1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
6  *		Florian La Roche, <rzsfl@rz.uni-sb.de>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23 #include <linux/rbtree.h>
24 #include <linux/socket.h>
25 
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <net/flow_keys.h>
38 
39 /* A. Checksumming of received packets by device.
40  *
41  * CHECKSUM_NONE:
42  *
43  *   Device failed to checksum this packet e.g. due to lack of capabilities.
44  *   The packet contains full (though not verified) checksum in packet but
45  *   not in skb->csum. Thus, skb->csum is undefined in this case.
46  *
47  * CHECKSUM_UNNECESSARY:
48  *
49  *   The hardware you're dealing with doesn't calculate the full checksum
50  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
51  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
52  *   if their checksums are okay. skb->csum is still undefined in this case
53  *   though. It is a bad option, but, unfortunately, nowadays most vendors do
54  *   this. Apparently with the secret goal to sell you new devices, when you
55  *   will add new protocol to your host, f.e. IPv6 8)
56  *
57  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
58  *     TCP: IPv6 and IPv4.
59  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
60  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
61  *       may perform further validation in this case.
62  *     GRE: only if the checksum is present in the header.
63  *     SCTP: indicates the CRC in SCTP header has been validated.
64  *
65  *   skb->csum_level indicates the number of consecutive checksums found in
66  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
67  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
68  *   and a device is able to verify the checksums for UDP (possibly zero),
69  *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
70  *   two. If the device were only able to verify the UDP checksum and not
71  *   GRE, either because it doesn't support GRE checksum of because GRE
72  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
73  *   not considered in this case).
74  *
75  * CHECKSUM_COMPLETE:
76  *
77  *   This is the most generic way. The device supplied checksum of the _whole_
78  *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
79  *   hardware doesn't need to parse L3/L4 headers to implement this.
80  *
81  *   Note: Even if device supports only some protocols, but is able to produce
82  *   skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
83  *
84  * CHECKSUM_PARTIAL:
85  *
86  *   A checksum is set up to be offloaded to a device as described in the
87  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
88  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
89  *   on the same host, or it may be set in the input path in GRO or remote
90  *   checksum offload. For the purposes of checksum verification, the checksum
91  *   referred to by skb->csum_start + skb->csum_offset and any preceding
92  *   checksums in the packet are considered verified. Any checksums in the
93  *   packet that are after the checksum being offloaded are not considered to
94  *   be verified.
95  *
96  * B. Checksumming on output.
97  *
98  * CHECKSUM_NONE:
99  *
100  *   The skb was already checksummed by the protocol, or a checksum is not
101  *   required.
102  *
103  * CHECKSUM_PARTIAL:
104  *
105  *   The device is required to checksum the packet as seen by hard_start_xmit()
106  *   from skb->csum_start up to the end, and to record/write the checksum at
107  *   offset skb->csum_start + skb->csum_offset.
108  *
109  *   The device must show its capabilities in dev->features, set up at device
110  *   setup time, e.g. netdev_features.h:
111  *
112  *	NETIF_F_HW_CSUM	- It's a clever device, it's able to checksum everything.
113  *	NETIF_F_IP_CSUM - Device is dumb, it's able to checksum only TCP/UDP over
114  *			  IPv4. Sigh. Vendors like this way for an unknown reason.
115  *			  Though, see comment above about CHECKSUM_UNNECESSARY. 8)
116  *	NETIF_F_IPV6_CSUM - About as dumb as the last one but does IPv6 instead.
117  *	NETIF_F_...     - Well, you get the picture.
118  *
119  * CHECKSUM_UNNECESSARY:
120  *
121  *   Normally, the device will do per protocol specific checksumming. Protocol
122  *   implementations that do not want the NIC to perform the checksum
123  *   calculation should use this flag in their outgoing skbs.
124  *
125  *	NETIF_F_FCOE_CRC - This indicates that the device can do FCoE FC CRC
126  *			   offload. Correspondingly, the FCoE protocol driver
127  *			   stack should use CHECKSUM_UNNECESSARY.
128  *
129  * Any questions? No questions, good.		--ANK
130  */
131 
132 /* Don't change this without changing skb_csum_unnecessary! */
133 #define CHECKSUM_NONE		0
134 #define CHECKSUM_UNNECESSARY	1
135 #define CHECKSUM_COMPLETE	2
136 #define CHECKSUM_PARTIAL	3
137 
138 /* Maximum value in skb->csum_level */
139 #define SKB_MAX_CSUM_LEVEL	3
140 
141 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
142 #define SKB_WITH_OVERHEAD(X)	\
143 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
144 #define SKB_MAX_ORDER(X, ORDER) \
145 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
146 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
147 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
148 
149 /* return minimum truesize of one skb containing X bytes of data */
150 #define SKB_TRUESIZE(X) ((X) +						\
151 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
152 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
153 
154 struct net_device;
155 struct scatterlist;
156 struct pipe_inode_info;
157 struct iov_iter;
158 struct napi_struct;
159 
160 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
161 struct nf_conntrack {
162 	atomic_t use;
163 };
164 #endif
165 
166 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
167 struct nf_bridge_info {
168 	atomic_t		use;
169 	enum {
170 		BRNF_PROTO_UNCHANGED,
171 		BRNF_PROTO_8021Q,
172 		BRNF_PROTO_PPPOE
173 	} orig_proto;
174 	bool			pkt_otherhost;
175 	unsigned int		mask;
176 	struct net_device	*physindev;
177 	struct net_device	*physoutdev;
178 	char			neigh_header[8];
179 	__be32			ipv4_daddr;
180 };
181 #endif
182 
183 struct sk_buff_head {
184 	/* These two members must be first. */
185 	struct sk_buff	*next;
186 	struct sk_buff	*prev;
187 
188 	__u32		qlen;
189 	spinlock_t	lock;
190 };
191 
192 struct sk_buff;
193 
194 /* To allow 64K frame to be packed as single skb without frag_list we
195  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
196  * buffers which do not start on a page boundary.
197  *
198  * Since GRO uses frags we allocate at least 16 regardless of page
199  * size.
200  */
201 #if (65536/PAGE_SIZE + 1) < 16
202 #define MAX_SKB_FRAGS 16UL
203 #else
204 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
205 #endif
206 extern int sysctl_max_skb_frags;
207 
208 typedef struct skb_frag_struct skb_frag_t;
209 
210 struct skb_frag_struct {
211 	struct {
212 		struct page *p;
213 	} page;
214 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
215 	__u32 page_offset;
216 	__u32 size;
217 #else
218 	__u16 page_offset;
219 	__u16 size;
220 #endif
221 };
222 
skb_frag_size(const skb_frag_t * frag)223 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
224 {
225 	return frag->size;
226 }
227 
skb_frag_size_set(skb_frag_t * frag,unsigned int size)228 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
229 {
230 	frag->size = size;
231 }
232 
skb_frag_size_add(skb_frag_t * frag,int delta)233 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
234 {
235 	frag->size += delta;
236 }
237 
skb_frag_size_sub(skb_frag_t * frag,int delta)238 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
239 {
240 	frag->size -= delta;
241 }
242 
243 #define HAVE_HW_TIME_STAMP
244 
245 /**
246  * struct skb_shared_hwtstamps - hardware time stamps
247  * @hwtstamp:	hardware time stamp transformed into duration
248  *		since arbitrary point in time
249  *
250  * Software time stamps generated by ktime_get_real() are stored in
251  * skb->tstamp.
252  *
253  * hwtstamps can only be compared against other hwtstamps from
254  * the same device.
255  *
256  * This structure is attached to packets as part of the
257  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
258  */
259 struct skb_shared_hwtstamps {
260 	ktime_t	hwtstamp;
261 };
262 
263 /* Definitions for tx_flags in struct skb_shared_info */
264 enum {
265 	/* generate hardware time stamp */
266 	SKBTX_HW_TSTAMP = 1 << 0,
267 
268 	/* generate software time stamp when queueing packet to NIC */
269 	SKBTX_SW_TSTAMP = 1 << 1,
270 
271 	/* device driver is going to provide hardware time stamp */
272 	SKBTX_IN_PROGRESS = 1 << 2,
273 
274 	/* device driver supports TX zero-copy buffers */
275 	SKBTX_DEV_ZEROCOPY = 1 << 3,
276 
277 	/* generate wifi status information (where possible) */
278 	SKBTX_WIFI_STATUS = 1 << 4,
279 
280 	/* This indicates at least one fragment might be overwritten
281 	 * (as in vmsplice(), sendfile() ...)
282 	 * If we need to compute a TX checksum, we'll need to copy
283 	 * all frags to avoid possible bad checksum
284 	 */
285 	SKBTX_SHARED_FRAG = 1 << 5,
286 
287 	/* generate software time stamp when entering packet scheduling */
288 	SKBTX_SCHED_TSTAMP = 1 << 6,
289 
290 	/* generate software timestamp on peer data acknowledgment */
291 	SKBTX_ACK_TSTAMP = 1 << 7,
292 };
293 
294 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
295 				 SKBTX_SCHED_TSTAMP | \
296 				 SKBTX_ACK_TSTAMP)
297 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
298 
299 /*
300  * The callback notifies userspace to release buffers when skb DMA is done in
301  * lower device, the skb last reference should be 0 when calling this.
302  * The zerocopy_success argument is true if zero copy transmit occurred,
303  * false on data copy or out of memory error caused by data copy attempt.
304  * The ctx field is used to track device context.
305  * The desc field is used to track userspace buffer index.
306  */
307 struct ubuf_info {
308 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
309 	void *ctx;
310 	unsigned long desc;
311 };
312 
313 /* This data is invariant across clones and lives at
314  * the end of the header data, ie. at skb->end.
315  */
316 struct skb_shared_info {
317 	unsigned char	nr_frags;
318 	__u8		tx_flags;
319 	unsigned short	gso_size;
320 	/* Warning: this field is not always filled in (UFO)! */
321 	unsigned short	gso_segs;
322 	unsigned short  gso_type;
323 	struct sk_buff	*frag_list;
324 	struct skb_shared_hwtstamps hwtstamps;
325 	u32		tskey;
326 	__be32          ip6_frag_id;
327 
328 	/*
329 	 * Warning : all fields before dataref are cleared in __alloc_skb()
330 	 */
331 	atomic_t	dataref;
332 
333 	/* Intermediate layers must ensure that destructor_arg
334 	 * remains valid until skb destructor */
335 	void *		destructor_arg;
336 
337 	/* must be last field, see pskb_expand_head() */
338 	skb_frag_t	frags[MAX_SKB_FRAGS];
339 };
340 
341 /* We divide dataref into two halves.  The higher 16 bits hold references
342  * to the payload part of skb->data.  The lower 16 bits hold references to
343  * the entire skb->data.  A clone of a headerless skb holds the length of
344  * the header in skb->hdr_len.
345  *
346  * All users must obey the rule that the skb->data reference count must be
347  * greater than or equal to the payload reference count.
348  *
349  * Holding a reference to the payload part means that the user does not
350  * care about modifications to the header part of skb->data.
351  */
352 #define SKB_DATAREF_SHIFT 16
353 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
354 
355 
356 enum {
357 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
358 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
359 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
360 };
361 
362 enum {
363 	SKB_GSO_TCPV4 = 1 << 0,
364 	SKB_GSO_UDP = 1 << 1,
365 
366 	/* This indicates the skb is from an untrusted source. */
367 	SKB_GSO_DODGY = 1 << 2,
368 
369 	/* This indicates the tcp segment has CWR set. */
370 	SKB_GSO_TCP_ECN = 1 << 3,
371 
372 	SKB_GSO_TCPV6 = 1 << 4,
373 
374 	SKB_GSO_FCOE = 1 << 5,
375 
376 	SKB_GSO_GRE = 1 << 6,
377 
378 	SKB_GSO_GRE_CSUM = 1 << 7,
379 
380 	SKB_GSO_IPIP = 1 << 8,
381 
382 	SKB_GSO_SIT = 1 << 9,
383 
384 	SKB_GSO_UDP_TUNNEL = 1 << 10,
385 
386 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
387 
388 	SKB_GSO_TUNNEL_REMCSUM = 1 << 12,
389 };
390 
391 #if BITS_PER_LONG > 32
392 #define NET_SKBUFF_DATA_USES_OFFSET 1
393 #endif
394 
395 #ifdef NET_SKBUFF_DATA_USES_OFFSET
396 typedef unsigned int sk_buff_data_t;
397 #else
398 typedef unsigned char *sk_buff_data_t;
399 #endif
400 
401 /**
402  * struct skb_mstamp - multi resolution time stamps
403  * @stamp_us: timestamp in us resolution
404  * @stamp_jiffies: timestamp in jiffies
405  */
406 struct skb_mstamp {
407 	union {
408 		u64		v64;
409 		struct {
410 			u32	stamp_us;
411 			u32	stamp_jiffies;
412 		};
413 	};
414 };
415 
416 /**
417  * skb_mstamp_get - get current timestamp
418  * @cl: place to store timestamps
419  */
skb_mstamp_get(struct skb_mstamp * cl)420 static inline void skb_mstamp_get(struct skb_mstamp *cl)
421 {
422 	u64 val = local_clock();
423 
424 	do_div(val, NSEC_PER_USEC);
425 	cl->stamp_us = (u32)val;
426 	cl->stamp_jiffies = (u32)jiffies;
427 }
428 
429 /**
430  * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
431  * @t1: pointer to newest sample
432  * @t0: pointer to oldest sample
433  */
skb_mstamp_us_delta(const struct skb_mstamp * t1,const struct skb_mstamp * t0)434 static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
435 				      const struct skb_mstamp *t0)
436 {
437 	s32 delta_us = t1->stamp_us - t0->stamp_us;
438 	u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;
439 
440 	/* If delta_us is negative, this might be because interval is too big,
441 	 * or local_clock() drift is too big : fallback using jiffies.
