1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10 
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26 
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30 
31 #define TK_CLEAR_NTP		(1 << 0)
32 #define TK_MIRROR		(1 << 1)
33 #define TK_CLOCK_WAS_SET	(1 << 2)
34 
35 /*
36  * The most important data for readout fits into a single 64 byte
37  * cache line.
38  */
39 static struct {
40 	seqcount_t		seq;
41 	struct timekeeper	timekeeper;
42 } tk_core ____cacheline_aligned;
43 
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
46 
47 /**
48  * struct tk_fast - NMI safe timekeeper
49  * @seq:	Sequence counter for protecting updates. The lowest bit
50  *		is the index for the tk_read_base array
51  * @base:	tk_read_base array. Access is indexed by the lowest bit of
52  *		@seq.
53  *
54  * See @update_fast_timekeeper() below.
55  */
56 struct tk_fast {
57 	seqcount_t		seq;
58 	struct tk_read_base	base[2];
59 };
60 
61 static struct tk_fast tk_fast_mono ____cacheline_aligned;
62 static struct tk_fast tk_fast_raw  ____cacheline_aligned;
63 
64 /* flag for if timekeeping is suspended */
65 int __read_mostly timekeeping_suspended;
66 
tk_normalize_xtime(struct timekeeper * tk)67 static inline void tk_normalize_xtime(struct timekeeper *tk)
68 {
69 	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
70 		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
71 		tk->xtime_sec++;
72 	}
73 }
74 
tk_xtime(struct timekeeper * tk)75 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
76 {
77 	struct timespec64 ts;
78 
79 	ts.tv_sec = tk->xtime_sec;
80 	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
81 	return ts;
82 }
83 
tk_set_xtime(struct timekeeper * tk,const struct timespec64 * ts)84 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
85 {
86 	tk->xtime_sec = ts->tv_sec;
87 	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
88 }
89 
tk_xtime_add(struct timekeeper * tk,const struct timespec64 * ts)90 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
91 {
92 	tk->xtime_sec += ts->tv_sec;
93 	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
94 	tk_normalize_xtime(tk);
95 }
96 
tk_set_wall_to_mono(struct timekeeper * tk,struct timespec64 wtm)97 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
98 {
99 	struct timespec64 tmp;
100 
101 	/*
102 	 * Verify consistency of: offset_real = -wall_to_monotonic
103 	 * before modifying anything
104 	 */
105 	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
106 					-tk->wall_to_monotonic.tv_nsec);
107 	WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
108 	tk->wall_to_monotonic = wtm;
109 	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
110 	tk->offs_real = timespec64_to_ktime(tmp);
111 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
112 }
113 
tk_update_sleep_time(struct timekeeper * tk,ktime_t delta)114 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
115 {
116 	tk->offs_boot = ktime_add(tk->offs_boot, delta);
117 }
118 
119 #ifdef CONFIG_DEBUG_TIMEKEEPING
120 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
121 /*
122  * These simple flag variables are managed
123  * without locks, which is racy, but ok since
124  * we don't really care about being super
125  * precise about how many events were seen,
126  * just that a problem was observed.
127  */
128 static int timekeeping_underflow_seen;
129 static int timekeeping_overflow_seen;
130 
131 /* last_warning is only modified under the timekeeping lock */
132 static long timekeeping_last_warning;
133 
timekeeping_check_update(struct timekeeper * tk,cycle_t offset)134 static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
135 {
136 
137 	cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
138 	const char *name = tk->tkr_mono.clock->name;
139 
140 	if (offset > max_cycles) {
141 		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
142 				offset, name, max_cycles);
143 		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
144 	} else {
145 		if (offset > (max_cycles >> 1)) {
146 			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n",
147 					offset, name, max_cycles >> 1);
148 			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
149 		}
150 	}
151 
152 	if (timekeeping_underflow_seen) {
153 		if (jiffies - timekeeping_last_warning > WARNING_FREQ) {
154 			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
155 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
156 			printk_deferred("         Your kernel is probably still fine.\n");
157 			timekeeping_last_warning = jiffies;
158 		}
159 		timekeeping_underflow_seen = 0;
160 	}
161 
162 	if (timekeeping_overflow_seen) {
163 		if (jiffies - timekeeping_last_warning > WARNING_FREQ) {
164 			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
165 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
166 			printk_deferred("         Your kernel is probably still fine.\n");
167 			timekeeping_last_warning = jiffies;
168 		}
169 		timekeeping_overflow_seen = 0;
170 	}
171 }
172 
timekeeping_get_delta(struct tk_read_base * tkr)173 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
174 {
175 	cycle_t now, last, mask, max, delta;
176 	unsigned int seq;
177 
178 	/*
179 	 * Since we're called holding a seqlock, the data may shift
180 	 * under us while we're doing the calculation. This can cause
181 	 * false positives, since we'd note a problem but throw the
182 	 * results away. So nest another seqlock here to atomically
183 	 * grab the points we are checking with.
184 	 */
185 	do {
186 		seq = read_seqcount_begin(&tk_core.seq);
187 		now = tkr->read(tkr->clock);
188 		last = tkr->cycle_last;
189 		mask = tkr->mask;
190 		max = tkr->clock->max_cycles;
191 	} while (read_seqcount_retry(&tk_core.seq, seq));
192 
193 	delta = clocksource_delta(now, last, mask);
194 
195 	/*
196 	 * Try to catch underflows by checking if we are seeing small
197 	 * mask-relative negative values.
198 	 */
199 	if (unlikely((~delta & mask) < (mask >> 3))) {
200 		timekeeping_underflow_seen = 1;
201 		delta = 0;
202 	}
203 
204 	/* Cap delta value to the max_cycles values to avoid mult overflows */
205 	if (unlikely(delta > max)) {
206 		timekeeping_overflow_seen = 1;
207 		delta = tkr->clock->max_cycles;
208 	}
209 
210 	return delta;
211 }
212 #else
timekeeping_check_update(struct timekeeper * tk,cycle_t offset)213 static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
214 {
215 }
timekeeping_get_delta(struct tk_read_base * tkr)216 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
217 {
218 	cycle_t cycle_now, delta;
219 
220 	/* read clocksource */
221 	cycle_now = tkr->read(tkr->clock);
222 
223 	/* calculate the delta since the last update_wall_time */
224 	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
225 
226 	return delta;
227 }
228 #endif
229 
230 /**
231  * tk_setup_internals - Set up internals to use clocksource clock.
232  *
233  * @tk:		The target timekeeper to setup.
234  * @clock:		Pointer to clocksource.
235  *
236  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
237  * pair and interval request.
238  *
239  * Unless you're the timekeeping code, you should not be using this!
240  */
tk_setup_internals(struct timekeeper * tk,struct clocksource * clock)241 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
242 {
243 	cycle_t interval;
244 	u64 tmp, ntpinterval;
245 	struct clocksource *old_clock;
246 
247 	old_clock = tk->tkr_mono.clock;
248 	tk->tkr_mono.clock = clock;
249 	tk->tkr_mono.read = clock->read;
250 	tk->tkr_mono.mask = clock->mask;
251 	tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
252 
253 	tk->tkr_raw.clock = clock;
254 	tk->tkr_raw.read = clock->read;
255 	tk->tkr_raw.mask = clock->mask;
256 	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
257 
258 	/* Do the ns -> cycle conversion first, using original mult */
259 	tmp = NTP_INTERVAL_LENGTH;
260 	tmp <<= clock->shift;
261 	ntpinterval = tmp;
262 	tmp += clock->mult/2;
263 	do_div(tmp, clock->mult);
264 	if (tmp == 0)
265 		tmp = 1;
266 
267 	interval = (cycle_t) tmp;
268 	tk->cycle_interval = interval;
269 
270 	/* Go back from cycles -> shifted ns */
271 	tk->xtime_interval = (u64) interval * clock->mult;
272 	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
273 	tk->raw_interval =
274 		((u64) interval * clock->mult) >> clock->shift;
275 
276 	 /* if changing clocks, convert xtime_nsec shift units */
277 	if (old_clock) {
278 		int shift_change = clock->shift - old_clock->shift;
279 		if (shift_change < 0)
280 			tk->tkr_mono.xtime_nsec >>= -shift_change;
281 		else
282 			tk->tkr_mono.xtime_nsec <<= shift_change;
283 	}
284 	tk->tkr_raw.xtime_nsec = 0;
285 
286 	tk->tkr_mono.shift = clock->shift;
287 	tk->tkr_raw.shift = clock->shift;
288 
289 	tk->ntp_error = 0;
290 	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
291 	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
292 
293 	/*
294 	 * The timekeeper keeps its own mult values for the currently
295 	 * active clocksource. These value will be adjusted via NTP
296 	 * to counteract clock drifting.
