1 #include <linux/skbuff.h>
2 #include <linux/export.h>
3 #include <linux/ip.h>
4 #include <linux/ipv6.h>
5 #include <linux/if_vlan.h>
6 #include <net/ip.h>
7 #include <net/ipv6.h>
8 #include <linux/igmp.h>
9 #include <linux/icmp.h>
10 #include <linux/sctp.h>
11 #include <linux/dccp.h>
12 #include <linux/if_tunnel.h>
13 #include <linux/if_pppox.h>
14 #include <linux/ppp_defs.h>
15 #include <net/flow_keys.h>
16 #include <scsi/fc/fc_fcoe.h>
17
18 /* copy saddr & daddr, possibly using 64bit load/store
19 * Equivalent to : flow->src = iph->saddr;
20 * flow->dst = iph->daddr;
21 */
iph_to_flow_copy_addrs(struct flow_keys * flow,const struct iphdr * iph)22 static void iph_to_flow_copy_addrs(struct flow_keys *flow, const struct iphdr *iph)
23 {
24 BUILD_BUG_ON(offsetof(typeof(*flow), dst) !=
25 offsetof(typeof(*flow), src) + sizeof(flow->src));
26 memcpy(&flow->src, &iph->saddr, sizeof(flow->src) + sizeof(flow->dst));
27 }
28
29 /**
30 * __skb_flow_get_ports - extract the upper layer ports and return them
31 * @skb: sk_buff to extract the ports from
32 * @thoff: transport header offset
33 * @ip_proto: protocol for which to get port offset
34 * @data: raw buffer pointer to the packet, if NULL use skb->data
35 * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
36 *
37 * The function will try to retrieve the ports at offset thoff + poff where poff
38 * is the protocol port offset returned from proto_ports_offset
39 */
__skb_flow_get_ports(const struct sk_buff * skb,int thoff,u8 ip_proto,void * data,int hlen)40 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
41 void *data, int hlen)
42 {
43 int poff = proto_ports_offset(ip_proto);
44
45 if (!data) {
46 data = skb->data;
47 hlen = skb_headlen(skb);
48 }
49
50 if (poff >= 0) {
51 __be32 *ports, _ports;
52
53 ports = __skb_header_pointer(skb, thoff + poff,
54 sizeof(_ports), data, hlen, &_ports);
55 if (ports)
56 return *ports;
57 }
58
59 return 0;
60 }
61 EXPORT_SYMBOL(__skb_flow_get_ports);
62
63 /**
64 * __skb_flow_dissect - extract the flow_keys struct and return it
65 * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
66 * @data: raw buffer pointer to the packet, if NULL use skb->data
67 * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
68 * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
69 * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
70 *
71 * The function will try to retrieve the struct flow_keys from either the skbuff
72 * or a raw buffer specified by the rest parameters
73 */
__skb_flow_dissect(const struct sk_buff * skb,struct flow_keys * flow,void * data,__be16 proto,int nhoff,int hlen)74 bool __skb_flow_dissect(const struct sk_buff *skb, struct flow_keys *flow,
75 void *data, __be16 proto, int nhoff, int hlen)
76 {
77 u8 ip_proto;
78
79 if (!data) {
80 data = skb->data;
81 proto = skb->protocol;
82 nhoff = skb_network_offset(skb);
83 hlen = skb_headlen(skb);
84 }
85
86 memset(flow, 0, sizeof(*flow));
87
88 again:
89 switch (proto) {
90 case htons(ETH_P_IP): {
91 const struct iphdr *iph;
92 struct iphdr _iph;
93 ip:
94 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
95 if (!iph || iph->ihl < 5)
96 return false;
97 nhoff += iph->ihl * 4;
98
99 ip_proto = iph->protocol;
100 if (ip_is_fragment(iph))
101 ip_proto = 0;
102
103 /* skip the address processing if skb is NULL. The assumption
104 * here is that if there is no skb we are not looking for flow
105 * info but lengths and protocols.