442 	 */
443 	if (delta_us <= 0 ||
444 	    delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))
445 
446 		delta_us = jiffies_to_usecs(delta_jiffies);
447 
448 	return delta_us;
449 }
450 
451 
452 /**
453  *	struct sk_buff - socket buffer
454  *	@next: Next buffer in list
455  *	@prev: Previous buffer in list
456  *	@tstamp: Time we arrived/left
457  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
458  *	@sk: Socket we are owned by
459  *	@dev: Device we arrived on/are leaving by
460  *	@cb: Control buffer. Free for use by every layer. Put private vars here
461  *	@_skb_refdst: destination entry (with norefcount bit)
462  *	@sp: the security path, used for xfrm
463  *	@len: Length of actual data
464  *	@data_len: Data length
465  *	@mac_len: Length of link layer header
466  *	@hdr_len: writable header length of cloned skb
467  *	@csum: Checksum (must include start/offset pair)
468  *	@csum_start: Offset from skb->head where checksumming should start
469  *	@csum_offset: Offset from csum_start where checksum should be stored
470  *	@priority: Packet queueing priority
471  *	@ignore_df: allow local fragmentation
472  *	@cloned: Head may be cloned (check refcnt to be sure)
473  *	@ip_summed: Driver fed us an IP checksum
474  *	@nohdr: Payload reference only, must not modify header
475  *	@nfctinfo: Relationship of this skb to the connection
476  *	@pkt_type: Packet class
477  *	@fclone: skbuff clone status
478  *	@ipvs_property: skbuff is owned by ipvs
479  *	@peeked: this packet has been seen already, so stats have been
480  *		done for it, don't do them again
481  *	@nf_trace: netfilter packet trace flag
482  *	@protocol: Packet protocol from driver
483  *	@destructor: Destruct function
484  *	@nfct: Associated connection, if any
485  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
486  *	@skb_iif: ifindex of device we arrived on
487  *	@tc_index: Traffic control index
488  *	@tc_verd: traffic control verdict
489  *	@hash: the packet hash
490  *	@queue_mapping: Queue mapping for multiqueue devices
491  *	@xmit_more: More SKBs are pending for this queue
492  *	@ndisc_nodetype: router type (from link layer)
493  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
494  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
495  *		ports.
496  *	@sw_hash: indicates hash was computed in software stack
497  *	@wifi_acked_valid: wifi_acked was set
498  *	@wifi_acked: whether frame was acked on wifi or not
499  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
500   *	@napi_id: id of the NAPI struct this skb came from
501  *	@secmark: security marking
502  *	@mark: Generic packet mark
503  *	@vlan_proto: vlan encapsulation protocol
504  *	@vlan_tci: vlan tag control information
505  *	@inner_protocol: Protocol (encapsulation)
506  *	@inner_transport_header: Inner transport layer header (encapsulation)
507  *	@inner_network_header: Network layer header (encapsulation)
508  *	@inner_mac_header: Link layer header (encapsulation)
509  *	@transport_header: Transport layer header
510  *	@network_header: Network layer header
511  *	@mac_header: Link layer header
512  *	@tail: Tail pointer
513  *	@end: End pointer
514  *	@head: Head of buffer
515  *	@data: Data head pointer
516  *	@truesize: Buffer size
517  *	@users: User count - see {datagram,tcp}.c
518  */
519 
520 struct sk_buff {
521 	union {
522 		struct {
523 			/* These two members must be first. */
524 			struct sk_buff		*next;
525 			struct sk_buff		*prev;
526 
527 			union {
528 				ktime_t		tstamp;
529 				struct skb_mstamp skb_mstamp;
530 			};
531 		};
532 		struct rb_node	rbnode; /* used in netem & tcp stack */
533 	};
534 	struct sock		*sk;
535 	struct net_device	*dev;
536 
537 	/*
538 	 * This is the control buffer. It is free to use for every
539 	 * layer. Please put your private variables there. If you
540 	 * want to keep them across layers you have to do a skb_clone()
541 	 * first. This is owned by whoever has the skb queued ATM.
542 	 */
543 	char			cb[48] __aligned(8);
544 
545 	unsigned long		_skb_refdst;
546 	void			(*destructor)(struct sk_buff *skb);
547 #ifdef CONFIG_XFRM
548 	struct	sec_path	*sp;
549 #endif
550 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
551 	struct nf_conntrack	*nfct;
552 #endif
553 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
554 	struct nf_bridge_info	*nf_bridge;
555 #endif
556 	unsigned int		len,
557 				data_len;
558 	__u16			mac_len,
559 				hdr_len;
560 
561 	/* Following fields are _not_ copied in __copy_skb_header()
562 	 * Note that queue_mapping is here mostly to fill a hole.
563 	 */
564 	kmemcheck_bitfield_begin(flags1);
565 	__u16			queue_mapping;
566 	__u8			cloned:1,
567 				nohdr:1,
568 				fclone:2,
569 				peeked:1,
570 				head_frag:1,
571 				xmit_more:1;
572 	/* one bit hole */
573 	kmemcheck_bitfield_end(flags1);
574 
575 	/* fields enclosed in headers_start/headers_end are copied
576 	 * using a single memcpy() in __copy_skb_header()
577 	 */
578 	/* private: */
579 	__u32			headers_start[0];
580 	/* public: */
581 
582 /* if you move pkt_type around you also must adapt those constants */
583 #ifdef __BIG_ENDIAN_BITFIELD
584 #define PKT_TYPE_MAX	(7 << 5)
585 #else
586 #define PKT_TYPE_MAX	7
587 #endif
588 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
589 
590 	__u8			__pkt_type_offset[0];
591 	__u8			pkt_type:3;
592 	__u8			pfmemalloc:1;
593 	__u8			ignore_df:1;
594 	__u8			nfctinfo:3;
595 
596 	__u8			nf_trace:1;
597 	__u8			ip_summed:2;
598 	__u8			ooo_okay:1;
599 	__u8			l4_hash:1;
600 	__u8			sw_hash:1;
601 	__u8			wifi_acked_valid:1;
602 	__u8			wifi_acked:1;
603 
604 	__u8			no_fcs:1;
605 	/* Indicates the inner headers are valid in the skbuff. */
606 	__u8			encapsulation:1;
607 	__u8			encap_hdr_csum:1;
608 	__u8			csum_valid:1;
609 	__u8			csum_complete_sw:1;
610 	__u8			csum_level:2;
611 	__u8			csum_bad:1;
612 
613 #ifdef CONFIG_IPV6_NDISC_NODETYPE
614 	__u8			ndisc_nodetype:2;
615 #endif
616 	__u8			ipvs_property:1;
617 	__u8			inner_protocol_type:1;
618 	__u8			remcsum_offload:1;
619 	/* 3 or 5 bit hole */
620 
621 #ifdef CONFIG_NET_SCHED
622 	__u16			tc_index;	/* traffic control index */
623 #ifdef CONFIG_NET_CLS_ACT
624 	__u16			tc_verd;	/* traffic control verdict */
625 #endif
626 #endif
627 
628 	union {
629 		__wsum		csum;
630 		struct {
631 			__u16	csum_start;
632 			__u16	csum_offset;
633 		};
634 	};
635 	__u32			priority;
636 	int			skb_iif;
637 	__u32			hash;
638 	__be16			vlan_proto;
639 	__u16			vlan_tci;
640 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
641 	union {
642 		unsigned int	napi_id;
643 		unsigned int	sender_cpu;
644 	};
645 #endif
646 #ifdef CONFIG_NETWORK_SECMARK
647 	__u32			secmark;
648 #endif
649 	union {
650 		__u32		mark;
651 		__u32		reserved_tailroom;
652 	};
653 
654 	union {
655 		__be16		inner_protocol;
656 		__u8		inner_ipproto;
657 	};
658 
659 	__u16			inner_transport_header;
660 	__u16			inner_network_header;
661 	__u16			inner_mac_header;
662 
663 	__be16			protocol;
664 	__u16			transport_header;
665 	__u16			network_header;
666 	__u16			mac_header;
667 
668 	/* private: */
669 	__u32			headers_end[0];
670 	/* public: */
671 
672 	/* These elements must be at the end, see alloc_skb() for details.  */
673 	sk_buff_data_t		tail;
674 	sk_buff_data_t		end;
675 	unsigned char		*head,
676 				*data;
677 	unsigned int		truesize;
678 	atomic_t		users;
679 };
680 
681 #ifdef __KERNEL__
682 /*
683  *	Handling routines are only of interest to the kernel
684  */
685 #include <linux/slab.h>
686 
687 
688 #define SKB_ALLOC_FCLONE	0x01
689 #define SKB_ALLOC_RX		0x02
690 #define SKB_ALLOC_NAPI		0x04
691 
692 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
skb_pfmemalloc(const struct sk_buff * skb)693 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
694 {
695 	return unlikely(skb->pfmemalloc);
696 }
697 
698 /*
699  * skb might have a dst pointer attached, refcounted or not.
700  * _skb_refdst low order bit is set if refcount was _not_ taken
701  */
702 #define SKB_DST_NOREF	1UL
703 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
704 
705 /**
706  * skb_dst - returns skb dst_entry
707  * @skb: buffer
708  *
709  * Returns skb dst_entry, regardless of reference taken or not.
710  */
skb_dst(const struct sk_buff * skb)711 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
712 {
713 	/* If refdst was not refcounted, check we still are in a
714 	 * rcu_read_lock section
715 	 */
716 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
717 		!rcu_read_lock_held() &&
718 		!rcu_read_lock_bh_held());
719 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
720 }
721 
722 /**
723  * skb_dst_set - sets skb dst
724  * @skb: buffer
725  * @dst: dst entry
726  *
727  * Sets skb dst, assuming a reference was taken on dst and should
728  * be released by skb_dst_drop()
729  */
skb_dst_set(struct sk_buff * skb,struct dst_entry * dst)730 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
731 {
732 	skb->_skb_refdst = (unsigned long)dst;
733 }
734 
735 /**
736  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
737  * @skb: buffer
738  * @dst: dst entry
739  *
740  * Sets skb dst, assuming a reference was not taken on dst.
741  * If dst entry is cached, we do not take reference and dst_release
742  * will be avoided by refdst_drop. If dst entry is not cached, we take
743  * reference, so that last dst_release can destroy the dst immediately.
744  */
skb_dst_set_noref(struct sk_buff * skb,struct dst_entry * dst)745 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
746 {
747 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
748 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
749 }
750 
751 /**
752  * skb_dst_is_noref - Test if skb dst isn't refcounted
753  * @skb: buffer
754  */
skb_dst_is_noref(const struct sk_buff * skb)755 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
756 {
757 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
758 }
759 
skb_rtable(const struct sk_buff * skb)760 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
761 {
762 	return (struct rtable *)skb_dst(skb);
763 }
764 
765 void kfree_skb(struct sk_buff *skb);
766 void kfree_skb_list(struct sk_buff *segs);
767 void skb_tx_error(struct sk_buff *skb);
768 void consume_skb(struct sk_buff *skb);
769 void  __kfree_skb(struct sk_buff *skb);
770 extern struct kmem_cache *skbuff_head_cache;
771 
772 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
773 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
774 		      bool *fragstolen, int *delta_truesize);
775 
776 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
777 			    int node);
778 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
779 struct sk_buff *build_skb(void *data, unsigned int frag_size);
alloc_skb(unsigned int size,gfp_t priority)780 static inline struct sk_buff *alloc_skb(unsigned int size,
781 					gfp_t priority)
782 {
783 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
784 }
785 
786 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
787 				     unsigned long data_len,
788 				     int max_page_order,
789 				     int *errcode,
790 				     gfp_t gfp_mask);
791 
792 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
793 struct sk_buff_fclones {
794 	struct sk_buff	skb1;
795 
796 	struct sk_buff	skb2;
797 
798 	atomic_t	fclone_ref;
799 };
800 
801 /**
802  *	skb_fclone_busy - check if fclone is busy
803  *	@skb: buffer
804  *
805  * Returns true is skb is a fast clone, and its clone is not freed.
806  * Some drivers call skb_orphan() in their ndo_start_xmit(),
807  * so we also check that this didnt happen.
808  */
skb_fclone_busy(const struct sock * sk,const struct sk_buff * skb)809 static inline bool skb_fclone_busy(const struct sock *sk,
810 				   const struct sk_buff *skb)
811 {
812 	const struct sk_buff_fclones *fclones;
813 
814 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
815 
816 	return skb->fclone == SKB_FCLONE_ORIG &&
817 	       atomic_read(&fclones->fclone_ref) > 1 &&
818 	       fclones->skb2.sk == sk;
819 }
820 
alloc_skb_fclone(unsigned int size,gfp_t priority)821 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
822 					       gfp_t priority)
823 {
824 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
825 }
826 
827 struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
alloc_skb_head(gfp_t priority)828 static inline struct sk_buff *alloc_skb_head(gfp_t priority)
829 {
830 	return __alloc_skb_head(priority, -1);
831 }
832 
833 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
834 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
835 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
836 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
837 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
838 				   gfp_t gfp_mask, bool fclone);
__pskb_copy(struct sk_buff * skb,int headroom,gfp_t gfp_mask)839 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
840 					  gfp_t gfp_mask)
841 {
842 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
843 }
844 
845 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
846 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
847 				     unsigned int headroom);
848 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
849 				int newtailroom, gfp_t priority);
850 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
851 			int offset, int len);
852 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
853 		 int len);
854 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
855 int skb_pad(struct sk_buff *skb, int pad);
856 #define dev_kfree_skb(a)	consume_skb(a)
857 
858 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
859 			    int getfrag(void *from, char *to, int offset,
860 					int len, int odd, struct sk_buff *skb),
861 			    void *from, int length);
862 
863 struct skb_seq_state {
864 	__u32		lower_offset;
865 	__u32		upper_offset;
866 	__u32		frag_idx;
867 	__u32		stepped_offset;
868 	struct sk_buff	*root_skb;
869 	struct sk_buff	*cur_skb;
870 	__u8		*frag_data;
871 };
872 
873 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
874 			  unsigned int to, struct skb_seq_state *st);
875 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
876 			  struct skb_seq_state *st);
877 void skb_abort_seq_read(struct skb_seq_state *st);
878 
879 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
880 			   unsigned int to, struct ts_config *config);
881 
882 /*
883  * Packet hash types specify the type of hash in skb_set_hash.
884  *
885  * Hash types refer to the protocol layer addresses which are used to
886  * construct a packet's hash. The hashes are used to differentiate or identify
887  * flows of the protocol layer for the hash type. Hash types are either
888  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
889  *
890  * Properties of hashes:
891  *
892  * 1) Two packets in different flows have different hash values
893  * 2) Two packets in the same flow should have the same hash value
894  *
895  * A hash at a higher layer is considered to be more specific. A driver should
896  * set the most specific hash possible.
897  *
898  * A driver cannot indicate a more specific hash than the layer at which a hash
899  * was computed. For instance an L3 hash cannot be set as an L4 hash.
