1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115 
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119 
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122 			      struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 			      unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 			     int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 				struct pipe_inode_info *pipe, size_t len,
133 				unsigned int flags);
134 
135 /*
136  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137  *	in the operation structures but are done directly via the socketcall() multiplexor.
138  */
139 
140 static const struct file_operations socket_file_ops = {
141 	.owner =	THIS_MODULE,
142 	.llseek =	no_llseek,
143 	.read_iter =	sock_read_iter,
144 	.write_iter =	sock_write_iter,
145 	.poll =		sock_poll,
146 	.unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 	.compat_ioctl = compat_sock_ioctl,
149 #endif
150 	.mmap =		sock_mmap,
151 	.release =	sock_close,
152 	.fasync =	sock_fasync,
153 	.sendpage =	sock_sendpage,
154 	.splice_write = generic_splice_sendpage,
155 	.splice_read =	sock_splice_read,
156 };
157 
158 /*
159  *	The protocol list. Each protocol is registered in here.
160  */
161 
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164 
165 /*
166  *	Statistics counters of the socket lists
167  */
168 
169 static DEFINE_PER_CPU(int, sockets_in_use);
170 
171 /*
172  * Support routines.
173  * Move socket addresses back and forth across the kernel/user
174  * divide and look after the messy bits.
175  */
176 
177 /**
178  *	move_addr_to_kernel	-	copy a socket address into kernel space
179  *	@uaddr: Address in user space
180  *	@kaddr: Address in kernel space
181  *	@ulen: Length in user space
182  *
183  *	The address is copied into kernel space. If the provided address is
184  *	too long an error code of -EINVAL is returned. If the copy gives
185  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
186  */
187 
move_addr_to_kernel(void __user * uaddr,int ulen,struct sockaddr_storage * kaddr)188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
189 {
190 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
191 		return -EINVAL;
192 	if (ulen == 0)
193 		return 0;
194 	if (copy_from_user(kaddr, uaddr, ulen))
195 		return -EFAULT;
196 	return audit_sockaddr(ulen, kaddr);
197 }
198 
199 /**
200  *	move_addr_to_user	-	copy an address to user space
201  *	@kaddr: kernel space address
202  *	@klen: length of address in kernel
203  *	@uaddr: user space address
204  *	@ulen: pointer to user length field
205  *
206  *	The value pointed to by ulen on entry is the buffer length available.
207  *	This is overwritten with the buffer space used. -EINVAL is returned
208  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
209  *	is returned if either the buffer or the length field are not
210  *	accessible.
211  *	After copying the data up to the limit the user specifies, the true
212  *	length of the data is written over the length limit the user
213  *	specified. Zero is returned for a success.
214  */
215 
move_addr_to_user(struct sockaddr_storage * kaddr,int klen,void __user * uaddr,int __user * ulen)216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
217 			     void __user *uaddr, int __user *ulen)
218 {
219 	int err;
220 	int len;
221 
222 	BUG_ON(klen > sizeof(struct sockaddr_storage));
223 	err = get_user(len, ulen);
224 	if (err)
225 		return err;
226 	if (len > klen)
227 		len = klen;
228 	if (len < 0)
229 		return -EINVAL;
230 	if (len) {
231 		if (audit_sockaddr(klen, kaddr))
232 			return -ENOMEM;
233 		if (copy_to_user(uaddr, kaddr, len))
234 			return -EFAULT;
235 	}
236 	/*
237 	 *      "fromlen shall refer to the value before truncation.."
238 	 *                      1003.1g
239 	 */
240 	return __put_user(klen, ulen);
241 }
242 
243 static struct kmem_cache *sock_inode_cachep __read_mostly;
244 
sock_alloc_inode(struct super_block * sb)245 static struct inode *sock_alloc_inode(struct super_block *sb)
246 {
247 	struct socket_alloc *ei;
248 	struct socket_wq *wq;
249 
250 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
251 	if (!ei)
252 		return NULL;
253 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
254 	if (!wq) {
255 		kmem_cache_free(sock_inode_cachep, ei);
256 		return NULL;
257 	}
258 	init_waitqueue_head(&wq->wait);
259 	wq->fasync_list = NULL;
260 	RCU_INIT_POINTER(ei->socket.wq, wq);
261 
262 	ei->socket.state = SS_UNCONNECTED;
263 	ei->socket.flags = 0;
264 	ei->socket.ops = NULL;
265 	ei->socket.sk = NULL;
266 	ei->socket.file = NULL;
267 
268 	return &ei->vfs_inode;
269 }
270 
sock_destroy_inode(struct inode * inode)271 static void sock_destroy_inode(struct inode *inode)
272 {
273 	struct socket_alloc *ei;
274 	struct socket_wq *wq;
275 
276 	ei = container_of(inode, struct socket_alloc, vfs_inode);
277 	wq = rcu_dereference_protected(ei->socket.wq, 1);
278 	kfree_rcu(wq, rcu);
279 	kmem_cache_free(sock_inode_cachep, ei);
280 }
281 
init_once(void * foo)282 static void init_once(void *foo)
283 {
284 	struct socket_alloc *ei = (struct socket_alloc *)foo;
285 
286 	inode_init_once(&ei->vfs_inode);
287 }
288 
init_inodecache(void)289 static int init_inodecache(void)
290 {
291 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
292 					      sizeof(struct socket_alloc),
293 					      0,
294 					      (SLAB_HWCACHE_ALIGN |
295 					       SLAB_RECLAIM_ACCOUNT |
296 					       SLAB_MEM_SPREAD),
297 					      init_once);
298 	if (sock_inode_cachep == NULL)
299 		return -ENOMEM;
300 	return 0;
301 }
302 
303 static const struct super_operations sockfs_ops = {
304 	.alloc_inode	= sock_alloc_inode,
305 	.destroy_inode	= sock_destroy_inode,
306 	.statfs		= simple_statfs,
307 };
308 
309 /*
310  * sockfs_dname() is called from d_path().
311  */
sockfs_dname(struct dentry * dentry,char * buffer,int buflen)312 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
313 {
314 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
315 				d_inode(dentry)->i_ino);
316 }
317 
318 static const struct dentry_operations sockfs_dentry_operations = {
319 	.d_dname  = sockfs_dname,
320 };
321 
sockfs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)322 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
323 			 int flags, const char *dev_name, void *data)
324 {
325 	return mount_pseudo(fs_type, "socket:", &sockfs_ops,
326 		&sockfs_dentry_operations, SOCKFS_MAGIC);
327 }
328 
329 static struct vfsmount *sock_mnt __read_mostly;
330 
331 static struct file_system_type sock_fs_type = {
332 	.name =		"sockfs",
333 	.mount =	sockfs_mount,
334 	.kill_sb =	kill_anon_super,
335 };
336 
337 /*
338  *	Obtains the first available file descriptor and sets it up for use.
339  *
340  *	These functions create file structures and maps them to fd space
341  *	of the current process. On success it returns file descriptor
342  *	and file struct implicitly stored in sock->file.
343  *	Note that another thread may close file descriptor before we return
344  *	from this function. We use the fact that now we do not refer
345  *	to socket after mapping. If one day we will need it, this
346  *	function will increment ref. count on file by 1.
347  *
348  *	In any case returned fd MAY BE not valid!
349  *	This race condition is unavoidable
350  *	with shared fd spaces, we cannot solve it inside kernel,
351  *	but we take care of internal coherence yet.
352  */
353 
sock_alloc_file(struct socket * sock,int flags,const char * dname)354 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
355 {
356 	struct qstr name = { .name = "" };
357 	struct path path;
358 	struct file *file;
359 
360 	if (dname) {
361 		name.name = dname;
362 		name.len = strlen(name.name);
363 	} else if (sock->sk) {
364 		name.name = sock->sk->sk_prot_creator->name;
365 		name.len = strlen(name.name);
366 	}
367 	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
368 	if (unlikely(!path.dentry))
369 		return ERR_PTR(-ENOMEM);
370 	path.mnt = mntget(sock_mnt);
371 
372 	d_instantiate(path.dentry, SOCK_INODE(sock));
373 
374 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
375 		  &socket_file_ops);
376 	if (unlikely(IS_ERR(file))) {
377 		/* drop dentry, keep inode */
378 		ihold(d_inode(path.dentry));
379 		path_put(&path);
380 		return file;
381 	}
382 
383 	sock->file = file;
384 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
385 	file->private_data = sock;
386 	return file;
387 }
388 EXPORT_SYMBOL(sock_alloc_file);
389 
sock_map_fd(struct socket * sock,int flags)390 static int sock_map_fd(struct socket *sock, int flags)
391 {
392 	struct file *newfile;
393 	int fd = get_unused_fd_flags(flags);
394 	if (unlikely(fd < 0))
395 		return fd;
396 
397 	newfile = sock_alloc_file(sock, flags, NULL);
398 	if (likely(!IS_ERR(newfile))) {
399 		fd_install(fd, newfile);
400 		return fd;
401 	}
402 
403 	put_unused_fd(fd);
404 	return PTR_ERR(newfile);
405 }
406 
sock_from_file(struct file * file,int * err)407 struct socket *sock_from_file(struct file *file, int *err)
408 {
409 	if (file->f_op == &socket_file_ops)
410 		return file->private_data;	/* set in sock_map_fd */
411 
412 	*err = -ENOTSOCK;
413 	return NULL;
414 }
415 EXPORT_SYMBOL(sock_from_file);
416 
417 /**
418  *	sockfd_lookup - Go from a file number to its socket slot
419  *	@fd: file handle
420  *	@err: pointer to an error code return
421  *
422  *	The file handle passed in is locked and the socket it is bound
423  *	too is returned. If an error occurs the err pointer is overwritten
424  *	with a negative errno code and NULL is returned. The function checks
425  *	for both invalid handles and passing a handle which is not a socket.
426  *
427  *	On a success the socket object pointer is returned.
428  */
429 
sockfd_lookup(int fd,int * err)430 struct socket *sockfd_lookup(int fd, int *err)
431 {
432 	struct file *file;
433 	struct socket *sock;
434 
435 	file = fget(fd);
436 	if (!file) {
437 		*err = -EBADF;
438 		return NULL;
439 	}
440 
441 	sock = sock_from_file(file, err);
442 	if (!sock)
443 		fput(file);
444 	return sock;
445 }
446 EXPORT_SYMBOL(sockfd_lookup);
447 
sockfd_lookup_light(int fd,int * err,int * fput_needed)448 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
449 {
450 	struct fd f = fdget(fd);
451 	struct socket *sock;
452 
453 	*err = -EBADF;
454 	if (f.file) {
455 		sock = sock_from_file(f.file, err);
456 		if (likely(sock)) {
457 			*fput_needed = f.flags;
458 			return sock;
459 		}
460 		fdput(f);
461 	}
462 	return NULL;
463 }
464 
465 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
466 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
467 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
sockfs_getxattr(struct dentry * dentry,const char * name,void * value,size_t size)468 static ssize_t sockfs_getxattr(struct dentry *dentry,
469 			       const char *name, void *value, size_t size)
470 {
471 	const char *proto_name;
472 	size_t proto_size;
473 	int error;
474 
475 	error = -ENODATA;
476 	if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
477 		proto_name = dentry->d_name.name;
478 		proto_size = strlen(proto_name);
479 
480 		if (value) {
481 			error = -ERANGE;
482 			if (proto_size + 1 > size)
483 				goto out;
484 
485 			strncpy(value, proto_name, proto_size + 1);
486 		}
487 		error = proto_size + 1;
488 	}
489 
490 out:
491 	return error;
492 }
493 
sockfs_listxattr(struct dentry * dentry,char * buffer,size_t size)494 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
495 				size_t size)
496 {
497 	ssize_t len;
498 	ssize_t used = 0;
499 
500 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
501 	if (len < 0)
502 		return len;
503 	used += len;
504 	if (buffer) {
505 		if (size < used)
506 			return -ERANGE;
507 		buffer += len;
508 	}
509 
510 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
511 	used += len;
512 	if (buffer) {
513 		if (size < used)
514 			return -ERANGE;
515 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
516 		buffer += len;
517 	}
518 
519 	return used;
520 }
521 
522 static const struct inode_operations sockfs_inode_ops = {
523 	.getxattr = sockfs_getxattr,
524 	.listxattr = sockfs_listxattr,
525 };
526 
527 /**
528  *	sock_alloc	-	allocate a socket
529  *
530  *	Allocate a new inode and socket object. The two are bound together
531  *	and initialised. The socket is then returned. If we are out of inodes
532  *	NULL is returned.