297 	 */
298 	tk->tkr_mono.mult = clock->mult;
299 	tk->tkr_raw.mult = clock->mult;
300 	tk->ntp_err_mult = 0;
301 }
302 
303 /* Timekeeper helper functions. */
304 
305 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
default_arch_gettimeoffset(void)306 static u32 default_arch_gettimeoffset(void) { return 0; }
307 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
308 #else
arch_gettimeoffset(void)309 static inline u32 arch_gettimeoffset(void) { return 0; }
310 #endif
311 
timekeeping_get_ns(struct tk_read_base * tkr)312 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
313 {
314 	cycle_t delta;
315 	s64 nsec;
316 
317 	delta = timekeeping_get_delta(tkr);
318 
319 	nsec = (delta * tkr->mult + tkr->xtime_nsec) >> tkr->shift;
320 
321 	/* If arch requires, add in get_arch_timeoffset() */
322 	return nsec + arch_gettimeoffset();
323 }
324 
325 /**
326  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
327  * @tkr: Timekeeping readout base from which we take the update
328  *
329  * We want to use this from any context including NMI and tracing /
330  * instrumenting the timekeeping code itself.
331  *
332  * So we handle this differently than the other timekeeping accessor
333  * functions which retry when the sequence count has changed. The
334  * update side does:
335  *
336  * smp_wmb();	<- Ensure that the last base[1] update is visible
337  * tkf->seq++;
338  * smp_wmb();	<- Ensure that the seqcount update is visible
339  * update(tkf->base[0], tkr);
340  * smp_wmb();	<- Ensure that the base[0] update is visible
341  * tkf->seq++;
342  * smp_wmb();	<- Ensure that the seqcount update is visible
343  * update(tkf->base[1], tkr);
344  *
345  * The reader side does:
346  *
347  * do {
348  *	seq = tkf->seq;
349  *	smp_rmb();
350  *	idx = seq & 0x01;
351  *	now = now(tkf->base[idx]);
352  *	smp_rmb();
353  * } while (seq != tkf->seq)
354  *
355  * As long as we update base[0] readers are forced off to
356  * base[1]. Once base[0] is updated readers are redirected to base[0]
357  * and the base[1] update takes place.
358  *
359  * So if a NMI hits the update of base[0] then it will use base[1]
360  * which is still consistent. In the worst case this can result is a
361  * slightly wrong timestamp (a few nanoseconds). See
362  * @ktime_get_mono_fast_ns.
363  */
update_fast_timekeeper(struct tk_read_base * tkr,struct tk_fast * tkf)364 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
365 {
366 	struct tk_read_base *base = tkf->base;
367 
368 	/* Force readers off to base[1] */
369 	raw_write_seqcount_latch(&tkf->seq);
370 
371 	/* Update base[0] */
372 	memcpy(base, tkr, sizeof(*base));
373 
374 	/* Force readers back to base[0] */
375 	raw_write_seqcount_latch(&tkf->seq);
376 
377 	/* Update base[1] */
378 	memcpy(base + 1, base, sizeof(*base));
379 }
380 
381 /**
382  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
383  *
384  * This timestamp is not guaranteed to be monotonic across an update.
385  * The timestamp is calculated by:
386  *
387  *	now = base_mono + clock_delta * slope
388  *
389  * So if the update lowers the slope, readers who are forced to the
390  * not yet updated second array are still using the old steeper slope.
391  *
392  * tmono
393  * ^
394  * |    o  n
395  * |   o n
396  * |  u
397  * | o
398  * |o
399  * |12345678---> reader order
400  *
401  * o = old slope
402  * u = update
403  * n = new slope
404  *
405  * So reader 6 will observe time going backwards versus reader 5.
406  *
407  * While other CPUs are likely to be able observe that, the only way
408  * for a CPU local observation is when an NMI hits in the middle of
409  * the update. Timestamps taken from that NMI context might be ahead
410  * of the following timestamps. Callers need to be aware of that and
411  * deal with it.
412  */
__ktime_get_fast_ns(struct tk_fast * tkf)413 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
414 {
415 	struct tk_read_base *tkr;
416 	unsigned int seq;
417 	u64 now;
418 
419 	do {
420 		seq = raw_read_seqcount(&tkf->seq);
421 		tkr = tkf->base + (seq & 0x01);
422 		now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr);
423 	} while (read_seqcount_retry(&tkf->seq, seq));
424 
425 	return now;
426 }
427 
ktime_get_mono_fast_ns(void)428 u64 ktime_get_mono_fast_ns(void)
429 {
430 	return __ktime_get_fast_ns(&tk_fast_mono);
431 }
432 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
433 
ktime_get_raw_fast_ns(void)434 u64 ktime_get_raw_fast_ns(void)
435 {
436 	return __ktime_get_fast_ns(&tk_fast_raw);
437 }
438 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
439 
440 /* Suspend-time cycles value for halted fast timekeeper. */
441 static cycle_t cycles_at_suspend;
442 
dummy_clock_read(struct clocksource * cs)443 static cycle_t dummy_clock_read(struct clocksource *cs)
444 {
445 	return cycles_at_suspend;
446 }
447 
448 /**
449  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
450  * @tk: Timekeeper to snapshot.
451  *
452  * It generally is unsafe to access the clocksource after timekeeping has been
453  * suspended, so take a snapshot of the readout base of @tk and use it as the
454  * fast timekeeper's readout base while suspended.  It will return the same
455  * number of cycles every time until timekeeping is resumed at which time the
456  * proper readout base for the fast timekeeper will be restored automatically.
457  */
halt_fast_timekeeper(struct timekeeper * tk)458 static void halt_fast_timekeeper(struct timekeeper *tk)
459 {
460 	static struct tk_read_base tkr_dummy;
461 	struct tk_read_base *tkr = &tk->tkr_mono;
462 
463 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
464 	cycles_at_suspend = tkr->read(tkr->clock);
465 	tkr_dummy.read = dummy_clock_read;
466 	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
467 
468 	tkr = &tk->tkr_raw;
469 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
470 	tkr_dummy.read = dummy_clock_read;
471 	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
472 }
473 
474 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
475 
update_vsyscall(struct timekeeper * tk)476 static inline void update_vsyscall(struct timekeeper *tk)
477 {
478 	struct timespec xt, wm;
479 
480 	xt = timespec64_to_timespec(tk_xtime(tk));
481 	wm = timespec64_to_timespec(tk->wall_to_monotonic);
482 	update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
483 			    tk->tkr_mono.cycle_last);
484 }
485 
old_vsyscall_fixup(struct timekeeper * tk)486 static inline void old_vsyscall_fixup(struct timekeeper *tk)
487 {
488 	s64 remainder;
489 
490 	/*
491 	* Store only full nanoseconds into xtime_nsec after rounding
492 	* it up and add the remainder to the error difference.
493 	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
494 	* by truncating the remainder in vsyscalls. However, it causes
495 	* additional work to be done in timekeeping_adjust(). Once
496 	* the vsyscall implementations are converted to use xtime_nsec
497 	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
498 	* users are removed, this can be killed.
499 	*/
500 	remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
501 	tk->tkr_mono.xtime_nsec -= remainder;
502 	tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
503 	tk->ntp_error += remainder << tk->ntp_error_shift;
504 	tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
505 }
506 #else
507 #define old_vsyscall_fixup(tk)
508 #endif
509 
510 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
511 
update_pvclock_gtod(struct timekeeper * tk,bool was_set)512 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
513 {
514 	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
515 }
516 
517 /**
518  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
519  */
pvclock_gtod_register_notifier(struct notifier_block * nb)520 int pvclock_gtod_register_notifier(struct notifier_block *nb)
521 {
522 	struct timekeeper *tk = &tk_core.timekeeper;
523 	unsigned long flags;
524 	int ret;
525 
526 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
527 	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
528 	update_pvclock_gtod(tk, true);
529 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
530 
531 	return ret;
532 }
533 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
534 
535 /**
536  * pvclock_gtod_unregister_notifier - unregister a pvclock
537  * timedata update listener
538  */
pvclock_gtod_unregister_notifier(struct notifier_block * nb)539 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
540 {
541 	unsigned long flags;
542 	int ret;
543 
544 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
545 	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
546 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
547 
548 	return ret;
549 }
550 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
551 
552 /*
553  * Update the ktime_t based scalar nsec members of the timekeeper
554  */
tk_update_ktime_data(struct timekeeper * tk)555 static inline void tk_update_ktime_data(struct timekeeper *tk)
556 {
557 	u64 seconds;
558 	u32 nsec;
559 
560 	/*
561 	 * The xtime based monotonic readout is:
562 	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
563 	 * The ktime based monotonic readout is:
564 	 *	nsec = base_mono + now();
565 	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
566 	 */
567 	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
568 	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
569 	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
570 
571 	/* Update the monotonic raw base */
572 	tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
573 
574 	/*
575 	 * The sum of the nanoseconds portions of xtime and
576 	 * wall_to_monotonic can be greater/equal one second. Take
577 	 * this into account before updating tk->ktime_sec.
