1 /*
2  *  linux/fs/ext4/super.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Big-endian to little-endian byte-swapping/bitmaps by
16  *        David S. Miller (davem@caip.rutgers.edu), 1995
17  */
18 
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/ctype.h>
38 #include <linux/log2.h>
39 #include <linux/crc16.h>
40 #include <linux/cleancache.h>
41 #include <asm/uaccess.h>
42 
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 
46 #include "ext4.h"
47 #include "ext4_extents.h"	/* Needed for trace points definition */
48 #include "ext4_jbd2.h"
49 #include "xattr.h"
50 #include "acl.h"
51 #include "mballoc.h"
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/ext4.h>
55 
56 static struct ext4_lazy_init *ext4_li_info;
57 static struct mutex ext4_li_mtx;
58 static int ext4_mballoc_ready;
59 static struct ratelimit_state ext4_mount_msg_ratelimit;
60 
61 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
62 			     unsigned long journal_devnum);
63 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
64 static int ext4_commit_super(struct super_block *sb, int sync);
65 static void ext4_mark_recovery_complete(struct super_block *sb,
66 					struct ext4_super_block *es);
67 static void ext4_clear_journal_err(struct super_block *sb,
68 				   struct ext4_super_block *es);
69 static int ext4_sync_fs(struct super_block *sb, int wait);
70 static int ext4_remount(struct super_block *sb, int *flags, char *data);
71 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
72 static int ext4_unfreeze(struct super_block *sb);
73 static int ext4_freeze(struct super_block *sb);
74 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
75 		       const char *dev_name, void *data);
76 static inline int ext2_feature_set_ok(struct super_block *sb);
77 static inline int ext3_feature_set_ok(struct super_block *sb);
78 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
79 static void ext4_destroy_lazyinit_thread(void);
80 static void ext4_unregister_li_request(struct super_block *sb);
81 static void ext4_clear_request_list(void);
82 
83 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
84 static struct file_system_type ext2_fs_type = {
85 	.owner		= THIS_MODULE,
86 	.name		= "ext2",
87 	.mount		= ext4_mount,
88 	.kill_sb	= kill_block_super,
89 	.fs_flags	= FS_REQUIRES_DEV,
90 };
91 MODULE_ALIAS_FS("ext2");
92 MODULE_ALIAS("ext2");
93 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
94 #else
95 #define IS_EXT2_SB(sb) (0)
96 #endif
97 
98 
99 static struct file_system_type ext3_fs_type = {
100 	.owner		= THIS_MODULE,
101 	.name		= "ext3",
102 	.mount		= ext4_mount,
103 	.kill_sb	= kill_block_super,
104 	.fs_flags	= FS_REQUIRES_DEV,
105 };
106 MODULE_ALIAS_FS("ext3");
107 MODULE_ALIAS("ext3");
108 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
109 
ext4_verify_csum_type(struct super_block * sb,struct ext4_super_block * es)110 static int ext4_verify_csum_type(struct super_block *sb,
111 				 struct ext4_super_block *es)
112 {
113 	if (!ext4_has_feature_metadata_csum(sb))
114 		return 1;
115 
116 	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
117 }
118 
ext4_superblock_csum(struct super_block * sb,struct ext4_super_block * es)119 static __le32 ext4_superblock_csum(struct super_block *sb,
120 				   struct ext4_super_block *es)
121 {
122 	struct ext4_sb_info *sbi = EXT4_SB(sb);
123 	int offset = offsetof(struct ext4_super_block, s_checksum);
124 	__u32 csum;
125 
126 	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
127 
128 	return cpu_to_le32(csum);
129 }
130 
ext4_superblock_csum_verify(struct super_block * sb,struct ext4_super_block * es)131 static int ext4_superblock_csum_verify(struct super_block *sb,
132 				       struct ext4_super_block *es)
133 {
134 	if (!ext4_has_metadata_csum(sb))
135 		return 1;
136 
137 	return es->s_checksum == ext4_superblock_csum(sb, es);
138 }
139 
ext4_superblock_csum_set(struct super_block * sb)140 void ext4_superblock_csum_set(struct super_block *sb)
141 {
142 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
143 
144 	if (!ext4_has_metadata_csum(sb))
145 		return;
146 
147 	es->s_checksum = ext4_superblock_csum(sb, es);
148 }
149 
ext4_kvmalloc(size_t size,gfp_t flags)150 void *ext4_kvmalloc(size_t size, gfp_t flags)
151 {
152 	void *ret;
153 
154 	ret = kmalloc(size, flags | __GFP_NOWARN);
155 	if (!ret)
156 		ret = __vmalloc(size, flags, PAGE_KERNEL);
157 	return ret;
158 }
159 
ext4_kvzalloc(size_t size,gfp_t flags)160 void *ext4_kvzalloc(size_t size, gfp_t flags)
161 {
162 	void *ret;
163 
164 	ret = kzalloc(size, flags | __GFP_NOWARN);
165 	if (!ret)
166 		ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
167 	return ret;
168 }
169 
ext4_block_bitmap(struct super_block * sb,struct ext4_group_desc * bg)170 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
171 			       struct ext4_group_desc *bg)
172 {
173 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
174 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
175 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
176 }
177 
ext4_inode_bitmap(struct super_block * sb,struct ext4_group_desc * bg)178 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
179 			       struct ext4_group_desc *bg)
180 {
181 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
182 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
183 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
184 }
185 
ext4_inode_table(struct super_block * sb,struct ext4_group_desc * bg)186 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
187 			      struct ext4_group_desc *bg)
188 {
189 	return le32_to_cpu(bg->bg_inode_table_lo) |
190 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
191 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
192 }
193 
ext4_free_group_clusters(struct super_block * sb,struct ext4_group_desc * bg)194 __u32 ext4_free_group_clusters(struct super_block *sb,
195 			       struct ext4_group_desc *bg)
196 {
197 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
198 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
199 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
200 }
201 
ext4_free_inodes_count(struct super_block * sb,struct ext4_group_desc * bg)202 __u32 ext4_free_inodes_count(struct super_block *sb,
203 			      struct ext4_group_desc *bg)
204 {
205 	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
206 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
207 		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
208 }
209 
ext4_used_dirs_count(struct super_block * sb,struct ext4_group_desc * bg)210 __u32 ext4_used_dirs_count(struct super_block *sb,
211 			      struct ext4_group_desc *bg)
212 {
213 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
214 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
215 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
216 }
217 
ext4_itable_unused_count(struct super_block * sb,struct ext4_group_desc * bg)218 __u32 ext4_itable_unused_count(struct super_block *sb,
219 			      struct ext4_group_desc *bg)
220 {
221 	return le16_to_cpu(bg->bg_itable_unused_lo) |
222 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
223 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
224 }
225 
ext4_block_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)226 void ext4_block_bitmap_set(struct super_block *sb,
227 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
228 {
229 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
230 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
231 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
232 }
233 
ext4_inode_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)234 void ext4_inode_bitmap_set(struct super_block *sb,
235 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
236 {
237 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
238 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
239 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
240 }
241 
ext4_inode_table_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)242 void ext4_inode_table_set(struct super_block *sb,
243 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
244 {
245 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
246 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
247 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
248 }
249 
ext4_free_group_clusters_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)250 void ext4_free_group_clusters_set(struct super_block *sb,
251 				  struct ext4_group_desc *bg, __u32 count)
252 {
253 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
254 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
255 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
256 }
257 
ext4_free_inodes_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)258 void ext4_free_inodes_set(struct super_block *sb,
259 			  struct ext4_group_desc *bg, __u32 count)
260 {
261 	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
262 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
263 		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
264 }
265 
ext4_used_dirs_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)266 void ext4_used_dirs_set(struct super_block *sb,
267 			  struct ext4_group_desc *bg, __u32 count)
268 {
269 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
270 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
271 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
272 }
273 
ext4_itable_unused_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)274 void ext4_itable_unused_set(struct super_block *sb,
275 			  struct ext4_group_desc *bg, __u32 count)
276 {
277 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
278 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
279 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
280 }
281 
282 
__save_error_info(struct super_block * sb,const char * func,unsigned int line)283 static void __save_error_info(struct super_block *sb, const char *func,
284 			    unsigned int line)
285 {
286 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
287 
288 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
289 	if (bdev_read_only(sb->s_bdev))
290 		return;
291 	es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
292 	es->s_last_error_time = cpu_to_le32(get_seconds());
293 	strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
294 	es->s_last_error_line = cpu_to_le32(line);
295 	if (!es->s_first_error_time) {
296 		es->s_first_error_time = es->s_last_error_time;
297 		strncpy(es->s_first_error_func, func,
298 			sizeof(es->s_first_error_func));
299 		es->s_first_error_line = cpu_to_le32(line);
300 		es->s_first_error_ino = es->s_last_error_ino;
301 		es->s_first_error_block = es->s_last_error_block;
302 	}
303 	/*
304 	 * Start the daily error reporting function if it hasn't been
305 	 * started already
306 	 */
307 	if (!es->s_error_count)
308 		mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
309 	le32_add_cpu(&es->s_error_count, 1);
310 }
311 
save_error_info(struct super_block * sb,const char * func,unsigned int line)312 static void save_error_info(struct super_block *sb, const char *func,
313 			    unsigned int line)
314 {
315 	__save_error_info(sb, func, line);
316 	ext4_commit_super(sb, 1);
317 }
318 
319 /*
320  * The del_gendisk() function uninitializes the disk-specific data
321  * structures, including the bdi structure, without telling anyone
322  * else.  Once this happens, any attempt to call mark_buffer_dirty()
323  * (for example, by ext4_commit_super), will cause a kernel OOPS.
324  * This is a kludge to prevent these oops until we can put in a proper
325  * hook in del_gendisk() to inform the VFS and file system layers.
326  */
block_device_ejected(struct super_block * sb)327 static int block_device_ejected(struct super_block *sb)
328 {
329 	struct inode *bd_inode = sb->s_bdev->bd_inode;
330 	struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
331 
332 	return bdi->dev == NULL;
333 }
334 
ext4_journal_commit_callback(journal_t * journal,transaction_t * txn)335 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
336 {
337 	struct super_block		*sb = journal->j_private;
338 	struct ext4_sb_info		*sbi = EXT4_SB(sb);
339 	int				error = is_journal_aborted(journal);
340 	struct ext4_journal_cb_entry	*jce;
341 
342 	BUG_ON(txn->t_state == T_FINISHED);
343 	spin_lock(&sbi->s_md_lock);
344 	while (!list_empty(&txn->t_private_list)) {
345 		jce = list_entry(txn->t_private_list.next,
346 				 struct ext4_journal_cb_entry, jce_list);
347 		list_del_init(&jce->jce_list);
348 		spin_unlock(&sbi->s_md_lock);
349 		jce->jce_func(sb, jce, error);
350 		spin_lock(&sbi->s_md_lock);
351 	}
352 	spin_unlock(&sbi->s_md_lock);
353 }
354 
355 /* Deal with the reporting of failure conditions on a filesystem such as
356  * inconsistencies detected or read IO failures.
357  *
358  * On ext2, we can store the error state of the filesystem in the
359  * superblock.  That is not possible on ext4, because we may have other
360  * write ordering constraints on the superblock which prevent us from
361  * writing it out straight away; and given that the journal is about to
362  * be aborted, we can't rely on the current, or future, transactions to
363  * write out the superblock safely.
364  *
365  * We'll just use the jbd2_journal_abort() error code to record an error in
366  * the journal instead.  On recovery, the journal will complain about
367  * that error until we've noted it down and cleared it.
368  */
369 
ext4_handle_error(struct super_block * sb)370 static void ext4_handle_error(struct super_block *sb)
371 {
372 	if (sb->s_flags & MS_RDONLY)
373 		return;
374 
375 	if (!test_opt(sb, ERRORS_CONT)) {
376 		journal_t *journal = EXT4_SB(sb)->s_journal;
377 
378 		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
379 		if (journal)
380 			jbd2_journal_abort(journal, -EIO);
381 	}
382 	if (test_opt(sb, ERRORS_RO)) {
383 		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
384 		/*
385 		 * Make sure updated value of ->s_mount_flags will be visible
386 		 * before ->s_flags update
387 		 */
388 		smp_wmb();
389 		sb->s_flags |= MS_RDONLY;
390 	}
391 	if (test_opt(sb, ERRORS_PANIC)) {
392 		if (EXT4_SB(sb)->s_journal &&
393 		  !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
394 			return;
395 		panic("EXT4-fs (device %s): panic forced after error\n",
396 			sb->s_id);
397 	}
398 }
399 
400 #define ext4_error_ratelimit(sb)					\
401 		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
402 			     "EXT4-fs error")
403 
__ext4_error(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)404 void __ext4_error(struct super_block *sb, const char *function,
405 		  unsigned int line, const char *fmt, ...)
406 {
407 	struct va_format vaf;
408 	va_list args;
409 
410 	if (ext4_error_ratelimit(sb)) {
411 		va_start(args, fmt);
412 		vaf.fmt = fmt;
413 		vaf.va = &args;
414 		printk(KERN_CRIT
415 		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
416 		       sb->s_id, function, line, current->comm, &vaf);
417 		va_end(args);
418 	}
419 	save_error_info(sb, function, line);
420 	ext4_handle_error(sb);
421 }
422 
__ext4_error_inode(struct inode * inode,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)423 void __ext4_error_inode(struct inode *inode, const char *function,
424 			unsigned int line, ext4_fsblk_t block,
425 			const char *fmt, ...)
426 {
427 	va_list args;
428 	struct va_format vaf;
429 	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
430 
431 	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
432 	es->s_last_error_block = cpu_to_le64(block);
433 	if (ext4_error_ratelimit(inode->i_sb)) {
434 		va_start(args, fmt);
435 		vaf.fmt = fmt;
436 		vaf.va = &args;
437 		if (block)
438 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
439 			       "inode #%lu: block %llu: comm %s: %pV\n",
440 			       inode->i_sb->s_id, function, line, inode->i_ino,
441 			       block, current->comm, &vaf);
442 		else
443 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
444 			       "inode #%lu: comm %s: %pV\n",
445 			       inode->i_sb->s_id, function, line, inode->i_ino,
446 			       current->comm, &vaf);
447 		va_end(args);
448 	}
449 	save_error_info(inode->i_sb, function, line);
450 	ext4_handle_error(inode->i_sb);
451 }
452 
__ext4_error_file(struct file * file,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)453 void __ext4_error_file(struct file *file, const char *function,
454 		       unsigned int line, ext4_fsblk_t block,
455 		       const char *fmt, ...)
456 {
457 	va_list args;
458 	struct va_format vaf;
459 	struct ext4_super_block *es;
460 	struct inode *inode = file_inode(file);
461 	char pathname[80], *path;
462 
463 	es = EXT4_SB(inode->i_sb)->s_es;
464 	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
465 	if (ext4_error_ratelimit(inode->i_sb)) {
466 		path = file_path(file, pathname, sizeof(pathname));
467 		if (IS_ERR(path))
468 			path = "(unknown)";
469 		va_start(args, fmt);
470 		vaf.fmt = fmt;
471 		vaf.va = &args;
472 		if (block)
473 			printk(KERN_CRIT
474 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
475 			       "block %llu: comm %s: path %s: %pV\n",
476 			       inode->i_sb->s_id, function, line, inode->i_ino,
477 			       block, current->comm, path, &vaf);
478 		else
479 			printk(KERN_CRIT
480 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
481 			       "comm %s: path %s: %pV\n",
482 			       inode->i_sb->s_id, function, line, inode->i_ino,
483 			       current->comm, path, &vaf);
484 		va_end(args);
485 	}
486 	save_error_info(inode->i_sb, function, line);
487 	ext4_handle_error(inode->i_sb);
488 }
489 
ext4_decode_error(struct super_block * sb,int errno,char nbuf[16])490 const char *ext4_decode_error(struct super_block *sb, int errno,
491 			      char nbuf[16])
492 {
493 	char *errstr = NULL;
494 
495 	switch (errno) {
496 	case -EFSCORRUPTED:
497 		errstr = "Corrupt filesystem";
498 		break;
499 	case -EFSBADCRC:
500 		errstr = "Filesystem failed CRC";
501 		break;
502 	case -EIO:
503 		errstr = "IO failure";
504 		break;
505 	case -ENOMEM:
506 		errstr = "Out of memory";
507 		break;
508 	case -EROFS:
509 		if (!sb || (EXT4_SB(sb)->s_journal &&
510 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
511 			errstr = "Journal has aborted";
512 		else
513 			errstr = "Readonly filesystem";
514 		break;
515 	default:
516 		/* If the caller passed in an extra buffer for unknown
517 		 * errors, textualise them now.  Else we just return
518 		 * NULL. */
519 		if (nbuf) {
520 			/* Check for truncated error codes... */
521 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
522 				errstr = nbuf;
523 		}
524 		break;
525 	}
526 
527 	return errstr;
528 }
529 
530 /* __ext4_std_error decodes expected errors from journaling functions
531  * automatically and invokes the appropriate error response.  */
532 
__ext4_std_error(struct super_block * sb,const char * function,unsigned int line,int errno)533 void __ext4_std_error(struct super_block *sb, const char *function,
534 		      unsigned int line, int errno)
535 {
536 	char nbuf[16];
537 	const char *errstr;
538 
539 	/* Special case: if the error is EROFS, and we're not already
540 	 * inside a transaction, then there's really no point in logging
541 	 * an error. */
542 	if (errno == -EROFS && journal_current_handle() == NULL &&
543 	    (sb->s_flags & MS_RDONLY))
544 		return;
545 
546 	if (ext4_error_ratelimit(sb)) {
547 		errstr = ext4_decode_error(sb, errno, nbuf);
548 		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
549 		       sb->s_id, function, line, errstr);
550 	}
551 
552 	save_error_info(sb, function, line);
553 	ext4_handle_error(sb);
554 }
555 
556 /*
557  * ext4_abort is a much stronger failure handler than ext4_error.  The
558  * abort function may be used to deal with unrecoverable failures such
559  * as journal IO errors or ENOMEM at a critical moment in log management.
560  *
561  * We unconditionally force the filesystem into an ABORT|READONLY state,
562  * unless the error response on the fs has been set to panic in which
563  * case we take the easy way out and panic immediately.
564  */
565 
__ext4_abort(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)566 void __ext4_abort(struct super_block *sb, const char *function,
567 		unsigned int line, const char *fmt, ...)
568 {
569 	va_list args;
570 
571 	save_error_info(sb, function, line);
572 	va_start(args, fmt);
573 	printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
574 	       function, line);
575 	vprintk(fmt, args);
576 	printk("\n");
577 	va_end(args);
578 
579 	if ((sb->s_flags & MS_RDONLY) == 0) {
580 		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
581 		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
582 		/*
583 		 * Make sure updated value of ->s_mount_flags will be visible
584 		 * before ->s_flags update
585 		 */
586 		smp_wmb();
587 		sb->s_flags |= MS_RDONLY;
588 		if (EXT4_SB(sb)->s_journal)
589 			jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
590 		save_error_info(sb, function, line);
591 	}
592 	if (test_opt(sb, ERRORS_PANIC)) {
593 		if (EXT4_SB(sb)->s_journal &&
594 		  !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
595 			return;
596 		panic("EXT4-fs panic from previous error\n");
597 	}
598 }
599 
__ext4_msg(struct super_block * sb,const char * prefix,const char * fmt,...)600 void __ext4_msg(struct super_block *sb,
601 		const char *prefix, const char *fmt, ...)
602 {
603 	struct va_format vaf;
604 	va_list args;
605 
606 	if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
607 		return;
608 
609 	va_start(args, fmt);
610 	vaf.fmt = fmt;
611 	vaf.va = &args;
612 	printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
613 	va_end(args);
614 }
615 
616 #define ext4_warning_ratelimit(sb)					\
617 		___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),	\
618 			     "EXT4-fs warning")
619 
__ext4_warning(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)620 void __ext4_warning(struct super_block *sb, const char *function,
621 		    unsigned int line, const char *fmt, ...)
622 {
623 	struct va_format vaf;
624 	va_list args;
625 
626 	if (!ext4_warning_ratelimit(sb))
627 		return;
628 
629 	va_start(args, fmt);
630 	vaf.fmt = fmt;
631 	vaf.va = &args;
632 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
633 	       sb->s_id, function, line, &vaf);
634 	va_end(args);
635 }
636 
__ext4_warning_inode(const struct inode * inode,const char * function,unsigned int line,const char * fmt,...)637 void __ext4_warning_inode(const struct inode *inode, const char *function,
638 			  unsigned int line, const char *fmt, ...)
639 {
640 	struct va_format vaf;
641 	va_list args;
642 
643 	if (!ext4_warning_ratelimit(inode->i_sb))
644 		return;
645 
646 	va_start(args, fmt);
647 	vaf.fmt = fmt;
648 	vaf.va = &args;
649 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
650 	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
651 	       function, line, inode->i_ino, current->comm, &vaf);
652 	va_end(args);
653 }
654 
__ext4_grp_locked_error(const char * function,unsigned int line,struct super_block * sb,ext4_group_t grp,unsigned long ino,ext4_fsblk_t block,const char * fmt,...)655 void __ext4_grp_locked_error(const char *function, unsigned int line,
656 			     struct super_block *sb, ext4_group_t grp,
657 			     unsigned long ino, ext4_fsblk_t block,
658 			     const char *fmt, ...)
659 __releases(bitlock)
660 __acquires(bitlock)
661 {
662 	struct va_format vaf;
663 	va_list args;
664 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
665 
666 	es->s_last_error_ino = cpu_to_le32(ino);
667 	es->s_last_error_block = cpu_to_le64(block);
668 	__save_error_info(sb, function, line);
669 
670 	if (ext4_error_ratelimit(sb)) {
671 		va_start(args, fmt);
672 		vaf.fmt = fmt;
673 		vaf.va = &args;
674 		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
675 		       sb->s_id, function, line, grp);
676 		if (ino)
677 			printk(KERN_CONT "inode %lu: ", ino);
678 		if (block)
679 			printk(KERN_CONT "block %llu:",
680 			       (unsigned long long) block);
681 		printk(KERN_CONT "%pV\n", &vaf);
682 		va_end(args);
683 	}
684 
685 	if (test_opt(sb, ERRORS_CONT)) {
686 		ext4_commit_super(sb, 0);
687 		return;
688 	}
689 
690 	ext4_unlock_group(sb, grp);
691 	ext4_handle_error(sb);
692 	/*
693 	 * We only get here in the ERRORS_RO case; relocking the group
694 	 * may be dangerous, but nothing bad will happen since the
695 	 * filesystem will have already been marked read/only and the
696 	 * journal has been aborted.  We return 1 as a hint to callers
697 	 * who might what to use the return value from
698 	 * ext4_grp_locked_error() to distinguish between the
699 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
700 	 * aggressively from the ext4 function in question, with a
701 	 * more appropriate error code.
702 	 */
703 	ext4_lock_group(sb, grp);
704 	return;
705 }
706 
ext4_update_dynamic_rev(struct super_block * sb)707 void ext4_update_dynamic_rev(struct super_block *sb)
708 {
709 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
710 
711 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
712 		return;
713 
714 	ext4_warning(sb,
715 		     "updating to rev %d because of new feature flag, "
716 		     "running e2fsck is recommended",
717 		     EXT4_DYNAMIC_REV);
718 
719 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
720 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
721 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
722 	/* leave es->s_feature_*compat flags alone */
723 	/* es->s_uuid will be set by e2fsck if empty */
724 
725 	/*
726 	 * The rest of the superblock fields should be zero, and if not it
727 	 * means they are likely already in use, so leave them alone.  We
728 	 * can leave it up to e2fsck to clean up any inconsistencies there.
