1 #ifndef _ASM_POWERPC_PGTABLE_PPC64_H_
2 #define _ASM_POWERPC_PGTABLE_PPC64_H_
3 /*
4  * This file contains the functions and defines necessary to modify and use
5  * the ppc64 hashed page table.
6  */
7 
8 #ifdef CONFIG_PPC_64K_PAGES
9 #include <asm/pgtable-ppc64-64k.h>
10 #else
11 #include <asm/pgtable-ppc64-4k.h>
12 #endif
13 #include <asm/barrier.h>
14 
15 #define FIRST_USER_ADDRESS	0UL
16 
17 /*
18  * Size of EA range mapped by our pagetables.
19  */
20 #define PGTABLE_EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \
21                 	    PUD_INDEX_SIZE + PGD_INDEX_SIZE + PAGE_SHIFT)
22 #define PGTABLE_RANGE (ASM_CONST(1) << PGTABLE_EADDR_SIZE)
23 
24 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
25 #define PMD_CACHE_INDEX	(PMD_INDEX_SIZE + 1)
26 #else
27 #define PMD_CACHE_INDEX	PMD_INDEX_SIZE
28 #endif
29 /*
30  * Define the address range of the kernel non-linear virtual area
31  */
32 
33 #ifdef CONFIG_PPC_BOOK3E
34 #define KERN_VIRT_START ASM_CONST(0x8000000000000000)
35 #else
36 #define KERN_VIRT_START ASM_CONST(0xD000000000000000)
37 #endif
38 #define KERN_VIRT_SIZE	ASM_CONST(0x0000100000000000)
39 
40 /*
41  * The vmalloc space starts at the beginning of that region, and
42  * occupies half of it on hash CPUs and a quarter of it on Book3E
43  * (we keep a quarter for the virtual memmap)
44  */
45 #define VMALLOC_START	KERN_VIRT_START
46 #ifdef CONFIG_PPC_BOOK3E
47 #define VMALLOC_SIZE	(KERN_VIRT_SIZE >> 2)
48 #else
49 #define VMALLOC_SIZE	(KERN_VIRT_SIZE >> 1)
50 #endif
51 #define VMALLOC_END	(VMALLOC_START + VMALLOC_SIZE)
52 
53 /*
54  * The second half of the kernel virtual space is used for IO mappings,
55  * it's itself carved into the PIO region (ISA and PHB IO space) and
56  * the ioremap space
57  *
58  *  ISA_IO_BASE = KERN_IO_START, 64K reserved area
59  *  PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
60  * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
61  */
62 #define KERN_IO_START	(KERN_VIRT_START + (KERN_VIRT_SIZE >> 1))
63 #define FULL_IO_SIZE	0x80000000ul
64 #define  ISA_IO_BASE	(KERN_IO_START)
65 #define  ISA_IO_END	(KERN_IO_START + 0x10000ul)
66 #define  PHB_IO_BASE	(ISA_IO_END)
67 #define  PHB_IO_END	(KERN_IO_START + FULL_IO_SIZE)
68 #define IOREMAP_BASE	(PHB_IO_END)
69 #define IOREMAP_END	(KERN_VIRT_START + KERN_VIRT_SIZE)
70 
71 
72 /*
73  * Region IDs
74  */
75 #define REGION_SHIFT		60UL
76 #define REGION_MASK		(0xfUL << REGION_SHIFT)
77 #define REGION_ID(ea)		(((unsigned long)(ea)) >> REGION_SHIFT)
78 
79 #define VMALLOC_REGION_ID	(REGION_ID(VMALLOC_START))
80 #define KERNEL_REGION_ID	(REGION_ID(PAGE_OFFSET))
81 #define VMEMMAP_REGION_ID	(0xfUL)	/* Server only */
82 #define USER_REGION_ID		(0UL)
83 
84 /*
85  * Defines the address of the vmemap area, in its own region on
86  * hash table CPUs and after the vmalloc space on Book3E
87  */
88 #ifdef CONFIG_PPC_BOOK3E
89 #define VMEMMAP_BASE		VMALLOC_END
90 #define VMEMMAP_END		KERN_IO_START
91 #else
92 #define VMEMMAP_BASE		(VMEMMAP_REGION_ID << REGION_SHIFT)
93 #endif
94 #define vmemmap			((struct page *)VMEMMAP_BASE)
95 
96 
97 /*
98  * Include the PTE bits definitions
99  */
100 #ifdef CONFIG_PPC_BOOK3S
