1 /*
2 	kmod, the new module loader (replaces kerneld)
3 	Kirk Petersen
4 
5 	Reorganized not to be a daemon by Adam Richter, with guidance
6 	from Greg Zornetzer.
7 
8 	Modified to avoid chroot and file sharing problems.
9 	Mikael Pettersson
10 
11 	Limit the concurrent number of kmod modprobes to catch loops from
12 	"modprobe needs a service that is in a module".
13 	Keith Owens <kaos@ocs.com.au> December 1999
14 
15 	Unblock all signals when we exec a usermode process.
16 	Shuu Yamaguchi <shuu@wondernetworkresources.com> December 2000
17 
18 	call_usermodehelper wait flag, and remove exec_usermodehelper.
19 	Rusty Russell <rusty@rustcorp.com.au>  Jan 2003
20 */
21 #include <linux/module.h>
22 #include <linux/sched.h>
23 #include <linux/syscalls.h>
24 #include <linux/unistd.h>
25 #include <linux/kmod.h>
26 #include <linux/slab.h>
27 #include <linux/completion.h>
28 #include <linux/cred.h>
29 #include <linux/file.h>
30 #include <linux/fdtable.h>
31 #include <linux/workqueue.h>
32 #include <linux/security.h>
33 #include <linux/mount.h>
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/resource.h>
37 #include <linux/notifier.h>
38 #include <linux/suspend.h>
39 #include <linux/rwsem.h>
40 #include <linux/ptrace.h>
41 #include <linux/async.h>
42 #include <asm/uaccess.h>
43 
44 #include <trace/events/module.h>
45 
46 extern int max_threads;
47 
48 static struct workqueue_struct *khelper_wq;
49 
50 #define CAP_BSET	(void *)1
51 #define CAP_PI		(void *)2
52 
53 static kernel_cap_t usermodehelper_bset = CAP_FULL_SET;
54 static kernel_cap_t usermodehelper_inheritable = CAP_FULL_SET;
55 static DEFINE_SPINLOCK(umh_sysctl_lock);
56 static DECLARE_RWSEM(umhelper_sem);
57 
58 #ifdef CONFIG_MODULES
59 
60 /*
61 	modprobe_path is set via /proc/sys.
62 */
63 char modprobe_path[KMOD_PATH_LEN] = "/sbin/modprobe";
64 
free_modprobe_argv(struct subprocess_info * info)65 static void free_modprobe_argv(struct subprocess_info *info)
66 {
67 	kfree(info->argv[3]); /* check call_modprobe() */
68 	kfree(info->argv);
69 }
70 
call_modprobe(char * module_name,int wait)71 static int call_modprobe(char *module_name, int wait)
72 {
73 	struct subprocess_info *info;
74 	static char *envp[] = {
75 		"HOME=/",
76 		"TERM=linux",
77 		"PATH=/sbin:/usr/sbin:/bin:/usr/bin",
78 		NULL
79 	};
80 
81 	char **argv = kmalloc(sizeof(char *[5]), GFP_KERNEL);
82 	if (!argv)
83 		goto out;
84 
85 	module_name = kstrdup(module_name, GFP_KERNEL);
86 	if (!module_name)
87 		goto free_argv;
88 
89 	argv[0] = modprobe_path;
90 	argv[1] = "-q";
91 	argv[2] = "--";
92 	argv[3] = module_name;	/* check free_modprobe_argv() */
93 	argv[4] = NULL;
94 
95 	info = call_usermodehelper_setup(modprobe_path, argv, envp, GFP_KERNEL,
96 					 NULL, free_modprobe_argv, NULL);
97 	if (!info)
98 		goto free_module_name;
99 
100 	return call_usermodehelper_exec(info, wait | UMH_KILLABLE);
101 
102 free_module_name:
103 	kfree(module_name);
104 free_argv:
105 	kfree(argv);
106 out:
107 	return -ENOMEM;
108 }
109 
110 /**
111  * __request_module - try to load a kernel module
112  * @wait: wait (or not) for the operation to complete
113  * @fmt: printf style format string for the name of the module
114  * @...: arguments as specified in the format string
115  *
116  * Load a module using the user mode module loader. The function returns
117  * zero on success or a negative errno code on failure. Note that a
118  * successful module load does not mean the module did not then unload
119  * and exit on an error of its own. Callers must check that the service
120  * they requested is now available not blindly invoke it.
121  *
122  * If module auto-loading support is disabled then this function
123  * becomes a no-operation.