729 	 */
730 }
731 
732 /*
733  * Open the external journal device
734  */
ext4_blkdev_get(dev_t dev,struct super_block * sb)735 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
736 {
737 	struct block_device *bdev;
738 	char b[BDEVNAME_SIZE];
739 
740 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
741 	if (IS_ERR(bdev))
742 		goto fail;
743 	return bdev;
744 
745 fail:
746 	ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
747 			__bdevname(dev, b), PTR_ERR(bdev));
748 	return NULL;
749 }
750 
751 /*
752  * Release the journal device
753  */
ext4_blkdev_put(struct block_device * bdev)754 static void ext4_blkdev_put(struct block_device *bdev)
755 {
756 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
757 }
758 
ext4_blkdev_remove(struct ext4_sb_info * sbi)759 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
760 {
761 	struct block_device *bdev;
762 	bdev = sbi->journal_bdev;
763 	if (bdev) {
764 		ext4_blkdev_put(bdev);
765 		sbi->journal_bdev = NULL;
766 	}
767 }
768 
orphan_list_entry(struct list_head * l)769 static inline struct inode *orphan_list_entry(struct list_head *l)
770 {
771 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
772 }
773 
dump_orphan_list(struct super_block * sb,struct ext4_sb_info * sbi)774 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
775 {
776 	struct list_head *l;
777 
778 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
779 		 le32_to_cpu(sbi->s_es->s_last_orphan));
780 
781 	printk(KERN_ERR "sb_info orphan list:\n");
782 	list_for_each(l, &sbi->s_orphan) {
783 		struct inode *inode = orphan_list_entry(l);
784 		printk(KERN_ERR "  "
785 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
786 		       inode->i_sb->s_id, inode->i_ino, inode,
787 		       inode->i_mode, inode->i_nlink,
788 		       NEXT_ORPHAN(inode));
789 	}
790 }
791 
ext4_put_super(struct super_block * sb)792 static void ext4_put_super(struct super_block *sb)
793 {
794 	struct ext4_sb_info *sbi = EXT4_SB(sb);
795 	struct ext4_super_block *es = sbi->s_es;
796 	int i, err;
797 
798 	ext4_unregister_li_request(sb);
799 	dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
800 
801 	flush_workqueue(sbi->rsv_conversion_wq);
802 	destroy_workqueue(sbi->rsv_conversion_wq);
803 
804 	if (sbi->s_journal) {
805 		err = jbd2_journal_destroy(sbi->s_journal);
806 		sbi->s_journal = NULL;
807 		if (err < 0)
808 			ext4_abort(sb, "Couldn't clean up the journal");
809 	}
810 
811 	ext4_unregister_sysfs(sb);
812 	ext4_es_unregister_shrinker(sbi);
813 	del_timer_sync(&sbi->s_err_report);
814 	ext4_release_system_zone(sb);
815 	ext4_mb_release(sb);
816 	ext4_ext_release(sb);
817 	ext4_xattr_put_super(sb);
818 
819 	if (!(sb->s_flags & MS_RDONLY)) {
820 		ext4_clear_feature_journal_needs_recovery(sb);
821 		es->s_state = cpu_to_le16(sbi->s_mount_state);
822 	}
823 	if (!(sb->s_flags & MS_RDONLY))
824 		ext4_commit_super(sb, 1);
825 
826 	for (i = 0; i < sbi->s_gdb_count; i++)
827 		brelse(sbi->s_group_desc[i]);
828 	kvfree(sbi->s_group_desc);
829 	kvfree(sbi->s_flex_groups);
830 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
831 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
832 	percpu_counter_destroy(&sbi->s_dirs_counter);
833 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
834 	brelse(sbi->s_sbh);
835 #ifdef CONFIG_QUOTA
836 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
837 		kfree(sbi->s_qf_names[i]);
838 #endif
839 
840 	/* Debugging code just in case the in-memory inode orphan list
841 	 * isn't empty.  The on-disk one can be non-empty if we've
842 	 * detected an error and taken the fs readonly, but the
843 	 * in-memory list had better be clean by this point. */
844 	if (!list_empty(&sbi->s_orphan))
845 		dump_orphan_list(sb, sbi);
846 	J_ASSERT(list_empty(&sbi->s_orphan));
847 
848 	sync_blockdev(sb->s_bdev);
849 	invalidate_bdev(sb->s_bdev);
850 	if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
851 		/*
852 		 * Invalidate the journal device's buffers.  We don't want them
853 		 * floating about in memory - the physical journal device may
854 		 * hotswapped, and it breaks the `ro-after' testing code.
855 		 */
856 		sync_blockdev(sbi->journal_bdev);
857 		invalidate_bdev(sbi->journal_bdev);
858 		ext4_blkdev_remove(sbi);
859 	}
860 	if (sbi->s_mb_cache) {
861 		ext4_xattr_destroy_cache(sbi->s_mb_cache);
862 		sbi->s_mb_cache = NULL;
863 	}
864 	if (sbi->s_mmp_tsk)
865 		kthread_stop(sbi->s_mmp_tsk);
866 	sb->s_fs_info = NULL;
867 	/*
868 	 * Now that we are completely done shutting down the
869 	 * superblock, we need to actually destroy the kobject.
870 	 */
871 	kobject_put(&sbi->s_kobj);
872 	wait_for_completion(&sbi->s_kobj_unregister);
873 	if (sbi->s_chksum_driver)
874 		crypto_free_shash(sbi->s_chksum_driver);
875 	kfree(sbi->s_blockgroup_lock);
876 	kfree(sbi);
877 }
878 
879 static struct kmem_cache *ext4_inode_cachep;
880 
881 /*
882  * Called inside transaction, so use GFP_NOFS
883  */
ext4_alloc_inode(struct super_block * sb)884 static struct inode *ext4_alloc_inode(struct super_block *sb)
885 {
886 	struct ext4_inode_info *ei;
887 
888 	ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
889 	if (!ei)
890 		return NULL;
891 
892 	ei->vfs_inode.i_version = 1;
893 	spin_lock_init(&ei->i_raw_lock);
894 	INIT_LIST_HEAD(&ei->i_prealloc_list);
895 	spin_lock_init(&ei->i_prealloc_lock);
896 	ext4_es_init_tree(&ei->i_es_tree);
897 	rwlock_init(&ei->i_es_lock);
898 	INIT_LIST_HEAD(&ei->i_es_list);
899 	ei->i_es_all_nr = 0;
900 	ei->i_es_shk_nr = 0;
901 	ei->i_es_shrink_lblk = 0;
902 	ei->i_reserved_data_blocks = 0;
903 	ei->i_reserved_meta_blocks = 0;
904 	ei->i_allocated_meta_blocks = 0;
905 	ei->i_da_metadata_calc_len = 0;
906 	ei->i_da_metadata_calc_last_lblock = 0;
907 	spin_lock_init(&(ei->i_block_reservation_lock));
908 #ifdef CONFIG_QUOTA
909 	ei->i_reserved_quota = 0;
910 	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
911 #endif
912 	ei->jinode = NULL;
913 	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
914 	spin_lock_init(&ei->i_completed_io_lock);
915 	ei->i_sync_tid = 0;
916 	ei->i_datasync_tid = 0;
917 	atomic_set(&ei->i_ioend_count, 0);
918 	atomic_set(&ei->i_unwritten, 0);
919 	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
920 #ifdef CONFIG_EXT4_FS_ENCRYPTION
921 	ei->i_crypt_info = NULL;
922 #endif
923 	return &ei->vfs_inode;
924 }
925 
ext4_drop_inode(struct inode * inode)926 static int ext4_drop_inode(struct inode *inode)
927 {
928 	int drop = generic_drop_inode(inode);
929 
930 	trace_ext4_drop_inode(inode, drop);
931 	return drop;
932 }
933 
ext4_i_callback(struct rcu_head * head)934 static void ext4_i_callback(struct rcu_head *head)
935 {
936 	struct inode *inode = container_of(head, struct inode, i_rcu);
937 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
938 }
939 
ext4_destroy_inode(struct inode * inode)940 static void ext4_destroy_inode(struct inode *inode)
941 {
942 	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
943 		ext4_msg(inode->i_sb, KERN_ERR,
944 			 "Inode %lu (%p): orphan list check failed!",
945 			 inode->i_ino, EXT4_I(inode));
946 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
947 				EXT4_I(inode), sizeof(struct ext4_inode_info),
948 				true);
949 		dump_stack();
950 	}
951 	call_rcu(&inode->i_rcu, ext4_i_callback);
952 }
953 
init_once(void * foo)954 static void init_once(void *foo)
955 {
956 	struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
957 
958 	INIT_LIST_HEAD(&ei->i_orphan);
959 	init_rwsem(&ei->xattr_sem);
960 	init_rwsem(&ei->i_data_sem);
961 	init_rwsem(&ei->i_mmap_sem);
962 	inode_init_once(&ei->vfs_inode);
963 }
964 
init_inodecache(void)965 static int __init init_inodecache(void)
966 {
967 	ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
968 					     sizeof(struct ext4_inode_info),
969 					     0, (SLAB_RECLAIM_ACCOUNT|
970 						SLAB_MEM_SPREAD),
971 					     init_once);
972 	if (ext4_inode_cachep == NULL)
973 		return -ENOMEM;
974 	return 0;
975 }
976 
destroy_inodecache(void)977 static void destroy_inodecache(void)
978 {
979 	/*
980 	 * Make sure all delayed rcu free inodes are flushed before we
981 	 * destroy cache.
982 	 */
983 	rcu_barrier();
984 	kmem_cache_destroy(ext4_inode_cachep);
985 }
986 
ext4_clear_inode(struct inode * inode)987 void ext4_clear_inode(struct inode *inode)
988 {
989 	invalidate_inode_buffers(inode);
990 	clear_inode(inode);
991 	dquot_drop(inode);
992 	ext4_discard_preallocations(inode);
993 	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
994 	if (EXT4_I(inode)->jinode) {
995 		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
996 					       EXT4_I(inode)->jinode);
997 		jbd2_free_inode(EXT4_I(inode)->jinode);
998 		EXT4_I(inode)->jinode = NULL;
999 	}
1000 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1001 	if (EXT4_I(inode)->i_crypt_info)
1002 		ext4_free_encryption_info(inode, EXT4_I(inode)->i_crypt_info);
1003 #endif
1004 }
1005 
ext4_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)1006 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1007 					u64 ino, u32 generation)
1008 {
1009 	struct inode *inode;
1010 
1011 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1012 		return ERR_PTR(-ESTALE);
1013 	if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1014 		return ERR_PTR(-ESTALE);
1015 
1016 	/* iget isn't really right if the inode is currently unallocated!!
1017 	 *
1018 	 * ext4_read_inode will return a bad_inode if the inode had been
1019 	 * deleted, so we should be safe.
1020 	 *
1021 	 * Currently we don't know the generation for parent directory, so
1022 	 * a generation of 0 means "accept any"
1023 	 */
1024 	inode = ext4_iget_normal(sb, ino);
1025 	if (IS_ERR(inode))
1026 		return ERR_CAST(inode);
1027 	if (generation && inode->i_generation != generation) {
1028 		iput(inode);
1029 		return ERR_PTR(-ESTALE);
1030 	}
1031 
1032 	return inode;
1033 }
1034 
ext4_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1035 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1036 					int fh_len, int fh_type)
1037 {
1038 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1039 				    ext4_nfs_get_inode);
1040 }
1041 
ext4_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1042 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1043 					int fh_len, int fh_type)
1044 {
1045 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1046 				    ext4_nfs_get_inode);
1047 }
1048 
1049 /*
1050  * Try to release metadata pages (indirect blocks, directories) which are
1051  * mapped via the block device.  Since these pages could have journal heads
1052  * which would prevent try_to_free_buffers() from freeing them, we must use
1053  * jbd2 layer's try_to_free_buffers() function to release them.
1054  */
bdev_try_to_free_page(struct super_block * sb,struct page * page,gfp_t wait)1055 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1056 				 gfp_t wait)
1057 {
1058 	journal_t *journal = EXT4_SB(sb)->s_journal;
1059 
1060 	WARN_ON(PageChecked(page));
1061 	if (!page_has_buffers(page))
1062 		return 0;
1063 	if (journal)
1064 		return jbd2_journal_try_to_free_buffers(journal, page,
1065 						wait & ~__GFP_DIRECT_RECLAIM);
1066 	return try_to_free_buffers(page);
1067 }
1068 
1069 #ifdef CONFIG_QUOTA
1070 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1071 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1072 
1073 static int ext4_write_dquot(struct dquot *dquot);
1074 static int ext4_acquire_dquot(struct dquot *dquot);
1075 static int ext4_release_dquot(struct dquot *dquot);
1076 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1077 static int ext4_write_info(struct super_block *sb, int type);
1078 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1079 			 struct path *path);
1080 static int ext4_quota_off(struct super_block *sb, int type);
1081 static int ext4_quota_on_mount(struct super_block *sb, int type);
1082 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1083 			       size_t len, loff_t off);
1084 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1085 				const char *data, size_t len, loff_t off);
1086 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1087 			     unsigned int flags);
1088 static int ext4_enable_quotas(struct super_block *sb);
1089 
ext4_get_dquots(struct inode * inode)1090 static struct dquot **ext4_get_dquots(struct inode *inode)
1091 {
1092 	return EXT4_I(inode)->i_dquot;
1093 }
1094 
1095 static const struct dquot_operations ext4_quota_operations = {
1096 	.get_reserved_space = ext4_get_reserved_space,
1097 	.write_dquot	= ext4_write_dquot,
1098 	.acquire_dquot	= ext4_acquire_dquot,
1099 	.release_dquot	= ext4_release_dquot,
1100 	.mark_dirty	= ext4_mark_dquot_dirty,
1101 	.write_info	= ext4_write_info,
1102 	.alloc_dquot	= dquot_alloc,
1103 	.destroy_dquot	= dquot_destroy,
1104 };
1105 
1106 static const struct quotactl_ops ext4_qctl_operations = {
1107 	.quota_on	= ext4_quota_on,
1108 	.quota_off	= ext4_quota_off,
1109 	.quota_sync	= dquot_quota_sync,
1110 	.get_state	= dquot_get_state,
1111 	.set_info	= dquot_set_dqinfo,
1112 	.get_dqblk	= dquot_get_dqblk,
1113 	.set_dqblk	= dquot_set_dqblk
1114 };
1115 #endif
1116 
1117 static const struct super_operations ext4_sops = {
1118 	.alloc_inode	= ext4_alloc_inode,
1119 	.destroy_inode	= ext4_destroy_inode,
1120 	.write_inode	= ext4_write_inode,
1121 	.dirty_inode	= ext4_dirty_inode,
1122 	.drop_inode	= ext4_drop_inode,
1123 	.evict_inode	= ext4_evict_inode,
1124 	.put_super	= ext4_put_super,
1125 	.sync_fs	= ext4_sync_fs,
1126 	.freeze_fs	= ext4_freeze,
1127 	.unfreeze_fs	= ext4_unfreeze,
1128 	.statfs		= ext4_statfs,
1129 	.remount_fs	= ext4_remount,
1130 	.show_options	= ext4_show_options,
1131 #ifdef CONFIG_QUOTA
1132 	.quota_read	= ext4_quota_read,
1133 	.quota_write	= ext4_quota_write,
1134 	.get_dquots	= ext4_get_dquots,
1135 #endif
1136 	.bdev_try_to_free_page = bdev_try_to_free_page,
1137 };
1138 
1139 static const struct export_operations ext4_export_ops = {
1140 	.fh_to_dentry = ext4_fh_to_dentry,
1141 	.fh_to_parent = ext4_fh_to_parent,
1142 	.get_parent = ext4_get_parent,
1143 };
1144 
1145 enum {
1146 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1147 	Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1148 	Opt_nouid32, Opt_debug, Opt_removed,
1149 	Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1150 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1151 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1152 	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1153 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1154 	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1155 	Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1156 	Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1157 	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1158 	Opt_usrquota, Opt_grpquota, Opt_i_version, Opt_dax,
1159 	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1160 	Opt_lazytime, Opt_nolazytime,
1161 	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1162 	Opt_inode_readahead_blks, Opt_journal_ioprio,
1163 	Opt_dioread_nolock, Opt_dioread_lock,
1164 	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1165 	Opt_max_dir_size_kb, Opt_nojournal_checksum,
1166 };
1167 
1168 static const match_table_t tokens = {
1169 	{Opt_bsd_df, "bsddf"},
1170 	{Opt_minix_df, "minixdf"},
1171 	{Opt_grpid, "grpid"},
1172 	{Opt_grpid, "bsdgroups"},
1173 	{Opt_nogrpid, "nogrpid"},
1174 	{Opt_nogrpid, "sysvgroups"},
1175 	{Opt_resgid, "resgid=%u"},
1176 	{Opt_resuid, "resuid=%u"},
1177 	{Opt_sb, "sb=%u"},
1178 	{Opt_err_cont, "errors=continue"},
1179 	{Opt_err_panic, "errors=panic"},
1180 	{Opt_err_ro, "errors=remount-ro"},
1181 	{Opt_nouid32, "nouid32"},
1182 	{Opt_debug, "debug"},
1183 	{Opt_removed, "oldalloc"},
1184 	{Opt_removed, "orlov"},
1185 	{Opt_user_xattr, "user_xattr"},
1186 	{Opt_nouser_xattr, "nouser_xattr"},
1187 	{Opt_acl, "acl"},
1188 	{Opt_noacl, "noacl"},
1189 	{Opt_noload, "norecovery"},
1190 	{Opt_noload, "noload"},
1191 	{Opt_removed, "nobh"},
1192 	{Opt_removed, "bh"},
1193 	{Opt_commit, "commit=%u"},
1194 	{Opt_min_batch_time, "min_batch_time=%u"},
1195 	{Opt_max_batch_time, "max_batch_time=%u"},
1196 	{Opt_journal_dev, "journal_dev=%u"},
1197 	{Opt_journal_path, "journal_path=%s"},
1198 	{Opt_journal_checksum, "journal_checksum"},
1199 	{Opt_nojournal_checksum, "nojournal_checksum"},
1200 	{Opt_journal_async_commit, "journal_async_commit"},
1201 	{Opt_abort, "abort"},
1202 	{Opt_data_journal, "data=journal"},
1203 	{Opt_data_ordered, "data=ordered"},
1204 	{Opt_data_writeback, "data=writeback"},
1205 	{Opt_data_err_abort, "data_err=abort"},
1206 	{Opt_data_err_ignore, "data_err=ignore"},
1207 	{Opt_offusrjquota, "usrjquota="},
1208 	{Opt_usrjquota, "usrjquota=%s"},
1209 	{Opt_offgrpjquota, "grpjquota="},
1210 	{Opt_grpjquota, "grpjquota=%s"},
1211 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1212 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1213 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1214 	{Opt_grpquota, "grpquota"},
1215 	{Opt_noquota, "noquota"},
1216 	{Opt_quota, "quota"},
1217 	{Opt_usrquota, "usrquota"},
1218 	{Opt_barrier, "barrier=%u"},
1219 	{Opt_barrier, "barrier"},
1220 	{Opt_nobarrier, "nobarrier"},
1221 	{Opt_i_version, "i_version"},
1222 	{Opt_dax, "dax"},
1223 	{Opt_stripe, "stripe=%u"},
1224 	{Opt_delalloc, "delalloc"},
1225 	{Opt_lazytime, "lazytime"},
1226 	{Opt_nolazytime, "nolazytime"},
1227 	{Opt_nodelalloc, "nodelalloc"},
1228 	{Opt_removed, "mblk_io_submit"},
1229 	{Opt_removed, "nomblk_io_submit"},
1230 	{Opt_block_validity, "block_validity"},
1231 	{Opt_noblock_validity, "noblock_validity"},
1232 	{Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1233 	{Opt_journal_ioprio, "journal_ioprio=%u"},
1234 	{Opt_auto_da_alloc, "auto_da_alloc=%u"},
1235 	{Opt_auto_da_alloc, "auto_da_alloc"},
1236 	{Opt_noauto_da_alloc, "noauto_da_alloc"},
1237 	{Opt_dioread_nolock, "dioread_nolock"},
1238 	{Opt_dioread_lock, "dioread_lock"},
1239 	{Opt_discard, "discard"},
1240 	{Opt_nodiscard, "nodiscard"},
1241 	{Opt_init_itable, "init_itable=%u"},
1242 	{Opt_init_itable, "init_itable"},
1243 	{Opt_noinit_itable, "noinit_itable"},
1244 	{Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1245 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
1246 	{Opt_removed, "check=none"},	/* mount option from ext2/3 */
1247 	{Opt_removed, "nocheck"},	/* mount option from ext2/3 */
1248 	{Opt_removed, "reservation"},	/* mount option from ext2/3 */
1249 	{Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1250 	{Opt_removed, "journal=%u"},	/* mount option from ext2/3 */
1251 	{Opt_err, NULL},
1252 };
1253 
get_sb_block(void ** data)1254 static ext4_fsblk_t get_sb_block(void **data)
1255 {
1256 	ext4_fsblk_t	sb_block;
1257 	char		*options = (char *) *data;
1258 
1259 	if (!options || strncmp(options, "sb=", 3) != 0)
1260 		return 1;	/* Default location */
1261 
1262 	options += 3;
1263 	/* TODO: use simple_strtoll with >32bit ext4 */
1264 	sb_block = simple_strtoul(options, &options, 0);
1265 	if (*options && *options != ',') {
1266 		printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1267 		       (char *) *data);
1268 		return 1;
1269 	}
1270 	if (*options == ',')
1271 		options++;
1272 	*data = (void *) options;
1273 
1274 	return sb_block;
1275 }
1276 
1277 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1278 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1279 	"Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1280 
1281 #ifdef CONFIG_QUOTA
set_qf_name(struct super_block * sb,int qtype,substring_t * args)1282 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1283 {
1284 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1285 	char *qname;
1286 	int ret = -1;
1287 
1288 	if (sb_any_quota_loaded(sb) &&
1289 		!sbi->s_qf_names[qtype]) {
1290 		ext4_msg(sb, KERN_ERR,
1291 			"Cannot change journaled "
1292 			"quota options when quota turned on");
1293 		return -1;
1294 	}
1295 	if (ext4_has_feature_quota(sb)) {
1296 		ext4_msg(sb, KERN_INFO, "Journaled quota options "
1297 			 "ignored when QUOTA feature is enabled");
1298 		return 1;
1299 	}
1300 	qname = match_strdup(args);
1301 	if (!qname) {
1302 		ext4_msg(sb, KERN_ERR,
1303 			"Not enough memory for storing quotafile name");
1304 		return -1;
1305 	}
1306 	if (sbi->s_qf_names[qtype]) {
1307 		if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1308 			ret = 1;
1309 		else
1310 			ext4_msg(sb, KERN_ERR,
1311 				 "%s quota file already specified",
1312 				 QTYPE2NAME(qtype));
1313 		goto errout;
1314 	}
1315 	if (strchr(qname, '/')) {
1316 		ext4_msg(sb, KERN_ERR,
1317 			"quotafile must be on filesystem root");
1318 		goto errout;
1319 	}
1320 	sbi->s_qf_names[qtype] = qname;
1321 	set_opt(sb, QUOTA);
1322 	return 1;
1323 errout:
1324 	kfree(qname);
1325 	return ret;
1326 }
1327 
clear_qf_name(struct super_block * sb,int qtype)1328 static int clear_qf_name(struct super_block *sb, int qtype)
1329 {
1330 
1331 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1332 
1333 	if (sb_any_quota_loaded(sb) &&
1334 		sbi->s_qf_names[qtype]) {
1335 		ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1336 			" when quota turned on");
1337 		return -1;
1338 	}
1339 	kfree(sbi->s_qf_names[qtype]);
1340 	sbi->s_qf_names[qtype] = NULL;
1341 	return 1;
1342 }
1343 #endif
1344 
1345 #define MOPT_SET	0x0001
1346 #define MOPT_CLEAR	0x0002
1347 #define MOPT_NOSUPPORT	0x0004
1348 #define MOPT_EXPLICIT	0x0008
1349 #define MOPT_CLEAR_ERR	0x0010
1350 #define MOPT_GTE0	0x0020
1351 #ifdef CONFIG_QUOTA
1352 #define MOPT_Q		0
1353 #define MOPT_QFMT	0x0040
1354 #else
1355 #define MOPT_Q		MOPT_NOSUPPORT
1356 #define MOPT_QFMT	MOPT_NOSUPPORT
1357 #endif
1358 #define MOPT_DATAJ	0x0080
1359 #define MOPT_NO_EXT2	0x0100
1360 #define MOPT_NO_EXT3	0x0200
1361 #define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1362 #define MOPT_STRING	0x0400
1363 
1364 static const struct mount_opts {
1365 	int	token;
1366 	int	mount_opt;
1367 	int	flags;
1368 } ext4_mount_opts[] = {
1369 	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1370 	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1371 	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1372 	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1373 	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1374 	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1375 	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1376 	 MOPT_EXT4_ONLY | MOPT_SET},
1377 	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1378 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1379 	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1380 	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1381 	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1382 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1383 	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1384 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1385 	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1386 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1387 	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1388 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1389 	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1390 				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1391 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1392 	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1393 	{Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1394 	{Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1395 	{Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1396 	{Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1397 	 MOPT_NO_EXT2 | MOPT_SET},
1398 	{Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1399 	 MOPT_NO_EXT2 | MOPT_CLEAR},
1400 	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1401 	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1402 	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1403 	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1404 	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1405 	{Opt_commit, 0, MOPT_GTE0},
1406 	{Opt_max_batch_time, 0, MOPT_GTE0},
1407 	{Opt_min_batch_time, 0, MOPT_GTE0},
1408 	{Opt_inode_readahead_blks, 0, MOPT_GTE0},
1409 	{Opt_init_itable, 0, MOPT_GTE0},
1410 	{Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1411 	{Opt_stripe, 0, MOPT_GTE0},
1412 	{Opt_resuid, 0, MOPT_GTE0},
1413 	{Opt_resgid, 0, MOPT_GTE0},
1414 	{Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1415 	{Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1416 	{Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1417 	{Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1418 	{Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1419 	{Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1420 	 MOPT_NO_EXT2 | MOPT_DATAJ},
1421 	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1422 	{Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1423 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1424 	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1425 	{Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1426 #else
1427 	{Opt_acl, 0, MOPT_NOSUPPORT},
1428 	{Opt_noacl, 0, MOPT_NOSUPPORT},
1429 #endif
1430 	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1431 	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1432 	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1433 	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1434 							MOPT_SET | MOPT_Q},
1435 	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1436 							MOPT_SET | MOPT_Q},
1437 	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1438 		       EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1439 	{Opt_usrjquota, 0, MOPT_Q},
1440 	{Opt_grpjquota, 0, MOPT_Q},
1441 	{Opt_offusrjquota, 0, MOPT_Q},