533  */
534 
sock_alloc(void)535 static struct socket *sock_alloc(void)
536 {
537 	struct inode *inode;
538 	struct socket *sock;
539 
540 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
541 	if (!inode)
542 		return NULL;
543 
544 	sock = SOCKET_I(inode);
545 
546 	kmemcheck_annotate_bitfield(sock, type);
547 	inode->i_ino = get_next_ino();
548 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
549 	inode->i_uid = current_fsuid();
550 	inode->i_gid = current_fsgid();
551 	inode->i_op = &sockfs_inode_ops;
552 
553 	this_cpu_add(sockets_in_use, 1);
554 	return sock;
555 }
556 
557 /**
558  *	sock_release	-	close a socket
559  *	@sock: socket to close
560  *
561  *	The socket is released from the protocol stack if it has a release
562  *	callback, and the inode is then released if the socket is bound to
563  *	an inode not a file.
564  */
565 
sock_release(struct socket * sock)566 void sock_release(struct socket *sock)
567 {
568 	if (sock->ops) {
569 		struct module *owner = sock->ops->owner;
570 
571 		sock->ops->release(sock);
572 		sock->ops = NULL;
573 		module_put(owner);
574 	}
575 
576 	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
577 		pr_err("%s: fasync list not empty!\n", __func__);
578 
579 	if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
580 		return;
581 
582 	this_cpu_sub(sockets_in_use, 1);
583 	if (!sock->file) {
584 		iput(SOCK_INODE(sock));
585 		return;
586 	}
587 	sock->file = NULL;
588 }
589 EXPORT_SYMBOL(sock_release);
590 
__sock_tx_timestamp(const struct sock * sk,__u8 * tx_flags)591 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
592 {
593 	u8 flags = *tx_flags;
594 
595 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
596 		flags |= SKBTX_HW_TSTAMP;
597 
598 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
599 		flags |= SKBTX_SW_TSTAMP;
600 
601 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED)
602 		flags |= SKBTX_SCHED_TSTAMP;
603 
604 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)
605 		flags |= SKBTX_ACK_TSTAMP;
606 
607 	*tx_flags = flags;
608 }
609 EXPORT_SYMBOL(__sock_tx_timestamp);
610 
sock_sendmsg_nosec(struct socket * sock,struct msghdr * msg)611 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
612 {
613 	int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
614 	BUG_ON(ret == -EIOCBQUEUED);
615 	return ret;
616 }
617 
sock_sendmsg(struct socket * sock,struct msghdr * msg)618 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
619 {
620 	int err = security_socket_sendmsg(sock, msg,
621 					  msg_data_left(msg));
622 
623 	return err ?: sock_sendmsg_nosec(sock, msg);
624 }
625 EXPORT_SYMBOL(sock_sendmsg);
626 
kernel_sendmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)627 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
628 		   struct kvec *vec, size_t num, size_t size)
629 {
630 	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
631 	return sock_sendmsg(sock, msg);
632 }
633 EXPORT_SYMBOL(kernel_sendmsg);
634 
635 /*
636  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
637  */
__sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)638 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
639 	struct sk_buff *skb)
640 {
641 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
642 	struct scm_timestamping tss;
643 	int empty = 1;
644 	struct skb_shared_hwtstamps *shhwtstamps =
645 		skb_hwtstamps(skb);
646 
647 	/* Race occurred between timestamp enabling and packet
648 	   receiving.  Fill in the current time for now. */
649 	if (need_software_tstamp && skb->tstamp.tv64 == 0)
650 		__net_timestamp(skb);
651 
652 	if (need_software_tstamp) {
653 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
654 			struct timeval tv;
655 			skb_get_timestamp(skb, &tv);
656 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
657 				 sizeof(tv), &tv);
658 		} else {
659 			struct timespec ts;
660 			skb_get_timestampns(skb, &ts);
661 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
662 				 sizeof(ts), &ts);
663 		}
664 	}
665 
666 	memset(&tss, 0, sizeof(tss));
667 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
668 	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
669 		empty = 0;
670 	if (shhwtstamps &&
671 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
672 	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
673 		empty = 0;
674 	if (!empty)
675 		put_cmsg(msg, SOL_SOCKET,
676 			 SCM_TIMESTAMPING, sizeof(tss), &tss);
677 }
678 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
679 
__sock_recv_wifi_status(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)680 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
681 	struct sk_buff *skb)
682 {
683 	int ack;
684 
685 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
686 		return;
687 	if (!skb->wifi_acked_valid)
688 		return;
689 
690 	ack = skb->wifi_acked;
691 
692 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
693 }
694 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
695 
sock_recv_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)696 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
697 				   struct sk_buff *skb)
698 {
699 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
700 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
701 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
702 }
703 
__sock_recv_ts_and_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)704 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
705 	struct sk_buff *skb)
706 {
707 	sock_recv_timestamp(msg, sk, skb);
708 	sock_recv_drops(msg, sk, skb);
709 }
710 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
711 
sock_recvmsg_nosec(struct socket * sock,struct msghdr * msg,size_t size,int flags)712 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
713 				     size_t size, int flags)
714 {
715 	return sock->ops->recvmsg(sock, msg, size, flags);
716 }
717 
sock_recvmsg(struct socket * sock,struct msghdr * msg,size_t size,int flags)718 int sock_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
719 		 int flags)
720 {
721 	int err = security_socket_recvmsg(sock, msg, size, flags);
722 
723 	return err ?: sock_recvmsg_nosec(sock, msg, size, flags);
724 }
725 EXPORT_SYMBOL(sock_recvmsg);
726 
727 /**
728  * kernel_recvmsg - Receive a message from a socket (kernel space)
729  * @sock:       The socket to receive the message from
730  * @msg:        Received message
731  * @vec:        Input s/g array for message data
732  * @num:        Size of input s/g array
733  * @size:       Number of bytes to read
734  * @flags:      Message flags (MSG_DONTWAIT, etc...)
735  *
736  * On return the msg structure contains the scatter/gather array passed in the
737  * vec argument. The array is modified so that it consists of the unfilled
738  * portion of the original array.
739  *
740  * The returned value is the total number of bytes received, or an error.
741  */
kernel_recvmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size,int flags)742 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
743 		   struct kvec *vec, size_t num, size_t size, int flags)
744 {
745 	mm_segment_t oldfs = get_fs();
746 	int result;
747 
748 	iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
749 	set_fs(KERNEL_DS);
750 	result = sock_recvmsg(sock, msg, size, flags);
751 	set_fs(oldfs);
752 	return result;
753 }
754 EXPORT_SYMBOL(kernel_recvmsg);
755 
sock_sendpage(struct file * file,struct page * page,int offset,size_t size,loff_t * ppos,int more)756 static ssize_t sock_sendpage(struct file *file, struct page *page,
757 			     int offset, size_t size, loff_t *ppos, int more)
758 {
759 	struct socket *sock;
760 	int flags;
761 
762 	sock = file->private_data;
763 
764 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
765 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
766 	flags |= more;
767 
768 	return kernel_sendpage(sock, page, offset, size, flags);
769 }
770 
sock_splice_read(struct file * file,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)771 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
772 				struct pipe_inode_info *pipe, size_t len,
773 				unsigned int flags)
774 {
775 	struct socket *sock = file->private_data;
776 
777 	if (unlikely(!sock->ops->splice_read))
778 		return -EINVAL;
779 
780 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
781 }
782 
sock_read_iter(struct kiocb * iocb,struct iov_iter * to)783 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
784 {
785 	struct file *file = iocb->ki_filp;
786 	struct socket *sock = file->private_data;
787 	struct msghdr msg = {.msg_iter = *to,
788 			     .msg_iocb = iocb};
789 	ssize_t res;
790 
791 	if (file->f_flags & O_NONBLOCK)
792 		msg.msg_flags = MSG_DONTWAIT;
793 
794 	if (iocb->ki_pos != 0)
795 		return -ESPIPE;
796 
797 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
798 		return 0;
799 
800 	res = sock_recvmsg(sock, &msg, iov_iter_count(to), msg.msg_flags);
801 	*to = msg.msg_iter;
802 	return res;
803 }
804 
sock_write_iter(struct kiocb * iocb,struct iov_iter * from)805 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
806 {
807 	struct file *file = iocb->ki_filp;
808 	struct socket *sock = file->private_data;
809 	struct msghdr msg = {.msg_iter = *from,
810 			     .msg_iocb = iocb};
811 	ssize_t res;
812 
813 	if (iocb->ki_pos != 0)
814 		return -ESPIPE;
815 
816 	if (file->f_flags & O_NONBLOCK)
817 		msg.msg_flags = MSG_DONTWAIT;
818 
819 	if (sock->type == SOCK_SEQPACKET)
820 		msg.msg_flags |= MSG_EOR;
821 
822 	res = sock_sendmsg(sock, &msg);
823 	*from = msg.msg_iter;
824 	return res;
825 }
826 
827 /*
828  * Atomic setting of ioctl hooks to avoid race
829  * with module unload.
830  */
831 
832 static DEFINE_MUTEX(br_ioctl_mutex);
833 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
834 
brioctl_set(int (* hook)(struct net *,unsigned int,void __user *))835 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
836 {
837 	mutex_lock(&br_ioctl_mutex);
838 	br_ioctl_hook = hook;
839 	mutex_unlock(&br_ioctl_mutex);
840 }
841 EXPORT_SYMBOL(brioctl_set);
842 
843 static DEFINE_MUTEX(vlan_ioctl_mutex);
844 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
845 
vlan_ioctl_set(int (* hook)(struct net *,void __user *))846 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
847 {
848 	mutex_lock(&vlan_ioctl_mutex);
849 	vlan_ioctl_hook = hook;
850 	mutex_unlock(&vlan_ioctl_mutex);
851 }
852 EXPORT_SYMBOL(vlan_ioctl_set);
853 
854 static DEFINE_MUTEX(dlci_ioctl_mutex);
855 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
856 
dlci_ioctl_set(int (* hook)(unsigned int,void __user *))857 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
858 {
859 	mutex_lock(&dlci_ioctl_mutex);
860 	dlci_ioctl_hook = hook;
861 	mutex_unlock(&dlci_ioctl_mutex);
862 }
863 EXPORT_SYMBOL(dlci_ioctl_set);
864 
sock_do_ioctl(struct net * net,struct socket * sock,unsigned int cmd,unsigned long arg)865 static long sock_do_ioctl(struct net *net, struct socket *sock,
866 				 unsigned int cmd, unsigned long arg)
867 {
868 	int err;
869 	void __user *argp = (void __user *)arg;
870 
871 	err = sock->ops->ioctl(sock, cmd, arg);
872 
873 	/*
874 	 * If this ioctl is unknown try to hand it down
875 	 * to the NIC driver.
876 	 */
877 	if (err == -ENOIOCTLCMD)
878 		err = dev_ioctl(net, cmd, argp);
879 
880 	return err;
881 }
882 
883 /*
884  *	With an ioctl, arg may well be a user mode pointer, but we don't know
885  *	what to do with it - that's up to the protocol still.