124  */
__request_module(bool wait,const char * fmt,...)125 int __request_module(bool wait, const char *fmt, ...)
126 {
127 	va_list args;
128 	char module_name[MODULE_NAME_LEN];
129 	unsigned int max_modprobes;
130 	int ret;
131 	static atomic_t kmod_concurrent = ATOMIC_INIT(0);
132 #define MAX_KMOD_CONCURRENT 50	/* Completely arbitrary value - KAO */
133 	static int kmod_loop_msg;
134 
135 	/*
136 	 * We don't allow synchronous module loading from async.  Module
137 	 * init may invoke async_synchronize_full() which will end up
138 	 * waiting for this task which already is waiting for the module
139 	 * loading to complete, leading to a deadlock.
140 	 */
141 	WARN_ON_ONCE(wait && current_is_async());
142 
143 	if (!modprobe_path[0])
144 		return 0;
145 
146 	va_start(args, fmt);
147 	ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args);
148 	va_end(args);
149 	if (ret >= MODULE_NAME_LEN)
150 		return -ENAMETOOLONG;
151 
152 	ret = security_kernel_module_request(module_name);
153 	if (ret)
154 		return ret;
155 
156 	/* If modprobe needs a service that is in a module, we get a recursive
157 	 * loop.  Limit the number of running kmod threads to max_threads/2 or
158 	 * MAX_KMOD_CONCURRENT, whichever is the smaller.  A cleaner method
159 	 * would be to run the parents of this process, counting how many times
160 	 * kmod was invoked.  That would mean accessing the internals of the
161 	 * process tables to get the command line, proc_pid_cmdline is static
162 	 * and it is not worth changing the proc code just to handle this case.
163 	 * KAO.
164 	 *
165 	 * "trace the ppid" is simple, but will fail if someone's
166 	 * parent exits.  I think this is as good as it gets. --RR
167 	 */
168 	max_modprobes = min(max_threads/2, MAX_KMOD_CONCURRENT);
169 	atomic_inc(&kmod_concurrent);
170 	if (atomic_read(&kmod_concurrent) > max_modprobes) {
171 		/* We may be blaming an innocent here, but unlikely */
172 		if (kmod_loop_msg < 5) {
173 			printk(KERN_ERR
174 			       "request_module: runaway loop modprobe %s\n",
175 			       module_name);
176 			kmod_loop_msg++;
177 		}
178 		atomic_dec(&kmod_concurrent);
179 		return -ENOMEM;
180 	}
181 
182 	trace_module_request(module_name, wait, _RET_IP_);
183 
184 	ret = call_modprobe(module_name, wait ? UMH_WAIT_PROC : UMH_WAIT_EXEC);
185 
186 	atomic_dec(&kmod_concurrent);
187 	return ret;
188 }
189 EXPORT_SYMBOL(__request_module);
190 #endif /* CONFIG_MODULES */
191 
call_usermodehelper_freeinfo(struct subprocess_info * info)192 static void call_usermodehelper_freeinfo(struct subprocess_info *info)
193 {
194 	if (info->cleanup)
195 		(*info->cleanup)(info);
196 	kfree(info);
197 }
198 
umh_complete(struct subprocess_info * sub_info)199 static void umh_complete(struct subprocess_info *sub_info)
200 {
201 	struct completion *comp = xchg(&sub_info->complete, NULL);
202 	/*
203 	 * See call_usermodehelper_exec(). If xchg() returns NULL
204 	 * we own sub_info, the UMH_KILLABLE caller has gone away
205 	 * or the caller used UMH_NO_WAIT.
206 	 */
207 	if (comp)
208 		complete(comp);
209 	else
210 		call_usermodehelper_freeinfo(sub_info);
211 }
212 
213 /*
214  * This is the task which runs the usermode application
215  */
____call_usermodehelper(void * data)216 static int ____call_usermodehelper(void *data)
217 {
218 	struct subprocess_info *sub_info = data;
219 	struct cred *new;
220 	int retval;
221 
222 	spin_lock_irq(&current->sighand->siglock);
223 	flush_signal_handlers(current, 1);
224 	spin_unlock_irq(&current->sighand->siglock);
225 
226 	/* We can run anywhere, unlike our parent keventd(). */
227 	set_cpus_allowed_ptr(current, cpu_all_mask);
228 
229 	/*
230 	 * Our parent is keventd, which runs with elevated scheduling priority.