101 #include <asm/pte-hash64.h>
102 #else
103 #include <asm/pte-book3e.h>
104 #endif
105 #include <asm/pte-common.h>
106 
107 #ifdef CONFIG_PPC_MM_SLICES
108 #define HAVE_ARCH_UNMAPPED_AREA
109 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
110 #endif /* CONFIG_PPC_MM_SLICES */
111 
112 #ifndef __ASSEMBLY__
113 
114 /*
115  * This is the default implementation of various PTE accessors, it's
116  * used in all cases except Book3S with 64K pages where we have a
117  * concept of sub-pages
118  */
119 #ifndef __real_pte
120 
121 #ifdef STRICT_MM_TYPECHECKS
122 #define __real_pte(e,p)		((real_pte_t){(e)})
123 #define __rpte_to_pte(r)	((r).pte)
124 #else
125 #define __real_pte(e,p)		(e)
126 #define __rpte_to_pte(r)	(__pte(r))
127 #endif
128 #define __rpte_to_hidx(r,index)	(pte_val(__rpte_to_pte(r)) >> 12)
129 
130 #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift)       \
131 	do {							         \
132 		index = 0;					         \
133 		shift = mmu_psize_defs[psize].shift;		         \
134 
135 #define pte_iterate_hashed_end() } while(0)
136 
137 #ifdef CONFIG_PPC_HAS_HASH_64K
138 /*
139  * We expect this to be called only for user addresses or kernel virtual
140  * addresses other than the linear mapping.
141  */
142 #define pte_pagesize_index(mm, addr, pte)			\
143 	({							\
144 		unsigned int psize;				\
145 		if (is_kernel_addr(addr))			\
146 			psize = MMU_PAGE_4K;			\
147 		else						\
148 			psize = get_slice_psize(mm, addr);	\
149 		psize;						\
150 	})
151 #else
152 #define pte_pagesize_index(mm, addr, pte)	MMU_PAGE_4K
153 #endif
154 
155 #endif /* __real_pte */
156 
157 
158 /* pte_clear moved to later in this file */
159 
160 #define PMD_BAD_BITS		(PTE_TABLE_SIZE-1)
161 #define PUD_BAD_BITS		(PMD_TABLE_SIZE-1)
162 
163 #define pmd_set(pmdp, pmdval) 	(pmd_val(*(pmdp)) = (pmdval))
164 #define pmd_none(pmd)		(!pmd_val(pmd))
165 #define	pmd_bad(pmd)		(!is_kernel_addr(pmd_val(pmd)) \
166 				 || (pmd_val(pmd) & PMD_BAD_BITS))
167 #define	pmd_present(pmd)	(!pmd_none(pmd))
168 #define	pmd_clear(pmdp)		(pmd_val(*(pmdp)) = 0)
169 #define pmd_page_vaddr(pmd)	(pmd_val(pmd) & ~PMD_MASKED_BITS)
170 extern struct page *pmd_page(pmd_t pmd);
171 
172 #define pud_set(pudp, pudval)	(pud_val(*(pudp)) = (pudval))
173 #define pud_none(pud)		(!pud_val(pud))
174 #define	pud_bad(pud)		(!is_kernel_addr(pud_val(pud)) \
175 				 || (pud_val(pud) & PUD_BAD_BITS))
176 #define pud_present(pud)	(pud_val(pud) != 0)
177 #define pud_clear(pudp)		(pud_val(*(pudp)) = 0)
178 #define pud_page_vaddr(pud)	(pud_val(pud) & ~PUD_MASKED_BITS)
179 
180 extern struct page *pud_page(pud_t pud);
181 
pud_pte(pud_t pud)182 static inline pte_t pud_pte(pud_t pud)
183 {
184 	return __pte(pud_val(pud));
185 }
186 
pte_pud(pte_t pte)187 static inline pud_t pte_pud(pte_t pte)
188 {
189 	return __pud(pte_val(pte));
190 }
191 #define pud_write(pud)		pte_write(pud_pte(pud))
192 #define pgd_set(pgdp, pudp)	({pgd_val(*(pgdp)) = (unsigned long)(pudp);})
193 #define pgd_write(pgd)		pte_write(pgd_pte(pgd))
194 
195 /*
196  * Find an entry in a page-table-directory.  We combine the address region
197  * (the high order N bits) and the pgd portion of the address.