1442 	{Opt_offgrpjquota, 0, MOPT_Q},
1443 	{Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1444 	{Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1445 	{Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1446 	{Opt_max_dir_size_kb, 0, MOPT_GTE0},
1447 	{Opt_test_dummy_encryption, 0, MOPT_GTE0},
1448 	{Opt_err, 0, 0}
1449 };
1450 
handle_mount_opt(struct super_block * sb,char * opt,int token,substring_t * args,unsigned long * journal_devnum,unsigned int * journal_ioprio,int is_remount)1451 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1452 			    substring_t *args, unsigned long *journal_devnum,
1453 			    unsigned int *journal_ioprio, int is_remount)
1454 {
1455 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1456 	const struct mount_opts *m;
1457 	kuid_t uid;
1458 	kgid_t gid;
1459 	int arg = 0;
1460 
1461 #ifdef CONFIG_QUOTA
1462 	if (token == Opt_usrjquota)
1463 		return set_qf_name(sb, USRQUOTA, &args[0]);
1464 	else if (token == Opt_grpjquota)
1465 		return set_qf_name(sb, GRPQUOTA, &args[0]);
1466 	else if (token == Opt_offusrjquota)
1467 		return clear_qf_name(sb, USRQUOTA);
1468 	else if (token == Opt_offgrpjquota)
1469 		return clear_qf_name(sb, GRPQUOTA);
1470 #endif
1471 	switch (token) {
1472 	case Opt_noacl:
1473 	case Opt_nouser_xattr:
1474 		ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1475 		break;
1476 	case Opt_sb:
1477 		return 1;	/* handled by get_sb_block() */
1478 	case Opt_removed:
1479 		ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1480 		return 1;
1481 	case Opt_abort:
1482 		sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1483 		return 1;
1484 	case Opt_i_version:
1485 		sb->s_flags |= MS_I_VERSION;
1486 		return 1;
1487 	case Opt_lazytime:
1488 		sb->s_flags |= MS_LAZYTIME;
1489 		return 1;
1490 	case Opt_nolazytime:
1491 		sb->s_flags &= ~MS_LAZYTIME;
1492 		return 1;
1493 	}
1494 
1495 	for (m = ext4_mount_opts; m->token != Opt_err; m++)
1496 		if (token == m->token)
1497 			break;
1498 
1499 	if (m->token == Opt_err) {
1500 		ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1501 			 "or missing value", opt);
1502 		return -1;
1503 	}
1504 
1505 	if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1506 		ext4_msg(sb, KERN_ERR,
1507 			 "Mount option \"%s\" incompatible with ext2", opt);
1508 		return -1;
1509 	}
1510 	if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1511 		ext4_msg(sb, KERN_ERR,
1512 			 "Mount option \"%s\" incompatible with ext3", opt);
1513 		return -1;
1514 	}
1515 
1516 	if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1517 		return -1;
1518 	if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1519 		return -1;
1520 	if (m->flags & MOPT_EXPLICIT) {
1521 		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1522 			set_opt2(sb, EXPLICIT_DELALLOC);
1523 		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1524 			set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1525 		} else
1526 			return -1;
1527 	}
1528 	if (m->flags & MOPT_CLEAR_ERR)
1529 		clear_opt(sb, ERRORS_MASK);
1530 	if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1531 		ext4_msg(sb, KERN_ERR, "Cannot change quota "
1532 			 "options when quota turned on");
1533 		return -1;
1534 	}
1535 
1536 	if (m->flags & MOPT_NOSUPPORT) {
1537 		ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1538 	} else if (token == Opt_commit) {
1539 		if (arg == 0)
1540 			arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1541 		sbi->s_commit_interval = HZ * arg;
1542 	} else if (token == Opt_max_batch_time) {
1543 		sbi->s_max_batch_time = arg;
1544 	} else if (token == Opt_min_batch_time) {
1545 		sbi->s_min_batch_time = arg;
1546 	} else if (token == Opt_inode_readahead_blks) {
1547 		if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1548 			ext4_msg(sb, KERN_ERR,
1549 				 "EXT4-fs: inode_readahead_blks must be "
1550 				 "0 or a power of 2 smaller than 2^31");
1551 			return -1;
1552 		}
1553 		sbi->s_inode_readahead_blks = arg;
1554 	} else if (token == Opt_init_itable) {
1555 		set_opt(sb, INIT_INODE_TABLE);
1556 		if (!args->from)
1557 			arg = EXT4_DEF_LI_WAIT_MULT;
1558 		sbi->s_li_wait_mult = arg;
1559 	} else if (token == Opt_max_dir_size_kb) {
1560 		sbi->s_max_dir_size_kb = arg;
1561 	} else if (token == Opt_stripe) {
1562 		sbi->s_stripe = arg;
1563 	} else if (token == Opt_resuid) {
1564 		uid = make_kuid(current_user_ns(), arg);
1565 		if (!uid_valid(uid)) {
1566 			ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1567 			return -1;
1568 		}
1569 		sbi->s_resuid = uid;
1570 	} else if (token == Opt_resgid) {
1571 		gid = make_kgid(current_user_ns(), arg);
1572 		if (!gid_valid(gid)) {
1573 			ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1574 			return -1;
1575 		}
1576 		sbi->s_resgid = gid;
1577 	} else if (token == Opt_journal_dev) {
1578 		if (is_remount) {
1579 			ext4_msg(sb, KERN_ERR,
1580 				 "Cannot specify journal on remount");
1581 			return -1;
1582 		}
1583 		*journal_devnum = arg;
1584 	} else if (token == Opt_journal_path) {
1585 		char *journal_path;
1586 		struct inode *journal_inode;
1587 		struct path path;
1588 		int error;
1589 
1590 		if (is_remount) {
1591 			ext4_msg(sb, KERN_ERR,
1592 				 "Cannot specify journal on remount");
1593 			return -1;
1594 		}
1595 		journal_path = match_strdup(&args[0]);
1596 		if (!journal_path) {
1597 			ext4_msg(sb, KERN_ERR, "error: could not dup "
1598 				"journal device string");
1599 			return -1;
1600 		}
1601 
1602 		error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1603 		if (error) {
1604 			ext4_msg(sb, KERN_ERR, "error: could not find "
1605 				"journal device path: error %d", error);
1606 			kfree(journal_path);
1607 			return -1;
1608 		}
1609 
1610 		journal_inode = d_inode(path.dentry);
1611 		if (!S_ISBLK(journal_inode->i_mode)) {
1612 			ext4_msg(sb, KERN_ERR, "error: journal path %s "
1613 				"is not a block device", journal_path);
1614 			path_put(&path);
1615 			kfree(journal_path);
1616 			return -1;
1617 		}
1618 
1619 		*journal_devnum = new_encode_dev(journal_inode->i_rdev);
1620 		path_put(&path);
1621 		kfree(journal_path);
1622 	} else if (token == Opt_journal_ioprio) {
1623 		if (arg > 7) {
1624 			ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1625 				 " (must be 0-7)");
1626 			return -1;
1627 		}
1628 		*journal_ioprio =
1629 			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1630 	} else if (token == Opt_test_dummy_encryption) {
1631 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1632 		sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1633 		ext4_msg(sb, KERN_WARNING,
1634 			 "Test dummy encryption mode enabled");
1635 #else
1636 		ext4_msg(sb, KERN_WARNING,
1637 			 "Test dummy encryption mount option ignored");
1638 #endif
1639 	} else if (m->flags & MOPT_DATAJ) {
1640 		if (is_remount) {
1641 			if (!sbi->s_journal)
1642 				ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1643 			else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1644 				ext4_msg(sb, KERN_ERR,
1645 					 "Cannot change data mode on remount");
1646 				return -1;
1647 			}
1648 		} else {
1649 			clear_opt(sb, DATA_FLAGS);
1650 			sbi->s_mount_opt |= m->mount_opt;
1651 		}
1652 #ifdef CONFIG_QUOTA
1653 	} else if (m->flags & MOPT_QFMT) {
1654 		if (sb_any_quota_loaded(sb) &&
1655 		    sbi->s_jquota_fmt != m->mount_opt) {
1656 			ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1657 				 "quota options when quota turned on");
1658 			return -1;
1659 		}
1660 		if (ext4_has_feature_quota(sb)) {
1661 			ext4_msg(sb, KERN_INFO,
1662 				 "Quota format mount options ignored "
1663 				 "when QUOTA feature is enabled");
1664 			return 1;
1665 		}
1666 		sbi->s_jquota_fmt = m->mount_opt;
1667 #endif
1668 	} else if (token == Opt_dax) {
1669 #ifdef CONFIG_FS_DAX
1670 		ext4_msg(sb, KERN_WARNING,
1671 		"DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1672 			sbi->s_mount_opt |= m->mount_opt;
1673 #else
1674 		ext4_msg(sb, KERN_INFO, "dax option not supported");
1675 		return -1;
1676 #endif
1677 	} else {
1678 		if (!args->from)
1679 			arg = 1;
1680 		if (m->flags & MOPT_CLEAR)
1681 			arg = !arg;
1682 		else if (unlikely(!(m->flags & MOPT_SET))) {
1683 			ext4_msg(sb, KERN_WARNING,
1684 				 "buggy handling of option %s", opt);
1685 			WARN_ON(1);
1686 			return -1;
1687 		}
1688 		if (arg != 0)
1689 			sbi->s_mount_opt |= m->mount_opt;
1690 		else
1691 			sbi->s_mount_opt &= ~m->mount_opt;
1692 	}
1693 	return 1;
1694 }
1695 
parse_options(char * options,struct super_block * sb,unsigned long * journal_devnum,unsigned int * journal_ioprio,int is_remount)1696 static int parse_options(char *options, struct super_block *sb,
1697 			 unsigned long *journal_devnum,
1698 			 unsigned int *journal_ioprio,
1699 			 int is_remount)
1700 {
1701 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1702 	char *p;
1703 	substring_t args[MAX_OPT_ARGS];
1704 	int token;
1705 
1706 	if (!options)
1707 		return 1;
1708 
1709 	while ((p = strsep(&options, ",")) != NULL) {
1710 		if (!*p)
1711 			continue;
1712 		/*
1713 		 * Initialize args struct so we know whether arg was
1714 		 * found; some options take optional arguments.
1715 		 */
1716 		args[0].to = args[0].from = NULL;
1717 		token = match_token(p, tokens, args);
1718 		if (handle_mount_opt(sb, p, token, args, journal_devnum,
1719 				     journal_ioprio, is_remount) < 0)
1720 			return 0;
1721 	}
1722 #ifdef CONFIG_QUOTA
1723 	if (ext4_has_feature_quota(sb) &&
1724 	    (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) {
1725 		ext4_msg(sb, KERN_INFO, "Quota feature enabled, usrquota and grpquota "
1726 			 "mount options ignored.");
1727 		clear_opt(sb, USRQUOTA);
1728 		clear_opt(sb, GRPQUOTA);
1729 	} else if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1730 		if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1731 			clear_opt(sb, USRQUOTA);
1732 
1733 		if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1734 			clear_opt(sb, GRPQUOTA);
1735 
1736 		if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1737 			ext4_msg(sb, KERN_ERR, "old and new quota "
1738 					"format mixing");
1739 			return 0;
1740 		}
1741 
1742 		if (!sbi->s_jquota_fmt) {
1743 			ext4_msg(sb, KERN_ERR, "journaled quota format "
1744 					"not specified");
1745 			return 0;
1746 		}
1747 	}
1748 #endif
1749 	if (test_opt(sb, DIOREAD_NOLOCK)) {
1750 		int blocksize =
1751 			BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1752 
1753 		if (blocksize < PAGE_CACHE_SIZE) {
1754 			ext4_msg(sb, KERN_ERR, "can't mount with "
1755 				 "dioread_nolock if block size != PAGE_SIZE");
1756 			return 0;
1757 		}
1758 	}
1759 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
1760 	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
1761 		ext4_msg(sb, KERN_ERR, "can't mount with journal_async_commit "
1762 			 "in data=ordered mode");
1763 		return 0;
1764 	}
1765 	return 1;
1766 }
1767 
ext4_show_quota_options(struct seq_file * seq,struct super_block * sb)1768 static inline void ext4_show_quota_options(struct seq_file *seq,
1769 					   struct super_block *sb)
1770 {
1771 #if defined(CONFIG_QUOTA)
1772 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1773 
1774 	if (sbi->s_jquota_fmt) {
1775 		char *fmtname = "";
1776 
1777 		switch (sbi->s_jquota_fmt) {
1778 		case QFMT_VFS_OLD:
1779 			fmtname = "vfsold";
1780 			break;
1781 		case QFMT_VFS_V0:
1782 			fmtname = "vfsv0";
1783 			break;
1784 		case QFMT_VFS_V1:
1785 			fmtname = "vfsv1";
1786 			break;
1787 		}
1788 		seq_printf(seq, ",jqfmt=%s", fmtname);
1789 	}
1790 
1791 	if (sbi->s_qf_names[USRQUOTA])
1792 		seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
1793 
1794 	if (sbi->s_qf_names[GRPQUOTA])
1795 		seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
1796 #endif
1797 }
1798 
token2str(int token)1799 static const char *token2str(int token)
1800 {
1801 	const struct match_token *t;
1802 
1803 	for (t = tokens; t->token != Opt_err; t++)
1804 		if (t->token == token && !strchr(t->pattern, '='))
1805 			break;
1806 	return t->pattern;
1807 }
1808 
1809 /*
1810  * Show an option if
1811  *  - it's set to a non-default value OR
1812  *  - if the per-sb default is different from the global default
1813  */
_ext4_show_options(struct seq_file * seq,struct super_block * sb,int nodefs)1814 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1815 			      int nodefs)
1816 {
1817 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1818 	struct ext4_super_block *es = sbi->s_es;
1819 	int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1820 	const struct mount_opts *m;
1821 	char sep = nodefs ? '\n' : ',';
1822 
1823 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1824 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1825 
1826 	if (sbi->s_sb_block != 1)
1827 		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1828 
1829 	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1830 		int want_set = m->flags & MOPT_SET;
1831 		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1832 		    (m->flags & MOPT_CLEAR_ERR))
1833 			continue;
1834 		if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1835 			continue; /* skip if same as the default */
1836 		if ((want_set &&
1837 		     (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1838 		    (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1839 			continue; /* select Opt_noFoo vs Opt_Foo */
1840 		SEQ_OPTS_PRINT("%s", token2str(m->token));
1841 	}
1842 
1843 	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1844 	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1845 		SEQ_OPTS_PRINT("resuid=%u",
1846 				from_kuid_munged(&init_user_ns, sbi->s_resuid));
1847 	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1848 	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1849 		SEQ_OPTS_PRINT("resgid=%u",
1850 				from_kgid_munged(&init_user_ns, sbi->s_resgid));
1851 	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1852 	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1853 		SEQ_OPTS_PUTS("errors=remount-ro");
1854 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1855 		SEQ_OPTS_PUTS("errors=continue");
1856 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1857 		SEQ_OPTS_PUTS("errors=panic");
1858 	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1859 		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1860 	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1861 		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1862 	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1863 		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1864 	if (sb->s_flags & MS_I_VERSION)
1865 		SEQ_OPTS_PUTS("i_version");
1866 	if (nodefs || sbi->s_stripe)
1867 		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1868 	if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1869 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1870 			SEQ_OPTS_PUTS("data=journal");
1871 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1872 			SEQ_OPTS_PUTS("data=ordered");
1873 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1874 			SEQ_OPTS_PUTS("data=writeback");
1875 	}
1876 	if (nodefs ||
1877 	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1878 		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1879 			       sbi->s_inode_readahead_blks);
1880 
1881 	if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1882 		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1883 		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1884 	if (nodefs || sbi->s_max_dir_size_kb)
1885 		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1886 
1887 	ext4_show_quota_options(seq, sb);
1888 	return 0;
1889 }
1890 
ext4_show_options(struct seq_file * seq,struct dentry * root)1891 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1892 {
1893 	return _ext4_show_options(seq, root->d_sb, 0);
1894 }
1895 
ext4_seq_options_show(struct seq_file * seq,void * offset)1896 int ext4_seq_options_show(struct seq_file *seq, void *offset)
1897 {
1898 	struct super_block *sb = seq->private;
1899 	int rc;
1900 
1901 	seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1902 	rc = _ext4_show_options(seq, sb, 1);
1903 	seq_puts(seq, "\n");
1904 	return rc;
1905 }
1906 
ext4_setup_super(struct super_block * sb,struct ext4_super_block * es,int read_only)1907 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1908 			    int read_only)
1909 {
1910 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1911 	int res = 0;
1912 
1913 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1914 		ext4_msg(sb, KERN_ERR, "revision level too high, "
1915 			 "forcing read-only mode");
1916 		res = MS_RDONLY;
1917 	}
1918 	if (read_only)
1919 		goto done;
1920 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
1921 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1922 			 "running e2fsck is recommended");
1923 	else if (sbi->s_mount_state & EXT4_ERROR_FS)
1924 		ext4_msg(sb, KERN_WARNING,
1925 			 "warning: mounting fs with errors, "
1926 			 "running e2fsck is recommended");
1927 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1928 		 le16_to_cpu(es->s_mnt_count) >=
1929 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1930 		ext4_msg(sb, KERN_WARNING,
1931 			 "warning: maximal mount count reached, "
1932 			 "running e2fsck is recommended");
1933 	else if (le32_to_cpu(es->s_checkinterval) &&
1934 		(le32_to_cpu(es->s_lastcheck) +
1935 			le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1936 		ext4_msg(sb, KERN_WARNING,
1937 			 "warning: checktime reached, "
1938 			 "running e2fsck is recommended");
1939 	if (!sbi->s_journal)
1940 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1941 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1942 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1943 	le16_add_cpu(&es->s_mnt_count, 1);
1944 	es->s_mtime = cpu_to_le32(get_seconds());
1945 	ext4_update_dynamic_rev(sb);
1946 	if (sbi->s_journal)
1947 		ext4_set_feature_journal_needs_recovery(sb);
1948 
1949 	ext4_commit_super(sb, 1);
1950 done:
1951 	if (test_opt(sb, DEBUG))
1952 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1953 				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1954 			sb->s_blocksize,
1955 			sbi->s_groups_count,
1956 			EXT4_BLOCKS_PER_GROUP(sb),
1957 			EXT4_INODES_PER_GROUP(sb),
1958 			sbi->s_mount_opt, sbi->s_mount_opt2);
1959 
1960 	cleancache_init_fs(sb);
1961 	return res;
1962 }
1963 
ext4_alloc_flex_bg_array(struct super_block * sb,ext4_group_t ngroup)1964 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
1965 {
1966 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1967 	struct flex_groups *new_groups;
1968 	int size;
1969 
1970 	if (!sbi->s_log_groups_per_flex)
1971 		return 0;
1972 
1973 	size = ext4_flex_group(sbi, ngroup - 1) + 1;
1974 	if (size <= sbi->s_flex_groups_allocated)
1975 		return 0;
1976 
1977 	size = roundup_pow_of_two(size * sizeof(struct flex_groups));
1978 	new_groups = ext4_kvzalloc(size, GFP_KERNEL);
1979 	if (!new_groups) {
1980 		ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
1981 			 size / (int) sizeof(struct flex_groups));
1982 		return -ENOMEM;
1983 	}
1984 
1985 	if (sbi->s_flex_groups) {
1986 		memcpy(new_groups, sbi->s_flex_groups,
1987 		       (sbi->s_flex_groups_allocated *
1988 			sizeof(struct flex_groups)));
1989 		kvfree(sbi->s_flex_groups);
1990 	}
1991 	sbi->s_flex_groups = new_groups;
1992 	sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
1993 	return 0;
1994 }
1995 
ext4_fill_flex_info(struct super_block * sb)1996 static int ext4_fill_flex_info(struct super_block *sb)
1997 {
1998 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1999 	struct ext4_group_desc *gdp = NULL;
2000 	ext4_group_t flex_group;
2001 	int i, err;
2002 
2003 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2004 	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2005 		sbi->s_log_groups_per_flex = 0;
2006 		return 1;
2007 	}
2008 
2009 	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2010 	if (err)
2011 		goto failed;
2012 
2013 	for (i = 0; i < sbi->s_groups_count; i++) {
2014 		gdp = ext4_get_group_desc(sb, i, NULL);
2015 
2016 		flex_group = ext4_flex_group(sbi, i);
2017 		atomic_add(ext4_free_inodes_count(sb, gdp),
2018 			   &sbi->s_flex_groups[flex_group].free_inodes);
2019 		atomic64_add(ext4_free_group_clusters(sb, gdp),
2020 			     &sbi->s_flex_groups[flex_group].free_clusters);
2021 		atomic_add(ext4_used_dirs_count(sb, gdp),
2022 			   &sbi->s_flex_groups[flex_group].used_dirs);
2023 	}
2024 
2025 	return 1;
2026 failed:
2027 	return 0;
2028 }
2029 
ext4_group_desc_csum(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2030 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2031 				   struct ext4_group_desc *gdp)
2032 {
2033 	int offset;
2034 	__u16 crc = 0;
2035 	__le32 le_group = cpu_to_le32(block_group);
2036 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2037 
2038 	if (ext4_has_metadata_csum(sbi->s_sb)) {
2039 		/* Use new metadata_csum algorithm */
2040 		__le16 save_csum;
2041 		__u32 csum32;
2042 
2043 		save_csum = gdp->bg_checksum;
2044 		gdp->bg_checksum = 0;
2045 		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2046 				     sizeof(le_group));
2047 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
2048 				     sbi->s_desc_size);
2049 		gdp->bg_checksum = save_csum;
2050 
2051 		crc = csum32 & 0xFFFF;
2052 		goto out;
2053 	}
2054 
2055 	/* old crc16 code */
2056 	if (!ext4_has_feature_gdt_csum(sb))
2057 		return 0;
2058 
2059 	offset = offsetof(struct ext4_group_desc, bg_checksum);
2060 
2061 	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2062 	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2063 	crc = crc16(crc, (__u8 *)gdp, offset);
2064 	offset += sizeof(gdp->bg_checksum); /* skip checksum */
2065 	/* for checksum of struct ext4_group_desc do the rest...*/
2066 	if (ext4_has_feature_64bit(sb) &&
2067 	    offset < le16_to_cpu(sbi->s_es->s_desc_size))
2068 		crc = crc16(crc, (__u8 *)gdp + offset,
2069 			    le16_to_cpu(sbi->s_es->s_desc_size) -
2070 				offset);
2071 
2072 out:
2073 	return cpu_to_le16(crc);
2074 }
2075 
ext4_group_desc_csum_verify(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2076 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2077 				struct ext4_group_desc *gdp)
2078 {
2079 	if (ext4_has_group_desc_csum(sb) &&
2080 	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2081 		return 0;
2082 
2083 	return 1;
2084 }
2085 
ext4_group_desc_csum_set(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2086 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2087 			      struct ext4_group_desc *gdp)
2088 {
2089 	if (!ext4_has_group_desc_csum(sb))
2090 		return;
2091 	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2092 }
2093 
2094 /* Called at mount-time, super-block is locked */
ext4_check_descriptors(struct super_block * sb,ext4_group_t * first_not_zeroed)2095 static int ext4_check_descriptors(struct super_block *sb,
2096 				  ext4_group_t *first_not_zeroed)
2097 {
2098 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2099 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2100 	ext4_fsblk_t last_block;
2101 	ext4_fsblk_t block_bitmap;
2102 	ext4_fsblk_t inode_bitmap;
2103 	ext4_fsblk_t inode_table;
2104 	int flexbg_flag = 0;
2105 	ext4_group_t i, grp = sbi->s_groups_count;
2106 
2107 	if (ext4_has_feature_flex_bg(sb))
2108 		flexbg_flag = 1;
2109 
2110 	ext4_debug("Checking group descriptors");
2111 
2112 	for (i = 0; i < sbi->s_groups_count; i++) {
2113 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2114 
2115 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
2116 			last_block = ext4_blocks_count(sbi->s_es) - 1;
2117 		else
2118 			last_block = first_block +
2119 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
2120 
2121 		if ((grp == sbi->s_groups_count) &&
2122 		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2123 			grp = i;
2124 
2125 		block_bitmap = ext4_block_bitmap(sb, gdp);
2126 		if (block_bitmap < first_block || block_bitmap > last_block) {
2127 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2128 			       "Block bitmap for group %u not in group "
2129 			       "(block %llu)!", i, block_bitmap);
2130 			return 0;
2131 		}
2132 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
2133 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
2134 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2135 			       "Inode bitmap for group %u not in group "
2136 			       "(block %llu)!", i, inode_bitmap);
2137 			return 0;
2138 		}
2139 		inode_table = ext4_inode_table(sb, gdp);
2140 		if (inode_table < first_block ||
2141 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
2142 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2143 			       "Inode table for group %u not in group "
2144 			       "(block %llu)!", i, inode_table);
2145 			return 0;
2146 		}
2147 		ext4_lock_group(sb, i);
2148 		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2149 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2150 				 "Checksum for group %u failed (%u!=%u)",
2151 				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2152 				     gdp)), le16_to_cpu(gdp->bg_checksum));
2153 			if (!(sb->s_flags & MS_RDONLY)) {
2154 				ext4_unlock_group(sb, i);
2155 				return 0;
2156 			}
2157 		}
2158 		ext4_unlock_group(sb, i);
2159 		if (!flexbg_flag)
2160 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
2161 	}
2162 	if (NULL != first_not_zeroed)
2163 		*first_not_zeroed = grp;
2164 	return 1;
2165 }
2166 
2167 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2168  * the superblock) which were deleted from all directories, but held open by
2169  * a process at the time of a crash.  We walk the list and try to delete these
2170  * inodes at recovery time (only with a read-write filesystem).