900  *
901  * A driver may indicate a hash level which is less specific than the
902  * actual layer the hash was computed on. For instance, a hash computed
903  * at L4 may be considered an L3 hash. This should only be done if the
904  * driver can't unambiguously determine that the HW computed the hash at
905  * the higher layer. Note that the "should" in the second property above
906  * permits this.
907  */
908 enum pkt_hash_types {
909 	PKT_HASH_TYPE_NONE,	/* Undefined type */
910 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
911 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
912 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
913 };
914 
915 static inline void
skb_set_hash(struct sk_buff * skb,__u32 hash,enum pkt_hash_types type)916 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
917 {
918 	skb->l4_hash = (type == PKT_HASH_TYPE_L4);
919 	skb->sw_hash = 0;
920 	skb->hash = hash;
921 }
922 
923 void __skb_get_hash(struct sk_buff *skb);
skb_get_hash(struct sk_buff * skb)924 static inline __u32 skb_get_hash(struct sk_buff *skb)
925 {
926 	if (!skb->l4_hash && !skb->sw_hash)
927 		__skb_get_hash(skb);
928 
929 	return skb->hash;
930 }
931 
skb_get_hash_raw(const struct sk_buff * skb)932 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
933 {
934 	return skb->hash;
935 }
936 
skb_clear_hash(struct sk_buff * skb)937 static inline void skb_clear_hash(struct sk_buff *skb)
938 {
939 	skb->hash = 0;
940 	skb->sw_hash = 0;
941 	skb->l4_hash = 0;
942 }
943 
skb_clear_hash_if_not_l4(struct sk_buff * skb)944 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
945 {
946 	if (!skb->l4_hash)
947 		skb_clear_hash(skb);
948 }
949 
skb_copy_hash(struct sk_buff * to,const struct sk_buff * from)950 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
951 {
952 	to->hash = from->hash;
953 	to->sw_hash = from->sw_hash;
954 	to->l4_hash = from->l4_hash;
955 };
956 
skb_sender_cpu_clear(struct sk_buff * skb)957 static inline void skb_sender_cpu_clear(struct sk_buff *skb)
958 {
959 #ifdef CONFIG_XPS
960 	skb->sender_cpu = 0;
961 #endif
962 }
963 
964 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_end_pointer(const struct sk_buff * skb)965 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
966 {
967 	return skb->head + skb->end;
968 }
969 
skb_end_offset(const struct sk_buff * skb)970 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
971 {
972 	return skb->end;
973 }
974 #else
skb_end_pointer(const struct sk_buff * skb)975 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
976 {
977 	return skb->end;
978 }
979 
skb_end_offset(const struct sk_buff * skb)980 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
981 {
982 	return skb->end - skb->head;
983 }
984 #endif
985 
986 /* Internal */
987 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
988 
skb_hwtstamps(struct sk_buff * skb)989 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
990 {
991 	return &skb_shinfo(skb)->hwtstamps;
992 }
993 
994 /**
995  *	skb_queue_empty - check if a queue is empty
996  *	@list: queue head
997  *
998  *	Returns true if the queue is empty, false otherwise.
999  */
skb_queue_empty(const struct sk_buff_head * list)1000 static inline int skb_queue_empty(const struct sk_buff_head *list)
1001 {
1002 	return list->next == (const struct sk_buff *) list;
1003 }
1004 
1005 /**
1006  *	skb_queue_is_last - check if skb is the last entry in the queue
1007  *	@list: queue head
1008  *	@skb: buffer
1009  *
1010  *	Returns true if @skb is the last buffer on the list.
1011  */
skb_queue_is_last(const struct sk_buff_head * list,const struct sk_buff * skb)1012 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1013 				     const struct sk_buff *skb)
1014 {
1015 	return skb->next == (const struct sk_buff *) list;
1016 }
1017 
1018 /**
1019  *	skb_queue_is_first - check if skb is the first entry in the queue
1020  *	@list: queue head
1021  *	@skb: buffer
1022  *
1023  *	Returns true if @skb is the first buffer on the list.
1024  */
skb_queue_is_first(const struct sk_buff_head * list,const struct sk_buff * skb)1025 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1026 				      const struct sk_buff *skb)
1027 {
1028 	return skb->prev == (const struct sk_buff *) list;
1029 }
1030 
1031 /**
1032  *	skb_queue_next - return the next packet in the queue
1033  *	@list: queue head
1034  *	@skb: current buffer
1035  *
1036  *	Return the next packet in @list after @skb.  It is only valid to
1037  *	call this if skb_queue_is_last() evaluates to false.
1038  */
skb_queue_next(const struct sk_buff_head * list,const struct sk_buff * skb)1039 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1040 					     const struct sk_buff *skb)
1041 {
1042 	/* This BUG_ON may seem severe, but if we just return then we
1043 	 * are going to dereference garbage.
1044 	 */
1045 	BUG_ON(skb_queue_is_last(list, skb));
1046 	return skb->next;
1047 }
1048 
1049 /**
1050  *	skb_queue_prev - return the prev packet in the queue
1051  *	@list: queue head
1052  *	@skb: current buffer
1053  *
1054  *	Return the prev packet in @list before @skb.  It is only valid to
1055  *	call this if skb_queue_is_first() evaluates to false.
1056  */
skb_queue_prev(const struct sk_buff_head * list,const struct sk_buff * skb)1057 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1058 					     const struct sk_buff *skb)
1059 {
1060 	/* This BUG_ON may seem severe, but if we just return then we
1061 	 * are going to dereference garbage.
1062 	 */
1063 	BUG_ON(skb_queue_is_first(list, skb));
1064 	return skb->prev;
1065 }
1066 
1067 /**
1068  *	skb_get - reference buffer
1069  *	@skb: buffer to reference
1070  *
1071  *	Makes another reference to a socket buffer and returns a pointer
1072  *	to the buffer.
1073  */
skb_get(struct sk_buff * skb)1074 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1075 {
1076 	atomic_inc(&skb->users);
1077 	return skb;
1078 }
1079 
1080 /*
1081  * If users == 1, we are the only owner and are can avoid redundant
1082  * atomic change.
1083  */
1084 
1085 /**
1086  *	skb_cloned - is the buffer a clone
1087  *	@skb: buffer to check
1088  *
1089  *	Returns true if the buffer was generated with skb_clone() and is
1090  *	one of multiple shared copies of the buffer. Cloned buffers are
1091  *	shared data so must not be written to under normal circumstances.
1092  */
skb_cloned(const struct sk_buff * skb)1093 static inline int skb_cloned(const struct sk_buff *skb)
1094 {
1095 	return skb->cloned &&
1096 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1097 }
1098 
skb_unclone(struct sk_buff * skb,gfp_t pri)1099 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1100 {
1101 	might_sleep_if(pri & __GFP_WAIT);
1102 
1103 	if (skb_cloned(skb))
1104 		return pskb_expand_head(skb, 0, 0, pri);
1105 
1106 	return 0;
1107 }
1108 
1109 /**
1110  *	skb_header_cloned - is the header a clone
1111  *	@skb: buffer to check
1112  *
1113  *	Returns true if modifying the header part of the buffer requires
1114  *	the data to be copied.
1115  */
skb_header_cloned(const struct sk_buff * skb)1116 static inline int skb_header_cloned(const struct sk_buff *skb)
1117 {
1118 	int dataref;
1119 
1120 	if (!skb->cloned)
1121 		return 0;
1122 
1123 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1124 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1125 	return dataref != 1;
1126 }
1127 
1128 /**
1129  *	skb_header_release - release reference to header
1130  *	@skb: buffer to operate on
1131  *
1132  *	Drop a reference to the header part of the buffer.  This is done
1133  *	by acquiring a payload reference.  You must not read from the header
1134  *	part of skb->data after this.
1135  *	Note : Check if you can use __skb_header_release() instead.
1136  */
skb_header_release(struct sk_buff * skb)1137 static inline void skb_header_release(struct sk_buff *skb)
1138 {
1139 	BUG_ON(skb->nohdr);
1140 	skb->nohdr = 1;
1141 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1142 }
1143 
1144 /**
1145  *	__skb_header_release - release reference to header
1146  *	@skb: buffer to operate on
1147  *
1148  *	Variant of skb_header_release() assuming skb is private to caller.
1149  *	We can avoid one atomic operation.
1150  */
__skb_header_release(struct sk_buff * skb)1151 static inline void __skb_header_release(struct sk_buff *skb)
1152 {
1153 	skb->nohdr = 1;
1154 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1155 }
1156 
1157 
1158 /**
1159  *	skb_shared - is the buffer shared
1160  *	@skb: buffer to check
1161  *
1162  *	Returns true if more than one person has a reference to this
1163  *	buffer.
1164  */
skb_shared(const struct sk_buff * skb)1165 static inline int skb_shared(const struct sk_buff *skb)
1166 {
1167 	return atomic_read(&skb->users) != 1;
1168 }
1169 
1170 /**
1171  *	skb_share_check - check if buffer is shared and if so clone it
1172  *	@skb: buffer to check
1173  *	@pri: priority for memory allocation
1174  *
1175  *	If the buffer is shared the buffer is cloned and the old copy
1176  *	drops a reference. A new clone with a single reference is returned.
1177  *	If the buffer is not shared the original buffer is returned. When
1178  *	being called from interrupt status or with spinlocks held pri must
1179  *	be GFP_ATOMIC.
1180  *
1181  *	NULL is returned on a memory allocation failure.
1182  */
skb_share_check(struct sk_buff * skb,gfp_t pri)1183 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1184 {
1185 	might_sleep_if(pri & __GFP_WAIT);
1186 	if (skb_shared(skb)) {
1187 		struct sk_buff *nskb = skb_clone(skb, pri);
1188 
1189 		if (likely(nskb))
1190 			consume_skb(skb);
1191 		else
1192 			kfree_skb(skb);
1193 		skb = nskb;
1194 	}
1195 	return skb;
1196 }
1197 
1198 /*
1199  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1200  *	packets to handle cases where we have a local reader and forward
1201  *	and a couple of other messy ones. The normal one is tcpdumping
1202  *	a packet thats being forwarded.
1203  */
1204 
1205 /**
1206  *	skb_unshare - make a copy of a shared buffer
1207  *	@skb: buffer to check
1208  *	@pri: priority for memory allocation
1209  *
1210  *	If the socket buffer is a clone then this function creates a new
1211  *	copy of the data, drops a reference count on the old copy and returns
1212  *	the new copy with the reference count at 1. If the buffer is not a clone
1213  *	the original buffer is returned. When called with a spinlock held or
1214  *	from interrupt state @pri must be %GFP_ATOMIC
1215  *
1216  *	%NULL is returned on a memory allocation failure.
1217  */
skb_unshare(struct sk_buff * skb,gfp_t pri)1218 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1219 					  gfp_t pri)
1220 {
1221 	might_sleep_if(pri & __GFP_WAIT);
1222 	if (skb_cloned(skb)) {
1223 		struct sk_buff *nskb = skb_copy(skb, pri);
1224 
1225 		/* Free our shared copy */
1226 		if (likely(nskb))
1227 			consume_skb(skb);
1228 		else
1229 			kfree_skb(skb);
1230 		skb = nskb;
1231 	}
1232 	return skb;
1233 }
1234 
1235 /**
1236  *	skb_peek - peek at the head of an &sk_buff_head
1237  *	@list_: list to peek at
1238  *
1239  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1240  *	be careful with this one. A peek leaves the buffer on the
1241  *	list and someone else may run off with it. You must hold
1242  *	the appropriate locks or have a private queue to do this.
1243  *
1244  *	Returns %NULL for an empty list or a pointer to the head element.
1245  *	The reference count is not incremented and the reference is therefore
1246  *	volatile. Use with caution.
1247  */
skb_peek(const struct sk_buff_head * list_)1248 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1249 {
1250 	struct sk_buff *skb = list_->next;
1251 
1252 	if (skb == (struct sk_buff *)list_)
1253 		skb = NULL;
1254 	return skb;
1255 }
1256 
1257 /**
1258  *	skb_peek_next - peek skb following the given one from a queue
1259  *	@skb: skb to start from
1260  *	@list_: list to peek at
1261  *
1262  *	Returns %NULL when the end of the list is met or a pointer to the
1263  *	next element. The reference count is not incremented and the
1264  *	reference is therefore volatile. Use with caution.
1265  */
skb_peek_next(struct sk_buff * skb,const struct sk_buff_head * list_)1266 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1267 		const struct sk_buff_head *list_)
1268 {
1269 	struct sk_buff *next = skb->next;
1270 
1271 	if (next == (struct sk_buff *)list_)
1272 		next = NULL;
1273 	return next;
1274 }
1275 
1276 /**
1277  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1278  *	@list_: list to peek at
1279  *
1280  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1281  *	be careful with this one. A peek leaves the buffer on the
1282  *	list and someone else may run off with it. You must hold
1283  *	the appropriate locks or have a private queue to do this.
1284  *
1285  *	Returns %NULL for an empty list or a pointer to the tail element.
1286  *	The reference count is not incremented and the reference is therefore
1287  *	volatile. Use with caution.
1288  */
skb_peek_tail(const struct sk_buff_head * list_)1289 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1290 {
1291 	struct sk_buff *skb = list_->prev;
1292 
1293 	if (skb == (struct sk_buff *)list_)
1294 		skb = NULL;
1295 	return skb;
1296 
1297 }
1298 
1299 /**
1300  *	skb_queue_len	- get queue length
1301  *	@list_: list to measure
1302  *
1303  *	Return the length of an &sk_buff queue.
1304  */
skb_queue_len(const struct sk_buff_head * list_)1305 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1306 {
1307 	return list_->qlen;
1308 }
1309 
1310 /**
1311  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1312  *	@list: queue to initialize
1313  *
1314  *	This initializes only the list and queue length aspects of
1315  *	an sk_buff_head object.  This allows to initialize the list
1316  *	aspects of an sk_buff_head without reinitializing things like
1317  *	the spinlock.  It can also be used for on-stack sk_buff_head
1318  *	objects where the spinlock is known to not be used.
