1 /*
2  * Frontswap frontend
3  *
4  * This code provides the generic "frontend" layer to call a matching
5  * "backend" driver implementation of frontswap.  See
6  * Documentation/vm/frontswap.txt for more information.
7  *
8  * Copyright (C) 2009-2012 Oracle Corp.  All rights reserved.
9  * Author: Dan Magenheimer
10  *
11  * This work is licensed under the terms of the GNU GPL, version 2.
12  */
13 
14 #include <linux/mman.h>
15 #include <linux/swap.h>
16 #include <linux/swapops.h>
17 #include <linux/security.h>
18 #include <linux/module.h>
19 #include <linux/debugfs.h>
20 #include <linux/frontswap.h>
21 #include <linux/swapfile.h>
22 
23 /*
24  * frontswap_ops are added by frontswap_register_ops, and provide the
25  * frontswap "backend" implementation functions.  Multiple implementations
26  * may be registered, but implementations can never deregister.  This
27  * is a simple singly-linked list of all registered implementations.
28  */
29 static struct frontswap_ops *frontswap_ops __read_mostly;
30 
31 #define for_each_frontswap_ops(ops)		\
32 	for ((ops) = frontswap_ops; (ops); (ops) = (ops)->next)
33 
34 /*
35  * If enabled, frontswap_store will return failure even on success.  As
36  * a result, the swap subsystem will always write the page to swap, in
37  * effect converting frontswap into a writethrough cache.  In this mode,
38  * there is no direct reduction in swap writes, but a frontswap backend
39  * can unilaterally "reclaim" any pages in use with no data loss, thus
40  * providing increases control over maximum memory usage due to frontswap.
41  */
42 static bool frontswap_writethrough_enabled __read_mostly;
43 
44 /*
45  * If enabled, the underlying tmem implementation is capable of doing
46  * exclusive gets, so frontswap_load, on a successful tmem_get must
47  * mark the page as no longer in frontswap AND mark it dirty.
48  */
49 static bool frontswap_tmem_exclusive_gets_enabled __read_mostly;
50 
51 #ifdef CONFIG_DEBUG_FS
52 /*
53  * Counters available via /sys/kernel/debug/frontswap (if debugfs is
54  * properly configured).  These are for information only so are not protected
55  * against increment races.
56  */
57 static u64 frontswap_loads;
58 static u64 frontswap_succ_stores;
59 static u64 frontswap_failed_stores;
60 static u64 frontswap_invalidates;
61 
inc_frontswap_loads(void)62 static inline void inc_frontswap_loads(void) {
63 	frontswap_loads++;
64 }
inc_frontswap_succ_stores(void)65 static inline void inc_frontswap_succ_stores(void) {
66 	frontswap_succ_stores++;
67 }
inc_frontswap_failed_stores(void)68 static inline void inc_frontswap_failed_stores(void) {
69 	frontswap_failed_stores++;
70 }
inc_frontswap_invalidates(void)71 static inline void inc_frontswap_invalidates(void) {
72 	frontswap_invalidates++;
73 }
74 #else
inc_frontswap_loads(void)75 static inline void inc_frontswap_loads(void) { }
inc_frontswap_succ_stores(void)76 static inline void inc_frontswap_succ_stores(void) { }
inc_frontswap_failed_stores(void)77 static inline void inc_frontswap_failed_stores(void) { }
inc_frontswap_invalidates(void)78 static inline void inc_frontswap_invalidates(void) { }
79 #endif
80 
81 /*
82  * Due to the asynchronous nature of the backends loading potentially
83  * _after_ the swap system has been activated, we have chokepoints
84  * on all frontswap functions to not call the backend until the backend
85  * has registered.
86  *
87  * This would not guards us against the user deciding to call swapoff right as
88  * we are calling the backend to initialize (so swapon is in action).
89  * Fortunatly for us, the swapon_mutex has been taked by the callee so we are
90  * OK. The other scenario where calls to frontswap_store (called via
91  * swap_writepage) is racing with frontswap_invalidate_area (called via
92  * swapoff) is again guarded by the swap subsystem.