2171  *
2172  * In order to keep the orphan inode chain consistent during traversal (in
2173  * case of crash during recovery), we link each inode into the superblock
2174  * orphan list_head and handle it the same way as an inode deletion during
2175  * normal operation (which journals the operations for us).
2176  *
2177  * We only do an iget() and an iput() on each inode, which is very safe if we
2178  * accidentally point at an in-use or already deleted inode.  The worst that
2179  * can happen in this case is that we get a "bit already cleared" message from
2180  * ext4_free_inode().  The only reason we would point at a wrong inode is if
2181  * e2fsck was run on this filesystem, and it must have already done the orphan
2182  * inode cleanup for us, so we can safely abort without any further action.
2183  */
ext4_orphan_cleanup(struct super_block * sb,struct ext4_super_block * es)2184 static void ext4_orphan_cleanup(struct super_block *sb,
2185 				struct ext4_super_block *es)
2186 {
2187 	unsigned int s_flags = sb->s_flags;
2188 	int nr_orphans = 0, nr_truncates = 0;
2189 #ifdef CONFIG_QUOTA
2190 	int i;
2191 #endif
2192 	if (!es->s_last_orphan) {
2193 		jbd_debug(4, "no orphan inodes to clean up\n");
2194 		return;
2195 	}
2196 
2197 	if (bdev_read_only(sb->s_bdev)) {
2198 		ext4_msg(sb, KERN_ERR, "write access "
2199 			"unavailable, skipping orphan cleanup");
2200 		return;
2201 	}
2202 
2203 	/* Check if feature set would not allow a r/w mount */
2204 	if (!ext4_feature_set_ok(sb, 0)) {
2205 		ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2206 			 "unknown ROCOMPAT features");
2207 		return;
2208 	}
2209 
2210 	if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2211 		/* don't clear list on RO mount w/ errors */
2212 		if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2213 			ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2214 				  "clearing orphan list.\n");
2215 			es->s_last_orphan = 0;
2216 		}
2217 		jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2218 		return;
2219 	}
2220 
2221 	if (s_flags & MS_RDONLY) {
2222 		ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2223 		sb->s_flags &= ~MS_RDONLY;
2224 	}
2225 #ifdef CONFIG_QUOTA
2226 	/* Needed for iput() to work correctly and not trash data */
2227 	sb->s_flags |= MS_ACTIVE;
2228 	/* Turn on quotas so that they are updated correctly */
2229 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2230 		if (EXT4_SB(sb)->s_qf_names[i]) {
2231 			int ret = ext4_quota_on_mount(sb, i);
2232 			if (ret < 0)
2233 				ext4_msg(sb, KERN_ERR,
2234 					"Cannot turn on journaled "
2235 					"quota: error %d", ret);
2236 		}
2237 	}
2238 #endif
2239 
2240 	while (es->s_last_orphan) {
2241 		struct inode *inode;
2242 
2243 		inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2244 		if (IS_ERR(inode)) {
2245 			es->s_last_orphan = 0;
2246 			break;
2247 		}
2248 
2249 		list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2250 		dquot_initialize(inode);
2251 		if (inode->i_nlink) {
2252 			if (test_opt(sb, DEBUG))
2253 				ext4_msg(sb, KERN_DEBUG,
2254 					"%s: truncating inode %lu to %lld bytes",
2255 					__func__, inode->i_ino, inode->i_size);
2256 			jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2257 				  inode->i_ino, inode->i_size);
2258 			mutex_lock(&inode->i_mutex);
2259 			truncate_inode_pages(inode->i_mapping, inode->i_size);
2260 			ext4_truncate(inode);
2261 			mutex_unlock(&inode->i_mutex);
2262 			nr_truncates++;
2263 		} else {
2264 			if (test_opt(sb, DEBUG))
2265 				ext4_msg(sb, KERN_DEBUG,
2266 					"%s: deleting unreferenced inode %lu",
2267 					__func__, inode->i_ino);
2268 			jbd_debug(2, "deleting unreferenced inode %lu\n",
2269 				  inode->i_ino);
2270 			nr_orphans++;
2271 		}
2272 		iput(inode);  /* The delete magic happens here! */
2273 	}
2274 
2275 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2276 
2277 	if (nr_orphans)
2278 		ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2279 		       PLURAL(nr_orphans));
2280 	if (nr_truncates)
2281 		ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2282 		       PLURAL(nr_truncates));
2283 #ifdef CONFIG_QUOTA
2284 	/* Turn quotas off */
2285 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2286 		if (sb_dqopt(sb)->files[i])
2287 			dquot_quota_off(sb, i);
2288 	}
2289 #endif
2290 	sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2291 }
2292 
2293 /*
2294  * Maximal extent format file size.
2295  * Resulting logical blkno at s_maxbytes must fit in our on-disk
2296  * extent format containers, within a sector_t, and within i_blocks
2297  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
2298  * so that won't be a limiting factor.
2299  *
2300  * However there is other limiting factor. We do store extents in the form
2301  * of starting block and length, hence the resulting length of the extent
2302  * covering maximum file size must fit into on-disk format containers as
2303  * well. Given that length is always by 1 unit bigger than max unit (because
2304  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2305  *
2306  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2307  */
ext4_max_size(int blkbits,int has_huge_files)2308 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2309 {
2310 	loff_t res;
2311 	loff_t upper_limit = MAX_LFS_FILESIZE;
2312 
2313 	/* small i_blocks in vfs inode? */
2314 	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2315 		/*
2316 		 * CONFIG_LBDAF is not enabled implies the inode
2317 		 * i_block represent total blocks in 512 bytes
2318 		 * 32 == size of vfs inode i_blocks * 8
2319 		 */
2320 		upper_limit = (1LL << 32) - 1;
2321 
2322 		/* total blocks in file system block size */
2323 		upper_limit >>= (blkbits - 9);
2324 		upper_limit <<= blkbits;
2325 	}
2326 
2327 	/*
2328 	 * 32-bit extent-start container, ee_block. We lower the maxbytes
2329 	 * by one fs block, so ee_len can cover the extent of maximum file
2330 	 * size
2331 	 */
2332 	res = (1LL << 32) - 1;
2333 	res <<= blkbits;
2334 
2335 	/* Sanity check against vm- & vfs- imposed limits */
2336 	if (res > upper_limit)
2337 		res = upper_limit;
2338 
2339 	return res;
2340 }
2341 
2342 /*
2343  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
2344  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2345  * We need to be 1 filesystem block less than the 2^48 sector limit.
2346  */
ext4_max_bitmap_size(int bits,int has_huge_files)2347 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2348 {
2349 	loff_t res = EXT4_NDIR_BLOCKS;
2350 	int meta_blocks;
2351 	loff_t upper_limit;
2352 	/* This is calculated to be the largest file size for a dense, block
2353 	 * mapped file such that the file's total number of 512-byte sectors,
2354 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
2355 	 *
2356 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2357 	 * number of 512-byte sectors of the file.
2358 	 */
2359 
2360 	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2361 		/*
2362 		 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2363 		 * the inode i_block field represents total file blocks in
2364 		 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2365 		 */
2366 		upper_limit = (1LL << 32) - 1;
2367 
2368 		/* total blocks in file system block size */
2369 		upper_limit >>= (bits - 9);
2370 
2371 	} else {
2372 		/*
2373 		 * We use 48 bit ext4_inode i_blocks
2374 		 * With EXT4_HUGE_FILE_FL set the i_blocks
2375 		 * represent total number of blocks in
2376 		 * file system block size
2377 		 */
2378 		upper_limit = (1LL << 48) - 1;
2379 
2380 	}
2381 
2382 	/* indirect blocks */
2383 	meta_blocks = 1;
2384 	/* double indirect blocks */
2385 	meta_blocks += 1 + (1LL << (bits-2));
2386 	/* tripple indirect blocks */
2387 	meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2388 
2389 	upper_limit -= meta_blocks;
2390 	upper_limit <<= bits;
2391 
2392 	res += 1LL << (bits-2);
2393 	res += 1LL << (2*(bits-2));
2394 	res += 1LL << (3*(bits-2));
2395 	res <<= bits;
2396 	if (res > upper_limit)
2397 		res = upper_limit;
2398 
2399 	if (res > MAX_LFS_FILESIZE)
2400 		res = MAX_LFS_FILESIZE;
2401 
2402 	return res;
2403 }
2404 
descriptor_loc(struct super_block * sb,ext4_fsblk_t logical_sb_block,int nr)2405 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2406 				   ext4_fsblk_t logical_sb_block, int nr)
2407 {
2408 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2409 	ext4_group_t bg, first_meta_bg;
2410 	int has_super = 0;
2411 
2412 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2413 
2414 	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2415 		return logical_sb_block + nr + 1;
2416 	bg = sbi->s_desc_per_block * nr;
2417 	if (ext4_bg_has_super(sb, bg))
2418 		has_super = 1;
2419 
2420 	/*
2421 	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2422 	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
2423 	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2424 	 * compensate.
2425 	 */
2426 	if (sb->s_blocksize == 1024 && nr == 0 &&
2427 	    le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0)
2428 		has_super++;
2429 
2430 	return (has_super + ext4_group_first_block_no(sb, bg));
2431 }
2432 
2433 /**
2434  * ext4_get_stripe_size: Get the stripe size.
2435  * @sbi: In memory super block info
2436  *
2437  * If we have specified it via mount option, then
2438  * use the mount option value. If the value specified at mount time is
2439  * greater than the blocks per group use the super block value.
2440  * If the super block value is greater than blocks per group return 0.
2441  * Allocator needs it be less than blocks per group.
2442  *
2443  */
ext4_get_stripe_size(struct ext4_sb_info * sbi)2444 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2445 {
2446 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2447 	unsigned long stripe_width =
2448 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2449 	int ret;
2450 
2451 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2452 		ret = sbi->s_stripe;
2453 	else if (stripe_width <= sbi->s_blocks_per_group)
2454 		ret = stripe_width;
2455 	else if (stride <= sbi->s_blocks_per_group)
2456 		ret = stride;
2457 	else
2458 		ret = 0;
2459 
2460 	/*
2461 	 * If the stripe width is 1, this makes no sense and
2462 	 * we set it to 0 to turn off stripe handling code.
2463 	 */
2464 	if (ret <= 1)
2465 		ret = 0;
2466 
2467 	return ret;
2468 }
2469 
2470 /*
2471  * Check whether this filesystem can be mounted based on
2472  * the features present and the RDONLY/RDWR mount requested.
2473  * Returns 1 if this filesystem can be mounted as requested,
2474  * 0 if it cannot be.
2475  */
ext4_feature_set_ok(struct super_block * sb,int readonly)2476 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2477 {
2478 	if (ext4_has_unknown_ext4_incompat_features(sb)) {
2479 		ext4_msg(sb, KERN_ERR,
2480 			"Couldn't mount because of "
2481 			"unsupported optional features (%x)",
2482 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2483 			~EXT4_FEATURE_INCOMPAT_SUPP));
2484 		return 0;
2485 	}
2486 
2487 	if (readonly)
2488 		return 1;
2489 
2490 	if (ext4_has_feature_readonly(sb)) {
2491 		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2492 		sb->s_flags |= MS_RDONLY;
2493 		return 1;
2494 	}
2495 
2496 	/* Check that feature set is OK for a read-write mount */
2497 	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2498 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2499 			 "unsupported optional features (%x)",
2500 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2501 				~EXT4_FEATURE_RO_COMPAT_SUPP));
2502 		return 0;
2503 	}
2504 	/*
2505 	 * Large file size enabled file system can only be mounted
2506 	 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2507 	 */
2508 	if (ext4_has_feature_huge_file(sb)) {
2509 		if (sizeof(blkcnt_t) < sizeof(u64)) {
2510 			ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2511 				 "cannot be mounted RDWR without "
2512 				 "CONFIG_LBDAF");
2513 			return 0;
2514 		}
2515 	}
2516 	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2517 		ext4_msg(sb, KERN_ERR,
2518 			 "Can't support bigalloc feature without "
2519 			 "extents feature\n");
2520 		return 0;
2521 	}
2522 
2523 #ifndef CONFIG_QUOTA
2524 	if (ext4_has_feature_quota(sb) && !readonly) {
2525 		ext4_msg(sb, KERN_ERR,
2526 			 "Filesystem with quota feature cannot be mounted RDWR "
2527 			 "without CONFIG_QUOTA");
2528 		return 0;
2529 	}
2530 #endif  /* CONFIG_QUOTA */
2531 	return 1;
2532 }
2533 
2534 /*
2535  * This function is called once a day if we have errors logged
2536  * on the file system
2537  */
print_daily_error_info(unsigned long arg)2538 static void print_daily_error_info(unsigned long arg)
2539 {
2540 	struct super_block *sb = (struct super_block *) arg;
2541 	struct ext4_sb_info *sbi;
2542 	struct ext4_super_block *es;
2543 
2544 	sbi = EXT4_SB(sb);
2545 	es = sbi->s_es;
2546 
2547 	if (es->s_error_count)
2548 		/* fsck newer than v1.41.13 is needed to clean this condition. */
2549 		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2550 			 le32_to_cpu(es->s_error_count));
2551 	if (es->s_first_error_time) {
2552 		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2553 		       sb->s_id, le32_to_cpu(es->s_first_error_time),
2554 		       (int) sizeof(es->s_first_error_func),
2555 		       es->s_first_error_func,
2556 		       le32_to_cpu(es->s_first_error_line));
2557 		if (es->s_first_error_ino)
2558 			printk(": inode %u",
2559 			       le32_to_cpu(es->s_first_error_ino));
2560 		if (es->s_first_error_block)
2561 			printk(": block %llu", (unsigned long long)
2562 			       le64_to_cpu(es->s_first_error_block));
2563 		printk("\n");
2564 	}
2565 	if (es->s_last_error_time) {
2566 		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2567 		       sb->s_id, le32_to_cpu(es->s_last_error_time),
2568 		       (int) sizeof(es->s_last_error_func),
2569 		       es->s_last_error_func,
2570 		       le32_to_cpu(es->s_last_error_line));
2571 		if (es->s_last_error_ino)
2572 			printk(": inode %u",
2573 			       le32_to_cpu(es->s_last_error_ino));
2574 		if (es->s_last_error_block)
2575 			printk(": block %llu", (unsigned long long)
2576 			       le64_to_cpu(es->s_last_error_block));
2577 		printk("\n");
2578 	}
2579 	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
2580 }
2581 
2582 /* Find next suitable group and run ext4_init_inode_table */
ext4_run_li_request(struct ext4_li_request * elr)2583 static int ext4_run_li_request(struct ext4_li_request *elr)
2584 {
2585 	struct ext4_group_desc *gdp = NULL;
2586 	ext4_group_t group, ngroups;
2587 	struct super_block *sb;
2588 	unsigned long timeout = 0;
2589 	int ret = 0;
2590 
2591 	sb = elr->lr_super;
2592 	ngroups = EXT4_SB(sb)->s_groups_count;
2593 
2594 	sb_start_write(sb);
2595 	for (group = elr->lr_next_group; group < ngroups; group++) {
2596 		gdp = ext4_get_group_desc(sb, group, NULL);
2597 		if (!gdp) {
2598 			ret = 1;
2599 			break;
2600 		}
2601 
2602 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2603 			break;
2604 	}
2605 
2606 	if (group >= ngroups)
2607 		ret = 1;
2608 
2609 	if (!ret) {
2610 		timeout = jiffies;
2611 		ret = ext4_init_inode_table(sb, group,
2612 					    elr->lr_timeout ? 0 : 1);
2613 		if (elr->lr_timeout == 0) {
2614 			timeout = (jiffies - timeout) *
2615 				  elr->lr_sbi->s_li_wait_mult;
2616 			elr->lr_timeout = timeout;
2617 		}
2618 		elr->lr_next_sched = jiffies + elr->lr_timeout;
2619 		elr->lr_next_group = group + 1;
2620 	}
2621 	sb_end_write(sb);
2622 
2623 	return ret;
2624 }
2625 
2626 /*
2627  * Remove lr_request from the list_request and free the
2628  * request structure. Should be called with li_list_mtx held
2629  */
ext4_remove_li_request(struct ext4_li_request * elr)2630 static void ext4_remove_li_request(struct ext4_li_request *elr)
2631 {
2632 	struct ext4_sb_info *sbi;
2633 
2634 	if (!elr)
2635 		return;
2636 
2637 	sbi = elr->lr_sbi;
2638 
2639 	list_del(&elr->lr_request);
2640 	sbi->s_li_request = NULL;
2641 	kfree(elr);
2642 }
2643 
ext4_unregister_li_request(struct super_block * sb)2644 static void ext4_unregister_li_request(struct super_block *sb)
2645 {
2646 	mutex_lock(&ext4_li_mtx);
2647 	if (!ext4_li_info) {
2648 		mutex_unlock(&ext4_li_mtx);
2649 		return;
2650 	}
2651 
2652 	mutex_lock(&ext4_li_info->li_list_mtx);
2653 	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2654 	mutex_unlock(&ext4_li_info->li_list_mtx);
2655 	mutex_unlock(&ext4_li_mtx);
2656 }
2657 
2658 static struct task_struct *ext4_lazyinit_task;
2659 
2660 /*
2661  * This is the function where ext4lazyinit thread lives. It walks
2662  * through the request list searching for next scheduled filesystem.
