->lock, flags);
4010 	irte->val = table->table[index];
4011 	spin_unlock_irqrestore(&table->lock, flags);
4012 
4013 	return 0;
4014 }
4015 
modify_irte(u16 devid,int index,union irte irte)4016 static int modify_irte(u16 devid, int index, union irte irte)
4017 {
4018 	struct irq_remap_table *table;
4019 	struct amd_iommu *iommu;
4020 	unsigned long flags;
4021 
4022 	iommu = amd_iommu_rlookup_table[devid];
4023 	if (iommu == NULL)
4024 		return -EINVAL;
4025 
4026 	table = get_irq_table(devid, false);
4027 	if (!table)
4028 		return -ENOMEM;
4029 
4030 	spin_lock_irqsave(&table->lock, flags);
4031 	table->table[index] = irte.val;
4032 	spin_unlock_irqrestore(&table->lock, flags);
4033 
4034 	iommu_flush_irt(iommu, devid);
4035 	iommu_completion_wait(iommu);
4036 
4037 	return 0;
4038 }
4039 
free_irte(u16 devid,int index)4040 static void free_irte(u16 devid, int index)
4041 {
4042 	struct irq_remap_table *table;
4043 	struct amd_iommu *iommu;
4044 	unsigned long flags;
4045 
4046 	iommu = amd_iommu_rlookup_table[devid];
4047 	if (iommu == NULL)
4048 		return;
4049 
4050 	table = get_irq_table(devid, false);
4051 	if (!table)
4052 		return;
4053 
4054 	spin_lock_irqsave(&table->lock, flags);
4055 	table->table[index] = 0;
4056 	spin_unlock_irqrestore(&table->lock, flags);
4057 
4058 	iommu_flush_irt(iommu, devid);
4059 	iommu_completion_wait(iommu);
4060 }
4061 
setup_ioapic_entry(int irq,struct IO_APIC_route_entry * entry,unsigned int destination,int vector,struct io_apic_irq_attr * attr)4062 static int setup_ioapic_entry(int irq, struct IO_APIC_route_entry *entry,
4063 			      unsigned int destination, int vector,
4064 			      struct io_apic_irq_attr *attr)
4065 {
4066 	struct irq_remap_table *table;
4067 	struct irq_2_irte *irte_info;
4068 	struct irq_cfg *cfg;
4069 	union irte irte;
4070 	int ioapic_id;
4071 	int index;
4072 	int devid;
4073 	int ret;
4074 
4075 	cfg = irq_cfg(irq);
4076 	if (!cfg)
4077 		return -EINVAL;
4078 
4079 	irte_info = &cfg->irq_2_irte;
4080 	ioapic_id = mpc_ioapic_id(attr->ioapic);
4081 	devid     = get_ioapic_devid(ioapic_id);
4082 
4083 	if (devid < 0)
4084 		return devid;
4085 
4086 	table = get_irq_table(devid, true);
4087 	if (table == NULL)
4088 		return -ENOMEM;
4089 
4090 	index = attr->ioapic_pin;
4091 
4092 	/* Setup IRQ remapping info */
4093 	cfg->remapped	      = 1;
4094 	irte_info->devid      = devid;
4095 	irte_info->index      = index;
4096 
4097 	/* Setup IRTE for IOMMU */
4098 	irte.val		= 0;
4099 	irte.fields.vector      = vector;
4100 	irte.fields.int_type    = apic->irq_delivery_mode;
4101 	irte.fields.destination = destination;
4102 	irte.fields.dm          = apic->irq_dest_mode;
4103 	irte.fields.valid       = 1;
4104 
4105 	ret = modify_irte(devid, index, irte);
4106 	if (ret)
4107 		return ret;
4108 
4109 	/* Setup IOAPIC entry */
4110 	memset(entry, 0, sizeof(*entry));
4111 
4112 	entry->vector        = index;
4113 	entry->mask          = 0;
4114 	entry->trigger       = attr->trigger;
4115 	entry->polarity      = attr->polarity;
4116 
4117 	/*
4118 	 * Mask level triggered irqs.