886  */
887 
sock_ioctl(struct file * file,unsigned cmd,unsigned long arg)888 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
889 {
890 	struct socket *sock;
891 	struct sock *sk;
892 	void __user *argp = (void __user *)arg;
893 	int pid, err;
894 	struct net *net;
895 
896 	sock = file->private_data;
897 	sk = sock->sk;
898 	net = sock_net(sk);
899 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
900 		err = dev_ioctl(net, cmd, argp);
901 	} else
902 #ifdef CONFIG_WEXT_CORE
903 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
904 		err = dev_ioctl(net, cmd, argp);
905 	} else
906 #endif
907 		switch (cmd) {
908 		case FIOSETOWN:
909 		case SIOCSPGRP:
910 			err = -EFAULT;
911 			if (get_user(pid, (int __user *)argp))
912 				break;
913 			f_setown(sock->file, pid, 1);
914 			err = 0;
915 			break;
916 		case FIOGETOWN:
917 		case SIOCGPGRP:
918 			err = put_user(f_getown(sock->file),
919 				       (int __user *)argp);
920 			break;
921 		case SIOCGIFBR:
922 		case SIOCSIFBR:
923 		case SIOCBRADDBR:
924 		case SIOCBRDELBR:
925 			err = -ENOPKG;
926 			if (!br_ioctl_hook)
927 				request_module("bridge");
928 
929 			mutex_lock(&br_ioctl_mutex);
930 			if (br_ioctl_hook)
931 				err = br_ioctl_hook(net, cmd, argp);
932 			mutex_unlock(&br_ioctl_mutex);
933 			break;
934 		case SIOCGIFVLAN:
935 		case SIOCSIFVLAN:
936 			err = -ENOPKG;
937 			if (!vlan_ioctl_hook)
938 				request_module("8021q");
939 
940 			mutex_lock(&vlan_ioctl_mutex);
941 			if (vlan_ioctl_hook)
942 				err = vlan_ioctl_hook(net, argp);
943 			mutex_unlock(&vlan_ioctl_mutex);
944 			break;
945 		case SIOCADDDLCI:
946 		case SIOCDELDLCI:
947 			err = -ENOPKG;
948 			if (!dlci_ioctl_hook)
949 				request_module("dlci");
950 
951 			mutex_lock(&dlci_ioctl_mutex);
952 			if (dlci_ioctl_hook)
953 				err = dlci_ioctl_hook(cmd, argp);
954 			mutex_unlock(&dlci_ioctl_mutex);
955 			break;
956 		default:
957 			err = sock_do_ioctl(net, sock, cmd, arg);
958 			break;
959 		}
960 	return err;
961 }
962 
sock_create_lite(int family,int type,int protocol,struct socket ** res)963 int sock_create_lite(int family, int type, int protocol, struct socket **res)
964 {
965 	int err;
966 	struct socket *sock = NULL;
967 
968 	err = security_socket_create(family, type, protocol, 1);
969 	if (err)
970 		goto out;
971 
972 	sock = sock_alloc();
973 	if (!sock) {
974 		err = -ENOMEM;
975 		goto out;
976 	}
977 
978 	sock->type = type;
979 	err = security_socket_post_create(sock, family, type, protocol, 1);
980 	if (err)
981 		goto out_release;
982 
983 out:
984 	*res = sock;
985 	return err;
986 out_release:
987 	sock_release(sock);
988 	sock = NULL;
989 	goto out;
990 }
991 EXPORT_SYMBOL(sock_create_lite);
992 
993 /* No kernel lock held - perfect */
sock_poll(struct file * file,poll_table * wait)994 static unsigned int sock_poll(struct file *file, poll_table *wait)
995 {
996 	unsigned int busy_flag = 0;
997 	struct socket *sock;
998 
999 	/*
1000 	 *      We can't return errors to poll, so it's either yes or no.
1001 	 */
1002 	sock = file->private_data;
1003 
1004 	if (sk_can_busy_loop(sock->sk)) {
1005 		/* this socket can poll_ll so tell the system call */
1006 		busy_flag = POLL_BUSY_LOOP;
1007 
1008 		/* once, only if requested by syscall */
1009 		if (wait && (wait->_key & POLL_BUSY_LOOP))
1010 			sk_busy_loop(sock->sk, 1);
1011 	}
1012 
1013 	return busy_flag | sock->ops->poll(file, sock, wait);
1014 }
1015 
sock_mmap(struct file * file,struct vm_area_struct * vma)1016 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1017 {
1018 	struct socket *sock = file->private_data;
1019 
1020 	return sock->ops->mmap(file, sock, vma);
1021 }
1022 
sock_close(struct inode * inode,struct file * filp)1023 static int sock_close(struct inode *inode, struct file *filp)
1024 {
1025 	sock_release(SOCKET_I(inode));
1026 	return 0;
1027 }
1028 
1029 /*
1030  *	Update the socket async list
1031  *
1032  *	Fasync_list locking strategy.
1033  *
1034  *	1. fasync_list is modified only under process context socket lock
1035  *	   i.e. under semaphore.
1036  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1037  *	   or under socket lock
1038  */
1039 
sock_fasync(int fd,struct file * filp,int on)1040 static int sock_fasync(int fd, struct file *filp, int on)
1041 {
1042 	struct socket *sock = filp->private_data;
1043 	struct sock *sk = sock->sk;
1044 	struct socket_wq *wq;
1045 
1046 	if (sk == NULL)
1047 		return -EINVAL;
1048 
1049 	lock_sock(sk);
1050 	wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1051 	fasync_helper(fd, filp, on, &wq->fasync_list);
1052 
1053 	if (!wq->fasync_list)
1054 		sock_reset_flag(sk, SOCK_FASYNC);
1055 	else
1056 		sock_set_flag(sk, SOCK_FASYNC);
1057 
1058 	release_sock(sk);
1059 	return 0;
1060 }
1061 
1062 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1063 
sock_wake_async(struct socket * sock,int how,int band)1064 int sock_wake_async(struct socket *sock, int how, int band)
1065 {
1066 	struct socket_wq *wq;
1067 
1068 	if (!sock)
1069 		return -1;
1070 	rcu_read_lock();
1071 	wq = rcu_dereference(sock->wq);
1072 	if (!wq || !wq->fasync_list) {
1073 		rcu_read_unlock();
1074 		return -1;
1075 	}
1076 	switch (how) {
1077 	case SOCK_WAKE_WAITD:
1078 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1079 			break;
1080 		goto call_kill;
1081 	case SOCK_WAKE_SPACE:
1082 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1083 			break;
1084 		/* fall through */
1085 	case SOCK_WAKE_IO:
1086 call_kill:
1087 		kill_fasync(&wq->fasync_list, SIGIO, band);
1088 		break;
1089 	case SOCK_WAKE_URG:
1090 		kill_fasync(&wq->fasync_list, SIGURG, band);
1091 	}
1092 	rcu_read_unlock();
1093 	return 0;
1094 }
1095 EXPORT_SYMBOL(sock_wake_async);
1096 
__sock_create(struct net * net,int family,int type,int protocol,struct socket ** res,int kern)1097 int __sock_create(struct net *net, int family, int type, int protocol,
1098 			 struct socket **res, int kern)
1099 {
1100 	int err;
1101 	struct socket *sock;
1102 	const struct net_proto_family *pf;
1103 
1104 	/*
1105 	 *      Check protocol is in range
1106 	 */
1107 	if (family < 0 || family >= NPROTO)
1108 		return -EAFNOSUPPORT;
1109 	if (type < 0 || type >= SOCK_MAX)
1110 		return -EINVAL;
1111 
1112 	/* Compatibility.
1113 
1114 	   This uglymoron is moved from INET layer to here to avoid
1115 	   deadlock in module load.
1116 	 */
1117 	if (family == PF_INET && type == SOCK_PACKET) {
1118 		static int warned;
1119 		if (!warned) {
1120 			warned = 1;
1121 			pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1122 				current->comm);
1123 		}
1124 		family = PF_PACKET;
1125 	}
1126 
1127 	err = security_socket_create(family, type, protocol, kern);
1128 	if (err)
1129 		return err;
1130 
1131 	/*
1132 	 *	Allocate the socket and allow the family to set things up. if
1133 	 *	the protocol is 0, the family is instructed to select an appropriate
1134 	 *	default.
1135 	 */
1136 	sock = sock_alloc();
1137 	if (!sock) {
1138 		net_warn_ratelimited("socket: no more sockets\n");
1139 		return -ENFILE;	/* Not exactly a match, but its the
1140 				   closest posix thing */
1141 	}
1142 
1143 	sock->type = type;
1144 
1145 #ifdef CONFIG_MODULES
1146 	/* Attempt to load a protocol module if the find failed.
1147 	 *
1148 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1149 	 * requested real, full-featured networking support upon configuration.
1150 	 * Otherwise module support will break!
1151 	 */
1152 	if (rcu_access_pointer(net_families[family]) == NULL)
1153 		request_module("net-pf-%d", family);
1154 #endif
1155 
1156 	rcu_read_lock();
1157 	pf = rcu_dereference(net_families[family]);
1158 	err = -EAFNOSUPPORT;
1159 	if (!pf)
1160 		goto out_release;
1161 
1162 	/*
1163 	 * We will call the ->create function, that possibly is in a loadable
1164 	 * module, so we have to bump that loadable module refcnt first.
1165 	 */
1166 	if (!try_module_get(pf->owner))
1167 		goto out_release;
1168 
1169 	/* Now protected by module ref count */
1170 	rcu_read_unlock();
1171 
1172 	err = pf->create(net, sock, protocol, kern);
1173 	if (err < 0)
1174 		goto out_module_put;
1175 
1176 	/*
1177 	 * Now to bump the refcnt of the [loadable] module that owns this
1178 	 * socket at sock_release time we decrement its refcnt.
1179 	 */
1180 	if (!try_module_get(sock->ops->owner))
1181 		goto out_module_busy;
1182 
1183 	/*
1184 	 * Now that we're done with the ->create function, the [loadable]
1185 	 * module can have its refcnt decremented
1186 	 */
1187 	module_put(pf->owner);
1188 	err = security_socket_post_create(sock, family, type, protocol, kern);
1189 	if (err)
1190 		goto out_sock_release;
1191 	*res = sock;
1192 
1193 	return 0;
1194 
1195 out_module_busy:
1196 	err = -EAFNOSUPPORT;
1197 out_module_put:
1198 	sock->ops = NULL;
1199 	module_put(pf->owner);
1200 out_sock_release:
1201 	sock_release(sock);
1202 	return err;
1203 
1204 out_release:
1205 	rcu_read_unlock();
1206 	goto out_sock_release;
1207 }
1208 EXPORT_SYMBOL(__sock_create);
1209 
sock_create(int family,int type,int protocol,struct socket ** res)1210 int sock_create(int family, int type, int protocol, struct socket **res)
1211 {
1212 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1213 }
1214 EXPORT_SYMBOL(sock_create);
1215 
sock_create_kern(int family,int type,int protocol,struct socket ** res)1216 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1217 {
1218 	return __sock_create(&init_net, family, type, protocol, res, 1);
1219 }
1220 EXPORT_SYMBOL(sock_create_kern);
1221 
SYSCALL_DEFINE3(socket,int,family,int,type,int,protocol)1222 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1223 {
1224 	int retval;
1225 	struct socket *sock;
1226 	int flags;
1227 
1228 	/* Check the SOCK_* constants for consistency.  */
1229 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1230 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1231 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1232 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1233 
1234 	flags = type & ~SOCK_TYPE_MASK;
1235 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1236 		return -EINVAL;
1237 	type &= SOCK_TYPE_MASK;
1238 
1239 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1240 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1241 
1242 	retval = sock_create(family, type, protocol, &sock);
1243 	if (retval < 0)
1244 		goto out;
1245 
1246 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1247 	if (retval < 0)
1248 		goto out_release;
1249 
1250 out:
1251 	/* It may be already another descriptor 8) Not kernel problem. */
1252 	return retval;
1253 
1254 out_release:
1255 	sock_release(sock);
1256 	return retval;
1257 }
1258 
1259 /*
1260  *	Create a pair of connected sockets.
1261  */
1262 
SYSCALL_DEFINE4(socketpair,int,family,int,type,int,protocol,int __user *,usockvec)1263 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1264 		int __user *, usockvec)
1265 {
1266 	struct socket *sock1, *sock2;
1267 	int fd1, fd2, err;
1268 	struct file *newfile1, *newfile2;
1269 	int flags;
1270 
1271 	flags = type & ~SOCK_TYPE_MASK;
1272 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1273 		return -EINVAL;
1274 	type &= SOCK_TYPE_MASK;
1275 
1276 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1277 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1278 
1279 	/*
1280 	 * Obtain the first socket and check if the underlying protocol
1281 	 * supports the socketpair call.
1282 	 */
1283 
1284 	err = sock_create(family, type, protocol, &sock1);
1285 	if (err < 0)
1286 		goto out;
1287 
1288 	err = sock_create(family, type, protocol, &sock2);
1289 	if (err < 0)
1290 		goto out_release_1;
1291 
1292 	err = sock1->ops->socketpair(sock1, sock2);
1293 	if (err < 0)
1294 		goto out_release_both;
1295 
1296 	fd1 = get_unused_fd_flags(flags);
1297 	if (unlikely(fd1 < 0)) {
1298 		err = fd1;
1299 		goto out_release_both;
1300 	}
1301 
1302 	fd2 = get_unused_fd_flags(flags);
1303 	if (unlikely(fd2 < 0)) {
1304 		err = fd2;
1305 		goto out_put_unused_1;
1306 	}
1307 
1308 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1309 	if (unlikely(IS_ERR(newfile1))) {
1310 		err = PTR_ERR(newfile1);
1311 		goto out_put_unused_both;
1312 	}
1313 
1314 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1315 	if (IS_ERR(newfile2)) {
1316 		err = PTR_ERR(newfile2);
1317 		goto out_fput_1;
1318 	}
1319 
1320 	err = put_user(fd1, &usockvec[0]);
1321 	if (err)
1322 		goto out_fput_both;
1323 
1324 	err = put_user(fd2, &usockvec[1]);
1325 	if (err)
1326 		goto out_fput_both;
1327 
1328 	audit_fd_pair(fd1, fd2);
1329 
1330 	fd_install(fd1, newfile1);
1331 	fd_install(fd2, newfile2);
1332 	/* fd1 and fd2 may be already another descriptors.