93  *
94  * While no backend is registered all calls to frontswap_[store|load|
95  * invalidate_area|invalidate_page] are ignored or fail.
96  *
97  * The time between the backend being registered and the swap file system
98  * calling the backend (via the frontswap_* functions) is indeterminate as
99  * frontswap_ops is not atomic_t (or a value guarded by a spinlock).
100  * That is OK as we are comfortable missing some of these calls to the newly
101  * registered backend.
102  *
103  * Obviously the opposite (unloading the backend) must be done after all
104  * the frontswap_[store|load|invalidate_area|invalidate_page] start
105  * ignoring or failing the requests.  However, there is currently no way
106  * to unload a backend once it is registered.
107  */
108 
109 /*
110  * Register operations for frontswap
111  */
frontswap_register_ops(struct frontswap_ops * ops)112 void frontswap_register_ops(struct frontswap_ops *ops)
113 {
114 	DECLARE_BITMAP(a, MAX_SWAPFILES);
115 	DECLARE_BITMAP(b, MAX_SWAPFILES);
116 	struct swap_info_struct *si;
117 	unsigned int i;
118 
119 	bitmap_zero(a, MAX_SWAPFILES);
120 	bitmap_zero(b, MAX_SWAPFILES);
121 
122 	spin_lock(&swap_lock);
123 	plist_for_each_entry(si, &swap_active_head, list) {
124 		if (!WARN_ON(!si->frontswap_map))
125 			set_bit(si->type, a);
126 	}
127 	spin_unlock(&swap_lock);
128 
129 	/* the new ops needs to know the currently active swap devices */
130 	for_each_set_bit(i, a, MAX_SWAPFILES)
131 		ops->init(i);
132 
133 	/*
134 	 * Setting frontswap_ops must happen after the ops->init() calls
135 	 * above; cmpxchg implies smp_mb() which will ensure the init is
136 	 * complete at this point.
137 	 */
138 	do {
139 		ops->next = frontswap_ops;
140 	} while (cmpxchg(&frontswap_ops, ops->next, ops) != ops->next);
141 
142 	spin_lock(&swap_lock);
143 	plist_for_each_entry(si, &swap_active_head, list) {
144 		if (si->frontswap_map)
145 			set_bit(si->type, b);
146 	}
147 	spin_unlock(&swap_lock);
148 
149 	/*
150 	 * On the very unlikely chance that a swap device was added or
151 	 * removed between setting the "a" list bits and the ops init
152 	 * calls, we re-check and do init or invalidate for any changed
153 	 * bits.
154 	 */
155 	if (unlikely(!bitmap_equal(a, b, MAX_SWAPFILES))) {
156 		for (i = 0; i < MAX_SWAPFILES; i++) {
157 			if (!test_bit(i, a) && test_bit(i, b))
158 				ops->init(i);
159 			else if (test_bit(i, a) && !test_bit(i, b))
160 				ops->invalidate_area(i);
161 		}
162 	}
163 }
164 EXPORT_SYMBOL(frontswap_register_ops);
165 
166 /*
167  * Enable/disable frontswap writethrough (see above).
168  */
frontswap_writethrough(bool enable)169 void frontswap_writethrough(bool enable)
170 {
171 	frontswap_writethrough_enabled = enable;
172 }
173 EXPORT_SYMBOL(frontswap_writethrough);
174 
175 /*
176  * Enable/disable frontswap exclusive gets (see above).
177  */
frontswap_tmem_exclusive_gets(bool enable)178 void frontswap_tmem_exclusive_gets(bool enable)
179 {
180 	frontswap_tmem_exclusive_gets_enabled = enable;
181 }
182 EXPORT_SYMBOL(frontswap_tmem_exclusive_gets);
183 
184 /*
185  * Called when a swap device is swapon'd.
186  */
__frontswap_init(unsigned type,unsigned long * map)187 void __frontswap_init(unsigned type, unsigned long *map)
188 {
189 	struct swap_info_struct *sis = swap_info[type];
190 	struct frontswap_ops *ops;
191 
192 	BUG_ON(sis == NULL);
193 
194 	/*
195 	 * p->frontswap is a bitmap that we MUST have to figure out which page
196 	 * has gone in frontswap. Without it there is no point of continuing.