578 	 */
579 	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
580 	if (nsec >= NSEC_PER_SEC)
581 		seconds++;
582 	tk->ktime_sec = seconds;
583 }
584 
585 /* must hold timekeeper_lock */
timekeeping_update(struct timekeeper * tk,unsigned int action)586 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
587 {
588 	if (action & TK_CLEAR_NTP) {
589 		tk->ntp_error = 0;
590 		ntp_clear();
591 	}
592 
593 	tk_update_ktime_data(tk);
594 
595 	update_vsyscall(tk);
596 	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
597 
598 	if (action & TK_MIRROR)
599 		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
600 		       sizeof(tk_core.timekeeper));
601 
602 	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
603 	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
604 }
605 
606 /**
607  * timekeeping_forward_now - update clock to the current time
608  *
609  * Forward the current clock to update its state since the last call to
610  * update_wall_time(). This is useful before significant clock changes,
611  * as it avoids having to deal with this time offset explicitly.
612  */
timekeeping_forward_now(struct timekeeper * tk)613 static void timekeeping_forward_now(struct timekeeper *tk)
614 {
615 	struct clocksource *clock = tk->tkr_mono.clock;
616 	cycle_t cycle_now, delta;
617 	s64 nsec;
618 
619 	cycle_now = tk->tkr_mono.read(clock);
620 	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
621 	tk->tkr_mono.cycle_last = cycle_now;
622 	tk->tkr_raw.cycle_last  = cycle_now;
623 
624 	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
625 
626 	/* If arch requires, add in get_arch_timeoffset() */
627 	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
628 
629 	tk_normalize_xtime(tk);
630 
631 	nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
632 	timespec64_add_ns(&tk->raw_time, nsec);
633 }
634 
635 /**
636  * __getnstimeofday64 - Returns the time of day in a timespec64.
637  * @ts:		pointer to the timespec to be set
638  *
639  * Updates the time of day in the timespec.
640  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
641  */
__getnstimeofday64(struct timespec64 * ts)642 int __getnstimeofday64(struct timespec64 *ts)
643 {
644 	struct timekeeper *tk = &tk_core.timekeeper;
645 	unsigned long seq;
646 	s64 nsecs = 0;
647 
648 	do {
649 		seq = read_seqcount_begin(&tk_core.seq);
650 
651 		ts->tv_sec = tk->xtime_sec;
652 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
653 
654 	} while (read_seqcount_retry(&tk_core.seq, seq));
655 
656 	ts->tv_nsec = 0;
657 	timespec64_add_ns(ts, nsecs);
658 
659 	/*
660 	 * Do not bail out early, in case there were callers still using
661 	 * the value, even in the face of the WARN_ON.
662 	 */
663 	if (unlikely(timekeeping_suspended))
664 		return -EAGAIN;
665 	return 0;
666 }
667 EXPORT_SYMBOL(__getnstimeofday64);
668 
669 /**
670  * getnstimeofday64 - Returns the time of day in a timespec64.
671  * @ts:		pointer to the timespec64 to be set
672  *
673  * Returns the time of day in a timespec64 (WARN if suspended).
674  */
getnstimeofday64(struct timespec64 * ts)675 void getnstimeofday64(struct timespec64 *ts)
676 {
677 	WARN_ON(__getnstimeofday64(ts));
678 }
679 EXPORT_SYMBOL(getnstimeofday64);
680 
ktime_get(void)681 ktime_t ktime_get(void)
682 {
683 	struct timekeeper *tk = &tk_core.timekeeper;
684 	unsigned int seq;
685 	ktime_t base;
686 	s64 nsecs;
687 
688 	WARN_ON(timekeeping_suspended);
689 
690 	do {
691 		seq = read_seqcount_begin(&tk_core.seq);
692 		base = tk->tkr_mono.base;
693 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
694 
695 	} while (read_seqcount_retry(&tk_core.seq, seq));
696 
697 	return ktime_add_ns(base, nsecs);
698 }
699 EXPORT_SYMBOL_GPL(ktime_get);
700 
701 static ktime_t *offsets[TK_OFFS_MAX] = {
702 	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
703 	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
704 	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
705 };
706 
ktime_get_with_offset(enum tk_offsets offs)707 ktime_t ktime_get_with_offset(enum tk_offsets offs)
708 {
709 	struct timekeeper *tk = &tk_core.timekeeper;
710 	unsigned int seq;
711 	ktime_t base, *offset = offsets[offs];
712 	s64 nsecs;
713 
714 	WARN_ON(timekeeping_suspended);
715 
716 	do {
717 		seq = read_seqcount_begin(&tk_core.seq);
718 		base = ktime_add(tk->tkr_mono.base, *offset);
719 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
720 
721 	} while (read_seqcount_retry(&tk_core.seq, seq));
722 
723 	return ktime_add_ns(base, nsecs);
724 
725 }
726 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
727 
728 /**
729  * ktime_mono_to_any() - convert mononotic time to any other time
730  * @tmono:	time to convert.
731  * @offs:	which offset to use
732  */
ktime_mono_to_any(ktime_t tmono,enum tk_offsets offs)733 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
734 {
735 	ktime_t *offset = offsets[offs];
736 	unsigned long seq;
737 	ktime_t tconv;
738 
739 	do {
740 		seq = read_seqcount_begin(&tk_core.seq);
741 		tconv = ktime_add(tmono, *offset);
742 	} while (read_seqcount_retry(&tk_core.seq, seq));
743 
744 	return tconv;
745 }
746 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
747 
748 /**
749  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
750  */
ktime_get_raw(void)751 ktime_t ktime_get_raw(void)
752 {
753 	struct timekeeper *tk = &tk_core.timekeeper;
754 	unsigned int seq;
755 	ktime_t base;
756 	s64 nsecs;
757 
758 	do {
759 		seq = read_seqcount_begin(&tk_core.seq);
760 		base = tk->tkr_raw.base;
761 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
762 
763 	} while (read_seqcount_retry(&tk_core.seq, seq));
764 
765 	return ktime_add_ns(base, nsecs);
766 }
767 EXPORT_SYMBOL_GPL(ktime_get_raw);
768 
769 /**
770  * ktime_get_ts64 - get the monotonic clock in timespec64 format
771  * @ts:		pointer to timespec variable
772  *
773  * The function calculates the monotonic clock from the realtime
774  * clock and the wall_to_monotonic offset and stores the result
775  * in normalized timespec64 format in the variable pointed to by @ts.
776  */
ktime_get_ts64(struct timespec64 * ts)777 void ktime_get_ts64(struct timespec64 *ts)
778 {
779 	struct timekeeper *tk = &tk_core.timekeeper;
780 	struct timespec64 tomono;
781 	s64 nsec;
782 	unsigned int seq;
783 
784 	WARN_ON(timekeeping_suspended);
785 
786 	do {
787 		seq = read_seqcount_begin(&tk_core.seq);
788 		ts->tv_sec = tk->xtime_sec;
789 		nsec = timekeeping_get_ns(&tk->tkr_mono);
790 		tomono = tk->wall_to_monotonic;
791 
792 	} while (read_seqcount_retry(&tk_core.seq, seq));
793 
794 	ts->tv_sec += tomono.tv_sec;
795 	ts->tv_nsec = 0;
796 	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
797 }
798 EXPORT_SYMBOL_GPL(ktime_get_ts64);
799 
800 /**
801  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
802  *
803  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
804  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
805  * works on both 32 and 64 bit systems. On 32 bit systems the readout
806  * covers ~136 years of uptime which should be enough to prevent
807  * premature wrap arounds.
808  */
ktime_get_seconds(void)809 time64_t ktime_get_seconds(void)
810 {
811 	struct timekeeper *tk = &tk_core.timekeeper;
812 
813 	WARN_ON(timekeeping_suspended);
814 	return tk->ktime_sec;
815 }
816 EXPORT_SYMBOL_GPL(ktime_get_seconds);
817 
818 /**
819  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
820  *
821  * Returns the wall clock seconds since 1970. This replaces the
822  * get_seconds() interface which is not y2038 safe on 32bit systems.
823  *
824  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
825  * 32bit systems the access must be protected with the sequence
826  * counter to provide "atomic" access to the 64bit tk->xtime_sec
827  * value.