1333 	 * Not kernel problem.
1334 	 */
1335 
1336 	return 0;
1337 
1338 out_fput_both:
1339 	fput(newfile2);
1340 	fput(newfile1);
1341 	put_unused_fd(fd2);
1342 	put_unused_fd(fd1);
1343 	goto out;
1344 
1345 out_fput_1:
1346 	fput(newfile1);
1347 	put_unused_fd(fd2);
1348 	put_unused_fd(fd1);
1349 	sock_release(sock2);
1350 	goto out;
1351 
1352 out_put_unused_both:
1353 	put_unused_fd(fd2);
1354 out_put_unused_1:
1355 	put_unused_fd(fd1);
1356 out_release_both:
1357 	sock_release(sock2);
1358 out_release_1:
1359 	sock_release(sock1);
1360 out:
1361 	return err;
1362 }
1363 
1364 /*
1365  *	Bind a name to a socket. Nothing much to do here since it's
1366  *	the protocol's responsibility to handle the local address.
1367  *
1368  *	We move the socket address to kernel space before we call
1369  *	the protocol layer (having also checked the address is ok).
1370  */
1371 
SYSCALL_DEFINE3(bind,int,fd,struct sockaddr __user *,umyaddr,int,addrlen)1372 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1373 {
1374 	struct socket *sock;
1375 	struct sockaddr_storage address;
1376 	int err, fput_needed;
1377 
1378 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1379 	if (sock) {
1380 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1381 		if (err >= 0) {
1382 			err = security_socket_bind(sock,
1383 						   (struct sockaddr *)&address,
1384 						   addrlen);
1385 			if (!err)
1386 				err = sock->ops->bind(sock,
1387 						      (struct sockaddr *)
1388 						      &address, addrlen);
1389 		}
1390 		fput_light(sock->file, fput_needed);
1391 	}
1392 	return err;
1393 }
1394 
1395 /*
1396  *	Perform a listen. Basically, we allow the protocol to do anything
1397  *	necessary for a listen, and if that works, we mark the socket as
1398  *	ready for listening.
1399  */
1400 
SYSCALL_DEFINE2(listen,int,fd,int,backlog)1401 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1402 {
1403 	struct socket *sock;
1404 	int err, fput_needed;
1405 	int somaxconn;
1406 
1407 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1408 	if (sock) {
1409 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1410 		if ((unsigned int)backlog > somaxconn)
1411 			backlog = somaxconn;
1412 
1413 		err = security_socket_listen(sock, backlog);
1414 		if (!err)
1415 			err = sock->ops->listen(sock, backlog);
1416 
1417 		fput_light(sock->file, fput_needed);
1418 	}
1419 	return err;
1420 }
1421 
1422 /*
1423  *	For accept, we attempt to create a new socket, set up the link
1424  *	with the client, wake up the client, then return the new
1425  *	connected fd. We collect the address of the connector in kernel
1426  *	space and move it to user at the very end. This is unclean because
1427  *	we open the socket then return an error.
1428  *
1429  *	1003.1g adds the ability to recvmsg() to query connection pending
1430  *	status to recvmsg. We need to add that support in a way thats
1431  *	clean when we restucture accept also.
1432  */
1433 
SYSCALL_DEFINE4(accept4,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen,int,flags)1434 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1435 		int __user *, upeer_addrlen, int, flags)
1436 {
1437 	struct socket *sock, *newsock;
1438 	struct file *newfile;
1439 	int err, len, newfd, fput_needed;
1440 	struct sockaddr_storage address;
1441 
1442 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1443 		return -EINVAL;
1444 
1445 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1446 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1447 
1448 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1449 	if (!sock)
1450 		goto out;
1451 
1452 	err = -ENFILE;
1453 	newsock = sock_alloc();
1454 	if (!newsock)
1455 		goto out_put;
1456 
1457 	newsock->type = sock->type;
1458 	newsock->ops = sock->ops;
1459 
1460 	/*
1461 	 * We don't need try_module_get here, as the listening socket (sock)
1462 	 * has the protocol module (sock->ops->owner) held.
1463 	 */
1464 	__module_get(newsock->ops->owner);
1465 
1466 	newfd = get_unused_fd_flags(flags);
1467 	if (unlikely(newfd < 0)) {
1468 		err = newfd;
1469 		sock_release(newsock);
1470 		goto out_put;
1471 	}
1472 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1473 	if (unlikely(IS_ERR(newfile))) {
1474 		err = PTR_ERR(newfile);
1475 		put_unused_fd(newfd);
1476 		sock_release(newsock);
1477 		goto out_put;
1478 	}
1479 
1480 	err = security_socket_accept(sock, newsock);
1481 	if (err)
1482 		goto out_fd;
1483 
1484 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1485 	if (err < 0)
1486 		goto out_fd;
1487 
1488 	if (upeer_sockaddr) {
1489 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1490 					  &len, 2) < 0) {
1491 			err = -ECONNABORTED;
1492 			goto out_fd;
1493 		}
1494 		err = move_addr_to_user(&address,
1495 					len, upeer_sockaddr, upeer_addrlen);
1496 		if (err < 0)
1497 			goto out_fd;
1498 	}
1499 
1500 	/* File flags are not inherited via accept() unlike another OSes. */
1501 
1502 	fd_install(newfd, newfile);
1503 	err = newfd;
1504 
1505 out_put:
1506 	fput_light(sock->file, fput_needed);
1507 out:
1508 	return err;
1509 out_fd:
1510 	fput(newfile);
1511 	put_unused_fd(newfd);
1512 	goto out_put;
1513 }
1514 
SYSCALL_DEFINE3(accept,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen)1515 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1516 		int __user *, upeer_addrlen)
1517 {
1518 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1519 }
1520 
1521 /*
1522  *	Attempt to connect to a socket with the server address.  The address
1523  *	is in user space so we verify it is OK and move it to kernel space.
1524  *
1525  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1526  *	break bindings
1527  *
1528  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1529  *	other SEQPACKET protocols that take time to connect() as it doesn't
1530  *	include the -EINPROGRESS status for such sockets.
1531  */
1532 
SYSCALL_DEFINE3(connect,int,fd,struct sockaddr __user *,uservaddr,int,addrlen)1533 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1534 		int, addrlen)
1535 {
1536 	struct socket *sock;
1537 	struct sockaddr_storage address;
1538 	int err, fput_needed;
1539 
1540 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1541 	if (!sock)
1542 		goto out;
1543 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1544 	if (err < 0)
1545 		goto out_put;
1546 
1547 	err =
1548 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1549 	if (err)
1550 		goto out_put;
1551 
1552 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1553 				 sock->file->f_flags);
1554 out_put:
1555 	fput_light(sock->file, fput_needed);
1556 out:
1557 	return err;
1558 }
1559 
1560 /*
1561  *	Get the local address ('name') of a socket object. Move the obtained
1562  *	name to user space.
1563  */
1564 
SYSCALL_DEFINE3(getsockname,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)1565 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1566 		int __user *, usockaddr_len)
1567 {
1568 	struct socket *sock;
1569 	struct sockaddr_storage address;
1570 	int len, err, fput_needed;
1571 
1572 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1573 	if (!sock)
1574 		goto out;
1575 
1576 	err = security_socket_getsockname(sock);
1577 	if (err)
1578 		goto out_put;
1579 
1580 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1581 	if (err)
1582 		goto out_put;
1583 	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1584 
1585 out_put:
1586 	fput_light(sock->file, fput_needed);
1587 out:
1588 	return err;
1589 }
1590 
1591 /*
1592  *	Get the remote address ('name') of a socket object. Move the obtained
1593  *	name to user space.
1594  */
1595 
SYSCALL_DEFINE3(getpeername,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)1596 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1597 		int __user *, usockaddr_len)
1598 {
1599 	struct socket *sock;
1600 	struct sockaddr_storage address;
1601 	int len, err, fput_needed;
1602 
1603 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1604 	if (sock != NULL) {
1605 		err = security_socket_getpeername(sock);
1606 		if (err) {
1607 			fput_light(sock->file, fput_needed);
1608 			return err;
1609 		}
1610 
1611 		err =
1612 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1613 				       1);
1614 		if (!err)
1615 			err = move_addr_to_user(&address, len, usockaddr,
1616 						usockaddr_len);
1617 		fput_light(sock->file, fput_needed);
1618 	}
1619 	return err;
1620 }
1621 
1622 /*
1623  *	Send a datagram to a given address. We move the address into kernel
1624  *	space and check the user space data area is readable before invoking
1625  *	the protocol.
1626  */
1627 
SYSCALL_DEFINE6(sendto,int,fd,void __user *,buff,size_t,len,unsigned int,flags,struct sockaddr __user *,addr,int,addr_len)1628 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1629 		unsigned int, flags, struct sockaddr __user *, addr,
1630 		int, addr_len)
1631 {
1632 	struct socket *sock;
1633 	struct sockaddr_storage address;
1634 	int err;
1635 	struct msghdr msg;
1636 	struct iovec iov;
1637 	int fput_needed;
1638 
1639 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1640 	if (unlikely(err))
1641 		return err;
1642 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1643 	if (!sock)
1644 		goto out;
1645 
1646 	msg.msg_name = NULL;
1647 	msg.msg_control = NULL;
1648 	msg.msg_controllen = 0;
1649 	msg.msg_namelen = 0;
1650 	if (addr) {
1651 		err = move_addr_to_kernel(addr, addr_len, &address);
1652 		if (err < 0)
1653 			goto out_put;
1654 		msg.msg_name = (struct sockaddr *)&address;
1655 		msg.msg_namelen = addr_len;
1656 	}
1657 	if (sock->file->f_flags & O_NONBLOCK)
1658 		flags |= MSG_DONTWAIT;
1659 	msg.msg_flags = flags;
1660 	err = sock_sendmsg(sock, &msg);
1661 
1662 out_put:
1663 	fput_light(sock->file, fput_needed);
1664 out:
1665 	return err;
1666 }
1667 
1668 /*
1669  *	Send a datagram down a socket.
1670  */
1671 
SYSCALL_DEFINE4(send,int,fd,void __user *,buff,size_t,len,unsigned int,flags)1672 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1673 		unsigned int, flags)
1674 {
1675 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1676 }
1677 
1678 /*
1679  *	Receive a frame from the socket and optionally record the address of the
1680  *	sender. We verify the buffers are writable and if needed move the
1681  *	sender address from kernel to user space.
1682  */
1683 
SYSCALL_DEFINE6(recvfrom,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags,struct sockaddr __user *,addr,int __user *,addr_len)1684 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1685 		unsigned int, flags, struct sockaddr __user *, addr,
1686 		int __user *, addr_len)
1687 {
1688 	struct socket *sock;
1689 	struct iovec iov;
1690 	struct msghdr msg;
1691 	struct sockaddr_storage address;
1692 	int err, err2;
1693 	int fput_needed;
1694 
1695 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1696 	if (unlikely(err))
1697 		return err;
1698 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1699 	if (!sock)
1700 		goto out;
1701 
1702 	msg.msg_control = NULL;
1703 	msg.msg_controllen = 0;
1704 	/* Save some cycles and don't copy the address if not needed */
1705 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1706 	/* We assume all kernel code knows the size of sockaddr_storage */
1707 	msg.msg_namelen = 0;
1708 	msg.msg_iocb = NULL;
1709 	if (sock->file->f_flags & O_NONBLOCK)
1710 		flags |= MSG_DONTWAIT;
1711 	err = sock_recvmsg(sock, &msg, iov_iter_count(&msg.msg_iter), flags);
1712 
1713 	if (err >= 0 && addr != NULL) {
1714 		err2 = move_addr_to_user(&address,
1715 					 msg.msg_namelen, addr, addr_len);
1716 		if (err2 < 0)
1717 			err = err2;
1718 	}
1719 
1720 	fput_light(sock->file, fput_needed);
1721 out:
1722 	return err;
1723 }
1724 
1725 /*
1726  *	Receive a datagram from a socket.
1727  */
1728 
SYSCALL_DEFINE4(recv,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags)1729 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1730 		unsigned int, flags)
1731 {
1732 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1733 }
1734 
1735 /*
1736  *	Set a socket option. Because we don't know the option lengths we have
1737  *	to pass the user mode parameter for the protocols to sort out.
