1 #ifndef _LINUX_KERNEL_H
2 #define _LINUX_KERNEL_H
3 
4 
5 #include <stdarg.h>
6 #include <linux/linkage.h>
7 #include <linux/stddef.h>
8 #include <linux/types.h>
9 #include <linux/compiler.h>
10 #include <linux/bitops.h>
11 #include <linux/log2.h>
12 #include <linux/typecheck.h>
13 #include <linux/printk.h>
14 #include <linux/dynamic_debug.h>
15 #include <asm/byteorder.h>
16 #include <uapi/linux/kernel.h>
17 
18 #define USHRT_MAX	((u16)(~0U))
19 #define SHRT_MAX	((s16)(USHRT_MAX>>1))
20 #define SHRT_MIN	((s16)(-SHRT_MAX - 1))
21 #define INT_MAX		((int)(~0U>>1))
22 #define INT_MIN		(-INT_MAX - 1)
23 #define UINT_MAX	(~0U)
24 #define LONG_MAX	((long)(~0UL>>1))
25 #define LONG_MIN	(-LONG_MAX - 1)
26 #define ULONG_MAX	(~0UL)
27 #define LLONG_MAX	((long long)(~0ULL>>1))
28 #define LLONG_MIN	(-LLONG_MAX - 1)
29 #define ULLONG_MAX	(~0ULL)
30 #define SIZE_MAX	(~(size_t)0)
31 
32 #define U8_MAX		((u8)~0U)
33 #define S8_MAX		((s8)(U8_MAX>>1))
34 #define S8_MIN		((s8)(-S8_MAX - 1))
35 #define U16_MAX		((u16)~0U)
36 #define S16_MAX		((s16)(U16_MAX>>1))
37 #define S16_MIN		((s16)(-S16_MAX - 1))
38 #define U32_MAX		((u32)~0U)
39 #define S32_MAX		((s32)(U32_MAX>>1))
40 #define S32_MIN		((s32)(-S32_MAX - 1))
41 #define U64_MAX		((u64)~0ULL)
42 #define S64_MAX		((s64)(U64_MAX>>1))
43 #define S64_MIN		((s64)(-S64_MAX - 1))
44 
45 #define STACK_MAGIC	0xdeadbeef
46 
47 #define REPEAT_BYTE(x)	((~0ul / 0xff) * (x))
48 
49 #define ALIGN(x, a)		__ALIGN_KERNEL((x), (a))
50 #define __ALIGN_MASK(x, mask)	__ALIGN_KERNEL_MASK((x), (mask))
51 #define PTR_ALIGN(p, a)		((typeof(p))ALIGN((unsigned long)(p), (a)))
52 #define IS_ALIGNED(x, a)		(((x) & ((typeof(x))(a) - 1)) == 0)
53 
54 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr))
55 
56 /*
57  * This looks more complex than it should be. But we need to
58  * get the type for the ~ right in round_down (it needs to be
59  * as wide as the result!), and we want to evaluate the macro
60  * arguments just once each.
61  */
62 #define __round_mask(x, y) ((__typeof__(x))((y)-1))
63 #define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
64 #define round_down(x, y) ((x) & ~__round_mask(x, y))
65 
66 #define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f))
67 #define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d))
68 #define DIV_ROUND_UP_ULL(ll,d) \
69 	({ unsigned long long _tmp = (ll)+(d)-1; do_div(_tmp, d); _tmp; })
70 
71 #if BITS_PER_LONG == 32
72 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
73 #else
74 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
75 #endif
76 
77 /* The `const' in roundup() prevents gcc-3.3 from calling __divdi3 */
78 #define roundup(x, y) (					\
79 {							\
80 	const typeof(y) __y = y;			\
81 	(((x) + (__y - 1)) / __y) * __y;		\
82 }							\
83 )
84 #define rounddown(x, y) (				\
85 {							\
86 	typeof(x) __x = (x);				\
87 	__x - (__x % (y));				\
88 }							\
89 )
90 
91 /*
92  * Divide positive or negative dividend by positive divisor and round
93  * to closest integer. Result is undefined for negative divisors and
94  * for negative dividends if the divisor variable type is unsigned.
