1 #ifndef _LINUX_MM_TYPES_H
2 #define _LINUX_MM_TYPES_H
3 
4 #include <linux/auxvec.h>
5 #include <linux/types.h>
6 #include <linux/threads.h>
7 #include <linux/list.h>
8 #include <linux/spinlock.h>
9 #include <linux/rbtree.h>
10 #include <linux/rwsem.h>
11 #include <linux/completion.h>
12 #include <linux/cpumask.h>
13 #include <linux/uprobes.h>
14 #include <linux/page-flags-layout.h>
15 #include <asm/page.h>
16 #include <asm/mmu.h>
17 
18 #ifndef AT_VECTOR_SIZE_ARCH
19 #define AT_VECTOR_SIZE_ARCH 0
20 #endif
21 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
22 
23 struct address_space;
24 struct mem_cgroup;
25 
26 #define USE_SPLIT_PTE_PTLOCKS	(NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS)
27 #define USE_SPLIT_PMD_PTLOCKS	(USE_SPLIT_PTE_PTLOCKS && \
28 		IS_ENABLED(CONFIG_ARCH_ENABLE_SPLIT_PMD_PTLOCK))
29 #define ALLOC_SPLIT_PTLOCKS	(SPINLOCK_SIZE > BITS_PER_LONG/8)
30 
31 /*
32  * Each physical page in the system has a struct page associated with
33  * it to keep track of whatever it is we are using the page for at the
34  * moment. Note that we have no way to track which tasks are using
35  * a page, though if it is a pagecache page, rmap structures can tell us
36  * who is mapping it.
37  *
38  * The objects in struct page are organized in double word blocks in
39  * order to allows us to use atomic double word operations on portions
40  * of struct page. That is currently only used by slub but the arrangement
41  * allows the use of atomic double word operations on the flags/mapping
42  * and lru list pointers also.
43  */
44 struct page {
45 	/* First double word block */
46 	unsigned long flags;		/* Atomic flags, some possibly
47 					 * updated asynchronously */
48 	union {
49 		struct address_space *mapping;	/* If low bit clear, points to
50 						 * inode address_space, or NULL.
51 						 * If page mapped as anonymous
52 						 * memory, low bit is set, and
53 						 * it points to anon_vma object:
54 						 * see PAGE_MAPPING_ANON below.
55 						 */
56 		void *s_mem;			/* slab first object */
57 	};
58 
59 	/* Second double word */
60 	struct {
61 		union {
62 			pgoff_t index;		/* Our offset within mapping. */
63 			void *freelist;		/* sl[aou]b first free object */
64 		};
65 
66 		union {
67 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
68 	defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
69 			/* Used for cmpxchg_double in slub */
70 			unsigned long counters;
71 #else
72 			/*
73 			 * Keep _count separate from slub cmpxchg_double data.
74 			 * As the rest of the double word is protected by
75 			 * slab_lock but _count is not.
76 			 */
77 			unsigned counters;
78 #endif
79 
80 			struct {
81 
82 				union {
83 					/*
84 					 * Count of ptes mapped in
85 					 * mms, to show when page is
86 					 * mapped & limit reverse map
87 					 * searches.
88 					 *
89 					 * Used also for tail pages
90 					 * refcounting instead of
91 					 * _count. Tail pages cannot
92 					 * be mapped and keeping the
93 					 * tail page _count zero at
94 					 * all times guarantees
95 					 * get_page_unless_zero() will
96 					 * never succeed on tail
97 					 * pages.
98 					 */
99 					atomic_t _mapcount;
100 
101 					struct { /* SLUB */
102 						unsigned inuse:16;
103 						unsigned objects:15;
104 						unsigned frozen:1;
105 					};
106 					int units;	/* SLOB */
107 				};
108 				atomic_t _count;		/* Usage count, see below. */
109 			};
110 			unsigned int active;	/* SLAB */
111 		};
112 	};
113 
114 	/*
115 	 * Third double word block
116 	 *
117 	 * WARNING: bit 0 of the first word encode PageTail(). That means
118 	 * the rest users of the storage space MUST NOT use the bit to
119 	 * avoid collision and false-positive PageTail().
120 	 */
121 	union {
122 		struct list_head lru;	/* Pageout list, eg. active_list
123 					 * protected by zone->lru_lock !
124 					 * Can be used as a generic list
125 					 * by the page owner.