1738  */
1739 
SYSCALL_DEFINE5(setsockopt,int,fd,int,level,int,optname,char __user *,optval,int,optlen)1740 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1741 		char __user *, optval, int, optlen)
1742 {
1743 	int err, fput_needed;
1744 	struct socket *sock;
1745 
1746 	if (optlen < 0)
1747 		return -EINVAL;
1748 
1749 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1750 	if (sock != NULL) {
1751 		err = security_socket_setsockopt(sock, level, optname);
1752 		if (err)
1753 			goto out_put;
1754 
1755 		if (level == SOL_SOCKET)
1756 			err =
1757 			    sock_setsockopt(sock, level, optname, optval,
1758 					    optlen);
1759 		else
1760 			err =
1761 			    sock->ops->setsockopt(sock, level, optname, optval,
1762 						  optlen);
1763 out_put:
1764 		fput_light(sock->file, fput_needed);
1765 	}
1766 	return err;
1767 }
1768 
1769 /*
1770  *	Get a socket option. Because we don't know the option lengths we have
1771  *	to pass a user mode parameter for the protocols to sort out.
1772  */
1773 
SYSCALL_DEFINE5(getsockopt,int,fd,int,level,int,optname,char __user *,optval,int __user *,optlen)1774 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1775 		char __user *, optval, int __user *, optlen)
1776 {
1777 	int err, fput_needed;
1778 	struct socket *sock;
1779 
1780 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1781 	if (sock != NULL) {
1782 		err = security_socket_getsockopt(sock, level, optname);
1783 		if (err)
1784 			goto out_put;
1785 
1786 		if (level == SOL_SOCKET)
1787 			err =
1788 			    sock_getsockopt(sock, level, optname, optval,
1789 					    optlen);
1790 		else
1791 			err =
1792 			    sock->ops->getsockopt(sock, level, optname, optval,
1793 						  optlen);
1794 out_put:
1795 		fput_light(sock->file, fput_needed);
1796 	}
1797 	return err;
1798 }
1799 
1800 /*
1801  *	Shutdown a socket.
1802  */
1803 
SYSCALL_DEFINE2(shutdown,int,fd,int,how)1804 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1805 {
1806 	int err, fput_needed;
1807 	struct socket *sock;
1808 
1809 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1810 	if (sock != NULL) {
1811 		err = security_socket_shutdown(sock, how);
1812 		if (!err)
1813 			err = sock->ops->shutdown(sock, how);
1814 		fput_light(sock->file, fput_needed);
1815 	}
1816 	return err;
1817 }
1818 
1819 /* A couple of helpful macros for getting the address of the 32/64 bit
1820  * fields which are the same type (int / unsigned) on our platforms.
1821  */
1822 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1823 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1824 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1825 
1826 struct used_address {
1827 	struct sockaddr_storage name;
1828 	unsigned int name_len;
1829 };
1830 
copy_msghdr_from_user(struct msghdr * kmsg,struct user_msghdr __user * umsg,struct sockaddr __user ** save_addr,struct iovec ** iov)1831 static int copy_msghdr_from_user(struct msghdr *kmsg,
1832 				 struct user_msghdr __user *umsg,
1833 				 struct sockaddr __user **save_addr,
1834 				 struct iovec **iov)
1835 {
1836 	struct sockaddr __user *uaddr;
1837 	struct iovec __user *uiov;
1838 	size_t nr_segs;
1839 	ssize_t err;
1840 
1841 	if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1842 	    __get_user(uaddr, &umsg->msg_name) ||
1843 	    __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1844 	    __get_user(uiov, &umsg->msg_iov) ||
1845 	    __get_user(nr_segs, &umsg->msg_iovlen) ||
1846 	    __get_user(kmsg->msg_control, &umsg->msg_control) ||
1847 	    __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1848 	    __get_user(kmsg->msg_flags, &umsg->msg_flags))
1849 		return -EFAULT;
1850 
1851 	if (!uaddr)
1852 		kmsg->msg_namelen = 0;
1853 
1854 	if (kmsg->msg_namelen < 0)
1855 		return -EINVAL;
1856 
1857 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1858 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1859 
1860 	if (save_addr)
1861 		*save_addr = uaddr;
1862 
1863 	if (uaddr && kmsg->msg_namelen) {
1864 		if (!save_addr) {
1865 			err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1866 						  kmsg->msg_name);
1867 			if (err < 0)
1868 				return err;
1869 		}
1870 	} else {
1871 		kmsg->msg_name = NULL;
1872 		kmsg->msg_namelen = 0;
1873 	}
1874 
1875 	if (nr_segs > UIO_MAXIOV)
1876 		return -EMSGSIZE;
1877 
1878 	kmsg->msg_iocb = NULL;
1879 
1880 	return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
1881 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
1882 }
1883 
___sys_sendmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address)1884 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1885 			 struct msghdr *msg_sys, unsigned int flags,
1886 			 struct used_address *used_address)
1887 {
1888 	struct compat_msghdr __user *msg_compat =
1889 	    (struct compat_msghdr __user *)msg;
1890 	struct sockaddr_storage address;
1891 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1892 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1893 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1894 	/* 20 is size of ipv6_pktinfo */
1895 	unsigned char *ctl_buf = ctl;
1896 	int ctl_len;
1897 	ssize_t err;
1898 
1899 	msg_sys->msg_name = &address;
1900 
1901 	if (MSG_CMSG_COMPAT & flags)
1902 		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1903 	else
1904 		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1905 	if (err < 0)
1906 		return err;
1907 
1908 	err = -ENOBUFS;
1909 
1910 	if (msg_sys->msg_controllen > INT_MAX)
1911 		goto out_freeiov;
1912 	ctl_len = msg_sys->msg_controllen;
1913 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1914 		err =
1915 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1916 						     sizeof(ctl));
1917 		if (err)
1918 			goto out_freeiov;
1919 		ctl_buf = msg_sys->msg_control;
1920 		ctl_len = msg_sys->msg_controllen;
1921 	} else if (ctl_len) {
1922 		if (ctl_len > sizeof(ctl)) {
1923 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1924 			if (ctl_buf == NULL)
1925 				goto out_freeiov;
1926 		}
1927 		err = -EFAULT;
1928 		/*
1929 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1930 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1931 		 * checking falls down on this.
1932 		 */
1933 		if (copy_from_user(ctl_buf,
1934 				   (void __user __force *)msg_sys->msg_control,
1935 				   ctl_len))
1936 			goto out_freectl;
1937 		msg_sys->msg_control = ctl_buf;
1938 	}
1939 	msg_sys->msg_flags = flags;
1940 
1941 	if (sock->file->f_flags & O_NONBLOCK)
1942 		msg_sys->msg_flags |= MSG_DONTWAIT;
1943 	/*
1944 	 * If this is sendmmsg() and current destination address is same as
1945 	 * previously succeeded address, omit asking LSM's decision.
1946 	 * used_address->name_len is initialized to UINT_MAX so that the first
1947 	 * destination address never matches.
1948 	 */
1949 	if (used_address && msg_sys->msg_name &&
1950 	    used_address->name_len == msg_sys->msg_namelen &&
1951 	    !memcmp(&used_address->name, msg_sys->msg_name,
1952 		    used_address->name_len)) {
1953 		err = sock_sendmsg_nosec(sock, msg_sys);
1954 		goto out_freectl;
1955 	}
1956 	err = sock_sendmsg(sock, msg_sys);
1957 	/*
1958 	 * If this is sendmmsg() and sending to current destination address was
1959 	 * successful, remember it.
1960 	 */
1961 	if (used_address && err >= 0) {
1962 		used_address->name_len = msg_sys->msg_namelen;
1963 		if (msg_sys->msg_name)
1964 			memcpy(&used_address->name, msg_sys->msg_name,
1965 			       used_address->name_len);
1966 	}
1967 
1968 out_freectl:
1969 	if (ctl_buf != ctl)
1970 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1971 out_freeiov:
1972 	kfree(iov);
1973 	return err;
1974 }
1975 
1976 /*
1977  *	BSD sendmsg interface
1978  */
1979 
__sys_sendmsg(int fd,struct user_msghdr __user * msg,unsigned flags)1980 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
1981 {
1982 	int fput_needed, err;
1983 	struct msghdr msg_sys;
1984 	struct socket *sock;
1985 
1986 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1987 	if (!sock)
1988 		goto out;
1989 
1990 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
1991 
1992 	fput_light(sock->file, fput_needed);
1993 out:
1994 	return err;
1995 }
1996 
SYSCALL_DEFINE3(sendmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)1997 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
1998 {
1999 	if (flags & MSG_CMSG_COMPAT)
2000 		return -EINVAL;
2001 	return __sys_sendmsg(fd, msg, flags);
2002 }
2003 
2004 /*
2005  *	Linux sendmmsg interface
2006  */
2007 
__sys_sendmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags)2008 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2009 		   unsigned int flags)
2010 {
2011 	int fput_needed, err, datagrams;
2012 	struct socket *sock;
2013 	struct mmsghdr __user *entry;
2014 	struct compat_mmsghdr __user *compat_entry;
2015 	struct msghdr msg_sys;
2016 	struct used_address used_address;
2017 
2018 	if (vlen > UIO_MAXIOV)
2019 		vlen = UIO_MAXIOV;
2020 
2021 	datagrams = 0;
2022 
2023 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2024 	if (!sock)
2025 		return err;
2026 
2027 	used_address.name_len = UINT_MAX;
2028 	entry = mmsg;
2029 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2030 	err = 0;
2031 
2032 	while (datagrams < vlen) {
2033 		if (MSG_CMSG_COMPAT & flags) {
2034 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2035 					     &msg_sys, flags, &used_address);
2036 			if (err < 0)
2037 				break;
2038 			err = __put_user(err, &compat_entry->msg_len);
2039 			++compat_entry;
2040 		} else {
2041 			err = ___sys_sendmsg(sock,
2042 					     (struct user_msghdr __user *)entry,
2043 					     &msg_sys, flags, &used_address);
2044 			if (err < 0)
2045 				break;
2046 			err = put_user(err, &entry->msg_len);
2047 			++entry;
2048 		}
2049 
2050 		if (err)
2051 			break;
2052 		++datagrams;
2053 	}
2054 
2055 	fput_light(sock->file, fput_needed);
2056 
2057 	/* We only return an error if no datagrams were able to be sent */
2058 	if (datagrams != 0)
2059 		return datagrams;
2060 
2061 	return err;
2062 }
2063 
SYSCALL_DEFINE4(sendmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags)2064 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2065 		unsigned int, vlen, unsigned int, flags)
2066 {
2067 	if (flags & MSG_CMSG_COMPAT)
2068 		return -EINVAL;
2069 	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2070 }
2071 
___sys_recvmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,int nosec)2072 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2073 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2074 {
2075 	struct compat_msghdr __user *msg_compat =
2076 	    (struct compat_msghdr __user *)msg;
2077 	struct iovec iovstack[UIO_FASTIOV];
2078 	struct iovec *iov = iovstack;
2079 	unsigned long cmsg_ptr;
2080 	int total_len, len;
2081 	ssize_t err;
2082 
2083 	/* kernel mode address */
2084 	struct sockaddr_storage addr;
2085 
2086 	/* user mode address pointers */
2087 	struct sockaddr __user *uaddr;
2088 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2089 
2090 	msg_sys->msg_name = &addr;
2091 
2092 	if (MSG_CMSG_COMPAT & flags)
2093 		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2094 	else
2095 		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2096 	if (err < 0)
2097 		return err;
2098 	total_len = iov_iter_count(&msg_sys->msg_iter);
2099 
2100 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2101 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2102 
2103 	/* We assume all kernel code knows the size of sockaddr_storage */
2104 	msg_sys->msg_namelen = 0;
2105 
2106 	if (sock->file->f_flags & O_NONBLOCK)
2107 		flags |= MSG_DONTWAIT;
2108 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2109 							  total_len, flags);
2110 	if (err < 0)
2111 		goto out_freeiov;
2112 	len = err;
2113 
2114 	if (uaddr != NULL) {
2115 		err = move_addr_to_user(&addr,
2116 					msg_sys->msg_namelen, uaddr,
2117 					uaddr_len);
2118 		if (err < 0)
2119 			goto out_freeiov;
2120 	}
2121 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2122 			 COMPAT_FLAGS(msg));
2123 	if (err)
2124 		goto out_freeiov;
2125 	if (MSG_CMSG_COMPAT & flags)
2126 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2127 				 &msg_compat->msg_controllen);
2128 	else
2129 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2130 				 &msg->msg_controllen);
2131 	if (err)
2132 		goto out_freeiov;
2133 	err = len;
2134 
2135 out_freeiov:
2136 	kfree(iov);
2137 	return err;
2138 }
2139 
2140 /*
2141  *	BSD recvmsg interface
2142  */
2143 
__sys_recvmsg(int fd,struct user_msghdr __user * msg,unsigned flags)2144 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2145 {
2146 	int fput_needed, err;
2147 	struct msghdr msg_sys;
2148 	struct socket *sock;
2149 
2150 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2151 	if (!sock)
2152 		goto out;
2153 
2154 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2155 
2156 	fput_light(sock->file, fput_needed);
2157 out:
2158 	return err;
2159 }
2160 
SYSCALL_DEFINE3(recvmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2161 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2162 		unsigned int, flags)
2163 {
2164 	if (flags & MSG_CMSG_COMPAT)
2165 		return -EINVAL;
2166 	return __sys_recvmsg(fd, msg, flags);
2167 }
2168 
2169 /*
2170  *     Linux recvmmsg interface
2171  */
2172 
__sys_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct timespec * timeout)2173 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2174 		   unsigned int flags, struct timespec *timeout)
2175 {
2176 	int fput_needed, err, datagrams;
2177 	struct socket *sock;
2178 	struct mmsghdr __user *entry;
2179 	struct compat_mmsghdr __user *compat_entry;
2180 	struct msghdr msg_sys;
2181 	struct timespec end_time;
2182 
2183 	if (timeout &&
2184 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2185 				    timeout->tv_nsec))
2186 		return -EINVAL;
2187 
2188 	datagrams = 0;
2189 
2190 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2191 	if (!sock)
2192 		return err;
2193 
2194 	err = sock_error(sock->sk);
2195 	if (err)
2196 		goto out_put;
2197 
2198 	entry = mmsg;
2199 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2200 
2201 	while (datagrams < vlen) {
2202 		/*
2203 		 * No need to ask LSM for more than the first datagram.
