1 /*******************************************************************************
2 * Filename: target_core_transport.c
3 *
4 * This file contains the Generic Target Engine Core.
5 *
6 * (c) Copyright 2002-2013 Datera, Inc.
7 *
8 * Nicholas A. Bellinger <nab@kernel.org>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 *
24 ******************************************************************************/
25
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
33 #include <linux/in.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <linux/vmalloc.h>
38 #include <asm/unaligned.h>
39 #include <net/sock.h>
40 #include <net/tcp.h>
41 #include <scsi/scsi_proto.h>
42 #include <scsi/scsi_common.h>
43
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
47
48 #include "target_core_internal.h"
49 #include "target_core_alua.h"
50 #include "target_core_pr.h"
51 #include "target_core_ua.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/target.h>
55
56 static struct workqueue_struct *target_completion_wq;
57 static struct kmem_cache *se_sess_cache;
58 struct kmem_cache *se_ua_cache;
59 struct kmem_cache *t10_pr_reg_cache;
60 struct kmem_cache *t10_alua_lu_gp_cache;
61 struct kmem_cache *t10_alua_lu_gp_mem_cache;
62 struct kmem_cache *t10_alua_tg_pt_gp_cache;
63 struct kmem_cache *t10_alua_lba_map_cache;
64 struct kmem_cache *t10_alua_lba_map_mem_cache;
65
66 static void transport_complete_task_attr(struct se_cmd *cmd);
67 static void transport_handle_queue_full(struct se_cmd *cmd,
68 struct se_device *dev);
69 static int transport_put_cmd(struct se_cmd *cmd);
70 static void target_complete_ok_work(struct work_struct *work);
71
init_se_kmem_caches(void)72 int init_se_kmem_caches(void)
73 {
74 se_sess_cache = kmem_cache_create("se_sess_cache",
75 sizeof(struct se_session), __alignof__(struct se_session),
76 0, NULL);
77 if (!se_sess_cache) {
78 pr_err("kmem_cache_create() for struct se_session"
79 " failed\n");
80 goto out;
81 }
82 se_ua_cache = kmem_cache_create("se_ua_cache",
83 sizeof(struct se_ua), __alignof__(struct se_ua),
84 0, NULL);
85 if (!se_ua_cache) {
86 pr_err("kmem_cache_create() for struct se_ua failed\n");
87 goto out_free_sess_cache;
88 }
89 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
90 sizeof(struct t10_pr_registration),
91 __alignof__(struct t10_pr_registration), 0, NULL);
92 if (!t10_pr_reg_cache) {
93 pr_err("kmem_cache_create() for struct t10_pr_registration"
94 " failed\n");
95 goto out_free_ua_cache;
96 }
97 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
98 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
99 0, NULL);
100 if (!t10_alua_lu_gp_cache) {
101 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
102 " failed\n");
103 goto out_free_pr_reg_cache;
104 }
105 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
106 sizeof(struct t10_alua_lu_gp_member),
107 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
108 if (!t10_alua_lu_gp_mem_cache) {
109 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
110 "cache failed\n");
111 goto out_free_lu_gp_cache;
112 }
113 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
114 sizeof(struct t10_alua_tg_pt_gp),
115 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
116 if (!t10_alua_tg_pt_gp_cache) {
117 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
118 "cache failed\n");
119 goto out_free_lu_gp_mem_cache;
120 }
121 t10_alua_lba_map_cache = kmem_cache_create(
122 "t10_alua_lba_map_cache",
123 sizeof(struct t10_alua_lba_map),
124 __alignof__(struct t10_alua_lba_map), 0, NULL);
125 if (!t10_alua_lba_map_cache) {
126 pr_err("kmem_cache_create() for t10_alua_lba_map_"
127 "cache failed\n");
128 goto out_free_tg_pt_gp_cache;
129 }
130 t10_alua_lba_map_mem_cache = kmem_cache_create(
131 "t10_alua_lba_map_mem_cache",
132 sizeof(struct t10_alua_lba_map_member),
133 __alignof__(struct t10_alua_lba_map_member), 0, NULL);
134 if (!t10_alua_lba_map_mem_cache) {
135 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
136 "cache failed\n");
137 goto out_free_lba_map_cache;
138 }
139
140 target_completion_wq = alloc_workqueue("target_completion",
141 WQ_MEM_RECLAIM, 0);
142 if (!target_completion_wq)
143 goto out_free_lba_map_mem_cache;
144
145 return 0;
146
147 out_free_lba_map_mem_cache:
148 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
149 out_free_lba_map_cache:
150 kmem_cache_destroy(t10_alua_lba_map_cache);
151 out_free_tg_pt_gp_cache:
152 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
153 out_free_lu_gp_mem_cache:
154 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
155 out_free_lu_gp_cache:
156 kmem_cache_destroy(t10_alua_lu_gp_cache);
157 out_free_pr_reg_cache:
158 kmem_cache_destroy(t10_pr_reg_cache);
159 out_free_ua_cache:
160 kmem_cache_destroy(se_ua_cache);
161 out_free_sess_cache:
162 kmem_cache_destroy(se_sess_cache);
163 out:
164 return -ENOMEM;
165 }
166
release_se_kmem_caches(void)167 void release_se_kmem_caches(void)
168 {
169 destroy_workqueue(target_completion_wq);
170 kmem_cache_destroy(se_sess_cache);
171 kmem_cache_destroy(se_ua_cache);
172 kmem_cache_destroy(t10_pr_reg_cache);
173 kmem_cache_destroy(t10_alua_lu_gp_cache);
174 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
175 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
176 kmem_cache_destroy(t10_alua_lba_map_cache);
177 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
178 }
179
180 /* This code ensures unique mib indexes are handed out. */
181 static DEFINE_SPINLOCK(scsi_mib_index_lock);
182 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
183
184 /*
185 * Allocate a new row index for the entry type specified
186 */
scsi_get_new_index(scsi_index_t type)187 u32 scsi_get_new_index(scsi_index_t type)
188 {
189 u32 new_index;
190
191 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
192
193 spin_lock(&scsi_mib_index_lock);
194 new_index = ++scsi_mib_index[type];
195 spin_unlock(&scsi_mib_index_lock);
196
197 return new_index;
198 }
199
transport_subsystem_check_init(void)200 void transport_subsystem_check_init(void)
201 {
202 int ret;
203 static int sub_api_initialized;
204
205 if (sub_api_initialized)
206 return;
207
208 ret = request_module("target_core_iblock");
209 if (ret != 0)
210 pr_err("Unable to load target_core_iblock\n");
211
212 ret = request_module("target_core_file");
213 if (ret != 0)
214 pr_err("Unable to load target_core_file\n");
215
216 ret = request_module("target_core_pscsi");
217 if (ret != 0)
218 pr_err("Unable to load target_core_pscsi\n");
219
220 ret = request_module("target_core_user");
221 if (ret != 0)
222 pr_err("Unable to load target_core_user\n");
223
224 sub_api_initialized = 1;
225 }
226
transport_init_session(enum target_prot_op sup_prot_ops)227 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops)
228 {
229 struct se_session *se_sess;
230
231 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
232 if (!se_sess) {
233 pr_err("Unable to allocate struct se_session from"
234 " se_sess_cache\n");
235 return ERR_PTR(-ENOMEM);
236 }
237 INIT_LIST_HEAD(&se_sess->sess_list);
238 INIT_LIST_HEAD(&se_sess->sess_acl_list);
239 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
240 INIT_LIST_HEAD(&se_sess->sess_wait_list);
241 spin_lock_init(&se_sess->sess_cmd_lock);
242 kref_init(&se_sess->sess_kref);
243 se_sess->sup_prot_ops = sup_prot_ops;
244
245 return se_sess;
246 }
247 EXPORT_SYMBOL(transport_init_session);
248
transport_alloc_session_tags(struct se_session * se_sess,unsigned int tag_num,unsigned int tag_size)249 int transport_alloc_session_tags(struct se_session *se_sess,
250 unsigned int tag_num, unsigned int tag_size)
251 {
252 int rc;
253
254 se_sess->sess_cmd_map = kzalloc(tag_num * tag_size,
255 GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
256 if (!se_sess->sess_cmd_map) {
257 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
258 if (!se_sess->sess_cmd_map) {
259 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
260 return -ENOMEM;
261 }
262 }
263
264 rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
265 if (rc < 0) {
266 pr_err("Unable to init se_sess->sess_tag_pool,"
267 " tag_num: %u\n", tag_num);
268 kvfree(se_sess->sess_cmd_map);
269 se_sess->sess_cmd_map = NULL;
270 return -ENOMEM;
271 }
272
273 return 0;
274 }
275 EXPORT_SYMBOL(transport_alloc_session_tags);
276
transport_init_session_tags(unsigned int tag_num,unsigned int tag_size,enum target_prot_op sup_prot_ops)277 struct se_session *transport_init_session_tags(unsigned int tag_num,
278 unsigned int tag_size,
279 enum target_prot_op sup_prot_ops)
280 {
281 struct se_session *se_sess;
282 int rc;
283
284 se_sess = transport_init_session(sup_prot_ops);
285 if (IS_ERR(se_sess))
286 return se_sess;
287
288 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
289 if (rc < 0) {
290 transport_free_session(se_sess);
291 return ERR_PTR(-ENOMEM);
292 }
293
294 return se_sess;
295 }
296 EXPORT_SYMBOL(transport_init_session_tags);
297
298 /*
299 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
300 */
__transport_register_session(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl,struct se_session * se_sess,void * fabric_sess_ptr)301 void __transport_register_session(
302 struct se_portal_group *se_tpg,
303 struct se_node_acl *se_nacl,
304 struct se_session *se_sess,
305 void *fabric_sess_ptr)
306 {
307 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
308 unsigned char buf[PR_REG_ISID_LEN];
309
310 se_sess->se_tpg = se_tpg;
311 se_sess->fabric_sess_ptr = fabric_sess_ptr;
312 /*
313 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
314 *
315 * Only set for struct se_session's that will actually be moving I/O.
316 * eg: *NOT* discovery sessions.
317 */
318 if (se_nacl) {
319 /*
320 *
321 * Determine if fabric allows for T10-PI feature bits exposed to
322 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
323 *
324 * If so, then always save prot_type on a per se_node_acl node
325 * basis and re-instate the previous sess_prot_type to avoid
326 * disabling PI from below any previously initiator side
327 * registered LUNs.
328 */
329 if (se_nacl->saved_prot_type)
330 se_sess->sess_prot_type = se_nacl->saved_prot_type;
331 else if (tfo->tpg_check_prot_fabric_only)
332 se_sess->sess_prot_type = se_nacl->saved_prot_type =
333 tfo->tpg_check_prot_fabric_only(se_tpg);
334 /*
335 * If the fabric module supports an ISID based TransportID,
336 * save this value in binary from the fabric I_T Nexus now.
337 */
338 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
339 memset(&buf[0], 0, PR_REG_ISID_LEN);
340 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
341 &buf[0], PR_REG_ISID_LEN);
342 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
343 }
344 kref_get(&se_nacl->acl_kref);
345
346 spin_lock_irq(&se_nacl->nacl_sess_lock);
347 /*
348 * The se_nacl->nacl_sess pointer will be set to the
349 * last active I_T Nexus for each struct se_node_acl.