828  */
ktime_get_real_seconds(void)829 time64_t ktime_get_real_seconds(void)
830 {
831 	struct timekeeper *tk = &tk_core.timekeeper;
832 	time64_t seconds;
833 	unsigned int seq;
834 
835 	if (IS_ENABLED(CONFIG_64BIT))
836 		return tk->xtime_sec;
837 
838 	do {
839 		seq = read_seqcount_begin(&tk_core.seq);
840 		seconds = tk->xtime_sec;
841 
842 	} while (read_seqcount_retry(&tk_core.seq, seq));
843 
844 	return seconds;
845 }
846 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
847 
848 #ifdef CONFIG_NTP_PPS
849 
850 /**
851  * getnstime_raw_and_real - get day and raw monotonic time in timespec format
852  * @ts_raw:	pointer to the timespec to be set to raw monotonic time
853  * @ts_real:	pointer to the timespec to be set to the time of day
854  *
855  * This function reads both the time of day and raw monotonic time at the
856  * same time atomically and stores the resulting timestamps in timespec
857  * format.
858  */
getnstime_raw_and_real(struct timespec * ts_raw,struct timespec * ts_real)859 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
860 {
861 	struct timekeeper *tk = &tk_core.timekeeper;
862 	unsigned long seq;
863 	s64 nsecs_raw, nsecs_real;
864 
865 	WARN_ON_ONCE(timekeeping_suspended);
866 
867 	do {
868 		seq = read_seqcount_begin(&tk_core.seq);
869 
870 		*ts_raw = timespec64_to_timespec(tk->raw_time);
871 		ts_real->tv_sec = tk->xtime_sec;
872 		ts_real->tv_nsec = 0;
873 
874 		nsecs_raw  = timekeeping_get_ns(&tk->tkr_raw);
875 		nsecs_real = timekeeping_get_ns(&tk->tkr_mono);
876 
877 	} while (read_seqcount_retry(&tk_core.seq, seq));
878 
879 	timespec_add_ns(ts_raw, nsecs_raw);
880 	timespec_add_ns(ts_real, nsecs_real);
881 }
882 EXPORT_SYMBOL(getnstime_raw_and_real);
883 
884 #endif /* CONFIG_NTP_PPS */
885 
886 /**
887  * do_gettimeofday - Returns the time of day in a timeval
888  * @tv:		pointer to the timeval to be set
889  *
890  * NOTE: Users should be converted to using getnstimeofday()
891  */
do_gettimeofday(struct timeval * tv)892 void do_gettimeofday(struct timeval *tv)
893 {
894 	struct timespec64 now;
895 
896 	getnstimeofday64(&now);
897 	tv->tv_sec = now.tv_sec;
898 	tv->tv_usec = now.tv_nsec/1000;
899 }
900 EXPORT_SYMBOL(do_gettimeofday);
901 
902 /**
903  * do_settimeofday64 - Sets the time of day.
904  * @ts:     pointer to the timespec64 variable containing the new time
905  *
906  * Sets the time of day to the new time and update NTP and notify hrtimers
907  */
do_settimeofday64(const struct timespec64 * ts)908 int do_settimeofday64(const struct timespec64 *ts)
909 {
910 	struct timekeeper *tk = &tk_core.timekeeper;
911 	struct timespec64 ts_delta, xt;
912 	unsigned long flags;
913 
914 	if (!timespec64_valid_strict(ts))
915 		return -EINVAL;
916 
917 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
918 	write_seqcount_begin(&tk_core.seq);
919 
920 	timekeeping_forward_now(tk);
921 
922 	xt = tk_xtime(tk);
923 	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
924 	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
925 
926 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
927 
928 	tk_set_xtime(tk, ts);
929 
930 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
931 
932 	write_seqcount_end(&tk_core.seq);
933 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
934 
935 	/* signal hrtimers about time change */
936 	clock_was_set();
937 
938 	return 0;
939 }
940 EXPORT_SYMBOL(do_settimeofday64);
941 
942 /**
943  * timekeeping_inject_offset - Adds or subtracts from the current time.
944  * @tv:		pointer to the timespec variable containing the offset
945  *
946  * Adds or subtracts an offset value from the current time.
947  */
timekeeping_inject_offset(struct timespec * ts)948 int timekeeping_inject_offset(struct timespec *ts)
949 {
950 	struct timekeeper *tk = &tk_core.timekeeper;
951 	unsigned long flags;
952 	struct timespec64 ts64, tmp;
953 	int ret = 0;
954 
955 	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
956 		return -EINVAL;
957 
958 	ts64 = timespec_to_timespec64(*ts);
959 
960 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
961 	write_seqcount_begin(&tk_core.seq);
962 
963 	timekeeping_forward_now(tk);
964 
965 	/* Make sure the proposed value is valid */
966 	tmp = timespec64_add(tk_xtime(tk),  ts64);
967 	if (!timespec64_valid_strict(&tmp)) {
968 		ret = -EINVAL;
969 		goto error;
970 	}
971 
972 	tk_xtime_add(tk, &ts64);
973 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
974 
975 error: /* even if we error out, we forwarded the time, so call update */
976 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
977 
978 	write_seqcount_end(&tk_core.seq);
979 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
980 
981 	/* signal hrtimers about time change */
982 	clock_was_set();
983 
984 	return ret;
985 }
986 EXPORT_SYMBOL(timekeeping_inject_offset);
987 
988 
989 /**
990  * timekeeping_get_tai_offset - Returns current TAI offset from UTC
991  *
992  */
timekeeping_get_tai_offset(void)993 s32 timekeeping_get_tai_offset(void)
994 {
995 	struct timekeeper *tk = &tk_core.timekeeper;
996 	unsigned int seq;
997 	s32 ret;
998 
999 	do {
1000 		seq = read_seqcount_begin(&tk_core.seq);
1001 		ret = tk->tai_offset;
1002 	} while (read_seqcount_retry(&tk_core.seq, seq));
1003 
1004 	return ret;
1005 }
1006 
1007 /**
1008  * __timekeeping_set_tai_offset - Lock free worker function
1009  *
1010  */
__timekeeping_set_tai_offset(struct timekeeper * tk,s32 tai_offset)1011 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1012 {
1013 	tk->tai_offset = tai_offset;
1014 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1015 }
1016 
1017 /**
1018  * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1019  *
1020  */
timekeeping_set_tai_offset(s32 tai_offset)1021 void timekeeping_set_tai_offset(s32 tai_offset)
1022 {
1023 	struct timekeeper *tk = &tk_core.timekeeper;
1024 	unsigned long flags;
1025 
1026 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1027 	write_seqcount_begin(&tk_core.seq);
1028 	__timekeeping_set_tai_offset(tk, tai_offset);
1029 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1030 	write_seqcount_end(&tk_core.seq);
1031 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1032 	clock_was_set();
1033 }
1034 
1035 /**
1036  * change_clocksource - Swaps clocksources if a new one is available
1037  *
1038  * Accumulates current time interval and initializes new clocksource
1039  */
change_clocksource(void * data)1040 static int change_clocksource(void *data)
1041 {
1042 	struct timekeeper *tk = &tk_core.timekeeper;
1043 	struct clocksource *new, *old;
1044 	unsigned long flags;
1045 
1046 	new = (struct clocksource *) data;
1047 
1048 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1049 	write_seqcount_begin(&tk_core.seq);
1050 
1051 	timekeeping_forward_now(tk);
1052 	/*
1053 	 * If the cs is in module, get a module reference. Succeeds
1054 	 * for built-in code (owner == NULL) as well.
1055 	 */
1056 	if (try_module_get(new->owner)) {
1057 		if (!new->enable || new->enable(new) == 0) {
1058 			old = tk->tkr_mono.clock;
1059 			tk_setup_internals(tk, new);
1060 			if (old->disable)
1061 				old->disable(old);
1062 			module_put(old->owner);
1063 		} else {
1064 			module_put(new->owner);
1065 		}
1066 	}
1067 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1068 
1069 	write_seqcount_end(&tk_core.seq);
1070 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1071 
1072 	return 0;
1073 }
1074 
1075 /**
1076  * timekeeping_notify - Install a new clock source
1077  * @clock:		pointer to the clock source
1078  *
1079  * This function is called from clocksource.c after a new, better clock
1080  * source has been registered. The caller holds the clocksource_mutex.