95  */
96 #define DIV_ROUND_CLOSEST(x, divisor)(			\
97 {							\
98 	typeof(x) __x = x;				\
99 	typeof(divisor) __d = divisor;			\
100 	(((typeof(x))-1) > 0 ||				\
101 	 ((typeof(divisor))-1) > 0 || (__x) > 0) ?	\
102 		(((__x) + ((__d) / 2)) / (__d)) :	\
103 		(((__x) - ((__d) / 2)) / (__d));	\
104 }							\
105 )
106 /*
107  * Same as above but for u64 dividends. divisor must be a 32-bit
108  * number.
109  */
110 #define DIV_ROUND_CLOSEST_ULL(x, divisor)(		\
111 {							\
112 	typeof(divisor) __d = divisor;			\
113 	unsigned long long _tmp = (x) + (__d) / 2;	\
114 	do_div(_tmp, __d);				\
115 	_tmp;						\
116 }							\
117 )
118 
119 /*
120  * Multiplies an integer by a fraction, while avoiding unnecessary
121  * overflow or loss of precision.
122  */
123 #define mult_frac(x, numer, denom)(			\
124 {							\
125 	typeof(x) quot = (x) / (denom);			\
126 	typeof(x) rem  = (x) % (denom);			\
127 	(quot * (numer)) + ((rem * (numer)) / (denom));	\
128 }							\
129 )
130 
131 
132 #define _RET_IP_		(unsigned long)__builtin_return_address(0)
133 #define _THIS_IP_  ({ __label__ __here; __here: (unsigned long)&&__here; })
134 
135 #ifdef CONFIG_LBDAF
136 # include <asm/div64.h>
137 # define sector_div(a, b) do_div(a, b)
138 #else
139 # define sector_div(n, b)( \
140 { \
141 	int _res; \
142 	_res = (n) % (b); \
143 	(n) /= (b); \
144 	_res; \
145 } \
146 )
147 #endif
148 
149 /**
150  * upper_32_bits - return bits 32-63 of a number
151  * @n: the number we're accessing
152  *
153  * A basic shift-right of a 64- or 32-bit quantity.  Use this to suppress
154  * the "right shift count >= width of type" warning when that quantity is
155  * 32-bits.
156  */
157 #define upper_32_bits(n) ((u32)(((n) >> 16) >> 16))
158 
159 /**
160  * lower_32_bits - return bits 0-31 of a number
161  * @n: the number we're accessing
162  */
163 #define lower_32_bits(n) ((u32)(n))
164 
165 struct completion;
166 struct pt_regs;
167 struct user;
168 
169 #ifdef CONFIG_PREEMPT_VOLUNTARY
170 extern int _cond_resched(void);
171 # define might_resched() _cond_resched()
172 #else
173 # define might_resched() do { } while (0)
174 #endif
175 
176 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
177   void ___might_sleep(const char *file, int line, int preempt_offset);
178   void __might_sleep(const char *file, int line, int preempt_offset);
179 /**
180  * might_sleep - annotation for functions that can sleep
181  *
182  * this macro will print a stack trace if it is executed in an atomic
183  * context (spinlock, irq-handler, ...).
184  *
185  * This is a useful debugging help to be able to catch problems early and not
186  * be bitten later when the calling function happens to sleep when it is not
187  * supposed to.
188  */
189 # define might_sleep() \
190 	do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0)
191 # define sched_annotate_sleep()	(current->task_state_change = 0)
192 #else
___might_sleep(const char * file,int line,int preempt_offset)193   static inline void ___might_sleep(const char *file, int line,
194 				   int preempt_offset) { }
__might_sleep(const char * file,int line,int preempt_offset)195   static inline void __might_sleep(const char *file, int line,
196 				   int preempt_offset) { }
197 # define might_sleep() do { might_resched(); } while (0)
198 # define sched_annotate_sleep() do { } while (0)
199 #endif
200 
201 #define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0)
202 
203 /**
204  * abs - return absolute value of an argument
205  * @x: the value.  If it is unsigned type, it is converted to signed type first
206  *   (s64, long or int depending on its size).
207  *
208  * Return: an absolute value of x.  If x is 64-bit, macro's return type is s64,
209  *   otherwise it is signed long.