231 	 * Avoid propagating that into the userspace child.
232 	 */
233 	set_user_nice(current, 0);
234 
235 	retval = -ENOMEM;
236 	new = prepare_kernel_cred(current);
237 	if (!new)
238 		goto out;
239 
240 	spin_lock(&umh_sysctl_lock);
241 	new->cap_bset = cap_intersect(usermodehelper_bset, new->cap_bset);
242 	new->cap_inheritable = cap_intersect(usermodehelper_inheritable,
243 					     new->cap_inheritable);
244 	spin_unlock(&umh_sysctl_lock);
245 
246 	if (sub_info->init) {
247 		retval = sub_info->init(sub_info, new);
248 		if (retval) {
249 			abort_creds(new);
250 			goto out;
251 		}
252 	}
253 
254 	commit_creds(new);
255 
256 	retval = do_execve(getname_kernel(sub_info->path),
257 			   (const char __user *const __user *)sub_info->argv,
258 			   (const char __user *const __user *)sub_info->envp);
259 out:
260 	sub_info->retval = retval;
261 	/* wait_for_helper() will call umh_complete if UHM_WAIT_PROC. */
262 	if (!(sub_info->wait & UMH_WAIT_PROC))
263 		umh_complete(sub_info);
264 	if (!retval)
265 		return 0;
266 	do_exit(0);
267 }
268 
269 /* Keventd can't block, but this (a child) can. */
wait_for_helper(void * data)270 static int wait_for_helper(void *data)
271 {
272 	struct subprocess_info *sub_info = data;
273 	pid_t pid;
274 
275 	/* If SIGCLD is ignored sys_wait4 won't populate the status. */
276 	kernel_sigaction(SIGCHLD, SIG_DFL);
277 	pid = kernel_thread(____call_usermodehelper, sub_info, SIGCHLD);
278 	if (pid < 0) {
279 		sub_info->retval = pid;
280 	} else {
281 		int ret = -ECHILD;
282 		/*
283 		 * Normally it is bogus to call wait4() from in-kernel because
284 		 * wait4() wants to write the exit code to a userspace address.
285 		 * But wait_for_helper() always runs as keventd, and put_user()
286 		 * to a kernel address works OK for kernel threads, due to their
287 		 * having an mm_segment_t which spans the entire address space.
288 		 *
289 		 * Thus the __user pointer cast is valid here.
290 		 */
291 		sys_wait4(pid, (int __user *)&ret, 0, NULL);
292 
293 		/*
294 		 * If ret is 0, either ____call_usermodehelper failed and the
295 		 * real error code is already in sub_info->retval or
296 		 * sub_info->retval is 0 anyway, so don't mess with it then.
297 		 */
298 		if (ret)
299 			sub_info->retval = ret;
300 	}
301 
302 	umh_complete(sub_info);
303 	do_exit(0);
304 }
305 
306 /* This is run by khelper thread  */
__call_usermodehelper(struct work_struct * work)307 static void __call_usermodehelper(struct work_struct *work)
308 {
309 	struct subprocess_info *sub_info =
310 		container_of(work, struct subprocess_info, work);
311 	pid_t pid;
312 
313 	if (sub_info->wait & UMH_WAIT_PROC)
314 		pid = kernel_thread(wait_for_helper, sub_info,
315 				    CLONE_FS | CLONE_FILES | SIGCHLD);
316 	else
317 		pid = kernel_thread(____call_usermodehelper, sub_info,
318 				    SIGCHLD);
319 
320 	if (pid < 0) {
321 		sub_info->retval = pid;
322 		umh_complete(sub_info);
323 	}
324 }
325 
326 /*
327  * If set, call_usermodehelper_exec() will exit immediately returning -EBUSY
328  * (used for preventing user land processes from being created after the user
329  * land has been frozen during a system-wide hibernation or suspend operation).
330  * Should always be manipulated under umhelper_sem acquired for write.
331  */
332 static enum umh_disable_depth usermodehelper_disabled = UMH_DISABLED;
333 
334 /* Number of helpers running */
335 static atomic_t running_helpers = ATOMIC_INIT(0);
336 
337 /*
338  * Wait queue head used by usermodehelper_disable() to wait for all running
339  * helpers to finish.
340  */
341 static DECLARE_WAIT_QUEUE_HEAD(running_helpers_waitq);
342 
343 /*
344  * Used by usermodehelper_read_lock_wait() to wait for usermodehelper_disabled
345  * to become 'false'.
