1 /*
2  * Copyright (C) ST-Ericsson AB 2012
3  *
4  * Main and Back-up battery management driver.
5  *
6  * Note: Backup battery management is required in case of Li-Ion battery and not
7  * for capacitive battery. HREF boards have capacitive battery and hence backup
8  * battery management is not used and the supported code is available in this
9  * driver.
10  *
11  * License Terms: GNU General Public License v2
12  * Author:
13  *	Johan Palsson <johan.palsson@stericsson.com>
14  *	Karl Komierowski <karl.komierowski@stericsson.com>
15  *	Arun R Murthy <arun.murthy@stericsson.com>
16  */
17 
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/device.h>
21 #include <linux/interrupt.h>
22 #include <linux/platform_device.h>
23 #include <linux/power_supply.h>
24 #include <linux/kobject.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/time.h>
28 #include <linux/time64.h>
29 #include <linux/of.h>
30 #include <linux/completion.h>
31 #include <linux/mfd/core.h>
32 #include <linux/mfd/abx500.h>
33 #include <linux/mfd/abx500/ab8500.h>
34 #include <linux/mfd/abx500/ab8500-bm.h>
35 #include <linux/mfd/abx500/ab8500-gpadc.h>
36 #include <linux/kernel.h>
37 
38 #define MILLI_TO_MICRO			1000
39 #define FG_LSB_IN_MA			1627
40 #define QLSB_NANO_AMP_HOURS_X10		1071
41 #define INS_CURR_TIMEOUT		(3 * HZ)
42 
43 #define SEC_TO_SAMPLE(S)		(S * 4)
44 
45 #define NBR_AVG_SAMPLES			20
46 
47 #define LOW_BAT_CHECK_INTERVAL		(HZ / 16) /* 62.5 ms */
48 
49 #define VALID_CAPACITY_SEC		(45 * 60) /* 45 minutes */
50 #define BATT_OK_MIN			2360 /* mV */
51 #define BATT_OK_INCREMENT		50 /* mV */
52 #define BATT_OK_MAX_NR_INCREMENTS	0xE
53 
54 /* FG constants */
55 #define BATT_OVV			0x01
56 
57 #define interpolate(x, x1, y1, x2, y2) \
58 	((y1) + ((((y2) - (y1)) * ((x) - (x1))) / ((x2) - (x1))));
59 
60 /**
61  * struct ab8500_fg_interrupts - ab8500 fg interupts
62  * @name:	name of the interrupt
63  * @isr		function pointer to the isr
64  */
65 struct ab8500_fg_interrupts {
66 	char *name;
67 	irqreturn_t (*isr)(int irq, void *data);
68 };
69 
70 enum ab8500_fg_discharge_state {
71 	AB8500_FG_DISCHARGE_INIT,
72 	AB8500_FG_DISCHARGE_INITMEASURING,
73 	AB8500_FG_DISCHARGE_INIT_RECOVERY,
74 	AB8500_FG_DISCHARGE_RECOVERY,
75 	AB8500_FG_DISCHARGE_READOUT_INIT,
76 	AB8500_FG_DISCHARGE_READOUT,
77 	AB8500_FG_DISCHARGE_WAKEUP,
78 };
79 
80 static char *discharge_state[] = {
81 	"DISCHARGE_INIT",
82 	"DISCHARGE_INITMEASURING",
83 	"DISCHARGE_INIT_RECOVERY",
84 	"DISCHARGE_RECOVERY",
85 	"DISCHARGE_READOUT_INIT",
86 	"DISCHARGE_READOUT",
87 	"DISCHARGE_WAKEUP",
88 };
89 
90 enum ab8500_fg_charge_state {
91 	AB8500_FG_CHARGE_INIT,
92 	AB8500_FG_CHARGE_READOUT,
93 };
94 
95 static char *charge_state[] = {
96 	"CHARGE_INIT",
97 	"CHARGE_READOUT",
98 };
99 
100 enum ab8500_fg_calibration_state {
101 	AB8500_FG_CALIB_INIT,
102 	AB8500_FG_CALIB_WAIT,
103 	AB8500_FG_CALIB_END,
104 };
105 
106 struct ab8500_fg_avg_cap {
107 	int avg;
108 	int samples[NBR_AVG_SAMPLES];
109 	time64_t time_stamps[NBR_AVG_SAMPLES];
110 	int pos;
111 	int nbr_samples;
112 	int sum;
113 };
114 
115 struct ab8500_fg_cap_scaling {
116 	bool enable;
117 	int cap_to_scale[2];
118 	int disable_cap_level;
119 	int scaled_cap;
120 };
121 
122 struct ab8500_fg_battery_capacity {
123 	int max_mah_design;
124 	int max_mah;
125 	int mah;
126 	int permille;
127 	int level;
128 	int prev_mah;
129 	int prev_percent;
130 	int prev_level;
131 	int user_mah;
132 	struct ab8500_fg_cap_scaling cap_scale;
133 };
134 
135 struct ab8500_fg_flags {
136 	bool fg_enabled;
137 	bool conv_done;
138 	bool charging;
139 	bool fully_charged;
140 	bool force_full;
141 	bool low_bat_delay;
142 	bool low_bat;
143 	bool bat_ovv;
144 	bool batt_unknown;
145 	bool calibrate;
146 	bool user_cap;
147 	bool batt_id_received;
148 };
149 
150 struct inst_curr_result_list {
151 	struct list_head list;
152 	int *result;
153 };
154 
155 /**
156  * struct ab8500_fg - ab8500 FG device information
157  * @dev:		Pointer to the structure device
158  * @node:		a list of AB8500 FGs, hence prepared for reentrance
159  * @irq			holds the CCEOC interrupt number
160  * @vbat:		Battery voltage in mV
161  * @vbat_nom:		Nominal battery voltage in mV
162  * @inst_curr:		Instantenous battery current in mA
163  * @avg_curr:		Average battery current in mA
164  * @bat_temp		battery temperature
165  * @fg_samples:		Number of samples used in the FG accumulation
166  * @accu_charge:	Accumulated charge from the last conversion
167  * @recovery_cnt:	Counter for recovery mode
168  * @high_curr_cnt:	Counter for high current mode
169  * @init_cnt:		Counter for init mode
170  * @low_bat_cnt		Counter for number of consecutive low battery measures
171  * @nbr_cceoc_irq_cnt	Counter for number of CCEOC irqs received since enabled
172  * @recovery_needed:	Indicate if recovery is needed
173  * @high_curr_mode:	Indicate if we're in high current mode
174  * @init_capacity:	Indicate if initial capacity measuring should be done
175  * @turn_off_fg:	True if fg was off before current measurement
176  * @calib_state		State during offset calibration
177  * @discharge_state:	Current discharge state
178  * @charge_state:	Current charge state
179  * @ab8500_fg_started	Completion struct used for the instant current start
180  * @ab8500_fg_complete	Completion struct used for the instant current reading
181  * @flags:		Structure for information about events triggered
182  * @bat_cap:		Structure for battery capacity specific parameters
183  * @avg_cap:		Average capacity filter
184  * @parent:		Pointer to the struct ab8500
185  * @gpadc:		Pointer to the struct gpadc
186  * @bm:           	Platform specific battery management information
187  * @fg_psy:		Structure that holds the FG specific battery properties
188  * @fg_wq:		Work queue for running the FG algorithm
189  * @fg_periodic_work:	Work to run the FG algorithm periodically
190  * @fg_low_bat_work:	Work to check low bat condition
191  * @fg_reinit_work	Work used to reset and reinitialise the FG algorithm
192  * @fg_work:		Work to run the FG algorithm instantly
193  * @fg_acc_cur_work:	Work to read the FG accumulator
194  * @fg_check_hw_failure_work:	Work for checking HW state
195  * @cc_lock:		Mutex for locking the CC
196  * @fg_kobject:		Structure of type kobject
197  */
198 struct ab8500_fg {
199 	struct device *dev;
200 	struct list_head node;
201 	int irq;
202 	int vbat;
203 	int vbat_nom;
204 	int inst_curr;
205 	int avg_curr;
206 	int bat_temp;
207 	int fg_samples;
208 	int accu_charge;
209 	int recovery_cnt;
210 	int high_curr_cnt;
211 	int init_cnt;
212 	int low_bat_cnt;
213 	int nbr_cceoc_irq_cnt;
214 	bool recovery_needed;
215 	bool high_curr_mode;
216 	bool init_capacity;
217 	bool turn_off_fg;
218 	enum ab8500_fg_calibration_state calib_state;
219 	enum ab8500_fg_discharge_state discharge_state;
220 	enum ab8500_fg_charge_state charge_state;
221 	struct completion ab8500_fg_started;
222 	struct completion ab8500_fg_complete;
223 	struct ab8500_fg_flags flags;
224 	struct ab8500_fg_battery_capacity bat_cap;
225 	struct ab8500_fg_avg_cap avg_cap;
226 	struct ab8500 *parent;
227 	struct ab8500_gpadc *gpadc;
228 	struct abx500_bm_data *bm;
229 	struct power_supply *fg_psy;
230 	struct workqueue_struct *fg_wq;
231 	struct delayed_work fg_periodic_work;
232 	struct delayed_work fg_low_bat_work;
233 	struct delayed_work fg_reinit_work;
234 	struct work_struct fg_work;
235 	struct work_struct fg_acc_cur_work;
236 	struct delayed_work fg_check_hw_failure_work;
237 	struct mutex cc_lock;
238 	struct kobject fg_kobject;
239 };
240 static LIST_HEAD(ab8500_fg_list);
241 
242 /**
243  * ab8500_fg_get() - returns a reference to the primary AB8500 fuel gauge
244  * (i.e. the first fuel gauge in the instance list)
245  */
ab8500_fg_get(void)246 struct ab8500_fg *ab8500_fg_get(void)
247 {
248 	struct ab8500_fg *fg;
249 
250 	if (list_empty(&ab8500_fg_list))
251 		return NULL;
252 
253 	fg = list_first_entry(&ab8500_fg_list, struct ab8500_fg, node);
254 	return fg;
255 }
256 
257 /* Main battery properties */
258 static enum power_supply_property ab8500_fg_props[] = {
259 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
260 	POWER_SUPPLY_PROP_CURRENT_NOW,
261 	POWER_SUPPLY_PROP_CURRENT_AVG,
262 	POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
263 	POWER_SUPPLY_PROP_ENERGY_FULL,
264 	POWER_SUPPLY_PROP_ENERGY_NOW,
265 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
266 	POWER_SUPPLY_PROP_CHARGE_FULL,
267 	POWER_SUPPLY_PROP_CHARGE_NOW,
268 	POWER_SUPPLY_PROP_CAPACITY,
269 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
270 };
271 
272 /*
273  * This array maps the raw hex value to lowbat voltage used by the AB8500
274  * Values taken from the UM0836
275  */
276 static int ab8500_fg_lowbat_voltage_map[] = {
277 	2300 ,
278 	2325 ,
279 	2350 ,
280 	2375 ,
281 	2400 ,
282 	2425 ,
283 	2450 ,
284 	2475 ,
285 	2500 ,
286 	2525 ,
287 	2550 ,
288 	2575 ,
289 	2600 ,
290 	2625 ,
291 	2650 ,
292 	2675 ,
293 	2700 ,
294 	2725 ,
295 	2750 ,
296 	2775 ,
297 	2800 ,
298 	2825 ,
299 	2850 ,
300 	2875 ,
301 	2900 ,
302 	2925 ,
303 	2950 ,
304 	2975 ,
305 	3000 ,
306 	3025 ,
307 	3050 ,
308 	3075 ,
309 	3100 ,
310 	3125 ,
311 	3150 ,
312 	3175 ,
313 	3200 ,
314 	3225 ,
315 	3250 ,
316 	3275 ,
317 	3300 ,
318 	3325 ,
319 	3350 ,
320 	3375 ,
321 	3400 ,
322 	3425 ,
323 	3450 ,
324 	3475 ,
325 	3500 ,
326 	3525 ,
327 	3550 ,
328 	3575 ,
329 	3600 ,
330 	3625 ,
331 	3650 ,
332 	3675 ,
333 	3700 ,
334 	3725 ,
335 	3750 ,
336 	3775 ,
337 	3800 ,
338 	3825 ,
339 	3850 ,
340 	3850 ,
341 };
342 
ab8500_volt_to_regval(int voltage)343 static u8 ab8500_volt_to_regval(int voltage)
344 {
345 	int i;
346 
347 	if (voltage < ab8500_fg_lowbat_voltage_map[0])
348 		return 0;
349 
350 	for (i = 0; i < ARRAY_SIZE(ab8500_fg_lowbat_voltage_map); i++) {
351 		if (voltage < ab8500_fg_lowbat_voltage_map[i])
352 			return (u8) i - 1;
353 	}
354 
355 	/* If not captured above, return index of last element */
356 	return (u8) ARRAY_SIZE(ab8500_fg_lowbat_voltage_map) - 1;
357 }
358 
359 /**
360  * ab8500_fg_is_low_curr() - Low or high current mode
361  * @di:		pointer to the ab8500_fg structure
362  * @curr:	the current to base or our decision on
363  *
364  * Low current mode if the current consumption is below a certain threshold
365  */
ab8500_fg_is_low_curr(struct ab8500_fg * di,int curr)366 static int ab8500_fg_is_low_curr(struct ab8500_fg *di, int curr)
367 {
368 	/*
369 	 * We want to know if we're in low current mode
370 	 */
371 	if (curr > -di->bm->fg_params->high_curr_threshold)
372 		return true;
373 	else
374 		return false;
375 }
376 
377 /**
378  * ab8500_fg_add_cap_sample() - Add capacity to average filter
379  * @di:		pointer to the ab8500_fg structure
380  * @sample:	the capacity in mAh to add to the filter
381  *
382  * A capacity is added to the filter and a new mean capacity is calculated and
383  * returned
384  */
ab8500_fg_add_cap_sample(struct ab8500_fg * di,int sample)385 static int ab8500_fg_add_cap_sample(struct ab8500_fg *di, int sample)
386 {
387 	struct timespec64 ts64;
388 	struct ab8500_fg_avg_cap *avg = &di->avg_cap;
389 
390 	getnstimeofday64(&ts64);
391 
392 	do {
393 		avg->sum += sample - avg->samples[avg->pos];
394 		avg->samples[avg->pos] = sample;
395 		avg->time_stamps[avg->pos] = ts64.tv_sec;
396 		avg->pos++;
397 
398 		if (avg->pos == NBR_AVG_SAMPLES)
399 			avg->pos = 0;
400 
401 		if (avg->nbr_samples < NBR_AVG_SAMPLES)
402 			avg->nbr_samples++;
403 
404 		/*
405 		 * Check the time stamp for each sample. If too old,
406 		 * replace with latest sample
407 		 */
408 	} while (ts64.tv_sec - VALID_CAPACITY_SEC > avg->time_stamps[avg->pos]);
409 
410 	avg->avg = avg->sum / avg->nbr_samples;
411 
412 	return avg->avg;
413 }
414 
415 /**
416  * ab8500_fg_clear_cap_samples() - Clear average filter
417  * @di:		pointer to the ab8500_fg structure
418  *
419  * The capacity filter is is reset to zero.
420  */
ab8500_fg_clear_cap_samples(struct ab8500_fg * di)421 static void ab8500_fg_clear_cap_samples(struct ab8500_fg *di)
422 {
423 	int i;
424 	struct ab8500_fg_avg_cap *avg = &di->avg_cap;
425 
426 	avg->pos = 0;
427 	avg->nbr_samples = 0;
428 	avg->sum = 0;
429 	avg->avg = 0;
430 
431 	for (i = 0; i < NBR_AVG_SAMPLES; i++) {
432 		avg->samples[i] = 0;
433 		avg->time_stamps[i] = 0;
434 	}
435 }
436 
437 /**
438  * ab8500_fg_fill_cap_sample() - Fill average filter
439  * @di:		pointer to the ab8500_fg structure
440  * @sample:	the capacity in mAh to fill the filter with
441  *
442  * The capacity filter is filled with a capacity in mAh
443  */
ab8500_fg_fill_cap_sample(struct ab8500_fg * di,int sample)444 static void ab8500_fg_fill_cap_sample(struct ab8500_fg *di, int sample)
445 {
446 	int i;
447 	struct timespec64 ts64;
448 	struct ab8500_fg_avg_cap *avg = &di->avg_cap;
449 
450 	getnstimeofday64(&ts64);
451 
452 	for (i = 0; i < NBR_AVG_SAMPLES; i++) {
453 		avg->samples[i] = sample;
454 		avg->time_stamps[i] = ts64.tv_sec;
455 	}
456 
457 	avg->pos = 0;
458 	avg->nbr_samples = NBR_AVG_SAMPLES;
459 	avg->sum = sample * NBR_AVG_SAMPLES;
460 	avg->avg = sample;
461 }
462 
463 /**
464  * ab8500_fg_coulomb_counter() - enable coulomb counter
465  * @di:		pointer to the ab8500_fg structure
466  * @enable:	enable/disable
467  *
468  * Enable/Disable coulomb counter.