1081  */
timekeeping_notify(struct clocksource * clock)1082 int timekeeping_notify(struct clocksource *clock)
1083 {
1084 	struct timekeeper *tk = &tk_core.timekeeper;
1085 
1086 	if (tk->tkr_mono.clock == clock)
1087 		return 0;
1088 	stop_machine(change_clocksource, clock, NULL);
1089 	tick_clock_notify();
1090 	return tk->tkr_mono.clock == clock ? 0 : -1;
1091 }
1092 
1093 /**
1094  * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1095  * @ts:		pointer to the timespec64 to be set
1096  *
1097  * Returns the raw monotonic time (completely un-modified by ntp)
1098  */
getrawmonotonic64(struct timespec64 * ts)1099 void getrawmonotonic64(struct timespec64 *ts)
1100 {
1101 	struct timekeeper *tk = &tk_core.timekeeper;
1102 	struct timespec64 ts64;
1103 	unsigned long seq;
1104 	s64 nsecs;
1105 
1106 	do {
1107 		seq = read_seqcount_begin(&tk_core.seq);
1108 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1109 		ts64 = tk->raw_time;
1110 
1111 	} while (read_seqcount_retry(&tk_core.seq, seq));
1112 
1113 	timespec64_add_ns(&ts64, nsecs);
1114 	*ts = ts64;
1115 }
1116 EXPORT_SYMBOL(getrawmonotonic64);
1117 
1118 
1119 /**
1120  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1121  */
timekeeping_valid_for_hres(void)1122 int timekeeping_valid_for_hres(void)
1123 {
1124 	struct timekeeper *tk = &tk_core.timekeeper;
1125 	unsigned long seq;
1126 	int ret;
1127 
1128 	do {
1129 		seq = read_seqcount_begin(&tk_core.seq);
1130 
1131 		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1132 
1133 	} while (read_seqcount_retry(&tk_core.seq, seq));
1134 
1135 	return ret;
1136 }
1137 
1138 /**
1139  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1140  */
timekeeping_max_deferment(void)1141 u64 timekeeping_max_deferment(void)
1142 {
1143 	struct timekeeper *tk = &tk_core.timekeeper;
1144 	unsigned long seq;
1145 	u64 ret;
1146 
1147 	do {
1148 		seq = read_seqcount_begin(&tk_core.seq);
1149 
1150 		ret = tk->tkr_mono.clock->max_idle_ns;
1151 
1152 	} while (read_seqcount_retry(&tk_core.seq, seq));
1153 
1154 	return ret;
1155 }
1156 
1157 /**
1158  * read_persistent_clock -  Return time from the persistent clock.
1159  *
1160  * Weak dummy function for arches that do not yet support it.
1161  * Reads the time from the battery backed persistent clock.
1162  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1163  *
1164  *  XXX - Do be sure to remove it once all arches implement it.
1165  */
read_persistent_clock(struct timespec * ts)1166 void __weak read_persistent_clock(struct timespec *ts)
1167 {
1168 	ts->tv_sec = 0;
1169 	ts->tv_nsec = 0;
1170 }
1171 
read_persistent_clock64(struct timespec64 * ts64)1172 void __weak read_persistent_clock64(struct timespec64 *ts64)
1173 {
1174 	struct timespec ts;
1175 
1176 	read_persistent_clock(&ts);
1177 	*ts64 = timespec_to_timespec64(ts);
1178 }
1179 
1180 /**
1181  * read_boot_clock -  Return time of the system start.
1182  *
1183  * Weak dummy function for arches that do not yet support it.
1184  * Function to read the exact time the system has been started.
1185  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1186  *
1187  *  XXX - Do be sure to remove it once all arches implement it.
1188  */
read_boot_clock(struct timespec * ts)1189 void __weak read_boot_clock(struct timespec *ts)
1190 {
1191 	ts->tv_sec = 0;
1192 	ts->tv_nsec = 0;
1193 }
1194 
read_boot_clock64(struct timespec64 * ts64)1195 void __weak read_boot_clock64(struct timespec64 *ts64)
1196 {
1197 	struct timespec ts;
1198 
1199 	read_boot_clock(&ts);
1200 	*ts64 = timespec_to_timespec64(ts);
1201 }
1202 
1203 /* Flag for if timekeeping_resume() has injected sleeptime */
1204 static bool sleeptime_injected;
1205 
1206 /* Flag for if there is a persistent clock on this platform */
1207 static bool persistent_clock_exists;
1208 
1209 /*
1210  * timekeeping_init - Initializes the clocksource and common timekeeping values
1211  */
timekeeping_init(void)1212 void __init timekeeping_init(void)
1213 {
1214 	struct timekeeper *tk = &tk_core.timekeeper;
1215 	struct clocksource *clock;
1216 	unsigned long flags;
1217 	struct timespec64 now, boot, tmp;
1218 
1219 	read_persistent_clock64(&now);
1220 	if (!timespec64_valid_strict(&now)) {
1221 		pr_warn("WARNING: Persistent clock returned invalid value!\n"
1222 			"         Check your CMOS/BIOS settings.\n");
1223 		now.tv_sec = 0;
1224 		now.tv_nsec = 0;
1225 	} else if (now.tv_sec || now.tv_nsec)
1226 		persistent_clock_exists = true;
1227 
1228 	read_boot_clock64(&boot);
1229 	if (!timespec64_valid_strict(&boot)) {
1230 		pr_warn("WARNING: Boot clock returned invalid value!\n"
1231 			"         Check your CMOS/BIOS settings.\n");
1232 		boot.tv_sec = 0;
1233 		boot.tv_nsec = 0;
1234 	}
1235 
1236 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1237 	write_seqcount_begin(&tk_core.seq);
1238 	ntp_init();
1239 
1240 	clock = clocksource_default_clock();
1241 	if (clock->enable)
1242 		clock->enable(clock);
1243 	tk_setup_internals(tk, clock);
1244 
1245 	tk_set_xtime(tk, &now);
1246 	tk->raw_time.tv_sec = 0;
1247 	tk->raw_time.tv_nsec = 0;
1248 	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1249 		boot = tk_xtime(tk);
1250 
1251 	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1252 	tk_set_wall_to_mono(tk, tmp);
1253 
1254 	timekeeping_update(tk, TK_MIRROR);
1255 
1256 	write_seqcount_end(&tk_core.seq);
1257 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1258 }
1259 
1260 /* time in seconds when suspend began for persistent clock */
1261 static struct timespec64 timekeeping_suspend_time;
1262 
1263 /**
1264  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1265  * @delta: pointer to a timespec delta value
1266  *
1267  * Takes a timespec offset measuring a suspend interval and properly
1268  * adds the sleep offset to the timekeeping variables.
1269  */
__timekeeping_inject_sleeptime(struct timekeeper * tk,struct timespec64 * delta)1270 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1271 					   struct timespec64 *delta)
1272 {
1273 	if (!timespec64_valid_strict(delta)) {
1274 		printk_deferred(KERN_WARNING
1275 				"__timekeeping_inject_sleeptime: Invalid "
1276 				"sleep delta value!\n");
1277 		return;
1278 	}
1279 	tk_xtime_add(tk, delta);
1280 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1281 	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1282 	tk_debug_account_sleep_time(delta);
1283 }
1284 
1285 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1286 /**
1287  * We have three kinds of time sources to use for sleep time
1288  * injection, the preference order is:
1289  * 1) non-stop clocksource
1290  * 2) persistent clock (ie: RTC accessible when irqs are off)
1291  * 3) RTC
1292  *
1293  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1294  * If system has neither 1) nor 2), 3) will be used finally.
1295  *
1296  *
1297  * If timekeeping has injected sleeptime via either 1) or 2),
1298  * 3) becomes needless, so in this case we don't need to call
1299  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1300  * means.
1301  */
timekeeping_rtc_skipresume(void)1302 bool timekeeping_rtc_skipresume(void)
1303 {
1304 	return sleeptime_injected;
1305 }
1306 
1307 /**
1308  * 1) can be determined whether to use or not only when doing
1309  * timekeeping_resume() which is invoked after rtc_suspend(),
1310  * so we can't skip rtc_suspend() surely if system has 1).
1311  *
1312  * But if system has 2), 2) will definitely be used, so in this
1313  * case we don't need to call rtc_suspend(), and this is what
1314  * timekeeping_rtc_skipsuspend() means.
1315  */
timekeeping_rtc_skipsuspend(void)1316 bool timekeeping_rtc_skipsuspend(void)
1317 {
1318 	return persistent_clock_exists;
1319 }
1320 
1321 /**
1322  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1323  * @delta: pointer to a timespec64 delta value
1324  *
1325  * This hook is for architectures that cannot support read_persistent_clock64
1326  * because their RTC/persistent clock is only accessible when irqs are enabled.
1327  * and also don't have an effective nonstop clocksource.
1328  *
1329  * This function should only be called by rtc_resume(), and allows
1330  * a suspend offset to be injected into the timekeeping values.
1331  */
timekeeping_inject_sleeptime64(struct timespec64 * delta)1332 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1333 {
1334 	struct timekeeper *tk = &tk_core.timekeeper;
1335 	unsigned long flags;
1336 
1337 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1338 	write_seqcount_begin(&tk_core.seq);
1339 
1340 	timekeeping_forward_now(tk);
1341 
1342 	__timekeeping_inject_sleeptime(tk, delta);
1343 
1344 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1345 
1346 	write_seqcount_end(&tk_core.seq);
1347 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1348 
1349 	/* signal hrtimers about time change */
1350 	clock_was_set();
1351 }
1352 #endif
1353 
1354 /**
1355  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1356  */
timekeeping_resume(void)1357 void timekeeping_resume(void)
1358 {
1359 	struct timekeeper *tk = &tk_core.timekeeper;
1360 	struct clocksource *clock = tk->tkr_mono.clock;
1361 	unsigned long flags;
1362 	struct timespec64 ts_new, ts_delta;
1363 	cycle_t cycle_now, cycle_delta;
1364 
1365 	sleeptime_injected = false;
1366 	read_persistent_clock64(&ts_new);
1367 
1368 	clockevents_resume();
1369 	clocksource_resume();
1370 
1371 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1372 	write_seqcount_begin(&tk_core.seq);
1373 
1374 	/*
1375 	 * After system resumes, we need to calculate the suspended time and
1376 	 * compensate it for the OS time. There are 3 sources that could be
1377 	 * used: Nonstop clocksource during suspend, persistent clock and rtc
1378 	 * device.