1319  */
__skb_queue_head_init(struct sk_buff_head * list)1320 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1321 {
1322 	list->prev = list->next = (struct sk_buff *)list;
1323 	list->qlen = 0;
1324 }
1325 
1326 /*
1327  * This function creates a split out lock class for each invocation;
1328  * this is needed for now since a whole lot of users of the skb-queue
1329  * infrastructure in drivers have different locking usage (in hardirq)
1330  * than the networking core (in softirq only). In the long run either the
1331  * network layer or drivers should need annotation to consolidate the
1332  * main types of usage into 3 classes.
1333  */
skb_queue_head_init(struct sk_buff_head * list)1334 static inline void skb_queue_head_init(struct sk_buff_head *list)
1335 {
1336 	spin_lock_init(&list->lock);
1337 	__skb_queue_head_init(list);
1338 }
1339 
skb_queue_head_init_class(struct sk_buff_head * list,struct lock_class_key * class)1340 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1341 		struct lock_class_key *class)
1342 {
1343 	skb_queue_head_init(list);
1344 	lockdep_set_class(&list->lock, class);
1345 }
1346 
1347 /*
1348  *	Insert an sk_buff on a list.
1349  *
1350  *	The "__skb_xxxx()" functions are the non-atomic ones that
1351  *	can only be called with interrupts disabled.
1352  */
1353 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1354 		struct sk_buff_head *list);
__skb_insert(struct sk_buff * newsk,struct sk_buff * prev,struct sk_buff * next,struct sk_buff_head * list)1355 static inline void __skb_insert(struct sk_buff *newsk,
1356 				struct sk_buff *prev, struct sk_buff *next,
1357 				struct sk_buff_head *list)
1358 {
1359 	newsk->next = next;
1360 	newsk->prev = prev;
1361 	next->prev  = prev->next = newsk;
1362 	list->qlen++;
1363 }
1364 
__skb_queue_splice(const struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * next)1365 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1366 				      struct sk_buff *prev,
1367 				      struct sk_buff *next)
1368 {
1369 	struct sk_buff *first = list->next;
1370 	struct sk_buff *last = list->prev;
1371 
1372 	first->prev = prev;
1373 	prev->next = first;
1374 
1375 	last->next = next;
1376 	next->prev = last;
1377 }
1378 
1379 /**
1380  *	skb_queue_splice - join two skb lists, this is designed for stacks
1381  *	@list: the new list to add
1382  *	@head: the place to add it in the first list
1383  */
skb_queue_splice(const struct sk_buff_head * list,struct sk_buff_head * head)1384 static inline void skb_queue_splice(const struct sk_buff_head *list,
1385 				    struct sk_buff_head *head)
1386 {
1387 	if (!skb_queue_empty(list)) {
1388 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1389 		head->qlen += list->qlen;
1390 	}
1391 }
1392 
1393 /**
1394  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1395  *	@list: the new list to add
1396  *	@head: the place to add it in the first list
1397  *
1398  *	The list at @list is reinitialised
1399  */
skb_queue_splice_init(struct sk_buff_head * list,struct sk_buff_head * head)1400 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1401 					 struct sk_buff_head *head)
1402 {
1403 	if (!skb_queue_empty(list)) {
1404 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1405 		head->qlen += list->qlen;
1406 		__skb_queue_head_init(list);
1407 	}
1408 }
1409 
1410 /**
1411  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1412  *	@list: the new list to add
1413  *	@head: the place to add it in the first list
1414  */
skb_queue_splice_tail(const struct sk_buff_head * list,struct sk_buff_head * head)1415 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1416 					 struct sk_buff_head *head)
1417 {
1418 	if (!skb_queue_empty(list)) {
1419 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1420 		head->qlen += list->qlen;
1421 	}
1422 }
1423 
1424 /**
1425  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1426  *	@list: the new list to add
1427  *	@head: the place to add it in the first list
1428  *
1429  *	Each of the lists is a queue.
1430  *	The list at @list is reinitialised
1431  */
skb_queue_splice_tail_init(struct sk_buff_head * list,struct sk_buff_head * head)1432 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1433 					      struct sk_buff_head *head)
1434 {
1435 	if (!skb_queue_empty(list)) {
1436 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1437 		head->qlen += list->qlen;
1438 		__skb_queue_head_init(list);
1439 	}
1440 }
1441 
1442 /**
1443  *	__skb_queue_after - queue a buffer at the list head
1444  *	@list: list to use
1445  *	@prev: place after this buffer
1446  *	@newsk: buffer to queue
1447  *
1448  *	Queue a buffer int the middle of a list. This function takes no locks
1449  *	and you must therefore hold required locks before calling it.
1450  *
1451  *	A buffer cannot be placed on two lists at the same time.
1452  */
__skb_queue_after(struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * newsk)1453 static inline void __skb_queue_after(struct sk_buff_head *list,
1454 				     struct sk_buff *prev,
1455 				     struct sk_buff *newsk)
1456 {
1457 	__skb_insert(newsk, prev, prev->next, list);
1458 }
1459 
1460 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1461 		struct sk_buff_head *list);
1462 
__skb_queue_before(struct sk_buff_head * list,struct sk_buff * next,struct sk_buff * newsk)1463 static inline void __skb_queue_before(struct sk_buff_head *list,
1464 				      struct sk_buff *next,
1465 				      struct sk_buff *newsk)
1466 {
1467 	__skb_insert(newsk, next->prev, next, list);
1468 }
1469 
1470 /**
1471  *	__skb_queue_head - queue a buffer at the list head
1472  *	@list: list to use
1473  *	@newsk: buffer to queue
1474  *
1475  *	Queue a buffer at the start of a list. This function takes no locks
1476  *	and you must therefore hold required locks before calling it.
1477  *
1478  *	A buffer cannot be placed on two lists at the same time.
1479  */
1480 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
__skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)1481 static inline void __skb_queue_head(struct sk_buff_head *list,
1482 				    struct sk_buff *newsk)
1483 {
1484 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1485 }
1486 
1487 /**
1488  *	__skb_queue_tail - queue a buffer at the list tail
1489  *	@list: list to use
1490  *	@newsk: buffer to queue
1491  *
1492  *	Queue a buffer at the end of a list. This function takes no locks
1493  *	and you must therefore hold required locks before calling it.
1494  *
1495  *	A buffer cannot be placed on two lists at the same time.
1496  */
1497 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
__skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)1498 static inline void __skb_queue_tail(struct sk_buff_head *list,
1499 				   struct sk_buff *newsk)
1500 {
1501 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1502 }
1503 
1504 /*
1505  * remove sk_buff from list. _Must_ be called atomically, and with
1506  * the list known..
1507  */
1508 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
__skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)1509 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1510 {
1511 	struct sk_buff *next, *prev;
1512 
1513 	list->qlen--;
1514 	next	   = skb->next;
1515 	prev	   = skb->prev;
1516 	skb->next  = skb->prev = NULL;
1517 	next->prev = prev;
1518 	prev->next = next;
1519 }
1520 
1521 /**
1522  *	__skb_dequeue - remove from the head of the queue
1523  *	@list: list to dequeue from
1524  *
1525  *	Remove the head of the list. This function does not take any locks
1526  *	so must be used with appropriate locks held only. The head item is
1527  *	returned or %NULL if the list is empty.
1528  */
1529 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
__skb_dequeue(struct sk_buff_head * list)1530 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1531 {
1532 	struct sk_buff *skb = skb_peek(list);
1533 	if (skb)
1534 		__skb_unlink(skb, list);
1535 	return skb;
1536 }
1537 
1538 /**
1539  *	__skb_dequeue_tail - remove from the tail of the queue
1540  *	@list: list to dequeue from
1541  *
1542  *	Remove the tail of the list. This function does not take any locks
1543  *	so must be used with appropriate locks held only. The tail item is
1544  *	returned or %NULL if the list is empty.
1545  */
1546 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
__skb_dequeue_tail(struct sk_buff_head * list)1547 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1548 {
1549 	struct sk_buff *skb = skb_peek_tail(list);
1550 	if (skb)
1551 		__skb_unlink(skb, list);
1552 	return skb;
1553 }
1554 
1555 
skb_is_nonlinear(const struct sk_buff * skb)1556 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1557 {
1558 	return skb->data_len;
1559 }
1560 
skb_headlen(const struct sk_buff * skb)1561 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1562 {
1563 	return skb->len - skb->data_len;
1564 }
1565 
skb_pagelen(const struct sk_buff * skb)1566 static inline int skb_pagelen(const struct sk_buff *skb)
1567 {
1568 	int i, len = 0;
1569 
1570 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1571 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1572 	return len + skb_headlen(skb);
1573 }
1574 
1575 /**
1576  * __skb_fill_page_desc - initialise a paged fragment in an skb
1577  * @skb: buffer containing fragment to be initialised
1578  * @i: paged fragment index to initialise
1579  * @page: the page to use for this fragment
1580  * @off: the offset to the data with @page
1581  * @size: the length of the data
1582  *
1583  * Initialises the @i'th fragment of @skb to point to &size bytes at
1584  * offset @off within @page.
1585  *
1586  * Does not take any additional reference on the fragment.
1587  */
__skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)1588 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1589 					struct page *page, int off, int size)
1590 {
1591 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1592 
1593 	/*
1594 	 * Propagate page pfmemalloc to the skb if we can. The problem is
1595 	 * that not all callers have unique ownership of the page but rely
1596 	 * on page_is_pfmemalloc doing the right thing(tm).
1597 	 */
1598 	frag->page.p		  = page;
1599 	frag->page_offset	  = off;
1600 	skb_frag_size_set(frag, size);
1601 
1602 	page = compound_head(page);
1603 	if (page_is_pfmemalloc(page))
1604 		skb->pfmemalloc	= true;
1605 }
1606 
1607 /**
1608  * skb_fill_page_desc - initialise a paged fragment in an skb
1609  * @skb: buffer containing fragment to be initialised
1610  * @i: paged fragment index to initialise
1611  * @page: the page to use for this fragment
1612  * @off: the offset to the data with @page
1613  * @size: the length of the data
1614  *
1615  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1616  * @skb to point to @size bytes at offset @off within @page. In
1617  * addition updates @skb such that @i is the last fragment.
1618  *
1619  * Does not take any additional reference on the fragment.
1620  */
skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)1621 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1622 				      struct page *page, int off, int size)
1623 {
1624 	__skb_fill_page_desc(skb, i, page, off, size);
1625 	skb_shinfo(skb)->nr_frags = i + 1;
1626 }
1627 
1628 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1629 		     int size, unsigned int truesize);
1630 
1631 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1632 			  unsigned int truesize);
1633 
1634 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1635 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
1636 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1637 
1638 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_tail_pointer(const struct sk_buff * skb)1639 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1640 {
1641 	return skb->head + skb->tail;
1642 }
1643 
skb_reset_tail_pointer(struct sk_buff * skb)1644 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1645 {
1646 	skb->tail = skb->data - skb->head;
1647 }
1648 
skb_set_tail_pointer(struct sk_buff * skb,const int offset)1649 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1650 {
1651 	skb_reset_tail_pointer(skb);
1652 	skb->tail += offset;
1653 }
1654 
1655 #else /* NET_SKBUFF_DATA_USES_OFFSET */
skb_tail_pointer(const struct sk_buff * skb)1656 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1657 {
1658 	return skb->tail;
1659 }
1660 
skb_reset_tail_pointer(struct sk_buff * skb)1661 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1662 {
1663 	skb->tail = skb->data;
1664 }
1665 
skb_set_tail_pointer(struct sk_buff * skb,const int offset)1666 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1667 {
1668 	skb->tail = skb->data + offset;
1669 }
1670 
1671 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1672 
1673 /*
1674  *	Add data to an sk_buff
1675  */
1676 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
1677 unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
__skb_put(struct sk_buff * skb,unsigned int len)1678 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1679 {
1680 	unsigned char *tmp = skb_tail_pointer(skb);
1681 	SKB_LINEAR_ASSERT(skb);
1682 	skb->tail += len;
1683 	skb->len  += len;
1684 	return tmp;
1685 }
1686 
1687 unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
__skb_push(struct sk_buff * skb,unsigned int len)1688 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1689 {
1690 	skb->data -= len;
1691 	skb->len  += len;
1692 	return skb->data;
1693 }
1694 
1695 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
__skb_pull(struct sk_buff * skb,unsigned int len)1696 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1697 {
1698 	skb->len -= len;
1699 	BUG_ON(skb->len < skb->data_len);
1700 	return skb->data += len;
1701 }
1702 
skb_pull_inline(struct sk_buff * skb,unsigned int len)1703 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1704 {
1705 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1706 }
1707 
1708 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1709 
__pskb_pull(struct sk_buff * skb,unsigned int len)1710 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1711 {
1712 	if (len > skb_headlen(skb) &&
1713 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1714 		return NULL;
1715 	skb->len -= len;
1716 	return skb->data += len;
1717 }
1718 
pskb_pull(struct sk_buff * skb,unsigned int len)1719 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1720 {
1721 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1722 }
1723 
pskb_may_pull(struct sk_buff * skb,unsigned int len)1724 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1725 {
1726 	if (likely(len <= skb_headlen(skb)))
1727 		return 1;
1728 	if (unlikely(len > skb->len))
1729 		return 0;
1730 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1731 }
1732 
1733 /**
1734  *	skb_headroom - bytes at buffer head
1735  *	@skb: buffer to check
1736  *
1737  *	Return the number of bytes of free space at the head of an &sk_buff.
1738  */
skb_headroom(const struct sk_buff * skb)1739 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1740 {
1741 	return skb->data - skb->head;
1742 }
1743 
1744 /**
1745  *	skb_tailroom - bytes at buffer end
1746  *	@skb: buffer to check
1747  *
1748  *	Return the number of bytes of free space at the tail of an sk_buff
1749  */
skb_tailroom(const struct sk_buff * skb)1750 static inline int skb_tailroom(const struct sk_buff *skb)
1751 {
1752 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1753 }
1754 
1755 /**
1756  *	skb_availroom - bytes at buffer end
1757  *	@skb: buffer to check
1758  *
1759  *	Return the number of bytes of free space at the tail of an sk_buff
1760  *	allocated by sk_stream_alloc()
1761  */
skb_availroom(const struct sk_buff * skb)1762 static inline int skb_availroom(const struct sk_buff *skb)
1763 {
1764 	if (skb_is_nonlinear(skb))
1765 		return 0;
1766 
1767 	return skb->end - skb->tail - skb->reserved_tailroom;
1768 }
1769 
1770 /**
1771  *	skb_reserve - adjust headroom
1772  *	@skb: buffer to alter
1773  *	@len: bytes to move
1774  *
1775  *	Increase the headroom of an empty &sk_buff by reducing the tail
1776  *	room. This is only allowed for an empty buffer.