469  * On failure returns negative value.
470  */
ab8500_fg_coulomb_counter(struct ab8500_fg * di,bool enable)471 static int ab8500_fg_coulomb_counter(struct ab8500_fg *di, bool enable)
472 {
473 	int ret = 0;
474 	mutex_lock(&di->cc_lock);
475 	if (enable) {
476 		/* To be able to reprogram the number of samples, we have to
477 		 * first stop the CC and then enable it again */
478 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
479 			AB8500_RTC_CC_CONF_REG, 0x00);
480 		if (ret)
481 			goto cc_err;
482 
483 		/* Program the samples */
484 		ret = abx500_set_register_interruptible(di->dev,
485 			AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
486 			di->fg_samples);
487 		if (ret)
488 			goto cc_err;
489 
490 		/* Start the CC */
491 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
492 			AB8500_RTC_CC_CONF_REG,
493 			(CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
494 		if (ret)
495 			goto cc_err;
496 
497 		di->flags.fg_enabled = true;
498 	} else {
499 		/* Clear any pending read requests */
500 		ret = abx500_mask_and_set_register_interruptible(di->dev,
501 			AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
502 			(RESET_ACCU | READ_REQ), 0);
503 		if (ret)
504 			goto cc_err;
505 
506 		ret = abx500_set_register_interruptible(di->dev,
507 			AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU_CTRL, 0);
508 		if (ret)
509 			goto cc_err;
510 
511 		/* Stop the CC */
512 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
513 			AB8500_RTC_CC_CONF_REG, 0);
514 		if (ret)
515 			goto cc_err;
516 
517 		di->flags.fg_enabled = false;
518 
519 	}
520 	dev_dbg(di->dev, " CC enabled: %d Samples: %d\n",
521 		enable, di->fg_samples);
522 
523 	mutex_unlock(&di->cc_lock);
524 
525 	return ret;
526 cc_err:
527 	dev_err(di->dev, "%s Enabling coulomb counter failed\n", __func__);
528 	mutex_unlock(&di->cc_lock);
529 	return ret;
530 }
531 
532 /**
533  * ab8500_fg_inst_curr_start() - start battery instantaneous current
534  * @di:         pointer to the ab8500_fg structure
535  *
536  * Returns 0 or error code
537  * Note: This is part "one" and has to be called before
538  * ab8500_fg_inst_curr_finalize()
539  */
ab8500_fg_inst_curr_start(struct ab8500_fg * di)540 int ab8500_fg_inst_curr_start(struct ab8500_fg *di)
541 {
542 	u8 reg_val;
543 	int ret;
544 
545 	mutex_lock(&di->cc_lock);
546 
547 	di->nbr_cceoc_irq_cnt = 0;
548 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
549 		AB8500_RTC_CC_CONF_REG, &reg_val);
550 	if (ret < 0)
551 		goto fail;
552 
553 	if (!(reg_val & CC_PWR_UP_ENA)) {
554 		dev_dbg(di->dev, "%s Enable FG\n", __func__);
555 		di->turn_off_fg = true;
556 
557 		/* Program the samples */
558 		ret = abx500_set_register_interruptible(di->dev,
559 			AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
560 			SEC_TO_SAMPLE(10));
561 		if (ret)
562 			goto fail;
563 
564 		/* Start the CC */
565 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
566 			AB8500_RTC_CC_CONF_REG,
567 			(CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
568 		if (ret)
569 			goto fail;
570 	} else {
571 		di->turn_off_fg = false;
572 	}
573 
574 	/* Return and WFI */
575 	reinit_completion(&di->ab8500_fg_started);
576 	reinit_completion(&di->ab8500_fg_complete);
577 	enable_irq(di->irq);
578 
579 	/* Note: cc_lock is still locked */
580 	return 0;
581 fail:
582 	mutex_unlock(&di->cc_lock);
583 	return ret;
584 }
585 
586 /**
587  * ab8500_fg_inst_curr_started() - check if fg conversion has started
588  * @di:         pointer to the ab8500_fg structure
589  *
590  * Returns 1 if conversion started, 0 if still waiting
591  */
ab8500_fg_inst_curr_started(struct ab8500_fg * di)592 int ab8500_fg_inst_curr_started(struct ab8500_fg *di)
593 {
594 	return completion_done(&di->ab8500_fg_started);
595 }
596 
597 /**
598  * ab8500_fg_inst_curr_done() - check if fg conversion is done
599  * @di:         pointer to the ab8500_fg structure
600  *
601  * Returns 1 if conversion done, 0 if still waiting
602  */
ab8500_fg_inst_curr_done(struct ab8500_fg * di)603 int ab8500_fg_inst_curr_done(struct ab8500_fg *di)
604 {
605 	return completion_done(&di->ab8500_fg_complete);
606 }
607 
608 /**
609  * ab8500_fg_inst_curr_finalize() - battery instantaneous current
610  * @di:         pointer to the ab8500_fg structure
611  * @res:	battery instantenous current(on success)
612  *
613  * Returns 0 or an error code
614  * Note: This is part "two" and has to be called at earliest 250 ms
615  * after ab8500_fg_inst_curr_start()
616  */
ab8500_fg_inst_curr_finalize(struct ab8500_fg * di,int * res)617 int ab8500_fg_inst_curr_finalize(struct ab8500_fg *di, int *res)
618 {
619 	u8 low, high;
620 	int val;
621 	int ret;
622 	unsigned long timeout;
623 
624 	if (!completion_done(&di->ab8500_fg_complete)) {
625 		timeout = wait_for_completion_timeout(
626 			&di->ab8500_fg_complete,
627 			INS_CURR_TIMEOUT);
628 		dev_dbg(di->dev, "Finalize time: %d ms\n",
629 			jiffies_to_msecs(INS_CURR_TIMEOUT - timeout));
630 		if (!timeout) {
631 			ret = -ETIME;
632 			disable_irq(di->irq);
633 			di->nbr_cceoc_irq_cnt = 0;
634 			dev_err(di->dev, "completion timed out [%d]\n",
635 				__LINE__);
636 			goto fail;
637 		}
638 	}
639 
640 	disable_irq(di->irq);
641 	di->nbr_cceoc_irq_cnt = 0;
642 
643 	ret = abx500_mask_and_set_register_interruptible(di->dev,
644 			AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
645 			READ_REQ, READ_REQ);
646 
647 	/* 100uS between read request and read is needed */
648 	usleep_range(100, 100);
649 
650 	/* Read CC Sample conversion value Low and high */
651 	ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
652 		AB8500_GASG_CC_SMPL_CNVL_REG,  &low);
653 	if (ret < 0)
654 		goto fail;
655 
656 	ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
657 		AB8500_GASG_CC_SMPL_CNVH_REG,  &high);
658 	if (ret < 0)
659 		goto fail;
660 
661 	/*
662 	 * negative value for Discharging
663 	 * convert 2's compliment into decimal
664 	 */
665 	if (high & 0x10)
666 		val = (low | (high << 8) | 0xFFFFE000);
667 	else
668 		val = (low | (high << 8));
669 
670 	/*
671 	 * Convert to unit value in mA
672 	 * Full scale input voltage is
673 	 * 63.160mV => LSB = 63.160mV/(4096*res) = 1.542mA
674 	 * Given a 250ms conversion cycle time the LSB corresponds
675 	 * to 107.1 nAh. Convert to current by dividing by the conversion
676 	 * time in hours (250ms = 1 / (3600 * 4)h)
677 	 * 107.1nAh assumes 10mOhm, but fg_res is in 0.1mOhm
678 	 */
679 	val = (val * QLSB_NANO_AMP_HOURS_X10 * 36 * 4) /
680 		(1000 * di->bm->fg_res);
681 
682 	if (di->turn_off_fg) {
683 		dev_dbg(di->dev, "%s Disable FG\n", __func__);
684 
685 		/* Clear any pending read requests */
686 		ret = abx500_set_register_interruptible(di->dev,
687 			AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 0);
688 		if (ret)
689 			goto fail;
690 
691 		/* Stop the CC */
692 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
693 			AB8500_RTC_CC_CONF_REG, 0);
694 		if (ret)
695 			goto fail;
696 	}
697 	mutex_unlock(&di->cc_lock);
698 	(*res) = val;
699 
700 	return 0;
701 fail:
702 	mutex_unlock(&di->cc_lock);
703 	return ret;
704 }
705 
706 /**
707  * ab8500_fg_inst_curr_blocking() - battery instantaneous current
708  * @di:         pointer to the ab8500_fg structure
709  * @res:	battery instantenous current(on success)
710  *
711  * Returns 0 else error code
712  */
ab8500_fg_inst_curr_blocking(struct ab8500_fg * di)713 int ab8500_fg_inst_curr_blocking(struct ab8500_fg *di)
714 {
715 	int ret;
716 	unsigned long timeout;
717 	int res = 0;
718 
719 	ret = ab8500_fg_inst_curr_start(di);
720 	if (ret) {
721 		dev_err(di->dev, "Failed to initialize fg_inst\n");
722 		return 0;
723 	}
724 
725 	/* Wait for CC to actually start */
726 	if (!completion_done(&di->ab8500_fg_started)) {
727 		timeout = wait_for_completion_timeout(
728 			&di->ab8500_fg_started,
729 			INS_CURR_TIMEOUT);
730 		dev_dbg(di->dev, "Start time: %d ms\n",
731 			jiffies_to_msecs(INS_CURR_TIMEOUT - timeout));
732 		if (!timeout) {
733 			ret = -ETIME;
734 			dev_err(di->dev, "completion timed out [%d]\n",
735 				__LINE__);
736 			goto fail;
737 		}
738 	}
739 
740 	ret = ab8500_fg_inst_curr_finalize(di, &res);
741 	if (ret) {
742 		dev_err(di->dev, "Failed to finalize fg_inst\n");
743 		return 0;
744 	}
745 
746 	dev_dbg(di->dev, "%s instant current: %d", __func__, res);
747 	return res;
748 fail:
749 	disable_irq(di->irq);
750 	mutex_unlock(&di->cc_lock);
751 	return ret;
752 }
753 
754 /**
755  * ab8500_fg_acc_cur_work() - average battery current
756  * @work:	pointer to the work_struct structure
757  *
758  * Updated the average battery current obtained from the
759  * coulomb counter.
760  */
ab8500_fg_acc_cur_work(struct work_struct * work)761 static void ab8500_fg_acc_cur_work(struct work_struct *work)
762 {
763 	int val;
764 	int ret;
765 	u8 low, med, high;
766 
767 	struct ab8500_fg *di = container_of(work,
768 		struct ab8500_fg, fg_acc_cur_work);
769 
770 	mutex_lock(&di->cc_lock);
771 	ret = abx500_set_register_interruptible(di->dev, AB8500_GAS_GAUGE,
772 		AB8500_GASG_CC_NCOV_ACCU_CTRL, RD_NCONV_ACCU_REQ);
773 	if (ret)
774 		goto exit;
775 
776 	ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
777 		AB8500_GASG_CC_NCOV_ACCU_LOW,  &low);
778 	if (ret < 0)
779 		goto exit;
780 
781 	ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
782 		AB8500_GASG_CC_NCOV_ACCU_MED,  &med);
783 	if (ret < 0)
784 		goto exit;
785 
786 	ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
787 		AB8500_GASG_CC_NCOV_ACCU_HIGH, &high);
788 	if (ret < 0)
789 		goto exit;
790 
791 	/* Check for sign bit in case of negative value, 2's compliment */
792 	if (high & 0x10)
793 		val = (low | (med << 8) | (high << 16) | 0xFFE00000);
794 	else
795 		val = (low | (med << 8) | (high << 16));
796 
797 	/*
798 	 * Convert to uAh
799 	 * Given a 250ms conversion cycle time the LSB corresponds
800 	 * to 112.9 nAh.
801 	 * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
802 	 */
803 	di->accu_charge = (val * QLSB_NANO_AMP_HOURS_X10) /
804 		(100 * di->bm->fg_res);
805 
806 	/*
807 	 * Convert to unit value in mA
808 	 * by dividing by the conversion
809 	 * time in hours (= samples / (3600 * 4)h)
810 	 * and multiply with 1000
811 	 */
812 	di->avg_curr = (val * QLSB_NANO_AMP_HOURS_X10 * 36) /
813 		(1000 * di->bm->fg_res * (di->fg_samples / 4));
814 
815 	di->flags.conv_done = true;
816 
817 	mutex_unlock(&di->cc_lock);
818 
819 	queue_work(di->fg_wq, &di->fg_work);
820 
821 	dev_dbg(di->dev, "fg_res: %d, fg_samples: %d, gasg: %d, accu_charge: %d \n",
822 				di->bm->fg_res, di->fg_samples, val, di->accu_charge);
823 	return;
824 exit:
825 	dev_err(di->dev,
826 		"Failed to read or write gas gauge registers\n");
827 	mutex_unlock(&di->cc_lock);
828 	queue_work(di->fg_wq, &di->fg_work);
829 }
830 
831 /**
832  * ab8500_fg_bat_voltage() - get battery voltage
833  * @di:		pointer to the ab8500_fg structure
834  *
835  * Returns battery voltage(on success) else error code
836  */
ab8500_fg_bat_voltage(struct ab8500_fg * di)837 static int ab8500_fg_bat_voltage(struct ab8500_fg *di)
838 {
839 	int vbat;
840 	static int prev;
841 
842 	vbat = ab8500_gpadc_convert(di->gpadc, MAIN_BAT_V);
843 	if (vbat < 0) {
844 		dev_err(di->dev,
845 			"%s gpadc conversion failed, using previous value\n",
846 			__func__);
847 		return prev;
848 	}
849 
850 	prev = vbat;
851 	return vbat;
852 }
853 
854 /**
855  * ab8500_fg_volt_to_capacity() - Voltage based capacity
856  * @di:		pointer to the ab8500_fg structure
857  * @voltage:	The voltage to convert to a capacity
858  *
859  * Returns battery capacity in per mille based on voltage
860  */
ab8500_fg_volt_to_capacity(struct ab8500_fg * di,int voltage)861 static int ab8500_fg_volt_to_capacity(struct ab8500_fg *di, int voltage)
862 {
863 	int i, tbl_size;
864 	const struct abx500_v_to_cap *tbl;
865 	int cap = 0;
866 
867 	tbl = di->bm->bat_type[di->bm->batt_id].v_to_cap_tbl,
868 	tbl_size = di->bm->bat_type[di->bm->batt_id].n_v_cap_tbl_elements;
869 
870 	for (i = 0; i < tbl_size; ++i) {
871 		if (voltage > tbl[i].voltage)
872 			break;
873 	}
874 
875 	if ((i > 0) && (i < tbl_size)) {
876 		cap = interpolate(voltage,
877 			tbl[i].voltage,
878 			tbl[i].capacity * 10,
879 			tbl[i-1].voltage,
880 			tbl[i-1].capacity * 10);
881 	} else if (i == 0) {
882 		cap = 1000;
883 	} else {
884 		cap = 0;
885 	}
886 
887 	dev_dbg(di->dev, "%s Vbat: %d, Cap: %d per mille",
888 		__func__, voltage, cap);
889 
890 	return cap;
891 }
892 
893 /**
894  * ab8500_fg_uncomp_volt_to_capacity() - Uncompensated voltage based capacity
895  * @di:		pointer to the ab8500_fg structure
896  *
897  * Returns battery capacity based on battery voltage that is not compensated
898  * for the voltage drop due to the load
899  */
ab8500_fg_uncomp_volt_to_capacity(struct ab8500_fg * di)900 static int ab8500_fg_uncomp_volt_to_capacity(struct ab8500_fg *di)
901 {
902 	di->vbat = ab8500_fg_bat_voltage(di);
903 	return ab8500_fg_volt_to_capacity(di, di->vbat);
904 }
905 
906 /**
907  * ab8500_fg_battery_resistance() - Returns the battery inner resistance
908  * @di:		pointer to the ab8500_fg structure
909  *
910  * Returns battery inner resistance added with the fuel gauge resistor value
911  * to get the total resistance in the whole link from gnd to bat+ node.