210  */
211 #define abs(x) __builtin_choose_expr(sizeof(x) == sizeof(s64), ({	\
212 		s64 __x = (x);						\
213 		(__x < 0) ? -__x : __x;					\
214 	}), ({								\
215 		long ret;						\
216 		if (sizeof(x) == sizeof(long)) {			\
217 			long __x = (x);					\
218 			ret = (__x < 0) ? -__x : __x;			\
219 		} else {						\
220 			int __x = (x);					\
221 			ret = (__x < 0) ? -__x : __x;			\
222 		}							\
223 		ret;							\
224 	}))
225 
226 /**
227  * reciprocal_scale - "scale" a value into range [0, ep_ro)
228  * @val: value
229  * @ep_ro: right open interval endpoint
230  *
231  * Perform a "reciprocal multiplication" in order to "scale" a value into
232  * range [0, ep_ro), where the upper interval endpoint is right-open.
233  * This is useful, e.g. for accessing a index of an array containing
234  * ep_ro elements, for example. Think of it as sort of modulus, only that
235  * the result isn't that of modulo. ;) Note that if initial input is a
236  * small value, then result will return 0.
237  *
238  * Return: a result based on val in interval [0, ep_ro).
239  */
reciprocal_scale(u32 val,u32 ep_ro)240 static inline u32 reciprocal_scale(u32 val, u32 ep_ro)
241 {
242 	return (u32)(((u64) val * ep_ro) >> 32);
243 }
244 
245 #if defined(CONFIG_MMU) && \
246 	(defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP))
247 #define might_fault() __might_fault(__FILE__, __LINE__)
248 void __might_fault(const char *file, int line);
249 #else
might_fault(void)250 static inline void might_fault(void) { }
251 #endif
252 
253 extern struct atomic_notifier_head panic_notifier_list;
254 extern long (*panic_blink)(int state);
255 __printf(1, 2)
256 void panic(const char *fmt, ...)
257 	__noreturn __cold;
258 extern void oops_enter(void);
259 extern void oops_exit(void);
260 void print_oops_end_marker(void);
261 extern int oops_may_print(void);
262 void do_exit(long error_code)
263 	__noreturn;
264 void complete_and_exit(struct completion *, long)
265 	__noreturn;
266 
267 /* Internal, do not use. */
268 int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res);
269 int __must_check _kstrtol(const char *s, unsigned int base, long *res);
270 
271 int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res);
272 int __must_check kstrtoll(const char *s, unsigned int base, long long *res);
273 
274 /**
275  * kstrtoul - convert a string to an unsigned long
276  * @s: The start of the string. The string must be null-terminated, and may also
277  *  include a single newline before its terminating null. The first character
278  *  may also be a plus sign, but not a minus sign.
279  * @base: The number base to use. The maximum supported base is 16. If base is
280  *  given as 0, then the base of the string is automatically detected with the
281  *  conventional semantics - If it begins with 0x the number will be parsed as a
282  *  hexadecimal (case insensitive), if it otherwise begins with 0, it will be
283  *  parsed as an octal number. Otherwise it will be parsed as a decimal.
284  * @res: Where to write the result of the conversion on success.
285  *
286  * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
287  * Used as a replacement for the obsolete simple_strtoull. Return code must
288  * be checked.
289 */
kstrtoul(const char * s,unsigned int base,unsigned long * res)290 static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res)
291 {
292 	/*
293 	 * We want to shortcut function call, but
294 	 * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0.
295 	 */
296 	if (sizeof(unsigned long) == sizeof(unsigned long long) &&
297 	    __alignof__(unsigned long) == __alignof__(unsigned long long))
298 		return kstrtoull(s, base, (unsigned long long *)res);
299 	else
300 		return _kstrtoul(s, base, res);
301 }
302 
303 /**
304  * kstrtol - convert a string to a long
305  * @s: The start of the string. The string must be null-terminated, and may also
306  *  include a single newline before its terminating null. The first character
307  *  may also be a plus sign or a minus sign.