1777  */
skb_reserve(struct sk_buff * skb,int len)1778 static inline void skb_reserve(struct sk_buff *skb, int len)
1779 {
1780 	skb->data += len;
1781 	skb->tail += len;
1782 }
1783 
1784 #define ENCAP_TYPE_ETHER	0
1785 #define ENCAP_TYPE_IPPROTO	1
1786 
skb_set_inner_protocol(struct sk_buff * skb,__be16 protocol)1787 static inline void skb_set_inner_protocol(struct sk_buff *skb,
1788 					  __be16 protocol)
1789 {
1790 	skb->inner_protocol = protocol;
1791 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
1792 }
1793 
skb_set_inner_ipproto(struct sk_buff * skb,__u8 ipproto)1794 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
1795 					 __u8 ipproto)
1796 {
1797 	skb->inner_ipproto = ipproto;
1798 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
1799 }
1800 
skb_reset_inner_headers(struct sk_buff * skb)1801 static inline void skb_reset_inner_headers(struct sk_buff *skb)
1802 {
1803 	skb->inner_mac_header = skb->mac_header;
1804 	skb->inner_network_header = skb->network_header;
1805 	skb->inner_transport_header = skb->transport_header;
1806 }
1807 
skb_reset_mac_len(struct sk_buff * skb)1808 static inline void skb_reset_mac_len(struct sk_buff *skb)
1809 {
1810 	skb->mac_len = skb->network_header - skb->mac_header;
1811 }
1812 
skb_inner_transport_header(const struct sk_buff * skb)1813 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
1814 							*skb)
1815 {
1816 	return skb->head + skb->inner_transport_header;
1817 }
1818 
skb_reset_inner_transport_header(struct sk_buff * skb)1819 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
1820 {
1821 	skb->inner_transport_header = skb->data - skb->head;
1822 }
1823 
skb_set_inner_transport_header(struct sk_buff * skb,const int offset)1824 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
1825 						   const int offset)
1826 {
1827 	skb_reset_inner_transport_header(skb);
1828 	skb->inner_transport_header += offset;
1829 }
1830 
skb_inner_network_header(const struct sk_buff * skb)1831 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
1832 {
1833 	return skb->head + skb->inner_network_header;
1834 }
1835 
skb_reset_inner_network_header(struct sk_buff * skb)1836 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
1837 {
1838 	skb->inner_network_header = skb->data - skb->head;
1839 }
1840 
skb_set_inner_network_header(struct sk_buff * skb,const int offset)1841 static inline void skb_set_inner_network_header(struct sk_buff *skb,
1842 						const int offset)
1843 {
1844 	skb_reset_inner_network_header(skb);
1845 	skb->inner_network_header += offset;
1846 }
1847 
skb_inner_mac_header(const struct sk_buff * skb)1848 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
1849 {
1850 	return skb->head + skb->inner_mac_header;
1851 }
1852 
skb_reset_inner_mac_header(struct sk_buff * skb)1853 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
1854 {
1855 	skb->inner_mac_header = skb->data - skb->head;
1856 }
1857 
skb_set_inner_mac_header(struct sk_buff * skb,const int offset)1858 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
1859 					    const int offset)
1860 {
1861 	skb_reset_inner_mac_header(skb);
1862 	skb->inner_mac_header += offset;
1863 }
skb_transport_header_was_set(const struct sk_buff * skb)1864 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
1865 {
1866 	return skb->transport_header != (typeof(skb->transport_header))~0U;
1867 }
1868 
skb_transport_header(const struct sk_buff * skb)1869 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1870 {
1871 	return skb->head + skb->transport_header;
1872 }
1873 
skb_reset_transport_header(struct sk_buff * skb)1874 static inline void skb_reset_transport_header(struct sk_buff *skb)
1875 {
1876 	skb->transport_header = skb->data - skb->head;
1877 }
1878 
skb_set_transport_header(struct sk_buff * skb,const int offset)1879 static inline void skb_set_transport_header(struct sk_buff *skb,
1880 					    const int offset)
1881 {
1882 	skb_reset_transport_header(skb);
1883 	skb->transport_header += offset;
1884 }
1885 
skb_network_header(const struct sk_buff * skb)1886 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1887 {
1888 	return skb->head + skb->network_header;
1889 }
1890 
skb_reset_network_header(struct sk_buff * skb)1891 static inline void skb_reset_network_header(struct sk_buff *skb)
1892 {
1893 	skb->network_header = skb->data - skb->head;
1894 }
1895 
skb_set_network_header(struct sk_buff * skb,const int offset)1896 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1897 {
1898 	skb_reset_network_header(skb);
1899 	skb->network_header += offset;
1900 }
1901 
skb_mac_header(const struct sk_buff * skb)1902 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1903 {
1904 	return skb->head + skb->mac_header;
1905 }
1906 
skb_mac_header_was_set(const struct sk_buff * skb)1907 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1908 {
1909 	return skb->mac_header != (typeof(skb->mac_header))~0U;
1910 }
1911 
skb_reset_mac_header(struct sk_buff * skb)1912 static inline void skb_reset_mac_header(struct sk_buff *skb)
1913 {
1914 	skb->mac_header = skb->data - skb->head;
1915 }
1916 
skb_set_mac_header(struct sk_buff * skb,const int offset)1917 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1918 {
1919 	skb_reset_mac_header(skb);
1920 	skb->mac_header += offset;
1921 }
1922 
skb_pop_mac_header(struct sk_buff * skb)1923 static inline void skb_pop_mac_header(struct sk_buff *skb)
1924 {
1925 	skb->mac_header = skb->network_header;
1926 }
1927 
skb_probe_transport_header(struct sk_buff * skb,const int offset_hint)1928 static inline void skb_probe_transport_header(struct sk_buff *skb,
1929 					      const int offset_hint)
1930 {
1931 	struct flow_keys keys;
1932 
1933 	if (skb_transport_header_was_set(skb))
1934 		return;
1935 	else if (skb_flow_dissect(skb, &keys))
1936 		skb_set_transport_header(skb, keys.thoff);
1937 	else
1938 		skb_set_transport_header(skb, offset_hint);
1939 }
1940 
skb_mac_header_rebuild(struct sk_buff * skb)1941 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
1942 {
1943 	if (skb_mac_header_was_set(skb)) {
1944 		const unsigned char *old_mac = skb_mac_header(skb);
1945 
1946 		skb_set_mac_header(skb, -skb->mac_len);
1947 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
1948 	}
1949 }
1950 
skb_checksum_start_offset(const struct sk_buff * skb)1951 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1952 {
1953 	return skb->csum_start - skb_headroom(skb);
1954 }
1955 
skb_transport_offset(const struct sk_buff * skb)1956 static inline int skb_transport_offset(const struct sk_buff *skb)
1957 {
1958 	return skb_transport_header(skb) - skb->data;
1959 }
1960 
skb_network_header_len(const struct sk_buff * skb)1961 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1962 {
1963 	return skb->transport_header - skb->network_header;
1964 }
1965 
skb_inner_network_header_len(const struct sk_buff * skb)1966 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
1967 {
1968 	return skb->inner_transport_header - skb->inner_network_header;
1969 }
1970 
skb_network_offset(const struct sk_buff * skb)1971 static inline int skb_network_offset(const struct sk_buff *skb)
1972 {
1973 	return skb_network_header(skb) - skb->data;
1974 }
1975 
skb_inner_network_offset(const struct sk_buff * skb)1976 static inline int skb_inner_network_offset(const struct sk_buff *skb)
1977 {
1978 	return skb_inner_network_header(skb) - skb->data;
1979 }
1980 
pskb_network_may_pull(struct sk_buff * skb,unsigned int len)1981 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1982 {
1983 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
1984 }
1985 
1986 /*
1987  * CPUs often take a performance hit when accessing unaligned memory
1988  * locations. The actual performance hit varies, it can be small if the
1989  * hardware handles it or large if we have to take an exception and fix it
1990  * in software.
1991  *
1992  * Since an ethernet header is 14 bytes network drivers often end up with
1993  * the IP header at an unaligned offset. The IP header can be aligned by
1994  * shifting the start of the packet by 2 bytes. Drivers should do this
1995  * with:
1996  *
1997  * skb_reserve(skb, NET_IP_ALIGN);
1998  *
1999  * The downside to this alignment of the IP header is that the DMA is now
2000  * unaligned. On some architectures the cost of an unaligned DMA is high
2001  * and this cost outweighs the gains made by aligning the IP header.
2002  *
2003  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2004  * to be overridden.
2005  */
2006 #ifndef NET_IP_ALIGN
2007 #define NET_IP_ALIGN	2
2008 #endif
2009 
2010 /*
2011  * The networking layer reserves some headroom in skb data (via
2012  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2013  * the header has to grow. In the default case, if the header has to grow
2014  * 32 bytes or less we avoid the reallocation.
2015  *
2016  * Unfortunately this headroom changes the DMA alignment of the resulting
2017  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2018  * on some architectures. An architecture can override this value,
2019  * perhaps setting it to a cacheline in size (since that will maintain
2020  * cacheline alignment of the DMA). It must be a power of 2.
2021  *
2022  * Various parts of the networking layer expect at least 32 bytes of
2023  * headroom, you should not reduce this.
2024  *
2025  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2026  * to reduce average number of cache lines per packet.
2027  * get_rps_cpus() for example only access one 64 bytes aligned block :
2028  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2029  */
2030 #ifndef NET_SKB_PAD
2031 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2032 #endif
2033 
2034 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2035 
__skb_trim(struct sk_buff * skb,unsigned int len)2036 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2037 {
2038 	if (unlikely(skb_is_nonlinear(skb))) {
2039 		WARN_ON(1);
2040 		return;
2041 	}
2042 	skb->len = len;
2043 	skb_set_tail_pointer(skb, len);
2044 }
2045 
2046 void skb_trim(struct sk_buff *skb, unsigned int len);
2047 
__pskb_trim(struct sk_buff * skb,unsigned int len)2048 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2049 {
2050 	if (skb->data_len)
2051 		return ___pskb_trim(skb, len);
2052 	__skb_trim(skb, len);
2053 	return 0;
2054 }
2055 
pskb_trim(struct sk_buff * skb,unsigned int len)2056 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2057 {
2058 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2059 }
2060 
2061 /**
2062  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2063  *	@skb: buffer to alter
2064  *	@len: new length
2065  *
2066  *	This is identical to pskb_trim except that the caller knows that
2067  *	the skb is not cloned so we should never get an error due to out-
2068  *	of-memory.
2069  */
pskb_trim_unique(struct sk_buff * skb,unsigned int len)2070 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2071 {
2072 	int err = pskb_trim(skb, len);
2073 	BUG_ON(err);
2074 }
2075 
2076 /**
2077  *	skb_orphan - orphan a buffer
2078  *	@skb: buffer to orphan
2079  *
2080  *	If a buffer currently has an owner then we call the owner's
2081  *	destructor function and make the @skb unowned. The buffer continues
2082  *	to exist but is no longer charged to its former owner.
2083  */
skb_orphan(struct sk_buff * skb)2084 static inline void skb_orphan(struct sk_buff *skb)
2085 {
2086 	if (skb->destructor) {
2087 		skb->destructor(skb);
2088 		skb->destructor = NULL;
2089 		skb->sk		= NULL;
2090 	} else {
2091 		BUG_ON(skb->sk);
2092 	}
2093 }
2094 
2095 /**
2096  *	skb_orphan_frags - orphan the frags contained in a buffer
2097  *	@skb: buffer to orphan frags from
2098  *	@gfp_mask: allocation mask for replacement pages
2099  *
2100  *	For each frag in the SKB which needs a destructor (i.e. has an
2101  *	owner) create a copy of that frag and release the original
2102  *	page by calling the destructor.
2103  */
skb_orphan_frags(struct sk_buff * skb,gfp_t gfp_mask)2104 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2105 {
2106 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
2107 		return 0;
2108 	return skb_copy_ubufs(skb, gfp_mask);
2109 }
2110 
2111 /**
2112  *	__skb_queue_purge - empty a list
2113  *	@list: list to empty
2114  *
2115  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2116  *	the list and one reference dropped. This function does not take the
2117  *	list lock and the caller must hold the relevant locks to use it.
2118  */
2119 void skb_queue_purge(struct sk_buff_head *list);
__skb_queue_purge(struct sk_buff_head * list)2120 static inline void __skb_queue_purge(struct sk_buff_head *list)
2121 {
2122 	struct sk_buff *skb;
2123 	while ((skb = __skb_dequeue(list)) != NULL)
2124 		kfree_skb(skb);
2125 }
2126 
2127 #define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768)
2128 #define NETDEV_FRAG_PAGE_MAX_SIZE  (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER)
2129 #define NETDEV_PAGECNT_MAX_BIAS	   NETDEV_FRAG_PAGE_MAX_SIZE
2130 
2131 void *netdev_alloc_frag(unsigned int fragsz);
2132 
2133 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2134 				   gfp_t gfp_mask);
2135 
2136 /**
2137  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2138  *	@dev: network device to receive on
2139  *	@length: length to allocate
2140  *
2141  *	Allocate a new &sk_buff and assign it a usage count of one. The
2142  *	buffer has unspecified headroom built in. Users should allocate
2143  *	the headroom they think they need without accounting for the
2144  *	built in space. The built in space is used for optimisations.
2145  *
2146  *	%NULL is returned if there is no free memory. Although this function
2147  *	allocates memory it can be called from an interrupt.
2148  */
netdev_alloc_skb(struct net_device * dev,unsigned int length)2149 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2150 					       unsigned int length)
2151 {
2152 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2153 }
2154 
2155 /* legacy helper around __netdev_alloc_skb() */
__dev_alloc_skb(unsigned int length,gfp_t gfp_mask)2156 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2157 					      gfp_t gfp_mask)
2158 {
2159 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2160 }
2161 
2162 /* legacy helper around netdev_alloc_skb() */
dev_alloc_skb(unsigned int length)2163 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2164 {
2165 	return netdev_alloc_skb(NULL, length);
2166 }
2167 
2168 
__netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length,gfp_t gfp)2169 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2170 		unsigned int length, gfp_t gfp)
2171 {
2172 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2173 
2174 	if (NET_IP_ALIGN && skb)
2175 		skb_reserve(skb, NET_IP_ALIGN);
2176 	return skb;
2177 }
2178 
netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length)2179 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2180 		unsigned int length)
2181 {
2182 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2183 }
2184 
2185 void *napi_alloc_frag(unsigned int fragsz);
2186 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2187 				 unsigned int length, gfp_t gfp_mask);
napi_alloc_skb(struct napi_struct * napi,unsigned int length)2188 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2189 					     unsigned int length)
2190 {
2191 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2192 }
2193 
2194 /**
2195  * __dev_alloc_pages - allocate page for network Rx
2196  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2197  * @order: size of the allocation
2198  *
2199  * Allocate a new page.