912  */
ab8500_fg_battery_resistance(struct ab8500_fg * di)913 static int ab8500_fg_battery_resistance(struct ab8500_fg *di)
914 {
915 	int i, tbl_size;
916 	const struct batres_vs_temp *tbl;
917 	int resist = 0;
918 
919 	tbl = di->bm->bat_type[di->bm->batt_id].batres_tbl;
920 	tbl_size = di->bm->bat_type[di->bm->batt_id].n_batres_tbl_elements;
921 
922 	for (i = 0; i < tbl_size; ++i) {
923 		if (di->bat_temp / 10 > tbl[i].temp)
924 			break;
925 	}
926 
927 	if ((i > 0) && (i < tbl_size)) {
928 		resist = interpolate(di->bat_temp / 10,
929 			tbl[i].temp,
930 			tbl[i].resist,
931 			tbl[i-1].temp,
932 			tbl[i-1].resist);
933 	} else if (i == 0) {
934 		resist = tbl[0].resist;
935 	} else {
936 		resist = tbl[tbl_size - 1].resist;
937 	}
938 
939 	dev_dbg(di->dev, "%s Temp: %d battery internal resistance: %d"
940 	    " fg resistance %d, total: %d (mOhm)\n",
941 		__func__, di->bat_temp, resist, di->bm->fg_res / 10,
942 		(di->bm->fg_res / 10) + resist);
943 
944 	/* fg_res variable is in 0.1mOhm */
945 	resist += di->bm->fg_res / 10;
946 
947 	return resist;
948 }
949 
950 /**
951  * ab8500_fg_load_comp_volt_to_capacity() - Load compensated voltage based capacity
952  * @di:		pointer to the ab8500_fg structure
953  *
954  * Returns battery capacity based on battery voltage that is load compensated
955  * for the voltage drop
956  */
ab8500_fg_load_comp_volt_to_capacity(struct ab8500_fg * di)957 static int ab8500_fg_load_comp_volt_to_capacity(struct ab8500_fg *di)
958 {
959 	int vbat_comp, res;
960 	int i = 0;
961 	int vbat = 0;
962 
963 	ab8500_fg_inst_curr_start(di);
964 
965 	do {
966 		vbat += ab8500_fg_bat_voltage(di);
967 		i++;
968 		usleep_range(5000, 6000);
969 	} while (!ab8500_fg_inst_curr_done(di));
970 
971 	ab8500_fg_inst_curr_finalize(di, &di->inst_curr);
972 
973 	di->vbat = vbat / i;
974 	res = ab8500_fg_battery_resistance(di);
975 
976 	/* Use Ohms law to get the load compensated voltage */
977 	vbat_comp = di->vbat - (di->inst_curr * res) / 1000;
978 
979 	dev_dbg(di->dev, "%s Measured Vbat: %dmV,Compensated Vbat %dmV, "
980 		"R: %dmOhm, Current: %dmA Vbat Samples: %d\n",
981 		__func__, di->vbat, vbat_comp, res, di->inst_curr, i);
982 
983 	return ab8500_fg_volt_to_capacity(di, vbat_comp);
984 }
985 
986 /**
987  * ab8500_fg_convert_mah_to_permille() - Capacity in mAh to permille
988  * @di:		pointer to the ab8500_fg structure
989  * @cap_mah:	capacity in mAh
990  *
991  * Converts capacity in mAh to capacity in permille
992  */
ab8500_fg_convert_mah_to_permille(struct ab8500_fg * di,int cap_mah)993 static int ab8500_fg_convert_mah_to_permille(struct ab8500_fg *di, int cap_mah)
994 {
995 	return (cap_mah * 1000) / di->bat_cap.max_mah_design;
996 }
997 
998 /**
999  * ab8500_fg_convert_permille_to_mah() - Capacity in permille to mAh
1000  * @di:		pointer to the ab8500_fg structure
1001  * @cap_pm:	capacity in permille
1002  *
1003  * Converts capacity in permille to capacity in mAh
1004  */
ab8500_fg_convert_permille_to_mah(struct ab8500_fg * di,int cap_pm)1005 static int ab8500_fg_convert_permille_to_mah(struct ab8500_fg *di, int cap_pm)
1006 {
1007 	return cap_pm * di->bat_cap.max_mah_design / 1000;
1008 }
1009 
1010 /**
1011  * ab8500_fg_convert_mah_to_uwh() - Capacity in mAh to uWh
1012  * @di:		pointer to the ab8500_fg structure
1013  * @cap_mah:	capacity in mAh
1014  *
1015  * Converts capacity in mAh to capacity in uWh
1016  */
ab8500_fg_convert_mah_to_uwh(struct ab8500_fg * di,int cap_mah)1017 static int ab8500_fg_convert_mah_to_uwh(struct ab8500_fg *di, int cap_mah)
1018 {
1019 	u64 div_res;
1020 	u32 div_rem;
1021 
1022 	div_res = ((u64) cap_mah) * ((u64) di->vbat_nom);
1023 	div_rem = do_div(div_res, 1000);
1024 
1025 	/* Make sure to round upwards if necessary */
1026 	if (div_rem >= 1000 / 2)
1027 		div_res++;
1028 
1029 	return (int) div_res;
1030 }
1031 
1032 /**
1033  * ab8500_fg_calc_cap_charging() - Calculate remaining capacity while charging
1034  * @di:		pointer to the ab8500_fg structure
1035  *
1036  * Return the capacity in mAh based on previous calculated capcity and the FG
1037  * accumulator register value. The filter is filled with this capacity
1038  */
ab8500_fg_calc_cap_charging(struct ab8500_fg * di)1039 static int ab8500_fg_calc_cap_charging(struct ab8500_fg *di)
1040 {
1041 	dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1042 		__func__,
1043 		di->bat_cap.mah,
1044 		di->accu_charge);
1045 
1046 	/* Capacity should not be less than 0 */
1047 	if (di->bat_cap.mah + di->accu_charge > 0)
1048 		di->bat_cap.mah += di->accu_charge;
1049 	else
1050 		di->bat_cap.mah = 0;
1051 	/*
1052 	 * We force capacity to 100% once when the algorithm
1053 	 * reports that it's full.
1054 	 */
1055 	if (di->bat_cap.mah >= di->bat_cap.max_mah_design ||
1056 		di->flags.force_full) {
1057 		di->bat_cap.mah = di->bat_cap.max_mah_design;
1058 	}
1059 
1060 	ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1061 	di->bat_cap.permille =
1062 		ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1063 
1064 	/* We need to update battery voltage and inst current when charging */
1065 	di->vbat = ab8500_fg_bat_voltage(di);
1066 	di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1067 
1068 	return di->bat_cap.mah;
1069 }
1070 
1071 /**
1072  * ab8500_fg_calc_cap_discharge_voltage() - Capacity in discharge with voltage
1073  * @di:		pointer to the ab8500_fg structure
1074  * @comp:	if voltage should be load compensated before capacity calc
1075  *
1076  * Return the capacity in mAh based on the battery voltage. The voltage can
1077  * either be load compensated or not. This value is added to the filter and a
1078  * new mean value is calculated and returned.
1079  */
ab8500_fg_calc_cap_discharge_voltage(struct ab8500_fg * di,bool comp)1080 static int ab8500_fg_calc_cap_discharge_voltage(struct ab8500_fg *di, bool comp)
1081 {
1082 	int permille, mah;
1083 
1084 	if (comp)
1085 		permille = ab8500_fg_load_comp_volt_to_capacity(di);
1086 	else
1087 		permille = ab8500_fg_uncomp_volt_to_capacity(di);
1088 
1089 	mah = ab8500_fg_convert_permille_to_mah(di, permille);
1090 
1091 	di->bat_cap.mah = ab8500_fg_add_cap_sample(di, mah);
1092 	di->bat_cap.permille =
1093 		ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1094 
1095 	return di->bat_cap.mah;
1096 }
1097 
1098 /**
1099  * ab8500_fg_calc_cap_discharge_fg() - Capacity in discharge with FG
1100  * @di:		pointer to the ab8500_fg structure
1101  *
1102  * Return the capacity in mAh based on previous calculated capcity and the FG
1103  * accumulator register value. This value is added to the filter and a
1104  * new mean value is calculated and returned.
1105  */
ab8500_fg_calc_cap_discharge_fg(struct ab8500_fg * di)1106 static int ab8500_fg_calc_cap_discharge_fg(struct ab8500_fg *di)
1107 {
1108 	int permille_volt, permille;
1109 
1110 	dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1111 		__func__,
1112 		di->bat_cap.mah,
1113 		di->accu_charge);
1114 
1115 	/* Capacity should not be less than 0 */
1116 	if (di->bat_cap.mah + di->accu_charge > 0)
1117 		di->bat_cap.mah += di->accu_charge;
1118 	else
1119 		di->bat_cap.mah = 0;
1120 
1121 	if (di->bat_cap.mah >= di->bat_cap.max_mah_design)
1122 		di->bat_cap.mah = di->bat_cap.max_mah_design;
1123 
1124 	/*
1125 	 * Check against voltage based capacity. It can not be lower
1126 	 * than what the uncompensated voltage says
1127 	 */
1128 	permille = ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1129 	permille_volt = ab8500_fg_uncomp_volt_to_capacity(di);
1130 
1131 	if (permille < permille_volt) {
1132 		di->bat_cap.permille = permille_volt;
1133 		di->bat_cap.mah = ab8500_fg_convert_permille_to_mah(di,
1134 			di->bat_cap.permille);
1135 
1136 		dev_dbg(di->dev, "%s voltage based: perm %d perm_volt %d\n",
1137 			__func__,
1138 			permille,
1139 			permille_volt);
1140 
1141 		ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1142 	} else {
1143 		ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1144 		di->bat_cap.permille =
1145 			ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1146 	}
1147 
1148 	return di->bat_cap.mah;
1149 }
1150 
1151 /**
1152  * ab8500_fg_capacity_level() - Get the battery capacity level
1153  * @di:		pointer to the ab8500_fg structure
1154  *
1155  * Get the battery capacity level based on the capacity in percent
1156  */
ab8500_fg_capacity_level(struct ab8500_fg * di)1157 static int ab8500_fg_capacity_level(struct ab8500_fg *di)
1158 {
1159 	int ret, percent;
1160 
1161 	percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10);
1162 
1163 	if (percent <= di->bm->cap_levels->critical ||
1164 		di->flags.low_bat)
1165 		ret = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1166 	else if (percent <= di->bm->cap_levels->low)
1167 		ret = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1168 	else if (percent <= di->bm->cap_levels->normal)
1169 		ret = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1170 	else if (percent <= di->bm->cap_levels->high)
1171 		ret = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
1172 	else
1173 		ret = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1174 
1175 	return ret;
1176 }
1177 
1178 /**
1179  * ab8500_fg_calculate_scaled_capacity() - Capacity scaling
1180  * @di:		pointer to the ab8500_fg structure
1181  *
1182  * Calculates the capacity to be shown to upper layers. Scales the capacity
1183  * to have 100% as a reference from the actual capacity upon removal of charger
1184  * when charging is in maintenance mode.
1185  */
ab8500_fg_calculate_scaled_capacity(struct ab8500_fg * di)1186 static int ab8500_fg_calculate_scaled_capacity(struct ab8500_fg *di)
1187 {
1188 	struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale;
1189 	int capacity = di->bat_cap.prev_percent;
1190 
1191 	if (!cs->enable)
1192 		return capacity;
1193 
1194 	/*
1195 	 * As long as we are in fully charge mode scale the capacity
1196 	 * to show 100%.
1197 	 */
1198 	if (di->flags.fully_charged) {
1199 		cs->cap_to_scale[0] = 100;
1200 		cs->cap_to_scale[1] =
1201 			max(capacity, di->bm->fg_params->maint_thres);
1202 		dev_dbg(di->dev, "Scale cap with %d/%d\n",
1203 			 cs->cap_to_scale[0], cs->cap_to_scale[1]);
1204 	}
1205 
1206 	/* Calculates the scaled capacity. */
1207 	if ((cs->cap_to_scale[0] != cs->cap_to_scale[1])
1208 					&& (cs->cap_to_scale[1] > 0))
1209 		capacity = min(100,
1210 				 DIV_ROUND_CLOSEST(di->bat_cap.prev_percent *
1211 						 cs->cap_to_scale[0],
1212 						 cs->cap_to_scale[1]));
1213 
1214 	if (di->flags.charging) {
1215 		if (capacity < cs->disable_cap_level) {
1216 			cs->disable_cap_level = capacity;
1217 			dev_dbg(di->dev, "Cap to stop scale lowered %d%%\n",
1218 				cs->disable_cap_level);
1219 		} else if (!di->flags.fully_charged) {
1220 			if (di->bat_cap.prev_percent >=
1221 			    cs->disable_cap_level) {
1222 				dev_dbg(di->dev, "Disabling scaled capacity\n");
1223 				cs->enable = false;
1224 				capacity = di->bat_cap.prev_percent;
1225 			} else {
1226 				dev_dbg(di->dev,
1227 					"Waiting in cap to level %d%%\n",
1228 					cs->disable_cap_level);
1229 				capacity = cs->disable_cap_level;
1230 			}
1231 		}
1232 	}
1233 
1234 	return capacity;
1235 }
1236 
1237 /**
1238  * ab8500_fg_update_cap_scalers() - Capacity scaling
1239  * @di:		pointer to the ab8500_fg structure
1240  *
1241  * To be called when state change from charge<->discharge to update
1242  * the capacity scalers.
1243  */
ab8500_fg_update_cap_scalers(struct ab8500_fg * di)1244 static void ab8500_fg_update_cap_scalers(struct ab8500_fg *di)
1245 {
1246 	struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale;
1247 
1248 	if (!cs->enable)
1249 		return;
1250 	if (di->flags.charging) {
1251 		di->bat_cap.cap_scale.disable_cap_level =
1252 			di->bat_cap.cap_scale.scaled_cap;
1253 		dev_dbg(di->dev, "Cap to stop scale at charge %d%%\n",
1254 				di->bat_cap.cap_scale.disable_cap_level);
1255 	} else {
1256 		if (cs->scaled_cap != 100) {
1257 			cs->cap_to_scale[0] = cs->scaled_cap;
1258 			cs->cap_to_scale[1] = di->bat_cap.prev_percent;
1259 		} else {
1260 			cs->cap_to_scale[0] = 100;
1261 			cs->cap_to_scale[1] =
1262 				max(di->bat_cap.prev_percent,
1263 				    di->bm->fg_params->maint_thres);
1264 		}
1265 
1266 		dev_dbg(di->dev, "Cap to scale at discharge %d/%d\n",
1267 				cs->cap_to_scale[0], cs->cap_to_scale[1]);
1268 	}
1269 }
1270 
1271 /**
1272  * ab8500_fg_check_capacity_limits() - Check if capacity has changed
1273  * @di:		pointer to the ab8500_fg structure
1274  * @init:	capacity is allowed to go up in init mode
1275  *
1276  * Check if capacity or capacity limit has changed and notify the system
1277  * about it using the power_supply framework
1278  */
ab8500_fg_check_capacity_limits(struct ab8500_fg * di,bool init)1279 static void ab8500_fg_check_capacity_limits(struct ab8500_fg *di, bool init)
1280 {
1281 	bool changed = false;
1282 	int percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10);
1283 
1284 	di->bat_cap.level = ab8500_fg_capacity_level(di);
1285 
1286 	if (di->bat_cap.level != di->bat_cap.prev_level) {
1287 		/*
1288 		 * We do not allow reported capacity level to go up
1289 		 * unless we're charging or if we're in init
1290 		 */
1291 		if (!(!di->flags.charging && di->bat_cap.level >
1292 			di->bat_cap.prev_level) || init) {
1293 			dev_dbg(di->dev, "level changed from %d to %d\n",
1294 				di->bat_cap.prev_level,
1295 				di->bat_cap.level);
1296 			di->bat_cap.prev_level = di->bat_cap.level;
1297 			changed = true;
1298 		} else {
1299 			dev_dbg(di->dev, "level not allowed to go up "
1300 				"since no charger is connected: %d to %d\n",
1301 				di->bat_cap.prev_level,
1302 				di->bat_cap.level);
1303 		}
1304 	}
1305 
1306 	/*
1307 	 * If we have received the LOW_BAT IRQ, set capacity to 0 to initiate
1308 	 * shutdown
1309 	 */
1310 	if (di->flags.low_bat) {
1311 		dev_dbg(di->dev, "Battery low, set capacity to 0\n");
1312 		di->bat_cap.prev_percent = 0;
1313 		di->bat_cap.permille = 0;
1314 		percent = 0;
1315 		di->bat_cap.prev_mah = 0;
1316 		di->bat_cap.mah = 0;
1317 		changed = true;
1318 	} else if (di->flags.fully_charged) {
1319 		/*
1320 		 * We report 100% if algorithm reported fully charged
1321 		 * and show 100% during maintenance charging (scaling).