308  * @base: The number base to use. The maximum supported base is 16. If base is
309  *  given as 0, then the base of the string is automatically detected with the
310  *  conventional semantics - If it begins with 0x the number will be parsed as a
311  *  hexadecimal (case insensitive), if it otherwise begins with 0, it will be
312  *  parsed as an octal number. Otherwise it will be parsed as a decimal.
313  * @res: Where to write the result of the conversion on success.
314  *
315  * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
316  * Used as a replacement for the obsolete simple_strtoull. Return code must
317  * be checked.
318  */
kstrtol(const char * s,unsigned int base,long * res)319 static inline int __must_check kstrtol(const char *s, unsigned int base, long *res)
320 {
321 	/*
322 	 * We want to shortcut function call, but
323 	 * __builtin_types_compatible_p(long, long long) = 0.
324 	 */
325 	if (sizeof(long) == sizeof(long long) &&
326 	    __alignof__(long) == __alignof__(long long))
327 		return kstrtoll(s, base, (long long *)res);
328 	else
329 		return _kstrtol(s, base, res);
330 }
331 
332 int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res);
333 int __must_check kstrtoint(const char *s, unsigned int base, int *res);
334 
kstrtou64(const char * s,unsigned int base,u64 * res)335 static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res)
336 {
337 	return kstrtoull(s, base, res);
338 }
339 
kstrtos64(const char * s,unsigned int base,s64 * res)340 static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res)
341 {
342 	return kstrtoll(s, base, res);
343 }
344 
kstrtou32(const char * s,unsigned int base,u32 * res)345 static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res)
346 {
347 	return kstrtouint(s, base, res);
348 }
349 
kstrtos32(const char * s,unsigned int base,s32 * res)350 static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res)
351 {
352 	return kstrtoint(s, base, res);
353 }
354 
355 int __must_check kstrtou16(const char *s, unsigned int base, u16 *res);
356 int __must_check kstrtos16(const char *s, unsigned int base, s16 *res);
357 int __must_check kstrtou8(const char *s, unsigned int base, u8 *res);
358 int __must_check kstrtos8(const char *s, unsigned int base, s8 *res);
359 
360 int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res);
361 int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res);
362 int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res);
363 int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res);
364 int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res);
365 int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res);
366 int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res);
367 int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res);
368 int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res);
369 int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res);
370 
kstrtou64_from_user(const char __user * s,size_t count,unsigned int base,u64 * res)371 static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res)
372 {
373 	return kstrtoull_from_user(s, count, base, res);
374 }
375 
kstrtos64_from_user(const char __user * s,size_t count,unsigned int base,s64 * res)376 static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res)
377 {
378 	return kstrtoll_from_user(s, count, base, res);
379 }
380 
kstrtou32_from_user(const char __user * s,size_t count,unsigned int base,u32 * res)381 static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res)
382 {
383 	return kstrtouint_from_user(s, count, base, res);
384 }
385 
kstrtos32_from_user(const char __user * s,size_t count,unsigned int base,s32 * res)386 static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res)
387 {
388 	return kstrtoint_from_user(s, count, base, res);
389 }
390 
391 /* Obsolete, do not use.  Use kstrto<foo> instead */
392 
393 extern unsigned long simple_strtoul(const char *,char **,unsigned int);
394 extern long simple_strtol(const char *,char **,unsigned int);
395 extern unsigned long long simple_strtoull(const char *,char **,unsigned int);
396 extern long long simple_strtoll(const char *,char **,unsigned int);
397 
398 extern int num_to_str(char *buf, int size, unsigned long long num);
399 
400 /* lib/printf utilities */
401 
402 extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...);
403 extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list);
404 extern __printf(3, 4)