2204 		 */
2205 		if (MSG_CMSG_COMPAT & flags) {
2206 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2207 					     &msg_sys, flags & ~MSG_WAITFORONE,
2208 					     datagrams);
2209 			if (err < 0)
2210 				break;
2211 			err = __put_user(err, &compat_entry->msg_len);
2212 			++compat_entry;
2213 		} else {
2214 			err = ___sys_recvmsg(sock,
2215 					     (struct user_msghdr __user *)entry,
2216 					     &msg_sys, flags & ~MSG_WAITFORONE,
2217 					     datagrams);
2218 			if (err < 0)
2219 				break;
2220 			err = put_user(err, &entry->msg_len);
2221 			++entry;
2222 		}
2223 
2224 		if (err)
2225 			break;
2226 		++datagrams;
2227 
2228 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2229 		if (flags & MSG_WAITFORONE)
2230 			flags |= MSG_DONTWAIT;
2231 
2232 		if (timeout) {
2233 			ktime_get_ts(timeout);
2234 			*timeout = timespec_sub(end_time, *timeout);
2235 			if (timeout->tv_sec < 0) {
2236 				timeout->tv_sec = timeout->tv_nsec = 0;
2237 				break;
2238 			}
2239 
2240 			/* Timeout, return less than vlen datagrams */
2241 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2242 				break;
2243 		}
2244 
2245 		/* Out of band data, return right away */
2246 		if (msg_sys.msg_flags & MSG_OOB)
2247 			break;
2248 	}
2249 
2250 out_put:
2251 	fput_light(sock->file, fput_needed);
2252 
2253 	if (err == 0)
2254 		return datagrams;
2255 
2256 	if (datagrams != 0) {
2257 		/*
2258 		 * We may return less entries than requested (vlen) if the
2259 		 * sock is non block and there aren't enough datagrams...
2260 		 */
2261 		if (err != -EAGAIN) {
2262 			/*
2263 			 * ... or  if recvmsg returns an error after we
2264 			 * received some datagrams, where we record the
2265 			 * error to return on the next call or if the
2266 			 * app asks about it using getsockopt(SO_ERROR).
2267 			 */
2268 			sock->sk->sk_err = -err;
2269 		}
2270 
2271 		return datagrams;
2272 	}
2273 
2274 	return err;
2275 }
2276 
SYSCALL_DEFINE5(recvmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct timespec __user *,timeout)2277 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2278 		unsigned int, vlen, unsigned int, flags,
2279 		struct timespec __user *, timeout)
2280 {
2281 	int datagrams;
2282 	struct timespec timeout_sys;
2283 
2284 	if (flags & MSG_CMSG_COMPAT)
2285 		return -EINVAL;
2286 
2287 	if (!timeout)
2288 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2289 
2290 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2291 		return -EFAULT;
2292 
2293 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2294 
2295 	if (datagrams > 0 &&
2296 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2297 		datagrams = -EFAULT;
2298 
2299 	return datagrams;
2300 }
2301 
2302 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2303 /* Argument list sizes for sys_socketcall */
2304 #define AL(x) ((x) * sizeof(unsigned long))
2305 static const unsigned char nargs[21] = {
2306 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2307 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2308 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2309 	AL(4), AL(5), AL(4)
2310 };
2311 
2312 #undef AL
2313 
2314 /*
2315  *	System call vectors.
2316  *
2317  *	Argument checking cleaned up. Saved 20% in size.
2318  *  This function doesn't need to set the kernel lock because
2319  *  it is set by the callees.
2320  */
2321 
SYSCALL_DEFINE2(socketcall,int,call,unsigned long __user *,args)2322 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2323 {
2324 	unsigned long a[AUDITSC_ARGS];
2325 	unsigned long a0, a1;
2326 	int err;
2327 	unsigned int len;
2328 
2329 	if (call < 1 || call > SYS_SENDMMSG)
2330 		return -EINVAL;
2331 
2332 	len = nargs[call];
2333 	if (len > sizeof(a))
2334 		return -EINVAL;
2335 
2336 	/* copy_from_user should be SMP safe. */
2337 	if (copy_from_user(a, args, len))
2338 		return -EFAULT;
2339 
2340 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2341 	if (err)
2342 		return err;
2343 
2344 	a0 = a[0];
2345 	a1 = a[1];
2346 
2347 	switch (call) {
2348 	case SYS_SOCKET:
2349 		err = sys_socket(a0, a1, a[2]);
2350 		break;
2351 	case SYS_BIND:
2352 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2353 		break;
2354 	case SYS_CONNECT:
2355 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2356 		break;
2357 	case SYS_LISTEN:
2358 		err = sys_listen(a0, a1);
2359 		break;
2360 	case SYS_ACCEPT:
2361 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2362 				  (int __user *)a[2], 0);
2363 		break;
2364 	case SYS_GETSOCKNAME:
2365 		err =
2366 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2367 				    (int __user *)a[2]);
2368 		break;
2369 	case SYS_GETPEERNAME:
2370 		err =
2371 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2372 				    (int __user *)a[2]);
2373 		break;
2374 	case SYS_SOCKETPAIR:
2375 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2376 		break;
2377 	case SYS_SEND:
2378 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2379 		break;
2380 	case SYS_SENDTO:
2381 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2382 				 (struct sockaddr __user *)a[4], a[5]);
2383 		break;
2384 	case SYS_RECV:
2385 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2386 		break;
2387 	case SYS_RECVFROM:
2388 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2389 				   (struct sockaddr __user *)a[4],
2390 				   (int __user *)a[5]);
2391 		break;
2392 	case SYS_SHUTDOWN:
2393 		err = sys_shutdown(a0, a1);
2394 		break;
2395 	case SYS_SETSOCKOPT:
2396 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2397 		break;
2398 	case SYS_GETSOCKOPT:
2399 		err =
2400 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2401 				   (int __user *)a[4]);
2402 		break;
2403 	case SYS_SENDMSG:
2404 		err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2405 		break;
2406 	case SYS_SENDMMSG:
2407 		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2408 		break;
2409 	case SYS_RECVMSG:
2410 		err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2411 		break;
2412 	case SYS_RECVMMSG:
2413 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2414 				   (struct timespec __user *)a[4]);
2415 		break;
2416 	case SYS_ACCEPT4:
2417 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2418 				  (int __user *)a[2], a[3]);
2419 		break;
2420 	default:
2421 		err = -EINVAL;
2422 		break;
2423 	}
2424 	return err;
2425 }
2426 
2427 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2428 
2429 /**
2430  *	sock_register - add a socket protocol handler
2431  *	@ops: description of protocol
2432  *
2433  *	This function is called by a protocol handler that wants to
2434  *	advertise its address family, and have it linked into the
2435  *	socket interface. The value ops->family corresponds to the
2436  *	socket system call protocol family.
2437  */
sock_register(const struct net_proto_family * ops)2438 int sock_register(const struct net_proto_family *ops)
2439 {
2440 	int err;
2441 
2442 	if (ops->family >= NPROTO) {
2443 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2444 		return -ENOBUFS;
2445 	}
2446 
2447 	spin_lock(&net_family_lock);
2448 	if (rcu_dereference_protected(net_families[ops->family],
2449 				      lockdep_is_held(&net_family_lock)))
2450 		err = -EEXIST;
2451 	else {
2452 		rcu_assign_pointer(net_families[ops->family], ops);
2453 		err = 0;
2454 	}
2455 	spin_unlock(&net_family_lock);
2456 
2457 	pr_info("NET: Registered protocol family %d\n", ops->family);
2458 	return err;
2459 }
2460 EXPORT_SYMBOL(sock_register);
2461 
2462 /**
2463  *	sock_unregister - remove a protocol handler
2464  *	@family: protocol family to remove
2465  *
2466  *	This function is called by a protocol handler that wants to
2467  *	remove its address family, and have it unlinked from the
2468  *	new socket creation.
2469  *
2470  *	If protocol handler is a module, then it can use module reference
2471  *	counts to protect against new references. If protocol handler is not
2472  *	a module then it needs to provide its own protection in
2473  *	the ops->create routine.
2474  */
sock_unregister(int family)2475 void sock_unregister(int family)
2476 {
2477 	BUG_ON(family < 0 || family >= NPROTO);
2478 
2479 	spin_lock(&net_family_lock);
2480 	RCU_INIT_POINTER(net_families[family], NULL);
2481 	spin_unlock(&net_family_lock);
2482 
2483 	synchronize_rcu();
2484 
2485 	pr_info("NET: Unregistered protocol family %d\n", family);
2486 }
2487 EXPORT_SYMBOL(sock_unregister);
2488 
sock_init(void)2489 static int __init sock_init(void)
2490 {
2491 	int err;
2492 	/*
2493 	 *      Initialize the network sysctl infrastructure.
2494 	 */
2495 	err = net_sysctl_init();
2496 	if (err)
2497 		goto out;
2498 
2499 	/*
2500 	 *      Initialize skbuff SLAB cache
2501 	 */
2502 	skb_init();
2503 
2504 	/*
2505 	 *      Initialize the protocols module.
2506 	 */
2507 
2508 	init_inodecache();
2509 
2510 	err = register_filesystem(&sock_fs_type);
2511 	if (err)
2512 		goto out_fs;
2513 	sock_mnt = kern_mount(&sock_fs_type);
2514 	if (IS_ERR(sock_mnt)) {
2515 		err = PTR_ERR(sock_mnt);
2516 		goto out_mount;
2517 	}
2518 
2519 	/* The real protocol initialization is performed in later initcalls.