198  */
199 #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD - 1))
200 
201 #define pgd_offset(mm, address)	 ((mm)->pgd + pgd_index(address))
202 
203 #define pmd_offset(pudp,addr) \
204   (((pmd_t *) pud_page_vaddr(*(pudp))) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
205 
206 #define pte_offset_kernel(dir,addr) \
207   (((pte_t *) pmd_page_vaddr(*(dir))) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)))
208 
209 #define pte_offset_map(dir,addr)	pte_offset_kernel((dir), (addr))
210 #define pte_unmap(pte)			do { } while(0)
211 
212 /* to find an entry in a kernel page-table-directory */
213 /* This now only contains the vmalloc pages */
214 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
215 extern void hpte_need_flush(struct mm_struct *mm, unsigned long addr,
216 			    pte_t *ptep, unsigned long pte, int huge);
217 
218 /* Atomic PTE updates */
pte_update(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned long clr,unsigned long set,int huge)219 static inline unsigned long pte_update(struct mm_struct *mm,
220 				       unsigned long addr,
221 				       pte_t *ptep, unsigned long clr,
222 				       unsigned long set,
223 				       int huge)
224 {
225 #ifdef PTE_ATOMIC_UPDATES
226 	unsigned long old, tmp;
227 
228 	__asm__ __volatile__(
229 	"1:	ldarx	%0,0,%3		# pte_update\n\
230 	andi.	%1,%0,%6\n\
231 	bne-	1b \n\
232 	andc	%1,%0,%4 \n\
233 	or	%1,%1,%7\n\
234 	stdcx.	%1,0,%3 \n\
235 	bne-	1b"
236 	: "=&r" (old), "=&r" (tmp), "=m" (*ptep)
237 	: "r" (ptep), "r" (clr), "m" (*ptep), "i" (_PAGE_BUSY), "r" (set)
238 	: "cc" );
239 #else
240 	unsigned long old = pte_val(*ptep);
241 	*ptep = __pte((old & ~clr) | set);
242 #endif
243 	/* huge pages use the old page table lock */
244 	if (!huge)
245 		assert_pte_locked(mm, addr);
246 
247 #ifdef CONFIG_PPC_STD_MMU_64
248 	if (old & _PAGE_HASHPTE)
249 		hpte_need_flush(mm, addr, ptep, old, huge);
250 #endif
251 
252 	return old;
253 }
254 
__ptep_test_and_clear_young(struct mm_struct * mm,unsigned long addr,pte_t * ptep)255 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
256 					      unsigned long addr, pte_t *ptep)
257 {
258 	unsigned long old;
259 
260 	if ((pte_val(*ptep) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
261 		return 0;
262 	old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
263 	return (old & _PAGE_ACCESSED) != 0;
264 }
265 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
266 #define ptep_test_and_clear_young(__vma, __addr, __ptep)		   \
267 ({									   \
268 	int __r;							   \
269 	__r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
270 	__r;								   \
271 })
272 
273 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)274 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
275 				      pte_t *ptep)
276 {
277 
278 	if ((pte_val(*ptep) & _PAGE_RW) == 0)
279 		return;
280 
281 	pte_update(mm, addr, ptep, _PAGE_RW, 0, 0);
282 }
283 
huge_ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)284 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
285 					   unsigned long addr, pte_t *ptep)
286 {
287 	if ((pte_val(*ptep) & _PAGE_RW) == 0)
288 		return;
289 
290 	pte_update(mm, addr, ptep, _PAGE_RW, 0, 1);
291 }
292 
293 /*
294  * We currently remove entries from the hashtable regardless of whether
295  * the entry was young or dirty. The generic routines only flush if the
296  * entry was young or dirty which is not good enough.