405 int snprintf(char *buf, size_t size, const char *fmt, ...);
406 extern __printf(3, 0)
407 int vsnprintf(char *buf, size_t size, const char *fmt, va_list args);
408 extern __printf(3, 4)
409 int scnprintf(char *buf, size_t size, const char *fmt, ...);
410 extern __printf(3, 0)
411 int vscnprintf(char *buf, size_t size, const char *fmt, va_list args);
412 extern __printf(2, 3)
413 char *kasprintf(gfp_t gfp, const char *fmt, ...);
414 extern __printf(2, 0)
415 char *kvasprintf(gfp_t gfp, const char *fmt, va_list args);
416 extern __printf(2, 0)
417 const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args);
418 
419 extern __scanf(2, 3)
420 int sscanf(const char *, const char *, ...);
421 extern __scanf(2, 0)
422 int vsscanf(const char *, const char *, va_list);
423 
424 extern int get_option(char **str, int *pint);
425 extern char *get_options(const char *str, int nints, int *ints);
426 extern unsigned long long memparse(const char *ptr, char **retptr);
427 extern bool parse_option_str(const char *str, const char *option);
428 
429 extern int core_kernel_text(unsigned long addr);
430 extern int core_kernel_data(unsigned long addr);
431 extern int __kernel_text_address(unsigned long addr);
432 extern int kernel_text_address(unsigned long addr);
433 extern int func_ptr_is_kernel_text(void *ptr);
434 
435 unsigned long int_sqrt(unsigned long);
436 
437 extern void bust_spinlocks(int yes);
438 extern int oops_in_progress;		/* If set, an oops, panic(), BUG() or die() is in progress */
439 extern int panic_timeout;
440 extern int panic_on_oops;
441 extern int panic_on_unrecovered_nmi;
442 extern int panic_on_io_nmi;
443 extern int panic_on_warn;
444 extern int sysctl_panic_on_stackoverflow;
445 
446 extern bool crash_kexec_post_notifiers;
447 
448 /*
449  * Only to be used by arch init code. If the user over-wrote the default
450  * CONFIG_PANIC_TIMEOUT, honor it.
451  */
set_arch_panic_timeout(int timeout,int arch_default_timeout)452 static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout)
453 {
454 	if (panic_timeout == arch_default_timeout)
455 		panic_timeout = timeout;
456 }
457 extern const char *print_tainted(void);
458 enum lockdep_ok {
459 	LOCKDEP_STILL_OK,
460 	LOCKDEP_NOW_UNRELIABLE
461 };
462 extern void add_taint(unsigned flag, enum lockdep_ok);
463 extern int test_taint(unsigned flag);
464 extern unsigned long get_taint(void);
465 extern int root_mountflags;
466 
467 extern bool early_boot_irqs_disabled;
468 
469 /* Values used for system_state */
470 extern enum system_states {
471 	SYSTEM_BOOTING,
472 	SYSTEM_RUNNING,
473 	SYSTEM_HALT,
474 	SYSTEM_POWER_OFF,
475 	SYSTEM_RESTART,
476 } system_state;
477 
478 #define TAINT_PROPRIETARY_MODULE	0
479 #define TAINT_FORCED_MODULE		1
480 #define TAINT_CPU_OUT_OF_SPEC		2
481 #define TAINT_FORCED_RMMOD		3
482 #define TAINT_MACHINE_CHECK		4
483 #define TAINT_BAD_PAGE			5
484 #define TAINT_USER			6
485 #define TAINT_DIE			7
486 #define TAINT_OVERRIDDEN_ACPI_TABLE	8
487 #define TAINT_WARN			9
488 #define TAINT_CRAP			10
489 #define TAINT_FIRMWARE_WORKAROUND	11
490 #define TAINT_OOT_MODULE		12
491 #define TAINT_UNSIGNED_MODULE		13
492 #define TAINT_SOFTLOCKUP		14
493 #define TAINT_LIVEPATCH			15
494 
495 extern const char hex_asc[];
496 #define hex_asc_lo(x)	hex_asc[((x) & 0x0f)]
497 #define hex_asc_hi(x)	hex_asc[((x) & 0xf0) >> 4]
498 
hex_byte_pack(char * buf,u8 byte)499 static inline char *hex_byte_pack(char *buf, u8 byte)
500 {
501 	*buf++ = hex_asc_hi(byte);
502 	*buf++ = hex_asc_lo(byte);
503 	return buf;
504 }
505 
506 extern const char hex_asc_upper[];
507 #define hex_asc_upper_lo(x)	hex_asc_upper[((x) & 0x0f)]
508 #define hex_asc_upper_hi(x)	hex_asc_upper[((x) & 0xf0) >> 4]
509 
hex_byte_pack_upper(char * buf,u8 byte)510 static inline char *hex_byte_pack_upper(char *buf, u8 byte)
511 {
512 	*buf++ = hex_asc_upper_hi(byte);
513 	*buf++ = hex_asc_upper_lo(byte);
514 	return buf;
515 }
516 
517 extern int hex_to_bin(char ch);
518 extern int __must_check hex2bin(u8 *dst, const char *src, size_t count);
519 extern char *bin2hex(char *dst, const void *src, size_t count);
520 
521 bool mac_pton(const char *s, u8 *mac);
522 
523 /*
524  * General tracing related utility functions - trace_printk(),
525  * tracing_on/tracing_off and tracing_start()/tracing_stop
526  *
527  * Use tracing_on/tracing_off when you want to quickly turn on or off
528  * tracing. It simply enables or disables the recording of the trace events.