2200  *
2201  * %NULL is returned if there is no free memory.
2202 */
__dev_alloc_pages(gfp_t gfp_mask,unsigned int order)2203 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2204 					     unsigned int order)
2205 {
2206 	/* This piece of code contains several assumptions.
2207 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2208 	 * 2.  The expectation is the user wants a compound page.
2209 	 * 3.  If requesting a order 0 page it will not be compound
2210 	 *     due to the check to see if order has a value in prep_new_page
2211 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2212 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2213 	 */
2214 	gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;
2215 
2216 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2217 }
2218 
dev_alloc_pages(unsigned int order)2219 static inline struct page *dev_alloc_pages(unsigned int order)
2220 {
2221 	return __dev_alloc_pages(GFP_ATOMIC, order);
2222 }
2223 
2224 /**
2225  * __dev_alloc_page - allocate a page for network Rx
2226  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2227  *
2228  * Allocate a new page.
2229  *
2230  * %NULL is returned if there is no free memory.
2231  */
__dev_alloc_page(gfp_t gfp_mask)2232 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2233 {
2234 	return __dev_alloc_pages(gfp_mask, 0);
2235 }
2236 
dev_alloc_page(void)2237 static inline struct page *dev_alloc_page(void)
2238 {
2239 	return __dev_alloc_page(GFP_ATOMIC);
2240 }
2241 
2242 /**
2243  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2244  *	@page: The page that was allocated from skb_alloc_page
2245  *	@skb: The skb that may need pfmemalloc set
2246  */
skb_propagate_pfmemalloc(struct page * page,struct sk_buff * skb)2247 static inline void skb_propagate_pfmemalloc(struct page *page,
2248 					     struct sk_buff *skb)
2249 {
2250 	if (page_is_pfmemalloc(page))
2251 		skb->pfmemalloc = true;
2252 }
2253 
2254 /**
2255  * skb_frag_page - retrieve the page referred to by a paged fragment
2256  * @frag: the paged fragment
2257  *
2258  * Returns the &struct page associated with @frag.
2259  */
skb_frag_page(const skb_frag_t * frag)2260 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2261 {
2262 	return frag->page.p;
2263 }
2264 
2265 /**
2266  * __skb_frag_ref - take an addition reference on a paged fragment.
2267  * @frag: the paged fragment
2268  *
2269  * Takes an additional reference on the paged fragment @frag.
2270  */
__skb_frag_ref(skb_frag_t * frag)2271 static inline void __skb_frag_ref(skb_frag_t *frag)
2272 {
2273 	get_page(skb_frag_page(frag));
2274 }
2275 
2276 /**
2277  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2278  * @skb: the buffer
2279  * @f: the fragment offset.
2280  *
2281  * Takes an additional reference on the @f'th paged fragment of @skb.
2282  */
skb_frag_ref(struct sk_buff * skb,int f)2283 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2284 {
2285 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2286 }
2287 
2288 /**
2289  * __skb_frag_unref - release a reference on a paged fragment.
2290  * @frag: the paged fragment
2291  *
2292  * Releases a reference on the paged fragment @frag.
2293  */
__skb_frag_unref(skb_frag_t * frag)2294 static inline void __skb_frag_unref(skb_frag_t *frag)
2295 {
2296 	put_page(skb_frag_page(frag));
2297 }
2298 
2299 /**
2300  * skb_frag_unref - release a reference on a paged fragment of an skb.
2301  * @skb: the buffer
2302  * @f: the fragment offset
2303  *
2304  * Releases a reference on the @f'th paged fragment of @skb.
2305  */
skb_frag_unref(struct sk_buff * skb,int f)2306 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2307 {
2308 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2309 }
2310 
2311 /**
2312  * skb_frag_address - gets the address of the data contained in a paged fragment
2313  * @frag: the paged fragment buffer
2314  *
2315  * Returns the address of the data within @frag. The page must already
2316  * be mapped.
2317  */
skb_frag_address(const skb_frag_t * frag)2318 static inline void *skb_frag_address(const skb_frag_t *frag)
2319 {
2320 	return page_address(skb_frag_page(frag)) + frag->page_offset;
2321 }
2322 
2323 /**
2324  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2325  * @frag: the paged fragment buffer
2326  *
2327  * Returns the address of the data within @frag. Checks that the page
2328  * is mapped and returns %NULL otherwise.
2329  */
skb_frag_address_safe(const skb_frag_t * frag)2330 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2331 {
2332 	void *ptr = page_address(skb_frag_page(frag));
2333 	if (unlikely(!ptr))
2334 		return NULL;
2335 
2336 	return ptr + frag->page_offset;
2337 }
2338 
2339 /**
2340  * __skb_frag_set_page - sets the page contained in a paged fragment
2341  * @frag: the paged fragment
2342  * @page: the page to set
2343  *
2344  * Sets the fragment @frag to contain @page.
2345  */
__skb_frag_set_page(skb_frag_t * frag,struct page * page)2346 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2347 {
2348 	frag->page.p = page;
2349 }
2350 
2351 /**
2352  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2353  * @skb: the buffer
2354  * @f: the fragment offset
2355  * @page: the page to set
2356  *
2357  * Sets the @f'th fragment of @skb to contain @page.
2358  */
skb_frag_set_page(struct sk_buff * skb,int f,struct page * page)2359 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2360 				     struct page *page)
2361 {
2362 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2363 }
2364 
2365 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2366 
2367 /**
2368  * skb_frag_dma_map - maps a paged fragment via the DMA API
2369  * @dev: the device to map the fragment to
2370  * @frag: the paged fragment to map
2371  * @offset: the offset within the fragment (starting at the
2372  *          fragment's own offset)
2373  * @size: the number of bytes to map
2374  * @dir: the direction of the mapping (%PCI_DMA_*)
2375  *
2376  * Maps the page associated with @frag to @device.
2377  */
skb_frag_dma_map(struct device * dev,const skb_frag_t * frag,size_t offset,size_t size,enum dma_data_direction dir)2378 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2379 					  const skb_frag_t *frag,
2380 					  size_t offset, size_t size,
2381 					  enum dma_data_direction dir)
2382 {
2383 	return dma_map_page(dev, skb_frag_page(frag),
2384 			    frag->page_offset + offset, size, dir);
2385 }
2386 
pskb_copy(struct sk_buff * skb,gfp_t gfp_mask)2387 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2388 					gfp_t gfp_mask)
2389 {
2390 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2391 }
2392 
2393 
pskb_copy_for_clone(struct sk_buff * skb,gfp_t gfp_mask)2394 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2395 						  gfp_t gfp_mask)
2396 {
2397 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2398 }
2399 
2400 
2401 /**
2402  *	skb_clone_writable - is the header of a clone writable
2403  *	@skb: buffer to check
2404  *	@len: length up to which to write
2405  *
2406  *	Returns true if modifying the header part of the cloned buffer
2407  *	does not requires the data to be copied.
2408  */
skb_clone_writable(const struct sk_buff * skb,unsigned int len)2409 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2410 {
2411 	return !skb_header_cloned(skb) &&
2412 	       skb_headroom(skb) + len <= skb->hdr_len;
2413 }
2414 
__skb_cow(struct sk_buff * skb,unsigned int headroom,int cloned)2415 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2416 			    int cloned)
2417 {
2418 	int delta = 0;
2419 
2420 	if (headroom > skb_headroom(skb))
2421 		delta = headroom - skb_headroom(skb);
2422 
2423 	if (delta || cloned)
2424 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2425 					GFP_ATOMIC);
2426 	return 0;
2427 }
2428 
2429 /**
2430  *	skb_cow - copy header of skb when it is required
2431  *	@skb: buffer to cow
2432  *	@headroom: needed headroom
2433  *
2434  *	If the skb passed lacks sufficient headroom or its data part
2435  *	is shared, data is reallocated. If reallocation fails, an error
2436  *	is returned and original skb is not changed.
2437  *
2438  *	The result is skb with writable area skb->head...skb->tail
2439  *	and at least @headroom of space at head.
2440  */
skb_cow(struct sk_buff * skb,unsigned int headroom)2441 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2442 {
2443 	return __skb_cow(skb, headroom, skb_cloned(skb));
2444 }
2445 
2446 /**
2447  *	skb_cow_head - skb_cow but only making the head writable
2448  *	@skb: buffer to cow
2449  *	@headroom: needed headroom
2450  *
2451  *	This function is identical to skb_cow except that we replace the
2452  *	skb_cloned check by skb_header_cloned.  It should be used when
2453  *	you only need to push on some header and do not need to modify
2454  *	the data.
2455  */
skb_cow_head(struct sk_buff * skb,unsigned int headroom)2456 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2457 {
2458 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
2459 }
2460 
2461 /**
2462  *	skb_padto	- pad an skbuff up to a minimal size
2463  *	@skb: buffer to pad
2464  *	@len: minimal length
2465  *
2466  *	Pads up a buffer to ensure the trailing bytes exist and are
2467  *	blanked. If the buffer already contains sufficient data it
2468  *	is untouched. Otherwise it is extended. Returns zero on
2469  *	success. The skb is freed on error.
2470  */
skb_padto(struct sk_buff * skb,unsigned int len)2471 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2472 {
2473 	unsigned int size = skb->len;
2474 	if (likely(size >= len))
2475 		return 0;
2476 	return skb_pad(skb, len - size);
2477 }
2478 
2479 /**
2480  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
2481  *	@skb: buffer to pad
2482  *	@len: minimal length
2483  *
2484  *	Pads up a buffer to ensure the trailing bytes exist and are
2485  *	blanked. If the buffer already contains sufficient data it
2486  *	is untouched. Otherwise it is extended. Returns zero on
2487  *	success. The skb is freed on error.
2488  */
skb_put_padto(struct sk_buff * skb,unsigned int len)2489 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2490 {
2491 	unsigned int size = skb->len;
2492 
2493 	if (unlikely(size < len)) {
2494 		len -= size;
2495 		if (skb_pad(skb, len))
2496 			return -ENOMEM;
2497 		__skb_put(skb, len);
2498 	}
2499 	return 0;
2500 }
2501 
skb_add_data(struct sk_buff * skb,struct iov_iter * from,int copy)2502 static inline int skb_add_data(struct sk_buff *skb,
2503 			       struct iov_iter *from, int copy)
2504 {
2505 	const int off = skb->len;
2506 
2507 	if (skb->ip_summed == CHECKSUM_NONE) {
2508 		__wsum csum = 0;
2509 		if (csum_and_copy_from_iter(skb_put(skb, copy), copy,
2510 					    &csum, from) == copy) {
2511 			skb->csum = csum_block_add(skb->csum, csum, off);
2512 			return 0;
2513 		}
2514 	} else if (copy_from_iter(skb_put(skb, copy), copy, from) == copy)
2515 		return 0;
2516 
2517 	__skb_trim(skb, off);
2518 	return -EFAULT;
2519 }
2520 
skb_can_coalesce(struct sk_buff * skb,int i,const struct page * page,int off)2521 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2522 				    const struct page *page, int off)
2523 {
2524 	if (i) {
2525 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2526 
2527 		return page == skb_frag_page(frag) &&
2528 		       off == frag->page_offset + skb_frag_size(frag);
2529 	}
2530 	return false;
2531 }
2532 
__skb_linearize(struct sk_buff * skb)2533 static inline int __skb_linearize(struct sk_buff *skb)
2534 {
2535 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2536 }
2537 
2538 /**
2539  *	skb_linearize - convert paged skb to linear one
2540  *	@skb: buffer to linarize
2541  *
2542  *	If there is no free memory -ENOMEM is returned, otherwise zero
2543  *	is returned and the old skb data released.
2544  */
skb_linearize(struct sk_buff * skb)2545 static inline int skb_linearize(struct sk_buff *skb)
2546 {
2547 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2548 }
2549 
2550 /**
2551  * skb_has_shared_frag - can any frag be overwritten
2552  * @skb: buffer to test
2553  *
2554  * Return true if the skb has at least one frag that might be modified
2555  * by an external entity (as in vmsplice()/sendfile())
2556  */
skb_has_shared_frag(const struct sk_buff * skb)2557 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2558 {
2559 	return skb_is_nonlinear(skb) &&
2560 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2561 }
2562 
2563 /**
2564  *	skb_linearize_cow - make sure skb is linear and writable
2565  *	@skb: buffer to process
2566  *
2567  *	If there is no free memory -ENOMEM is returned, otherwise zero
2568  *	is returned and the old skb data released.
2569  */
skb_linearize_cow(struct sk_buff * skb)2570 static inline int skb_linearize_cow(struct sk_buff *skb)
2571 {
2572 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2573 	       __skb_linearize(skb) : 0;
2574 }
2575 
2576 /**
2577  *	skb_postpull_rcsum - update checksum for received skb after pull
2578  *	@skb: buffer to update
2579  *	@start: start of data before pull
2580  *	@len: length of data pulled
2581  *
2582  *	After doing a pull on a received packet, you need to call this to
2583  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2584  *	CHECKSUM_NONE so that it can be recomputed from scratch.
2585  */
2586 
skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)2587 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2588 				      const void *start, unsigned int len)
2589 {
2590 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2591 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2592 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
2593 		 skb_checksum_start_offset(skb) < 0)
2594 		skb->ip_summed = CHECKSUM_NONE;
2595 }
2596 
2597 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2598 
2599 /**
2600  *	pskb_trim_rcsum - trim received skb and update checksum
2601  *	@skb: buffer to trim
2602  *	@len: new length
2603  *
2604  *	This is exactly the same as pskb_trim except that it ensures the
2605  *	checksum of received packets are still valid after the operation.