126 					 */
127 		struct {		/* slub per cpu partial pages */
128 			struct page *next;	/* Next partial slab */
129 #ifdef CONFIG_64BIT
130 			int pages;	/* Nr of partial slabs left */
131 			int pobjects;	/* Approximate # of objects */
132 #else
133 			short int pages;
134 			short int pobjects;
135 #endif
136 		};
137 
138 		struct rcu_head rcu_head;	/* Used by SLAB
139 						 * when destroying via RCU
140 						 */
141 		/* Tail pages of compound page */
142 		struct {
143 			unsigned long compound_head; /* If bit zero is set */
144 
145 			/* First tail page only */
146 #ifdef CONFIG_64BIT
147 			/*
148 			 * On 64 bit system we have enough space in struct page
149 			 * to encode compound_dtor and compound_order with
150 			 * unsigned int. It can help compiler generate better or
151 			 * smaller code on some archtectures.
152 			 */
153 			unsigned int compound_dtor;
154 			unsigned int compound_order;
155 #else
156 			unsigned short int compound_dtor;
157 			unsigned short int compound_order;
158 #endif
159 		};
160 
161 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && USE_SPLIT_PMD_PTLOCKS
162 		struct {
163 			unsigned long __pad;	/* do not overlay pmd_huge_pte
164 						 * with compound_head to avoid
165 						 * possible bit 0 collision.
166 						 */
167 			pgtable_t pmd_huge_pte; /* protected by page->ptl */
168 		};
169 #endif
170 	};
171 
172 	/* Remainder is not double word aligned */
173 	union {
174 		unsigned long private;		/* Mapping-private opaque data:
175 					 	 * usually used for buffer_heads
176 						 * if PagePrivate set; used for
177 						 * swp_entry_t if PageSwapCache;
178 						 * indicates order in the buddy
179 						 * system if PG_buddy is set.
180 						 */
181 #if USE_SPLIT_PTE_PTLOCKS
182 #if ALLOC_SPLIT_PTLOCKS
183 		spinlock_t *ptl;
184 #else
185 		spinlock_t ptl;
186 #endif
187 #endif
188 		struct kmem_cache *slab_cache;	/* SL[AU]B: Pointer to slab */
189 	};
190 
191 #ifdef CONFIG_MEMCG
192 	struct mem_cgroup *mem_cgroup;
193 #endif
194 
195 	/*
196 	 * On machines where all RAM is mapped into kernel address space,
197 	 * we can simply calculate the virtual address. On machines with
198 	 * highmem some memory is mapped into kernel virtual memory
199 	 * dynamically, so we need a place to store that address.
200 	 * Note that this field could be 16 bits on x86 ... ;)
201 	 *
202 	 * Architectures with slow multiplication can define
203 	 * WANT_PAGE_VIRTUAL in asm/page.h
204 	 */
205 #if defined(WANT_PAGE_VIRTUAL)
206 	void *virtual;			/* Kernel virtual address (NULL if
207 					   not kmapped, ie. highmem) */
208 #endif /* WANT_PAGE_VIRTUAL */
209 
210 #ifdef CONFIG_KMEMCHECK
211 	/*
212 	 * kmemcheck wants to track the status of each byte in a page; this
213 	 * is a pointer to such a status block. NULL if not tracked.
214 	 */
215 	void *shadow;
216 #endif
217 
218 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
219 	int _last_cpupid;
220 #endif
221 }
222 /*
223  * The struct page can be forced to be double word aligned so that atomic ops
224  * on double words work. The SLUB allocator can make use of such a feature.
225  */
226 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
227 	__aligned(2 * sizeof(unsigned long))
228 #endif
229 ;
230 
231 struct page_frag {
232 	struct page *page;
233 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
234 	__u32 offset;
235 	__u32 size;
236 #else
237 	__u16 offset;
238 	__u16 size;
239 #endif
240 };
241 
242 #define PAGE_FRAG_CACHE_MAX_SIZE	__ALIGN_MASK(32768, ~PAGE_MASK)
243 #define PAGE_FRAG_CACHE_MAX_ORDER	get_order(PAGE_FRAG_CACHE_MAX_SIZE)
244 
245 struct page_frag_cache {
246 	void * va;
247 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
248 	__u16 offset;
249 	__u16 size;
250 #else
251 	__u32 offset;
252 #endif
253 	/* we maintain a pagecount bias, so that we dont dirty cache line
254 	 * containing page->_count every time we allocate a fragment.
255 	 */
256 	unsigned int		pagecnt_bias;
257 	bool pfmemalloc;
258 };
259 
260 typedef unsigned long vm_flags_t;
261 
262 /*
263  * A region containing a mapping of a non-memory backed file under NOMMU
264  * conditions.  These are held in a global tree and are pinned by the VMAs that
265  * map parts of them.