2663  * When such a fs is found, run the lazy initialization request
2664  * (ext4_rn_li_request) and keep track of the time spend in this
2665  * function. Based on that time we compute next schedule time of
2666  * the request. When walking through the list is complete, compute
2667  * next waking time and put itself into sleep.
2668  */
ext4_lazyinit_thread(void * arg)2669 static int ext4_lazyinit_thread(void *arg)
2670 {
2671 	struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2672 	struct list_head *pos, *n;
2673 	struct ext4_li_request *elr;
2674 	unsigned long next_wakeup, cur;
2675 
2676 	BUG_ON(NULL == eli);
2677 
2678 cont_thread:
2679 	while (true) {
2680 		next_wakeup = MAX_JIFFY_OFFSET;
2681 
2682 		mutex_lock(&eli->li_list_mtx);
2683 		if (list_empty(&eli->li_request_list)) {
2684 			mutex_unlock(&eli->li_list_mtx);
2685 			goto exit_thread;
2686 		}
2687 
2688 		list_for_each_safe(pos, n, &eli->li_request_list) {
2689 			elr = list_entry(pos, struct ext4_li_request,
2690 					 lr_request);
2691 
2692 			if (time_after_eq(jiffies, elr->lr_next_sched)) {
2693 				if (ext4_run_li_request(elr) != 0) {
2694 					/* error, remove the lazy_init job */
2695 					ext4_remove_li_request(elr);
2696 					continue;
2697 				}
2698 			}
2699 
2700 			if (time_before(elr->lr_next_sched, next_wakeup))
2701 				next_wakeup = elr->lr_next_sched;
2702 		}
2703 		mutex_unlock(&eli->li_list_mtx);
2704 
2705 		try_to_freeze();
2706 
2707 		cur = jiffies;
2708 		if ((time_after_eq(cur, next_wakeup)) ||
2709 		    (MAX_JIFFY_OFFSET == next_wakeup)) {
2710 			cond_resched();
2711 			continue;
2712 		}
2713 
2714 		schedule_timeout_interruptible(next_wakeup - cur);
2715 
2716 		if (kthread_should_stop()) {
2717 			ext4_clear_request_list();
2718 			goto exit_thread;
2719 		}
2720 	}
2721 
2722 exit_thread:
2723 	/*
2724 	 * It looks like the request list is empty, but we need
2725 	 * to check it under the li_list_mtx lock, to prevent any
2726 	 * additions into it, and of course we should lock ext4_li_mtx
2727 	 * to atomically free the list and ext4_li_info, because at
2728 	 * this point another ext4 filesystem could be registering
2729 	 * new one.
2730 	 */
2731 	mutex_lock(&ext4_li_mtx);
2732 	mutex_lock(&eli->li_list_mtx);
2733 	if (!list_empty(&eli->li_request_list)) {
2734 		mutex_unlock(&eli->li_list_mtx);
2735 		mutex_unlock(&ext4_li_mtx);
2736 		goto cont_thread;
2737 	}
2738 	mutex_unlock(&eli->li_list_mtx);
2739 	kfree(ext4_li_info);
2740 	ext4_li_info = NULL;
2741 	mutex_unlock(&ext4_li_mtx);
2742 
2743 	return 0;
2744 }
2745 
ext4_clear_request_list(void)2746 static void ext4_clear_request_list(void)
2747 {
2748 	struct list_head *pos, *n;
2749 	struct ext4_li_request *elr;
2750 
2751 	mutex_lock(&ext4_li_info->li_list_mtx);
2752 	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2753 		elr = list_entry(pos, struct ext4_li_request,
2754 				 lr_request);
2755 		ext4_remove_li_request(elr);
2756 	}
2757 	mutex_unlock(&ext4_li_info->li_list_mtx);
2758 }
2759 
ext4_run_lazyinit_thread(void)2760 static int ext4_run_lazyinit_thread(void)
2761 {
2762 	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2763 					 ext4_li_info, "ext4lazyinit");
2764 	if (IS_ERR(ext4_lazyinit_task)) {
2765 		int err = PTR_ERR(ext4_lazyinit_task);
2766 		ext4_clear_request_list();
2767 		kfree(ext4_li_info);
2768 		ext4_li_info = NULL;
2769 		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2770 				 "initialization thread\n",
2771 				 err);
2772 		return err;
2773 	}
2774 	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2775 	return 0;
2776 }
2777 
2778 /*
2779  * Check whether it make sense to run itable init. thread or not.
2780  * If there is at least one uninitialized inode table, return
2781  * corresponding group number, else the loop goes through all
2782  * groups and return total number of groups.
2783  */
ext4_has_uninit_itable(struct super_block * sb)2784 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2785 {
2786 	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2787 	struct ext4_group_desc *gdp = NULL;
2788 
2789 	for (group = 0; group < ngroups; group++) {
2790 		gdp = ext4_get_group_desc(sb, group, NULL);
2791 		if (!gdp)
2792 			continue;
2793 
2794 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2795 			break;
2796 	}
2797 
2798 	return group;
2799 }
2800 
ext4_li_info_new(void)2801 static int ext4_li_info_new(void)
2802 {
2803 	struct ext4_lazy_init *eli = NULL;
2804 
2805 	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2806 	if (!eli)
2807 		return -ENOMEM;
2808 
2809 	INIT_LIST_HEAD(&eli->li_request_list);
2810 	mutex_init(&eli->li_list_mtx);
2811 
2812 	eli->li_state |= EXT4_LAZYINIT_QUIT;
2813 
2814 	ext4_li_info = eli;
2815 
2816 	return 0;
2817 }
2818 
ext4_li_request_new(struct super_block * sb,ext4_group_t start)2819 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2820 					    ext4_group_t start)
2821 {
2822 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2823 	struct ext4_li_request *elr;
2824 
2825 	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2826 	if (!elr)
2827 		return NULL;
2828 
2829 	elr->lr_super = sb;
2830 	elr->lr_sbi = sbi;
2831 	elr->lr_next_group = start;
2832 
2833 	/*
2834 	 * Randomize first schedule time of the request to
2835 	 * spread the inode table initialization requests
2836 	 * better.
2837 	 */
2838 	elr->lr_next_sched = jiffies + (prandom_u32() %
2839 				(EXT4_DEF_LI_MAX_START_DELAY * HZ));
2840 	return elr;
2841 }
2842 
ext4_register_li_request(struct super_block * sb,ext4_group_t first_not_zeroed)2843 int ext4_register_li_request(struct super_block *sb,
2844 			     ext4_group_t first_not_zeroed)
2845 {
2846 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2847 	struct ext4_li_request *elr = NULL;
2848 	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
2849 	int ret = 0;
2850 
2851 	mutex_lock(&ext4_li_mtx);
2852 	if (sbi->s_li_request != NULL) {
2853 		/*
2854 		 * Reset timeout so it can be computed again, because
2855 		 * s_li_wait_mult might have changed.
2856 		 */
2857 		sbi->s_li_request->lr_timeout = 0;
2858 		goto out;
2859 	}
2860 
2861 	if (first_not_zeroed == ngroups ||
2862 	    (sb->s_flags & MS_RDONLY) ||
2863 	    !test_opt(sb, INIT_INODE_TABLE))
2864 		goto out;
2865 
2866 	elr = ext4_li_request_new(sb, first_not_zeroed);
2867 	if (!elr) {
2868 		ret = -ENOMEM;
2869 		goto out;
2870 	}
2871 
2872 	if (NULL == ext4_li_info) {
2873 		ret = ext4_li_info_new();
2874 		if (ret)
2875 			goto out;
2876 	}
2877 
2878 	mutex_lock(&ext4_li_info->li_list_mtx);
2879 	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
2880 	mutex_unlock(&ext4_li_info->li_list_mtx);
2881 
2882 	sbi->s_li_request = elr;
2883 	/*
2884 	 * set elr to NULL here since it has been inserted to
2885 	 * the request_list and the removal and free of it is
2886 	 * handled by ext4_clear_request_list from now on.
2887 	 */
2888 	elr = NULL;
2889 
2890 	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
2891 		ret = ext4_run_lazyinit_thread();
2892 		if (ret)
2893 			goto out;
2894 	}
2895 out:
2896 	mutex_unlock(&ext4_li_mtx);
2897 	if (ret)
2898 		kfree(elr);
2899 	return ret;
2900 }
2901 
2902 /*
2903  * We do not need to lock anything since this is called on
2904  * module unload.
2905  */
ext4_destroy_lazyinit_thread(void)2906 static void ext4_destroy_lazyinit_thread(void)
2907 {
2908 	/*
2909 	 * If thread exited earlier
2910 	 * there's nothing to be done.
2911 	 */
2912 	if (!ext4_li_info || !ext4_lazyinit_task)
2913 		return;
2914 
2915 	kthread_stop(ext4_lazyinit_task);
2916 }
2917 
set_journal_csum_feature_set(struct super_block * sb)2918 static int set_journal_csum_feature_set(struct super_block *sb)
2919 {
2920 	int ret = 1;
2921 	int compat, incompat;
2922 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2923 
2924 	if (ext4_has_metadata_csum(sb)) {
2925 		/* journal checksum v3 */
2926 		compat = 0;
2927 		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
2928 	} else {
2929 		/* journal checksum v1 */
2930 		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
2931 		incompat = 0;
2932 	}
2933 
2934 	jbd2_journal_clear_features(sbi->s_journal,
2935 			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
2936 			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
2937 			JBD2_FEATURE_INCOMPAT_CSUM_V2);
2938 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
2939 		ret = jbd2_journal_set_features(sbi->s_journal,
2940 				compat, 0,
2941 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
2942 				incompat);
2943 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
2944 		ret = jbd2_journal_set_features(sbi->s_journal,
2945 				compat, 0,
2946 				incompat);
2947 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
2948 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
2949 	} else {
2950 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
2951 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
2952 	}
2953 
2954 	return ret;
2955 }
2956 
2957 /*
2958  * Note: calculating the overhead so we can be compatible with
2959  * historical BSD practice is quite difficult in the face of
2960  * clusters/bigalloc.  This is because multiple metadata blocks from
2961  * different block group can end up in the same allocation cluster.
2962  * Calculating the exact overhead in the face of clustered allocation
2963  * requires either O(all block bitmaps) in memory or O(number of block
2964  * groups**2) in time.  We will still calculate the superblock for
2965  * older file systems --- and if we come across with a bigalloc file
2966  * system with zero in s_overhead_clusters the estimate will be close to
2967  * correct especially for very large cluster sizes --- but for newer
2968  * file systems, it's better to calculate this figure once at mkfs
2969  * time, and store it in the superblock.  If the superblock value is
2970  * present (even for non-bigalloc file systems), we will use it.
2971  */
count_overhead(struct super_block * sb,ext4_group_t grp,char * buf)2972 static int count_overhead(struct super_block *sb, ext4_group_t grp,
2973 			  char *buf)
2974 {
2975 	struct ext4_sb_info	*sbi = EXT4_SB(sb);
2976 	struct ext4_group_desc	*gdp;
2977 	ext4_fsblk_t		first_block, last_block, b;
2978 	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
2979 	int			s, j, count = 0;
2980 
2981 	if (!ext4_has_feature_bigalloc(sb))
2982 		return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
2983 			sbi->s_itb_per_group + 2);
2984 
2985 	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
2986 		(grp * EXT4_BLOCKS_PER_GROUP(sb));
2987 	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
2988 	for (i = 0; i < ngroups; i++) {
2989 		gdp = ext4_get_group_desc(sb, i, NULL);
2990 		b = ext4_block_bitmap(sb, gdp);
2991 		if (b >= first_block && b <= last_block) {
2992 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
2993 			count++;
2994 		}
2995 		b = ext4_inode_bitmap(sb, gdp);
2996 		if (b >= first_block && b <= last_block) {
2997 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
2998 			count++;
2999 		}
3000 		b = ext4_inode_table(sb, gdp);
3001 		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3002 			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3003 				int c = EXT4_B2C(sbi, b - first_block);
3004 				ext4_set_bit(c, buf);
3005 				count++;
3006 			}
3007 		if (i != grp)
3008 			continue;
3009 		s = 0;
3010 		if (ext4_bg_has_super(sb, grp)) {
3011 			ext4_set_bit(s++, buf);
3012 			count++;
3013 		}
3014 		for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3015 			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3016 			count++;
3017 		}
3018 	}
3019 	if (!count)
3020 		return 0;
3021 	return EXT4_CLUSTERS_PER_GROUP(sb) -
3022 		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3023 }
3024 
3025 /*
3026  * Compute the overhead and stash it in sbi->s_overhead
3027  */
ext4_calculate_overhead(struct super_block * sb)3028 int ext4_calculate_overhead(struct super_block *sb)
3029 {
3030 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3031 	struct ext4_super_block *es = sbi->s_es;
3032 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3033 	ext4_fsblk_t overhead = 0;
3034 	char *buf = (char *) get_zeroed_page(GFP_NOFS);
3035 
3036 	if (!buf)
3037 		return -ENOMEM;
3038 
3039 	/*
3040 	 * Compute the overhead (FS structures).  This is constant
3041 	 * for a given filesystem unless the number of block groups
3042 	 * changes so we cache the previous value until it does.
3043 	 */
3044 
3045 	/*
3046 	 * All of the blocks before first_data_block are overhead
3047 	 */
3048 	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3049 
3050 	/*
3051 	 * Add the overhead found in each block group
3052 	 */
3053 	for (i = 0; i < ngroups; i++) {
3054 		int blks;
3055 
3056 		blks = count_overhead(sb, i, buf);
3057 		overhead += blks;
3058 		if (blks)
3059 			memset(buf, 0, PAGE_SIZE);
3060 		cond_resched();
3061 	}
3062 	/* Add the internal journal blocks as well */
3063 	if (sbi->s_journal && !sbi->journal_bdev)
3064 		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3065 
3066 	sbi->s_overhead = overhead;
3067 	smp_wmb();
3068 	free_page((unsigned long) buf);
3069 	return 0;
3070 }
3071 
ext4_set_resv_clusters(struct super_block * sb)3072 static void ext4_set_resv_clusters(struct super_block *sb)
3073 {
3074 	ext4_fsblk_t resv_clusters;
3075 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3076 
3077 	/*
3078 	 * There's no need to reserve anything when we aren't using extents.
3079 	 * The space estimates are exact, there are no unwritten extents,
3080 	 * hole punching doesn't need new metadata... This is needed especially
3081 	 * to keep ext2/3 backward compatibility.
3082 	 */
3083 	if (!ext4_has_feature_extents(sb))
3084 		return;
3085 	/*
3086 	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3087 	 * This should cover the situations where we can not afford to run
3088 	 * out of space like for example punch hole, or converting
3089 	 * unwritten extents in delalloc path. In most cases such
3090 	 * allocation would require 1, or 2 blocks, higher numbers are
3091 	 * very rare.
3092 	 */
3093 	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3094 			 sbi->s_cluster_bits);
3095 
3096 	do_div(resv_clusters, 50);
3097 	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3098 
3099 	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3100 }
3101 
ext4_fill_super(struct super_block * sb,void * data,int silent)3102 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3103 {
3104 	char *orig_data = kstrdup(data, GFP_KERNEL);
3105 	struct buffer_head *bh;
3106 	struct ext4_super_block *es = NULL;
3107 	struct ext4_sb_info *sbi;
3108 	ext4_fsblk_t block;
3109 	ext4_fsblk_t sb_block = get_sb_block(&data);
3110 	ext4_fsblk_t logical_sb_block;
3111 	unsigned long offset = 0;
3112 	unsigned long journal_devnum = 0;
3113 	unsigned long def_mount_opts;
3114 	struct inode *root;
3115 	const char *descr;
3116 	int ret = -ENOMEM;
3117 	int blocksize, clustersize;
3118 	unsigned int db_count;
3119 	unsigned int i;
3120 	int needs_recovery, has_huge_files, has_bigalloc;
3121 	__u64 blocks_count;
3122 	int err = 0;
3123 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3124 	ext4_group_t first_not_zeroed;
3125 
3126 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3127 	if (!sbi)
3128 		goto out_free_orig;
3129 
3130 	sbi->s_blockgroup_lock =
3131 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3132 	if (!sbi->s_blockgroup_lock) {
3133 		kfree(sbi);
3134 		goto out_free_orig;
3135 	}
3136 	sb->s_fs_info = sbi;
3137 	sbi->s_sb = sb;
3138 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3139 	sbi->s_sb_block = sb_block;
3140 	if (sb->s_bdev->bd_part)
3141 		sbi->s_sectors_written_start =
3142 			part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3143 
3144 	/* Cleanup superblock name */
3145 	strreplace(sb->s_id, '/', '!');
3146 
3147 	/* -EINVAL is default */
3148 	ret = -EINVAL;
3149 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3150 	if (!blocksize) {
3151 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3152 		goto out_fail;
3153 	}
3154 
3155 	/*
3156 	 * The ext4 superblock will not be buffer aligned for other than 1kB
3157 	 * block sizes.  We need to calculate the offset from buffer start.
3158 	 */
3159 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3160 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3161 		offset = do_div(logical_sb_block, blocksize);
3162 	} else {
3163 		logical_sb_block = sb_block;
3164 	}
3165 
3166 	if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3167 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
3168 		goto out_fail;
3169 	}
3170 	/*
3171 	 * Note: s_es must be initialized as soon as possible because
3172 	 *       some ext4 macro-instructions depend on its value
3173 	 */
3174 	es = (struct ext4_super_block *) (bh->b_data + offset);
3175 	sbi->s_es = es;
3176 	sb->s_magic = le16_to_cpu(es->s_magic);
3177 	if (sb->s_magic != EXT4_SUPER_MAGIC)
3178 		goto cantfind_ext4;
3179 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3180 
3181 	/* Warn if metadata_csum and gdt_csum are both set. */
3182 	if (ext4_has_feature_metadata_csum(sb) &&
3183 	    ext4_has_feature_gdt_csum(sb))
3184 		ext4_warning(sb, "metadata_csum and uninit_bg are "
3185 			     "redundant flags; please run fsck.");
3186 
3187 	/* Check for a known checksum algorithm */
3188 	if (!ext4_verify_csum_type(sb, es)) {
3189 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3190 			 "unknown checksum algorithm.");
3191 		silent = 1;
3192 		goto cantfind_ext4;
3193 	}
3194 
3195 	/* Load the checksum driver */
3196 	if (ext4_has_feature_metadata_csum(sb)) {
3197 		sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3198 		if (IS_ERR(sbi->s_chksum_driver)) {
3199 			ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3200 			ret = PTR_ERR(sbi->s_chksum_driver);
3201 			sbi->s_chksum_driver = NULL;
3202 			goto failed_mount;
3203 		}
3204 	}
3205 
3206 	/* Check superblock checksum */
3207 	if (!ext4_superblock_csum_verify(sb, es)) {
3208 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3209 			 "invalid superblock checksum.  Run e2fsck?");
3210 		silent = 1;
3211 		ret = -EFSBADCRC;
3212 		goto cantfind_ext4;
3213 	}
3214 
3215 	/* Precompute checksum seed for all metadata */
3216 	if (ext4_has_feature_csum_seed(sb))
3217 		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3218 	else if (ext4_has_metadata_csum(sb))
3219 		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3220 					       sizeof(es->s_uuid));
3221 
3222 	/* Set defaults before we parse the mount options */
3223 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3224 	set_opt(sb, INIT_INODE_TABLE);
3225 	if (def_mount_opts & EXT4_DEFM_DEBUG)
3226 		set_opt(sb, DEBUG);
3227 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3228 		set_opt(sb, GRPID);
3229 	if (def_mount_opts & EXT4_DEFM_UID16)
3230 		set_opt(sb, NO_UID32);
3231 	/* xattr user namespace & acls are now defaulted on */
3232 	set_opt(sb, XATTR_USER);
3233 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3234 	set_opt(sb, POSIX_ACL);
3235 #endif
3236 	/* don't forget to enable journal_csum when metadata_csum is enabled. */
3237 	if (ext4_has_metadata_csum(sb))
3238 		set_opt(sb, JOURNAL_CHECKSUM);
3239 
3240 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3241 		set_opt(sb, JOURNAL_DATA);
3242 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3243 		set_opt(sb, ORDERED_DATA);
3244 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3245 		set_opt(sb, WRITEBACK_DATA);
3246 
3247 	if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3248 		set_opt(sb, ERRORS_PANIC);
3249 	else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3250 		set_opt(sb, ERRORS_CONT);
3251 	else
3252 		set_opt(sb, ERRORS_RO);
3253 	/* block_validity enabled by default; disable with noblock_validity */
3254 	set_opt(sb, BLOCK_VALIDITY);
3255 	if (def_mount_opts & EXT4_DEFM_DISCARD)
3256 		set_opt(sb, DISCARD);
3257 
3258 	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3259 	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3260 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3261 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3262 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3263 
3264 	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3265 		set_opt(sb, BARRIER);
3266 
3267 	/*
3268 	 * enable delayed allocation by default
3269 	 * Use -o nodelalloc to turn it off
3270 	 */
3271 	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3272 	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3273 		set_opt(sb, DELALLOC);
3274 
3275 	/*
3276 	 * set default s_li_wait_mult for lazyinit, for the case there is
3277 	 * no mount option specified.