2606  */
2607 
pskb_trim_rcsum(struct sk_buff * skb,unsigned int len)2608 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2609 {
2610 	if (likely(len >= skb->len))
2611 		return 0;
2612 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2613 		skb->ip_summed = CHECKSUM_NONE;
2614 	return __pskb_trim(skb, len);
2615 }
2616 
2617 #define skb_queue_walk(queue, skb) \
2618 		for (skb = (queue)->next;					\
2619 		     skb != (struct sk_buff *)(queue);				\
2620 		     skb = skb->next)
2621 
2622 #define skb_queue_walk_safe(queue, skb, tmp)					\
2623 		for (skb = (queue)->next, tmp = skb->next;			\
2624 		     skb != (struct sk_buff *)(queue);				\
2625 		     skb = tmp, tmp = skb->next)
2626 
2627 #define skb_queue_walk_from(queue, skb)						\
2628 		for (; skb != (struct sk_buff *)(queue);			\
2629 		     skb = skb->next)
2630 
2631 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
2632 		for (tmp = skb->next;						\
2633 		     skb != (struct sk_buff *)(queue);				\
2634 		     skb = tmp, tmp = skb->next)
2635 
2636 #define skb_queue_reverse_walk(queue, skb) \
2637 		for (skb = (queue)->prev;					\
2638 		     skb != (struct sk_buff *)(queue);				\
2639 		     skb = skb->prev)
2640 
2641 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
2642 		for (skb = (queue)->prev, tmp = skb->prev;			\
2643 		     skb != (struct sk_buff *)(queue);				\
2644 		     skb = tmp, tmp = skb->prev)
2645 
2646 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
2647 		for (tmp = skb->prev;						\
2648 		     skb != (struct sk_buff *)(queue);				\
2649 		     skb = tmp, tmp = skb->prev)
2650 
skb_has_frag_list(const struct sk_buff * skb)2651 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2652 {
2653 	return skb_shinfo(skb)->frag_list != NULL;
2654 }
2655 
skb_frag_list_init(struct sk_buff * skb)2656 static inline void skb_frag_list_init(struct sk_buff *skb)
2657 {
2658 	skb_shinfo(skb)->frag_list = NULL;
2659 }
2660 
skb_frag_add_head(struct sk_buff * skb,struct sk_buff * frag)2661 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2662 {
2663 	frag->next = skb_shinfo(skb)->frag_list;
2664 	skb_shinfo(skb)->frag_list = frag;
2665 }
2666 
2667 #define skb_walk_frags(skb, iter)	\
2668 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2669 
2670 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2671 				    int *peeked, int *off, int *err);
2672 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
2673 				  int *err);
2674 unsigned int datagram_poll(struct file *file, struct socket *sock,
2675 			   struct poll_table_struct *wait);
2676 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
2677 			   struct iov_iter *to, int size);
skb_copy_datagram_msg(const struct sk_buff * from,int offset,struct msghdr * msg,int size)2678 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
2679 					struct msghdr *msg, int size)
2680 {
2681 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
2682 }
2683 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
2684 				   struct msghdr *msg);
2685 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
2686 				 struct iov_iter *from, int len);
2687 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
2688 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2689 void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb);
2690 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
2691 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
2692 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
2693 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
2694 			      int len, __wsum csum);
2695 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
2696 		    struct pipe_inode_info *pipe, unsigned int len,
2697 		    unsigned int flags);
2698 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2699 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
2700 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
2701 		 int len, int hlen);
2702 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
2703 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
2704 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
2705 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
2706 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
2707 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
2708 int skb_ensure_writable(struct sk_buff *skb, int write_len);
2709 int skb_vlan_pop(struct sk_buff *skb);
2710 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
2711 
memcpy_from_msg(void * data,struct msghdr * msg,int len)2712 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
2713 {
2714 	return copy_from_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
2715 }
2716 
memcpy_to_msg(struct msghdr * msg,void * data,int len)2717 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
2718 {
2719 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
2720 }
2721 
2722 struct skb_checksum_ops {
2723 	__wsum (*update)(const void *mem, int len, __wsum wsum);
2724 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
2725 };
2726 
2727 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2728 		      __wsum csum, const struct skb_checksum_ops *ops);
2729 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
2730 		    __wsum csum);
2731 
__skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * data,int hlen,void * buffer)2732 static inline void *__skb_header_pointer(const struct sk_buff *skb, int offset,
2733 					 int len, void *data, int hlen, void *buffer)
2734 {
2735 	if (hlen - offset >= len)
2736 		return data + offset;
2737 
2738 	if (!skb ||
2739 	    skb_copy_bits(skb, offset, buffer, len) < 0)
2740 		return NULL;
2741 
2742 	return buffer;
2743 }
2744 
skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * buffer)2745 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2746 				       int len, void *buffer)
2747 {
2748 	return __skb_header_pointer(skb, offset, len, skb->data,
2749 				    skb_headlen(skb), buffer);
2750 }
2751 
2752 /**
2753  *	skb_needs_linearize - check if we need to linearize a given skb
2754  *			      depending on the given device features.
2755  *	@skb: socket buffer to check
2756  *	@features: net device features
2757  *
2758  *	Returns true if either:
2759  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
2760  *	2. skb is fragmented and the device does not support SG.
2761  */
skb_needs_linearize(struct sk_buff * skb,netdev_features_t features)2762 static inline bool skb_needs_linearize(struct sk_buff *skb,
2763 				       netdev_features_t features)
2764 {
2765 	return skb_is_nonlinear(skb) &&
2766 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
2767 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
2768 }
2769 
skb_copy_from_linear_data(const struct sk_buff * skb,void * to,const unsigned int len)2770 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2771 					     void *to,
2772 					     const unsigned int len)
2773 {
2774 	memcpy(to, skb->data, len);
2775 }
2776 
skb_copy_from_linear_data_offset(const struct sk_buff * skb,const int offset,void * to,const unsigned int len)2777 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2778 						    const int offset, void *to,
2779 						    const unsigned int len)
2780 {
2781 	memcpy(to, skb->data + offset, len);
2782 }
2783 
skb_copy_to_linear_data(struct sk_buff * skb,const void * from,const unsigned int len)2784 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2785 					   const void *from,
2786 					   const unsigned int len)
2787 {
2788 	memcpy(skb->data, from, len);
2789 }
2790 
skb_copy_to_linear_data_offset(struct sk_buff * skb,const int offset,const void * from,const unsigned int len)2791 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2792 						  const int offset,
2793 						  const void *from,
2794 						  const unsigned int len)
2795 {
2796 	memcpy(skb->data + offset, from, len);
2797 }
2798 
2799 void skb_init(void);
2800 
skb_get_ktime(const struct sk_buff * skb)2801 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2802 {
2803 	return skb->tstamp;
2804 }
2805 
2806 /**
2807  *	skb_get_timestamp - get timestamp from a skb
2808  *	@skb: skb to get stamp from
2809  *	@stamp: pointer to struct timeval to store stamp in
2810  *
2811  *	Timestamps are stored in the skb as offsets to a base timestamp.
2812  *	This function converts the offset back to a struct timeval and stores
2813  *	it in stamp.
2814  */
skb_get_timestamp(const struct sk_buff * skb,struct timeval * stamp)2815 static inline void skb_get_timestamp(const struct sk_buff *skb,
2816 				     struct timeval *stamp)
2817 {
2818 	*stamp = ktime_to_timeval(skb->tstamp);
2819 }
2820 
skb_get_timestampns(const struct sk_buff * skb,struct timespec * stamp)2821 static inline void skb_get_timestampns(const struct sk_buff *skb,
2822 				       struct timespec *stamp)
2823 {
2824 	*stamp = ktime_to_timespec(skb->tstamp);
2825 }
2826 
__net_timestamp(struct sk_buff * skb)2827 static inline void __net_timestamp(struct sk_buff *skb)
2828 {
2829 	skb->tstamp = ktime_get_real();
2830 }
2831 
net_timedelta(ktime_t t)2832 static inline ktime_t net_timedelta(ktime_t t)
2833 {
2834 	return ktime_sub(ktime_get_real(), t);
2835 }
2836 
net_invalid_timestamp(void)2837 static inline ktime_t net_invalid_timestamp(void)
2838 {
2839 	return ktime_set(0, 0);
2840 }
2841 
2842 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
2843 
2844 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2845 
2846 void skb_clone_tx_timestamp(struct sk_buff *skb);
2847 bool skb_defer_rx_timestamp(struct sk_buff *skb);
2848 
2849 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2850 
skb_clone_tx_timestamp(struct sk_buff * skb)2851 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2852 {
2853 }
2854 
skb_defer_rx_timestamp(struct sk_buff * skb)2855 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2856 {
2857 	return false;
2858 }
2859 
2860 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2861 
2862 /**
2863  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2864  *
2865  * PHY drivers may accept clones of transmitted packets for
2866  * timestamping via their phy_driver.txtstamp method. These drivers
2867  * must call this function to return the skb back to the stack, with
2868  * or without a timestamp.
2869  *
2870  * @skb: clone of the the original outgoing packet
2871  * @hwtstamps: hardware time stamps, may be NULL if not available
2872  *
2873  */
2874 void skb_complete_tx_timestamp(struct sk_buff *skb,
2875 			       struct skb_shared_hwtstamps *hwtstamps);
2876 
2877 void __skb_tstamp_tx(struct sk_buff *orig_skb,
2878 		     struct skb_shared_hwtstamps *hwtstamps,
2879 		     struct sock *sk, int tstype);
2880 
2881 /**
2882  * skb_tstamp_tx - queue clone of skb with send time stamps
2883  * @orig_skb:	the original outgoing packet
2884  * @hwtstamps:	hardware time stamps, may be NULL if not available
2885  *
2886  * If the skb has a socket associated, then this function clones the
2887  * skb (thus sharing the actual data and optional structures), stores
2888  * the optional hardware time stamping information (if non NULL) or
2889  * generates a software time stamp (otherwise), then queues the clone
2890  * to the error queue of the socket.  Errors are silently ignored.
2891  */
2892 void skb_tstamp_tx(struct sk_buff *orig_skb,
2893 		   struct skb_shared_hwtstamps *hwtstamps);
2894 
sw_tx_timestamp(struct sk_buff * skb)2895 static inline void sw_tx_timestamp(struct sk_buff *skb)
2896 {
2897 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2898 	    !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2899 		skb_tstamp_tx(skb, NULL);
2900 }
2901 
2902 /**
2903  * skb_tx_timestamp() - Driver hook for transmit timestamping
2904  *
2905  * Ethernet MAC Drivers should call this function in their hard_xmit()
2906  * function immediately before giving the sk_buff to the MAC hardware.
2907  *
2908  * Specifically, one should make absolutely sure that this function is
2909  * called before TX completion of this packet can trigger.  Otherwise
2910  * the packet could potentially already be freed.
2911  *
2912  * @skb: A socket buffer.
2913  */
skb_tx_timestamp(struct sk_buff * skb)2914 static inline void skb_tx_timestamp(struct sk_buff *skb)
2915 {
2916 	skb_clone_tx_timestamp(skb);
2917 	sw_tx_timestamp(skb);
2918 }
2919 
2920 /**
2921  * skb_complete_wifi_ack - deliver skb with wifi status
2922  *
2923  * @skb: the original outgoing packet
2924  * @acked: ack status
2925  *
2926  */
2927 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
2928 
2929 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2930 __sum16 __skb_checksum_complete(struct sk_buff *skb);
2931 
skb_csum_unnecessary(const struct sk_buff * skb)2932 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2933 {
2934 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
2935 		skb->csum_valid ||
2936 		(skb->ip_summed == CHECKSUM_PARTIAL &&
2937 		 skb_checksum_start_offset(skb) >= 0));
2938 }
2939 
2940 /**
2941  *	skb_checksum_complete - Calculate checksum of an entire packet
2942  *	@skb: packet to process
2943  *
2944  *	This function calculates the checksum over the entire packet plus
2945  *	the value of skb->csum.  The latter can be used to supply the
2946  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
2947  *	checksum.
2948  *
2949  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
2950  *	this function can be used to verify that checksum on received
2951  *	packets.  In that case the function should return zero if the
2952  *	checksum is correct.  In particular, this function will return zero
2953  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2954  *	hardware has already verified the correctness of the checksum.
2955  */
skb_checksum_complete(struct sk_buff * skb)2956 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2957 {
2958 	return skb_csum_unnecessary(skb) ?
2959 	       0 : __skb_checksum_complete(skb);
2960 }
2961 
__skb_decr_checksum_unnecessary(struct sk_buff * skb)2962 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
2963 {
2964 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
2965 		if (skb->csum_level == 0)
2966 			skb->ip_summed = CHECKSUM_NONE;
2967 		else
2968 			skb->csum_level--;
2969 	}
2970 }
2971 
__skb_incr_checksum_unnecessary(struct sk_buff * skb)2972 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
2973 {
2974 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
2975 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
2976 			skb->csum_level++;
2977 	} else if (skb->ip_summed == CHECKSUM_NONE) {
2978 		skb->ip_summed = CHECKSUM_UNNECESSARY;
2979 		skb->csum_level = 0;
2980 	}
2981 }
2982 
__skb_mark_checksum_bad(struct sk_buff * skb)2983 static inline void __skb_mark_checksum_bad(struct sk_buff *skb)
2984 {
2985 	/* Mark current checksum as bad (typically called from GRO
2986 	 * path). In the case that ip_summed is CHECKSUM_NONE
2987 	 * this must be the first checksum encountered in the packet.
2988 	 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first
2989 	 * checksum after the last one validated. For UDP, a zero
2990 	 * checksum can not be marked as bad.
2991 	 */
2992 
2993 	if (skb->ip_summed == CHECKSUM_NONE ||
2994 	    skb->ip_summed == CHECKSUM_UNNECESSARY)
2995 		skb->csum_bad = 1;
2996 }
2997 
2998 /* Check if we need to perform checksum complete validation.
2999  *
3000  * Returns true if checksum complete is needed, false otherwise
3001  * (either checksum is unnecessary or zero checksum is allowed).
3002  */
__skb_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)3003 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3004 						  bool zero_okay,
3005 						  __sum16 check)
3006 {
3007 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3008 		skb->csum_valid = 1;
3009 		__skb_decr_checksum_unnecessary(skb);
3010 		return false;
3011 	}
3012 
3013 	return true;
3014 }
3015 
3016 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3017  * in checksum_init.