1322 		 */
1323 		if (di->flags.force_full) {
1324 			di->bat_cap.prev_percent = percent;
1325 			di->bat_cap.prev_mah = di->bat_cap.mah;
1326 
1327 			changed = true;
1328 
1329 			if (!di->bat_cap.cap_scale.enable &&
1330 						di->bm->capacity_scaling) {
1331 				di->bat_cap.cap_scale.enable = true;
1332 				di->bat_cap.cap_scale.cap_to_scale[0] = 100;
1333 				di->bat_cap.cap_scale.cap_to_scale[1] =
1334 						di->bat_cap.prev_percent;
1335 				di->bat_cap.cap_scale.disable_cap_level = 100;
1336 			}
1337 		} else if (di->bat_cap.prev_percent != percent) {
1338 			dev_dbg(di->dev,
1339 				"battery reported full "
1340 				"but capacity dropping: %d\n",
1341 				percent);
1342 			di->bat_cap.prev_percent = percent;
1343 			di->bat_cap.prev_mah = di->bat_cap.mah;
1344 
1345 			changed = true;
1346 		}
1347 	} else if (di->bat_cap.prev_percent != percent) {
1348 		if (percent == 0) {
1349 			/*
1350 			 * We will not report 0% unless we've got
1351 			 * the LOW_BAT IRQ, no matter what the FG
1352 			 * algorithm says.
1353 			 */
1354 			di->bat_cap.prev_percent = 1;
1355 			percent = 1;
1356 
1357 			changed = true;
1358 		} else if (!(!di->flags.charging &&
1359 			percent > di->bat_cap.prev_percent) || init) {
1360 			/*
1361 			 * We do not allow reported capacity to go up
1362 			 * unless we're charging or if we're in init
1363 			 */
1364 			dev_dbg(di->dev,
1365 				"capacity changed from %d to %d (%d)\n",
1366 				di->bat_cap.prev_percent,
1367 				percent,
1368 				di->bat_cap.permille);
1369 			di->bat_cap.prev_percent = percent;
1370 			di->bat_cap.prev_mah = di->bat_cap.mah;
1371 
1372 			changed = true;
1373 		} else {
1374 			dev_dbg(di->dev, "capacity not allowed to go up since "
1375 				"no charger is connected: %d to %d (%d)\n",
1376 				di->bat_cap.prev_percent,
1377 				percent,
1378 				di->bat_cap.permille);
1379 		}
1380 	}
1381 
1382 	if (changed) {
1383 		if (di->bm->capacity_scaling) {
1384 			di->bat_cap.cap_scale.scaled_cap =
1385 				ab8500_fg_calculate_scaled_capacity(di);
1386 
1387 			dev_info(di->dev, "capacity=%d (%d)\n",
1388 				di->bat_cap.prev_percent,
1389 				di->bat_cap.cap_scale.scaled_cap);
1390 		}
1391 		power_supply_changed(di->fg_psy);
1392 		if (di->flags.fully_charged && di->flags.force_full) {
1393 			dev_dbg(di->dev, "Battery full, notifying.\n");
1394 			di->flags.force_full = false;
1395 			sysfs_notify(&di->fg_kobject, NULL, "charge_full");
1396 		}
1397 		sysfs_notify(&di->fg_kobject, NULL, "charge_now");
1398 	}
1399 }
1400 
ab8500_fg_charge_state_to(struct ab8500_fg * di,enum ab8500_fg_charge_state new_state)1401 static void ab8500_fg_charge_state_to(struct ab8500_fg *di,
1402 	enum ab8500_fg_charge_state new_state)
1403 {
1404 	dev_dbg(di->dev, "Charge state from %d [%s] to %d [%s]\n",
1405 		di->charge_state,
1406 		charge_state[di->charge_state],
1407 		new_state,
1408 		charge_state[new_state]);
1409 
1410 	di->charge_state = new_state;
1411 }
1412 
ab8500_fg_discharge_state_to(struct ab8500_fg * di,enum ab8500_fg_discharge_state new_state)1413 static void ab8500_fg_discharge_state_to(struct ab8500_fg *di,
1414 	enum ab8500_fg_discharge_state new_state)
1415 {
1416 	dev_dbg(di->dev, "Disharge state from %d [%s] to %d [%s]\n",
1417 		di->discharge_state,
1418 		discharge_state[di->discharge_state],
1419 		new_state,
1420 		discharge_state[new_state]);
1421 
1422 	di->discharge_state = new_state;
1423 }
1424 
1425 /**
1426  * ab8500_fg_algorithm_charging() - FG algorithm for when charging
1427  * @di:		pointer to the ab8500_fg structure
1428  *
1429  * Battery capacity calculation state machine for when we're charging
1430  */
ab8500_fg_algorithm_charging(struct ab8500_fg * di)1431 static void ab8500_fg_algorithm_charging(struct ab8500_fg *di)
1432 {
1433 	/*
1434 	 * If we change to discharge mode
1435 	 * we should start with recovery
1436 	 */
1437 	if (di->discharge_state != AB8500_FG_DISCHARGE_INIT_RECOVERY)
1438 		ab8500_fg_discharge_state_to(di,
1439 			AB8500_FG_DISCHARGE_INIT_RECOVERY);
1440 
1441 	switch (di->charge_state) {
1442 	case AB8500_FG_CHARGE_INIT:
1443 		di->fg_samples = SEC_TO_SAMPLE(
1444 			di->bm->fg_params->accu_charging);
1445 
1446 		ab8500_fg_coulomb_counter(di, true);
1447 		ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_READOUT);
1448 
1449 		break;
1450 
1451 	case AB8500_FG_CHARGE_READOUT:
1452 		/*
1453 		 * Read the FG and calculate the new capacity
1454 		 */
1455 		mutex_lock(&di->cc_lock);
1456 		if (!di->flags.conv_done && !di->flags.force_full) {
1457 			/* Wasn't the CC IRQ that got us here */
1458 			mutex_unlock(&di->cc_lock);
1459 			dev_dbg(di->dev, "%s CC conv not done\n",
1460 				__func__);
1461 
1462 			break;
1463 		}
1464 		di->flags.conv_done = false;
1465 		mutex_unlock(&di->cc_lock);
1466 
1467 		ab8500_fg_calc_cap_charging(di);
1468 
1469 		break;
1470 
1471 	default:
1472 		break;
1473 	}
1474 
1475 	/* Check capacity limits */
1476 	ab8500_fg_check_capacity_limits(di, false);
1477 }
1478 
force_capacity(struct ab8500_fg * di)1479 static void force_capacity(struct ab8500_fg *di)
1480 {
1481 	int cap;
1482 
1483 	ab8500_fg_clear_cap_samples(di);
1484 	cap = di->bat_cap.user_mah;
1485 	if (cap > di->bat_cap.max_mah_design) {
1486 		dev_dbg(di->dev, "Remaining cap %d can't be bigger than total"
1487 			" %d\n", cap, di->bat_cap.max_mah_design);
1488 		cap = di->bat_cap.max_mah_design;
1489 	}
1490 	ab8500_fg_fill_cap_sample(di, di->bat_cap.user_mah);
1491 	di->bat_cap.permille = ab8500_fg_convert_mah_to_permille(di, cap);
1492 	di->bat_cap.mah = cap;
1493 	ab8500_fg_check_capacity_limits(di, true);
1494 }
1495 
check_sysfs_capacity(struct ab8500_fg * di)1496 static bool check_sysfs_capacity(struct ab8500_fg *di)
1497 {
1498 	int cap, lower, upper;
1499 	int cap_permille;
1500 
1501 	cap = di->bat_cap.user_mah;
1502 
1503 	cap_permille = ab8500_fg_convert_mah_to_permille(di,
1504 		di->bat_cap.user_mah);
1505 
1506 	lower = di->bat_cap.permille - di->bm->fg_params->user_cap_limit * 10;
1507 	upper = di->bat_cap.permille + di->bm->fg_params->user_cap_limit * 10;
1508 
1509 	if (lower < 0)
1510 		lower = 0;
1511 	/* 1000 is permille, -> 100 percent */
1512 	if (upper > 1000)
1513 		upper = 1000;
1514 
1515 	dev_dbg(di->dev, "Capacity limits:"
1516 		" (Lower: %d User: %d Upper: %d) [user: %d, was: %d]\n",
1517 		lower, cap_permille, upper, cap, di->bat_cap.mah);
1518 
1519 	/* If within limits, use the saved capacity and exit estimation...*/
1520 	if (cap_permille > lower && cap_permille < upper) {
1521 		dev_dbg(di->dev, "OK! Using users cap %d uAh now\n", cap);
1522 		force_capacity(di);
1523 		return true;
1524 	}
1525 	dev_dbg(di->dev, "Capacity from user out of limits, ignoring");
1526 	return false;
1527 }
1528 
1529 /**
1530  * ab8500_fg_algorithm_discharging() - FG algorithm for when discharging
1531  * @di:		pointer to the ab8500_fg structure
1532  *
1533  * Battery capacity calculation state machine for when we're discharging
1534  */
ab8500_fg_algorithm_discharging(struct ab8500_fg * di)1535 static void ab8500_fg_algorithm_discharging(struct ab8500_fg *di)
1536 {
1537 	int sleep_time;
1538 
1539 	/* If we change to charge mode we should start with init */
1540 	if (di->charge_state != AB8500_FG_CHARGE_INIT)
1541 		ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
1542 
1543 	switch (di->discharge_state) {
1544 	case AB8500_FG_DISCHARGE_INIT:
1545 		/* We use the FG IRQ to work on */
1546 		di->init_cnt = 0;
1547 		di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
1548 		ab8500_fg_coulomb_counter(di, true);
1549 		ab8500_fg_discharge_state_to(di,
1550 			AB8500_FG_DISCHARGE_INITMEASURING);
1551 
1552 		/* Intentional fallthrough */
1553 	case AB8500_FG_DISCHARGE_INITMEASURING:
1554 		/*
1555 		 * Discard a number of samples during startup.
1556 		 * After that, use compensated voltage for a few
1557 		 * samples to get an initial capacity.
1558 		 * Then go to READOUT
1559 		 */
1560 		sleep_time = di->bm->fg_params->init_timer;
1561 
1562 		/* Discard the first [x] seconds */
1563 		if (di->init_cnt > di->bm->fg_params->init_discard_time) {
1564 			ab8500_fg_calc_cap_discharge_voltage(di, true);
1565 
1566 			ab8500_fg_check_capacity_limits(di, true);
1567 		}
1568 
1569 		di->init_cnt += sleep_time;
1570 		if (di->init_cnt > di->bm->fg_params->init_total_time)
1571 			ab8500_fg_discharge_state_to(di,
1572 				AB8500_FG_DISCHARGE_READOUT_INIT);
1573 
1574 		break;
1575 
1576 	case AB8500_FG_DISCHARGE_INIT_RECOVERY:
1577 		di->recovery_cnt = 0;
1578 		di->recovery_needed = true;
1579 		ab8500_fg_discharge_state_to(di,
1580 			AB8500_FG_DISCHARGE_RECOVERY);
1581 
1582 		/* Intentional fallthrough */
1583 
1584 	case AB8500_FG_DISCHARGE_RECOVERY:
1585 		sleep_time = di->bm->fg_params->recovery_sleep_timer;
1586 
1587 		/*
1588 		 * We should check the power consumption
1589 		 * If low, go to READOUT (after x min) or
1590 		 * RECOVERY_SLEEP if time left.