266  */
267 struct vm_region {
268 	struct rb_node	vm_rb;		/* link in global region tree */
269 	vm_flags_t	vm_flags;	/* VMA vm_flags */
270 	unsigned long	vm_start;	/* start address of region */
271 	unsigned long	vm_end;		/* region initialised to here */
272 	unsigned long	vm_top;		/* region allocated to here */
273 	unsigned long	vm_pgoff;	/* the offset in vm_file corresponding to vm_start */
274 	struct file	*vm_file;	/* the backing file or NULL */
275 
276 	int		vm_usage;	/* region usage count (access under nommu_region_sem) */
277 	bool		vm_icache_flushed : 1; /* true if the icache has been flushed for
278 						* this region */
279 };
280 
281 #ifdef CONFIG_USERFAULTFD
282 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
283 struct vm_userfaultfd_ctx {
284 	struct userfaultfd_ctx *ctx;
285 };
286 #else /* CONFIG_USERFAULTFD */
287 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
288 struct vm_userfaultfd_ctx {};
289 #endif /* CONFIG_USERFAULTFD */
290 
291 /*
292  * This struct defines a memory VMM memory area. There is one of these
293  * per VM-area/task.  A VM area is any part of the process virtual memory
294  * space that has a special rule for the page-fault handlers (ie a shared
295  * library, the executable area etc).
296  */
297 struct vm_area_struct {
298 	/* The first cache line has the info for VMA tree walking. */
299 
300 	unsigned long vm_start;		/* Our start address within vm_mm. */
301 	unsigned long vm_end;		/* The first byte after our end address
302 					   within vm_mm. */
303 
304 	/* linked list of VM areas per task, sorted by address */
305 	struct vm_area_struct *vm_next, *vm_prev;
306 
307 	struct rb_node vm_rb;
308 
309 	/*
310 	 * Largest free memory gap in bytes to the left of this VMA.
311 	 * Either between this VMA and vma->vm_prev, or between one of the
312 	 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps
313 	 * get_unmapped_area find a free area of the right size.
314 	 */
315 	unsigned long rb_subtree_gap;
316 
317 	/* Second cache line starts here. */
318 
319 	struct mm_struct *vm_mm;	/* The address space we belong to. */
320 	pgprot_t vm_page_prot;		/* Access permissions of this VMA. */
321 	unsigned long vm_flags;		/* Flags, see mm.h. */
322 
323 	/*
324 	 * For areas with an address space and backing store,
325 	 * linkage into the address_space->i_mmap interval tree.
326 	 */
327 	struct {
328 		struct rb_node rb;
329 		unsigned long rb_subtree_last;
330 	} shared;
331 
332 	/*
333 	 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
334 	 * list, after a COW of one of the file pages.	A MAP_SHARED vma
335 	 * can only be in the i_mmap tree.  An anonymous MAP_PRIVATE, stack
336 	 * or brk vma (with NULL file) can only be in an anon_vma list.
337 	 */
338 	struct list_head anon_vma_chain; /* Serialized by mmap_sem &
339 					  * page_table_lock */
340 	struct anon_vma *anon_vma;	/* Serialized by page_table_lock */
341 
342 	/* Function pointers to deal with this struct. */
343 	const struct vm_operations_struct *vm_ops;
344 
345 	/* Information about our backing store: */
346 	unsigned long vm_pgoff;		/* Offset (within vm_file) in PAGE_SIZE
347 					   units, *not* PAGE_CACHE_SIZE */
348 	struct file * vm_file;		/* File we map to (can be NULL). */
349 	void * vm_private_data;		/* was vm_pte (shared mem) */
350 
351 #ifndef CONFIG_MMU
352 	struct vm_region *vm_region;	/* NOMMU mapping region */
353 #endif
354 #ifdef CONFIG_NUMA
355 	struct mempolicy *vm_policy;	/* NUMA policy for the VMA */
356 #endif
357 	struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
358 };
359 
360 struct core_thread {
361 	struct task_struct *task;
362 	struct core_thread *next;
363 };
364 
365 struct core_state {
366 	atomic_t nr_threads;
367 	struct core_thread dumper;
368 	struct completion startup;
369 };
370 
371 enum {
372 	MM_FILEPAGES,
373 	MM_ANONPAGES,
374 	MM_SWAPENTS,
375 	NR_MM_COUNTERS
376 };
377 
378 #if USE_SPLIT_PTE_PTLOCKS && defined(CONFIG_MMU)
379 #define SPLIT_RSS_COUNTING