3018  */
3019 #define CHECKSUM_BREAK 76
3020 
3021 /* Unset checksum-complete
3022  *
3023  * Unset checksum complete can be done when packet is being modified
3024  * (uncompressed for instance) and checksum-complete value is
3025  * invalidated.
3026  */
skb_checksum_complete_unset(struct sk_buff * skb)3027 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3028 {
3029 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3030 		skb->ip_summed = CHECKSUM_NONE;
3031 }
3032 
3033 /* Validate (init) checksum based on checksum complete.
3034  *
3035  * Return values:
3036  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3037  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3038  *	checksum is stored in skb->csum for use in __skb_checksum_complete
3039  *   non-zero: value of invalid checksum
3040  *
3041  */
__skb_checksum_validate_complete(struct sk_buff * skb,bool complete,__wsum psum)3042 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3043 						       bool complete,
3044 						       __wsum psum)
3045 {
3046 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
3047 		if (!csum_fold(csum_add(psum, skb->csum))) {
3048 			skb->csum_valid = 1;
3049 			return 0;
3050 		}
3051 	} else if (skb->csum_bad) {
3052 		/* ip_summed == CHECKSUM_NONE in this case */
3053 		return 1;
3054 	}
3055 
3056 	skb->csum = psum;
3057 
3058 	if (complete || skb->len <= CHECKSUM_BREAK) {
3059 		__sum16 csum;
3060 
3061 		csum = __skb_checksum_complete(skb);
3062 		skb->csum_valid = !csum;
3063 		return csum;
3064 	}
3065 
3066 	return 0;
3067 }
3068 
null_compute_pseudo(struct sk_buff * skb,int proto)3069 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3070 {
3071 	return 0;
3072 }
3073 
3074 /* Perform checksum validate (init). Note that this is a macro since we only
3075  * want to calculate the pseudo header which is an input function if necessary.
3076  * First we try to validate without any computation (checksum unnecessary) and
3077  * then calculate based on checksum complete calling the function to compute
3078  * pseudo header.
3079  *
3080  * Return values:
3081  *   0: checksum is validated or try to in skb_checksum_complete
3082  *   non-zero: value of invalid checksum
3083  */
3084 #define __skb_checksum_validate(skb, proto, complete,			\
3085 				zero_okay, check, compute_pseudo)	\
3086 ({									\
3087 	__sum16 __ret = 0;						\
3088 	skb->csum_valid = 0;						\
3089 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
3090 		__ret = __skb_checksum_validate_complete(skb,		\
3091 				complete, compute_pseudo(skb, proto));	\
3092 	__ret;								\
3093 })
3094 
3095 #define skb_checksum_init(skb, proto, compute_pseudo)			\
3096 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3097 
3098 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
3099 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3100 
3101 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
3102 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3103 
3104 #define skb_checksum_validate_zero_check(skb, proto, check,		\
3105 					 compute_pseudo)		\
3106 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3107 
3108 #define skb_checksum_simple_validate(skb)				\
3109 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3110 
__skb_checksum_convert_check(struct sk_buff * skb)3111 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3112 {
3113 	return (skb->ip_summed == CHECKSUM_NONE &&
3114 		skb->csum_valid && !skb->csum_bad);
3115 }
3116 
__skb_checksum_convert(struct sk_buff * skb,__sum16 check,__wsum pseudo)3117 static inline void __skb_checksum_convert(struct sk_buff *skb,
3118 					  __sum16 check, __wsum pseudo)
3119 {
3120 	skb->csum = ~pseudo;
3121 	skb->ip_summed = CHECKSUM_COMPLETE;
3122 }
3123 
3124 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo)	\
3125 do {									\
3126 	if (__skb_checksum_convert_check(skb))				\
3127 		__skb_checksum_convert(skb, check,			\
3128 				       compute_pseudo(skb, proto));	\
3129 } while (0)
3130 
skb_remcsum_adjust_partial(struct sk_buff * skb,void * ptr,u16 start,u16 offset)3131 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3132 					      u16 start, u16 offset)
3133 {
3134 	skb->ip_summed = CHECKSUM_PARTIAL;
3135 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3136 	skb->csum_offset = offset - start;
3137 }
3138 
3139 /* Update skbuf and packet to reflect the remote checksum offload operation.
3140  * When called, ptr indicates the starting point for skb->csum when
3141  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3142  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3143  */
skb_remcsum_process(struct sk_buff * skb,void * ptr,int start,int offset,bool nopartial)3144 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3145 				       int start, int offset, bool nopartial)
3146 {
3147 	__wsum delta;
3148 
3149 	if (!nopartial) {
3150 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
3151 		return;
3152 	}
3153 
3154 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3155 		__skb_checksum_complete(skb);
3156 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3157 	}
3158 
3159 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
3160 
3161 	/* Adjust skb->csum since we changed the packet */
3162 	skb->csum = csum_add(skb->csum, delta);
3163 }
3164 
3165 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3166 void nf_conntrack_destroy(struct nf_conntrack *nfct);
nf_conntrack_put(struct nf_conntrack * nfct)3167 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3168 {
3169 	if (nfct && atomic_dec_and_test(&nfct->use))
3170 		nf_conntrack_destroy(nfct);
3171 }
nf_conntrack_get(struct nf_conntrack * nfct)3172 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3173 {
3174 	if (nfct)
3175 		atomic_inc(&nfct->use);
3176 }
3177 #endif
3178 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
nf_bridge_put(struct nf_bridge_info * nf_bridge)3179 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3180 {
3181 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
3182 		kfree(nf_bridge);
3183 }
nf_bridge_get(struct nf_bridge_info * nf_bridge)3184 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3185 {
3186 	if (nf_bridge)
3187 		atomic_inc(&nf_bridge->use);
3188 }
3189 #endif /* CONFIG_BRIDGE_NETFILTER */
nf_reset(struct sk_buff * skb)3190 static inline void nf_reset(struct sk_buff *skb)
3191 {
3192 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3193 	nf_conntrack_put(skb->nfct);
3194 	skb->nfct = NULL;
3195 #endif
3196 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3197 	nf_bridge_put(skb->nf_bridge);
3198 	skb->nf_bridge = NULL;
3199 #endif
3200 }
3201 
nf_reset_trace(struct sk_buff * skb)3202 static inline void nf_reset_trace(struct sk_buff *skb)
3203 {
3204 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3205 	skb->nf_trace = 0;
3206 #endif
3207 }
3208 
3209 /* Note: This doesn't put any conntrack and bridge info in dst. */
__nf_copy(struct sk_buff * dst,const struct sk_buff * src,bool copy)3210 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3211 			     bool copy)
3212 {
3213 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3214 	dst->nfct = src->nfct;
3215 	nf_conntrack_get(src->nfct);
3216 	if (copy)
3217 		dst->nfctinfo = src->nfctinfo;
3218 #endif
3219 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3220 	dst->nf_bridge  = src->nf_bridge;
3221 	nf_bridge_get(src->nf_bridge);
3222 #endif
3223 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3224 	if (copy)
3225 		dst->nf_trace = src->nf_trace;
3226 #endif
3227 }
3228 
nf_copy(struct sk_buff * dst,const struct sk_buff * src)3229 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3230 {
3231 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3232 	nf_conntrack_put(dst->nfct);
3233 #endif
3234 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3235 	nf_bridge_put(dst->nf_bridge);
3236 #endif
3237 	__nf_copy(dst, src, true);
3238 }
3239 
3240 #ifdef CONFIG_NETWORK_SECMARK
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)3241 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3242 {
3243 	to->secmark = from->secmark;
3244 }
3245 
skb_init_secmark(struct sk_buff * skb)3246 static inline void skb_init_secmark(struct sk_buff *skb)
3247 {
3248 	skb->secmark = 0;
3249 }
3250 #else
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)3251 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3252 { }
3253 
skb_init_secmark(struct sk_buff * skb)3254 static inline void skb_init_secmark(struct sk_buff *skb)
3255 { }
3256 #endif
3257 
skb_irq_freeable(const struct sk_buff * skb)3258 static inline bool skb_irq_freeable(const struct sk_buff *skb)
3259 {
3260 	return !skb->destructor &&
3261 #if IS_ENABLED(CONFIG_XFRM)
3262 		!skb->sp &&
3263 #endif
3264 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3265 		!skb->nfct &&
3266 #endif
3267 		!skb->_skb_refdst &&
3268 		!skb_has_frag_list(skb);
3269 }
3270 
skb_set_queue_mapping(struct sk_buff * skb,u16 queue_mapping)3271 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3272 {
3273 	skb->queue_mapping = queue_mapping;
3274 }
3275 
skb_get_queue_mapping(const struct sk_buff * skb)3276 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3277 {
3278 	return skb->queue_mapping;
3279 }
3280 
skb_copy_queue_mapping(struct sk_buff * to,const struct sk_buff * from)3281 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3282 {
3283 	to->queue_mapping = from->queue_mapping;
3284 }
3285 
skb_record_rx_queue(struct sk_buff * skb,u16 rx_queue)3286 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3287 {
3288 	skb->queue_mapping = rx_queue + 1;
3289 }
3290 
skb_get_rx_queue(const struct sk_buff * skb)3291 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3292 {
3293 	return skb->queue_mapping - 1;
3294 }
3295 
skb_rx_queue_recorded(const struct sk_buff * skb)3296 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3297 {
3298 	return skb->queue_mapping != 0;
3299 }
3300 
3301 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3302 		  unsigned int num_tx_queues);
3303 
skb_sec_path(struct sk_buff * skb)3304 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3305 {
3306 #ifdef CONFIG_XFRM
3307 	return skb->sp;
3308 #else
3309 	return NULL;
3310 #endif
3311 }
3312 
3313 /* Keeps track of mac header offset relative to skb->head.
3314  * It is useful for TSO of Tunneling protocol. e.g. GRE.
3315  * For non-tunnel skb it points to skb_mac_header() and for
3316  * tunnel skb it points to outer mac header.
3317  * Keeps track of level of encapsulation of network headers.
3318  */
3319 struct skb_gso_cb {
3320 	int	mac_offset;
3321 	int	encap_level;
3322 	__u16	csum_start;
3323 };
3324 #define SKB_SGO_CB_OFFSET	32
3325 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
3326 
skb_tnl_header_len(const struct sk_buff * inner_skb)3327 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3328 {
3329 	return (skb_mac_header(inner_skb) - inner_skb->head) -
3330 		SKB_GSO_CB(inner_skb)->mac_offset;
3331 }
3332 
gso_pskb_expand_head(struct sk_buff * skb,int extra)3333 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3334 {
3335 	int new_headroom, headroom;
3336 	int ret;
3337 
3338 	headroom = skb_headroom(skb);
3339 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3340 	if (ret)
3341 		return ret;
3342 
3343 	new_headroom = skb_headroom(skb);
3344 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3345 	return 0;
3346 }
3347 
3348 /* Compute the checksum for a gso segment. First compute the checksum value
3349  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3350  * then add in skb->csum (checksum from csum_start to end of packet).
3351  * skb->csum and csum_start are then updated to reflect the checksum of the
3352  * resultant packet starting from the transport header-- the resultant checksum
3353  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3354  * header.
3355  */
gso_make_checksum(struct sk_buff * skb,__wsum res)3356 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3357 {
3358 	int plen = SKB_GSO_CB(skb)->csum_start - skb_headroom(skb) -
3359 	    skb_transport_offset(skb);
3360 	__u16 csum;
3361 
3362 	csum = csum_fold(csum_partial(skb_transport_header(skb),
3363 				      plen, skb->csum));
3364 	skb->csum = res;
3365 	SKB_GSO_CB(skb)->csum_start -= plen;
3366 
3367 	return csum;
3368 }
3369 
skb_is_gso(const struct sk_buff * skb)3370 static inline bool skb_is_gso(const struct sk_buff *skb)
3371 {
3372 	return skb_shinfo(skb)->gso_size;
3373 }
3374 
3375 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_v6(const struct sk_buff * skb)3376 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
3377 {
3378 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3379 }
3380 
3381 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
3382 
skb_warn_if_lro(const struct sk_buff * skb)3383 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3384 {
3385 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
3386 	 * wanted then gso_type will be set. */
3387 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3388 
3389 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3390 	    unlikely(shinfo->gso_type == 0)) {
3391 		__skb_warn_lro_forwarding(skb);
3392 		return true;
3393 	}
3394 	return false;
3395 }
3396 
skb_forward_csum(struct sk_buff * skb)3397 static inline void skb_forward_csum(struct sk_buff *skb)
3398 {
3399 	/* Unfortunately we don't support this one.  Any brave souls? */
3400 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3401 		skb->ip_summed = CHECKSUM_NONE;
3402 }
3403 
3404 /**
3405  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3406  * @skb: skb to check
3407  *
3408  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
3409  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
3410  * use this helper, to document places where we make this assertion.
3411  */
skb_checksum_none_assert(const struct sk_buff * skb)3412 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
3413 {
3414 #ifdef DEBUG
3415 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
3416 #endif
3417 }
3418 
3419 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
3420 
3421 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
3422 
3423 u32 skb_get_poff(const struct sk_buff *skb);
3424 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
3425 		   const struct flow_keys *keys, int hlen);
3426 
3427 /**
3428  * skb_head_is_locked - Determine if the skb->head is locked down
3429  * @skb: skb to check
3430  *
3431  * The head on skbs build around a head frag can be removed if they are
3432  * not cloned.  This function returns true if the skb head is locked down
3433  * due to either being allocated via kmalloc, or by being a clone with
3434  * multiple references to the head.
3435  */
skb_head_is_locked(const struct sk_buff * skb)3436 static inline bool skb_head_is_locked(const struct sk_buff *skb)
3437 {
3438 	return !skb->head_frag || skb_cloned(skb);
3439 }
3440 
3441 /**
3442  * skb_gso_network_seglen - Return length of individual segments of a gso packet
3443  *
3444  * @skb: GSO skb
3445  *
3446  * skb_gso_network_seglen is used to determine the real size of the
3447  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
3448  *
3449  * The MAC/L2 header is not accounted for.
3450  */
skb_gso_network_seglen(const struct sk_buff * skb)3451 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
3452 {
3453 	unsigned int hdr_len = skb_transport_header(skb) -
3454 			       skb_network_header(skb);
3455 	return hdr_len + skb_gso_transport_seglen(skb);
3456 }
3457 #endif	/* __KERNEL__ */
3458 #endif	/* _LINUX_SKBUFF_H */
3459