350 */
351 se_nacl->nacl_sess = se_sess;
352
353 list_add_tail(&se_sess->sess_acl_list,
354 &se_nacl->acl_sess_list);
355 spin_unlock_irq(&se_nacl->nacl_sess_lock);
356 }
357 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
358
359 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
360 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
361 }
362 EXPORT_SYMBOL(__transport_register_session);
363
transport_register_session(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl,struct se_session * se_sess,void * fabric_sess_ptr)364 void transport_register_session(
365 struct se_portal_group *se_tpg,
366 struct se_node_acl *se_nacl,
367 struct se_session *se_sess,
368 void *fabric_sess_ptr)
369 {
370 unsigned long flags;
371
372 spin_lock_irqsave(&se_tpg->session_lock, flags);
373 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
374 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
375 }
376 EXPORT_SYMBOL(transport_register_session);
377
target_release_session(struct kref * kref)378 static void target_release_session(struct kref *kref)
379 {
380 struct se_session *se_sess = container_of(kref,
381 struct se_session, sess_kref);
382 struct se_portal_group *se_tpg = se_sess->se_tpg;
383
384 se_tpg->se_tpg_tfo->close_session(se_sess);
385 }
386
target_get_session(struct se_session * se_sess)387 void target_get_session(struct se_session *se_sess)
388 {
389 kref_get(&se_sess->sess_kref);
390 }
391 EXPORT_SYMBOL(target_get_session);
392
target_put_session(struct se_session * se_sess)393 void target_put_session(struct se_session *se_sess)
394 {
395 kref_put(&se_sess->sess_kref, target_release_session);
396 }
397 EXPORT_SYMBOL(target_put_session);
398
target_show_dynamic_sessions(struct se_portal_group * se_tpg,char * page)399 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
400 {
401 struct se_session *se_sess;
402 ssize_t len = 0;
403
404 spin_lock_bh(&se_tpg->session_lock);
405 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
406 if (!se_sess->se_node_acl)
407 continue;
408 if (!se_sess->se_node_acl->dynamic_node_acl)
409 continue;
410 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
411 break;
412
413 len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
414 se_sess->se_node_acl->initiatorname);
415 len += 1; /* Include NULL terminator */
416 }
417 spin_unlock_bh(&se_tpg->session_lock);
418
419 return len;
420 }
421 EXPORT_SYMBOL(target_show_dynamic_sessions);
422
target_complete_nacl(struct kref * kref)423 static void target_complete_nacl(struct kref *kref)
424 {
425 struct se_node_acl *nacl = container_of(kref,
426 struct se_node_acl, acl_kref);
427
428 complete(&nacl->acl_free_comp);
429 }
430
target_put_nacl(struct se_node_acl * nacl)431 void target_put_nacl(struct se_node_acl *nacl)
432 {
433 kref_put(&nacl->acl_kref, target_complete_nacl);
434 }
435
transport_deregister_session_configfs(struct se_session * se_sess)436 void transport_deregister_session_configfs(struct se_session *se_sess)
437 {
438 struct se_node_acl *se_nacl;
439 unsigned long flags;
440 /*
441 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
442 */
443 se_nacl = se_sess->se_node_acl;
444 if (se_nacl) {
445 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
446 if (se_nacl->acl_stop == 0)
447 list_del(&se_sess->sess_acl_list);
448 /*
449 * If the session list is empty, then clear the pointer.
450 * Otherwise, set the struct se_session pointer from the tail
451 * element of the per struct se_node_acl active session list.
452 */
453 if (list_empty(&se_nacl->acl_sess_list))
454 se_nacl->nacl_sess = NULL;
455 else {
456 se_nacl->nacl_sess = container_of(
457 se_nacl->acl_sess_list.prev,
458 struct se_session, sess_acl_list);
459 }
460 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
461 }
462 }
463 EXPORT_SYMBOL(transport_deregister_session_configfs);
464
transport_free_session(struct se_session * se_sess)465 void transport_free_session(struct se_session *se_sess)
466 {
467 if (se_sess->sess_cmd_map) {
468 percpu_ida_destroy(&se_sess->sess_tag_pool);
469 kvfree(se_sess->sess_cmd_map);
470 }
471 kmem_cache_free(se_sess_cache, se_sess);
472 }
473 EXPORT_SYMBOL(transport_free_session);
474
transport_deregister_session(struct se_session * se_sess)475 void transport_deregister_session(struct se_session *se_sess)
476 {
477 struct se_portal_group *se_tpg = se_sess->se_tpg;
478 const struct target_core_fabric_ops *se_tfo;
479 struct se_node_acl *se_nacl;
480 unsigned long flags;
481 bool comp_nacl = true, drop_nacl = false;
482
483 if (!se_tpg) {
484 transport_free_session(se_sess);
485 return;
486 }
487 se_tfo = se_tpg->se_tpg_tfo;
488
489 spin_lock_irqsave(&se_tpg->session_lock, flags);
490 list_del(&se_sess->sess_list);
491 se_sess->se_tpg = NULL;
492 se_sess->fabric_sess_ptr = NULL;
493 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
494
495 /*
496 * Determine if we need to do extra work for this initiator node's
497 * struct se_node_acl if it had been previously dynamically generated.
498 */
499 se_nacl = se_sess->se_node_acl;
500
501 mutex_lock(&se_tpg->acl_node_mutex);
502 if (se_nacl && se_nacl->dynamic_node_acl) {
503 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
504 list_del(&se_nacl->acl_list);
505 se_tpg->num_node_acls--;
506 drop_nacl = true;
507 }
508 }
509 mutex_unlock(&se_tpg->acl_node_mutex);
510
511 if (drop_nacl) {
512 core_tpg_wait_for_nacl_pr_ref(se_nacl);
513 core_free_device_list_for_node(se_nacl, se_tpg);
514 kfree(se_nacl);
515 comp_nacl = false;
516 }
517 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
518 se_tpg->se_tpg_tfo->get_fabric_name());
519 /*
520 * If last kref is dropping now for an explicit NodeACL, awake sleeping
521 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
522 * removal context.
523 */
524 if (se_nacl && comp_nacl)
525 target_put_nacl(se_nacl);
526
527 transport_free_session(se_sess);
528 }
529 EXPORT_SYMBOL(transport_deregister_session);
530
target_remove_from_state_list(struct se_cmd * cmd)531 static void target_remove_from_state_list(struct se_cmd *cmd)
532 {
533 struct se_device *dev = cmd->se_dev;
534 unsigned long flags;
535
536 if (!dev)
537 return;
538
539 if (cmd->transport_state & CMD_T_BUSY)
540 return;
541
542 spin_lock_irqsave(&dev->execute_task_lock, flags);
543 if (cmd->state_active) {
544 list_del(&cmd->state_list);
545 cmd->state_active = false;
546 }
547 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
548 }
549
transport_cmd_check_stop(struct se_cmd * cmd,bool remove_from_lists,bool write_pending)550 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists,
551 bool write_pending)
552 {
553 unsigned long flags;
554
555 if (remove_from_lists) {
556 target_remove_from_state_list(cmd);
557
558 /*
559 * Clear struct se_cmd->se_lun before the handoff to FE.
560 */
561 cmd->se_lun = NULL;
562 }
563
564 spin_lock_irqsave(&cmd->t_state_lock, flags);
565 if (write_pending)
566 cmd->t_state = TRANSPORT_WRITE_PENDING;
567
568 /*
569 * Determine if frontend context caller is requesting the stopping of
570 * this command for frontend exceptions.
571 */
572 if (cmd->transport_state & CMD_T_STOP) {
573 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
574 __func__, __LINE__, cmd->tag);
575
576 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
577
578 complete_all(&cmd->t_transport_stop_comp);
579 return 1;
580 }
581
582 cmd->transport_state &= ~CMD_T_ACTIVE;
583 if (remove_from_lists) {
584 /*
585 * Some fabric modules like tcm_loop can release
586 * their internally allocated I/O reference now and
587 * struct se_cmd now.
588 *
589 * Fabric modules are expected to return '1' here if the
590 * se_cmd being passed is released at this point,
591 * or zero if not being released.
592 */
593 if (cmd->se_tfo->check_stop_free != NULL) {
594 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
595 return cmd->se_tfo->check_stop_free(cmd);
596 }
597 }
598
599 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
600 return 0;
601 }
602
transport_cmd_check_stop_to_fabric(struct se_cmd * cmd)603 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
604 {
605 return transport_cmd_check_stop(cmd, true, false);
606 }
607
transport_lun_remove_cmd(struct se_cmd * cmd)608 static void transport_lun_remove_cmd(struct se_cmd *cmd)
609 {
610 struct se_lun *lun = cmd->se_lun;
611
612 if (!lun)
613 return;
614
615 if (cmpxchg(&cmd->lun_ref_active, true, false))
616 percpu_ref_put(&lun->lun_ref);
617 }
618
transport_cmd_finish_abort(struct se_cmd * cmd,int remove)619 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
620 {
621 bool ack_kref = (cmd->se_cmd_flags & SCF_ACK_KREF);
622
623 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD)
624 transport_lun_remove_cmd(cmd);
625 /*
626 * Allow the fabric driver to unmap any resources before
627 * releasing the descriptor via TFO->release_cmd()
628 */
629 if (remove)
630 cmd->se_tfo->aborted_task(cmd);
631
632 if (transport_cmd_check_stop_to_fabric(cmd))
633 return;
634 if (remove && ack_kref)
635 transport_put_cmd(cmd);
636 }
637
target_complete_failure_work(struct work_struct * work)638 static void target_complete_failure_work(struct work_struct *work)
639 {
640 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
641
642 transport_generic_request_failure(cmd,
643 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
644 }
645
646 /*
647 * Used when asking transport to copy Sense Data from the underlying
648 * Linux/SCSI struct scsi_cmnd
649 */
transport_get_sense_buffer(struct se_cmd * cmd)650 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
651 {
652 struct se_device *dev = cmd->se_dev;
653
654 WARN_ON(!cmd->se_lun);
655
656 if (!dev)
657 return NULL;
658
659 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
660 return NULL;
661
662 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
663
664 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
665 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
666 return cmd->sense_buffer;
667 }
668
target_complete_cmd(struct se_cmd * cmd,u8 scsi_status)669 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
670 {
671 struct se_device *dev = cmd->se_dev;
672 int success = scsi_status == GOOD;
673 unsigned long flags;
674
675 cmd->scsi_status = scsi_status;
676
677
678 spin_lock_irqsave(&cmd->t_state_lock, flags);
679 cmd->transport_state &= ~CMD_T_BUSY;
680
681 if (dev && dev->transport->transport_complete) {
682 dev->transport->transport_complete(cmd,
683 cmd->t_data_sg,
684 transport_get_sense_buffer(cmd));
685 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
686 success = 1;
687 }
688
689 /*
690 * See if we are waiting to complete for an exception condition.
691 */
692 if (cmd->transport_state & CMD_T_REQUEST_STOP) {
693 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
694 complete(&cmd->task_stop_comp);
695 return;
696 }
697
698 /*
699 * Check for case where an explicit ABORT_TASK has been received
700 * and transport_wait_for_tasks() will be waiting for completion..
701 */
702 if (cmd->transport_state & CMD_T_ABORTED ||
703 cmd->transport_state & CMD_T_STOP) {
704 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
705 complete_all(&cmd->t_transport_stop_comp);
706 return;
707 } else if (!success) {
708 INIT_WORK(&cmd->work, target_complete_failure_work);
709 } else {
710 INIT_WORK(&cmd->work, target_complete_ok_work);
711 }
712
713 cmd->t_state = TRANSPORT_COMPLETE;
714 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
715 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
716
717 queue_work(target_completion_wq, &cmd->work);
718 }
719 EXPORT_SYMBOL(target_complete_cmd);
720
target_complete_cmd_with_length(struct se_cmd * cmd,u8 scsi_status,int length)721 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
722 {
723 if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) {
724 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
725 cmd->residual_count += cmd->data_length - length;
726 } else {
727 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
728 cmd->residual_count = cmd->data_length - length;
729 }
730
731 cmd->data_length = length;
732 }
733
734 target_complete_cmd(cmd, scsi_status);
735 }
736 EXPORT_SYMBOL(target_complete_cmd_with_length);
737
target_add_to_state_list(struct se_cmd * cmd)738 static void target_add_to_state_list(struct se_cmd *cmd)
739 {
740 struct se_device *dev = cmd->se_dev;
741 unsigned long flags;
742
743 spin_lock_irqsave(&dev->execute_task_lock, flags);
744 if (!cmd->state_active) {
745 list_add_tail(&cmd->state_list, &dev->state_list);
746 cmd->state_active = true;
747 }
748 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
749 }
750
751 /*
752 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
753 */
754 static void transport_write_pending_qf(struct se_cmd *cmd);
755 static void transport_complete_qf(struct se_cmd *cmd);
756
target_qf_do_work(struct work_struct * work)757 void target_qf_do_work(struct work_struct *work)
758 {
759 struct se_device *dev = container_of(work, struct se_device,
760 qf_work_queue);
761 LIST_HEAD(qf_cmd_list);
762 struct se_cmd *cmd, *cmd_tmp;
763
764 spin_lock_irq(&dev->qf_cmd_lock);
765 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
766 spin_unlock_irq(&dev->qf_cmd_lock);
767
768 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
769 list_del(&cmd->se_qf_node);
770 atomic_dec_mb(&dev->dev_qf_count);
771
772 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
773 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
774 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
775 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
776 : "UNKNOWN");
777
778 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
779 transport_write_pending_qf(cmd);
780 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
781 transport_complete_qf(cmd);
782 }
783 }
784
transport_dump_cmd_direction(struct se_cmd * cmd)785 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
786 {
787 switch (cmd->data_direction) {
788 case DMA_NONE:
789 return "NONE";
790 case DMA_FROM_DEVICE:
791 return "READ";
792 case DMA_TO_DEVICE:
793 return "WRITE";
794 case DMA_BIDIRECTIONAL:
795 return "BIDI";
796 default:
797 break;
798 }
799
800 return "UNKNOWN";
801 }
802
transport_dump_dev_state(struct se_device * dev,char * b,int * bl)803 void transport_dump_dev_state(
804 struct se_device *dev,
805 char *b,
806 int *bl)
807 {
808 *bl += sprintf(b + *bl, "Status: ");
809 if (dev->export_count)
810 *bl += sprintf(b + *bl, "ACTIVATED");
811 else
812 *bl += sprintf(b + *bl, "DEACTIVATED");
813
814 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth);
815 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
816 dev->dev_attrib.block_size,
817 dev->dev_attrib.hw_max_sectors);
818 *bl += sprintf(b + *bl, " ");
819 }
820
transport_dump_vpd_proto_id(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)821 void transport_dump_vpd_proto_id(
822 struct t10_vpd *vpd,
823 unsigned char *p_buf,
824 int p_buf_len)
825 {
826 unsigned char buf[VPD_TMP_BUF_SIZE];
827 int len;
828
829 memset(buf, 0, VPD_TMP_BUF_SIZE);
830 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
831
832 switch (vpd->protocol_identifier) {
833 case 0x00:
834 sprintf(buf+len, "Fibre Channel\n");
835 break;
836 case 0x10:
837 sprintf(buf+len, "Parallel SCSI\n");
838 break;
839 case 0x20:
840 sprintf(buf+len, "SSA\n");
841 break;
842 case 0x30:
843 sprintf(buf+len, "IEEE 1394\n");
844 break;
845 case 0x40:
846 sprintf(buf+len, "SCSI Remote Direct Memory Access"
847 " Protocol\n");
848 break;
849 case 0x50:
850 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
851 break;
852 case 0x60:
853 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
854 break;
855 case 0x70:
856 sprintf(buf+len, "Automation/Drive Interface Transport"
857 " Protocol\n");
858 break;
859 case 0x80:
860 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
861 break;
862 default:
863 sprintf(buf+len, "Unknown 0x%02x\n",
864 vpd->protocol_identifier);
865 break;
866 }
867
868 if (p_buf)
869 strncpy(p_buf, buf, p_buf_len);
870 else
871 pr_debug("%s", buf);
872 }
873
874 void
transport_set_vpd_proto_id(struct t10_vpd * vpd,unsigned char * page_83)875 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
876 {
877 /*
878 * Check if the Protocol Identifier Valid (PIV) bit is set..