1591 		 * If high, go to READOUT
1592 		 */
1593 		di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1594 
1595 		if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1596 			if (di->recovery_cnt >
1597 				di->bm->fg_params->recovery_total_time) {
1598 				di->fg_samples = SEC_TO_SAMPLE(
1599 					di->bm->fg_params->accu_high_curr);
1600 				ab8500_fg_coulomb_counter(di, true);
1601 				ab8500_fg_discharge_state_to(di,
1602 					AB8500_FG_DISCHARGE_READOUT);
1603 				di->recovery_needed = false;
1604 			} else {
1605 				queue_delayed_work(di->fg_wq,
1606 					&di->fg_periodic_work,
1607 					sleep_time * HZ);
1608 			}
1609 			di->recovery_cnt += sleep_time;
1610 		} else {
1611 			di->fg_samples = SEC_TO_SAMPLE(
1612 				di->bm->fg_params->accu_high_curr);
1613 			ab8500_fg_coulomb_counter(di, true);
1614 			ab8500_fg_discharge_state_to(di,
1615 				AB8500_FG_DISCHARGE_READOUT);
1616 		}
1617 		break;
1618 
1619 	case AB8500_FG_DISCHARGE_READOUT_INIT:
1620 		di->fg_samples = SEC_TO_SAMPLE(
1621 			di->bm->fg_params->accu_high_curr);
1622 		ab8500_fg_coulomb_counter(di, true);
1623 		ab8500_fg_discharge_state_to(di,
1624 				AB8500_FG_DISCHARGE_READOUT);
1625 		break;
1626 
1627 	case AB8500_FG_DISCHARGE_READOUT:
1628 		di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1629 
1630 		if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1631 			/* Detect mode change */
1632 			if (di->high_curr_mode) {
1633 				di->high_curr_mode = false;
1634 				di->high_curr_cnt = 0;
1635 			}
1636 
1637 			if (di->recovery_needed) {
1638 				ab8500_fg_discharge_state_to(di,
1639 					AB8500_FG_DISCHARGE_INIT_RECOVERY);
1640 
1641 				queue_delayed_work(di->fg_wq,
1642 					&di->fg_periodic_work, 0);
1643 
1644 				break;
1645 			}
1646 
1647 			ab8500_fg_calc_cap_discharge_voltage(di, true);
1648 		} else {
1649 			mutex_lock(&di->cc_lock);
1650 			if (!di->flags.conv_done) {
1651 				/* Wasn't the CC IRQ that got us here */
1652 				mutex_unlock(&di->cc_lock);
1653 				dev_dbg(di->dev, "%s CC conv not done\n",
1654 					__func__);
1655 
1656 				break;
1657 			}
1658 			di->flags.conv_done = false;
1659 			mutex_unlock(&di->cc_lock);
1660 
1661 			/* Detect mode change */
1662 			if (!di->high_curr_mode) {
1663 				di->high_curr_mode = true;
1664 				di->high_curr_cnt = 0;
1665 			}
1666 
1667 			di->high_curr_cnt +=
1668 				di->bm->fg_params->accu_high_curr;
1669 			if (di->high_curr_cnt >
1670 				di->bm->fg_params->high_curr_time)
1671 				di->recovery_needed = true;
1672 
1673 			ab8500_fg_calc_cap_discharge_fg(di);
1674 		}
1675 
1676 		ab8500_fg_check_capacity_limits(di, false);
1677 
1678 		break;
1679 
1680 	case AB8500_FG_DISCHARGE_WAKEUP:
1681 		ab8500_fg_calc_cap_discharge_voltage(di, true);
1682 
1683 		di->fg_samples = SEC_TO_SAMPLE(
1684 			di->bm->fg_params->accu_high_curr);
1685 		ab8500_fg_coulomb_counter(di, true);
1686 		ab8500_fg_discharge_state_to(di,
1687 				AB8500_FG_DISCHARGE_READOUT);
1688 
1689 		ab8500_fg_check_capacity_limits(di, false);
1690 
1691 		break;
1692 
1693 	default:
1694 		break;
1695 	}
1696 }
1697 
1698 /**
1699  * ab8500_fg_algorithm_calibrate() - Internal columb counter offset calibration
1700  * @di:		pointer to the ab8500_fg structure
1701  *
1702  */
ab8500_fg_algorithm_calibrate(struct ab8500_fg * di)1703 static void ab8500_fg_algorithm_calibrate(struct ab8500_fg *di)
1704 {
1705 	int ret;
1706 
1707 	switch (di->calib_state) {
1708 	case AB8500_FG_CALIB_INIT:
1709 		dev_dbg(di->dev, "Calibration ongoing...\n");
1710 
1711 		ret = abx500_mask_and_set_register_interruptible(di->dev,
1712 			AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1713 			CC_INT_CAL_N_AVG_MASK, CC_INT_CAL_SAMPLES_8);
1714 		if (ret < 0)
1715 			goto err;
1716 
1717 		ret = abx500_mask_and_set_register_interruptible(di->dev,
1718 			AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1719 			CC_INTAVGOFFSET_ENA, CC_INTAVGOFFSET_ENA);
1720 		if (ret < 0)
1721 			goto err;
1722 		di->calib_state = AB8500_FG_CALIB_WAIT;
1723 		break;
1724 	case AB8500_FG_CALIB_END:
1725 		ret = abx500_mask_and_set_register_interruptible(di->dev,
1726 			AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1727 			CC_MUXOFFSET, CC_MUXOFFSET);
1728 		if (ret < 0)
1729 			goto err;
1730 		di->flags.calibrate = false;
1731 		dev_dbg(di->dev, "Calibration done...\n");
1732 		queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1733 		break;
1734 	case AB8500_FG_CALIB_WAIT:
1735 		dev_dbg(di->dev, "Calibration WFI\n");
1736 	default:
1737 		break;
1738 	}
1739 	return;
1740 err:
1741 	/* Something went wrong, don't calibrate then */
1742 	dev_err(di->dev, "failed to calibrate the CC\n");
1743 	di->flags.calibrate = false;
1744 	di->calib_state = AB8500_FG_CALIB_INIT;
1745 	queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1746 }
1747 
1748 /**
1749  * ab8500_fg_algorithm() - Entry point for the FG algorithm
1750  * @di:		pointer to the ab8500_fg structure
1751  *
1752  * Entry point for the battery capacity calculation state machine
1753  */
ab8500_fg_algorithm(struct ab8500_fg * di)1754 static void ab8500_fg_algorithm(struct ab8500_fg *di)
1755 {
1756 	if (di->flags.calibrate)
1757 		ab8500_fg_algorithm_calibrate(di);
1758 	else {
1759 		if (di->flags.charging)
1760 			ab8500_fg_algorithm_charging(di);
1761 		else
1762 			ab8500_fg_algorithm_discharging(di);
1763 	}
1764 
1765 	dev_dbg(di->dev, "[FG_DATA] %d %d %d %d %d %d %d %d %d %d "
1766 		"%d %d %d %d %d %d %d\n",
1767 		di->bat_cap.max_mah_design,
1768 		di->bat_cap.max_mah,
1769 		di->bat_cap.mah,
1770 		di->bat_cap.permille,
1771 		di->bat_cap.level,
1772 		di->bat_cap.prev_mah,
1773 		di->bat_cap.prev_percent,
1774 		di->bat_cap.prev_level,
1775 		di->vbat,
1776 		di->inst_curr,
1777 		di->avg_curr,
1778 		di->accu_charge,
1779 		di->flags.charging,
1780 		di->charge_state,
1781 		di->discharge_state,
1782 		di->high_curr_mode,
1783 		di->recovery_needed);
1784 }
1785 
1786 /**
1787  * ab8500_fg_periodic_work() - Run the FG state machine periodically
1788  * @work:	pointer to the work_struct structure
1789  *
1790  * Work queue function for periodic work
1791  */
ab8500_fg_periodic_work(struct work_struct * work)1792 static void ab8500_fg_periodic_work(struct work_struct *work)
1793 {
1794 	struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1795 		fg_periodic_work.work);
1796 
1797 	if (di->init_capacity) {
1798 		/* Get an initial capacity calculation */
1799 		ab8500_fg_calc_cap_discharge_voltage(di, true);
1800 		ab8500_fg_check_capacity_limits(di, true);
1801 		di->init_capacity = false;
1802 
1803 		queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1804 	} else if (di->flags.user_cap) {
1805 		if (check_sysfs_capacity(di)) {
1806 			ab8500_fg_check_capacity_limits(di, true);
1807 			if (di->flags.charging)
1808 				ab8500_fg_charge_state_to(di,
1809 					AB8500_FG_CHARGE_INIT);
1810 			else
1811 				ab8500_fg_discharge_state_to(di,
1812 					AB8500_FG_DISCHARGE_READOUT_INIT);
1813 		}
1814 		di->flags.user_cap = false;
1815 		queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1816 	} else
1817 		ab8500_fg_algorithm(di);
1818 
1819 }
1820 
1821 /**
1822  * ab8500_fg_check_hw_failure_work() - Check OVV_BAT condition
1823  * @work:	pointer to the work_struct structure
1824  *
1825  * Work queue function for checking the OVV_BAT condition
1826  */
ab8500_fg_check_hw_failure_work(struct work_struct * work)1827 static void ab8500_fg_check_hw_failure_work(struct work_struct *work)
1828 {
1829 	int ret;
1830 	u8 reg_value;
1831 
1832 	struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1833 		fg_check_hw_failure_work.work);
1834 
1835 	/*
1836 	 * If we have had a battery over-voltage situation,
1837 	 * check ovv-bit to see if it should be reset.
1838 	 */
1839 	ret = abx500_get_register_interruptible(di->dev,
1840 		AB8500_CHARGER, AB8500_CH_STAT_REG,
1841 		&reg_value);
1842 	if (ret < 0) {
1843 		dev_err(di->dev, "%s ab8500 read failed\n", __func__);
1844 		return;
1845 	}
1846 	if ((reg_value & BATT_OVV) == BATT_OVV) {
1847 		if (!di->flags.bat_ovv) {
1848 			dev_dbg(di->dev, "Battery OVV\n");
1849 			di->flags.bat_ovv = true;
1850 			power_supply_changed(di->fg_psy);
1851 		}
1852 		/* Not yet recovered from ovv, reschedule this test */
1853 		queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work,
1854 				   HZ);
1855 		} else {
1856 			dev_dbg(di->dev, "Battery recovered from OVV\n");
1857 			di->flags.bat_ovv = false;
1858 			power_supply_changed(di->fg_psy);
1859 	}
1860 }
1861 
1862 /**
1863  * ab8500_fg_low_bat_work() - Check LOW_BAT condition
1864  * @work:	pointer to the work_struct structure
1865  *
1866  * Work queue function for checking the LOW_BAT condition
1867  */
ab8500_fg_low_bat_work(struct work_struct * work)1868 static void ab8500_fg_low_bat_work(struct work_struct *work)
1869 {
1870 	int vbat;
1871 
1872 	struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1873 		fg_low_bat_work.work);
1874 
1875 	vbat = ab8500_fg_bat_voltage(di);
1876 
1877 	/* Check if LOW_BAT still fulfilled */
1878 	if (vbat < di->bm->fg_params->lowbat_threshold) {
1879 		/* Is it time to shut down? */
1880 		if (di->low_bat_cnt < 1) {
1881 			di->flags.low_bat = true;
1882 			dev_warn(di->dev, "Shut down pending...\n");
1883 		} else {
1884 			/*
1885 			* Else we need to re-schedule this check to be able to detect
1886 			* if the voltage increases again during charging or
1887 			* due to decreasing load.
1888 			*/
1889 			di->low_bat_cnt--;
1890 			dev_warn(di->dev, "Battery voltage still LOW\n");
1891 			queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
1892 				round_jiffies(LOW_BAT_CHECK_INTERVAL));
1893 		}
1894 	} else {
1895 		di->flags.low_bat_delay = false;
1896 		di->low_bat_cnt = 10;
1897 		dev_warn(di->dev, "Battery voltage OK again\n");
1898 	}
1899 
1900 	/* This is needed to dispatch LOW_BAT */
1901 	ab8500_fg_check_capacity_limits(di, false);
1902 }
1903 
1904 /**
1905  * ab8500_fg_battok_calc - calculate the bit pattern corresponding
1906  * to the target voltage.
1907  * @di:       pointer to the ab8500_fg structure
1908  * @target    target voltage
1909  *
1910  * Returns bit pattern closest to the target voltage
1911  * valid return values are 0-14. (0-BATT_OK_MAX_NR_INCREMENTS)
1912  */
1913 
ab8500_fg_battok_calc(struct ab8500_fg * di,int target)1914 static int ab8500_fg_battok_calc(struct ab8500_fg *di, int target)
1915 {
1916 	if (target > BATT_OK_MIN +
1917 		(BATT_OK_INCREMENT * BATT_OK_MAX_NR_INCREMENTS))
1918 		return BATT_OK_MAX_NR_INCREMENTS;
1919 	if (target < BATT_OK_MIN)
1920 		return 0;
1921 	return (target - BATT_OK_MIN) / BATT_OK_INCREMENT;
1922 }
1923 
1924 /**
1925  * ab8500_fg_battok_init_hw_register - init battok levels
1926  * @di:       pointer to the ab8500_fg structure
1927  *
1928  */
1929 
ab8500_fg_battok_init_hw_register(struct ab8500_fg * di)1930 static int ab8500_fg_battok_init_hw_register(struct ab8500_fg *di)
1931 {
1932 	int selected;
1933 	int sel0;
1934 	int sel1;
1935 	int cbp_sel0;
1936 	int cbp_sel1;
1937 	int ret;
1938 	int new_val;
1939 
1940 	sel0 = di->bm->fg_params->battok_falling_th_sel0;
1941 	sel1 = di->bm->fg_params->battok_raising_th_sel1;
1942 
1943 	cbp_sel0 = ab8500_fg_battok_calc(di, sel0);
1944 	cbp_sel1 = ab8500_fg_battok_calc(di, sel1);
1945 
1946 	selected = BATT_OK_MIN + cbp_sel0 * BATT_OK_INCREMENT;
1947 
1948 	if (selected != sel0)
1949 		dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1950 			sel0, selected, cbp_sel0);
1951 
1952 	selected = BATT_OK_MIN + cbp_sel1 * BATT_OK_INCREMENT;
1953 
1954 	if (selected != sel1)
1955 		dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1956 			sel1, selected, cbp_sel1);
1957 
1958 	new_val = cbp_sel0 | (cbp_sel1 << 4);
1959 
1960 	dev_dbg(di->dev, "using: %x %d %d\n", new_val, cbp_sel0, cbp_sel1);
1961 	ret = abx500_set_register_interruptible(di->dev, AB8500_SYS_CTRL2_BLOCK,
1962 		AB8500_BATT_OK_REG, new_val);
1963 	return ret;
1964 }
1965 
1966 /**
1967  * ab8500_fg_instant_work() - Run the FG state machine instantly
1968  * @work:	pointer to the work_struct structure
1969  *
1970  * Work queue function for instant work
1971  */
ab8500_fg_instant_work(struct work_struct * work)1972 static void ab8500_fg_instant_work(struct work_struct *work)
1973 {
1974 	struct ab8500_fg *di = container_of(work, struct ab8500_fg, fg_work);
1975 
1976 	ab8500_fg_algorithm(di);
1977 }
1978 
1979 /**
1980  * ab8500_fg_cc_data_end_handler() - end of data conversion isr.
1981  * @irq:       interrupt number
1982  * @_di:       pointer to the ab8500_fg structure
1983  *
1984  * Returns IRQ status(IRQ_HANDLED)
1985  */
ab8500_fg_cc_data_end_handler(int irq,void * _di)1986 static irqreturn_t ab8500_fg_cc_data_end_handler(int irq, void *_di)
1987 {
1988 	struct ab8500_fg *di = _di;
1989 	if (!di->nbr_cceoc_irq_cnt) {
1990 		di->nbr_cceoc_irq_cnt++;
1991 		complete(&di->ab8500_fg_started);
1992 	} else {
1993 		di->nbr_cceoc_irq_cnt = 0;
1994 		complete(&di->ab8500_fg_complete);
1995 	}
1996 	return IRQ_HANDLED;
1997 }
1998 
1999 /**
2000  * ab8500_fg_cc_int_calib_handler () - end of calibration isr.
2001  * @irq:       interrupt number
2002  * @_di:       pointer to the ab8500_fg structure
2003  *
2004  * Returns IRQ status(IRQ_HANDLED)
2005  */
ab8500_fg_cc_int_calib_handler(int irq,void * _di)2006 static irqreturn_t ab8500_fg_cc_int_calib_handler(int irq, void *_di)
2007 {
2008 	struct ab8500_fg *di = _di;
2009 	di->calib_state = AB8500_FG_CALIB_END;
2010 	queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2011 	return IRQ_HANDLED;
2012 }
2013 
2014 /**
2015  * ab8500_fg_cc_convend_handler() - isr to get battery avg current.
2016  * @irq:       interrupt number
2017  * @_di:       pointer to the ab8500_fg structure
2018  *
2019  * Returns IRQ status(IRQ_HANDLED)
2020  */
ab8500_fg_cc_convend_handler(int irq,void * _di)2021 static irqreturn_t ab8500_fg_cc_convend_handler(int irq, void *_di)
2022 {
2023 	struct ab8500_fg *di = _di;
2024 
2025 	queue_work(di->fg_wq, &di->fg_acc_cur_work);
2026 
2027 	return IRQ_HANDLED;
2028 }
2029 
2030 /**
2031  * ab8500_fg_batt_ovv_handler() - Battery OVV occured
2032  * @irq:       interrupt number
2033  * @_di:       pointer to the ab8500_fg structure
2034  *
2035  * Returns IRQ status(IRQ_HANDLED)
2036  */
ab8500_fg_batt_ovv_handler(int irq,void * _di)2037 static irqreturn_t ab8500_fg_batt_ovv_handler(int irq, void *_di)
2038 {
2039 	struct ab8500_fg *di = _di;
2040 
2041 	dev_dbg(di->dev, "Battery OVV\n");
2042 
2043 	/* Schedule a new HW failure check */
2044 	queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work, 0);
2045 
2046 	return IRQ_HANDLED;
2047 }
2048 
2049 /**
2050  * ab8500_fg_lowbatf_handler() - Battery voltage is below LOW threshold
2051  * @irq:       interrupt number
2052  * @_di:       pointer to the ab8500_fg structure
2053  *
2054  * Returns IRQ status(IRQ_HANDLED)
2055  */
ab8500_fg_lowbatf_handler(int irq,void * _di)2056 static irqreturn_t ab8500_fg_lowbatf_handler(int irq, void *_di)
2057 {
2058 	struct ab8500_fg *di = _di;
2059 
2060 	/* Initiate handling in ab8500_fg_low_bat_work() if not already initiated. */
2061 	if (!di->flags.low_bat_delay) {
2062 		dev_warn(di->dev, "Battery voltage is below LOW threshold\n");
2063 		di->flags.low_bat_delay = true;
2064 		/*
2065 		 * Start a timer to check LOW_BAT again after some time
2066 		 * This is done to avoid shutdown on single voltage dips
2067 		 */
2068 		queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
2069 			round_jiffies(LOW_BAT_CHECK_INTERVAL));
2070 	}
2071 	return IRQ_HANDLED;
2072 }
2073 
2074 /**
2075  * ab8500_fg_get_property() - get the fg properties
2076  * @psy:	pointer to the power_supply structure
2077  * @psp:	pointer to the power_supply_property structure
2078  * @val:	pointer to the power_supply_propval union
2079  *
2080  * This function gets called when an application tries to get the
2081  * fg properties by reading the sysfs files.