4119 	 */
4120 	if (attr->trigger)
4121 		entry->mask = 1;
4122 
4123 	return 0;
4124 }
4125 
set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)4126 static int set_affinity(struct irq_data *data, const struct cpumask *mask,
4127 			bool force)
4128 {
4129 	struct irq_2_irte *irte_info;
4130 	unsigned int dest, irq;
4131 	struct irq_cfg *cfg;
4132 	union irte irte;
4133 	int err;
4134 
4135 	if (!config_enabled(CONFIG_SMP))
4136 		return -1;
4137 
4138 	cfg       = irqd_cfg(data);
4139 	irq       = data->irq;
4140 	irte_info = &cfg->irq_2_irte;
4141 
4142 	if (!cpumask_intersects(mask, cpu_online_mask))
4143 		return -EINVAL;
4144 
4145 	if (get_irte(irte_info->devid, irte_info->index, &irte))
4146 		return -EBUSY;
4147 
4148 	if (assign_irq_vector(irq, cfg, mask))
4149 		return -EBUSY;
4150 
4151 	err = apic->cpu_mask_to_apicid_and(cfg->domain, mask, &dest);
4152 	if (err) {
4153 		if (assign_irq_vector(irq, cfg, data->affinity))
4154 			pr_err("AMD-Vi: Failed to recover vector for irq %d\n", irq);
4155 		return err;
4156 	}
4157 
4158 	irte.fields.vector      = cfg->vector;
4159 	irte.fields.destination = dest;
4160 
4161 	modify_irte(irte_info->devid, irte_info->index, irte);
4162 
4163 	if (cfg->move_in_progress)
4164 		send_cleanup_vector(cfg);
4165 
4166 	cpumask_copy(data->affinity, mask);
4167 
4168 	return 0;
4169 }
4170 
free_irq(int irq)4171 static int free_irq(int irq)
4172 {
4173 	struct irq_2_irte *irte_info;
4174 	struct irq_cfg *cfg;
4175 
4176 	cfg = irq_cfg(irq);
4177 	if (!cfg)
4178 		return -EINVAL;
4179 
4180 	irte_info = &cfg->irq_2_irte;
4181 
4182 	free_irte(irte_info->devid, irte_info->index);
4183 
4184 	return 0;
4185 }
4186 
compose_msi_msg(struct pci_dev * pdev,unsigned int irq,unsigned int dest,struct msi_msg * msg,u8 hpet_id)4187 static void compose_msi_msg(struct pci_dev *pdev,
4188 			    unsigned int irq, unsigned int dest,
4189 			    struct msi_msg *msg, u8 hpet_id)
4190 {
4191 	struct irq_2_irte *irte_info;
4192 	struct irq_cfg *cfg;
4193 	union irte irte;
4194 
4195 	cfg = irq_cfg(irq);
4196 	if (!cfg)
4197 		return;
4198 
4199 	irte_info = &cfg->irq_2_irte;
4200 
4201 	irte.val		= 0;
4202 	irte.fields.vector	= cfg->vector;
4203 	irte.fields.int_type    = apic->irq_delivery_mode;
4204 	irte.fields.destination	= dest;
4205 	irte.fields.dm		= apic->irq_dest_mode;
4206 	irte.fields.valid	= 1;
4207 
4208 	modify_irte(irte_info->devid, irte_info->index, irte);
4209 
4210 	msg->address_hi = MSI_ADDR_BASE_HI;
4211 	msg->address_lo = MSI_ADDR_BASE_LO;
4212 	msg->data       = irte_info->index;
4213 }
4214 
msi_alloc_irq(struct pci_dev * pdev,int irq,int nvec)4215 static int msi_alloc_irq(struct pci_dev *pdev, int irq, int nvec)
4216 {
4217 	struct irq_cfg *cfg;
4218 	int index;
4219 	u16 devid;
4220 
4221 	if (!pdev)
4222 		return -EINVAL;
4223 
4224 	cfg = irq_cfg(irq);
4225 	if (!cfg)
4226 		return -EINVAL;
4227 
4228 	devid = get_device_id(&pdev->dev);
4229 	index = alloc_irq_index(cfg, devid, nvec);
4230 
4231 	return index < 0 ? MAX_IRQS_PER_TABLE : index;
4232 }
4233 
msi_setup_irq(struct pci_dev * pdev,unsigned int irq,int index,int offset)4234 static int msi_setup_irq(struct pci_dev *pdev, unsigned int irq,
4235 			 int index, int offset)
4236 {
4237 	struct irq_2_irte *irte_info;
4238 	struct irq_cfg *cfg;
4239 	u16 devid;
4240 
4241 	if (!pdev)
4242 		return -EINVAL;
4243 
4244 	cfg = irq_cfg(irq);
4245 	if (!cfg)
4246 		return -EINVAL;
4247 
4248 	if (index >= MAX_IRQS_PER_TABLE)
4249 		return 0;
4250 
4251 	devid		= get_device_id(&pdev->dev);
4252 	irte_info	= &cfg->irq_2_irte;
4253 
4254 	cfg->remapped	      = 1;
4255 	irte_info->devid      = devid;
4256 	irte_info->index      = index + offset;
4257 
4258 	return 0;
4259 }
4260 
alloc_hpet_msi(unsigned int irq,unsigned int id)4261 static int alloc_hpet_msi(unsigned int irq, unsigned int id)
4262 {
4263 	struct irq_2_irte *irte_info;
4264 	struct irq_cfg *cfg;
4265 	int index, devid;
4266 
4267 	cfg = irq_cfg(irq);
4268 	if (!cfg)
4269 		return -EINVAL;
4270 
4271 	irte_info = &cfg->irq_2_irte;
4272 	devid     = get_hpet_devid(id);
4273 	if (devid < 0)
4274 		return devid;
4275 
4276 	index = alloc_irq_index(cfg, devid, 1);
4277 	if (index < 0)
4278 		return index;
4279 
4280 	cfg->remapped	      = 1;
4281 	irte_info->devid      = devid;
4282 	irte_info->index      = index;
4283 
4284 	return 0;
4285 }
4286 
4287 struct irq_remap_ops amd_iommu_irq_ops = {
4288 	.prepare		= amd_iommu_prepare,
4289 	.enable			= amd_iommu_enable,
4290 	.disable		= amd_iommu_disable,
4291 	.reenable		= amd_iommu_reenable,
4292 	.enable_faulting	= amd_iommu_enable_faulting,
4293 	.setup_ioapic_entry	= setup_ioapic_entry,
4294 	.set_affinity		= set_affinity,
4295 	.free_irq		= free_irq,
4296 	.compose_msi_msg	= compose_msi_msg,
4297 	.msi_alloc_irq		= msi_alloc_irq,
4298 	.msi_setup_irq		= msi_setup_irq,
4299 	.alloc_hpet_msi		= alloc_hpet_msi,
4300 };
4301 #endif
4302