879 *
880 * from spc3r23.pdf section 7.5.1
881 */
882 if (page_83[1] & 0x80) {
883 vpd->protocol_identifier = (page_83[0] & 0xf0);
884 vpd->protocol_identifier_set = 1;
885 transport_dump_vpd_proto_id(vpd, NULL, 0);
886 }
887 }
888 EXPORT_SYMBOL(transport_set_vpd_proto_id);
889
transport_dump_vpd_assoc(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)890 int transport_dump_vpd_assoc(
891 struct t10_vpd *vpd,
892 unsigned char *p_buf,
893 int p_buf_len)
894 {
895 unsigned char buf[VPD_TMP_BUF_SIZE];
896 int ret = 0;
897 int len;
898
899 memset(buf, 0, VPD_TMP_BUF_SIZE);
900 len = sprintf(buf, "T10 VPD Identifier Association: ");
901
902 switch (vpd->association) {
903 case 0x00:
904 sprintf(buf+len, "addressed logical unit\n");
905 break;
906 case 0x10:
907 sprintf(buf+len, "target port\n");
908 break;
909 case 0x20:
910 sprintf(buf+len, "SCSI target device\n");
911 break;
912 default:
913 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
914 ret = -EINVAL;
915 break;
916 }
917
918 if (p_buf)
919 strncpy(p_buf, buf, p_buf_len);
920 else
921 pr_debug("%s", buf);
922
923 return ret;
924 }
925
transport_set_vpd_assoc(struct t10_vpd * vpd,unsigned char * page_83)926 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
927 {
928 /*
929 * The VPD identification association..
930 *
931 * from spc3r23.pdf Section 7.6.3.1 Table 297
932 */
933 vpd->association = (page_83[1] & 0x30);
934 return transport_dump_vpd_assoc(vpd, NULL, 0);
935 }
936 EXPORT_SYMBOL(transport_set_vpd_assoc);
937
transport_dump_vpd_ident_type(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)938 int transport_dump_vpd_ident_type(
939 struct t10_vpd *vpd,
940 unsigned char *p_buf,
941 int p_buf_len)
942 {
943 unsigned char buf[VPD_TMP_BUF_SIZE];
944 int ret = 0;
945 int len;
946
947 memset(buf, 0, VPD_TMP_BUF_SIZE);
948 len = sprintf(buf, "T10 VPD Identifier Type: ");
949
950 switch (vpd->device_identifier_type) {
951 case 0x00:
952 sprintf(buf+len, "Vendor specific\n");
953 break;
954 case 0x01:
955 sprintf(buf+len, "T10 Vendor ID based\n");
956 break;
957 case 0x02:
958 sprintf(buf+len, "EUI-64 based\n");
959 break;
960 case 0x03:
961 sprintf(buf+len, "NAA\n");
962 break;
963 case 0x04:
964 sprintf(buf+len, "Relative target port identifier\n");
965 break;
966 case 0x08:
967 sprintf(buf+len, "SCSI name string\n");
968 break;
969 default:
970 sprintf(buf+len, "Unsupported: 0x%02x\n",
971 vpd->device_identifier_type);
972 ret = -EINVAL;
973 break;
974 }
975
976 if (p_buf) {
977 if (p_buf_len < strlen(buf)+1)
978 return -EINVAL;
979 strncpy(p_buf, buf, p_buf_len);
980 } else {
981 pr_debug("%s", buf);
982 }
983
984 return ret;
985 }
986
transport_set_vpd_ident_type(struct t10_vpd * vpd,unsigned char * page_83)987 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
988 {
989 /*
990 * The VPD identifier type..
991 *
992 * from spc3r23.pdf Section 7.6.3.1 Table 298
993 */
994 vpd->device_identifier_type = (page_83[1] & 0x0f);
995 return transport_dump_vpd_ident_type(vpd, NULL, 0);
996 }
997 EXPORT_SYMBOL(transport_set_vpd_ident_type);
998
transport_dump_vpd_ident(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)999 int transport_dump_vpd_ident(
1000 struct t10_vpd *vpd,
1001 unsigned char *p_buf,
1002 int p_buf_len)
1003 {
1004 unsigned char buf[VPD_TMP_BUF_SIZE];
1005 int ret = 0;
1006
1007 memset(buf, 0, VPD_TMP_BUF_SIZE);
1008
1009 switch (vpd->device_identifier_code_set) {
1010 case 0x01: /* Binary */
1011 snprintf(buf, sizeof(buf),
1012 "T10 VPD Binary Device Identifier: %s\n",
1013 &vpd->device_identifier[0]);
1014 break;
1015 case 0x02: /* ASCII */
1016 snprintf(buf, sizeof(buf),
1017 "T10 VPD ASCII Device Identifier: %s\n",
1018 &vpd->device_identifier[0]);
1019 break;
1020 case 0x03: /* UTF-8 */
1021 snprintf(buf, sizeof(buf),
1022 "T10 VPD UTF-8 Device Identifier: %s\n",
1023 &vpd->device_identifier[0]);
1024 break;
1025 default:
1026 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1027 " 0x%02x", vpd->device_identifier_code_set);
1028 ret = -EINVAL;
1029 break;
1030 }
1031
1032 if (p_buf)
1033 strncpy(p_buf, buf, p_buf_len);
1034 else
1035 pr_debug("%s", buf);
1036
1037 return ret;
1038 }
1039
1040 int
transport_set_vpd_ident(struct t10_vpd * vpd,unsigned char * page_83)1041 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1042 {
1043 static const char hex_str[] = "0123456789abcdef";
1044 int j = 0, i = 4; /* offset to start of the identifier */
1045
1046 /*
1047 * The VPD Code Set (encoding)
1048 *
1049 * from spc3r23.pdf Section 7.6.3.1 Table 296
1050 */
1051 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1052 switch (vpd->device_identifier_code_set) {
1053 case 0x01: /* Binary */
1054 vpd->device_identifier[j++] =
1055 hex_str[vpd->device_identifier_type];
1056 while (i < (4 + page_83[3])) {
1057 vpd->device_identifier[j++] =
1058 hex_str[(page_83[i] & 0xf0) >> 4];
1059 vpd->device_identifier[j++] =
1060 hex_str[page_83[i] & 0x0f];
1061 i++;
1062 }
1063 break;
1064 case 0x02: /* ASCII */
1065 case 0x03: /* UTF-8 */
1066 while (i < (4 + page_83[3]))
1067 vpd->device_identifier[j++] = page_83[i++];
1068 break;
1069 default:
1070 break;
1071 }
1072
1073 return transport_dump_vpd_ident(vpd, NULL, 0);
1074 }
1075 EXPORT_SYMBOL(transport_set_vpd_ident);
1076
1077 static sense_reason_t
target_check_max_data_sg_nents(struct se_cmd * cmd,struct se_device * dev,unsigned int size)1078 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
1079 unsigned int size)
1080 {
1081 u32 mtl;
1082
1083 if (!cmd->se_tfo->max_data_sg_nents)
1084 return TCM_NO_SENSE;
1085 /*
1086 * Check if fabric enforced maximum SGL entries per I/O descriptor
1087 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT +
1088 * residual_count and reduce original cmd->data_length to maximum
1089 * length based on single PAGE_SIZE entry scatter-lists.
1090 */
1091 mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
1092 if (cmd->data_length > mtl) {
1093 /*
1094 * If an existing CDB overflow is present, calculate new residual
1095 * based on CDB size minus fabric maximum transfer length.
1096 *
1097 * If an existing CDB underflow is present, calculate new residual
1098 * based on original cmd->data_length minus fabric maximum transfer
1099 * length.
1100 *
1101 * Otherwise, set the underflow residual based on cmd->data_length
1102 * minus fabric maximum transfer length.
1103 */
1104 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1105 cmd->residual_count = (size - mtl);
1106 } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1107 u32 orig_dl = size + cmd->residual_count;
1108 cmd->residual_count = (orig_dl - mtl);
1109 } else {
1110 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1111 cmd->residual_count = (cmd->data_length - mtl);
1112 }
1113 cmd->data_length = mtl;
1114 /*
1115 * Reset sbc_check_prot() calculated protection payload
1116 * length based upon the new smaller MTL.
1117 */
1118 if (cmd->prot_length) {
1119 u32 sectors = (mtl / dev->dev_attrib.block_size);
1120 cmd->prot_length = dev->prot_length * sectors;
1121 }
1122 }
1123 return TCM_NO_SENSE;
1124 }
1125
1126 sense_reason_t
target_cmd_size_check(struct se_cmd * cmd,unsigned int size)1127 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1128 {
1129 struct se_device *dev = cmd->se_dev;
1130
1131 if (cmd->unknown_data_length) {
1132 cmd->data_length = size;
1133 } else if (size != cmd->data_length) {
1134 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1135 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1136 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1137 cmd->data_length, size, cmd->t_task_cdb[0]);
1138
1139 if (cmd->data_direction == DMA_TO_DEVICE &&
1140 cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
1141 pr_err("Rejecting underflow/overflow WRITE data\n");
1142 return TCM_INVALID_CDB_FIELD;
1143 }
1144 /*
1145 * Reject READ_* or WRITE_* with overflow/underflow for
1146 * type SCF_SCSI_DATA_CDB.
1147 */
1148 if (dev->dev_attrib.block_size != 512) {
1149 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1150 " CDB on non 512-byte sector setup subsystem"
1151 " plugin: %s\n", dev->transport->name);
1152 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1153 return TCM_INVALID_CDB_FIELD;
1154 }
1155 /*
1156 * For the overflow case keep the existing fabric provided
1157 * ->data_length. Otherwise for the underflow case, reset
1158 * ->data_length to the smaller SCSI expected data transfer
1159 * length.
1160 */
1161 if (size > cmd->data_length) {
1162 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1163 cmd->residual_count = (size - cmd->data_length);
1164 } else {
1165 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1166 cmd->residual_count = (cmd->data_length - size);
1167 cmd->data_length = size;
1168 }
1169 }
1170
1171 return target_check_max_data_sg_nents(cmd, dev, size);
1172
1173 }
1174
1175 /*
1176 * Used by fabric modules containing a local struct se_cmd within their
1177 * fabric dependent per I/O descriptor.
1178 *
1179 * Preserves the value of @cmd->tag.