2082  * voltage_now:		battery voltage
2083  * current_now:		battery instant current
2084  * current_avg:		battery average current
2085  * charge_full_design:	capacity where battery is considered full
2086  * charge_now:		battery capacity in nAh
2087  * capacity:		capacity in percent
2088  * capacity_level:	capacity level
2089  *
2090  * Returns error code in case of failure else 0 on success
2091  */
ab8500_fg_get_property(struct power_supply * psy,enum power_supply_property psp,union power_supply_propval * val)2092 static int ab8500_fg_get_property(struct power_supply *psy,
2093 	enum power_supply_property psp,
2094 	union power_supply_propval *val)
2095 {
2096 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2097 
2098 	/*
2099 	 * If battery is identified as unknown and charging of unknown
2100 	 * batteries is disabled, we always report 100% capacity and
2101 	 * capacity level UNKNOWN, since we can't calculate
2102 	 * remaining capacity
2103 	 */
2104 
2105 	switch (psp) {
2106 	case POWER_SUPPLY_PROP_VOLTAGE_NOW:
2107 		if (di->flags.bat_ovv)
2108 			val->intval = BATT_OVV_VALUE * 1000;
2109 		else
2110 			val->intval = di->vbat * 1000;
2111 		break;
2112 	case POWER_SUPPLY_PROP_CURRENT_NOW:
2113 		val->intval = di->inst_curr * 1000;
2114 		break;
2115 	case POWER_SUPPLY_PROP_CURRENT_AVG:
2116 		val->intval = di->avg_curr * 1000;
2117 		break;
2118 	case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
2119 		val->intval = ab8500_fg_convert_mah_to_uwh(di,
2120 				di->bat_cap.max_mah_design);
2121 		break;
2122 	case POWER_SUPPLY_PROP_ENERGY_FULL:
2123 		val->intval = ab8500_fg_convert_mah_to_uwh(di,
2124 				di->bat_cap.max_mah);
2125 		break;
2126 	case POWER_SUPPLY_PROP_ENERGY_NOW:
2127 		if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2128 				di->flags.batt_id_received)
2129 			val->intval = ab8500_fg_convert_mah_to_uwh(di,
2130 					di->bat_cap.max_mah);
2131 		else
2132 			val->intval = ab8500_fg_convert_mah_to_uwh(di,
2133 					di->bat_cap.prev_mah);
2134 		break;
2135 	case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
2136 		val->intval = di->bat_cap.max_mah_design;
2137 		break;
2138 	case POWER_SUPPLY_PROP_CHARGE_FULL:
2139 		val->intval = di->bat_cap.max_mah;
2140 		break;
2141 	case POWER_SUPPLY_PROP_CHARGE_NOW:
2142 		if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2143 				di->flags.batt_id_received)
2144 			val->intval = di->bat_cap.max_mah;
2145 		else
2146 			val->intval = di->bat_cap.prev_mah;
2147 		break;
2148 	case POWER_SUPPLY_PROP_CAPACITY:
2149 		if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2150 				di->flags.batt_id_received)
2151 			val->intval = 100;
2152 		else
2153 			val->intval = di->bat_cap.prev_percent;
2154 		break;
2155 	case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
2156 		if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2157 				di->flags.batt_id_received)
2158 			val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
2159 		else
2160 			val->intval = di->bat_cap.prev_level;
2161 		break;
2162 	default:
2163 		return -EINVAL;
2164 	}
2165 	return 0;
2166 }
2167 
ab8500_fg_get_ext_psy_data(struct device * dev,void * data)2168 static int ab8500_fg_get_ext_psy_data(struct device *dev, void *data)
2169 {
2170 	struct power_supply *psy;
2171 	struct power_supply *ext;
2172 	struct ab8500_fg *di;
2173 	union power_supply_propval ret;
2174 	int i, j;
2175 	bool psy_found = false;
2176 
2177 	psy = (struct power_supply *)data;
2178 	ext = dev_get_drvdata(dev);
2179 	di = power_supply_get_drvdata(psy);
2180 
2181 	/*
2182 	 * For all psy where the name of your driver
2183 	 * appears in any supplied_to
2184 	 */
2185 	for (i = 0; i < ext->num_supplicants; i++) {
2186 		if (!strcmp(ext->supplied_to[i], psy->desc->name))
2187 			psy_found = true;
2188 	}
2189 
2190 	if (!psy_found)
2191 		return 0;
2192 
2193 	/* Go through all properties for the psy */
2194 	for (j = 0; j < ext->desc->num_properties; j++) {
2195 		enum power_supply_property prop;
2196 		prop = ext->desc->properties[j];
2197 
2198 		if (power_supply_get_property(ext, prop, &ret))
2199 			continue;
2200 
2201 		switch (prop) {
2202 		case POWER_SUPPLY_PROP_STATUS:
2203 			switch (ext->desc->type) {
2204 			case POWER_SUPPLY_TYPE_BATTERY:
2205 				switch (ret.intval) {
2206 				case POWER_SUPPLY_STATUS_UNKNOWN:
2207 				case POWER_SUPPLY_STATUS_DISCHARGING:
2208 				case POWER_SUPPLY_STATUS_NOT_CHARGING:
2209 					if (!di->flags.charging)
2210 						break;
2211 					di->flags.charging = false;
2212 					di->flags.fully_charged = false;
2213 					if (di->bm->capacity_scaling)
2214 						ab8500_fg_update_cap_scalers(di);
2215 					queue_work(di->fg_wq, &di->fg_work);
2216 					break;
2217 				case POWER_SUPPLY_STATUS_FULL:
2218 					if (di->flags.fully_charged)
2219 						break;
2220 					di->flags.fully_charged = true;
2221 					di->flags.force_full = true;
2222 					/* Save current capacity as maximum */
2223 					di->bat_cap.max_mah = di->bat_cap.mah;
2224 					queue_work(di->fg_wq, &di->fg_work);
2225 					break;
2226 				case POWER_SUPPLY_STATUS_CHARGING:
2227 					if (di->flags.charging &&
2228 						!di->flags.fully_charged)
2229 						break;
2230 					di->flags.charging = true;
2231 					di->flags.fully_charged = false;
2232 					if (di->bm->capacity_scaling)
2233 						ab8500_fg_update_cap_scalers(di);
2234 					queue_work(di->fg_wq, &di->fg_work);
2235 					break;
2236 				};
2237 			default:
2238 				break;
2239 			};
2240 			break;
2241 		case POWER_SUPPLY_PROP_TECHNOLOGY:
2242 			switch (ext->desc->type) {
2243 			case POWER_SUPPLY_TYPE_BATTERY:
2244 				if (!di->flags.batt_id_received &&
2245 				    di->bm->batt_id != BATTERY_UNKNOWN) {
2246 					const struct abx500_battery_type *b;
2247 
2248 					b = &(di->bm->bat_type[di->bm->batt_id]);
2249 
2250 					di->flags.batt_id_received = true;
2251 
2252 					di->bat_cap.max_mah_design =
2253 						MILLI_TO_MICRO *
2254 						b->charge_full_design;
2255 
2256 					di->bat_cap.max_mah =
2257 						di->bat_cap.max_mah_design;
2258 
2259 					di->vbat_nom = b->nominal_voltage;
2260 				}
2261 
2262 				if (ret.intval)
2263 					di->flags.batt_unknown = false;
2264 				else
2265 					di->flags.batt_unknown = true;
2266 				break;
2267 			default:
2268 				break;
2269 			}
2270 			break;
2271 		case POWER_SUPPLY_PROP_TEMP:
2272 			switch (ext->desc->type) {
2273 			case POWER_SUPPLY_TYPE_BATTERY:
2274 				if (di->flags.batt_id_received)
2275 					di->bat_temp = ret.intval;
2276 				break;
2277 			default:
2278 				break;
2279 			}
2280 			break;
2281 		default:
2282 			break;
2283 		}
2284 	}
2285 	return 0;
2286 }
2287 
2288 /**
2289  * ab8500_fg_init_hw_registers() - Set up FG related registers
2290  * @di:		pointer to the ab8500_fg structure
2291  *
2292  * Set up battery OVV, low battery voltage registers
2293  */
ab8500_fg_init_hw_registers(struct ab8500_fg * di)2294 static int ab8500_fg_init_hw_registers(struct ab8500_fg *di)
2295 {
2296 	int ret;
2297 
2298 	/* Set VBAT OVV threshold */
2299 	ret = abx500_mask_and_set_register_interruptible(di->dev,
2300 		AB8500_CHARGER,
2301 		AB8500_BATT_OVV,
2302 		BATT_OVV_TH_4P75,
2303 		BATT_OVV_TH_4P75);
2304 	if (ret) {
2305 		dev_err(di->dev, "failed to set BATT_OVV\n");
2306 		goto out;
2307 	}
2308 
2309 	/* Enable VBAT OVV detection */
2310 	ret = abx500_mask_and_set_register_interruptible(di->dev,
2311 		AB8500_CHARGER,
2312 		AB8500_BATT_OVV,
2313 		BATT_OVV_ENA,
2314 		BATT_OVV_ENA);
2315 	if (ret) {
2316 		dev_err(di->dev, "failed to enable BATT_OVV\n");
2317 		goto out;
2318 	}
2319 
2320 	/* Low Battery Voltage */
2321 	ret = abx500_set_register_interruptible(di->dev,
2322 		AB8500_SYS_CTRL2_BLOCK,
2323 		AB8500_LOW_BAT_REG,
2324 		ab8500_volt_to_regval(
2325 			di->bm->fg_params->lowbat_threshold) << 1 |
2326 		LOW_BAT_ENABLE);
2327 	if (ret) {
2328 		dev_err(di->dev, "%s write failed\n", __func__);
2329 		goto out;
2330 	}
2331 
2332 	/* Battery OK threshold */
2333 	ret = ab8500_fg_battok_init_hw_register(di);
2334 	if (ret) {
2335 		dev_err(di->dev, "BattOk init write failed.\n");
2336 		goto out;
2337 	}
2338 
2339 	if (((is_ab8505(di->parent) || is_ab9540(di->parent)) &&
2340 			abx500_get_chip_id(di->dev) >= AB8500_CUT2P0)
2341 			|| is_ab8540(di->parent)) {
2342 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2343 			AB8505_RTC_PCUT_MAX_TIME_REG, di->bm->fg_params->pcut_max_time);
2344 
2345 		if (ret) {
2346 			dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_MAX_TIME_REG\n", __func__);
2347 			goto out;
2348 		};
2349 
2350 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2351 			AB8505_RTC_PCUT_FLAG_TIME_REG, di->bm->fg_params->pcut_flag_time);
2352 
2353 		if (ret) {
2354 			dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_FLAG_TIME_REG\n", __func__);
2355 			goto out;
2356 		};
2357 
2358 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2359 			AB8505_RTC_PCUT_RESTART_REG, di->bm->fg_params->pcut_max_restart);
2360 
2361 		if (ret) {
2362 			dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_RESTART_REG\n", __func__);
2363 			goto out;
2364 		};
2365 
2366 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2367 			AB8505_RTC_PCUT_DEBOUNCE_REG, di->bm->fg_params->pcut_debounce_time);
2368 
2369 		if (ret) {
2370 			dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_DEBOUNCE_REG\n", __func__);
2371 			goto out;
2372 		};
2373 
2374 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2375 			AB8505_RTC_PCUT_CTL_STATUS_REG, di->bm->fg_params->pcut_enable);
2376 
2377 		if (ret) {
2378 			dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_CTL_STATUS_REG\n", __func__);
2379 			goto out;
2380 		};
2381 	}
2382 out:
2383 	return ret;
2384 }
2385 
2386 /**
2387  * ab8500_fg_external_power_changed() - callback for power supply changes
2388  * @psy:       pointer to the structure power_supply
2389  *
2390  * This function is the entry point of the pointer external_power_changed
2391  * of the structure power_supply.
2392  * This function gets executed when there is a change in any external power
2393  * supply that this driver needs to be notified of.
2394  */
ab8500_fg_external_power_changed(struct power_supply * psy)2395 static void ab8500_fg_external_power_changed(struct power_supply *psy)
2396 {
2397 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2398 
2399 	class_for_each_device(power_supply_class, NULL,
2400 		di->fg_psy, ab8500_fg_get_ext_psy_data);
2401 }
2402 
2403 /**
2404  * abab8500_fg_reinit_work() - work to reset the FG algorithm
2405  * @work:	pointer to the work_struct structure
2406  *
2407  * Used to reset the current battery capacity to be able to
2408  * retrigger a new voltage base capacity calculation. For
2409  * test and verification purpose.
2410  */
ab8500_fg_reinit_work(struct work_struct * work)2411 static void ab8500_fg_reinit_work(struct work_struct *work)
2412 {
2413 	struct ab8500_fg *di = container_of(work, struct ab8500_fg,
2414 		fg_reinit_work.work);
2415 
2416 	if (di->flags.calibrate == false) {
2417 		dev_dbg(di->dev, "Resetting FG state machine to init.\n");
2418 		ab8500_fg_clear_cap_samples(di);
2419 		ab8500_fg_calc_cap_discharge_voltage(di, true);
2420 		ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
2421 		ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
2422 		queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2423 
2424 	} else {
2425 		dev_err(di->dev, "Residual offset calibration ongoing "
2426 			"retrying..\n");
2427 		/* Wait one second until next try*/
2428 		queue_delayed_work(di->fg_wq, &di->fg_reinit_work,
2429 			round_jiffies(1));
2430 	}
2431 }
2432 
2433 /* Exposure to the sysfs interface */
2434 
2435 struct ab8500_fg_sysfs_entry {
2436 	struct attribute attr;
2437 	ssize_t (*show)(struct ab8500_fg *, char *);
2438 	ssize_t (*store)(struct ab8500_fg *, const char *, size_t);
2439 };
2440 
charge_full_show(struct ab8500_fg * di,char * buf)2441 static ssize_t charge_full_show(struct ab8500_fg *di, char *buf)
2442 {
2443 	return sprintf(buf, "%d\n", di->bat_cap.max_mah);
2444 }
2445 
charge_full_store(struct ab8500_fg * di,const char * buf,size_t count)2446 static ssize_t charge_full_store(struct ab8500_fg *di, const char *buf,
2447 				 size_t count)
2448 {
2449 	unsigned long charge_full;
2450 	ssize_t ret;
2451 
2452 	ret = kstrtoul(buf, 10, &charge_full);
2453 
2454 	dev_dbg(di->dev, "Ret %zd charge_full %lu", ret, charge_full);
2455 
2456 	if (!ret) {
2457 		di->bat_cap.max_mah = (int) charge_full;
2458 		ret = count;
2459 	}
2460 	return ret;
2461 }
2462 
charge_now_show(struct ab8500_fg * di,char * buf)2463 static ssize_t charge_now_show(struct ab8500_fg *di, char *buf)
2464 {
2465 	return sprintf(buf, "%d\n", di->bat_cap.prev_mah);
2466 }
2467 
charge_now_store(struct ab8500_fg * di,const char * buf,size_t count)2468 static ssize_t charge_now_store(struct ab8500_fg *di, const char *buf,
2469 				 size_t count)
2470 {
2471 	unsigned long charge_now;
2472 	ssize_t ret;
2473 
2474 	ret = kstrtoul(buf, 10, &charge_now);
2475 
2476 	dev_dbg(di->dev, "Ret %zd charge_now %lu was %d",
2477 		ret, charge_now, di->bat_cap.prev_mah);
2478 
2479 	if (!ret) {
2480 		di->bat_cap.user_mah = (int) charge_now;
2481 		di->flags.user_cap = true;
2482 		ret = count;
2483 		queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2484 	}
2485 	return ret;
2486 }
2487 
2488 static struct ab8500_fg_sysfs_entry charge_full_attr =
2489 	__ATTR(charge_full, 0644, charge_full_show, charge_full_store);
2490 
2491 static struct ab8500_fg_sysfs_entry charge_now_attr =
2492 	__ATTR(charge_now, 0644, charge_now_show, charge_now_store);
2493 
2494 static ssize_t
ab8500_fg_show(struct kobject * kobj,struct attribute * attr,char * buf)2495 ab8500_fg_show(struct kobject *kobj, struct attribute *attr, char *buf)
2496 {
2497 	struct ab8500_fg_sysfs_entry *entry;
2498 	struct ab8500_fg *di;
2499 
2500 	entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2501 	di = container_of(kobj, struct ab8500_fg, fg_kobject);
2502 
2503 	if (!entry->show)
2504 		return -EIO;
2505 
2506 	return entry->show(di, buf);
2507 }
2508 static ssize_t
ab8500_fg_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)2509 ab8500_fg_store(struct kobject *kobj, struct attribute *attr, const char *buf,
2510 		size_t count)
2511 {
2512 	struct ab8500_fg_sysfs_entry *entry;
2513 	struct ab8500_fg *di;
2514 
2515 	entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2516 	di = container_of(kobj, struct ab8500_fg, fg_kobject);
2517 
2518 	if (!entry->store)
2519 		return -EIO;
2520 
2521 	return entry->store(di, buf, count);
2522 }
2523 
2524 static const struct sysfs_ops ab8500_fg_sysfs_ops = {
2525 	.show = ab8500_fg_show,
2526 	.store = ab8500_fg_store,
2527 };
2528 
2529 static struct attribute *ab8500_fg_attrs[] = {
2530 	&charge_full_attr.attr,
2531 	&charge_now_attr.attr,
2532 	NULL,
2533 };
2534 
2535 static struct kobj_type ab8500_fg_ktype = {
2536 	.sysfs_ops = &ab8500_fg_sysfs_ops,
2537 	.default_attrs = ab8500_fg_attrs,
2538 };
2539 
2540 /**
2541  * ab8500_chargalg_sysfs_exit() - de-init of sysfs entry
2542  * @di:                pointer to the struct ab8500_chargalg
2543  *
2544  * This function removes the entry in sysfs.