106 */
107 if (!skb)
108 break;
109
110 iph_to_flow_copy_addrs(flow, iph);
111 break;
112 }
113 case htons(ETH_P_IPV6): {
114 const struct ipv6hdr *iph;
115 struct ipv6hdr _iph;
116
117 ipv6:
118 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
119 if (!iph)
120 return false;
121
122 ip_proto = iph->nexthdr;
123 nhoff += sizeof(struct ipv6hdr);
124
125 /* see comment above in IPv4 section */
126 if (!skb)
127 break;
128
129 flow->src = (__force __be32)ipv6_addr_hash(&iph->saddr);
130 flow->dst = (__force __be32)ipv6_addr_hash(&iph->daddr);
131
132 if (skb && ip6_flowlabel(iph)) {
133 __be32 flow_label = ip6_flowlabel(iph);
134
135 /* Awesome, IPv6 packet has a flow label so we can
136 * use that to represent the ports without any
137 * further dissection.
138 */
139 flow->n_proto = proto;
140 flow->ip_proto = ip_proto;
141 flow->ports = flow_label;
142 flow->thoff = (u16)nhoff;
143
144 return true;
145 }
146
147 break;
148 }
149 case htons(ETH_P_8021AD):
150 case htons(ETH_P_8021Q): {
151 const struct vlan_hdr *vlan;
152 struct vlan_hdr _vlan;
153
154 vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan), data, hlen, &_vlan);
155 if (!vlan)
156 return false;
157
158 proto = vlan->h_vlan_encapsulated_proto;
159 nhoff += sizeof(*vlan);
160 goto again;
161 }
162 case htons(ETH_P_PPP_SES): {
163 struct {
164 struct pppoe_hdr hdr;
165 __be16 proto;
166 } *hdr, _hdr;
167 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
168 if (!hdr)
169 return false;
170 proto = hdr->proto;
171 nhoff += PPPOE_SES_HLEN;
172 switch (proto) {
173 case htons(PPP_IP):
174 goto ip;
175 case htons(PPP_IPV6):
176 goto ipv6;
177 default:
178 return false;
179 }
180 }
181 case htons(ETH_P_TIPC): {
182 struct {
183 __be32 pre[3];
184 __be32 srcnode;
185 } *hdr, _hdr;
186 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
187 if (!hdr)
188 return false;
189 flow->src = hdr->srcnode;
190 flow->dst = 0;
191 flow->n_proto = proto;
192 flow->thoff = (u16)nhoff;
193 return true;
194 }
195 case htons(ETH_P_FCOE):
196 flow->thoff = (u16)(nhoff + FCOE_HEADER_LEN);
197 /* fall through */
198 default:
199 return false;
200 }
201
202 switch (ip_proto) {
203 case IPPROTO_GRE: {
204 struct gre_hdr {
205 __be16 flags;
206 __be16 proto;
207 } *hdr, _hdr;
208
209 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
210 if (!hdr)
211 return false;
212 /*
213 * Only look inside GRE if version zero and no
214 * routing
215 */
216 if (!(hdr->flags & (GRE_VERSION|GRE_ROUTING))) {
217 proto = hdr->proto;
218 nhoff += 4;
219 if (hdr->flags & GRE_CSUM)
220 nhoff += 4;
221 if (hdr->flags & GRE_KEY)
222 nhoff += 4;
223 if (hdr->flags & GRE_SEQ)
224 nhoff += 4;
225 if (proto == htons(ETH_P_TEB)) {
226 const struct ethhdr *eth;
227 struct ethhdr _eth;
228
229 eth = __skb_header_pointer(skb, nhoff,
230 sizeof(_eth),
231 data, hlen, &_eth);
232 if (!eth)
233 return false;
234 proto = eth->h_proto;
235 nhoff += sizeof(*eth);
236
237 /* Cap headers that we access via pointers at the
238 * end of the Ethernet header as our maximum alignment
239 * at that point is only 2 bytes.