1180 */
transport_init_se_cmd(struct se_cmd * cmd,const struct target_core_fabric_ops * tfo,struct se_session * se_sess,u32 data_length,int data_direction,int task_attr,unsigned char * sense_buffer)1181 void transport_init_se_cmd(
1182 struct se_cmd *cmd,
1183 const struct target_core_fabric_ops *tfo,
1184 struct se_session *se_sess,
1185 u32 data_length,
1186 int data_direction,
1187 int task_attr,
1188 unsigned char *sense_buffer)
1189 {
1190 INIT_LIST_HEAD(&cmd->se_delayed_node);
1191 INIT_LIST_HEAD(&cmd->se_qf_node);
1192 INIT_LIST_HEAD(&cmd->se_cmd_list);
1193 INIT_LIST_HEAD(&cmd->state_list);
1194 init_completion(&cmd->t_transport_stop_comp);
1195 init_completion(&cmd->cmd_wait_comp);
1196 init_completion(&cmd->task_stop_comp);
1197 spin_lock_init(&cmd->t_state_lock);
1198 kref_init(&cmd->cmd_kref);
1199 cmd->transport_state = CMD_T_DEV_ACTIVE;
1200
1201 cmd->se_tfo = tfo;
1202 cmd->se_sess = se_sess;
1203 cmd->data_length = data_length;
1204 cmd->data_direction = data_direction;
1205 cmd->sam_task_attr = task_attr;
1206 cmd->sense_buffer = sense_buffer;
1207
1208 cmd->state_active = false;
1209 }
1210 EXPORT_SYMBOL(transport_init_se_cmd);
1211
1212 static sense_reason_t
transport_check_alloc_task_attr(struct se_cmd * cmd)1213 transport_check_alloc_task_attr(struct se_cmd *cmd)
1214 {
1215 struct se_device *dev = cmd->se_dev;
1216
1217 /*
1218 * Check if SAM Task Attribute emulation is enabled for this
1219 * struct se_device storage object
1220 */
1221 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1222 return 0;
1223
1224 if (cmd->sam_task_attr == TCM_ACA_TAG) {
1225 pr_debug("SAM Task Attribute ACA"
1226 " emulation is not supported\n");
1227 return TCM_INVALID_CDB_FIELD;
1228 }
1229
1230 return 0;
1231 }
1232
1233 sense_reason_t
target_setup_cmd_from_cdb(struct se_cmd * cmd,unsigned char * cdb)1234 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1235 {
1236 struct se_device *dev = cmd->se_dev;
1237 sense_reason_t ret;
1238
1239 /*
1240 * Ensure that the received CDB is less than the max (252 + 8) bytes
1241 * for VARIABLE_LENGTH_CMD
1242 */
1243 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1244 pr_err("Received SCSI CDB with command_size: %d that"
1245 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1246 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1247 return TCM_INVALID_CDB_FIELD;
1248 }
1249 /*
1250 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1251 * allocate the additional extended CDB buffer now.. Otherwise
1252 * setup the pointer from __t_task_cdb to t_task_cdb.
1253 */
1254 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1255 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1256 GFP_KERNEL);
1257 if (!cmd->t_task_cdb) {
1258 pr_err("Unable to allocate cmd->t_task_cdb"
1259 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1260 scsi_command_size(cdb),
1261 (unsigned long)sizeof(cmd->__t_task_cdb));
1262 return TCM_OUT_OF_RESOURCES;
1263 }
1264 } else
1265 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1266 /*
1267 * Copy the original CDB into cmd->
1268 */
1269 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1270
1271 trace_target_sequencer_start(cmd);
1272
1273 /*
1274 * Check for an existing UNIT ATTENTION condition
1275 */
1276 ret = target_scsi3_ua_check(cmd);
1277 if (ret)
1278 return ret;
1279
1280 ret = target_alua_state_check(cmd);
1281 if (ret)
1282 return ret;
1283
1284 ret = target_check_reservation(cmd);
1285 if (ret) {
1286 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1287 return ret;
1288 }
1289
1290 ret = dev->transport->parse_cdb(cmd);
1291 if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
1292 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1293 cmd->se_tfo->get_fabric_name(),
1294 cmd->se_sess->se_node_acl->initiatorname,
1295 cmd->t_task_cdb[0]);
1296 if (ret)
1297 return ret;
1298
1299 ret = transport_check_alloc_task_attr(cmd);
1300 if (ret)
1301 return ret;
1302
1303 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1304 atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1305 return 0;
1306 }
1307 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1308
1309 /*
1310 * Used by fabric module frontends to queue tasks directly.
1311 * Many only be used from process context only
1312 */
transport_handle_cdb_direct(struct se_cmd * cmd)1313 int transport_handle_cdb_direct(
1314 struct se_cmd *cmd)
1315 {
1316 sense_reason_t ret;
1317
1318 if (!cmd->se_lun) {
1319 dump_stack();
1320 pr_err("cmd->se_lun is NULL\n");
1321 return -EINVAL;
1322 }
1323 if (in_interrupt()) {
1324 dump_stack();
1325 pr_err("transport_generic_handle_cdb cannot be called"
1326 " from interrupt context\n");
1327 return -EINVAL;
1328 }
1329 /*
1330 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1331 * outstanding descriptors are handled correctly during shutdown via
1332 * transport_wait_for_tasks()
1333 *
1334 * Also, we don't take cmd->t_state_lock here as we only expect
1335 * this to be called for initial descriptor submission.
1336 */
1337 cmd->t_state = TRANSPORT_NEW_CMD;
1338 cmd->transport_state |= CMD_T_ACTIVE;
1339
1340 /*
1341 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1342 * so follow TRANSPORT_NEW_CMD processing thread context usage
1343 * and call transport_generic_request_failure() if necessary..
1344 */
1345 ret = transport_generic_new_cmd(cmd);
1346 if (ret)
1347 transport_generic_request_failure(cmd, ret);
1348 return 0;
1349 }
1350 EXPORT_SYMBOL(transport_handle_cdb_direct);
1351
1352 sense_reason_t
transport_generic_map_mem_to_cmd(struct se_cmd * cmd,struct scatterlist * sgl,u32 sgl_count,struct scatterlist * sgl_bidi,u32 sgl_bidi_count)1353 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1354 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1355 {
1356 if (!sgl || !sgl_count)
1357 return 0;
1358
1359 /*
1360 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1361 * scatterlists already have been set to follow what the fabric
1362 * passes for the original expected data transfer length.
1363 */
1364 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1365 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1366 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1367 return TCM_INVALID_CDB_FIELD;
1368 }
1369
1370 cmd->t_data_sg = sgl;
1371 cmd->t_data_nents = sgl_count;
1372 cmd->t_bidi_data_sg = sgl_bidi;
1373 cmd->t_bidi_data_nents = sgl_bidi_count;
1374
1375 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1376 return 0;
1377 }
1378
1379 /*
1380 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1381 * se_cmd + use pre-allocated SGL memory.
1382 *
1383 * @se_cmd: command descriptor to submit
1384 * @se_sess: associated se_sess for endpoint
1385 * @cdb: pointer to SCSI CDB
1386 * @sense: pointer to SCSI sense buffer
1387 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1388 * @data_length: fabric expected data transfer length
1389 * @task_addr: SAM task attribute
1390 * @data_dir: DMA data direction
1391 * @flags: flags for command submission from target_sc_flags_tables
1392 * @sgl: struct scatterlist memory for unidirectional mapping
1393 * @sgl_count: scatterlist count for unidirectional mapping
1394 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1395 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1396 * @sgl_prot: struct scatterlist memory protection information
1397 * @sgl_prot_count: scatterlist count for protection information
1398 *
1399 * Task tags are supported if the caller has set @se_cmd->tag.
1400 *
1401 * Returns non zero to signal active I/O shutdown failure. All other
1402 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1403 * but still return zero here.
1404 *
1405 * This may only be called from process context, and also currently
1406 * assumes internal allocation of fabric payload buffer by target-core.
1407 */
target_submit_cmd_map_sgls(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * cdb,unsigned char * sense,u64 unpacked_lun,u32 data_length,int task_attr,int data_dir,int flags,struct scatterlist * sgl,u32 sgl_count,struct scatterlist * sgl_bidi,u32 sgl_bidi_count,struct scatterlist * sgl_prot,u32 sgl_prot_count)1408 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1409 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1410 u32 data_length, int task_attr, int data_dir, int flags,
1411 struct scatterlist *sgl, u32 sgl_count,
1412 struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1413 struct scatterlist *sgl_prot, u32 sgl_prot_count)
1414 {
1415 struct se_portal_group *se_tpg;
1416 sense_reason_t rc;
1417 int ret;
1418
1419 se_tpg = se_sess->se_tpg;
1420 BUG_ON(!se_tpg);
1421 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1422 BUG_ON(in_interrupt());
1423 /*
1424 * Initialize se_cmd for target operation. From this point
1425 * exceptions are handled by sending exception status via
1426 * target_core_fabric_ops->queue_status() callback
1427 */
1428 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1429 data_length, data_dir, task_attr, sense);
1430 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1431 se_cmd->unknown_data_length = 1;
1432 /*
1433 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1434 * se_sess->sess_cmd_list. A second kref_get here is necessary
1435 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1436 * kref_put() to happen during fabric packet acknowledgement.
1437 */
1438 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1439 if (ret)
1440 return ret;
1441 /*
1442 * Signal bidirectional data payloads to target-core
1443 */
1444 if (flags & TARGET_SCF_BIDI_OP)
1445 se_cmd->se_cmd_flags |= SCF_BIDI;
1446 /*
1447 * Locate se_lun pointer and attach it to struct se_cmd
1448 */
1449 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1450 if (rc) {
1451 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1452 target_put_sess_cmd(se_cmd);
1453 return 0;
1454 }
1455
1456 rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1457 if (rc != 0) {
1458 transport_generic_request_failure(se_cmd, rc);
1459 return 0;
1460 }
1461
1462 /*
1463 * Save pointers for SGLs containing protection information,
1464 * if present.
1465 */
1466 if (sgl_prot_count) {
1467 se_cmd->t_prot_sg = sgl_prot;
1468 se_cmd->t_prot_nents = sgl_prot_count;
1469 se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1470 }
1471
1472 /*
1473 * When a non zero sgl_count has been passed perform SGL passthrough
1474 * mapping for pre-allocated fabric memory instead of having target
1475 * core perform an internal SGL allocation..
1476 */
1477 if (sgl_count != 0) {
1478 BUG_ON(!sgl);
1479
1480 /*
1481 * A work-around for tcm_loop as some userspace code via
1482 * scsi-generic do not memset their associated read buffers,
1483 * so go ahead and do that here for type non-data CDBs. Also
1484 * note that this is currently guaranteed to be a single SGL
1485 * for this case by target core in target_setup_cmd_from_cdb()
1486 * -> transport_generic_cmd_sequencer().
1487 */
1488 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1489 se_cmd->data_direction == DMA_FROM_DEVICE) {
1490 unsigned char *buf = NULL;
1491
1492 if (sgl)
1493 buf = kmap(sg_page(sgl)) + sgl->offset;
1494
1495 if (buf) {
1496 memset(buf, 0, sgl->length);
1497 kunmap(sg_page(sgl));
1498 }
1499 }
1500
1501 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1502 sgl_bidi, sgl_bidi_count);
1503 if (rc != 0) {
1504 transport_generic_request_failure(se_cmd, rc);
1505 return 0;
1506 }
1507 }
1508
1509 /*
1510 * Check if we need to delay processing because of ALUA
1511 * Active/NonOptimized primary access state..
1512 */
1513 core_alua_check_nonop_delay(se_cmd);
1514
1515 transport_handle_cdb_direct(se_cmd);
1516 return 0;
1517 }
1518 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1519
1520 /*
1521 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1522 *
1523 * @se_cmd: command descriptor to submit
1524 * @se_sess: associated se_sess for endpoint
1525 * @cdb: pointer to SCSI CDB
1526 * @sense: pointer to SCSI sense buffer
1527 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1528 * @data_length: fabric expected data transfer length
1529 * @task_addr: SAM task attribute
1530 * @data_dir: DMA data direction
1531 * @flags: flags for command submission from target_sc_flags_tables
1532 *
1533 * Task tags are supported if the caller has set @se_cmd->tag.
1534 *
1535 * Returns non zero to signal active I/O shutdown failure. All other
1536 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1537 * but still return zero here.
1538 *
1539 * This may only be called from process context, and also currently
1540 * assumes internal allocation of fabric payload buffer by target-core.
1541 *
1542 * It also assumes interal target core SGL memory allocation.