1379 	 *
1380 	 * One specific platform may have 1 or 2 or all of them, and the
1381 	 * preference will be:
1382 	 *	suspend-nonstop clocksource -> persistent clock -> rtc
1383 	 * The less preferred source will only be tried if there is no better
1384 	 * usable source. The rtc part is handled separately in rtc core code.
1385 	 */
1386 	cycle_now = tk->tkr_mono.read(clock);
1387 	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1388 		cycle_now > tk->tkr_mono.cycle_last) {
1389 		u64 num, max = ULLONG_MAX;
1390 		u32 mult = clock->mult;
1391 		u32 shift = clock->shift;
1392 		s64 nsec = 0;
1393 
1394 		cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1395 						tk->tkr_mono.mask);
1396 
1397 		/*
1398 		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1399 		 * suspended time is too long. In that case we need do the
1400 		 * 64 bits math carefully
1401 		 */
1402 		do_div(max, mult);
1403 		if (cycle_delta > max) {
1404 			num = div64_u64(cycle_delta, max);
1405 			nsec = (((u64) max * mult) >> shift) * num;
1406 			cycle_delta -= num * max;
1407 		}
1408 		nsec += ((u64) cycle_delta * mult) >> shift;
1409 
1410 		ts_delta = ns_to_timespec64(nsec);
1411 		sleeptime_injected = true;
1412 	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1413 		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1414 		sleeptime_injected = true;
1415 	}
1416 
1417 	if (sleeptime_injected)
1418 		__timekeeping_inject_sleeptime(tk, &ts_delta);
1419 
1420 	/* Re-base the last cycle value */
1421 	tk->tkr_mono.cycle_last = cycle_now;
1422 	tk->tkr_raw.cycle_last  = cycle_now;
1423 
1424 	tk->ntp_error = 0;
1425 	timekeeping_suspended = 0;
1426 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1427 	write_seqcount_end(&tk_core.seq);
1428 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1429 
1430 	touch_softlockup_watchdog();
1431 
1432 	tick_resume();
1433 	hrtimers_resume();
1434 }
1435 
timekeeping_suspend(void)1436 int timekeeping_suspend(void)
1437 {
1438 	struct timekeeper *tk = &tk_core.timekeeper;
1439 	unsigned long flags;
1440 	struct timespec64		delta, delta_delta;
1441 	static struct timespec64	old_delta;
1442 
1443 	read_persistent_clock64(&timekeeping_suspend_time);
1444 
1445 	/*
1446 	 * On some systems the persistent_clock can not be detected at
1447 	 * timekeeping_init by its return value, so if we see a valid
1448 	 * value returned, update the persistent_clock_exists flag.
1449 	 */
1450 	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1451 		persistent_clock_exists = true;
1452 
1453 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1454 	write_seqcount_begin(&tk_core.seq);
1455 	timekeeping_forward_now(tk);
1456 	timekeeping_suspended = 1;
1457 
1458 	if (persistent_clock_exists) {
1459 		/*
1460 		 * To avoid drift caused by repeated suspend/resumes,
1461 		 * which each can add ~1 second drift error,
1462 		 * try to compensate so the difference in system time
1463 		 * and persistent_clock time stays close to constant.
1464 		 */
1465 		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1466 		delta_delta = timespec64_sub(delta, old_delta);
1467 		if (abs(delta_delta.tv_sec) >= 2) {
1468 			/*
1469 			 * if delta_delta is too large, assume time correction
1470 			 * has occurred and set old_delta to the current delta.
1471 			 */
1472 			old_delta = delta;
1473 		} else {
1474 			/* Otherwise try to adjust old_system to compensate */
1475 			timekeeping_suspend_time =
1476 				timespec64_add(timekeeping_suspend_time, delta_delta);
1477 		}
1478 	}
1479 
1480 	timekeeping_update(tk, TK_MIRROR);
1481 	halt_fast_timekeeper(tk);
1482 	write_seqcount_end(&tk_core.seq);
1483 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1484 
1485 	tick_suspend();
1486 	clocksource_suspend();
1487 	clockevents_suspend();
1488 
1489 	return 0;
1490 }
1491 
1492 /* sysfs resume/suspend bits for timekeeping */
1493 static struct syscore_ops timekeeping_syscore_ops = {
1494 	.resume		= timekeeping_resume,
1495 	.suspend	= timekeeping_suspend,
1496 };
1497 
timekeeping_init_ops(void)1498 static int __init timekeeping_init_ops(void)
1499 {
1500 	register_syscore_ops(&timekeeping_syscore_ops);
1501 	return 0;
1502 }
1503 device_initcall(timekeeping_init_ops);
1504 
1505 /*
1506  * Apply a multiplier adjustment to the timekeeper
1507  */
timekeeping_apply_adjustment(struct timekeeper * tk,s64 offset,bool negative,int adj_scale)1508 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1509 							 s64 offset,
1510 							 bool negative,
1511 							 int adj_scale)
1512 {
1513 	s64 interval = tk->cycle_interval;
1514 	s32 mult_adj = 1;
1515 
1516 	if (negative) {
1517 		mult_adj = -mult_adj;
1518 		interval = -interval;
1519 		offset  = -offset;
1520 	}
1521 	mult_adj <<= adj_scale;
1522 	interval <<= adj_scale;
1523 	offset <<= adj_scale;
1524 
1525 	/*
1526 	 * So the following can be confusing.
1527 	 *
1528 	 * To keep things simple, lets assume mult_adj == 1 for now.
1529 	 *
1530 	 * When mult_adj != 1, remember that the interval and offset values
1531 	 * have been appropriately scaled so the math is the same.
1532 	 *
1533 	 * The basic idea here is that we're increasing the multiplier
1534 	 * by one, this causes the xtime_interval to be incremented by
1535 	 * one cycle_interval. This is because:
1536 	 *	xtime_interval = cycle_interval * mult
1537 	 * So if mult is being incremented by one:
1538 	 *	xtime_interval = cycle_interval * (mult + 1)
1539 	 * Its the same as:
1540 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
1541 	 * Which can be shortened to:
1542 	 *	xtime_interval += cycle_interval
1543 	 *
1544 	 * So offset stores the non-accumulated cycles. Thus the current
1545 	 * time (in shifted nanoseconds) is:
1546 	 *	now = (offset * adj) + xtime_nsec
1547 	 * Now, even though we're adjusting the clock frequency, we have
1548 	 * to keep time consistent. In other words, we can't jump back
1549 	 * in time, and we also want to avoid jumping forward in time.
1550 	 *
1551 	 * So given the same offset value, we need the time to be the same
1552 	 * both before and after the freq adjustment.
1553 	 *	now = (offset * adj_1) + xtime_nsec_1
1554 	 *	now = (offset * adj_2) + xtime_nsec_2
1555 	 * So:
1556 	 *	(offset * adj_1) + xtime_nsec_1 =
1557 	 *		(offset * adj_2) + xtime_nsec_2
1558 	 * And we know:
1559 	 *	adj_2 = adj_1 + 1
1560 	 * So:
1561 	 *	(offset * adj_1) + xtime_nsec_1 =
1562 	 *		(offset * (adj_1+1)) + xtime_nsec_2
1563 	 *	(offset * adj_1) + xtime_nsec_1 =
1564 	 *		(offset * adj_1) + offset + xtime_nsec_2
1565 	 * Canceling the sides:
1566 	 *	xtime_nsec_1 = offset + xtime_nsec_2
1567 	 * Which gives us:
1568 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
1569 	 * Which simplfies to:
1570 	 *	xtime_nsec -= offset
1571 	 *
1572 	 * XXX - TODO: Doc ntp_error calculation.