3278 	 */
3279 	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3280 
3281 	if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3282 			   &journal_devnum, &journal_ioprio, 0)) {
3283 		ext4_msg(sb, KERN_WARNING,
3284 			 "failed to parse options in superblock: %s",
3285 			 sbi->s_es->s_mount_opts);
3286 	}
3287 	sbi->s_def_mount_opt = sbi->s_mount_opt;
3288 	if (!parse_options((char *) data, sb, &journal_devnum,
3289 			   &journal_ioprio, 0))
3290 		goto failed_mount;
3291 
3292 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3293 		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3294 			    "with data=journal disables delayed "
3295 			    "allocation and O_DIRECT support!\n");
3296 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3297 			ext4_msg(sb, KERN_ERR, "can't mount with "
3298 				 "both data=journal and delalloc");
3299 			goto failed_mount;
3300 		}
3301 		if (test_opt(sb, DIOREAD_NOLOCK)) {
3302 			ext4_msg(sb, KERN_ERR, "can't mount with "
3303 				 "both data=journal and dioread_nolock");
3304 			goto failed_mount;
3305 		}
3306 		if (test_opt(sb, DAX)) {
3307 			ext4_msg(sb, KERN_ERR, "can't mount with "
3308 				 "both data=journal and dax");
3309 			goto failed_mount;
3310 		}
3311 		if (test_opt(sb, DELALLOC))
3312 			clear_opt(sb, DELALLOC);
3313 	} else {
3314 		sb->s_iflags |= SB_I_CGROUPWB;
3315 	}
3316 
3317 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3318 		(test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3319 
3320 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3321 	    (ext4_has_compat_features(sb) ||
3322 	     ext4_has_ro_compat_features(sb) ||
3323 	     ext4_has_incompat_features(sb)))
3324 		ext4_msg(sb, KERN_WARNING,
3325 		       "feature flags set on rev 0 fs, "
3326 		       "running e2fsck is recommended");
3327 
3328 	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3329 		set_opt2(sb, HURD_COMPAT);
3330 		if (ext4_has_feature_64bit(sb)) {
3331 			ext4_msg(sb, KERN_ERR,
3332 				 "The Hurd can't support 64-bit file systems");
3333 			goto failed_mount;
3334 		}
3335 	}
3336 
3337 	if (IS_EXT2_SB(sb)) {
3338 		if (ext2_feature_set_ok(sb))
3339 			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3340 				 "using the ext4 subsystem");
3341 		else {
3342 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3343 				 "to feature incompatibilities");
3344 			goto failed_mount;
3345 		}
3346 	}
3347 
3348 	if (IS_EXT3_SB(sb)) {
3349 		if (ext3_feature_set_ok(sb))
3350 			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3351 				 "using the ext4 subsystem");
3352 		else {
3353 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3354 				 "to feature incompatibilities");
3355 			goto failed_mount;
3356 		}
3357 	}
3358 
3359 	/*
3360 	 * Check feature flags regardless of the revision level, since we
3361 	 * previously didn't change the revision level when setting the flags,
3362 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
3363 	 */
3364 	if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3365 		goto failed_mount;
3366 
3367 	blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3368 	if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3369 	    blocksize > EXT4_MAX_BLOCK_SIZE) {
3370 		ext4_msg(sb, KERN_ERR,
3371 		       "Unsupported filesystem blocksize %d", blocksize);
3372 		goto failed_mount;
3373 	}
3374 
3375 	if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3376 		if (blocksize != PAGE_SIZE) {
3377 			ext4_msg(sb, KERN_ERR,
3378 					"error: unsupported blocksize for dax");
3379 			goto failed_mount;
3380 		}
3381 		if (!sb->s_bdev->bd_disk->fops->direct_access) {
3382 			ext4_msg(sb, KERN_ERR,
3383 					"error: device does not support dax");
3384 			goto failed_mount;
3385 		}
3386 	}
3387 
3388 	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3389 		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3390 			 es->s_encryption_level);
3391 		goto failed_mount;
3392 	}
3393 
3394 	if (sb->s_blocksize != blocksize) {
3395 		/* Validate the filesystem blocksize */
3396 		if (!sb_set_blocksize(sb, blocksize)) {
3397 			ext4_msg(sb, KERN_ERR, "bad block size %d",
3398 					blocksize);
3399 			goto failed_mount;
3400 		}
3401 
3402 		brelse(bh);
3403 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3404 		offset = do_div(logical_sb_block, blocksize);
3405 		bh = sb_bread_unmovable(sb, logical_sb_block);
3406 		if (!bh) {
3407 			ext4_msg(sb, KERN_ERR,
3408 			       "Can't read superblock on 2nd try");
3409 			goto failed_mount;
3410 		}
3411 		es = (struct ext4_super_block *)(bh->b_data + offset);
3412 		sbi->s_es = es;
3413 		if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3414 			ext4_msg(sb, KERN_ERR,
3415 			       "Magic mismatch, very weird!");
3416 			goto failed_mount;
3417 		}
3418 	}
3419 
3420 	has_huge_files = ext4_has_feature_huge_file(sb);
3421 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3422 						      has_huge_files);
3423 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3424 
3425 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3426 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3427 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3428 	} else {
3429 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3430 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3431 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3432 		    (!is_power_of_2(sbi->s_inode_size)) ||
3433 		    (sbi->s_inode_size > blocksize)) {
3434 			ext4_msg(sb, KERN_ERR,
3435 			       "unsupported inode size: %d",
3436 			       sbi->s_inode_size);
3437 			goto failed_mount;
3438 		}
3439 		if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3440 			sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3441 	}
3442 
3443 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3444 	if (ext4_has_feature_64bit(sb)) {
3445 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3446 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3447 		    !is_power_of_2(sbi->s_desc_size)) {
3448 			ext4_msg(sb, KERN_ERR,
3449 			       "unsupported descriptor size %lu",
3450 			       sbi->s_desc_size);
3451 			goto failed_mount;
3452 		}
3453 	} else
3454 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3455 
3456 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3457 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3458 	if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3459 		goto cantfind_ext4;
3460 
3461 	sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3462 	if (sbi->s_inodes_per_block == 0)
3463 		goto cantfind_ext4;
3464 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
3465 					sbi->s_inodes_per_block;
3466 	sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3467 	sbi->s_sbh = bh;
3468 	sbi->s_mount_state = le16_to_cpu(es->s_state);
3469 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3470 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3471 
3472 	for (i = 0; i < 4; i++)
3473 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3474 	sbi->s_def_hash_version = es->s_def_hash_version;
3475 	if (ext4_has_feature_dir_index(sb)) {
3476 		i = le32_to_cpu(es->s_flags);
3477 		if (i & EXT2_FLAGS_UNSIGNED_HASH)
3478 			sbi->s_hash_unsigned = 3;
3479 		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3480 #ifdef __CHAR_UNSIGNED__
3481 			if (!(sb->s_flags & MS_RDONLY))
3482 				es->s_flags |=
3483 					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3484 			sbi->s_hash_unsigned = 3;
3485 #else
3486 			if (!(sb->s_flags & MS_RDONLY))
3487 				es->s_flags |=
3488 					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3489 #endif
3490 		}
3491 	}
3492 
3493 	/* Handle clustersize */
3494 	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3495 	has_bigalloc = ext4_has_feature_bigalloc(sb);
3496 	if (has_bigalloc) {
3497 		if (clustersize < blocksize) {
3498 			ext4_msg(sb, KERN_ERR,
3499 				 "cluster size (%d) smaller than "
3500 				 "block size (%d)", clustersize, blocksize);
3501 			goto failed_mount;
3502 		}
3503 		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3504 			le32_to_cpu(es->s_log_block_size);
3505 		sbi->s_clusters_per_group =
3506 			le32_to_cpu(es->s_clusters_per_group);
3507 		if (sbi->s_clusters_per_group > blocksize * 8) {
3508 			ext4_msg(sb, KERN_ERR,
3509 				 "#clusters per group too big: %lu",
3510 				 sbi->s_clusters_per_group);
3511 			goto failed_mount;
3512 		}
3513 		if (sbi->s_blocks_per_group !=
3514 		    (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3515 			ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3516 				 "clusters per group (%lu) inconsistent",
3517 				 sbi->s_blocks_per_group,
3518 				 sbi->s_clusters_per_group);
3519 			goto failed_mount;
3520 		}
3521 	} else {
3522 		if (clustersize != blocksize) {
3523 			ext4_warning(sb, "fragment/cluster size (%d) != "
3524 				     "block size (%d)", clustersize,
3525 				     blocksize);
3526 			clustersize = blocksize;
3527 		}
3528 		if (sbi->s_blocks_per_group > blocksize * 8) {
3529 			ext4_msg(sb, KERN_ERR,
3530 				 "#blocks per group too big: %lu",
3531 				 sbi->s_blocks_per_group);
3532 			goto failed_mount;
3533 		}
3534 		sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3535 		sbi->s_cluster_bits = 0;
3536 	}
3537 	sbi->s_cluster_ratio = clustersize / blocksize;
3538 
3539 	if (sbi->s_inodes_per_group > blocksize * 8) {
3540 		ext4_msg(sb, KERN_ERR,
3541 		       "#inodes per group too big: %lu",
3542 		       sbi->s_inodes_per_group);
3543 		goto failed_mount;
3544 	}
3545 
3546 	/* Do we have standard group size of clustersize * 8 blocks ? */
3547 	if (sbi->s_blocks_per_group == clustersize << 3)
3548 		set_opt2(sb, STD_GROUP_SIZE);
3549 
3550 	/*
3551 	 * Test whether we have more sectors than will fit in sector_t,
3552 	 * and whether the max offset is addressable by the page cache.
3553 	 */
3554 	err = generic_check_addressable(sb->s_blocksize_bits,
3555 					ext4_blocks_count(es));
3556 	if (err) {
3557 		ext4_msg(sb, KERN_ERR, "filesystem"
3558 			 " too large to mount safely on this system");
3559 		if (sizeof(sector_t) < 8)
3560 			ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3561 		goto failed_mount;
3562 	}
3563 
3564 	if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3565 		goto cantfind_ext4;
3566 
3567 	/* check blocks count against device size */
3568 	blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3569 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3570 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3571 		       "exceeds size of device (%llu blocks)",
3572 		       ext4_blocks_count(es), blocks_count);
3573 		goto failed_mount;
3574 	}
3575 
3576 	/*
3577 	 * It makes no sense for the first data block to be beyond the end
3578 	 * of the filesystem.
3579 	 */
3580 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3581 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3582 			 "block %u is beyond end of filesystem (%llu)",
3583 			 le32_to_cpu(es->s_first_data_block),
3584 			 ext4_blocks_count(es));
3585 		goto failed_mount;
3586 	}
3587 	blocks_count = (ext4_blocks_count(es) -
3588 			le32_to_cpu(es->s_first_data_block) +
3589 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
3590 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3591 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3592 		ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3593 		       "(block count %llu, first data block %u, "
3594 		       "blocks per group %lu)", sbi->s_groups_count,
3595 		       ext4_blocks_count(es),
3596 		       le32_to_cpu(es->s_first_data_block),
3597 		       EXT4_BLOCKS_PER_GROUP(sb));
3598 		goto failed_mount;
3599 	}
3600 	sbi->s_groups_count = blocks_count;
3601 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3602 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3603 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3604 		   EXT4_DESC_PER_BLOCK(sb);
3605 	sbi->s_group_desc = ext4_kvmalloc(db_count *
3606 					  sizeof(struct buffer_head *),
3607 					  GFP_KERNEL);
3608 	if (sbi->s_group_desc == NULL) {
3609 		ext4_msg(sb, KERN_ERR, "not enough memory");
3610 		ret = -ENOMEM;
3611 		goto failed_mount;
3612 	}
3613 
3614 	bgl_lock_init(sbi->s_blockgroup_lock);
3615 
3616 	for (i = 0; i < db_count; i++) {
3617 		block = descriptor_loc(sb, logical_sb_block, i);
3618 		sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3619 		if (!sbi->s_group_desc[i]) {
3620 			ext4_msg(sb, KERN_ERR,
3621 			       "can't read group descriptor %d", i);
3622 			db_count = i;
3623 			goto failed_mount2;
3624 		}
3625 	}
3626 	if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3627 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3628 		ret = -EFSCORRUPTED;
3629 		goto failed_mount2;
3630 	}
3631 
3632 	sbi->s_gdb_count = db_count;
3633 	get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3634 	spin_lock_init(&sbi->s_next_gen_lock);
3635 
3636 	setup_timer(&sbi->s_err_report, print_daily_error_info,
3637 		(unsigned long) sb);
3638 
3639 	/* Register extent status tree shrinker */
3640 	if (ext4_es_register_shrinker(sbi))
3641 		goto failed_mount3;
3642 
3643 	sbi->s_stripe = ext4_get_stripe_size(sbi);
3644 	sbi->s_extent_max_zeroout_kb = 32;
3645 
3646 	/*
3647 	 * set up enough so that it can read an inode
3648 	 */
3649 	sb->s_op = &ext4_sops;
3650 	sb->s_export_op = &ext4_export_ops;
3651 	sb->s_xattr = ext4_xattr_handlers;
3652 #ifdef CONFIG_QUOTA
3653 	sb->dq_op = &ext4_quota_operations;
3654 	if (ext4_has_feature_quota(sb))
3655 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
3656 	else
3657 		sb->s_qcop = &ext4_qctl_operations;
3658 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
3659 #endif
3660 	memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3661 
3662 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3663 	mutex_init(&sbi->s_orphan_lock);
3664 
3665 	sb->s_root = NULL;
3666 
3667 	needs_recovery = (es->s_last_orphan != 0 ||
3668 			  ext4_has_feature_journal_needs_recovery(sb));
3669 
3670 	if (ext4_has_feature_mmp(sb) && !(sb->s_flags & MS_RDONLY))
3671 		if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3672 			goto failed_mount3a;
3673 
3674 	/*
3675 	 * The first inode we look at is the journal inode.  Don't try
3676 	 * root first: it may be modified in the journal!
3677 	 */
3678 	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
3679 		if (ext4_load_journal(sb, es, journal_devnum))
3680 			goto failed_mount3a;
3681 	} else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3682 		   ext4_has_feature_journal_needs_recovery(sb)) {
3683 		ext4_msg(sb, KERN_ERR, "required journal recovery "
3684 		       "suppressed and not mounted read-only");
3685 		goto failed_mount_wq;
3686 	} else {
3687 		/* Nojournal mode, all journal mount options are illegal */
3688 		if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
3689 			ext4_msg(sb, KERN_ERR, "can't mount with "
3690 				 "journal_checksum, fs mounted w/o journal");
3691 			goto failed_mount_wq;
3692 		}
3693 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3694 			ext4_msg(sb, KERN_ERR, "can't mount with "
3695 				 "journal_async_commit, fs mounted w/o journal");
3696 			goto failed_mount_wq;
3697 		}
3698 		if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
3699 			ext4_msg(sb, KERN_ERR, "can't mount with "
3700 				 "commit=%lu, fs mounted w/o journal",
3701 				 sbi->s_commit_interval / HZ);
3702 			goto failed_mount_wq;
3703 		}
3704 		if (EXT4_MOUNT_DATA_FLAGS &
3705 		    (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
3706 			ext4_msg(sb, KERN_ERR, "can't mount with "
3707 				 "data=, fs mounted w/o journal");
3708 			goto failed_mount_wq;
3709 		}
3710 		sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM;
3711 		clear_opt(sb, JOURNAL_CHECKSUM);
3712 		clear_opt(sb, DATA_FLAGS);
3713 		sbi->s_journal = NULL;
3714 		needs_recovery = 0;
3715 		goto no_journal;
3716 	}
3717 
3718 	if (ext4_has_feature_64bit(sb) &&
3719 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3720 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
3721 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3722 		goto failed_mount_wq;
3723 	}
3724 
3725 	if (!set_journal_csum_feature_set(sb)) {
3726 		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
3727 			 "feature set");
3728 		goto failed_mount_wq;
3729 	}
3730 
3731 	/* We have now updated the journal if required, so we can
3732 	 * validate the data journaling mode. */
3733 	switch (test_opt(sb, DATA_FLAGS)) {
3734 	case 0:
3735 		/* No mode set, assume a default based on the journal
3736 		 * capabilities: ORDERED_DATA if the journal can
3737 		 * cope, else JOURNAL_DATA
3738 		 */
3739 		if (jbd2_journal_check_available_features
3740 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3741 			set_opt(sb, ORDERED_DATA);
3742 		else
3743 			set_opt(sb, JOURNAL_DATA);
3744 		break;
3745 
3746 	case EXT4_MOUNT_ORDERED_DATA:
3747 	case EXT4_MOUNT_WRITEBACK_DATA:
3748 		if (!jbd2_journal_check_available_features
3749 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3750 			ext4_msg(sb, KERN_ERR, "Journal does not support "
3751 			       "requested data journaling mode");
3752 			goto failed_mount_wq;
3753 		}
3754 	default:
3755 		break;
3756 	}
3757 	set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3758 
3759 	sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
3760 
3761 no_journal:
3762 	if (ext4_mballoc_ready) {
3763 		sbi->s_mb_cache = ext4_xattr_create_cache(sb->s_id);
3764 		if (!sbi->s_mb_cache) {
3765 			ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache");
3766 			goto failed_mount_wq;
3767 		}
3768 	}
3769 
3770 	if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
3771 	    (blocksize != PAGE_CACHE_SIZE)) {
3772 		ext4_msg(sb, KERN_ERR,
3773 			 "Unsupported blocksize for fs encryption");
3774 		goto failed_mount_wq;
3775 	}
3776 
3777 	if (DUMMY_ENCRYPTION_ENABLED(sbi) && !(sb->s_flags & MS_RDONLY) &&
3778 	    !ext4_has_feature_encrypt(sb)) {
3779 		ext4_set_feature_encrypt(sb);
3780 		ext4_commit_super(sb, 1);
3781 	}
3782 
3783 	/*
3784 	 * Get the # of file system overhead blocks from the
3785 	 * superblock if present.
3786 	 */
3787 	if (es->s_overhead_clusters)
3788 		sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
3789 	else {
3790 		err = ext4_calculate_overhead(sb);
3791 		if (err)
3792 			goto failed_mount_wq;
3793 	}
3794 
3795 	/*
3796 	 * The maximum number of concurrent works can be high and
3797 	 * concurrency isn't really necessary.  Limit it to 1.
3798 	 */
3799 	EXT4_SB(sb)->rsv_conversion_wq =
3800 		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3801 	if (!EXT4_SB(sb)->rsv_conversion_wq) {
3802 		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
3803 		ret = -ENOMEM;
3804 		goto failed_mount4;
3805 	}
3806 
3807 	/*
3808 	 * The jbd2_journal_load will have done any necessary log recovery,
3809 	 * so we can safely mount the rest of the filesystem now.
3810 	 */
3811 
3812 	root = ext4_iget(sb, EXT4_ROOT_INO);
3813 	if (IS_ERR(root)) {
3814 		ext4_msg(sb, KERN_ERR, "get root inode failed");
3815 		ret = PTR_ERR(root);
3816 		root = NULL;
3817 		goto failed_mount4;
3818 	}
3819 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3820 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3821 		iput(root);
3822 		goto failed_mount4;
3823 	}
3824 	sb->s_root = d_make_root(root);
3825 	if (!sb->s_root) {
3826 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
3827 		ret = -ENOMEM;
3828 		goto failed_mount4;
3829 	}
3830 
3831 	if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
3832 		sb->s_flags |= MS_RDONLY;
3833 
3834 	/* determine the minimum size of new large inodes, if present */
3835 	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3836 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3837 						     EXT4_GOOD_OLD_INODE_SIZE;
3838 		if (ext4_has_feature_extra_isize(sb)) {
3839 			if (sbi->s_want_extra_isize <
3840 			    le16_to_cpu(es->s_want_extra_isize))
3841 				sbi->s_want_extra_isize =
3842 					le16_to_cpu(es->s_want_extra_isize);
3843 			if (sbi->s_want_extra_isize <
3844 			    le16_to_cpu(es->s_min_extra_isize))
3845 				sbi->s_want_extra_isize =
3846 					le16_to_cpu(es->s_min_extra_isize);
3847 		}
3848 	}
3849 	/* Check if enough inode space is available */
3850 	if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3851 							sbi->s_inode_size) {
3852 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3853 						       EXT4_GOOD_OLD_INODE_SIZE;
3854 		ext4_msg(sb, KERN_INFO, "required extra inode space not"
3855 			 "available");
3856 	}
3857 
3858 	ext4_set_resv_clusters(sb);
3859 
3860 	err = ext4_setup_system_zone(sb);
3861 	if (err) {
3862 		ext4_msg(sb, KERN_ERR, "failed to initialize system "
3863 			 "zone (%d)", err);
3864 		goto failed_mount4a;
3865 	}
3866 
3867 	ext4_ext_init(sb);
3868 	err = ext4_mb_init(sb);
3869 	if (err) {
3870 		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3871 			 err);
3872 		goto failed_mount5;
3873 	}
3874 
3875 	block = ext4_count_free_clusters(sb);
3876 	ext4_free_blocks_count_set(sbi->s_es,
3877 				   EXT4_C2B(sbi, block));
3878 	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
3879 				  GFP_KERNEL);
3880 	if (!err) {
3881 		unsigned long freei = ext4_count_free_inodes(sb);
3882 		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
3883 		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
3884 					  GFP_KERNEL);
3885 	}
3886 	if (!err)
3887 		err = percpu_counter_init(&sbi->s_dirs_counter,
3888 					  ext4_count_dirs(sb), GFP_KERNEL);
3889 	if (!err)
3890 		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
3891 					  GFP_KERNEL);
3892 	if (err) {
3893 		ext4_msg(sb, KERN_ERR, "insufficient memory");
3894 		goto failed_mount6;
3895 	}
3896 
3897 	if (ext4_has_feature_flex_bg(sb))
3898 		if (!ext4_fill_flex_info(sb)) {
3899 			ext4_msg(sb, KERN_ERR,
3900 			       "unable to initialize "
3901 			       "flex_bg meta info!");
3902 			goto failed_mount6;
3903 		}
3904 
3905 	err = ext4_register_li_request(sb, first_not_zeroed);
3906 	if (err)
3907 		goto failed_mount6;
3908 
3909 	err = ext4_register_sysfs(sb);
3910 	if (err)
3911 		goto failed_mount7;
3912 
3913 #ifdef CONFIG_QUOTA
3914 	/* Enable quota usage during mount. */
3915 	if (ext4_has_feature_quota(sb) && !(sb->s_flags & MS_RDONLY)) {
3916 		err = ext4_enable_quotas(sb);
3917 		if (err)
3918 			goto failed_mount8;
3919 	}
3920 #endif  /* CONFIG_QUOTA */
3921 
3922 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
3923 	ext4_orphan_cleanup(sb, es);
3924 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
3925 	if (needs_recovery) {
3926 		ext4_msg(sb, KERN_INFO, "recovery complete");
3927 		ext4_mark_recovery_complete(sb, es);
3928 	}
3929 	if (EXT4_SB(sb)->s_journal) {
3930 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3931 			descr = " journalled data mode";
3932 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3933 			descr = " ordered data mode";
3934 		else
3935 			descr = " writeback data mode";
3936 	} else
3937 		descr = "out journal";
3938 
3939 	if (test_opt(sb, DISCARD)) {
3940 		struct request_queue *q = bdev_get_queue(sb->s_bdev);
3941 		if (!blk_queue_discard(q))
3942 			ext4_msg(sb, KERN_WARNING,
3943 				 "mounting with \"discard\" option, but "
3944 				 "the device does not support discard");
3945 	}
3946 
3947 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
3948 		ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
3949 			 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
3950 			 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
3951 
3952 	if (es->s_error_count)
3953 		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
3954 
3955 	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
3956 	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
3957 	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
3958 	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
3959 
3960 	kfree(orig_data);
3961 	return 0;
3962 
3963 cantfind_ext4:
3964 	if (!silent)
3965 		ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
3966 	goto failed_mount;
3967 
3968 #ifdef CONFIG_QUOTA
3969 failed_mount8:
3970 	ext4_unregister_sysfs(sb);
3971 #endif
3972 failed_mount7:
3973 	ext4_unregister_li_request(sb);
3974 failed_mount6:
3975 	ext4_mb_release(sb);
3976 	if (sbi->s_flex_groups)
3977 		kvfree(sbi->s_flex_groups);
3978 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
3979 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
3980 	percpu_counter_destroy(&sbi->s_dirs_counter);
3981 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
3982 failed_mount5:
3983 	ext4_ext_release(sb);
3984 	ext4_release_system_zone(sb);
3985 failed_mount4a:
3986 	dput(sb->s_root);
3987 	sb->s_root = NULL;
3988 failed_mount4:
3989 	ext4_msg(sb, KERN_ERR, "mount failed");
3990 	if (EXT4_SB(sb)->rsv_conversion_wq)
3991 		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
3992 failed_mount_wq:
3993 	if (sbi->s_journal) {
3994 		jbd2_journal_destroy(sbi->s_journal);
3995 		sbi->s_journal = NULL;
3996 	}
3997 failed_mount3a:
3998 	ext4_es_unregister_shrinker(sbi);
3999 failed_mount3:
4000 	del_timer_sync(&sbi->s_err_report);
4001 	if (sbi->s_mmp_tsk)
4002 		kthread_stop(sbi->s_mmp_tsk);
4003 failed_mount2:
4004 	for (i = 0; i < db_count; i++)
4005 		brelse(sbi->s_group_desc[i]);
4006 	kvfree(sbi->s_group_desc);
4007 failed_mount:
4008 	if (sbi->s_chksum_driver)
4009 		crypto_free_shash(sbi->s_chksum_driver);
4010 #ifdef CONFIG_QUOTA
4011 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
4012 		kfree(sbi->s_qf_names[i]);
4013 #endif
4014 	ext4_blkdev_remove(sbi);
4015 	brelse(bh);
4016 out_fail:
4017 	sb->s_fs_info = NULL;
4018 	kfree(sbi->s_blockgroup_lock);
4019 	kfree(sbi);
4020 out_free_orig:
4021 	kfree(orig_data);
4022 	return err ? err : ret;
4023 }
4024 
4025 /*
4026  * Setup any per-fs journal parameters now.  We'll do this both on
4027  * initial mount, once the journal has been initialised but before we've
4028  * done any recovery; and again on any subsequent remount.