297  *
298  * We should be more intelligent about this but for the moment we override
299  * these functions and force a tlb flush unconditionally
300  */
301 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
302 #define ptep_clear_flush_young(__vma, __address, __ptep)		\
303 ({									\
304 	int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \
305 						  __ptep);		\
306 	__young;							\
307 })
308 
309 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)310 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
311 				       unsigned long addr, pte_t *ptep)
312 {
313 	unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
314 	return __pte(old);
315 }
316 
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)317 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
318 			     pte_t * ptep)
319 {
320 	pte_update(mm, addr, ptep, ~0UL, 0, 0);
321 }
322 
323 
324 /* Set the dirty and/or accessed bits atomically in a linux PTE, this
325  * function doesn't need to flush the hash entry
326  */
__ptep_set_access_flags(pte_t * ptep,pte_t entry)327 static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry)
328 {
329 	unsigned long bits = pte_val(entry) &
330 		(_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
331 
332 #ifdef PTE_ATOMIC_UPDATES
333 	unsigned long old, tmp;
334 
335 	__asm__ __volatile__(
336 	"1:	ldarx	%0,0,%4\n\
337 		andi.	%1,%0,%6\n\
338 		bne-	1b \n\
339 		or	%0,%3,%0\n\
340 		stdcx.	%0,0,%4\n\
341 		bne-	1b"
342 	:"=&r" (old), "=&r" (tmp), "=m" (*ptep)
343 	:"r" (bits), "r" (ptep), "m" (*ptep), "i" (_PAGE_BUSY)
344 	:"cc");
345 #else
346 	unsigned long old = pte_val(*ptep);
347 	*ptep = __pte(old | bits);
348 #endif
349 }
350 
351 #define __HAVE_ARCH_PTE_SAME
352 #define pte_same(A,B)	(((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0)
353 
354 #define pte_ERROR(e) \
355 	pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
356 #define pmd_ERROR(e) \
357 	pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
358 #define pgd_ERROR(e) \
359 	pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
360 
361 /* Encode and de-code a swap entry */
362 #define __swp_type(entry)	(((entry).val >> 1) & 0x3f)
363 #define __swp_offset(entry)	((entry).val >> 8)
364 #define __swp_entry(type, offset) ((swp_entry_t){((type)<< 1)|((offset)<<8)})
365 #define __pte_to_swp_entry(pte)	((swp_entry_t){pte_val(pte) >> PTE_RPN_SHIFT})
366 #define __swp_entry_to_pte(x)	((pte_t) { (x).val << PTE_RPN_SHIFT })
367 
368 void pgtable_cache_add(unsigned shift, void (*ctor)(void *));
369 void pgtable_cache_init(void);
370 #endif /* __ASSEMBLY__ */
371 
372 /*
373  * THP pages can't be special. So use the _PAGE_SPECIAL
374  */
375 #define _PAGE_SPLITTING _PAGE_SPECIAL
376 
377 /*
378  * We need to differentiate between explicit huge page and THP huge
379  * page, since THP huge page also need to track real subpage details
380  */
381 #define _PAGE_THP_HUGE  _PAGE_4K_PFN
382 
383 /*
384  * set of bits not changed in pmd_modify.
385  */
386 #define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS |		\
387 			 _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_SPLITTING | \
388 			 _PAGE_THP_HUGE)
389 
390 #ifndef __ASSEMBLY__
391 /*
392  * The linux hugepage PMD now include the pmd entries followed by the address
393  * to the stashed pgtable_t. The stashed pgtable_t contains the hpte bits.
394  * [ 1 bit secondary | 3 bit hidx | 1 bit valid | 000]. We use one byte per
395  * each HPTE entry. With 16MB hugepage and 64K HPTE we need 256 entries and
396  * with 4K HPTE we need 4096 entries. Both will fit in a 4K pgtable_t.