197 	 */
198 	if (WARN_ON(!map))
199 		return;
200 	/*
201 	 * Irregardless of whether the frontswap backend has been loaded
202 	 * before this function or it will be later, we _MUST_ have the
203 	 * p->frontswap set to something valid to work properly.
204 	 */
205 	frontswap_map_set(sis, map);
206 
207 	for_each_frontswap_ops(ops)
208 		ops->init(type);
209 }
210 EXPORT_SYMBOL(__frontswap_init);
211 
__frontswap_test(struct swap_info_struct * sis,pgoff_t offset)212 bool __frontswap_test(struct swap_info_struct *sis,
213 				pgoff_t offset)
214 {
215 	if (sis->frontswap_map)
216 		return test_bit(offset, sis->frontswap_map);
217 	return false;
218 }
219 EXPORT_SYMBOL(__frontswap_test);
220 
__frontswap_set(struct swap_info_struct * sis,pgoff_t offset)221 static inline void __frontswap_set(struct swap_info_struct *sis,
222 				   pgoff_t offset)
223 {
224 	set_bit(offset, sis->frontswap_map);
225 	atomic_inc(&sis->frontswap_pages);
226 }
227 
__frontswap_clear(struct swap_info_struct * sis,pgoff_t offset)228 static inline void __frontswap_clear(struct swap_info_struct *sis,
229 				     pgoff_t offset)
230 {
231 	clear_bit(offset, sis->frontswap_map);
232 	atomic_dec(&sis->frontswap_pages);
233 }
234 
235 /*
236  * "Store" data from a page to frontswap and associate it with the page's
237  * swaptype and offset.  Page must be locked and in the swap cache.
238  * If frontswap already contains a page with matching swaptype and
239  * offset, the frontswap implementation may either overwrite the data and
240  * return success or invalidate the page from frontswap and return failure.
241  */
__frontswap_store(struct page * page)242 int __frontswap_store(struct page *page)
243 {
244 	int ret = -1;
245 	swp_entry_t entry = { .val = page_private(page), };
246 	int type = swp_type(entry);
247 	struct swap_info_struct *sis = swap_info[type];
248 	pgoff_t offset = swp_offset(entry);
249 	struct frontswap_ops *ops;
250 
251 	/*
252 	 * Return if no backend registed.
253 	 * Don't need to inc frontswap_failed_stores here.
254 	 */
255 	if (!frontswap_ops)
256 		return -1;
257 
258 	BUG_ON(!PageLocked(page));
259 	BUG_ON(sis == NULL);
260 
261 	/*
262 	 * If a dup, we must remove the old page first; we can't leave the
263 	 * old page no matter if the store of the new page succeeds or fails,
264 	 * and we can't rely on the new page replacing the old page as we may
265 	 * not store to the same implementation that contains the old page.
266 	 */
267 	if (__frontswap_test(sis, offset)) {
268 		__frontswap_clear(sis, offset);
269 		for_each_frontswap_ops(ops)
270 			ops->invalidate_page(type, offset);
271 	}
272 
273 	/* Try to store in each implementation, until one succeeds. */
274 	for_each_frontswap_ops(ops) {
275 		ret = ops->store(type, offset, page);
276 		if (!ret) /* successful store */
277 			break;
278 	}
279 	if (ret == 0) {
280 		__frontswap_set(sis, offset);
281 		inc_frontswap_succ_stores();
282 	} else {
283 		inc_frontswap_failed_stores();
284 	}
285 	if (frontswap_writethrough_enabled)
286 		/* report failure so swap also writes to swap device */
287 		ret = -1;
288 	return ret;
289 }
290 EXPORT_SYMBOL(__frontswap_store);
291 
292 /*
293  * "Get" data from frontswap associated with swaptype and offset that were
294  * specified when the data was put to frontswap and use it to fill the
295  * specified page with data. Page must be locked and in the swap cache.