1573 	 */
1574 	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1575 		/* NTP adjustment caused clocksource mult overflow */
1576 		WARN_ON_ONCE(1);
1577 		return;
1578 	}
1579 
1580 	tk->tkr_mono.mult += mult_adj;
1581 	tk->xtime_interval += interval;
1582 	tk->tkr_mono.xtime_nsec -= offset;
1583 	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1584 }
1585 
1586 /*
1587  * Calculate the multiplier adjustment needed to match the frequency
1588  * specified by NTP
1589  */
timekeeping_freqadjust(struct timekeeper * tk,s64 offset)1590 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1591 							s64 offset)
1592 {
1593 	s64 interval = tk->cycle_interval;
1594 	s64 xinterval = tk->xtime_interval;
1595 	s64 tick_error;
1596 	bool negative;
1597 	u32 adj;
1598 
1599 	/* Remove any current error adj from freq calculation */
1600 	if (tk->ntp_err_mult)
1601 		xinterval -= tk->cycle_interval;
1602 
1603 	tk->ntp_tick = ntp_tick_length();
1604 
1605 	/* Calculate current error per tick */
1606 	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1607 	tick_error -= (xinterval + tk->xtime_remainder);
1608 
1609 	/* Don't worry about correcting it if its small */
1610 	if (likely((tick_error >= 0) && (tick_error <= interval)))
1611 		return;
1612 
1613 	/* preserve the direction of correction */
1614 	negative = (tick_error < 0);
1615 
1616 	/* Sort out the magnitude of the correction */
1617 	tick_error = abs64(tick_error);
1618 	for (adj = 0; tick_error > interval; adj++)
1619 		tick_error >>= 1;
1620 
1621 	/* scale the corrections */
1622 	timekeeping_apply_adjustment(tk, offset, negative, adj);
1623 }
1624 
1625 /*
1626  * Adjust the timekeeper's multiplier to the correct frequency
1627  * and also to reduce the accumulated error value.
1628  */
timekeeping_adjust(struct timekeeper * tk,s64 offset)1629 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1630 {
1631 	/* Correct for the current frequency error */
1632 	timekeeping_freqadjust(tk, offset);
1633 
1634 	/* Next make a small adjustment to fix any cumulative error */
1635 	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1636 		tk->ntp_err_mult = 1;
1637 		timekeeping_apply_adjustment(tk, offset, 0, 0);
1638 	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1639 		/* Undo any existing error adjustment */
1640 		timekeeping_apply_adjustment(tk, offset, 1, 0);
1641 		tk->ntp_err_mult = 0;
1642 	}
1643 
1644 	if (unlikely(tk->tkr_mono.clock->maxadj &&
1645 		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1646 			> tk->tkr_mono.clock->maxadj))) {
1647 		printk_once(KERN_WARNING
1648 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1649 			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1650 			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1651 	}
1652 
1653 	/*
1654 	 * It may be possible that when we entered this function, xtime_nsec
1655 	 * was very small.  Further, if we're slightly speeding the clocksource
1656 	 * in the code above, its possible the required corrective factor to
1657 	 * xtime_nsec could cause it to underflow.
1658 	 *
1659 	 * Now, since we already accumulated the second, cannot simply roll
1660 	 * the accumulated second back, since the NTP subsystem has been
1661 	 * notified via second_overflow. So instead we push xtime_nsec forward
1662 	 * by the amount we underflowed, and add that amount into the error.
1663 	 *
1664 	 * We'll correct this error next time through this function, when
1665 	 * xtime_nsec is not as small.
1666 	 */
1667 	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1668 		s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1669 		tk->tkr_mono.xtime_nsec = 0;
1670 		tk->ntp_error += neg << tk->ntp_error_shift;
1671 	}
1672 }
1673 
1674 /**
1675  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1676  *
1677  * Helper function that accumulates a the nsecs greater then a second
1678  * from the xtime_nsec field to the xtime_secs field.
1679  * It also calls into the NTP code to handle leapsecond processing.
1680  *
1681  */
accumulate_nsecs_to_secs(struct timekeeper * tk)1682 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1683 {
1684 	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1685 	unsigned int clock_set = 0;
1686 
1687 	while (tk->tkr_mono.xtime_nsec >= nsecps) {
1688 		int leap;
1689 
1690 		tk->tkr_mono.xtime_nsec -= nsecps;
1691 		tk->xtime_sec++;
1692 
1693 		/* Figure out if its a leap sec and apply if needed */
1694 		leap = second_overflow(tk->xtime_sec);
1695 		if (unlikely(leap)) {
1696 			struct timespec64 ts;
1697 
1698 			tk->xtime_sec += leap;
1699 
1700 			ts.tv_sec = leap;
1701 			ts.tv_nsec = 0;
1702 			tk_set_wall_to_mono(tk,
1703 				timespec64_sub(tk->wall_to_monotonic, ts));
1704 
1705 			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1706 
1707 			clock_set = TK_CLOCK_WAS_SET;
1708 		}
1709 	}
1710 	return clock_set;
1711 }
1712 
1713 /**
1714  * logarithmic_accumulation - shifted accumulation of cycles
1715  *
1716  * This functions accumulates a shifted interval of cycles into
1717  * into a shifted interval nanoseconds. Allows for O(log) accumulation
1718  * loop.
1719  *
1720  * Returns the unconsumed cycles.
1721  */
logarithmic_accumulation(struct timekeeper * tk,cycle_t offset,u32 shift,unsigned int * clock_set)1722 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1723 						u32 shift,
1724 						unsigned int *clock_set)
1725 {
1726 	cycle_t interval = tk->cycle_interval << shift;
1727 	u64 raw_nsecs;
1728 
1729 	/* If the offset is smaller then a shifted interval, do nothing */
1730 	if (offset < interval)
1731 		return offset;
1732 
1733 	/* Accumulate one shifted interval */
1734 	offset -= interval;
1735 	tk->tkr_mono.cycle_last += interval;
1736 	tk->tkr_raw.cycle_last  += interval;
1737 
1738 	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
1739 	*clock_set |= accumulate_nsecs_to_secs(tk);
1740 
1741 	/* Accumulate raw time */
1742 	raw_nsecs = (u64)tk->raw_interval << shift;
1743 	raw_nsecs += tk->raw_time.tv_nsec;
1744 	if (raw_nsecs >= NSEC_PER_SEC) {
1745 		u64 raw_secs = raw_nsecs;
1746 		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1747 		tk->raw_time.tv_sec += raw_secs;
1748 	}
1749 	tk->raw_time.tv_nsec = raw_nsecs;
1750 
1751 	/* Accumulate error between NTP and clock interval */
1752 	tk->ntp_error += tk->ntp_tick << shift;
1753 	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1754 						(tk->ntp_error_shift + shift);
1755 
1756 	return offset;
1757 }
1758 
1759 /**
1760  * update_wall_time - Uses the current clocksource to increment the wall time
1761  *
1762  */
update_wall_time(void)1763 void update_wall_time(void)
1764 {
1765 	struct timekeeper *real_tk = &tk_core.timekeeper;
1766 	struct timekeeper *tk = &shadow_timekeeper;
1767 	cycle_t offset;
1768 	int shift = 0, maxshift;
1769 	unsigned int clock_set = 0;
1770 	unsigned long flags;
1771 
1772 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1773 
1774 	/* Make sure we're fully resumed: */
1775 	if (unlikely(timekeeping_suspended))
1776 		goto out;
1777 
1778 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1779 	offset = real_tk->cycle_interval;
1780 #else
1781 	offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
1782 				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
1783 #endif
1784 
1785 	/* Check if there's really nothing to do */
1786 	if (offset < real_tk->cycle_interval)
1787 		goto out;
1788 
1789 	/* Do some additional sanity checking */
1790 	timekeeping_check_update(real_tk, offset);
1791 
1792 	/*
1793 	 * With NO_HZ we may have to accumulate many cycle_intervals
1794 	 * (think "ticks") worth of time at once. To do this efficiently,
1795 	 * we calculate the largest doubling multiple of cycle_intervals
1796 	 * that is smaller than the offset.  We then accumulate that
1797 	 * chunk in one go, and then try to consume the next smaller
1798 	 * doubled multiple.
1799 	 */
1800 	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1801 	shift = max(0, shift);
1802 	/* Bound shift to one less than what overflows tick_length */
1803 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1804 	shift = min(shift, maxshift);
1805 	while (offset >= tk->cycle_interval) {
1806 		offset = logarithmic_accumulation(tk, offset, shift,
1807 							&clock_set);
1808 		if (offset < tk->cycle_interval<<shift)
1809 			shift--;
1810 	}
1811 
1812 	/* correct the clock when NTP error is too big */
1813 	timekeeping_adjust(tk, offset);
1814 
1815 	/*
1816 	 * XXX This can be killed once everyone converts
1817 	 * to the new update_vsyscall.
1818 	 */
1819 	old_vsyscall_fixup(tk);
1820 
1821 	/*
1822 	 * Finally, make sure that after the rounding
1823 	 * xtime_nsec isn't larger than NSEC_PER_SEC
1824 	 */
1825 	clock_set |= accumulate_nsecs_to_secs(tk);
1826 
1827 	write_seqcount_begin(&tk_core.seq);
1828 	/*
1829 	 * Update the real timekeeper.