240 */
241 if (NET_IP_ALIGN)
242 hlen = nhoff;
243 }
244 goto again;
245 }
246 break;
247 }
248 case IPPROTO_IPIP:
249 proto = htons(ETH_P_IP);
250 goto ip;
251 case IPPROTO_IPV6:
252 proto = htons(ETH_P_IPV6);
253 goto ipv6;
254 default:
255 break;
256 }
257
258 flow->n_proto = proto;
259 flow->ip_proto = ip_proto;
260 flow->thoff = (u16) nhoff;
261
262 /* unless skb is set we don't need to record port info */
263 if (skb)
264 flow->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
265 data, hlen);
266
267 return true;
268 }
269 EXPORT_SYMBOL(__skb_flow_dissect);
270
271 static u32 hashrnd __read_mostly;
__flow_hash_secret_init(void)272 static __always_inline void __flow_hash_secret_init(void)
273 {
274 net_get_random_once(&hashrnd, sizeof(hashrnd));
275 }
276
__flow_hash_3words(u32 a,u32 b,u32 c)277 static __always_inline u32 __flow_hash_3words(u32 a, u32 b, u32 c)
278 {
279 __flow_hash_secret_init();
280 return jhash_3words(a, b, c, hashrnd);
281 }
282
__flow_hash_from_keys(struct flow_keys * keys)283 static inline u32 __flow_hash_from_keys(struct flow_keys *keys)
284 {
285 u32 hash;
286
287 /* get a consistent hash (same value on both flow directions) */
288 if (((__force u32)keys->dst < (__force u32)keys->src) ||
289 (((__force u32)keys->dst == (__force u32)keys->src) &&
290 ((__force u16)keys->port16[1] < (__force u16)keys->port16[0]))) {
291 swap(keys->dst, keys->src);
292 swap(keys->port16[0], keys->port16[1]);
293 }
294
295 hash = __flow_hash_3words((__force u32)keys->dst,
296 (__force u32)keys->src,
297 (__force u32)keys->ports);
298 if (!hash)
299 hash = 1;
300
301 return hash;
302 }
303
flow_hash_from_keys(struct flow_keys * keys)304 u32 flow_hash_from_keys(struct flow_keys *keys)
305 {
306 return __flow_hash_from_keys(keys);
307 }
308 EXPORT_SYMBOL(flow_hash_from_keys);
309
310 /*
311 * __skb_get_hash: calculate a flow hash based on src/dst addresses
312 * and src/dst port numbers. Sets hash in skb to non-zero hash value
313 * on success, zero indicates no valid hash. Also, sets l4_hash in skb
314 * if hash is a canonical 4-tuple hash over transport ports.
315 */
__skb_get_hash(struct sk_buff * skb)316 void __skb_get_hash(struct sk_buff *skb)
317 {
318 struct flow_keys keys;
319
320 if (!skb_flow_dissect(skb, &keys))
321 return;
322
323 if (keys.ports)
324 skb->l4_hash = 1;
325
326 skb->sw_hash = 1;
327
328 skb->hash = __flow_hash_from_keys(&keys);
329 }
330 EXPORT_SYMBOL(__skb_get_hash);
331
332 /*
333 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
334 * to be used as a distribution range.
335 */
__skb_tx_hash(const struct net_device * dev,struct sk_buff * skb,unsigned int num_tx_queues)336 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
337 unsigned int num_tx_queues)
338 {
339 u32 hash;
340 u16 qoffset = 0;
341 u16 qcount = num_tx_queues;
342
343 if (skb_rx_queue_recorded(skb)) {
344 hash = skb_get_rx_queue(skb);
345 while (unlikely(hash >= num_tx_queues))
346 hash -= num_tx_queues;
347 return hash;
348 }
349
350 if (dev->num_tc) {
351 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
352 qoffset = dev->tc_to_txq[tc].offset;
353 qcount = dev->tc_to_txq[tc].count;
354 }
355
356 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
357 }
358 EXPORT_SYMBOL(__skb_tx_hash);
359
__skb_get_poff(const struct sk_buff * skb,void * data,const struct flow_keys * keys,int hlen)360 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
361 const struct flow_keys *keys, int hlen)
362 {
363 u32 poff = keys->thoff;
364
365 switch (keys->ip_proto) {
366 case IPPROTO_TCP: {
367 /* access doff as u8 to avoid unaligned access */
368 const u8 *doff;
369 u8 _doff;
370
371 doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
372 data, hlen, &_doff);
373 if (!doff)
374 return poff;
375
376 poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
377 break;
378 }
379 case IPPROTO_UDP:
380 case IPPROTO_UDPLITE:
381 poff += sizeof(struct udphdr);
382 break;
383 /* For the rest, we do not really care about header
384 * extensions at this point for now.