529  * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on
530  * file, which gives a means for the kernel and userspace to interact.
531  * Place a tracing_off() in the kernel where you want tracing to end.
532  * From user space, examine the trace, and then echo 1 > tracing_on
533  * to continue tracing.
534  *
535  * tracing_stop/tracing_start has slightly more overhead. It is used
536  * by things like suspend to ram where disabling the recording of the
537  * trace is not enough, but tracing must actually stop because things
538  * like calling smp_processor_id() may crash the system.
539  *
540  * Most likely, you want to use tracing_on/tracing_off.
541  */
542 
543 enum ftrace_dump_mode {
544 	DUMP_NONE,
545 	DUMP_ALL,
546 	DUMP_ORIG,
547 };
548 
549 #ifdef CONFIG_TRACING
550 void tracing_on(void);
551 void tracing_off(void);
552 int tracing_is_on(void);
553 void tracing_snapshot(void);
554 void tracing_snapshot_alloc(void);
555 
556 extern void tracing_start(void);
557 extern void tracing_stop(void);
558 
559 static inline __printf(1, 2)
____trace_printk_check_format(const char * fmt,...)560 void ____trace_printk_check_format(const char *fmt, ...)
561 {
562 }
563 #define __trace_printk_check_format(fmt, args...)			\
564 do {									\
565 	if (0)								\
566 		____trace_printk_check_format(fmt, ##args);		\
567 } while (0)
568 
569 /**
570  * trace_printk - printf formatting in the ftrace buffer
571  * @fmt: the printf format for printing
572  *
573  * Note: __trace_printk is an internal function for trace_printk and
574  *       the @ip is passed in via the trace_printk macro.
575  *
576  * This function allows a kernel developer to debug fast path sections
577  * that printk is not appropriate for. By scattering in various
578  * printk like tracing in the code, a developer can quickly see
579  * where problems are occurring.
580  *
581  * This is intended as a debugging tool for the developer only.
582  * Please refrain from leaving trace_printks scattered around in
583  * your code. (Extra memory is used for special buffers that are
584  * allocated when trace_printk() is used)
585  *
586  * A little optization trick is done here. If there's only one
587  * argument, there's no need to scan the string for printf formats.
588  * The trace_puts() will suffice. But how can we take advantage of
589  * using trace_puts() when trace_printk() has only one argument?
590  * By stringifying the args and checking the size we can tell
591  * whether or not there are args. __stringify((__VA_ARGS__)) will
592  * turn into "()\0" with a size of 3 when there are no args, anything
593  * else will be bigger. All we need to do is define a string to this,
594  * and then take its size and compare to 3. If it's bigger, use
595  * do_trace_printk() otherwise, optimize it to trace_puts(). Then just
596  * let gcc optimize the rest.