4029  */
ext4_init_journal_params(struct super_block * sb,journal_t * journal)4030 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4031 {
4032 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4033 
4034 	journal->j_commit_interval = sbi->s_commit_interval;
4035 	journal->j_min_batch_time = sbi->s_min_batch_time;
4036 	journal->j_max_batch_time = sbi->s_max_batch_time;
4037 
4038 	write_lock(&journal->j_state_lock);
4039 	if (test_opt(sb, BARRIER))
4040 		journal->j_flags |= JBD2_BARRIER;
4041 	else
4042 		journal->j_flags &= ~JBD2_BARRIER;
4043 	if (test_opt(sb, DATA_ERR_ABORT))
4044 		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4045 	else
4046 		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4047 	write_unlock(&journal->j_state_lock);
4048 }
4049 
ext4_get_journal(struct super_block * sb,unsigned int journal_inum)4050 static journal_t *ext4_get_journal(struct super_block *sb,
4051 				   unsigned int journal_inum)
4052 {
4053 	struct inode *journal_inode;
4054 	journal_t *journal;
4055 
4056 	BUG_ON(!ext4_has_feature_journal(sb));
4057 
4058 	/* First, test for the existence of a valid inode on disk.  Bad
4059 	 * things happen if we iget() an unused inode, as the subsequent
4060 	 * iput() will try to delete it. */
4061 
4062 	journal_inode = ext4_iget(sb, journal_inum);
4063 	if (IS_ERR(journal_inode)) {
4064 		ext4_msg(sb, KERN_ERR, "no journal found");
4065 		return NULL;
4066 	}
4067 	if (!journal_inode->i_nlink) {
4068 		make_bad_inode(journal_inode);
4069 		iput(journal_inode);
4070 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4071 		return NULL;
4072 	}
4073 
4074 	jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4075 		  journal_inode, journal_inode->i_size);
4076 	if (!S_ISREG(journal_inode->i_mode)) {
4077 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
4078 		iput(journal_inode);
4079 		return NULL;
4080 	}
4081 
4082 	journal = jbd2_journal_init_inode(journal_inode);
4083 	if (!journal) {
4084 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4085 		iput(journal_inode);
4086 		return NULL;
4087 	}
4088 	journal->j_private = sb;
4089 	ext4_init_journal_params(sb, journal);
4090 	return journal;
4091 }
4092 
ext4_get_dev_journal(struct super_block * sb,dev_t j_dev)4093 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4094 				       dev_t j_dev)
4095 {
4096 	struct buffer_head *bh;
4097 	journal_t *journal;
4098 	ext4_fsblk_t start;
4099 	ext4_fsblk_t len;
4100 	int hblock, blocksize;
4101 	ext4_fsblk_t sb_block;
4102 	unsigned long offset;
4103 	struct ext4_super_block *es;
4104 	struct block_device *bdev;
4105 
4106 	BUG_ON(!ext4_has_feature_journal(sb));
4107 
4108 	bdev = ext4_blkdev_get(j_dev, sb);
4109 	if (bdev == NULL)
4110 		return NULL;
4111 
4112 	blocksize = sb->s_blocksize;
4113 	hblock = bdev_logical_block_size(bdev);
4114 	if (blocksize < hblock) {
4115 		ext4_msg(sb, KERN_ERR,
4116 			"blocksize too small for journal device");
4117 		goto out_bdev;
4118 	}
4119 
4120 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4121 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4122 	set_blocksize(bdev, blocksize);
4123 	if (!(bh = __bread(bdev, sb_block, blocksize))) {
4124 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4125 		       "external journal");
4126 		goto out_bdev;
4127 	}
4128 
4129 	es = (struct ext4_super_block *) (bh->b_data + offset);
4130 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4131 	    !(le32_to_cpu(es->s_feature_incompat) &
4132 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4133 		ext4_msg(sb, KERN_ERR, "external journal has "
4134 					"bad superblock");
4135 		brelse(bh);
4136 		goto out_bdev;
4137 	}
4138 
4139 	if ((le32_to_cpu(es->s_feature_ro_compat) &
4140 	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4141 	    es->s_checksum != ext4_superblock_csum(sb, es)) {
4142 		ext4_msg(sb, KERN_ERR, "external journal has "
4143 				       "corrupt superblock");
4144 		brelse(bh);
4145 		goto out_bdev;
4146 	}
4147 
4148 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4149 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4150 		brelse(bh);
4151 		goto out_bdev;
4152 	}
4153 
4154 	len = ext4_blocks_count(es);
4155 	start = sb_block + 1;
4156 	brelse(bh);	/* we're done with the superblock */
4157 
4158 	journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4159 					start, len, blocksize);
4160 	if (!journal) {
4161 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
4162 		goto out_bdev;
4163 	}
4164 	journal->j_private = sb;
4165 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4166 	wait_on_buffer(journal->j_sb_buffer);
4167 	if (!buffer_uptodate(journal->j_sb_buffer)) {
4168 		ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4169 		goto out_journal;
4170 	}
4171 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4172 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
4173 					"user (unsupported) - %d",
4174 			be32_to_cpu(journal->j_superblock->s_nr_users));
4175 		goto out_journal;
4176 	}
4177 	EXT4_SB(sb)->journal_bdev = bdev;
4178 	ext4_init_journal_params(sb, journal);
4179 	return journal;
4180 
4181 out_journal:
4182 	jbd2_journal_destroy(journal);
4183 out_bdev:
4184 	ext4_blkdev_put(bdev);
4185 	return NULL;
4186 }
4187 
ext4_load_journal(struct super_block * sb,struct ext4_super_block * es,unsigned long journal_devnum)4188 static int ext4_load_journal(struct super_block *sb,
4189 			     struct ext4_super_block *es,
4190 			     unsigned long journal_devnum)
4191 {
4192 	journal_t *journal;
4193 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4194 	dev_t journal_dev;
4195 	int err = 0;
4196 	int really_read_only;
4197 
4198 	BUG_ON(!ext4_has_feature_journal(sb));
4199 
4200 	if (journal_devnum &&
4201 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4202 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4203 			"numbers have changed");
4204 		journal_dev = new_decode_dev(journal_devnum);
4205 	} else
4206 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4207 
4208 	really_read_only = bdev_read_only(sb->s_bdev);
4209 
4210 	/*
4211 	 * Are we loading a blank journal or performing recovery after a
4212 	 * crash?  For recovery, we need to check in advance whether we
4213 	 * can get read-write access to the device.
4214 	 */
4215 	if (ext4_has_feature_journal_needs_recovery(sb)) {
4216 		if (sb->s_flags & MS_RDONLY) {
4217 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
4218 					"required on readonly filesystem");
4219 			if (really_read_only) {
4220 				ext4_msg(sb, KERN_ERR, "write access "
4221 					"unavailable, cannot proceed");
4222 				return -EROFS;
4223 			}
4224 			ext4_msg(sb, KERN_INFO, "write access will "
4225 			       "be enabled during recovery");
4226 		}
4227 	}
4228 
4229 	if (journal_inum && journal_dev) {
4230 		ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4231 		       "and inode journals!");
4232 		return -EINVAL;
4233 	}
4234 
4235 	if (journal_inum) {
4236 		if (!(journal = ext4_get_journal(sb, journal_inum)))
4237 			return -EINVAL;
4238 	} else {
4239 		if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4240 			return -EINVAL;
4241 	}
4242 
4243 	if (!(journal->j_flags & JBD2_BARRIER))
4244 		ext4_msg(sb, KERN_INFO, "barriers disabled");
4245 
4246 	if (!ext4_has_feature_journal_needs_recovery(sb))
4247 		err = jbd2_journal_wipe(journal, !really_read_only);
4248 	if (!err) {
4249 		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4250 		if (save)
4251 			memcpy(save, ((char *) es) +
4252 			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4253 		err = jbd2_journal_load(journal);
4254 		if (save)
4255 			memcpy(((char *) es) + EXT4_S_ERR_START,
4256 			       save, EXT4_S_ERR_LEN);
4257 		kfree(save);
4258 	}
4259 
4260 	if (err) {
4261 		ext4_msg(sb, KERN_ERR, "error loading journal");
4262 		jbd2_journal_destroy(journal);
4263 		return err;
4264 	}
4265 
4266 	EXT4_SB(sb)->s_journal = journal;
4267 	ext4_clear_journal_err(sb, es);
4268 
4269 	if (!really_read_only && journal_devnum &&
4270 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4271 		es->s_journal_dev = cpu_to_le32(journal_devnum);
4272 
4273 		/* Make sure we flush the recovery flag to disk. */
4274 		ext4_commit_super(sb, 1);
4275 	}
4276 
4277 	return 0;
4278 }
4279 
ext4_commit_super(struct super_block * sb,int sync)4280 static int ext4_commit_super(struct super_block *sb, int sync)
4281 {
4282 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4283 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4284 	int error = 0;
4285 
4286 	if (!sbh || block_device_ejected(sb))
4287 		return error;
4288 	if (buffer_write_io_error(sbh)) {
4289 		/*
4290 		 * Oh, dear.  A previous attempt to write the
4291 		 * superblock failed.  This could happen because the
4292 		 * USB device was yanked out.  Or it could happen to
4293 		 * be a transient write error and maybe the block will
4294 		 * be remapped.  Nothing we can do but to retry the
4295 		 * write and hope for the best.
4296 		 */
4297 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
4298 		       "superblock detected");
4299 		clear_buffer_write_io_error(sbh);
4300 		set_buffer_uptodate(sbh);
4301 	}
4302 	/*
4303 	 * If the file system is mounted read-only, don't update the
4304 	 * superblock write time.  This avoids updating the superblock
4305 	 * write time when we are mounting the root file system
4306 	 * read/only but we need to replay the journal; at that point,
4307 	 * for people who are east of GMT and who make their clock
4308 	 * tick in localtime for Windows bug-for-bug compatibility,
4309 	 * the clock is set in the future, and this will cause e2fsck
4310 	 * to complain and force a full file system check.
4311 	 */
4312 	if (!(sb->s_flags & MS_RDONLY))
4313 		es->s_wtime = cpu_to_le32(get_seconds());
4314 	if (sb->s_bdev->bd_part)
4315 		es->s_kbytes_written =
4316 			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4317 			    ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4318 			      EXT4_SB(sb)->s_sectors_written_start) >> 1));
4319 	else
4320 		es->s_kbytes_written =
4321 			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4322 	if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4323 		ext4_free_blocks_count_set(es,
4324 			EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4325 				&EXT4_SB(sb)->s_freeclusters_counter)));
4326 	if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4327 		es->s_free_inodes_count =
4328 			cpu_to_le32(percpu_counter_sum_positive(
4329 				&EXT4_SB(sb)->s_freeinodes_counter));
4330 	BUFFER_TRACE(sbh, "marking dirty");
4331 	ext4_superblock_csum_set(sb);
4332 	mark_buffer_dirty(sbh);
4333 	if (sync) {
4334 		error = __sync_dirty_buffer(sbh,
4335 			test_opt(sb, BARRIER) ? WRITE_FUA : WRITE_SYNC);
4336 		if (error)
4337 			return error;
4338 
4339 		error = buffer_write_io_error(sbh);
4340 		if (error) {
4341 			ext4_msg(sb, KERN_ERR, "I/O error while writing "
4342 			       "superblock");
4343 			clear_buffer_write_io_error(sbh);
4344 			set_buffer_uptodate(sbh);
4345 		}
4346 	}
4347 	return error;
4348 }
4349 
4350 /*
4351  * Have we just finished recovery?  If so, and if we are mounting (or
4352  * remounting) the filesystem readonly, then we will end up with a
4353  * consistent fs on disk.  Record that fact.
4354  */
ext4_mark_recovery_complete(struct super_block * sb,struct ext4_super_block * es)4355 static void ext4_mark_recovery_complete(struct super_block *sb,
4356 					struct ext4_super_block *es)
4357 {
4358 	journal_t *journal = EXT4_SB(sb)->s_journal;
4359 
4360 	if (!ext4_has_feature_journal(sb)) {
4361 		BUG_ON(journal != NULL);
4362 		return;
4363 	}
4364 	jbd2_journal_lock_updates(journal);
4365 	if (jbd2_journal_flush(journal) < 0)
4366 		goto out;
4367 
4368 	if (ext4_has_feature_journal_needs_recovery(sb) &&
4369 	    sb->s_flags & MS_RDONLY) {
4370 		ext4_clear_feature_journal_needs_recovery(sb);
4371 		ext4_commit_super(sb, 1);
4372 	}
4373 
4374 out:
4375 	jbd2_journal_unlock_updates(journal);
4376 }
4377 
4378 /*
4379  * If we are mounting (or read-write remounting) a filesystem whose journal
4380  * has recorded an error from a previous lifetime, move that error to the
4381  * main filesystem now.
4382  */
ext4_clear_journal_err(struct super_block * sb,struct ext4_super_block * es)4383 static void ext4_clear_journal_err(struct super_block *sb,
4384 				   struct ext4_super_block *es)
4385 {
4386 	journal_t *journal;
4387 	int j_errno;
4388 	const char *errstr;
4389 
4390 	BUG_ON(!ext4_has_feature_journal(sb));
4391 
4392 	journal = EXT4_SB(sb)->s_journal;
4393 
4394 	/*
4395 	 * Now check for any error status which may have been recorded in the
4396 	 * journal by a prior ext4_error() or ext4_abort()
4397 	 */
4398 
4399 	j_errno = jbd2_journal_errno(journal);
4400 	if (j_errno) {
4401 		char nbuf[16];
4402 
4403 		errstr = ext4_decode_error(sb, j_errno, nbuf);
4404 		ext4_warning(sb, "Filesystem error recorded "
4405 			     "from previous mount: %s", errstr);
4406 		ext4_warning(sb, "Marking fs in need of filesystem check.");
4407 
4408 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4409 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4410 		ext4_commit_super(sb, 1);
4411 
4412 		jbd2_journal_clear_err(journal);
4413 		jbd2_journal_update_sb_errno(journal);
4414 	}
4415 }
4416 
4417 /*
4418  * Force the running and committing transactions to commit,
4419  * and wait on the commit.
4420  */
ext4_force_commit(struct super_block * sb)4421 int ext4_force_commit(struct super_block *sb)
4422 {
4423 	journal_t *journal;
4424 
4425 	if (sb->s_flags & MS_RDONLY)
4426 		return 0;
4427 
4428 	journal = EXT4_SB(sb)->s_journal;
4429 	return ext4_journal_force_commit(journal);
4430 }
4431 
ext4_sync_fs(struct super_block * sb,int wait)4432 static int ext4_sync_fs(struct super_block *sb, int wait)
4433 {
4434 	int ret = 0;
4435 	tid_t target;
4436 	bool needs_barrier = false;
4437 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4438 
4439 	trace_ext4_sync_fs(sb, wait);
4440 	flush_workqueue(sbi->rsv_conversion_wq);
4441 	/*
4442 	 * Writeback quota in non-journalled quota case - journalled quota has
4443 	 * no dirty dquots
4444 	 */
4445 	dquot_writeback_dquots(sb, -1);
4446 	/*
4447 	 * Data writeback is possible w/o journal transaction, so barrier must
4448 	 * being sent at the end of the function. But we can skip it if
4449 	 * transaction_commit will do it for us.
4450 	 */
4451 	if (sbi->s_journal) {
4452 		target = jbd2_get_latest_transaction(sbi->s_journal);
4453 		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4454 		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4455 			needs_barrier = true;
4456 
4457 		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4458 			if (wait)
4459 				ret = jbd2_log_wait_commit(sbi->s_journal,
4460 							   target);
4461 		}
4462 	} else if (wait && test_opt(sb, BARRIER))
4463 		needs_barrier = true;
4464 	if (needs_barrier) {
4465 		int err;
4466 		err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4467 		if (!ret)
4468 			ret = err;
4469 	}
4470 
4471 	return ret;
4472 }
4473 
4474 /*
4475  * LVM calls this function before a (read-only) snapshot is created.  This
4476  * gives us a chance to flush the journal completely and mark the fs clean.
4477  *
4478  * Note that only this function cannot bring a filesystem to be in a clean
4479  * state independently. It relies on upper layer to stop all data & metadata
4480  * modifications.
4481  */
ext4_freeze(struct super_block * sb)4482 static int ext4_freeze(struct super_block *sb)
4483 {
4484 	int error = 0;
4485 	journal_t *journal;
4486 
4487 	if (sb->s_flags & MS_RDONLY)
4488 		return 0;
4489 
4490 	journal = EXT4_SB(sb)->s_journal;
4491 
4492 	if (journal) {
4493 		/* Now we set up the journal barrier. */
4494 		jbd2_journal_lock_updates(journal);
4495 
4496 		/*
4497 		 * Don't clear the needs_recovery flag if we failed to
4498 		 * flush the journal.
4499 		 */
4500 		error = jbd2_journal_flush(journal);
4501 		if (error < 0)
4502 			goto out;
4503 
4504 		/* Journal blocked and flushed, clear needs_recovery flag. */
4505 		ext4_clear_feature_journal_needs_recovery(sb);
4506 	}
4507 
4508 	error = ext4_commit_super(sb, 1);
4509 out:
4510 	if (journal)
4511 		/* we rely on upper layer to stop further updates */
4512 		jbd2_journal_unlock_updates(journal);
4513 	return error;
4514 }
4515 
4516 /*
4517  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
4518  * flag here, even though the filesystem is not technically dirty yet.
4519  */
ext4_unfreeze(struct super_block * sb)4520 static int ext4_unfreeze(struct super_block *sb)
4521 {
4522 	if (sb->s_flags & MS_RDONLY)
4523 		return 0;
4524 
4525 	if (EXT4_SB(sb)->s_journal) {
4526 		/* Reset the needs_recovery flag before the fs is unlocked. */
4527 		ext4_set_feature_journal_needs_recovery(sb);
4528 	}
4529 
4530 	ext4_commit_super(sb, 1);
4531 	return 0;
4532 }
4533 
4534 /*
4535  * Structure to save mount options for ext4_remount's benefit
4536  */
4537 struct ext4_mount_options {
4538 	unsigned long s_mount_opt;
4539 	unsigned long s_mount_opt2;
4540 	kuid_t s_resuid;
4541 	kgid_t s_resgid;
4542 	unsigned long s_commit_interval;
4543 	u32 s_min_batch_time, s_max_batch_time;
4544 #ifdef CONFIG_QUOTA
4545 	int s_jquota_fmt;
4546 	char *s_qf_names[EXT4_MAXQUOTAS];
4547 #endif
4548 };
4549 
ext4_remount(struct super_block * sb,int * flags,char * data)4550 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4551 {
4552 	struct ext4_super_block *es;
4553 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4554 	unsigned long old_sb_flags;
4555 	struct ext4_mount_options old_opts;
4556 	int enable_quota = 0;
4557 	ext4_group_t g;
4558 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4559 	int err = 0;
4560 #ifdef CONFIG_QUOTA
4561 	int i, j;
4562 #endif
4563 	char *orig_data = kstrdup(data, GFP_KERNEL);
4564 
4565 	/* Store the original options */
4566 	old_sb_flags = sb->s_flags;
4567 	old_opts.s_mount_opt = sbi->s_mount_opt;
4568 	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4569 	old_opts.s_resuid = sbi->s_resuid;
4570 	old_opts.s_resgid = sbi->s_resgid;
4571 	old_opts.s_commit_interval = sbi->s_commit_interval;
4572 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
4573 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
4574 #ifdef CONFIG_QUOTA
4575 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4576 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
4577 		if (sbi->s_qf_names[i]) {
4578 			old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4579 							 GFP_KERNEL);
4580 			if (!old_opts.s_qf_names[i]) {
4581 				for (j = 0; j < i; j++)
4582 					kfree(old_opts.s_qf_names[j]);
4583 				kfree(orig_data);
4584 				return -ENOMEM;
4585 			}
4586 		} else
4587 			old_opts.s_qf_names[i] = NULL;
4588 #endif
4589 	if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4590 		journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4591 
4592 	if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4593 		err = -EINVAL;
4594 		goto restore_opts;
4595 	}
4596 
4597 	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
4598 	    test_opt(sb, JOURNAL_CHECKSUM)) {
4599 		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
4600 			 "during remount not supported; ignoring");
4601 		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
4602 	}
4603 
4604 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4605 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4606 			ext4_msg(sb, KERN_ERR, "can't mount with "
4607 				 "both data=journal and delalloc");
4608 			err = -EINVAL;
4609 			goto restore_opts;
4610 		}
4611 		if (test_opt(sb, DIOREAD_NOLOCK)) {
4612 			ext4_msg(sb, KERN_ERR, "can't mount with "
4613 				 "both data=journal and dioread_nolock");
4614 			err = -EINVAL;
4615 			goto restore_opts;
4616 		}
4617 		if (test_opt(sb, DAX)) {
4618 			ext4_msg(sb, KERN_ERR, "can't mount with "
4619 				 "both data=journal and dax");
4620 			err = -EINVAL;
4621 			goto restore_opts;
4622 		}
4623 	}
4624 
4625 	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
4626 		ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
4627 			"dax flag with busy inodes while remounting");
4628 		sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
4629 	}
4630 
4631 	if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4632 		ext4_abort(sb, "Abort forced by user");
4633 
4634 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4635 		(test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4636 
4637 	es = sbi->s_es;
4638 
4639 	if (sbi->s_journal) {
4640 		ext4_init_journal_params(sb, sbi->s_journal);
4641 		set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4642 	}
4643 
4644 	if (*flags & MS_LAZYTIME)
4645 		sb->s_flags |= MS_LAZYTIME;
4646 
4647 	if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4648 		if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4649 			err = -EROFS;
4650 			goto restore_opts;
4651 		}
4652 
4653 		if (*flags & MS_RDONLY) {
4654 			err = sync_filesystem(sb);
4655 			if (err < 0)
4656 				goto restore_opts;
4657 			err = dquot_suspend(sb, -1);
4658 			if (err < 0)
4659 				goto restore_opts;
4660 
4661 			/*
4662 			 * First of all, the unconditional stuff we have to do
4663 			 * to disable replay of the journal when we next remount
4664 			 */
4665 			sb->s_flags |= MS_RDONLY;
4666 
4667 			/*
4668 			 * OK, test if we are remounting a valid rw partition
4669 			 * readonly, and if so set the rdonly flag and then
4670 			 * mark the partition as valid again.