1543 */
target_submit_cmd(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * cdb,unsigned char * sense,u64 unpacked_lun,u32 data_length,int task_attr,int data_dir,int flags)1544 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1545 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1546 u32 data_length, int task_attr, int data_dir, int flags)
1547 {
1548 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1549 unpacked_lun, data_length, task_attr, data_dir,
1550 flags, NULL, 0, NULL, 0, NULL, 0);
1551 }
1552 EXPORT_SYMBOL(target_submit_cmd);
1553
target_complete_tmr_failure(struct work_struct * work)1554 static void target_complete_tmr_failure(struct work_struct *work)
1555 {
1556 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1557
1558 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1559 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1560
1561 transport_cmd_check_stop_to_fabric(se_cmd);
1562 }
1563
1564 /**
1565 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1566 * for TMR CDBs
1567 *
1568 * @se_cmd: command descriptor to submit
1569 * @se_sess: associated se_sess for endpoint
1570 * @sense: pointer to SCSI sense buffer
1571 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1572 * @fabric_context: fabric context for TMR req
1573 * @tm_type: Type of TM request
1574 * @gfp: gfp type for caller
1575 * @tag: referenced task tag for TMR_ABORT_TASK
1576 * @flags: submit cmd flags
1577 *
1578 * Callable from all contexts.
1579 **/
1580
target_submit_tmr(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * sense,u64 unpacked_lun,void * fabric_tmr_ptr,unsigned char tm_type,gfp_t gfp,unsigned int tag,int flags)1581 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1582 unsigned char *sense, u64 unpacked_lun,
1583 void *fabric_tmr_ptr, unsigned char tm_type,
1584 gfp_t gfp, unsigned int tag, int flags)
1585 {
1586 struct se_portal_group *se_tpg;
1587 int ret;
1588
1589 se_tpg = se_sess->se_tpg;
1590 BUG_ON(!se_tpg);
1591
1592 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1593 0, DMA_NONE, TCM_SIMPLE_TAG, sense);
1594 /*
1595 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1596 * allocation failure.
1597 */
1598 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1599 if (ret < 0)
1600 return -ENOMEM;
1601
1602 if (tm_type == TMR_ABORT_TASK)
1603 se_cmd->se_tmr_req->ref_task_tag = tag;
1604
1605 /* See target_submit_cmd for commentary */
1606 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1607 if (ret) {
1608 core_tmr_release_req(se_cmd->se_tmr_req);
1609 return ret;
1610 }
1611
1612 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1613 if (ret) {
1614 /*
1615 * For callback during failure handling, push this work off
1616 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1617 */
1618 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1619 schedule_work(&se_cmd->work);
1620 return 0;
1621 }
1622 transport_generic_handle_tmr(se_cmd);
1623 return 0;
1624 }
1625 EXPORT_SYMBOL(target_submit_tmr);
1626
1627 /*
1628 * If the cmd is active, request it to be stopped and sleep until it
1629 * has completed.
1630 */
target_stop_cmd(struct se_cmd * cmd,unsigned long * flags)1631 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags)
1632 __releases(&cmd->t_state_lock)
1633 __acquires(&cmd->t_state_lock)
1634 {
1635 bool was_active = false;
1636
1637 if (cmd->transport_state & CMD_T_BUSY) {
1638 cmd->transport_state |= CMD_T_REQUEST_STOP;
1639 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1640
1641 pr_debug("cmd %p waiting to complete\n", cmd);
1642 wait_for_completion(&cmd->task_stop_comp);
1643 pr_debug("cmd %p stopped successfully\n", cmd);
1644
1645 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1646 cmd->transport_state &= ~CMD_T_REQUEST_STOP;
1647 cmd->transport_state &= ~CMD_T_BUSY;
1648 was_active = true;
1649 }
1650
1651 return was_active;
1652 }
1653
1654 /*
1655 * Handle SAM-esque emulation for generic transport request failures.
1656 */
transport_generic_request_failure(struct se_cmd * cmd,sense_reason_t sense_reason)1657 void transport_generic_request_failure(struct se_cmd *cmd,
1658 sense_reason_t sense_reason)
1659 {
1660 int ret = 0, post_ret = 0;
1661
1662 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08llx"
1663 " CDB: 0x%02x\n", cmd, cmd->tag, cmd->t_task_cdb[0]);
1664 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1665 cmd->se_tfo->get_cmd_state(cmd),
1666 cmd->t_state, sense_reason);
1667 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1668 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1669 (cmd->transport_state & CMD_T_STOP) != 0,
1670 (cmd->transport_state & CMD_T_SENT) != 0);
1671
1672 /*
1673 * For SAM Task Attribute emulation for failed struct se_cmd
1674 */
1675 transport_complete_task_attr(cmd);
1676 /*
1677 * Handle special case for COMPARE_AND_WRITE failure, where the
1678 * callback is expected to drop the per device ->caw_sem.
1679 */
1680 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1681 cmd->transport_complete_callback)
1682 cmd->transport_complete_callback(cmd, false, &post_ret);
1683
1684 switch (sense_reason) {
1685 case TCM_NON_EXISTENT_LUN:
1686 case TCM_UNSUPPORTED_SCSI_OPCODE:
1687 case TCM_INVALID_CDB_FIELD:
1688 case TCM_INVALID_PARAMETER_LIST:
1689 case TCM_PARAMETER_LIST_LENGTH_ERROR:
1690 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1691 case TCM_UNKNOWN_MODE_PAGE:
1692 case TCM_WRITE_PROTECTED:
1693 case TCM_ADDRESS_OUT_OF_RANGE:
1694 case TCM_CHECK_CONDITION_ABORT_CMD:
1695 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1696 case TCM_CHECK_CONDITION_NOT_READY:
1697 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1698 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1699 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1700 break;
1701 case TCM_OUT_OF_RESOURCES:
1702 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1703 break;
1704 case TCM_RESERVATION_CONFLICT:
1705 /*
1706 * No SENSE Data payload for this case, set SCSI Status
1707 * and queue the response to $FABRIC_MOD.
1708 *
1709 * Uses linux/include/scsi/scsi.h SAM status codes defs
1710 */
1711 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1712 /*
1713 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1714 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1715 * CONFLICT STATUS.
1716 *
1717 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1718 */
1719 if (cmd->se_sess &&
1720 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) {
1721 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
1722 cmd->orig_fe_lun, 0x2C,
1723 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1724 }
1725 trace_target_cmd_complete(cmd);
1726 ret = cmd->se_tfo->queue_status(cmd);
1727 if (ret == -EAGAIN || ret == -ENOMEM)
1728 goto queue_full;
1729 goto check_stop;
1730 default:
1731 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1732 cmd->t_task_cdb[0], sense_reason);
1733 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1734 break;
1735 }
1736
1737 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1738 if (ret == -EAGAIN || ret == -ENOMEM)
1739 goto queue_full;
1740
1741 check_stop:
1742 transport_lun_remove_cmd(cmd);
1743 transport_cmd_check_stop_to_fabric(cmd);
1744 return;
1745
1746 queue_full:
1747 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1748 transport_handle_queue_full(cmd, cmd->se_dev);
1749 }
1750 EXPORT_SYMBOL(transport_generic_request_failure);
1751
__target_execute_cmd(struct se_cmd * cmd)1752 void __target_execute_cmd(struct se_cmd *cmd)
1753 {
1754 sense_reason_t ret;
1755
1756 if (cmd->execute_cmd) {
1757 ret = cmd->execute_cmd(cmd);
1758 if (ret) {
1759 spin_lock_irq(&cmd->t_state_lock);
1760 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1761 spin_unlock_irq(&cmd->t_state_lock);
1762
1763 transport_generic_request_failure(cmd, ret);
1764 }
1765 }
1766 }
1767
target_write_prot_action(struct se_cmd * cmd)1768 static int target_write_prot_action(struct se_cmd *cmd)
1769 {
1770 u32 sectors;
1771 /*
1772 * Perform WRITE_INSERT of PI using software emulation when backend
1773 * device has PI enabled, if the transport has not already generated
1774 * PI using hardware WRITE_INSERT offload.
1775 */
1776 switch (cmd->prot_op) {
1777 case TARGET_PROT_DOUT_INSERT:
1778 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
1779 sbc_dif_generate(cmd);
1780 break;
1781 case TARGET_PROT_DOUT_STRIP:
1782 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
1783 break;
1784
1785 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
1786 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
1787 sectors, 0, cmd->t_prot_sg, 0);
1788 if (unlikely(cmd->pi_err)) {
1789 spin_lock_irq(&cmd->t_state_lock);
1790 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1791 spin_unlock_irq(&cmd->t_state_lock);
1792 transport_generic_request_failure(cmd, cmd->pi_err);
1793 return -1;
1794 }
1795 break;
1796 default:
1797 break;
1798 }
1799
1800 return 0;
1801 }
1802
target_handle_task_attr(struct se_cmd * cmd)1803 static bool target_handle_task_attr(struct se_cmd *cmd)
1804 {
1805 struct se_device *dev = cmd->se_dev;
1806
1807 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1808 return false;
1809
1810 /*
1811 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1812 * to allow the passed struct se_cmd list of tasks to the front of the list.
1813 */
1814 switch (cmd->sam_task_attr) {
1815 case TCM_HEAD_TAG:
1816 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
1817 cmd->t_task_cdb[0]);
1818 return false;
1819 case TCM_ORDERED_TAG:
1820 atomic_inc_mb(&dev->dev_ordered_sync);
1821
1822 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
1823 cmd->t_task_cdb[0]);
1824
1825 /*
1826 * Execute an ORDERED command if no other older commands
1827 * exist that need to be completed first.
1828 */
1829 if (!atomic_read(&dev->simple_cmds))
1830 return false;
1831 break;
1832 default:
1833 /*
1834 * For SIMPLE and UNTAGGED Task Attribute commands
1835 */
1836 atomic_inc_mb(&dev->simple_cmds);
1837 break;
1838 }
1839
1840 if (atomic_read(&dev->dev_ordered_sync) == 0)
1841 return false;
1842
1843 spin_lock(&dev->delayed_cmd_lock);
1844 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1845 spin_unlock(&dev->delayed_cmd_lock);
1846
1847 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
1848 cmd->t_task_cdb[0], cmd->sam_task_attr);
1849 return true;
1850 }
1851
1852 static int __transport_check_aborted_status(struct se_cmd *, int);
1853
target_execute_cmd(struct se_cmd * cmd)1854 void target_execute_cmd(struct se_cmd *cmd)
1855 {
1856 /*
1857 * Determine if frontend context caller is requesting the stopping of
1858 * this command for frontend exceptions.
1859 *
1860 * If the received CDB has aleady been aborted stop processing it here.
1861 */
1862 spin_lock_irq(&cmd->t_state_lock);
1863 if (__transport_check_aborted_status(cmd, 1)) {
1864 spin_unlock_irq(&cmd->t_state_lock);
1865 return;
1866 }
1867 if (cmd->transport_state & CMD_T_STOP) {
1868 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
1869 __func__, __LINE__, cmd->tag);
1870
1871 spin_unlock_irq(&cmd->t_state_lock);
1872 complete_all(&cmd->t_transport_stop_comp);
1873 return;
1874 }
1875
1876 cmd->t_state = TRANSPORT_PROCESSING;
1877 cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT;
1878 spin_unlock_irq(&cmd->t_state_lock);
1879
1880 if (target_write_prot_action(cmd))
1881 return;
1882
1883 if (target_handle_task_attr(cmd)) {
1884 spin_lock_irq(&cmd->t_state_lock);
1885 cmd->transport_state &= ~(CMD_T_BUSY | CMD_T_SENT);
1886 spin_unlock_irq(&cmd->t_state_lock);
1887 return;
1888 }
1889
1890 __target_execute_cmd(cmd);
1891 }
1892 EXPORT_SYMBOL(target_execute_cmd);
1893
1894 /*
1895 * Process all commands up to the last received ORDERED task attribute which
1896 * requires another blocking boundary
1897 */
target_restart_delayed_cmds(struct se_device * dev)1898 static void target_restart_delayed_cmds(struct se_device *dev)
1899 {
1900 for (;;) {
1901 struct se_cmd *cmd;
1902
1903 spin_lock(&dev->delayed_cmd_lock);
1904 if (list_empty(&dev->delayed_cmd_list)) {
1905 spin_unlock(&dev->delayed_cmd_lock);
1906 break;
1907 }
1908
1909 cmd = list_entry(dev->delayed_cmd_list.next,
1910 struct se_cmd, se_delayed_node);
1911 list_del(&cmd->se_delayed_node);
1912 spin_unlock(&dev->delayed_cmd_lock);
1913
1914 __target_execute_cmd(cmd);
1915
1916 if (cmd->sam_task_attr == TCM_ORDERED_TAG)
1917 break;
1918 }
1919 }
1920
1921 /*
1922 * Called from I/O completion to determine which dormant/delayed
1923 * and ordered cmds need to have their tasks added to the execution queue.