597  */
598 
599 #define trace_printk(fmt, ...)				\
600 do {							\
601 	char _______STR[] = __stringify((__VA_ARGS__));	\
602 	if (sizeof(_______STR) > 3)			\
603 		do_trace_printk(fmt, ##__VA_ARGS__);	\
604 	else						\
605 		trace_puts(fmt);			\
606 } while (0)
607 
608 #define do_trace_printk(fmt, args...)					\
609 do {									\
610 	static const char *trace_printk_fmt __used			\
611 		__attribute__((section("__trace_printk_fmt"))) =	\
612 		__builtin_constant_p(fmt) ? fmt : NULL;			\
613 									\
614 	__trace_printk_check_format(fmt, ##args);			\
615 									\
616 	if (__builtin_constant_p(fmt))					\
617 		__trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args);	\
618 	else								\
619 		__trace_printk(_THIS_IP_, fmt, ##args);			\
620 } while (0)
621 
622 extern __printf(2, 3)
623 int __trace_bprintk(unsigned long ip, const char *fmt, ...);
624 
625 extern __printf(2, 3)
626 int __trace_printk(unsigned long ip, const char *fmt, ...);
627 
628 /**
629  * trace_puts - write a string into the ftrace buffer
630  * @str: the string to record
631  *
632  * Note: __trace_bputs is an internal function for trace_puts and
633  *       the @ip is passed in via the trace_puts macro.
634  *
635  * This is similar to trace_printk() but is made for those really fast
636  * paths that a developer wants the least amount of "Heisenbug" affects,
637  * where the processing of the print format is still too much.
638  *
639  * This function allows a kernel developer to debug fast path sections
640  * that printk is not appropriate for. By scattering in various
641  * printk like tracing in the code, a developer can quickly see
642  * where problems are occurring.
643  *
644  * This is intended as a debugging tool for the developer only.
645  * Please refrain from leaving trace_puts scattered around in
646  * your code. (Extra memory is used for special buffers that are
647  * allocated when trace_puts() is used)
648  *
649  * Returns: 0 if nothing was written, positive # if string was.
650  *  (1 when __trace_bputs is used, strlen(str) when __trace_puts is used)
651  */
652 
653 #define trace_puts(str) ({						\
654 	static const char *trace_printk_fmt __used			\
655 		__attribute__((section("__trace_printk_fmt"))) =	\
656 		__builtin_constant_p(str) ? str : NULL;			\
657 									\
658 	if (__builtin_constant_p(str))					\
659 		__trace_bputs(_THIS_IP_, trace_printk_fmt);		\
660 	else								\
661 		__trace_puts(_THIS_IP_, str, strlen(str));		\
662 })
663 extern int __trace_bputs(unsigned long ip, const char *str);
664 extern int __trace_puts(unsigned long ip, const char *str, int size);
665 
666 extern void trace_dump_stack(int skip);
667 
668 /*
669  * The double __builtin_constant_p is because gcc will give us an error
670  * if we try to allocate the static variable to fmt if it is not a
671  * constant. Even with the outer if statement.
672  */
673 #define ftrace_vprintk(fmt, vargs)					\
674 do {									\
675 	if (__builtin_constant_p(fmt)) {				\
676 		static const char *trace_printk_fmt __used		\
677 		  __attribute__((section("__trace_printk_fmt"))) =	\
678 			__builtin_constant_p(fmt) ? fmt : NULL;		\
679 									\
680 		__ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs);	\
681 	} else								\
682 		__ftrace_vprintk(_THIS_IP_, fmt, vargs);		\
683 } while (0)
684 
685 extern __printf(2, 0) int
686 __ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap);
687 
688 extern __printf(2, 0) int
689 __ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap);
690 
691 extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode);
692 #else
tracing_start(void)693 static inline void tracing_start(void) { }
tracing_stop(void)694 static inline void tracing_stop(void) { }
trace_dump_stack(int skip)695 static inline void trace_dump_stack(int skip) { }
696 
tracing_on(void)697 static inline void tracing_on(void) { }
tracing_off(void)698 static inline void tracing_off(void) { }
tracing_is_on(void)699 static inline int tracing_is_on(void) { return 0; }
tracing_snapshot(void)700 static inline void tracing_snapshot(void) { }
tracing_snapshot_alloc(void)701 static inline void tracing_snapshot_alloc(void) { }
702 
703 static inline __printf(1, 2)
trace_printk(const char * fmt,...)704 int trace_printk(const char *fmt, ...)
705 {
706 	return 0;
707 }
708 static __printf(1, 0) inline int
ftrace_vprintk(const char * fmt,va_list ap)709 ftrace_vprintk(const char *fmt, va_list ap)
710 {
711 	return 0;
712 }
ftrace_dump(enum ftrace_dump_mode oops_dump_mode)713 static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { }
714 #endif /* CONFIG_TRACING */
715 
716 /*
717  * min()/max()/clamp() macros that also do
718  * strict type-checking.. See the
719  * "unnecessary" pointer comparison.