397  *
398  * The last three bits are intentionally left to zero. This memory location
399  * are also used as normal page PTE pointers. So if we have any pointers
400  * left around while we collapse a hugepage, we need to make sure
401  * _PAGE_PRESENT bit of that is zero when we look at them
402  */
hpte_valid(unsigned char * hpte_slot_array,int index)403 static inline unsigned int hpte_valid(unsigned char *hpte_slot_array, int index)
404 {
405 	return (hpte_slot_array[index] >> 3) & 0x1;
406 }
407 
hpte_hash_index(unsigned char * hpte_slot_array,int index)408 static inline unsigned int hpte_hash_index(unsigned char *hpte_slot_array,
409 					   int index)
410 {
411 	return hpte_slot_array[index] >> 4;
412 }
413 
mark_hpte_slot_valid(unsigned char * hpte_slot_array,unsigned int index,unsigned int hidx)414 static inline void mark_hpte_slot_valid(unsigned char *hpte_slot_array,
415 					unsigned int index, unsigned int hidx)
416 {
417 	hpte_slot_array[index] = hidx << 4 | 0x1 << 3;
418 }
419 
420 struct page *realmode_pfn_to_page(unsigned long pfn);
421 
get_hpte_slot_array(pmd_t * pmdp)422 static inline char *get_hpte_slot_array(pmd_t *pmdp)
423 {
424 	/*
425 	 * The hpte hindex is stored in the pgtable whose address is in the
426 	 * second half of the PMD
427 	 *
428 	 * Order this load with the test for pmd_trans_huge in the caller
429 	 */
430 	smp_rmb();
431 	return *(char **)(pmdp + PTRS_PER_PMD);
432 
433 
434 }
435 
436 extern void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
437 				   pmd_t *pmdp, unsigned long old_pmd);
438 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
439 extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
440 extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
441 extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
442 extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
443 		       pmd_t *pmdp, pmd_t pmd);
444 extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
445 				 pmd_t *pmd);
446 /*
447  *
448  * For core kernel code by design pmd_trans_huge is never run on any hugetlbfs
449  * page. The hugetlbfs page table walking and mangling paths are totally
450  * separated form the core VM paths and they're differentiated by
451  *  VM_HUGETLB being set on vm_flags well before any pmd_trans_huge could run.
452  *
453  * pmd_trans_huge() is defined as false at build time if
454  * CONFIG_TRANSPARENT_HUGEPAGE=n to optimize away code blocks at build
455  * time in such case.
456  *
457  * For ppc64 we need to differntiate from explicit hugepages from THP, because
458  * for THP we also track the subpage details at the pmd level. We don't do
459  * that for explicit huge pages.
460  *
461  */
pmd_trans_huge(pmd_t pmd)462 static inline int pmd_trans_huge(pmd_t pmd)
463 {
464 	/*
465 	 * leaf pte for huge page, bottom two bits != 00
466 	 */
467 	return (pmd_val(pmd) & 0x3) && (pmd_val(pmd) & _PAGE_THP_HUGE);
468 }
469 
pmd_trans_splitting(pmd_t pmd)470 static inline int pmd_trans_splitting(pmd_t pmd)
471 {
472 	if (pmd_trans_huge(pmd))
473 		return pmd_val(pmd) & _PAGE_SPLITTING;
474 	return 0;
475 }
476 
477 extern int has_transparent_hugepage(void);
478 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
479 
pmd_large(pmd_t pmd)480 static inline int pmd_large(pmd_t pmd)
481 {
482 	/*
483 	 * leaf pte for huge page, bottom two bits != 00
484 	 */
485 	return ((pmd_val(pmd) & 0x3) != 0x0);
486 }
487 
pmd_pte(pmd_t pmd)488 static inline pte_t pmd_pte(pmd_t pmd)
489 {
490 	return __pte(pmd_val(pmd));
491 }
492 
pte_pmd(pte_t pte)493 static inline pmd_t pte_pmd(pte_t pte)
494 {
495 	return __pmd(pte_val(pte));
496 }
497 
pmdp_ptep(pmd_t * pmd)498 static inline pte_t *pmdp_ptep(pmd_t *pmd)
499 {
500 	return (pte_t *)pmd;
501 }
502 
503 #define pmd_pfn(pmd)		pte_pfn(pmd_pte(pmd))
504 #define pmd_dirty(pmd)		pte_dirty(pmd_pte(pmd))
505 #define pmd_young(pmd)		pte_young(pmd_pte(pmd))