1924 */
transport_complete_task_attr(struct se_cmd * cmd)1925 static void transport_complete_task_attr(struct se_cmd *cmd)
1926 {
1927 struct se_device *dev = cmd->se_dev;
1928
1929 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1930 return;
1931
1932 if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
1933 atomic_dec_mb(&dev->simple_cmds);
1934 dev->dev_cur_ordered_id++;
1935 pr_debug("Incremented dev->dev_cur_ordered_id: %u for SIMPLE\n",
1936 dev->dev_cur_ordered_id);
1937 } else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
1938 dev->dev_cur_ordered_id++;
1939 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
1940 dev->dev_cur_ordered_id);
1941 } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
1942 atomic_dec_mb(&dev->dev_ordered_sync);
1943
1944 dev->dev_cur_ordered_id++;
1945 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
1946 dev->dev_cur_ordered_id);
1947 }
1948
1949 target_restart_delayed_cmds(dev);
1950 }
1951
transport_complete_qf(struct se_cmd * cmd)1952 static void transport_complete_qf(struct se_cmd *cmd)
1953 {
1954 int ret = 0;
1955
1956 transport_complete_task_attr(cmd);
1957
1958 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1959 trace_target_cmd_complete(cmd);
1960 ret = cmd->se_tfo->queue_status(cmd);
1961 goto out;
1962 }
1963
1964 switch (cmd->data_direction) {
1965 case DMA_FROM_DEVICE:
1966 trace_target_cmd_complete(cmd);
1967 ret = cmd->se_tfo->queue_data_in(cmd);
1968 break;
1969 case DMA_TO_DEVICE:
1970 if (cmd->se_cmd_flags & SCF_BIDI) {
1971 ret = cmd->se_tfo->queue_data_in(cmd);
1972 break;
1973 }
1974 /* Fall through for DMA_TO_DEVICE */
1975 case DMA_NONE:
1976 trace_target_cmd_complete(cmd);
1977 ret = cmd->se_tfo->queue_status(cmd);
1978 break;
1979 default:
1980 break;
1981 }
1982
1983 out:
1984 if (ret < 0) {
1985 transport_handle_queue_full(cmd, cmd->se_dev);
1986 return;
1987 }
1988 transport_lun_remove_cmd(cmd);
1989 transport_cmd_check_stop_to_fabric(cmd);
1990 }
1991
transport_handle_queue_full(struct se_cmd * cmd,struct se_device * dev)1992 static void transport_handle_queue_full(
1993 struct se_cmd *cmd,
1994 struct se_device *dev)
1995 {
1996 spin_lock_irq(&dev->qf_cmd_lock);
1997 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
1998 atomic_inc_mb(&dev->dev_qf_count);
1999 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
2000
2001 schedule_work(&cmd->se_dev->qf_work_queue);
2002 }
2003
target_read_prot_action(struct se_cmd * cmd)2004 static bool target_read_prot_action(struct se_cmd *cmd)
2005 {
2006 switch (cmd->prot_op) {
2007 case TARGET_PROT_DIN_STRIP:
2008 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2009 u32 sectors = cmd->data_length >>
2010 ilog2(cmd->se_dev->dev_attrib.block_size);
2011
2012 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2013 sectors, 0, cmd->t_prot_sg,
2014 0);
2015 if (cmd->pi_err)
2016 return true;
2017 }
2018 break;
2019 case TARGET_PROT_DIN_INSERT:
2020 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2021 break;
2022
2023 sbc_dif_generate(cmd);
2024 break;
2025 default:
2026 break;
2027 }
2028
2029 return false;
2030 }
2031
target_complete_ok_work(struct work_struct * work)2032 static void target_complete_ok_work(struct work_struct *work)
2033 {
2034 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2035 int ret;
2036
2037 /*
2038 * Check if we need to move delayed/dormant tasks from cmds on the
2039 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2040 * Attribute.
2041 */
2042 transport_complete_task_attr(cmd);
2043
2044 /*
2045 * Check to schedule QUEUE_FULL work, or execute an existing
2046 * cmd->transport_qf_callback()
2047 */
2048 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2049 schedule_work(&cmd->se_dev->qf_work_queue);
2050
2051 /*
2052 * Check if we need to send a sense buffer from
2053 * the struct se_cmd in question.
2054 */
2055 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2056 WARN_ON(!cmd->scsi_status);
2057 ret = transport_send_check_condition_and_sense(
2058 cmd, 0, 1);
2059 if (ret == -EAGAIN || ret == -ENOMEM)
2060 goto queue_full;
2061
2062 transport_lun_remove_cmd(cmd);
2063 transport_cmd_check_stop_to_fabric(cmd);
2064 return;
2065 }
2066 /*
2067 * Check for a callback, used by amongst other things
2068 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2069 */
2070 if (cmd->transport_complete_callback) {
2071 sense_reason_t rc;
2072 bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
2073 bool zero_dl = !(cmd->data_length);
2074 int post_ret = 0;
2075
2076 rc = cmd->transport_complete_callback(cmd, true, &post_ret);
2077 if (!rc && !post_ret) {
2078 if (caw && zero_dl)
2079 goto queue_rsp;
2080
2081 return;
2082 } else if (rc) {
2083 ret = transport_send_check_condition_and_sense(cmd,
2084 rc, 0);
2085 if (ret == -EAGAIN || ret == -ENOMEM)
2086 goto queue_full;
2087
2088 transport_lun_remove_cmd(cmd);
2089 transport_cmd_check_stop_to_fabric(cmd);
2090 return;
2091 }
2092 }
2093
2094 queue_rsp:
2095 switch (cmd->data_direction) {
2096 case DMA_FROM_DEVICE:
2097 atomic_long_add(cmd->data_length,
2098 &cmd->se_lun->lun_stats.tx_data_octets);
2099 /*
2100 * Perform READ_STRIP of PI using software emulation when
2101 * backend had PI enabled, if the transport will not be
2102 * performing hardware READ_STRIP offload.
2103 */
2104 if (target_read_prot_action(cmd)) {
2105 ret = transport_send_check_condition_and_sense(cmd,
2106 cmd->pi_err, 0);
2107 if (ret == -EAGAIN || ret == -ENOMEM)
2108 goto queue_full;
2109
2110 transport_lun_remove_cmd(cmd);
2111 transport_cmd_check_stop_to_fabric(cmd);
2112 return;
2113 }
2114
2115 trace_target_cmd_complete(cmd);
2116 ret = cmd->se_tfo->queue_data_in(cmd);
2117 if (ret == -EAGAIN || ret == -ENOMEM)
2118 goto queue_full;
2119 break;
2120 case DMA_TO_DEVICE:
2121 atomic_long_add(cmd->data_length,
2122 &cmd->se_lun->lun_stats.rx_data_octets);
2123 /*
2124 * Check if we need to send READ payload for BIDI-COMMAND
2125 */
2126 if (cmd->se_cmd_flags & SCF_BIDI) {
2127 atomic_long_add(cmd->data_length,
2128 &cmd->se_lun->lun_stats.tx_data_octets);
2129 ret = cmd->se_tfo->queue_data_in(cmd);
2130 if (ret == -EAGAIN || ret == -ENOMEM)
2131 goto queue_full;
2132 break;
2133 }
2134 /* Fall through for DMA_TO_DEVICE */
2135 case DMA_NONE:
2136 trace_target_cmd_complete(cmd);
2137 ret = cmd->se_tfo->queue_status(cmd);
2138 if (ret == -EAGAIN || ret == -ENOMEM)
2139 goto queue_full;
2140 break;
2141 default:
2142 break;
2143 }
2144
2145 transport_lun_remove_cmd(cmd);
2146 transport_cmd_check_stop_to_fabric(cmd);
2147 return;
2148
2149 queue_full:
2150 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2151 " data_direction: %d\n", cmd, cmd->data_direction);
2152 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
2153 transport_handle_queue_full(cmd, cmd->se_dev);
2154 }
2155
transport_free_sgl(struct scatterlist * sgl,int nents)2156 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
2157 {
2158 struct scatterlist *sg;
2159 int count;
2160
2161 for_each_sg(sgl, sg, nents, count)
2162 __free_page(sg_page(sg));
2163
2164 kfree(sgl);
2165 }
2166
transport_reset_sgl_orig(struct se_cmd * cmd)2167 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2168 {
2169 /*
2170 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2171 * emulation, and free + reset pointers if necessary..
2172 */
2173 if (!cmd->t_data_sg_orig)
2174 return;
2175
2176 kfree(cmd->t_data_sg);
2177 cmd->t_data_sg = cmd->t_data_sg_orig;
2178 cmd->t_data_sg_orig = NULL;
2179 cmd->t_data_nents = cmd->t_data_nents_orig;
2180 cmd->t_data_nents_orig = 0;
2181 }
2182
transport_free_pages(struct se_cmd * cmd)2183 static inline void transport_free_pages(struct se_cmd *cmd)
2184 {
2185 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2186 transport_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2187 cmd->t_prot_sg = NULL;
2188 cmd->t_prot_nents = 0;
2189 }
2190
2191 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2192 /*
2193 * Release special case READ buffer payload required for
2194 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2195 */
2196 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2197 transport_free_sgl(cmd->t_bidi_data_sg,
2198 cmd->t_bidi_data_nents);
2199 cmd->t_bidi_data_sg = NULL;
2200 cmd->t_bidi_data_nents = 0;
2201 }
2202 transport_reset_sgl_orig(cmd);
2203 return;
2204 }
2205 transport_reset_sgl_orig(cmd);
2206
2207 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2208 cmd->t_data_sg = NULL;
2209 cmd->t_data_nents = 0;
2210
2211 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2212 cmd->t_bidi_data_sg = NULL;
2213 cmd->t_bidi_data_nents = 0;
2214 }
2215
2216 /**
2217 * transport_put_cmd - release a reference to a command
2218 * @cmd: command to release
2219 *
2220 * This routine releases our reference to the command and frees it if possible.
2221 */
transport_put_cmd(struct se_cmd * cmd)2222 static int transport_put_cmd(struct se_cmd *cmd)
2223 {
2224 BUG_ON(!cmd->se_tfo);
2225 /*
2226 * If this cmd has been setup with target_get_sess_cmd(), drop
2227 * the kref and call ->release_cmd() in kref callback.
2228 */
2229 return target_put_sess_cmd(cmd);
2230 }
2231
transport_kmap_data_sg(struct se_cmd * cmd)2232 void *transport_kmap_data_sg(struct se_cmd *cmd)
2233 {
2234 struct scatterlist *sg = cmd->t_data_sg;
2235 struct page **pages;
2236 int i;
2237
2238 /*
2239 * We need to take into account a possible offset here for fabrics like
2240 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2241 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2242 */
2243 if (!cmd->t_data_nents)
2244 return NULL;
2245
2246 BUG_ON(!sg);
2247 if (cmd->t_data_nents == 1)
2248 return kmap(sg_page(sg)) + sg->offset;
2249
2250 /* >1 page. use vmap */
2251 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2252 if (!pages)
2253 return NULL;
2254
2255 /* convert sg[] to pages[] */
2256 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2257 pages[i] = sg_page(sg);
2258 }
2259
2260 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2261 kfree(pages);
2262 if (!cmd->t_data_vmap)
2263 return NULL;
2264
2265 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2266 }
2267 EXPORT_SYMBOL(transport_kmap_data_sg);
2268
transport_kunmap_data_sg(struct se_cmd * cmd)2269 void transport_kunmap_data_sg(struct se_cmd *cmd)
2270 {
2271 if (!cmd->t_data_nents) {
2272 return;
2273 } else if (cmd->t_data_nents == 1) {
2274 kunmap(sg_page(cmd->t_data_sg));
2275 return;
2276 }
2277
2278 vunmap(cmd->t_data_vmap);
2279 cmd->t_data_vmap = NULL;
2280 }
2281 EXPORT_SYMBOL(transport_kunmap_data_sg);
2282
2283 int
target_alloc_sgl(struct scatterlist ** sgl,unsigned int * nents,u32 length,bool zero_page)2284 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2285 bool zero_page)
2286 {
2287 struct scatterlist *sg;
2288 struct page *page;
2289 gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
2290 unsigned int nent;
2291 int i = 0;
2292
2293 nent = DIV_ROUND_UP(length, PAGE_SIZE);
2294 sg = kmalloc(sizeof(struct scatterlist) * nent, GFP_KERNEL);
2295 if (!sg)
2296 return -ENOMEM;
2297
2298 sg_init_table(sg, nent);
2299
2300 while (length) {
2301 u32 page_len = min_t(u32, length, PAGE_SIZE);
2302 page = alloc_page(GFP_KERNEL | zero_flag);
2303 if (!page)
2304 goto out;
2305
2306 sg_set_page(&sg[i], page, page_len, 0);
2307 length -= page_len;
2308 i++;
2309 }
2310 *sgl = sg;
2311 *nents = nent;
2312 return 0;
2313
2314 out:
2315 while (i > 0) {
2316 i--;
2317 __free_page(sg_page(&sg[i]));
2318 }
2319 kfree(sg);
2320 return -ENOMEM;
2321 }
2322
2323 /*
2324 * Allocate any required resources to execute the command. For writes we
2325 * might not have the payload yet, so notify the fabric via a call to
2326 * ->write_pending instead. Otherwise place it on the execution queue.