4671 			 */
4672 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4673 			    (sbi->s_mount_state & EXT4_VALID_FS))
4674 				es->s_state = cpu_to_le16(sbi->s_mount_state);
4675 
4676 			if (sbi->s_journal)
4677 				ext4_mark_recovery_complete(sb, es);
4678 		} else {
4679 			/* Make sure we can mount this feature set readwrite */
4680 			if (ext4_has_feature_readonly(sb) ||
4681 			    !ext4_feature_set_ok(sb, 0)) {
4682 				err = -EROFS;
4683 				goto restore_opts;
4684 			}
4685 			/*
4686 			 * Make sure the group descriptor checksums
4687 			 * are sane.  If they aren't, refuse to remount r/w.
4688 			 */
4689 			for (g = 0; g < sbi->s_groups_count; g++) {
4690 				struct ext4_group_desc *gdp =
4691 					ext4_get_group_desc(sb, g, NULL);
4692 
4693 				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4694 					ext4_msg(sb, KERN_ERR,
4695 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
4696 		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
4697 					       le16_to_cpu(gdp->bg_checksum));
4698 					err = -EFSBADCRC;
4699 					goto restore_opts;
4700 				}
4701 			}
4702 
4703 			/*
4704 			 * If we have an unprocessed orphan list hanging
4705 			 * around from a previously readonly bdev mount,
4706 			 * require a full umount/remount for now.
4707 			 */
4708 			if (es->s_last_orphan) {
4709 				ext4_msg(sb, KERN_WARNING, "Couldn't "
4710 				       "remount RDWR because of unprocessed "
4711 				       "orphan inode list.  Please "
4712 				       "umount/remount instead");
4713 				err = -EINVAL;
4714 				goto restore_opts;
4715 			}
4716 
4717 			/*
4718 			 * Mounting a RDONLY partition read-write, so reread
4719 			 * and store the current valid flag.  (It may have
4720 			 * been changed by e2fsck since we originally mounted
4721 			 * the partition.)
4722 			 */
4723 			if (sbi->s_journal)
4724 				ext4_clear_journal_err(sb, es);
4725 			sbi->s_mount_state = le16_to_cpu(es->s_state);
4726 			if (!ext4_setup_super(sb, es, 0))
4727 				sb->s_flags &= ~MS_RDONLY;
4728 			if (ext4_has_feature_mmp(sb))
4729 				if (ext4_multi_mount_protect(sb,
4730 						le64_to_cpu(es->s_mmp_block))) {
4731 					err = -EROFS;
4732 					goto restore_opts;
4733 				}
4734 			enable_quota = 1;
4735 		}
4736 	}
4737 
4738 	/*
4739 	 * Reinitialize lazy itable initialization thread based on
4740 	 * current settings
4741 	 */
4742 	if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4743 		ext4_unregister_li_request(sb);
4744 	else {
4745 		ext4_group_t first_not_zeroed;
4746 		first_not_zeroed = ext4_has_uninit_itable(sb);
4747 		ext4_register_li_request(sb, first_not_zeroed);
4748 	}
4749 
4750 	ext4_setup_system_zone(sb);
4751 	if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
4752 		ext4_commit_super(sb, 1);
4753 
4754 #ifdef CONFIG_QUOTA
4755 	/* Release old quota file names */
4756 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
4757 		kfree(old_opts.s_qf_names[i]);
4758 	if (enable_quota) {
4759 		if (sb_any_quota_suspended(sb))
4760 			dquot_resume(sb, -1);
4761 		else if (ext4_has_feature_quota(sb)) {
4762 			err = ext4_enable_quotas(sb);
4763 			if (err)
4764 				goto restore_opts;
4765 		}
4766 	}
4767 #endif
4768 
4769 	*flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME);
4770 	ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4771 	kfree(orig_data);
4772 	return 0;
4773 
4774 restore_opts:
4775 	sb->s_flags = old_sb_flags;
4776 	sbi->s_mount_opt = old_opts.s_mount_opt;
4777 	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4778 	sbi->s_resuid = old_opts.s_resuid;
4779 	sbi->s_resgid = old_opts.s_resgid;
4780 	sbi->s_commit_interval = old_opts.s_commit_interval;
4781 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
4782 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
4783 #ifdef CONFIG_QUOTA
4784 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4785 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
4786 		kfree(sbi->s_qf_names[i]);
4787 		sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4788 	}
4789 #endif
4790 	kfree(orig_data);
4791 	return err;
4792 }
4793 
ext4_statfs(struct dentry * dentry,struct kstatfs * buf)4794 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4795 {
4796 	struct super_block *sb = dentry->d_sb;
4797 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4798 	struct ext4_super_block *es = sbi->s_es;
4799 	ext4_fsblk_t overhead = 0, resv_blocks;
4800 	u64 fsid;
4801 	s64 bfree;
4802 	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
4803 
4804 	if (!test_opt(sb, MINIX_DF))
4805 		overhead = sbi->s_overhead;
4806 
4807 	buf->f_type = EXT4_SUPER_MAGIC;
4808 	buf->f_bsize = sb->s_blocksize;
4809 	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
4810 	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
4811 		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
4812 	/* prevent underflow in case that few free space is available */
4813 	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
4814 	buf->f_bavail = buf->f_bfree -
4815 			(ext4_r_blocks_count(es) + resv_blocks);
4816 	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
4817 		buf->f_bavail = 0;
4818 	buf->f_files = le32_to_cpu(es->s_inodes_count);
4819 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4820 	buf->f_namelen = EXT4_NAME_LEN;
4821 	fsid = le64_to_cpup((void *)es->s_uuid) ^
4822 	       le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4823 	buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4824 	buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4825 
4826 	return 0;
4827 }
4828 
4829 /* Helper function for writing quotas on sync - we need to start transaction
4830  * before quota file is locked for write. Otherwise the are possible deadlocks:
4831  * Process 1                         Process 2
4832  * ext4_create()                     quota_sync()
4833  *   jbd2_journal_start()                  write_dquot()
4834  *   dquot_initialize()                         down(dqio_mutex)
4835  *     down(dqio_mutex)                    jbd2_journal_start()
4836  *
4837  */
4838 
4839 #ifdef CONFIG_QUOTA
4840 
dquot_to_inode(struct dquot * dquot)4841 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4842 {
4843 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
4844 }
4845 
ext4_write_dquot(struct dquot * dquot)4846 static int ext4_write_dquot(struct dquot *dquot)
4847 {
4848 	int ret, err;
4849 	handle_t *handle;
4850 	struct inode *inode;
4851 
4852 	inode = dquot_to_inode(dquot);
4853 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4854 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4855 	if (IS_ERR(handle))
4856 		return PTR_ERR(handle);
4857 	ret = dquot_commit(dquot);
4858 	err = ext4_journal_stop(handle);
4859 	if (!ret)
4860 		ret = err;
4861 	return ret;
4862 }
4863 
ext4_acquire_dquot(struct dquot * dquot)4864 static int ext4_acquire_dquot(struct dquot *dquot)
4865 {
4866 	int ret, err;
4867 	handle_t *handle;
4868 
4869 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4870 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4871 	if (IS_ERR(handle))
4872 		return PTR_ERR(handle);
4873 	ret = dquot_acquire(dquot);
4874 	err = ext4_journal_stop(handle);
4875 	if (!ret)
4876 		ret = err;
4877 	return ret;
4878 }
4879 
ext4_release_dquot(struct dquot * dquot)4880 static int ext4_release_dquot(struct dquot *dquot)
4881 {
4882 	int ret, err;
4883 	handle_t *handle;
4884 
4885 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4886 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4887 	if (IS_ERR(handle)) {
4888 		/* Release dquot anyway to avoid endless cycle in dqput() */
4889 		dquot_release(dquot);
4890 		return PTR_ERR(handle);
4891 	}
4892 	ret = dquot_release(dquot);
4893 	err = ext4_journal_stop(handle);
4894 	if (!ret)
4895 		ret = err;
4896 	return ret;
4897 }
4898 
ext4_mark_dquot_dirty(struct dquot * dquot)4899 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4900 {
4901 	struct super_block *sb = dquot->dq_sb;
4902 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4903 
4904 	/* Are we journaling quotas? */
4905 	if (ext4_has_feature_quota(sb) ||
4906 	    sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
4907 		dquot_mark_dquot_dirty(dquot);
4908 		return ext4_write_dquot(dquot);
4909 	} else {
4910 		return dquot_mark_dquot_dirty(dquot);
4911 	}
4912 }
4913 
ext4_write_info(struct super_block * sb,int type)4914 static int ext4_write_info(struct super_block *sb, int type)
4915 {
4916 	int ret, err;
4917 	handle_t *handle;
4918 
4919 	/* Data block + inode block */
4920 	handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
4921 	if (IS_ERR(handle))
4922 		return PTR_ERR(handle);
4923 	ret = dquot_commit_info(sb, type);
4924 	err = ext4_journal_stop(handle);
4925 	if (!ret)
4926 		ret = err;
4927 	return ret;
4928 }
4929 
4930 /*
4931  * Turn on quotas during mount time - we need to find
4932  * the quota file and such...
4933  */
ext4_quota_on_mount(struct super_block * sb,int type)4934 static int ext4_quota_on_mount(struct super_block *sb, int type)
4935 {
4936 	return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
4937 					EXT4_SB(sb)->s_jquota_fmt, type);
4938 }
4939 
lockdep_set_quota_inode(struct inode * inode,int subclass)4940 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
4941 {
4942 	struct ext4_inode_info *ei = EXT4_I(inode);
4943 
4944 	/* The first argument of lockdep_set_subclass has to be
4945 	 * *exactly* the same as the argument to init_rwsem() --- in
4946 	 * this case, in init_once() --- or lockdep gets unhappy
4947 	 * because the name of the lock is set using the
4948 	 * stringification of the argument to init_rwsem().
4949 	 */
4950 	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
4951 	lockdep_set_subclass(&ei->i_data_sem, subclass);
4952 }
4953 
4954 /*
4955  * Standard function to be called on quota_on
4956  */
ext4_quota_on(struct super_block * sb,int type,int format_id,struct path * path)4957 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
4958 			 struct path *path)
4959 {
4960 	int err;
4961 
4962 	if (!test_opt(sb, QUOTA))
4963 		return -EINVAL;
4964 
4965 	/* Quotafile not on the same filesystem? */
4966 	if (path->dentry->d_sb != sb)
4967 		return -EXDEV;
4968 	/* Journaling quota? */
4969 	if (EXT4_SB(sb)->s_qf_names[type]) {
4970 		/* Quotafile not in fs root? */
4971 		if (path->dentry->d_parent != sb->s_root)
4972 			ext4_msg(sb, KERN_WARNING,
4973 				"Quota file not on filesystem root. "
4974 				"Journaled quota will not work");
4975 	}
4976 
4977 	/*
4978 	 * When we journal data on quota file, we have to flush journal to see
4979 	 * all updates to the file when we bypass pagecache...
4980 	 */
4981 	if (EXT4_SB(sb)->s_journal &&
4982 	    ext4_should_journal_data(d_inode(path->dentry))) {
4983 		/*
4984 		 * We don't need to lock updates but journal_flush() could
4985 		 * otherwise be livelocked...
4986 		 */
4987 		jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
4988 		err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
4989 		jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4990 		if (err)
4991 			return err;
4992 	}
4993 	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
4994 	err = dquot_quota_on(sb, type, format_id, path);
4995 	if (err)
4996 		lockdep_set_quota_inode(path->dentry->d_inode,
4997 					     I_DATA_SEM_NORMAL);
4998 	return err;
4999 }
5000 
ext4_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)5001 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5002 			     unsigned int flags)
5003 {
5004 	int err;
5005 	struct inode *qf_inode;
5006 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5007 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5008 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5009 	};
5010 
5011 	BUG_ON(!ext4_has_feature_quota(sb));
5012 
5013 	if (!qf_inums[type])
5014 		return -EPERM;
5015 
5016 	qf_inode = ext4_iget(sb, qf_inums[type]);
5017 	if (IS_ERR(qf_inode)) {
5018 		ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5019 		return PTR_ERR(qf_inode);
5020 	}
5021 
5022 	/* Don't account quota for quota files to avoid recursion */
5023 	qf_inode->i_flags |= S_NOQUOTA;
5024 	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5025 	err = dquot_enable(qf_inode, type, format_id, flags);
5026 	iput(qf_inode);
5027 	if (err)
5028 		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5029 
5030 	return err;
5031 }
5032 
5033 /* Enable usage tracking for all quota types. */
ext4_enable_quotas(struct super_block * sb)5034 static int ext4_enable_quotas(struct super_block *sb)
5035 {
5036 	int type, err = 0;
5037 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5038 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5039 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5040 	};
5041 
5042 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5043 	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5044 		if (qf_inums[type]) {
5045 			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5046 						DQUOT_USAGE_ENABLED);
5047 			if (err) {
5048 				ext4_warning(sb,
5049 					"Failed to enable quota tracking "
5050 					"(type=%d, err=%d). Please run "
5051 					"e2fsck to fix.", type, err);
5052 				return err;
5053 			}
5054 		}
5055 	}
5056 	return 0;
5057 }
5058 
ext4_quota_off(struct super_block * sb,int type)5059 static int ext4_quota_off(struct super_block *sb, int type)
5060 {
5061 	struct inode *inode = sb_dqopt(sb)->files[type];
5062 	handle_t *handle;
5063 
5064 	/* Force all delayed allocation blocks to be allocated.
5065 	 * Caller already holds s_umount sem */
5066 	if (test_opt(sb, DELALLOC))
5067 		sync_filesystem(sb);
5068 
5069 	if (!inode)
5070 		goto out;
5071 
5072 	/* Update modification times of quota files when userspace can
5073 	 * start looking at them */
5074 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5075 	if (IS_ERR(handle))
5076 		goto out;
5077 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5078 	ext4_mark_inode_dirty(handle, inode);
5079 	ext4_journal_stop(handle);
5080 
5081 out:
5082 	return dquot_quota_off(sb, type);
5083 }
5084 
5085 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5086  * acquiring the locks... As quota files are never truncated and quota code
5087  * itself serializes the operations (and no one else should touch the files)
5088  * we don't have to be afraid of races */
ext4_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)5089 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5090 			       size_t len, loff_t off)
5091 {
5092 	struct inode *inode = sb_dqopt(sb)->files[type];
5093 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5094 	int offset = off & (sb->s_blocksize - 1);
5095 	int tocopy;
5096 	size_t toread;
5097 	struct buffer_head *bh;
5098 	loff_t i_size = i_size_read(inode);
5099 
5100 	if (off > i_size)
5101 		return 0;
5102 	if (off+len > i_size)
5103 		len = i_size-off;
5104 	toread = len;
5105 	while (toread > 0) {
5106 		tocopy = sb->s_blocksize - offset < toread ?
5107 				sb->s_blocksize - offset : toread;
5108 		bh = ext4_bread(NULL, inode, blk, 0);
5109 		if (IS_ERR(bh))
5110 			return PTR_ERR(bh);
5111 		if (!bh)	/* A hole? */
5112 			memset(data, 0, tocopy);
5113 		else
5114 			memcpy(data, bh->b_data+offset, tocopy);
5115 		brelse(bh);
5116 		offset = 0;
5117 		toread -= tocopy;
5118 		data += tocopy;
5119 		blk++;
5120 	}
5121 	return len;
5122 }
5123 
5124 /* Write to quotafile (we know the transaction is already started and has
5125  * enough credits) */
ext4_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)5126 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5127 				const char *data, size_t len, loff_t off)
5128 {
5129 	struct inode *inode = sb_dqopt(sb)->files[type];
5130 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5131 	int err, offset = off & (sb->s_blocksize - 1);
5132 	int retries = 0;
5133 	struct buffer_head *bh;
5134 	handle_t *handle = journal_current_handle();
5135 
5136 	if (EXT4_SB(sb)->s_journal && !handle) {
5137 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5138 			" cancelled because transaction is not started",
5139 			(unsigned long long)off, (unsigned long long)len);
5140 		return -EIO;
5141 	}
5142 	/*
5143 	 * Since we account only one data block in transaction credits,
5144 	 * then it is impossible to cross a block boundary.
5145 	 */
5146 	if (sb->s_blocksize - offset < len) {
5147 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5148 			" cancelled because not block aligned",
5149 			(unsigned long long)off, (unsigned long long)len);
5150 		return -EIO;
5151 	}
5152 
5153 	do {
5154 		bh = ext4_bread(handle, inode, blk,
5155 				EXT4_GET_BLOCKS_CREATE |
5156 				EXT4_GET_BLOCKS_METADATA_NOFAIL);
5157 	} while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5158 		 ext4_should_retry_alloc(inode->i_sb, &retries));
5159 	if (IS_ERR(bh))
5160 		return PTR_ERR(bh);
5161 	if (!bh)
5162 		goto out;
5163 	BUFFER_TRACE(bh, "get write access");
5164 	err = ext4_journal_get_write_access(handle, bh);
5165 	if (err) {
5166 		brelse(bh);
5167 		return err;
5168 	}
5169 	lock_buffer(bh);
5170 	memcpy(bh->b_data+offset, data, len);
5171 	flush_dcache_page(bh->b_page);
5172 	unlock_buffer(bh);
5173 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5174 	brelse(bh);
5175 out:
5176 	if (inode->i_size < off + len) {
5177 		i_size_write(inode, off + len);
5178 		EXT4_I(inode)->i_disksize = inode->i_size;
5179 		ext4_mark_inode_dirty(handle, inode);
5180 	}
5181 	return len;
5182 }
5183 
5184 #endif
5185 
ext4_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)5186 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5187 		       const char *dev_name, void *data)
5188 {
5189 	return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5190 }
5191 
5192 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
register_as_ext2(void)5193 static inline void register_as_ext2(void)
5194 {
5195 	int err = register_filesystem(&ext2_fs_type);
5196 	if (err)
5197 		printk(KERN_WARNING
5198 		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5199 }
5200 
unregister_as_ext2(void)5201 static inline void unregister_as_ext2(void)
5202 {
5203 	unregister_filesystem(&ext2_fs_type);
5204 }
5205 
ext2_feature_set_ok(struct super_block * sb)5206 static inline int ext2_feature_set_ok(struct super_block *sb)
5207 {
5208 	if (ext4_has_unknown_ext2_incompat_features(sb))
5209 		return 0;
5210 	if (sb->s_flags & MS_RDONLY)
5211 		return 1;
5212 	if (ext4_has_unknown_ext2_ro_compat_features(sb))
5213 		return 0;
5214 	return 1;
5215 }
5216 #else
register_as_ext2(void)5217 static inline void register_as_ext2(void) { }
unregister_as_ext2(void)5218 static inline void unregister_as_ext2(void) { }
ext2_feature_set_ok(struct super_block * sb)5219 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5220 #endif
5221 
register_as_ext3(void)5222 static inline void register_as_ext3(void)
5223 {
5224 	int err = register_filesystem(&ext3_fs_type);
5225 	if (err)
5226 		printk(KERN_WARNING
5227 		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5228 }
5229 
unregister_as_ext3(void)5230 static inline void unregister_as_ext3(void)
5231 {
5232 	unregister_filesystem(&ext3_fs_type);
5233 }
5234 
ext3_feature_set_ok(struct super_block * sb)5235 static inline int ext3_feature_set_ok(struct super_block *sb)
5236 {
5237 	if (ext4_has_unknown_ext3_incompat_features(sb))
5238 		return 0;
5239 	if (!ext4_has_feature_journal(sb))
5240 		return 0;
5241 	if (sb->s_flags & MS_RDONLY)
5242 		return 1;
5243 	if (ext4_has_unknown_ext3_ro_compat_features(sb))
5244 		return 0;
5245 	return 1;
5246 }
5247 
5248 static struct file_system_type ext4_fs_type = {
5249 	.owner		= THIS_MODULE,
5250 	.name		= "ext4",
5251 	.mount		= ext4_mount,
5252 	.kill_sb	= kill_block_super,
5253 	.fs_flags	= FS_REQUIRES_DEV,
5254 };
5255 MODULE_ALIAS_FS("ext4");
5256 
5257 /* Shared across all ext4 file systems */
5258 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5259 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5260 
ext4_init_fs(void)5261 static int __init ext4_init_fs(void)
5262 {
5263 	int i, err;
5264 
5265 	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
5266 	ext4_li_info = NULL;
5267 	mutex_init(&ext4_li_mtx);
5268 
5269 	/* Build-time check for flags consistency */
5270 	ext4_check_flag_values();
5271 
5272 	for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5273 		mutex_init(&ext4__aio_mutex[i]);
5274 		init_waitqueue_head(&ext4__ioend_wq[i]);
5275 	}
5276 
5277 	err = ext4_init_es();
5278 	if (err)
5279 		return err;
5280 
5281 	err = ext4_init_pageio();
5282 	if (err)
5283 		goto out5;
5284 
5285 	err = ext4_init_system_zone();
5286 	if (err)
5287 		goto out4;
5288 
5289 	err = ext4_init_sysfs();
5290 	if (err)
5291 		goto out3;
5292 
5293 	err = ext4_init_mballoc();
5294 	if (err)
5295 		goto out2;
5296 	else
5297 		ext4_mballoc_ready = 1;
5298 	err = init_inodecache();
5299 	if (err)
5300 		goto out1;
5301 	register_as_ext3();
5302 	register_as_ext2();
5303 	err = register_filesystem(&ext4_fs_type);
5304 	if (err)
5305 		goto out;
5306 
5307 	return 0;
5308 out:
5309 	unregister_as_ext2();
5310 	unregister_as_ext3();
5311 	destroy_inodecache();
5312 out1:
5313 	ext4_mballoc_ready = 0;
5314 	ext4_exit_mballoc();
5315 out2:
5316 	ext4_exit_sysfs();
5317 out3:
5318 	ext4_exit_system_zone();
5319 out4:
5320 	ext4_exit_pageio();
5321 out5:
5322 	ext4_exit_es();
5323 
5324 	return err;
5325 }
5326 
ext4_exit_fs(void)5327 static void __exit ext4_exit_fs(void)
5328 {
5329 	ext4_exit_crypto();
5330 	ext4_destroy_lazyinit_thread();
5331 	unregister_as_ext2();
5332 	unregister_as_ext3();
5333 	unregister_filesystem(&ext4_fs_type);
5334 	destroy_inodecache();
5335 	ext4_exit_mballoc();
5336 	ext4_exit_sysfs();
5337 	ext4_exit_system_zone();
5338 	ext4_exit_pageio();
5339 	ext4_exit_es();
5340 }
5341 
5342 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5343 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5344 MODULE_LICENSE("GPL");
5345 module_init(ext4_init_fs)
5346 module_exit(ext4_exit_fs)
5347