380 /* per-thread cached information, */
381 struct task_rss_stat {
382 	int events;	/* for synchronization threshold */
383 	int count[NR_MM_COUNTERS];
384 };
385 #endif /* USE_SPLIT_PTE_PTLOCKS */
386 
387 struct mm_rss_stat {
388 	atomic_long_t count[NR_MM_COUNTERS];
389 };
390 
391 struct kioctx_table;
392 struct mm_struct {
393 	struct vm_area_struct *mmap;		/* list of VMAs */
394 	struct rb_root mm_rb;
395 	u32 vmacache_seqnum;                   /* per-thread vmacache */
396 #ifdef CONFIG_MMU
397 	unsigned long (*get_unmapped_area) (struct file *filp,
398 				unsigned long addr, unsigned long len,
399 				unsigned long pgoff, unsigned long flags);
400 #endif
401 	unsigned long mmap_base;		/* base of mmap area */
402 	unsigned long mmap_legacy_base;         /* base of mmap area in bottom-up allocations */
403 	unsigned long task_size;		/* size of task vm space */
404 	unsigned long highest_vm_end;		/* highest vma end address */
405 	pgd_t * pgd;
406 	atomic_t mm_users;			/* How many users with user space? */
407 	atomic_t mm_count;			/* How many references to "struct mm_struct" (users count as 1) */
408 	atomic_long_t nr_ptes;			/* PTE page table pages */
409 #if CONFIG_PGTABLE_LEVELS > 2
410 	atomic_long_t nr_pmds;			/* PMD page table pages */
411 #endif
412 	int map_count;				/* number of VMAs */
413 
414 	spinlock_t page_table_lock;		/* Protects page tables and some counters */
415 	struct rw_semaphore mmap_sem;
416 
417 	struct list_head mmlist;		/* List of maybe swapped mm's.	These are globally strung
418 						 * together off init_mm.mmlist, and are protected
419 						 * by mmlist_lock
420 						 */
421 
422 
423 	unsigned long hiwater_rss;	/* High-watermark of RSS usage */
424 	unsigned long hiwater_vm;	/* High-water virtual memory usage */
425 
426 	unsigned long total_vm;		/* Total pages mapped */
427 	unsigned long locked_vm;	/* Pages that have PG_mlocked set */
428 	unsigned long pinned_vm;	/* Refcount permanently increased */
429 	unsigned long shared_vm;	/* Shared pages (files) */
430 	unsigned long exec_vm;		/* VM_EXEC & ~VM_WRITE */
431 	unsigned long stack_vm;		/* VM_GROWSUP/DOWN */
432 	unsigned long def_flags;
433 	unsigned long start_code, end_code, start_data, end_data;
434 	unsigned long start_brk, brk, start_stack;
435 	unsigned long arg_start, arg_end, env_start, env_end;
436 
437 	unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
438 
439 	/*
440 	 * Special counters, in some configurations protected by the
441 	 * page_table_lock, in other configurations by being atomic.
442 	 */
443 	struct mm_rss_stat rss_stat;
444 
445 	struct linux_binfmt *binfmt;
446 
447 	cpumask_var_t cpu_vm_mask_var;
448 
449 	/* Architecture-specific MM context */
450 	mm_context_t context;
451 
452 	unsigned long flags; /* Must use atomic bitops to access the bits */
453 
454 	struct core_state *core_state; /* coredumping support */
455 #ifdef CONFIG_AIO
456 	spinlock_t			ioctx_lock;
457 	struct kioctx_table __rcu	*ioctx_table;
458 #endif
459 #ifdef CONFIG_MEMCG
460 	/*
461 	 * "owner" points to a task that is regarded as the canonical
462 	 * user/owner of this mm. All of the following must be true in
463 	 * order for it to be changed:
464 	 *
465 	 * current == mm->owner
466 	 * current->mm != mm
467 	 * new_owner->mm == mm
468 	 * new_owner->alloc_lock is held
469 	 */
470 	struct task_struct __rcu *owner;
471 #endif
472 
473 	/* store ref to file /proc/<pid>/exe symlink points to */
474 	struct file __rcu *exe_file;
475 #ifdef CONFIG_MMU_NOTIFIER
476 	struct mmu_notifier_mm *mmu_notifier_mm;
477 #endif
478 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
479 	pgtable_t pmd_huge_pte; /* protected by page_table_lock */
480 #endif
481 #ifdef CONFIG_CPUMASK_OFFSTACK
482 	struct cpumask cpumask_allocation;
483 #endif
484 #ifdef CONFIG_NUMA_BALANCING
485 	/*
486 	 * numa_next_scan is the next time that the PTEs will be marked
487 	 * pte_numa. NUMA hinting faults will gather statistics and migrate
488 	 * pages to new nodes if necessary.