296  */
__frontswap_load(struct page * page)297 int __frontswap_load(struct page *page)
298 {
299 	int ret = -1;
300 	swp_entry_t entry = { .val = page_private(page), };
301 	int type = swp_type(entry);
302 	struct swap_info_struct *sis = swap_info[type];
303 	pgoff_t offset = swp_offset(entry);
304 	struct frontswap_ops *ops;
305 
306 	if (!frontswap_ops)
307 		return -1;
308 
309 	BUG_ON(!PageLocked(page));
310 	BUG_ON(sis == NULL);
311 	if (!__frontswap_test(sis, offset))
312 		return -1;
313 
314 	/* Try loading from each implementation, until one succeeds. */
315 	for_each_frontswap_ops(ops) {
316 		ret = ops->load(type, offset, page);
317 		if (!ret) /* successful load */
318 			break;
319 	}
320 	if (ret == 0) {
321 		inc_frontswap_loads();
322 		if (frontswap_tmem_exclusive_gets_enabled) {
323 			SetPageDirty(page);
324 			__frontswap_clear(sis, offset);
325 		}
326 	}
327 	return ret;
328 }
329 EXPORT_SYMBOL(__frontswap_load);
330 
331 /*
332  * Invalidate any data from frontswap associated with the specified swaptype
333  * and offset so that a subsequent "get" will fail.
334  */
__frontswap_invalidate_page(unsigned type,pgoff_t offset)335 void __frontswap_invalidate_page(unsigned type, pgoff_t offset)
336 {
337 	struct swap_info_struct *sis = swap_info[type];
338 	struct frontswap_ops *ops;
339 
340 	if (!frontswap_ops)
341 		return;
342 
343 	BUG_ON(sis == NULL);
344 	if (!__frontswap_test(sis, offset))
345 		return;
346 
347 	for_each_frontswap_ops(ops)
348 		ops->invalidate_page(type, offset);
349 	__frontswap_clear(sis, offset);
350 	inc_frontswap_invalidates();
351 }
352 EXPORT_SYMBOL(__frontswap_invalidate_page);
353 
354 /*
355  * Invalidate all data from frontswap associated with all offsets for the
356  * specified swaptype.
357  */
__frontswap_invalidate_area(unsigned type)358 void __frontswap_invalidate_area(unsigned type)
359 {
360 	struct swap_info_struct *sis = swap_info[type];
361 	struct frontswap_ops *ops;
362 
363 	if (!frontswap_ops)
364 		return;
365 
366 	BUG_ON(sis == NULL);
367 	if (sis->frontswap_map == NULL)
368 		return;
369 
370 	for_each_frontswap_ops(ops)
371 		ops->invalidate_area(type);
372 	atomic_set(&sis->frontswap_pages, 0);
373 	bitmap_zero(sis->frontswap_map, sis->max);
374 }
375 EXPORT_SYMBOL(__frontswap_invalidate_area);
376 
__frontswap_curr_pages(void)377 static unsigned long __frontswap_curr_pages(void)
378 {
379 	unsigned long totalpages = 0;
380 	struct swap_info_struct *si = NULL;
381 
382 	assert_spin_locked(&swap_lock);
383 	plist_for_each_entry(si, &swap_active_head, list)
384 		totalpages += atomic_read(&si->frontswap_pages);
385 	return totalpages;
386 }
387 
__frontswap_unuse_pages(unsigned long total,unsigned long * unused,int * swapid)388 static int __frontswap_unuse_pages(unsigned long total, unsigned long *unused,
389 					int *swapid)
390 {
391 	int ret = -EINVAL;
392 	struct swap_info_struct *si = NULL;
393 	int si_frontswap_pages;
394 	unsigned long total_pages_to_unuse = total;
395 	unsigned long pages = 0, pages_to_unuse = 0;
396 
397 	assert_spin_locked(&swap_lock);
398 	plist_for_each_entry(si, &swap_active_head, list) {
399 		si_frontswap_pages = atomic_read(&si->frontswap_pages);
400 		if (total_pages_to_unuse < si_frontswap_pages) {
401 			pages = pages_to_unuse = total_pages_to_unuse;
402 		} else {
403 			pages = si_frontswap_pages;
404 			pages_to_unuse = 0; /* unuse all */
405 		}
406 		/* ensure there is enough RAM to fetch pages from frontswap */
407 		if (security_vm_enough_memory_mm(current->mm, pages)) {
408 			ret = -ENOMEM;
409 			continue;
410 		}
411 		vm_unacct_memory(pages);
412 		*unused = pages_to_unuse;
413 		*swapid = si->type;
414 		ret = 0;
415 		break;
416 	}
417 
418 	return ret;
419 }
420 
421 /*
422  * Used to check if it's necessory and feasible to unuse pages.