2327 */
2328 sense_reason_t
transport_generic_new_cmd(struct se_cmd * cmd)2329 transport_generic_new_cmd(struct se_cmd *cmd)
2330 {
2331 int ret = 0;
2332 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2333
2334 if (cmd->prot_op != TARGET_PROT_NORMAL &&
2335 !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2336 ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2337 cmd->prot_length, true);
2338 if (ret < 0)
2339 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2340 }
2341
2342 /*
2343 * Determine is the TCM fabric module has already allocated physical
2344 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2345 * beforehand.
2346 */
2347 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2348 cmd->data_length) {
2349
2350 if ((cmd->se_cmd_flags & SCF_BIDI) ||
2351 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2352 u32 bidi_length;
2353
2354 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2355 bidi_length = cmd->t_task_nolb *
2356 cmd->se_dev->dev_attrib.block_size;
2357 else
2358 bidi_length = cmd->data_length;
2359
2360 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2361 &cmd->t_bidi_data_nents,
2362 bidi_length, zero_flag);
2363 if (ret < 0)
2364 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2365 }
2366
2367 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2368 cmd->data_length, zero_flag);
2369 if (ret < 0)
2370 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2371 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2372 cmd->data_length) {
2373 /*
2374 * Special case for COMPARE_AND_WRITE with fabrics
2375 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2376 */
2377 u32 caw_length = cmd->t_task_nolb *
2378 cmd->se_dev->dev_attrib.block_size;
2379
2380 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2381 &cmd->t_bidi_data_nents,
2382 caw_length, zero_flag);
2383 if (ret < 0)
2384 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2385 }
2386 /*
2387 * If this command is not a write we can execute it right here,
2388 * for write buffers we need to notify the fabric driver first
2389 * and let it call back once the write buffers are ready.
2390 */
2391 target_add_to_state_list(cmd);
2392 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2393 target_execute_cmd(cmd);
2394 return 0;
2395 }
2396 transport_cmd_check_stop(cmd, false, true);
2397
2398 ret = cmd->se_tfo->write_pending(cmd);
2399 if (ret == -EAGAIN || ret == -ENOMEM)
2400 goto queue_full;
2401
2402 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2403 WARN_ON(ret);
2404
2405 return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2406
2407 queue_full:
2408 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2409 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2410 transport_handle_queue_full(cmd, cmd->se_dev);
2411 return 0;
2412 }
2413 EXPORT_SYMBOL(transport_generic_new_cmd);
2414
transport_write_pending_qf(struct se_cmd * cmd)2415 static void transport_write_pending_qf(struct se_cmd *cmd)
2416 {
2417 int ret;
2418
2419 ret = cmd->se_tfo->write_pending(cmd);
2420 if (ret == -EAGAIN || ret == -ENOMEM) {
2421 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2422 cmd);
2423 transport_handle_queue_full(cmd, cmd->se_dev);
2424 }
2425 }
2426
2427 static bool
2428 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2429 unsigned long *flags);
2430
target_wait_free_cmd(struct se_cmd * cmd,bool * aborted,bool * tas)2431 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2432 {
2433 unsigned long flags;
2434
2435 spin_lock_irqsave(&cmd->t_state_lock, flags);
2436 __transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2437 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2438 }
2439
transport_generic_free_cmd(struct se_cmd * cmd,int wait_for_tasks)2440 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2441 {
2442 int ret = 0;
2443 bool aborted = false, tas = false;
2444
2445 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2446 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2447 target_wait_free_cmd(cmd, &aborted, &tas);
2448
2449 if (!aborted || tas)
2450 ret = transport_put_cmd(cmd);
2451 } else {
2452 if (wait_for_tasks)
2453 target_wait_free_cmd(cmd, &aborted, &tas);
2454 /*
2455 * Handle WRITE failure case where transport_generic_new_cmd()
2456 * has already added se_cmd to state_list, but fabric has
2457 * failed command before I/O submission.
2458 */
2459 if (cmd->state_active)
2460 target_remove_from_state_list(cmd);
2461
2462 if (cmd->se_lun)
2463 transport_lun_remove_cmd(cmd);
2464
2465 if (!aborted || tas)
2466 ret = transport_put_cmd(cmd);
2467 }
2468 /*
2469 * If the task has been internally aborted due to TMR ABORT_TASK
2470 * or LUN_RESET, target_core_tmr.c is responsible for performing
2471 * the remaining calls to target_put_sess_cmd(), and not the
2472 * callers of this function.
2473 */
2474 if (aborted) {
2475 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2476 wait_for_completion(&cmd->cmd_wait_comp);
2477 cmd->se_tfo->release_cmd(cmd);
2478 ret = 1;
2479 }
2480 return ret;
2481 }
2482 EXPORT_SYMBOL(transport_generic_free_cmd);
2483
2484 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2485 * @se_cmd: command descriptor to add
2486 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2487 */
target_get_sess_cmd(struct se_cmd * se_cmd,bool ack_kref)2488 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2489 {
2490 struct se_session *se_sess = se_cmd->se_sess;
2491 unsigned long flags;
2492 int ret = 0;
2493
2494 /*
2495 * Add a second kref if the fabric caller is expecting to handle
2496 * fabric acknowledgement that requires two target_put_sess_cmd()
2497 * invocations before se_cmd descriptor release.
2498 */
2499 if (ack_kref)
2500 kref_get(&se_cmd->cmd_kref);
2501
2502 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2503 if (se_sess->sess_tearing_down) {
2504 ret = -ESHUTDOWN;
2505 goto out;
2506 }
2507 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2508 out:
2509 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2510
2511 if (ret && ack_kref)
2512 target_put_sess_cmd(se_cmd);
2513
2514 return ret;
2515 }
2516 EXPORT_SYMBOL(target_get_sess_cmd);
2517
target_free_cmd_mem(struct se_cmd * cmd)2518 static void target_free_cmd_mem(struct se_cmd *cmd)
2519 {
2520 transport_free_pages(cmd);
2521
2522 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2523 core_tmr_release_req(cmd->se_tmr_req);
2524 if (cmd->t_task_cdb != cmd->__t_task_cdb)
2525 kfree(cmd->t_task_cdb);
2526 }
2527
target_release_cmd_kref(struct kref * kref)2528 static void target_release_cmd_kref(struct kref *kref)
2529 {
2530 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2531 struct se_session *se_sess = se_cmd->se_sess;
2532 unsigned long flags;
2533 bool fabric_stop;
2534
2535 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2536 if (list_empty(&se_cmd->se_cmd_list)) {
2537 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2538 target_free_cmd_mem(se_cmd);
2539 se_cmd->se_tfo->release_cmd(se_cmd);
2540 return;
2541 }
2542
2543 spin_lock(&se_cmd->t_state_lock);
2544 fabric_stop = (se_cmd->transport_state & CMD_T_FABRIC_STOP);
2545 spin_unlock(&se_cmd->t_state_lock);
2546
2547 if (se_cmd->cmd_wait_set || fabric_stop) {
2548 list_del_init(&se_cmd->se_cmd_list);
2549 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2550 target_free_cmd_mem(se_cmd);
2551 complete(&se_cmd->cmd_wait_comp);
2552 return;
2553 }
2554 list_del_init(&se_cmd->se_cmd_list);
2555 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2556
2557 target_free_cmd_mem(se_cmd);
2558 se_cmd->se_tfo->release_cmd(se_cmd);
2559 }
2560
2561 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2562 * @se_cmd: command descriptor to drop
2563 */
target_put_sess_cmd(struct se_cmd * se_cmd)2564 int target_put_sess_cmd(struct se_cmd *se_cmd)
2565 {
2566 struct se_session *se_sess = se_cmd->se_sess;
2567
2568 if (!se_sess) {
2569 target_free_cmd_mem(se_cmd);
2570 se_cmd->se_tfo->release_cmd(se_cmd);
2571 return 1;
2572 }
2573 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2574 }
2575 EXPORT_SYMBOL(target_put_sess_cmd);
2576
2577 /* target_sess_cmd_list_set_waiting - Flag all commands in
2578 * sess_cmd_list to complete cmd_wait_comp. Set
2579 * sess_tearing_down so no more commands are queued.
2580 * @se_sess: session to flag
2581 */
target_sess_cmd_list_set_waiting(struct se_session * se_sess)2582 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2583 {
2584 struct se_cmd *se_cmd;
2585 unsigned long flags;
2586 int rc;
2587
2588 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2589 if (se_sess->sess_tearing_down) {
2590 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2591 return;
2592 }
2593 se_sess->sess_tearing_down = 1;
2594 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2595
2596 list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list) {
2597 rc = kref_get_unless_zero(&se_cmd->cmd_kref);
2598 if (rc) {
2599 se_cmd->cmd_wait_set = 1;
2600 spin_lock(&se_cmd->t_state_lock);
2601 se_cmd->transport_state |= CMD_T_FABRIC_STOP;
2602 spin_unlock(&se_cmd->t_state_lock);
2603 }
2604 }
2605
2606 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2607 }
2608 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2609
2610 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2611 * @se_sess: session to wait for active I/O
2612 */
target_wait_for_sess_cmds(struct se_session * se_sess)2613 void target_wait_for_sess_cmds(struct se_session *se_sess)
2614 {
2615 struct se_cmd *se_cmd, *tmp_cmd;
2616 unsigned long flags;
2617 bool tas;
2618
2619 list_for_each_entry_safe(se_cmd, tmp_cmd,
2620 &se_sess->sess_wait_list, se_cmd_list) {
2621 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2622 " %d\n", se_cmd, se_cmd->t_state,
2623 se_cmd->se_tfo->get_cmd_state(se_cmd));
2624
2625 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2626 tas = (se_cmd->transport_state & CMD_T_TAS);
2627 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2628
2629 if (!target_put_sess_cmd(se_cmd)) {
2630 if (tas)
2631 target_put_sess_cmd(se_cmd);
2632 }
2633
2634 wait_for_completion(&se_cmd->cmd_wait_comp);
2635 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2636 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2637 se_cmd->se_tfo->get_cmd_state(se_cmd));
2638
2639 se_cmd->se_tfo->release_cmd(se_cmd);
2640 }
2641
2642 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2643 WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2644 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2645
2646 }
2647 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2648
transport_clear_lun_ref(struct se_lun * lun)2649 void transport_clear_lun_ref(struct se_lun *lun)
2650 {
2651 percpu_ref_kill(&lun->lun_ref);
2652 wait_for_completion(&lun->lun_ref_comp);
2653 }
2654
2655 static bool
__transport_wait_for_tasks(struct se_cmd * cmd,bool fabric_stop,bool * aborted,bool * tas,unsigned long * flags)2656 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
2657 bool *aborted, bool *tas, unsigned long *flags)
2658 __releases(&cmd->t_state_lock)
2659 __acquires(&cmd->t_state_lock)
2660 {
2661
2662 assert_spin_locked(&cmd->t_state_lock);
2663 WARN_ON_ONCE(!irqs_disabled());
2664
2665 if (fabric_stop)
2666 cmd->transport_state |= CMD_T_FABRIC_STOP;
2667
2668 if (cmd->transport_state & CMD_T_ABORTED)
2669 *aborted = true;
2670
2671 if (cmd->transport_state & CMD_T_TAS)
2672 *tas = true;
2673
2674 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2675 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2676 return false;
2677
2678 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2679 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2680 return false;
2681
2682 if (!(cmd->transport_state & CMD_T_ACTIVE))
2683 return false;
2684
2685 if (fabric_stop && *aborted)
2686 return false;
2687
2688 cmd->transport_state |= CMD_T_STOP;
2689
2690 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08llx i_state: %d,"
2691 " t_state: %d, CMD_T_STOP\n", cmd, cmd->tag,
2692 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2693
2694 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2695
2696 wait_for_completion(&cmd->t_transport_stop_comp);
2697
2698 spin_lock_irqsave(&cmd->t_state_lock, *flags);
2699 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2700
2701 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
2702 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
2703
2704 return true;
2705 }
2706
2707 /**
2708 * transport_wait_for_tasks - wait for completion to occur
2709 * @cmd: command to wait
2710 *
2711 * Called from frontend fabric context to wait for storage engine
2712 * to pause and/or release frontend generated struct se_cmd.