346  */
347 static DECLARE_WAIT_QUEUE_HEAD(usermodehelper_disabled_waitq);
348 
349 /*
350  * Time to wait for running_helpers to become zero before the setting of
351  * usermodehelper_disabled in usermodehelper_disable() fails
352  */
353 #define RUNNING_HELPERS_TIMEOUT	(5 * HZ)
354 
usermodehelper_read_trylock(void)355 int usermodehelper_read_trylock(void)
356 {
357 	DEFINE_WAIT(wait);
358 	int ret = 0;
359 
360 	down_read(&umhelper_sem);
361 	for (;;) {
362 		prepare_to_wait(&usermodehelper_disabled_waitq, &wait,
363 				TASK_INTERRUPTIBLE);
364 		if (!usermodehelper_disabled)
365 			break;
366 
367 		if (usermodehelper_disabled == UMH_DISABLED)
368 			ret = -EAGAIN;
369 
370 		up_read(&umhelper_sem);
371 
372 		if (ret)
373 			break;
374 
375 		schedule();
376 		try_to_freeze();
377 
378 		down_read(&umhelper_sem);
379 	}
380 	finish_wait(&usermodehelper_disabled_waitq, &wait);
381 	return ret;
382 }
383 EXPORT_SYMBOL_GPL(usermodehelper_read_trylock);
384 
usermodehelper_read_lock_wait(long timeout)385 long usermodehelper_read_lock_wait(long timeout)
386 {
387 	DEFINE_WAIT(wait);
388 
389 	if (timeout < 0)
390 		return -EINVAL;
391 
392 	down_read(&umhelper_sem);
393 	for (;;) {
394 		prepare_to_wait(&usermodehelper_disabled_waitq, &wait,
395 				TASK_UNINTERRUPTIBLE);
396 		if (!usermodehelper_disabled)
397 			break;
398 
399 		up_read(&umhelper_sem);
400 
401 		timeout = schedule_timeout(timeout);
402 		if (!timeout)
403 			break;
404 
405 		down_read(&umhelper_sem);
406 	}
407 	finish_wait(&usermodehelper_disabled_waitq, &wait);
408 	return timeout;
409 }
410 EXPORT_SYMBOL_GPL(usermodehelper_read_lock_wait);
411 
usermodehelper_read_unlock(void)412 void usermodehelper_read_unlock(void)
413 {
414 	up_read(&umhelper_sem);
415 }
416 EXPORT_SYMBOL_GPL(usermodehelper_read_unlock);
417 
418 /**
419  * __usermodehelper_set_disable_depth - Modify usermodehelper_disabled.
420  * @depth: New value to assign to usermodehelper_disabled.
421  *
422  * Change the value of usermodehelper_disabled (under umhelper_sem locked for
423  * writing) and wakeup tasks waiting for it to change.
424  */
__usermodehelper_set_disable_depth(enum umh_disable_depth depth)425 void __usermodehelper_set_disable_depth(enum umh_disable_depth depth)
426 {
427 	down_write(&umhelper_sem);
428 	usermodehelper_disabled = depth;
429 	wake_up(&usermodehelper_disabled_waitq);
430 	up_write(&umhelper_sem);
431 }
432 
433 /**
434  * __usermodehelper_disable - Prevent new helpers from being started.
435  * @depth: New value to assign to usermodehelper_disabled.
436  *
437  * Set usermodehelper_disabled to @depth and wait for running helpers to exit.
438  */
__usermodehelper_disable(enum umh_disable_depth depth)439 int __usermodehelper_disable(enum umh_disable_depth depth)
440 {
441 	long retval;
442 
443 	if (!depth)
444 		return -EINVAL;
445 
446 	down_write(&umhelper_sem);
447 	usermodehelper_disabled = depth;
448 	up_write(&umhelper_sem);
449 
450 	/*
451 	 * From now on call_usermodehelper_exec() won't start any new
452 	 * helpers, so it is sufficient if running_helpers turns out to
453 	 * be zero at one point (it may be increased later, but that
454 	 * doesn't matter).