506 #define pmd_mkold(pmd)		pte_pmd(pte_mkold(pmd_pte(pmd)))
507 #define pmd_wrprotect(pmd)	pte_pmd(pte_wrprotect(pmd_pte(pmd)))
508 #define pmd_mkdirty(pmd)	pte_pmd(pte_mkdirty(pmd_pte(pmd)))
509 #define pmd_mkyoung(pmd)	pte_pmd(pte_mkyoung(pmd_pte(pmd)))
510 #define pmd_mkwrite(pmd)	pte_pmd(pte_mkwrite(pmd_pte(pmd)))
511 
512 #define __HAVE_ARCH_PMD_WRITE
513 #define pmd_write(pmd)		pte_write(pmd_pte(pmd))
514 
pmd_mkhuge(pmd_t pmd)515 static inline pmd_t pmd_mkhuge(pmd_t pmd)
516 {
517 	/* Do nothing, mk_pmd() does this part.  */
518 	return pmd;
519 }
520 
pmd_mknotpresent(pmd_t pmd)521 static inline pmd_t pmd_mknotpresent(pmd_t pmd)
522 {
523 	pmd_val(pmd) &= ~_PAGE_PRESENT;
524 	return pmd;
525 }
526 
pmd_mksplitting(pmd_t pmd)527 static inline pmd_t pmd_mksplitting(pmd_t pmd)
528 {
529 	pmd_val(pmd) |= _PAGE_SPLITTING;
530 	return pmd;
531 }
532 
533 #define __HAVE_ARCH_PMD_SAME
pmd_same(pmd_t pmd_a,pmd_t pmd_b)534 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
535 {
536 	return (((pmd_val(pmd_a) ^ pmd_val(pmd_b)) & ~_PAGE_HPTEFLAGS) == 0);
537 }
538 
539 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
540 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
541 				 unsigned long address, pmd_t *pmdp,
542 				 pmd_t entry, int dirty);
543 
544 extern unsigned long pmd_hugepage_update(struct mm_struct *mm,
545 					 unsigned long addr,
546 					 pmd_t *pmdp,
547 					 unsigned long clr,
548 					 unsigned long set);
549 
__pmdp_test_and_clear_young(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)550 static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
551 					      unsigned long addr, pmd_t *pmdp)
552 {
553 	unsigned long old;
554 
555 	if ((pmd_val(*pmdp) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
556 		return 0;
557 	old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
558 	return ((old & _PAGE_ACCESSED) != 0);
559 }
560 
561 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
562 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
563 				     unsigned long address, pmd_t *pmdp);
564 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
565 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
566 				  unsigned long address, pmd_t *pmdp);
567 
568 #define __HAVE_ARCH_PMDP_GET_AND_CLEAR
569 extern pmd_t pmdp_get_and_clear(struct mm_struct *mm,
570 				unsigned long addr, pmd_t *pmdp);
571 
572 #define __HAVE_ARCH_PMDP_CLEAR_FLUSH
573 extern pmd_t pmdp_clear_flush(struct vm_area_struct *vma, unsigned long address,
574 			      pmd_t *pmdp);
575 
576 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)577 static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
578 				      pmd_t *pmdp)
579 {
580 
581 	if ((pmd_val(*pmdp) & _PAGE_RW) == 0)
582 		return;
583 
584 	pmd_hugepage_update(mm, addr, pmdp, _PAGE_RW, 0);
585 }
586 
587 #define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
588 extern void pmdp_splitting_flush(struct vm_area_struct *vma,
589 				 unsigned long address, pmd_t *pmdp);
590 
591 #define __HAVE_ARCH_PGTABLE_DEPOSIT
592 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
593 				       pgtable_t pgtable);
594 #define __HAVE_ARCH_PGTABLE_WITHDRAW
595 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
596 
597 #define __HAVE_ARCH_PMDP_INVALIDATE
598 extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
599 			    pmd_t *pmdp);
600 
601 #define pmd_move_must_withdraw pmd_move_must_withdraw
602 struct spinlock;
pmd_move_must_withdraw(struct spinlock * new_pmd_ptl,struct spinlock * old_pmd_ptl)603 static inline int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
604 					 struct spinlock *old_pmd_ptl)
605 {
606 	/*
607 	 * Archs like ppc64 use pgtable to store per pmd
608 	 * specific information. So when we switch the pmd,
609 	 * we should also withdraw and deposit the pgtable
610 	 */
611 	return true;
612 }
613 #endif /* __ASSEMBLY__ */
614 #endif /* _ASM_POWERPC_PGTABLE_PPC64_H_ */
615