2520 	 */
2521 
2522 #ifdef CONFIG_NETFILTER
2523 	err = netfilter_init();
2524 	if (err)
2525 		goto out;
2526 #endif
2527 
2528 	ptp_classifier_init();
2529 
2530 out:
2531 	return err;
2532 
2533 out_mount:
2534 	unregister_filesystem(&sock_fs_type);
2535 out_fs:
2536 	goto out;
2537 }
2538 
2539 core_initcall(sock_init);	/* early initcall */
2540 
2541 #ifdef CONFIG_PROC_FS
socket_seq_show(struct seq_file * seq)2542 void socket_seq_show(struct seq_file *seq)
2543 {
2544 	int cpu;
2545 	int counter = 0;
2546 
2547 	for_each_possible_cpu(cpu)
2548 	    counter += per_cpu(sockets_in_use, cpu);
2549 
2550 	/* It can be negative, by the way. 8) */
2551 	if (counter < 0)
2552 		counter = 0;
2553 
2554 	seq_printf(seq, "sockets: used %d\n", counter);
2555 }
2556 #endif				/* CONFIG_PROC_FS */
2557 
2558 #ifdef CONFIG_COMPAT
do_siocgstamp(struct net * net,struct socket * sock,unsigned int cmd,void __user * up)2559 static int do_siocgstamp(struct net *net, struct socket *sock,
2560 			 unsigned int cmd, void __user *up)
2561 {
2562 	mm_segment_t old_fs = get_fs();
2563 	struct timeval ktv;
2564 	int err;
2565 
2566 	set_fs(KERNEL_DS);
2567 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2568 	set_fs(old_fs);
2569 	if (!err)
2570 		err = compat_put_timeval(&ktv, up);
2571 
2572 	return err;
2573 }
2574 
do_siocgstampns(struct net * net,struct socket * sock,unsigned int cmd,void __user * up)2575 static int do_siocgstampns(struct net *net, struct socket *sock,
2576 			   unsigned int cmd, void __user *up)
2577 {
2578 	mm_segment_t old_fs = get_fs();
2579 	struct timespec kts;
2580 	int err;
2581 
2582 	set_fs(KERNEL_DS);
2583 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2584 	set_fs(old_fs);
2585 	if (!err)
2586 		err = compat_put_timespec(&kts, up);
2587 
2588 	return err;
2589 }
2590 
dev_ifname32(struct net * net,struct compat_ifreq __user * uifr32)2591 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2592 {
2593 	struct ifreq __user *uifr;
2594 	int err;
2595 
2596 	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2597 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2598 		return -EFAULT;
2599 
2600 	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2601 	if (err)
2602 		return err;
2603 
2604 	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2605 		return -EFAULT;
2606 
2607 	return 0;
2608 }
2609 
dev_ifconf(struct net * net,struct compat_ifconf __user * uifc32)2610 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2611 {
2612 	struct compat_ifconf ifc32;
2613 	struct ifconf ifc;
2614 	struct ifconf __user *uifc;
2615 	struct compat_ifreq __user *ifr32;
2616 	struct ifreq __user *ifr;
2617 	unsigned int i, j;
2618 	int err;
2619 
2620 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2621 		return -EFAULT;
2622 
2623 	memset(&ifc, 0, sizeof(ifc));
2624 	if (ifc32.ifcbuf == 0) {
2625 		ifc32.ifc_len = 0;
2626 		ifc.ifc_len = 0;
2627 		ifc.ifc_req = NULL;
2628 		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2629 	} else {
2630 		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2631 			sizeof(struct ifreq);
2632 		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2633 		ifc.ifc_len = len;
2634 		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2635 		ifr32 = compat_ptr(ifc32.ifcbuf);
2636 		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2637 			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2638 				return -EFAULT;
2639 			ifr++;
2640 			ifr32++;
2641 		}
2642 	}
2643 	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2644 		return -EFAULT;
2645 
2646 	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2647 	if (err)
2648 		return err;
2649 
2650 	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2651 		return -EFAULT;
2652 
2653 	ifr = ifc.ifc_req;
2654 	ifr32 = compat_ptr(ifc32.ifcbuf);
2655 	for (i = 0, j = 0;
2656 	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2657 	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2658 		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2659 			return -EFAULT;
2660 		ifr32++;
2661 		ifr++;
2662 	}
2663 
2664 	if (ifc32.ifcbuf == 0) {
2665 		/* Translate from 64-bit structure multiple to
2666 		 * a 32-bit one.
2667 		 */
2668 		i = ifc.ifc_len;
2669 		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2670 		ifc32.ifc_len = i;
2671 	} else {
2672 		ifc32.ifc_len = i;
2673 	}
2674 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2675 		return -EFAULT;
2676 
2677 	return 0;
2678 }
2679 
ethtool_ioctl(struct net * net,struct compat_ifreq __user * ifr32)2680 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2681 {
2682 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2683 	bool convert_in = false, convert_out = false;
2684 	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2685 	struct ethtool_rxnfc __user *rxnfc;
2686 	struct ifreq __user *ifr;
2687 	u32 rule_cnt = 0, actual_rule_cnt;
2688 	u32 ethcmd;
2689 	u32 data;
2690 	int ret;
2691 
2692 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2693 		return -EFAULT;
2694 
2695 	compat_rxnfc = compat_ptr(data);
2696 
2697 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2698 		return -EFAULT;
2699 
2700 	/* Most ethtool structures are defined without padding.
2701 	 * Unfortunately struct ethtool_rxnfc is an exception.
2702 	 */
2703 	switch (ethcmd) {
2704 	default:
2705 		break;
2706 	case ETHTOOL_GRXCLSRLALL:
2707 		/* Buffer size is variable */
2708 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2709 			return -EFAULT;
2710 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2711 			return -ENOMEM;
2712 		buf_size += rule_cnt * sizeof(u32);
2713 		/* fall through */
2714 	case ETHTOOL_GRXRINGS:
2715 	case ETHTOOL_GRXCLSRLCNT:
2716 	case ETHTOOL_GRXCLSRULE:
2717 	case ETHTOOL_SRXCLSRLINS:
2718 		convert_out = true;
2719 		/* fall through */
2720 	case ETHTOOL_SRXCLSRLDEL:
2721 		buf_size += sizeof(struct ethtool_rxnfc);
2722 		convert_in = true;
2723 		break;
2724 	}
2725 
2726 	ifr = compat_alloc_user_space(buf_size);
2727 	rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2728 
2729 	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2730 		return -EFAULT;
2731 
2732 	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2733 		     &ifr->ifr_ifru.ifru_data))
2734 		return -EFAULT;
2735 
2736 	if (convert_in) {
2737 		/* We expect there to be holes between fs.m_ext and
2738 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2739 		 */
2740 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2741 			     sizeof(compat_rxnfc->fs.m_ext) !=
2742 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2743 			     sizeof(rxnfc->fs.m_ext));
2744 		BUILD_BUG_ON(
2745 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2746 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2747 			offsetof(struct ethtool_rxnfc, fs.location) -
2748 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2749 
2750 		if (copy_in_user(rxnfc, compat_rxnfc,
2751 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2752 				 (void __user *)rxnfc) ||
2753 		    copy_in_user(&rxnfc->fs.ring_cookie,
2754 				 &compat_rxnfc->fs.ring_cookie,
2755 				 (void __user *)(&rxnfc->fs.location + 1) -
2756 				 (void __user *)&rxnfc->fs.ring_cookie) ||
2757 		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2758 				 sizeof(rxnfc->rule_cnt)))
2759 			return -EFAULT;
2760 	}
2761 
2762 	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2763 	if (ret)
2764 		return ret;
2765 
2766 	if (convert_out) {
2767 		if (copy_in_user(compat_rxnfc, rxnfc,
2768 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2769 				 (const void __user *)rxnfc) ||
2770 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2771 				 &rxnfc->fs.ring_cookie,
2772 				 (const void __user *)(&rxnfc->fs.location + 1) -
2773 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2774 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2775 				 sizeof(rxnfc->rule_cnt)))
2776 			return -EFAULT;
2777 
2778 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2779 			/* As an optimisation, we only copy the actual
2780 			 * number of rules that the underlying
2781 			 * function returned.  Since Mallory might
2782 			 * change the rule count in user memory, we
2783 			 * check that it is less than the rule count
2784 			 * originally given (as the user buffer size),
2785 			 * which has been range-checked.
2786 			 */
2787 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2788 				return -EFAULT;
2789 			if (actual_rule_cnt < rule_cnt)
2790 				rule_cnt = actual_rule_cnt;
2791 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2792 					 &rxnfc->rule_locs[0],
2793 					 rule_cnt * sizeof(u32)))
2794 				return -EFAULT;
2795 		}
2796 	}
2797 
2798 	return 0;
2799 }
2800 
compat_siocwandev(struct net * net,struct compat_ifreq __user * uifr32)2801 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2802 {
2803 	void __user *uptr;
2804 	compat_uptr_t uptr32;
2805 	struct ifreq __user *uifr;
2806 
2807 	uifr = compat_alloc_user_space(sizeof(*uifr));
2808 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2809 		return -EFAULT;
2810 
2811 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2812 		return -EFAULT;
2813 
2814 	uptr = compat_ptr(uptr32);
2815 
2816 	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2817 		return -EFAULT;
2818 
2819 	return dev_ioctl(net, SIOCWANDEV, uifr);
2820 }
2821 
bond_ioctl(struct net * net,unsigned int cmd,struct compat_ifreq __user * ifr32)2822 static int bond_ioctl(struct net *net, unsigned int cmd,
2823 			 struct compat_ifreq __user *ifr32)
2824 {
2825 	struct ifreq kifr;
2826 	mm_segment_t old_fs;
2827 	int err;
2828 
2829 	switch (cmd) {
2830 	case SIOCBONDENSLAVE:
2831 	case SIOCBONDRELEASE:
2832 	case SIOCBONDSETHWADDR:
2833 	case SIOCBONDCHANGEACTIVE:
2834 		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2835 			return -EFAULT;
2836 
2837 		old_fs = get_fs();
2838 		set_fs(KERNEL_DS);
2839 		err = dev_ioctl(net, cmd,
2840 				(struct ifreq __user __force *) &kifr);
2841 		set_fs(old_fs);
2842 
2843 		return err;
2844 	default:
2845 		return -ENOIOCTLCMD;
2846 	}
2847 }
2848 
2849 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
compat_ifr_data_ioctl(struct net * net,unsigned int cmd,struct compat_ifreq __user * u_ifreq32)2850 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2851 				 struct compat_ifreq __user *u_ifreq32)
2852 {
2853 	struct ifreq __user *u_ifreq64;
2854 	char tmp_buf[IFNAMSIZ];
2855 	void __user *data64;
2856 	u32 data32;
2857 
2858 	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2859 			   IFNAMSIZ))
2860 		return -EFAULT;
2861 	if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2862 		return -EFAULT;
2863 	data64 = compat_ptr(data32);
2864 
2865 	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2866 
2867 	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2868 			 IFNAMSIZ))
2869 		return -EFAULT;
2870 	if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2871 		return -EFAULT;
2872 
2873 	return dev_ioctl(net, cmd, u_ifreq64);
2874 }
2875 
dev_ifsioc(struct net * net,struct socket * sock,unsigned int cmd,struct compat_ifreq __user * uifr32)2876 static int dev_ifsioc(struct net *net, struct socket *sock,
2877 			 unsigned int cmd, struct compat_ifreq __user *uifr32)
2878 {
2879 	struct ifreq __user *uifr;
2880 	int err;
2881 
2882 	uifr = compat_alloc_user_space(sizeof(*uifr));
2883 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2884 		return -EFAULT;
2885 
2886 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2887 
2888 	if (!err) {
2889 		switch (cmd) {
2890 		case SIOCGIFFLAGS:
2891 		case SIOCGIFMETRIC:
2892 		case SIOCGIFMTU:
2893 		case SIOCGIFMEM:
2894 		case SIOCGIFHWADDR:
2895 		case SIOCGIFINDEX:
2896 		case SIOCGIFADDR:
2897 		case SIOCGIFBRDADDR:
2898 		case SIOCGIFDSTADDR:
2899 		case SIOCGIFNETMASK:
2900 		case SIOCGIFPFLAGS:
2901 		case SIOCGIFTXQLEN:
2902 		case SIOCGMIIPHY:
2903 		case SIOCGMIIREG:
2904 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2905 				err = -EFAULT;
2906 			break;
2907 		}
2908 	}
2909 	return err;
2910 }
2911 
compat_sioc_ifmap(struct net * net,unsigned int cmd,struct compat_ifreq __user * uifr32)2912 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2913 			struct compat_ifreq __user *uifr32)
2914 {
2915 	struct ifreq ifr;
2916 	struct compat_ifmap __user *uifmap32;
2917 	mm_segment_t old_fs;
2918 	int err;
2919 
2920 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