2713 */
transport_wait_for_tasks(struct se_cmd * cmd)2714 bool transport_wait_for_tasks(struct se_cmd *cmd)
2715 {
2716 unsigned long flags;
2717 bool ret, aborted = false, tas = false;
2718
2719 spin_lock_irqsave(&cmd->t_state_lock, flags);
2720 ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
2721 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2722
2723 return ret;
2724 }
2725 EXPORT_SYMBOL(transport_wait_for_tasks);
2726
2727 struct sense_info {
2728 u8 key;
2729 u8 asc;
2730 u8 ascq;
2731 bool add_sector_info;
2732 };
2733
2734 static const struct sense_info sense_info_table[] = {
2735 [TCM_NO_SENSE] = {
2736 .key = NOT_READY
2737 },
2738 [TCM_NON_EXISTENT_LUN] = {
2739 .key = ILLEGAL_REQUEST,
2740 .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
2741 },
2742 [TCM_UNSUPPORTED_SCSI_OPCODE] = {
2743 .key = ILLEGAL_REQUEST,
2744 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
2745 },
2746 [TCM_SECTOR_COUNT_TOO_MANY] = {
2747 .key = ILLEGAL_REQUEST,
2748 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
2749 },
2750 [TCM_UNKNOWN_MODE_PAGE] = {
2751 .key = ILLEGAL_REQUEST,
2752 .asc = 0x24, /* INVALID FIELD IN CDB */
2753 },
2754 [TCM_CHECK_CONDITION_ABORT_CMD] = {
2755 .key = ABORTED_COMMAND,
2756 .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
2757 .ascq = 0x03,
2758 },
2759 [TCM_INCORRECT_AMOUNT_OF_DATA] = {
2760 .key = ABORTED_COMMAND,
2761 .asc = 0x0c, /* WRITE ERROR */
2762 .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
2763 },
2764 [TCM_INVALID_CDB_FIELD] = {
2765 .key = ILLEGAL_REQUEST,
2766 .asc = 0x24, /* INVALID FIELD IN CDB */
2767 },
2768 [TCM_INVALID_PARAMETER_LIST] = {
2769 .key = ILLEGAL_REQUEST,
2770 .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
2771 },
2772 [TCM_PARAMETER_LIST_LENGTH_ERROR] = {
2773 .key = ILLEGAL_REQUEST,
2774 .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
2775 },
2776 [TCM_UNEXPECTED_UNSOLICITED_DATA] = {
2777 .key = ILLEGAL_REQUEST,
2778 .asc = 0x0c, /* WRITE ERROR */
2779 .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
2780 },
2781 [TCM_SERVICE_CRC_ERROR] = {
2782 .key = ABORTED_COMMAND,
2783 .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
2784 .ascq = 0x05, /* N/A */
2785 },
2786 [TCM_SNACK_REJECTED] = {
2787 .key = ABORTED_COMMAND,
2788 .asc = 0x11, /* READ ERROR */
2789 .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
2790 },
2791 [TCM_WRITE_PROTECTED] = {
2792 .key = DATA_PROTECT,
2793 .asc = 0x27, /* WRITE PROTECTED */
2794 },
2795 [TCM_ADDRESS_OUT_OF_RANGE] = {
2796 .key = ILLEGAL_REQUEST,
2797 .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2798 },
2799 [TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
2800 .key = UNIT_ATTENTION,
2801 },
2802 [TCM_CHECK_CONDITION_NOT_READY] = {
2803 .key = NOT_READY,
2804 },
2805 [TCM_MISCOMPARE_VERIFY] = {
2806 .key = MISCOMPARE,
2807 .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
2808 .ascq = 0x00,
2809 },
2810 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
2811 .key = ABORTED_COMMAND,
2812 .asc = 0x10,
2813 .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
2814 .add_sector_info = true,
2815 },
2816 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
2817 .key = ABORTED_COMMAND,
2818 .asc = 0x10,
2819 .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
2820 .add_sector_info = true,
2821 },
2822 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
2823 .key = ABORTED_COMMAND,
2824 .asc = 0x10,
2825 .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
2826 .add_sector_info = true,
2827 },
2828 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
2829 /*
2830 * Returning ILLEGAL REQUEST would cause immediate IO errors on
2831 * Solaris initiators. Returning NOT READY instead means the
2832 * operations will be retried a finite number of times and we
2833 * can survive intermittent errors.
2834 */
2835 .key = NOT_READY,
2836 .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
2837 },
2838 };
2839
translate_sense_reason(struct se_cmd * cmd,sense_reason_t reason)2840 static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
2841 {
2842 const struct sense_info *si;
2843 u8 *buffer = cmd->sense_buffer;
2844 int r = (__force int)reason;
2845 u8 asc, ascq;
2846 bool desc_format = target_sense_desc_format(cmd->se_dev);
2847
2848 if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key)
2849 si = &sense_info_table[r];
2850 else
2851 si = &sense_info_table[(__force int)
2852 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];
2853
2854 if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
2855 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2856 WARN_ON_ONCE(asc == 0);
2857 } else if (si->asc == 0) {
2858 WARN_ON_ONCE(cmd->scsi_asc == 0);
2859 asc = cmd->scsi_asc;
2860 ascq = cmd->scsi_ascq;
2861 } else {
2862 asc = si->asc;
2863 ascq = si->ascq;
2864 }
2865
2866 scsi_build_sense_buffer(desc_format, buffer, si->key, asc, ascq);
2867 if (si->add_sector_info)
2868 return scsi_set_sense_information(buffer,
2869 cmd->scsi_sense_length,
2870 cmd->bad_sector);
2871
2872 return 0;
2873 }
2874
2875 int
transport_send_check_condition_and_sense(struct se_cmd * cmd,sense_reason_t reason,int from_transport)2876 transport_send_check_condition_and_sense(struct se_cmd *cmd,
2877 sense_reason_t reason, int from_transport)
2878 {
2879 unsigned long flags;
2880
2881 spin_lock_irqsave(&cmd->t_state_lock, flags);
2882 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2883 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2884 return 0;
2885 }
2886 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
2887 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2888
2889 if (!from_transport) {
2890 int rc;
2891
2892 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2893 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
2894 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
2895 rc = translate_sense_reason(cmd, reason);
2896 if (rc)
2897 return rc;
2898 }
2899
2900 trace_target_cmd_complete(cmd);
2901 return cmd->se_tfo->queue_status(cmd);
2902 }
2903 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
2904
__transport_check_aborted_status(struct se_cmd * cmd,int send_status)2905 static int __transport_check_aborted_status(struct se_cmd *cmd, int send_status)
2906 __releases(&cmd->t_state_lock)
2907 __acquires(&cmd->t_state_lock)
2908 {
2909 assert_spin_locked(&cmd->t_state_lock);
2910 WARN_ON_ONCE(!irqs_disabled());
2911
2912 if (!(cmd->transport_state & CMD_T_ABORTED))
2913 return 0;
2914 /*
2915 * If cmd has been aborted but either no status is to be sent or it has
2916 * already been sent, just return
2917 */
2918 if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS)) {
2919 if (send_status)
2920 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
2921 return 1;
2922 }
2923
2924 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:"
2925 " 0x%02x ITT: 0x%08llx\n", cmd->t_task_cdb[0], cmd->tag);
2926
2927 cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS;
2928 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2929 trace_target_cmd_complete(cmd);
2930
2931 spin_unlock_irq(&cmd->t_state_lock);
2932 cmd->se_tfo->queue_status(cmd);
2933 spin_lock_irq(&cmd->t_state_lock);
2934
2935 return 1;
2936 }
2937
transport_check_aborted_status(struct se_cmd * cmd,int send_status)2938 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
2939 {
2940 int ret;
2941
2942 spin_lock_irq(&cmd->t_state_lock);
2943 ret = __transport_check_aborted_status(cmd, send_status);
2944 spin_unlock_irq(&cmd->t_state_lock);
2945
2946 return ret;
2947 }
2948 EXPORT_SYMBOL(transport_check_aborted_status);
2949
transport_send_task_abort(struct se_cmd * cmd)2950 void transport_send_task_abort(struct se_cmd *cmd)
2951 {
2952 unsigned long flags;
2953
2954 spin_lock_irqsave(&cmd->t_state_lock, flags);
2955 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) {
2956 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2957 return;
2958 }
2959 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2960
2961 /*
2962 * If there are still expected incoming fabric WRITEs, we wait
2963 * until until they have completed before sending a TASK_ABORTED
2964 * response. This response with TASK_ABORTED status will be
2965 * queued back to fabric module by transport_check_aborted_status().
2966 */
2967 if (cmd->data_direction == DMA_TO_DEVICE) {
2968 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
2969 spin_lock_irqsave(&cmd->t_state_lock, flags);
2970 if (cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS) {
2971 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2972 goto send_abort;
2973 }
2974 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
2975 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2976 return;
2977 }
2978 }
2979 send_abort:
2980 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2981
2982 transport_lun_remove_cmd(cmd);
2983
2984 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
2985 cmd->t_task_cdb[0], cmd->tag);
2986
2987 trace_target_cmd_complete(cmd);
2988 cmd->se_tfo->queue_status(cmd);
2989 }
2990
target_tmr_work(struct work_struct * work)2991 static void target_tmr_work(struct work_struct *work)
2992 {
2993 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2994 struct se_device *dev = cmd->se_dev;
2995 struct se_tmr_req *tmr = cmd->se_tmr_req;
2996 unsigned long flags;
2997 int ret;
2998
2999 spin_lock_irqsave(&cmd->t_state_lock, flags);
3000 if (cmd->transport_state & CMD_T_ABORTED) {
3001 tmr->response = TMR_FUNCTION_REJECTED;
3002 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3003 goto check_stop;
3004 }
3005 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3006
3007 switch (tmr->function) {
3008 case TMR_ABORT_TASK:
3009 core_tmr_abort_task(dev, tmr, cmd->se_sess);
3010 break;
3011 case TMR_ABORT_TASK_SET:
3012 case TMR_CLEAR_ACA:
3013 case TMR_CLEAR_TASK_SET:
3014 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3015 break;
3016 case TMR_LUN_RESET:
3017 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3018 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3019 TMR_FUNCTION_REJECTED;
3020 if (tmr->response == TMR_FUNCTION_COMPLETE) {
3021 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
3022 cmd->orig_fe_lun, 0x29,
3023 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
3024 }
3025 break;
3026 case TMR_TARGET_WARM_RESET:
3027 tmr->response = TMR_FUNCTION_REJECTED;
3028 break;
3029 case TMR_TARGET_COLD_RESET:
3030 tmr->response = TMR_FUNCTION_REJECTED;
3031 break;
3032 default:
3033 pr_err("Uknown TMR function: 0x%02x.\n",
3034 tmr->function);
3035 tmr->response = TMR_FUNCTION_REJECTED;
3036 break;
3037 }
3038
3039 spin_lock_irqsave(&cmd->t_state_lock, flags);
3040 if (cmd->transport_state & CMD_T_ABORTED) {
3041 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3042 goto check_stop;
3043 }
3044 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3045 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3046
3047 cmd->se_tfo->queue_tm_rsp(cmd);
3048
3049 check_stop:
3050 transport_cmd_check_stop_to_fabric(cmd);
3051 }
3052
transport_generic_handle_tmr(struct se_cmd * cmd)3053 int transport_generic_handle_tmr(
3054 struct se_cmd *cmd)
3055 {
3056 unsigned long flags;
3057
3058 spin_lock_irqsave(&cmd->t_state_lock, flags);
3059 cmd->transport_state |= CMD_T_ACTIVE;
3060 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3061
3062 INIT_WORK(&cmd->work, target_tmr_work);
3063 queue_work(cmd->se_dev->tmr_wq, &cmd->work);
3064 return 0;
3065 }
3066 EXPORT_SYMBOL(transport_generic_handle_tmr);
3067
3068 bool
target_check_wce(struct se_device * dev)3069 target_check_wce(struct se_device *dev)
3070 {
3071 bool wce = false;
3072
3073 if (dev->transport->get_write_cache)
3074 wce = dev->transport->get_write_cache(dev);
3075 else if (dev->dev_attrib.emulate_write_cache > 0)
3076 wce = true;
3077
3078 return wce;
3079 }
3080
3081 bool
target_check_fua(struct se_device * dev)3082 target_check_fua(struct se_device *dev)
3083 {
3084 return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
3085 }
3086