455 	 */
456 	retval = wait_event_timeout(running_helpers_waitq,
457 					atomic_read(&running_helpers) == 0,
458 					RUNNING_HELPERS_TIMEOUT);
459 	if (retval)
460 		return 0;
461 
462 	__usermodehelper_set_disable_depth(UMH_ENABLED);
463 	return -EAGAIN;
464 }
465 
helper_lock(void)466 static void helper_lock(void)
467 {
468 	atomic_inc(&running_helpers);
469 	smp_mb__after_atomic();
470 }
471 
helper_unlock(void)472 static void helper_unlock(void)
473 {
474 	if (atomic_dec_and_test(&running_helpers))
475 		wake_up(&running_helpers_waitq);
476 }
477 
478 /**
479  * call_usermodehelper_setup - prepare to call a usermode helper
480  * @path: path to usermode executable
481  * @argv: arg vector for process
482  * @envp: environment for process
483  * @gfp_mask: gfp mask for memory allocation
484  * @cleanup: a cleanup function
485  * @init: an init function
486  * @data: arbitrary context sensitive data
487  *
488  * Returns either %NULL on allocation failure, or a subprocess_info
489  * structure.  This should be passed to call_usermodehelper_exec to
490  * exec the process and free the structure.
491  *
492  * The init function is used to customize the helper process prior to
493  * exec.  A non-zero return code causes the process to error out, exit,
494  * and return the failure to the calling process
495  *
496  * The cleanup function is just before ethe subprocess_info is about to
497  * be freed.  This can be used for freeing the argv and envp.  The
498  * Function must be runnable in either a process context or the
499  * context in which call_usermodehelper_exec is called.
500  */
call_usermodehelper_setup(char * path,char ** argv,char ** envp,gfp_t gfp_mask,int (* init)(struct subprocess_info * info,struct cred * new),void (* cleanup)(struct subprocess_info * info),void * data)501 struct subprocess_info *call_usermodehelper_setup(char *path, char **argv,
502 		char **envp, gfp_t gfp_mask,
503 		int (*init)(struct subprocess_info *info, struct cred *new),
504 		void (*cleanup)(struct subprocess_info *info),
505 		void *data)
506 {
507 	struct subprocess_info *sub_info;
508 	sub_info = kzalloc(sizeof(struct subprocess_info), gfp_mask);
509 	if (!sub_info)
510 		goto out;
511 
512 	INIT_WORK(&sub_info->work, __call_usermodehelper);
513 	sub_info->path = path;
514 	sub_info->argv = argv;
515 	sub_info->envp = envp;
516 
517 	sub_info->cleanup = cleanup;
518 	sub_info->init = init;
519 	sub_info->data = data;
520   out:
521 	return sub_info;
522 }
523 EXPORT_SYMBOL(call_usermodehelper_setup);
524 
525 /**
526  * call_usermodehelper_exec - start a usermode application
527  * @sub_info: information about the subprocessa
528  * @wait: wait for the application to finish and return status.
529  *        when UMH_NO_WAIT don't wait at all, but you get no useful error back
530  *        when the program couldn't be exec'ed. This makes it safe to call
531  *        from interrupt context.
532  *
533  * Runs a user-space application.  The application is started
534  * asynchronously if wait is not set, and runs as a child of keventd.
535  * (ie. it runs with full root capabilities).
536  */
call_usermodehelper_exec(struct subprocess_info * sub_info,int wait)537 int call_usermodehelper_exec(struct subprocess_info *sub_info, int wait)
538 {
539 	DECLARE_COMPLETION_ONSTACK(done);
540 	int retval = 0;
541 
542 	if (!sub_info->path) {
543 		call_usermodehelper_freeinfo(sub_info);
544 		return -EINVAL;
545 	}
546 	helper_lock();
547 	if (!khelper_wq || usermodehelper_disabled) {
548 		retval = -EBUSY;
549 		goto out;
550 	}
551 	/*
552 	 * Set the completion pointer only if there is a waiter.
553 	 * This makes it possible to use umh_complete to free
554 	 * the data structure in case of UMH_NO_WAIT.
555 	 */
556 	sub_info->complete = (wait == UMH_NO_WAIT) ? NULL : &done;
557 	sub_info->wait = wait;
558 
559 	queue_work(khelper_wq, &sub_info->work);
560 	if (wait == UMH_NO_WAIT)	/* task has freed sub_info */
561 		goto unlock;
562 
563 	if (wait & UMH_KILLABLE) {
564 		retval = wait_for_completion_killable(&done);
565 		if (!retval)
566 			goto wait_done;
567 
568 		/* umh_complete() will see NULL and free sub_info */
569 		if (xchg(&sub_info->complete, NULL))
570 			goto unlock;
571 		/* fallthrough, umh_complete() was already called */
572 	}
573 
574 	wait_for_completion(&done);
575 wait_done:
576 	retval = sub_info->retval;
577 out:
578 	call_usermodehelper_freeinfo(sub_info);
579 unlock:
580 	helper_unlock();
581 	return retval;
582 }
583 EXPORT_SYMBOL(call_usermodehelper_exec);
584 
585 /**
586  * call_usermodehelper() - prepare and start a usermode application
587  * @path: path to usermode executable
588  * @argv: arg vector for process
589  * @envp: environment for process
590  * @wait: wait for the application to finish and return status.