423  * Return 1 when nothing to do, 0 when need to shink pages,
424  * error code when there is an error.
425  */
__frontswap_shrink(unsigned long target_pages,unsigned long * pages_to_unuse,int * type)426 static int __frontswap_shrink(unsigned long target_pages,
427 				unsigned long *pages_to_unuse,
428 				int *type)
429 {
430 	unsigned long total_pages = 0, total_pages_to_unuse;
431 
432 	assert_spin_locked(&swap_lock);
433 
434 	total_pages = __frontswap_curr_pages();
435 	if (total_pages <= target_pages) {
436 		/* Nothing to do */
437 		*pages_to_unuse = 0;
438 		return 1;
439 	}
440 	total_pages_to_unuse = total_pages - target_pages;
441 	return __frontswap_unuse_pages(total_pages_to_unuse, pages_to_unuse, type);
442 }
443 
444 /*
445  * Frontswap, like a true swap device, may unnecessarily retain pages
446  * under certain circumstances; "shrink" frontswap is essentially a
447  * "partial swapoff" and works by calling try_to_unuse to attempt to
448  * unuse enough frontswap pages to attempt to -- subject to memory
449  * constraints -- reduce the number of pages in frontswap to the
450  * number given in the parameter target_pages.
451  */
frontswap_shrink(unsigned long target_pages)452 void frontswap_shrink(unsigned long target_pages)
453 {
454 	unsigned long pages_to_unuse = 0;
455 	int uninitialized_var(type), ret;
456 
457 	/*
458 	 * we don't want to hold swap_lock while doing a very
459 	 * lengthy try_to_unuse, but swap_list may change
460 	 * so restart scan from swap_active_head each time
461 	 */
462 	spin_lock(&swap_lock);
463 	ret = __frontswap_shrink(target_pages, &pages_to_unuse, &type);
464 	spin_unlock(&swap_lock);
465 	if (ret == 0)
466 		try_to_unuse(type, true, pages_to_unuse);
467 	return;
468 }
469 EXPORT_SYMBOL(frontswap_shrink);
470 
471 /*
472  * Count and return the number of frontswap pages across all
473  * swap devices.  This is exported so that backend drivers can
474  * determine current usage without reading debugfs.
475  */
frontswap_curr_pages(void)476 unsigned long frontswap_curr_pages(void)
477 {
478 	unsigned long totalpages = 0;
479 
480 	spin_lock(&swap_lock);
481 	totalpages = __frontswap_curr_pages();
482 	spin_unlock(&swap_lock);
483 
484 	return totalpages;
485 }
486 EXPORT_SYMBOL(frontswap_curr_pages);
487 
init_frontswap(void)488 static int __init init_frontswap(void)
489 {
490 #ifdef CONFIG_DEBUG_FS
491 	struct dentry *root = debugfs_create_dir("frontswap", NULL);
492 	if (root == NULL)
493 		return -ENXIO;
494 	debugfs_create_u64("loads", S_IRUGO, root, &frontswap_loads);
495 	debugfs_create_u64("succ_stores", S_IRUGO, root, &frontswap_succ_stores);
496 	debugfs_create_u64("failed_stores", S_IRUGO, root,
497 				&frontswap_failed_stores);
498 	debugfs_create_u64("invalidates", S_IRUGO,
499 				root, &frontswap_invalidates);
500 #endif
501 	return 0;
502 }
503 
504 module_init(init_frontswap);
505