1830 	 *
1831 	 * We could avoid this memcpy by switching pointers, but that
1832 	 * requires changes to all other timekeeper usage sites as
1833 	 * well, i.e. move the timekeeper pointer getter into the
1834 	 * spinlocked/seqcount protected sections. And we trade this
1835 	 * memcpy under the tk_core.seq against one before we start
1836 	 * updating.
1837 	 */
1838 	memcpy(real_tk, tk, sizeof(*tk));
1839 	timekeeping_update(real_tk, clock_set);
1840 	write_seqcount_end(&tk_core.seq);
1841 out:
1842 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1843 	if (clock_set)
1844 		/* Have to call _delayed version, since in irq context*/
1845 		clock_was_set_delayed();
1846 }
1847 
1848 /**
1849  * getboottime64 - Return the real time of system boot.
1850  * @ts:		pointer to the timespec64 to be set
1851  *
1852  * Returns the wall-time of boot in a timespec64.
1853  *
1854  * This is based on the wall_to_monotonic offset and the total suspend
1855  * time. Calls to settimeofday will affect the value returned (which
1856  * basically means that however wrong your real time clock is at boot time,
1857  * you get the right time here).
1858  */
getboottime64(struct timespec64 * ts)1859 void getboottime64(struct timespec64 *ts)
1860 {
1861 	struct timekeeper *tk = &tk_core.timekeeper;
1862 	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1863 
1864 	*ts = ktime_to_timespec64(t);
1865 }
1866 EXPORT_SYMBOL_GPL(getboottime64);
1867 
get_seconds(void)1868 unsigned long get_seconds(void)
1869 {
1870 	struct timekeeper *tk = &tk_core.timekeeper;
1871 
1872 	return tk->xtime_sec;
1873 }
1874 EXPORT_SYMBOL(get_seconds);
1875 
__current_kernel_time(void)1876 struct timespec __current_kernel_time(void)
1877 {
1878 	struct timekeeper *tk = &tk_core.timekeeper;
1879 
1880 	return timespec64_to_timespec(tk_xtime(tk));
1881 }
1882 
current_kernel_time(void)1883 struct timespec current_kernel_time(void)
1884 {
1885 	struct timekeeper *tk = &tk_core.timekeeper;
1886 	struct timespec64 now;
1887 	unsigned long seq;
1888 
1889 	do {
1890 		seq = read_seqcount_begin(&tk_core.seq);
1891 
1892 		now = tk_xtime(tk);
1893 	} while (read_seqcount_retry(&tk_core.seq, seq));
1894 
1895 	return timespec64_to_timespec(now);
1896 }
1897 EXPORT_SYMBOL(current_kernel_time);
1898 
get_monotonic_coarse64(void)1899 struct timespec64 get_monotonic_coarse64(void)
1900 {
1901 	struct timekeeper *tk = &tk_core.timekeeper;
1902 	struct timespec64 now, mono;
1903 	unsigned long seq;
1904 
1905 	do {
1906 		seq = read_seqcount_begin(&tk_core.seq);
1907 
1908 		now = tk_xtime(tk);
1909 		mono = tk->wall_to_monotonic;
1910 	} while (read_seqcount_retry(&tk_core.seq, seq));
1911 
1912 	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1913 				now.tv_nsec + mono.tv_nsec);
1914 
1915 	return now;
1916 }
1917 
1918 /*
1919  * Must hold jiffies_lock
1920  */
do_timer(unsigned long ticks)1921 void do_timer(unsigned long ticks)
1922 {
1923 	jiffies_64 += ticks;
1924 	calc_global_load(ticks);
1925 }
1926 
1927 /**
1928  * ktime_get_update_offsets_tick - hrtimer helper
1929  * @offs_real:	pointer to storage for monotonic -> realtime offset
1930  * @offs_boot:	pointer to storage for monotonic -> boottime offset
1931  * @offs_tai:	pointer to storage for monotonic -> clock tai offset
1932  *
1933  * Returns monotonic time at last tick and various offsets
1934  */
ktime_get_update_offsets_tick(ktime_t * offs_real,ktime_t * offs_boot,ktime_t * offs_tai)1935 ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
1936 							ktime_t *offs_tai)
1937 {
1938 	struct timekeeper *tk = &tk_core.timekeeper;
1939 	unsigned int seq;
1940 	ktime_t base;
1941 	u64 nsecs;
1942 
1943 	do {
1944 		seq = read_seqcount_begin(&tk_core.seq);
1945 
1946 		base = tk->tkr_mono.base;
1947 		nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
1948 
1949 		*offs_real = tk->offs_real;
1950 		*offs_boot = tk->offs_boot;
1951 		*offs_tai = tk->offs_tai;
1952 	} while (read_seqcount_retry(&tk_core.seq, seq));
1953 
1954 	return ktime_add_ns(base, nsecs);
1955 }
1956 
1957 #ifdef CONFIG_HIGH_RES_TIMERS
1958 /**
1959  * ktime_get_update_offsets_now - hrtimer helper
1960  * @offs_real:	pointer to storage for monotonic -> realtime offset
1961  * @offs_boot:	pointer to storage for monotonic -> boottime offset
1962  * @offs_tai:	pointer to storage for monotonic -> clock tai offset
1963  *
1964  * Returns current monotonic time and updates the offsets
1965  * Called from hrtimer_interrupt() or retrigger_next_event()
1966  */
ktime_get_update_offsets_now(ktime_t * offs_real,ktime_t * offs_boot,ktime_t * offs_tai)1967 ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
1968 							ktime_t *offs_tai)
1969 {
1970 	struct timekeeper *tk = &tk_core.timekeeper;
1971 	unsigned int seq;
1972 	ktime_t base;
1973 	u64 nsecs;
1974 
1975 	do {
1976 		seq = read_seqcount_begin(&tk_core.seq);
1977 
1978 		base = tk->tkr_mono.base;
1979 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
1980 
1981 		*offs_real = tk->offs_real;
1982 		*offs_boot = tk->offs_boot;
1983 		*offs_tai = tk->offs_tai;
1984 	} while (read_seqcount_retry(&tk_core.seq, seq));
1985 
1986 	return ktime_add_ns(base, nsecs);
1987 }
1988 #endif
1989 
1990 /**
1991  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1992  */
do_adjtimex(struct timex * txc)1993 int do_adjtimex(struct timex *txc)
1994 {
1995 	struct timekeeper *tk = &tk_core.timekeeper;
1996 	unsigned long flags;
1997 	struct timespec64 ts;
1998 	s32 orig_tai, tai;
1999 	int ret;
2000 
2001 	/* Validate the data before disabling interrupts */
2002 	ret = ntp_validate_timex(txc);
2003 	if (ret)
2004 		return ret;
2005 
2006 	if (txc->modes & ADJ_SETOFFSET) {
2007 		struct timespec delta;
2008 		delta.tv_sec  = txc->time.tv_sec;
2009 		delta.tv_nsec = txc->time.tv_usec;
2010 		if (!(txc->modes & ADJ_NANO))
2011 			delta.tv_nsec *= 1000;
2012 		ret = timekeeping_inject_offset(&delta);
2013 		if (ret)
2014 			return ret;
2015 	}
2016 
2017 	getnstimeofday64(&ts);
2018 
2019 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2020 	write_seqcount_begin(&tk_core.seq);
2021 
2022 	orig_tai = tai = tk->tai_offset;
2023 	ret = __do_adjtimex(txc, &ts, &tai);
2024 
2025 	if (tai != orig_tai) {
2026 		__timekeeping_set_tai_offset(tk, tai);
2027 		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2028 	}
2029 	write_seqcount_end(&tk_core.seq);
2030 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2031 
2032 	if (tai != orig_tai)
2033 		clock_was_set();
2034 
2035 	ntp_notify_cmos_timer();
2036 
2037 	return ret;
2038 }
2039 
2040 #ifdef CONFIG_NTP_PPS
2041 /**
2042  * hardpps() - Accessor function to NTP __hardpps function
2043  */
hardpps(const struct timespec * phase_ts,const struct timespec * raw_ts)2044 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
2045 {
2046 	unsigned long flags;
2047 
2048 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2049 	write_seqcount_begin(&tk_core.seq);
2050 
2051 	__hardpps(phase_ts, raw_ts);
2052 
2053 	write_seqcount_end(&tk_core.seq);
2054 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2055 }
2056 EXPORT_SYMBOL(hardpps);
2057 #endif
2058 
2059 /**
2060  * xtime_update() - advances the timekeeping infrastructure
2061  * @ticks:	number of ticks, that have elapsed since the last call.
2062  *
2063  * Must be called with interrupts disabled.
2064  */
xtime_update(unsigned long ticks)2065 void xtime_update(unsigned long ticks)
2066 {
2067 	write_seqlock(&jiffies_lock);
2068 	do_timer(ticks);
2069 	write_sequnlock(&jiffies_lock);
2070 	update_wall_time();
2071 }
2072