720  */
721 #define min(x, y) ({				\
722 	typeof(x) _min1 = (x);			\
723 	typeof(y) _min2 = (y);			\
724 	(void) (&_min1 == &_min2);		\
725 	_min1 < _min2 ? _min1 : _min2; })
726 
727 #define max(x, y) ({				\
728 	typeof(x) _max1 = (x);			\
729 	typeof(y) _max2 = (y);			\
730 	(void) (&_max1 == &_max2);		\
731 	_max1 > _max2 ? _max1 : _max2; })
732 
733 #define min3(x, y, z) min((typeof(x))min(x, y), z)
734 #define max3(x, y, z) max((typeof(x))max(x, y), z)
735 
736 /**
737  * min_not_zero - return the minimum that is _not_ zero, unless both are zero
738  * @x: value1
739  * @y: value2
740  */
741 #define min_not_zero(x, y) ({			\
742 	typeof(x) __x = (x);			\
743 	typeof(y) __y = (y);			\
744 	__x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); })
745 
746 /**
747  * clamp - return a value clamped to a given range with strict typechecking
748  * @val: current value
749  * @lo: lowest allowable value
750  * @hi: highest allowable value
751  *
752  * This macro does strict typechecking of lo/hi to make sure they are of the
753  * same type as val.  See the unnecessary pointer comparisons.
754  */
755 #define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi)
756 
757 /*
758  * ..and if you can't take the strict
759  * types, you can specify one yourself.
760  *
761  * Or not use min/max/clamp at all, of course.
762  */
763 #define min_t(type, x, y) ({			\
764 	type __min1 = (x);			\
765 	type __min2 = (y);			\
766 	__min1 < __min2 ? __min1: __min2; })
767 
768 #define max_t(type, x, y) ({			\
769 	type __max1 = (x);			\
770 	type __max2 = (y);			\
771 	__max1 > __max2 ? __max1: __max2; })
772 
773 /**
774  * clamp_t - return a value clamped to a given range using a given type
775  * @type: the type of variable to use
776  * @val: current value
777  * @lo: minimum allowable value
778  * @hi: maximum allowable value
779  *
780  * This macro does no typechecking and uses temporary variables of type
781  * 'type' to make all the comparisons.
782  */
783 #define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi)
784 
785 /**
786  * clamp_val - return a value clamped to a given range using val's type
787  * @val: current value
788  * @lo: minimum allowable value
789  * @hi: maximum allowable value
790  *
791  * This macro does no typechecking and uses temporary variables of whatever
792  * type the input argument 'val' is.  This is useful when val is an unsigned
793  * type and min and max are literals that will otherwise be assigned a signed
794  * integer type.
795  */
796 #define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi)
797 
798 
799 /*
800  * swap - swap value of @a and @b
801  */
802 #define swap(a, b) \
803 	do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
804 
805 /**
806  * container_of - cast a member of a structure out to the containing structure
807  * @ptr:	the pointer to the member.
808  * @type:	the type of the container struct this is embedded in.
809  * @member:	the name of the member within the struct.
810  *
811  */
812 #define container_of(ptr, type, member) ({			\
813 	const typeof( ((type *)0)->member ) *__mptr = (ptr);	\
814 	(type *)( (char *)__mptr - offsetof(type,member) );})
815 
816 /* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */
817 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
818 # define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD
819 #endif
820 
821 /* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */
822 #define VERIFY_OCTAL_PERMISSIONS(perms)						\
823 	(BUILD_BUG_ON_ZERO((perms) < 0) +					\
824 	 BUILD_BUG_ON_ZERO((perms) > 0777) +					\
825 	 /* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */		\
826 	 BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) +	\
827 	 BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) +		\
828 	 /* USER_WRITABLE >= GROUP_WRITABLE */					\
829 	 BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) +	\
830 	 /* OTHER_WRITABLE?  Generally considered a bad idea. */		\
831 	 BUILD_BUG_ON_ZERO((perms) & 2) +					\
832 	 (perms))
833 #endif
834