385 */
386 case IPPROTO_ICMP:
387 poff += sizeof(struct icmphdr);
388 break;
389 case IPPROTO_ICMPV6:
390 poff += sizeof(struct icmp6hdr);
391 break;
392 case IPPROTO_IGMP:
393 poff += sizeof(struct igmphdr);
394 break;
395 case IPPROTO_DCCP:
396 poff += sizeof(struct dccp_hdr);
397 break;
398 case IPPROTO_SCTP:
399 poff += sizeof(struct sctphdr);
400 break;
401 }
402
403 return poff;
404 }
405
406 /* skb_get_poff() returns the offset to the payload as far as it could
407 * be dissected. The main user is currently BPF, so that we can dynamically
408 * truncate packets without needing to push actual payload to the user
409 * space and can analyze headers only, instead.
410 */
skb_get_poff(const struct sk_buff * skb)411 u32 skb_get_poff(const struct sk_buff *skb)
412 {
413 struct flow_keys keys;
414
415 if (!skb_flow_dissect(skb, &keys))
416 return 0;
417
418 return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
419 }
420
get_xps_queue(struct net_device * dev,struct sk_buff * skb)421 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
422 {
423 #ifdef CONFIG_XPS
424 struct xps_dev_maps *dev_maps;
425 struct xps_map *map;
426 int queue_index = -1;
427
428 rcu_read_lock();
429 dev_maps = rcu_dereference(dev->xps_maps);
430 if (dev_maps) {
431 map = rcu_dereference(
432 dev_maps->cpu_map[skb->sender_cpu - 1]);
433 if (map) {
434 if (map->len == 1)
435 queue_index = map->queues[0];
436 else
437 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
438 map->len)];
439 if (unlikely(queue_index >= dev->real_num_tx_queues))
440 queue_index = -1;
441 }
442 }
443 rcu_read_unlock();
444
445 return queue_index;
446 #else
447 return -1;
448 #endif
449 }
450
__netdev_pick_tx(struct net_device * dev,struct sk_buff * skb)451 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
452 {
453 struct sock *sk = skb->sk;
454 int queue_index = sk_tx_queue_get(sk);
455
456 if (queue_index < 0 || skb->ooo_okay ||
457 queue_index >= dev->real_num_tx_queues) {
458 int new_index = get_xps_queue(dev, skb);
459 if (new_index < 0)
460 new_index = skb_tx_hash(dev, skb);
461
462 if (queue_index != new_index && sk &&
463 rcu_access_pointer(sk->sk_dst_cache))
464 sk_tx_queue_set(sk, new_index);
465
466 queue_index = new_index;
467 }
468
469 return queue_index;
470 }
471
netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,void * accel_priv)472 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
473 struct sk_buff *skb,
474 void *accel_priv)
475 {
476 int queue_index = 0;
477
478 #ifdef CONFIG_XPS
479 if (skb->sender_cpu == 0)
480 skb->sender_cpu = raw_smp_processor_id() + 1;
481 #endif
482
483 if (dev->real_num_tx_queues != 1) {
484 const struct net_device_ops *ops = dev->netdev_ops;
485 if (ops->ndo_select_queue)
486 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
487 __netdev_pick_tx);
488 else
489 queue_index = __netdev_pick_tx(dev, skb);
490
491 if (!accel_priv)
492 queue_index = netdev_cap_txqueue(dev, queue_index);
493 }
494
495 skb_set_queue_mapping(skb, queue_index);
496 return netdev_get_tx_queue(dev, queue_index);
497 }
498