2545  */
ab8500_fg_sysfs_exit(struct ab8500_fg * di)2546 static void ab8500_fg_sysfs_exit(struct ab8500_fg *di)
2547 {
2548 	kobject_del(&di->fg_kobject);
2549 }
2550 
2551 /**
2552  * ab8500_chargalg_sysfs_init() - init of sysfs entry
2553  * @di:                pointer to the struct ab8500_chargalg
2554  *
2555  * This function adds an entry in sysfs.
2556  * Returns error code in case of failure else 0(on success)
2557  */
ab8500_fg_sysfs_init(struct ab8500_fg * di)2558 static int ab8500_fg_sysfs_init(struct ab8500_fg *di)
2559 {
2560 	int ret = 0;
2561 
2562 	ret = kobject_init_and_add(&di->fg_kobject,
2563 		&ab8500_fg_ktype,
2564 		NULL, "battery");
2565 	if (ret < 0)
2566 		dev_err(di->dev, "failed to create sysfs entry\n");
2567 
2568 	return ret;
2569 }
2570 
ab8505_powercut_flagtime_read(struct device * dev,struct device_attribute * attr,char * buf)2571 static ssize_t ab8505_powercut_flagtime_read(struct device *dev,
2572 			     struct device_attribute *attr,
2573 			     char *buf)
2574 {
2575 	int ret;
2576 	u8 reg_value;
2577 	struct power_supply *psy = dev_get_drvdata(dev);
2578 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2579 
2580 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2581 		AB8505_RTC_PCUT_FLAG_TIME_REG, &reg_value);
2582 
2583 	if (ret < 0) {
2584 		dev_err(dev, "Failed to read AB8505_RTC_PCUT_FLAG_TIME_REG\n");
2585 		goto fail;
2586 	}
2587 
2588 	return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2589 
2590 fail:
2591 	return ret;
2592 }
2593 
ab8505_powercut_flagtime_write(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2594 static ssize_t ab8505_powercut_flagtime_write(struct device *dev,
2595 				  struct device_attribute *attr,
2596 				  const char *buf, size_t count)
2597 {
2598 	int ret;
2599 	long unsigned reg_value;
2600 	struct power_supply *psy = dev_get_drvdata(dev);
2601 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2602 
2603 	reg_value = simple_strtoul(buf, NULL, 10);
2604 
2605 	if (reg_value > 0x7F) {
2606 		dev_err(dev, "Incorrect parameter, echo 0 (1.98s) - 127 (15.625ms) for flagtime\n");
2607 		goto fail;
2608 	}
2609 
2610 	ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2611 		AB8505_RTC_PCUT_FLAG_TIME_REG, (u8)reg_value);
2612 
2613 	if (ret < 0)
2614 		dev_err(dev, "Failed to set AB8505_RTC_PCUT_FLAG_TIME_REG\n");
2615 
2616 fail:
2617 	return count;
2618 }
2619 
ab8505_powercut_maxtime_read(struct device * dev,struct device_attribute * attr,char * buf)2620 static ssize_t ab8505_powercut_maxtime_read(struct device *dev,
2621 			     struct device_attribute *attr,
2622 			     char *buf)
2623 {
2624 	int ret;
2625 	u8 reg_value;
2626 	struct power_supply *psy = dev_get_drvdata(dev);
2627 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2628 
2629 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2630 		AB8505_RTC_PCUT_MAX_TIME_REG, &reg_value);
2631 
2632 	if (ret < 0) {
2633 		dev_err(dev, "Failed to read AB8505_RTC_PCUT_MAX_TIME_REG\n");
2634 		goto fail;
2635 	}
2636 
2637 	return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2638 
2639 fail:
2640 	return ret;
2641 
2642 }
2643 
ab8505_powercut_maxtime_write(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2644 static ssize_t ab8505_powercut_maxtime_write(struct device *dev,
2645 				  struct device_attribute *attr,
2646 				  const char *buf, size_t count)
2647 {
2648 	int ret;
2649 	int reg_value;
2650 	struct power_supply *psy = dev_get_drvdata(dev);
2651 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2652 
2653 	reg_value = simple_strtoul(buf, NULL, 10);
2654 	if (reg_value > 0x7F) {
2655 		dev_err(dev, "Incorrect parameter, echo 0 (0.0s) - 127 (1.98s) for maxtime\n");
2656 		goto fail;
2657 	}
2658 
2659 	ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2660 		AB8505_RTC_PCUT_MAX_TIME_REG, (u8)reg_value);
2661 
2662 	if (ret < 0)
2663 		dev_err(dev, "Failed to set AB8505_RTC_PCUT_MAX_TIME_REG\n");
2664 
2665 fail:
2666 	return count;
2667 }
2668 
ab8505_powercut_restart_read(struct device * dev,struct device_attribute * attr,char * buf)2669 static ssize_t ab8505_powercut_restart_read(struct device *dev,
2670 			     struct device_attribute *attr,
2671 			     char *buf)
2672 {
2673 	int ret;
2674 	u8 reg_value;
2675 	struct power_supply *psy = dev_get_drvdata(dev);
2676 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2677 
2678 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2679 		AB8505_RTC_PCUT_RESTART_REG, &reg_value);
2680 
2681 	if (ret < 0) {
2682 		dev_err(dev, "Failed to read AB8505_RTC_PCUT_RESTART_REG\n");
2683 		goto fail;
2684 	}
2685 
2686 	return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0xF));
2687 
2688 fail:
2689 	return ret;
2690 }
2691 
ab8505_powercut_restart_write(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2692 static ssize_t ab8505_powercut_restart_write(struct device *dev,
2693 					     struct device_attribute *attr,
2694 					     const char *buf, size_t count)
2695 {
2696 	int ret;
2697 	int reg_value;
2698 	struct power_supply *psy = dev_get_drvdata(dev);
2699 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2700 
2701 	reg_value = simple_strtoul(buf, NULL, 10);
2702 	if (reg_value > 0xF) {
2703 		dev_err(dev, "Incorrect parameter, echo 0 - 15 for number of restart\n");
2704 		goto fail;
2705 	}
2706 
2707 	ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2708 						AB8505_RTC_PCUT_RESTART_REG, (u8)reg_value);
2709 
2710 	if (ret < 0)
2711 		dev_err(dev, "Failed to set AB8505_RTC_PCUT_RESTART_REG\n");
2712 
2713 fail:
2714 	return count;
2715 
2716 }
2717 
ab8505_powercut_timer_read(struct device * dev,struct device_attribute * attr,char * buf)2718 static ssize_t ab8505_powercut_timer_read(struct device *dev,
2719 					  struct device_attribute *attr,
2720 					  char *buf)
2721 {
2722 	int ret;
2723 	u8 reg_value;
2724 	struct power_supply *psy = dev_get_drvdata(dev);
2725 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2726 
2727 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2728 						AB8505_RTC_PCUT_TIME_REG, &reg_value);
2729 
2730 	if (ret < 0) {
2731 		dev_err(dev, "Failed to read AB8505_RTC_PCUT_TIME_REG\n");
2732 		goto fail;
2733 	}
2734 
2735 	return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2736 
2737 fail:
2738 	return ret;
2739 }
2740 
ab8505_powercut_restart_counter_read(struct device * dev,struct device_attribute * attr,char * buf)2741 static ssize_t ab8505_powercut_restart_counter_read(struct device *dev,
2742 						    struct device_attribute *attr,
2743 						    char *buf)
2744 {
2745 	int ret;
2746 	u8 reg_value;
2747 	struct power_supply *psy = dev_get_drvdata(dev);
2748 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2749 
2750 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2751 						AB8505_RTC_PCUT_RESTART_REG, &reg_value);
2752 
2753 	if (ret < 0) {
2754 		dev_err(dev, "Failed to read AB8505_RTC_PCUT_RESTART_REG\n");
2755 		goto fail;
2756 	}
2757 
2758 	return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0xF0) >> 4);
2759 
2760 fail:
2761 	return ret;
2762 }
2763 
ab8505_powercut_read(struct device * dev,struct device_attribute * attr,char * buf)2764 static ssize_t ab8505_powercut_read(struct device *dev,
2765 				    struct device_attribute *attr,
2766 				    char *buf)
2767 {
2768 	int ret;
2769 	u8 reg_value;
2770 	struct power_supply *psy = dev_get_drvdata(dev);
2771 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2772 
2773 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2774 						AB8505_RTC_PCUT_CTL_STATUS_REG, &reg_value);
2775 
2776 	if (ret < 0)
2777 		goto fail;
2778 
2779 	return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x1));
2780 
2781 fail:
2782 	return ret;
2783 }
2784 
ab8505_powercut_write(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2785 static ssize_t ab8505_powercut_write(struct device *dev,
2786 				     struct device_attribute *attr,
2787 				     const char *buf, size_t count)
2788 {
2789 	int ret;
2790 	int reg_value;
2791 	struct power_supply *psy = dev_get_drvdata(dev);
2792 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2793 
2794 	reg_value = simple_strtoul(buf, NULL, 10);
2795 	if (reg_value > 0x1) {
2796 		dev_err(dev, "Incorrect parameter, echo 0/1 to disable/enable Pcut feature\n");
2797 		goto fail;
2798 	}
2799 
2800 	ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2801 						AB8505_RTC_PCUT_CTL_STATUS_REG, (u8)reg_value);
2802 
2803 	if (ret < 0)
2804 		dev_err(dev, "Failed to set AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2805 
2806 fail:
2807 	return count;
2808 }
2809 
ab8505_powercut_flag_read(struct device * dev,struct device_attribute * attr,char * buf)2810 static ssize_t ab8505_powercut_flag_read(struct device *dev,
2811 					 struct device_attribute *attr,
2812 					 char *buf)
2813 {
2814 
2815 	int ret;
2816 	u8 reg_value;
2817 	struct power_supply *psy = dev_get_drvdata(dev);
2818 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2819 
2820 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2821 						AB8505_RTC_PCUT_CTL_STATUS_REG,  &reg_value);
2822 
2823 	if (ret < 0) {
2824 		dev_err(dev, "Failed to read AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2825 		goto fail;
2826 	}
2827 
2828 	return scnprintf(buf, PAGE_SIZE, "%d\n", ((reg_value & 0x10) >> 4));
2829 
2830 fail:
2831 	return ret;
2832 }
2833 
ab8505_powercut_debounce_read(struct device * dev,struct device_attribute * attr,char * buf)2834 static ssize_t ab8505_powercut_debounce_read(struct device *dev,
2835 					     struct device_attribute *attr,
2836 					     char *buf)
2837 {
2838 	int ret;
2839 	u8 reg_value;
2840 	struct power_supply *psy = dev_get_drvdata(dev);
2841 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2842 
2843 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2844 						AB8505_RTC_PCUT_DEBOUNCE_REG,  &reg_value);
2845 
2846 	if (ret < 0) {
2847 		dev_err(dev, "Failed to read AB8505_RTC_PCUT_DEBOUNCE_REG\n");
2848 		goto fail;
2849 	}
2850 
2851 	return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7));
2852 
2853 fail:
2854 	return ret;
2855 }
2856 
ab8505_powercut_debounce_write(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2857 static ssize_t ab8505_powercut_debounce_write(struct device *dev,
2858 					      struct device_attribute *attr,
2859 					      const char *buf, size_t count)
2860 {
2861 	int ret;
2862 	int reg_value;
2863 	struct power_supply *psy = dev_get_drvdata(dev);
2864 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2865 
2866 	reg_value = simple_strtoul(buf, NULL, 10);
2867 	if (reg_value > 0x7) {
2868 		dev_err(dev, "Incorrect parameter, echo 0 to 7 for debounce setting\n");
2869 		goto fail;
2870 	}
2871 
2872 	ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2873 						AB8505_RTC_PCUT_DEBOUNCE_REG, (u8)reg_value);
2874 
2875 	if (ret < 0)
2876 		dev_err(dev, "Failed to set AB8505_RTC_PCUT_DEBOUNCE_REG\n");
2877 
2878 fail:
2879 	return count;
2880 }
2881 
ab8505_powercut_enable_status_read(struct device * dev,struct device_attribute * attr,char * buf)2882 static ssize_t ab8505_powercut_enable_status_read(struct device *dev,
2883 						  struct device_attribute *attr,
2884 						  char *buf)
2885 {
2886 	int ret;
2887 	u8 reg_value;
2888 	struct power_supply *psy = dev_get_drvdata(dev);
2889 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2890 
2891 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2892 						AB8505_RTC_PCUT_CTL_STATUS_REG, &reg_value);
2893 
2894 	if (ret < 0) {
2895 		dev_err(dev, "Failed to read AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2896 		goto fail;
2897 	}
2898 
2899 	return scnprintf(buf, PAGE_SIZE, "%d\n", ((reg_value & 0x20) >> 5));
2900 
2901 fail:
2902 	return ret;
2903 }
2904 
2905 static struct device_attribute ab8505_fg_sysfs_psy_attrs[] = {
2906 	__ATTR(powercut_flagtime, (S_IRUGO | S_IWUSR | S_IWGRP),
2907 		ab8505_powercut_flagtime_read, ab8505_powercut_flagtime_write),
2908 	__ATTR(powercut_maxtime, (S_IRUGO | S_IWUSR | S_IWGRP),
2909 		ab8505_powercut_maxtime_read, ab8505_powercut_maxtime_write),
2910 	__ATTR(powercut_restart_max, (S_IRUGO | S_IWUSR | S_IWGRP),
2911 		ab8505_powercut_restart_read, ab8505_powercut_restart_write),