489 	 */
490 	unsigned long numa_next_scan;
491 
492 	/* Restart point for scanning and setting pte_numa */
493 	unsigned long numa_scan_offset;
494 
495 	/* numa_scan_seq prevents two threads setting pte_numa */
496 	int numa_scan_seq;
497 #endif
498 #if defined(CONFIG_NUMA_BALANCING) || defined(CONFIG_COMPACTION)
499 	/*
500 	 * An operation with batched TLB flushing is going on. Anything that
501 	 * can move process memory needs to flush the TLB when moving a
502 	 * PROT_NONE or PROT_NUMA mapped page.
503 	 */
504 	bool tlb_flush_pending;
505 #endif
506 	struct uprobes_state uprobes_state;
507 #ifdef CONFIG_X86_INTEL_MPX
508 	/* address of the bounds directory */
509 	void __user *bd_addr;
510 #endif
511 #ifdef CONFIG_HUGETLB_PAGE
512 	atomic_long_t hugetlb_usage;
513 #endif
514 };
515 
mm_init_cpumask(struct mm_struct * mm)516 static inline void mm_init_cpumask(struct mm_struct *mm)
517 {
518 #ifdef CONFIG_CPUMASK_OFFSTACK
519 	mm->cpu_vm_mask_var = &mm->cpumask_allocation;
520 #endif
521 	cpumask_clear(mm->cpu_vm_mask_var);
522 }
523 
524 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
mm_cpumask(struct mm_struct * mm)525 static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
526 {
527 	return mm->cpu_vm_mask_var;
528 }
529 
530 #if defined(CONFIG_NUMA_BALANCING) || defined(CONFIG_COMPACTION)
531 /*
532  * Memory barriers to keep this state in sync are graciously provided by
533  * the page table locks, outside of which no page table modifications happen.
534  * The barriers below prevent the compiler from re-ordering the instructions
535  * around the memory barriers that are already present in the code.
536  */
mm_tlb_flush_pending(struct mm_struct * mm)537 static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
538 {
539 	barrier();
540 	return mm->tlb_flush_pending;
541 }
set_tlb_flush_pending(struct mm_struct * mm)542 static inline void set_tlb_flush_pending(struct mm_struct *mm)
543 {
544 	mm->tlb_flush_pending = true;
545 
546 	/*
547 	 * Guarantee that the tlb_flush_pending store does not leak into the
548 	 * critical section updating the page tables
549 	 */
550 	smp_mb__before_spinlock();
551 }
552 /* Clearing is done after a TLB flush, which also provides a barrier. */
clear_tlb_flush_pending(struct mm_struct * mm)553 static inline void clear_tlb_flush_pending(struct mm_struct *mm)
554 {
555 	barrier();
556 	mm->tlb_flush_pending = false;
557 }
558 #else
mm_tlb_flush_pending(struct mm_struct * mm)559 static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
560 {
561 	return false;
562 }
set_tlb_flush_pending(struct mm_struct * mm)563 static inline void set_tlb_flush_pending(struct mm_struct *mm)
564 {
565 }
clear_tlb_flush_pending(struct mm_struct * mm)566 static inline void clear_tlb_flush_pending(struct mm_struct *mm)
567 {
568 }
569 #endif
570 
571 struct vm_special_mapping
572 {
573 	const char *name;
574 	struct page **pages;
575 };
576 
577 enum tlb_flush_reason {
578 	TLB_FLUSH_ON_TASK_SWITCH,
579 	TLB_REMOTE_SHOOTDOWN,
580 	TLB_LOCAL_SHOOTDOWN,
581 	TLB_LOCAL_MM_SHOOTDOWN,
582 	TLB_REMOTE_SEND_IPI,
583 	NR_TLB_FLUSH_REASONS,
584 };
585 
586  /*
587   * A swap entry has to fit into a "unsigned long", as the entry is hidden
588   * in the "index" field of the swapper address space.
589   */
590 typedef struct {
591 	unsigned long val;
592 } swp_entry_t;
593 
594 #endif /* _LINUX_MM_TYPES_H */
595