591  *        when UMH_NO_WAIT don't wait at all, but you get no useful error back
592  *        when the program couldn't be exec'ed. This makes it safe to call
593  *        from interrupt context.
594  *
595  * This function is the equivalent to use call_usermodehelper_setup() and
596  * call_usermodehelper_exec().
597  */
call_usermodehelper(char * path,char ** argv,char ** envp,int wait)598 int call_usermodehelper(char *path, char **argv, char **envp, int wait)
599 {
600 	struct subprocess_info *info;
601 	gfp_t gfp_mask = (wait == UMH_NO_WAIT) ? GFP_ATOMIC : GFP_KERNEL;
602 
603 	info = call_usermodehelper_setup(path, argv, envp, gfp_mask,
604 					 NULL, NULL, NULL);
605 	if (info == NULL)
606 		return -ENOMEM;
607 
608 	return call_usermodehelper_exec(info, wait);
609 }
610 EXPORT_SYMBOL(call_usermodehelper);
611 
proc_cap_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)612 static int proc_cap_handler(struct ctl_table *table, int write,
613 			 void __user *buffer, size_t *lenp, loff_t *ppos)
614 {
615 	struct ctl_table t;
616 	unsigned long cap_array[_KERNEL_CAPABILITY_U32S];
617 	kernel_cap_t new_cap;
618 	int err, i;
619 
620 	if (write && (!capable(CAP_SETPCAP) ||
621 		      !capable(CAP_SYS_MODULE)))
622 		return -EPERM;
623 
624 	/*
625 	 * convert from the global kernel_cap_t to the ulong array to print to
626 	 * userspace if this is a read.
627 	 */
628 	spin_lock(&umh_sysctl_lock);
629 	for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++)  {
630 		if (table->data == CAP_BSET)
631 			cap_array[i] = usermodehelper_bset.cap[i];
632 		else if (table->data == CAP_PI)
633 			cap_array[i] = usermodehelper_inheritable.cap[i];
634 		else
635 			BUG();
636 	}
637 	spin_unlock(&umh_sysctl_lock);
638 
639 	t = *table;
640 	t.data = &cap_array;
641 
642 	/*
643 	 * actually read or write and array of ulongs from userspace.  Remember
644 	 * these are least significant 32 bits first
645 	 */
646 	err = proc_doulongvec_minmax(&t, write, buffer, lenp, ppos);
647 	if (err < 0)
648 		return err;
649 
650 	/*
651 	 * convert from the sysctl array of ulongs to the kernel_cap_t
652 	 * internal representation
653 	 */
654 	for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++)
655 		new_cap.cap[i] = cap_array[i];
656 
657 	/*
658 	 * Drop everything not in the new_cap (but don't add things)
659 	 */
660 	spin_lock(&umh_sysctl_lock);
661 	if (write) {
662 		if (table->data == CAP_BSET)
663 			usermodehelper_bset = cap_intersect(usermodehelper_bset, new_cap);
664 		if (table->data == CAP_PI)
665 			usermodehelper_inheritable = cap_intersect(usermodehelper_inheritable, new_cap);
666 	}
667 	spin_unlock(&umh_sysctl_lock);
668 
669 	return 0;
670 }
671 
672 struct ctl_table usermodehelper_table[] = {
673 	{
674 		.procname	= "bset",
675 		.data		= CAP_BSET,
676 		.maxlen		= _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
677 		.mode		= 0600,
678 		.proc_handler	= proc_cap_handler,
679 	},
680 	{
681 		.procname	= "inheritable",
682 		.data		= CAP_PI,
683 		.maxlen		= _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
684 		.mode		= 0600,
685 		.proc_handler	= proc_cap_handler,
686 	},
687 	{ }
688 };
689 
usermodehelper_init(void)690 void __init usermodehelper_init(void)
691 {
692 	khelper_wq = create_singlethread_workqueue("khelper");
693 	BUG_ON(!khelper_wq);
694 }
695