2912 	__ATTR(powercut_timer, S_IRUGO, ab8505_powercut_timer_read, NULL),
2913 	__ATTR(powercut_restart_counter, S_IRUGO,
2914 		ab8505_powercut_restart_counter_read, NULL),
2915 	__ATTR(powercut_enable, (S_IRUGO | S_IWUSR | S_IWGRP),
2916 		ab8505_powercut_read, ab8505_powercut_write),
2917 	__ATTR(powercut_flag, S_IRUGO, ab8505_powercut_flag_read, NULL),
2918 	__ATTR(powercut_debounce_time, (S_IRUGO | S_IWUSR | S_IWGRP),
2919 		ab8505_powercut_debounce_read, ab8505_powercut_debounce_write),
2920 	__ATTR(powercut_enable_status, S_IRUGO,
2921 		ab8505_powercut_enable_status_read, NULL),
2922 };
2923 
ab8500_fg_sysfs_psy_create_attrs(struct ab8500_fg * di)2924 static int ab8500_fg_sysfs_psy_create_attrs(struct ab8500_fg *di)
2925 {
2926 	unsigned int i;
2927 
2928 	if (((is_ab8505(di->parent) || is_ab9540(di->parent)) &&
2929 	     abx500_get_chip_id(di->dev) >= AB8500_CUT2P0)
2930 	    || is_ab8540(di->parent)) {
2931 		for (i = 0; i < ARRAY_SIZE(ab8505_fg_sysfs_psy_attrs); i++)
2932 			if (device_create_file(&di->fg_psy->dev,
2933 					       &ab8505_fg_sysfs_psy_attrs[i]))
2934 				goto sysfs_psy_create_attrs_failed_ab8505;
2935 	}
2936 	return 0;
2937 sysfs_psy_create_attrs_failed_ab8505:
2938 	dev_err(&di->fg_psy->dev, "Failed creating sysfs psy attrs for ab8505.\n");
2939 	while (i--)
2940 		device_remove_file(&di->fg_psy->dev,
2941 				   &ab8505_fg_sysfs_psy_attrs[i]);
2942 
2943 	return -EIO;
2944 }
2945 
ab8500_fg_sysfs_psy_remove_attrs(struct ab8500_fg * di)2946 static void ab8500_fg_sysfs_psy_remove_attrs(struct ab8500_fg *di)
2947 {
2948 	unsigned int i;
2949 
2950 	if (((is_ab8505(di->parent) || is_ab9540(di->parent)) &&
2951 	     abx500_get_chip_id(di->dev) >= AB8500_CUT2P0)
2952 	    || is_ab8540(di->parent)) {
2953 		for (i = 0; i < ARRAY_SIZE(ab8505_fg_sysfs_psy_attrs); i++)
2954 			(void)device_remove_file(&di->fg_psy->dev,
2955 						 &ab8505_fg_sysfs_psy_attrs[i]);
2956 	}
2957 }
2958 
2959 /* Exposure to the sysfs interface <<END>> */
2960 
2961 #if defined(CONFIG_PM)
ab8500_fg_resume(struct platform_device * pdev)2962 static int ab8500_fg_resume(struct platform_device *pdev)
2963 {
2964 	struct ab8500_fg *di = platform_get_drvdata(pdev);
2965 
2966 	/*
2967 	 * Change state if we're not charging. If we're charging we will wake
2968 	 * up on the FG IRQ
2969 	 */
2970 	if (!di->flags.charging) {
2971 		ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_WAKEUP);
2972 		queue_work(di->fg_wq, &di->fg_work);
2973 	}
2974 
2975 	return 0;
2976 }
2977 
ab8500_fg_suspend(struct platform_device * pdev,pm_message_t state)2978 static int ab8500_fg_suspend(struct platform_device *pdev,
2979 	pm_message_t state)
2980 {
2981 	struct ab8500_fg *di = platform_get_drvdata(pdev);
2982 
2983 	flush_delayed_work(&di->fg_periodic_work);
2984 	flush_work(&di->fg_work);
2985 	flush_work(&di->fg_acc_cur_work);
2986 	flush_delayed_work(&di->fg_reinit_work);
2987 	flush_delayed_work(&di->fg_low_bat_work);
2988 	flush_delayed_work(&di->fg_check_hw_failure_work);
2989 
2990 	/*
2991 	 * If the FG is enabled we will disable it before going to suspend
2992 	 * only if we're not charging
2993 	 */
2994 	if (di->flags.fg_enabled && !di->flags.charging)
2995 		ab8500_fg_coulomb_counter(di, false);
2996 
2997 	return 0;
2998 }
2999 #else
3000 #define ab8500_fg_suspend      NULL
3001 #define ab8500_fg_resume       NULL
3002 #endif
3003 
ab8500_fg_remove(struct platform_device * pdev)3004 static int ab8500_fg_remove(struct platform_device *pdev)
3005 {
3006 	int ret = 0;
3007 	struct ab8500_fg *di = platform_get_drvdata(pdev);
3008 
3009 	list_del(&di->node);
3010 
3011 	/* Disable coulomb counter */
3012 	ret = ab8500_fg_coulomb_counter(di, false);
3013 	if (ret)
3014 		dev_err(di->dev, "failed to disable coulomb counter\n");
3015 
3016 	destroy_workqueue(di->fg_wq);
3017 	ab8500_fg_sysfs_exit(di);
3018 
3019 	flush_scheduled_work();
3020 	ab8500_fg_sysfs_psy_remove_attrs(di);
3021 	power_supply_unregister(di->fg_psy);
3022 	return ret;
3023 }
3024 
3025 /* ab8500 fg driver interrupts and their respective isr */
3026 static struct ab8500_fg_interrupts ab8500_fg_irq_th[] = {
3027 	{"NCONV_ACCU", ab8500_fg_cc_convend_handler},
3028 	{"BATT_OVV", ab8500_fg_batt_ovv_handler},
3029 	{"LOW_BAT_F", ab8500_fg_lowbatf_handler},
3030 	{"CC_INT_CALIB", ab8500_fg_cc_int_calib_handler},
3031 };
3032 
3033 static struct ab8500_fg_interrupts ab8500_fg_irq_bh[] = {
3034 	{"CCEOC", ab8500_fg_cc_data_end_handler},
3035 };
3036 
3037 static char *supply_interface[] = {
3038 	"ab8500_chargalg",
3039 	"ab8500_usb",
3040 };
3041 
3042 static const struct power_supply_desc ab8500_fg_desc = {
3043 	.name			= "ab8500_fg",
3044 	.type			= POWER_SUPPLY_TYPE_BATTERY,
3045 	.properties		= ab8500_fg_props,
3046 	.num_properties		= ARRAY_SIZE(ab8500_fg_props),
3047 	.get_property		= ab8500_fg_get_property,
3048 	.external_power_changed	= ab8500_fg_external_power_changed,
3049 };
3050 
ab8500_fg_probe(struct platform_device * pdev)3051 static int ab8500_fg_probe(struct platform_device *pdev)
3052 {
3053 	struct device_node *np = pdev->dev.of_node;
3054 	struct abx500_bm_data *plat = pdev->dev.platform_data;
3055 	struct power_supply_config psy_cfg = {};
3056 	struct ab8500_fg *di;
3057 	int i, irq;
3058 	int ret = 0;
3059 
3060 	di = devm_kzalloc(&pdev->dev, sizeof(*di), GFP_KERNEL);
3061 	if (!di) {
3062 		dev_err(&pdev->dev, "%s no mem for ab8500_fg\n", __func__);
3063 		return -ENOMEM;
3064 	}
3065 
3066 	if (!plat) {
3067 		dev_err(&pdev->dev, "no battery management data supplied\n");
3068 		return -EINVAL;
3069 	}
3070 	di->bm = plat;
3071 
3072 	if (np) {
3073 		ret = ab8500_bm_of_probe(&pdev->dev, np, di->bm);
3074 		if (ret) {
3075 			dev_err(&pdev->dev, "failed to get battery information\n");
3076 			return ret;
3077 		}
3078 	}
3079 
3080 	mutex_init(&di->cc_lock);
3081 
3082 	/* get parent data */
3083 	di->dev = &pdev->dev;
3084 	di->parent = dev_get_drvdata(pdev->dev.parent);
3085 	di->gpadc = ab8500_gpadc_get("ab8500-gpadc.0");
3086 
3087 	psy_cfg.supplied_to = supply_interface;
3088 	psy_cfg.num_supplicants = ARRAY_SIZE(supply_interface);
3089 	psy_cfg.drv_data = di;
3090 
3091 	di->bat_cap.max_mah_design = MILLI_TO_MICRO *
3092 		di->bm->bat_type[di->bm->batt_id].charge_full_design;
3093 
3094 	di->bat_cap.max_mah = di->bat_cap.max_mah_design;
3095 
3096 	di->vbat_nom = di->bm->bat_type[di->bm->batt_id].nominal_voltage;
3097 
3098 	di->init_capacity = true;
3099 
3100 	ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
3101 	ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
3102 
3103 	/* Create a work queue for running the FG algorithm */
3104 	di->fg_wq = create_singlethread_workqueue("ab8500_fg_wq");
3105 	if (di->fg_wq == NULL) {
3106 		dev_err(di->dev, "failed to create work queue\n");
3107 		return -ENOMEM;
3108 	}
3109 
3110 	/* Init work for running the fg algorithm instantly */
3111 	INIT_WORK(&di->fg_work, ab8500_fg_instant_work);
3112 
3113 	/* Init work for getting the battery accumulated current */
3114 	INIT_WORK(&di->fg_acc_cur_work, ab8500_fg_acc_cur_work);
3115 
3116 	/* Init work for reinitialising the fg algorithm */
3117 	INIT_DEFERRABLE_WORK(&di->fg_reinit_work,
3118 		ab8500_fg_reinit_work);
3119 
3120 	/* Work delayed Queue to run the state machine */
3121 	INIT_DEFERRABLE_WORK(&di->fg_periodic_work,
3122 		ab8500_fg_periodic_work);
3123 
3124 	/* Work to check low battery condition */
3125 	INIT_DEFERRABLE_WORK(&di->fg_low_bat_work,
3126 		ab8500_fg_low_bat_work);
3127 
3128 	/* Init work for HW failure check */
3129 	INIT_DEFERRABLE_WORK(&di->fg_check_hw_failure_work,
3130 		ab8500_fg_check_hw_failure_work);
3131 
3132 	/* Reset battery low voltage flag */
3133 	di->flags.low_bat = false;
3134 
3135 	/* Initialize low battery counter */
3136 	di->low_bat_cnt = 10;
3137 
3138 	/* Initialize OVV, and other registers */
3139 	ret = ab8500_fg_init_hw_registers(di);
3140 	if (ret) {
3141 		dev_err(di->dev, "failed to initialize registers\n");
3142 		goto free_inst_curr_wq;
3143 	}
3144 
3145 	/* Consider battery unknown until we're informed otherwise */
3146 	di->flags.batt_unknown = true;
3147 	di->flags.batt_id_received = false;
3148 
3149 	/* Register FG power supply class */
3150 	di->fg_psy = power_supply_register(di->dev, &ab8500_fg_desc, &psy_cfg);
3151 	if (IS_ERR(di->fg_psy)) {
3152 		dev_err(di->dev, "failed to register FG psy\n");
3153 		ret = PTR_ERR(di->fg_psy);
3154 		goto free_inst_curr_wq;
3155 	}
3156 
3157 	di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
3158 	ab8500_fg_coulomb_counter(di, true);
3159 
3160 	/*
3161 	 * Initialize completion used to notify completion and start
3162 	 * of inst current
3163 	 */
3164 	init_completion(&di->ab8500_fg_started);
3165 	init_completion(&di->ab8500_fg_complete);
3166 
3167 	/* Register primary interrupt handlers */
3168 	for (i = 0; i < ARRAY_SIZE(ab8500_fg_irq_th); i++) {
3169 		irq = platform_get_irq_byname(pdev, ab8500_fg_irq_th[i].name);
3170 		ret = request_irq(irq, ab8500_fg_irq_th[i].isr,
3171 				  IRQF_SHARED | IRQF_NO_SUSPEND,
3172 				  ab8500_fg_irq_th[i].name, di);
3173 
3174 		if (ret != 0) {
3175 			dev_err(di->dev, "failed to request %s IRQ %d: %d\n",
3176 				ab8500_fg_irq_th[i].name, irq, ret);
3177 			goto free_irq;
3178 		}
3179 		dev_dbg(di->dev, "Requested %s IRQ %d: %d\n",
3180 			ab8500_fg_irq_th[i].name, irq, ret);
3181 	}
3182 
3183 	/* Register threaded interrupt handler */
3184 	irq = platform_get_irq_byname(pdev, ab8500_fg_irq_bh[0].name);
3185 	ret = request_threaded_irq(irq, NULL, ab8500_fg_irq_bh[0].isr,
3186 				IRQF_SHARED | IRQF_NO_SUSPEND | IRQF_ONESHOT,
3187 			ab8500_fg_irq_bh[0].name, di);
3188 
3189 	if (ret != 0) {
3190 		dev_err(di->dev, "failed to request %s IRQ %d: %d\n",
3191 			ab8500_fg_irq_bh[0].name, irq, ret);
3192 		goto free_irq;
3193 	}
3194 	dev_dbg(di->dev, "Requested %s IRQ %d: %d\n",
3195 		ab8500_fg_irq_bh[0].name, irq, ret);
3196 
3197 	di->irq = platform_get_irq_byname(pdev, "CCEOC");
3198 	disable_irq(di->irq);
3199 	di->nbr_cceoc_irq_cnt = 0;
3200 
3201 	platform_set_drvdata(pdev, di);
3202 
3203 	ret = ab8500_fg_sysfs_init(di);
3204 	if (ret) {
3205 		dev_err(di->dev, "failed to create sysfs entry\n");
3206 		goto free_irq;
3207 	}
3208 
3209 	ret = ab8500_fg_sysfs_psy_create_attrs(di);
3210 	if (ret) {
3211 		dev_err(di->dev, "failed to create FG psy\n");
3212 		ab8500_fg_sysfs_exit(di);
3213 		goto free_irq;
3214 	}
3215 
3216 	/* Calibrate the fg first time */
3217 	di->flags.calibrate = true;
3218 	di->calib_state = AB8500_FG_CALIB_INIT;
3219 
3220 	/* Use room temp as default value until we get an update from driver. */
3221 	di->bat_temp = 210;
3222 
3223 	/* Run the FG algorithm */
3224 	queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
3225 
3226 	list_add_tail(&di->node, &ab8500_fg_list);
3227 
3228 	return ret;
3229 
3230 free_irq:
3231 	power_supply_unregister(di->fg_psy);
3232 
3233 	/* We also have to free all registered irqs */
3234 	for (i = 0; i < ARRAY_SIZE(ab8500_fg_irq_th); i++) {
3235 		irq = platform_get_irq_byname(pdev, ab8500_fg_irq_th[i].name);
3236 		free_irq(irq, di);
3237 	}
3238 	irq = platform_get_irq_byname(pdev, ab8500_fg_irq_bh[0].name);
3239 	free_irq(irq, di);
3240 free_inst_curr_wq:
3241 	destroy_workqueue(di->fg_wq);
3242 	return ret;
3243 }
3244 
3245 static const struct of_device_id ab8500_fg_match[] = {
3246 	{ .compatible = "stericsson,ab8500-fg", },
3247 	{ },
3248 };
3249 
3250 static struct platform_driver ab8500_fg_driver = {
3251 	.probe = ab8500_fg_probe,
3252 	.remove = ab8500_fg_remove,
3253 	.suspend = ab8500_fg_suspend,
3254 	.resume = ab8500_fg_resume,
3255 	.driver = {
3256 		.name = "ab8500-fg",
3257 		.of_match_table = ab8500_fg_match,
3258 	},
3259 };
3260 
ab8500_fg_init(void)3261 static int __init ab8500_fg_init(void)
3262 {
3263 	return platform_driver_register(&ab8500_fg_driver);
3264 }
3265 
ab8500_fg_exit(void)3266 static void __exit ab8500_fg_exit(void)
3267 {
3268 	platform_driver_unregister(&ab8500_fg_driver);
3269 }
3270 
3271 subsys_initcall_sync(ab8500_fg_init);
3272 module_exit(ab8500_fg_exit);
3273 
3274 MODULE_LICENSE("GPL v2");
3275 MODULE_AUTHOR("Johan Palsson, Karl Komierowski");
3276 MODULE_ALIAS("platform:ab8500-fg");
3277 MODULE_DESCRIPTION("AB8500 Fuel Gauge driver");
3278