2921 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2922 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2923 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2924 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2925 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2926 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2927 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2928 	if (err)
2929 		return -EFAULT;
2930 
2931 	old_fs = get_fs();
2932 	set_fs(KERNEL_DS);
2933 	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
2934 	set_fs(old_fs);
2935 
2936 	if (cmd == SIOCGIFMAP && !err) {
2937 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2938 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2939 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2940 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2941 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2942 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2943 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2944 		if (err)
2945 			err = -EFAULT;
2946 	}
2947 	return err;
2948 }
2949 
2950 struct rtentry32 {
2951 	u32		rt_pad1;
2952 	struct sockaddr rt_dst;         /* target address               */
2953 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
2954 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
2955 	unsigned short	rt_flags;
2956 	short		rt_pad2;
2957 	u32		rt_pad3;
2958 	unsigned char	rt_tos;
2959 	unsigned char	rt_class;
2960 	short		rt_pad4;
2961 	short		rt_metric;      /* +1 for binary compatibility! */
2962 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
2963 	u32		rt_mtu;         /* per route MTU/Window         */
2964 	u32		rt_window;      /* Window clamping              */
2965 	unsigned short  rt_irtt;        /* Initial RTT                  */
2966 };
2967 
2968 struct in6_rtmsg32 {
2969 	struct in6_addr		rtmsg_dst;
2970 	struct in6_addr		rtmsg_src;
2971 	struct in6_addr		rtmsg_gateway;
2972 	u32			rtmsg_type;
2973 	u16			rtmsg_dst_len;
2974 	u16			rtmsg_src_len;
2975 	u32			rtmsg_metric;
2976 	u32			rtmsg_info;
2977 	u32			rtmsg_flags;
2978 	s32			rtmsg_ifindex;
2979 };
2980 
routing_ioctl(struct net * net,struct socket * sock,unsigned int cmd,void __user * argp)2981 static int routing_ioctl(struct net *net, struct socket *sock,
2982 			 unsigned int cmd, void __user *argp)
2983 {
2984 	int ret;
2985 	void *r = NULL;
2986 	struct in6_rtmsg r6;
2987 	struct rtentry r4;
2988 	char devname[16];
2989 	u32 rtdev;
2990 	mm_segment_t old_fs = get_fs();
2991 
2992 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2993 		struct in6_rtmsg32 __user *ur6 = argp;
2994 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2995 			3 * sizeof(struct in6_addr));
2996 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
2997 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2998 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2999 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3000 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3001 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3002 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3003 
3004 		r = (void *) &r6;
3005 	} else { /* ipv4 */
3006 		struct rtentry32 __user *ur4 = argp;
3007 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3008 					3 * sizeof(struct sockaddr));
3009 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3010 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3011 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3012 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3013 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3014 		ret |= get_user(rtdev, &(ur4->rt_dev));
3015 		if (rtdev) {
3016 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3017 			r4.rt_dev = (char __user __force *)devname;
3018 			devname[15] = 0;
3019 		} else
3020 			r4.rt_dev = NULL;
3021 
3022 		r = (void *) &r4;
3023 	}
3024 
3025 	if (ret) {
3026 		ret = -EFAULT;
3027 		goto out;
3028 	}
3029 
3030 	set_fs(KERNEL_DS);
3031 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3032 	set_fs(old_fs);
3033 
3034 out:
3035 	return ret;
3036 }
3037 
3038 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3039  * for some operations; this forces use of the newer bridge-utils that
3040  * use compatible ioctls
3041  */
old_bridge_ioctl(compat_ulong_t __user * argp)3042 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3043 {
3044 	compat_ulong_t tmp;
3045 
3046 	if (get_user(tmp, argp))
3047 		return -EFAULT;
3048 	if (tmp == BRCTL_GET_VERSION)
3049 		return BRCTL_VERSION + 1;
3050 	return -EINVAL;
3051 }
3052 
compat_sock_ioctl_trans(struct file * file,struct socket * sock,unsigned int cmd,unsigned long arg)3053 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3054 			 unsigned int cmd, unsigned long arg)
3055 {
3056 	void __user *argp = compat_ptr(arg);
3057 	struct sock *sk = sock->sk;
3058 	struct net *net = sock_net(sk);
3059 
3060 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3061 		return compat_ifr_data_ioctl(net, cmd, argp);
3062 
3063 	switch (cmd) {
3064 	case SIOCSIFBR:
3065 	case SIOCGIFBR:
3066 		return old_bridge_ioctl(argp);
3067 	case SIOCGIFNAME:
3068 		return dev_ifname32(net, argp);
3069 	case SIOCGIFCONF:
3070 		return dev_ifconf(net, argp);
3071 	case SIOCETHTOOL:
3072 		return ethtool_ioctl(net, argp);
3073 	case SIOCWANDEV:
3074 		return compat_siocwandev(net, argp);
3075 	case SIOCGIFMAP:
3076 	case SIOCSIFMAP:
3077 		return compat_sioc_ifmap(net, cmd, argp);
3078 	case SIOCBONDENSLAVE:
3079 	case SIOCBONDRELEASE:
3080 	case SIOCBONDSETHWADDR:
3081 	case SIOCBONDCHANGEACTIVE:
3082 		return bond_ioctl(net, cmd, argp);
3083 	case SIOCADDRT:
3084 	case SIOCDELRT:
3085 		return routing_ioctl(net, sock, cmd, argp);
3086 	case SIOCGSTAMP:
3087 		return do_siocgstamp(net, sock, cmd, argp);
3088 	case SIOCGSTAMPNS:
3089 		return do_siocgstampns(net, sock, cmd, argp);
3090 	case SIOCBONDSLAVEINFOQUERY:
3091 	case SIOCBONDINFOQUERY:
3092 	case SIOCSHWTSTAMP:
3093 	case SIOCGHWTSTAMP:
3094 		return compat_ifr_data_ioctl(net, cmd, argp);
3095 
3096 	case FIOSETOWN:
3097 	case SIOCSPGRP:
3098 	case FIOGETOWN:
3099 	case SIOCGPGRP:
3100 	case SIOCBRADDBR:
3101 	case SIOCBRDELBR:
3102 	case SIOCGIFVLAN:
3103 	case SIOCSIFVLAN:
3104 	case SIOCADDDLCI:
3105 	case SIOCDELDLCI:
3106 		return sock_ioctl(file, cmd, arg);
3107 
3108 	case SIOCGIFFLAGS:
3109 	case SIOCSIFFLAGS:
3110 	case SIOCGIFMETRIC:
3111 	case SIOCSIFMETRIC:
3112 	case SIOCGIFMTU:
3113 	case SIOCSIFMTU:
3114 	case SIOCGIFMEM:
3115 	case SIOCSIFMEM:
3116 	case SIOCGIFHWADDR:
3117 	case SIOCSIFHWADDR:
3118 	case SIOCADDMULTI:
3119 	case SIOCDELMULTI:
3120 	case SIOCGIFINDEX:
3121 	case SIOCGIFADDR:
3122 	case SIOCSIFADDR:
3123 	case SIOCSIFHWBROADCAST:
3124 	case SIOCDIFADDR:
3125 	case SIOCGIFBRDADDR:
3126 	case SIOCSIFBRDADDR:
3127 	case SIOCGIFDSTADDR:
3128 	case SIOCSIFDSTADDR:
3129 	case SIOCGIFNETMASK:
3130 	case SIOCSIFNETMASK:
3131 	case SIOCSIFPFLAGS:
3132 	case SIOCGIFPFLAGS:
3133 	case SIOCGIFTXQLEN:
3134 	case SIOCSIFTXQLEN:
3135 	case SIOCBRADDIF:
3136 	case SIOCBRDELIF:
3137 	case SIOCSIFNAME:
3138 	case SIOCGMIIPHY:
3139 	case SIOCGMIIREG:
3140 	case SIOCSMIIREG:
3141 		return dev_ifsioc(net, sock, cmd, argp);
3142 
3143 	case SIOCSARP:
3144 	case SIOCGARP:
3145 	case SIOCDARP:
3146 	case SIOCATMARK:
3147 		return sock_do_ioctl(net, sock, cmd, arg);
3148 	}
3149 
3150 	return -ENOIOCTLCMD;
3151 }
3152 
compat_sock_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3153 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3154 			      unsigned long arg)
3155 {
3156 	struct socket *sock = file->private_data;
3157 	int ret = -ENOIOCTLCMD;
3158 	struct sock *sk;
3159 	struct net *net;
3160 
3161 	sk = sock->sk;
3162 	net = sock_net(sk);
3163 
3164 	if (sock->ops->compat_ioctl)
3165 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3166 
3167 	if (ret == -ENOIOCTLCMD &&
3168 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3169 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3170 
3171 	if (ret == -ENOIOCTLCMD)
3172 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3173 
3174 	return ret;
3175 }
3176 #endif
3177 
kernel_bind(struct socket * sock,struct sockaddr * addr,int addrlen)3178 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3179 {
3180 	return sock->ops->bind(sock, addr, addrlen);
3181 }
3182 EXPORT_SYMBOL(kernel_bind);
3183 
kernel_listen(struct socket * sock,int backlog)3184 int kernel_listen(struct socket *sock, int backlog)
3185 {
3186 	return sock->ops->listen(sock, backlog);
3187 }
3188 EXPORT_SYMBOL(kernel_listen);
3189 
kernel_accept(struct socket * sock,struct socket ** newsock,int flags)3190 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3191 {
3192 	struct sock *sk = sock->sk;
3193 	int err;
3194 
3195 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3196 			       newsock);
3197 	if (err < 0)
3198 		goto done;
3199 
3200 	err = sock->ops->accept(sock, *newsock, flags);
3201 	if (err < 0) {
3202 		sock_release(*newsock);
3203 		*newsock = NULL;
3204 		goto done;
3205 	}
3206 
3207 	(*newsock)->ops = sock->ops;
3208 	__module_get((*newsock)->ops->owner);
3209 
3210 done:
3211 	return err;
3212 }
3213 EXPORT_SYMBOL(kernel_accept);
3214 
kernel_connect(struct socket * sock,struct sockaddr * addr,int addrlen,int flags)3215 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3216 		   int flags)
3217 {
3218 	return sock->ops->connect(sock, addr, addrlen, flags);
3219 }
3220 EXPORT_SYMBOL(kernel_connect);
3221 
kernel_getsockname(struct socket * sock,struct sockaddr * addr,int * addrlen)3222 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3223 			 int *addrlen)
3224 {
3225 	return sock->ops->getname(sock, addr, addrlen, 0);
3226 }
3227 EXPORT_SYMBOL(kernel_getsockname);
3228 
kernel_getpeername(struct socket * sock,struct sockaddr * addr,int * addrlen)3229 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3230 			 int *addrlen)
3231 {
3232 	return sock->ops->getname(sock, addr, addrlen, 1);
3233 }
3234 EXPORT_SYMBOL(kernel_getpeername);
3235 
kernel_getsockopt(struct socket * sock,int level,int optname,char * optval,int * optlen)3236 int kernel_getsockopt(struct socket *sock, int level, int optname,
3237 			char *optval, int *optlen)
3238 {
3239 	mm_segment_t oldfs = get_fs();
3240 	char __user *uoptval;
3241 	int __user *uoptlen;
3242 	int err;
3243 
3244 	uoptval = (char __user __force *) optval;
3245 	uoptlen = (int __user __force *) optlen;
3246 
3247 	set_fs(KERNEL_DS);
3248 	if (level == SOL_SOCKET)
3249 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3250 	else
3251 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3252 					    uoptlen);
3253 	set_fs(oldfs);
3254 	return err;
3255 }
3256 EXPORT_SYMBOL(kernel_getsockopt);
3257 
kernel_setsockopt(struct socket * sock,int level,int optname,char * optval,unsigned int optlen)3258 int kernel_setsockopt(struct socket *sock, int level, int optname,
3259 			char *optval, unsigned int optlen)
3260 {
3261 	mm_segment_t oldfs = get_fs();
3262 	char __user *uoptval;
3263 	int err;
3264 
3265 	uoptval = (char __user __force *) optval;
3266 
3267 	set_fs(KERNEL_DS);
3268 	if (level == SOL_SOCKET)
3269 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3270 	else
3271 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3272 					    optlen);
3273 	set_fs(oldfs);
3274 	return err;
3275 }
3276 EXPORT_SYMBOL(kernel_setsockopt);
3277 
kernel_sendpage(struct socket * sock,struct page * page,int offset,size_t size,int flags)3278 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3279 		    size_t size, int flags)
3280 {
3281 	if (sock->ops->sendpage)
3282 		return sock->ops->sendpage(sock, page, offset, size, flags);
3283 
3284 	return sock_no_sendpage(sock, page, offset, size, flags);
3285 }
3286 EXPORT_SYMBOL(kernel_sendpage);
3287 
kernel_sock_ioctl(struct socket * sock,int cmd,unsigned long arg)3288 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3289 {
3290 	mm_segment_t oldfs = get_fs();
3291 	int err;
3292 
3293 	set_fs(KERNEL_DS);
3294 	err = sock->ops->ioctl(sock, cmd, arg);
3295 	set_fs(oldfs);
3296 
3297 	return err;
3298 }
3299 EXPORT_SYMBOL(kernel_sock_ioctl);
3300 
kernel_sock_shutdown(struct socket * sock,enum sock_shutdown_cmd how)3301 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3302 {
3303 	return sock->ops->shutdown(sock, how);
3304 }
3305 EXPORT_SYMBOL(kernel_sock_shutdown);
3306