1 /*
2  * Host communication command constants for ChromeOS EC
3  *
4  * Copyright (C) 2012 Google, Inc
5  *
6  * This software is licensed under the terms of the GNU General Public
7  * License version 2, as published by the Free Software Foundation, and
8  * may be copied, distributed, and modified under those terms.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * The ChromeOS EC multi function device is used to mux all the requests
16  * to the EC device for its multiple features: keyboard controller,
17  * battery charging and regulator control, firmware update.
18  *
19  * NOTE: This file is copied verbatim from the ChromeOS EC Open Source
20  * project in an attempt to make future updates easy to make.
21  */
22 
23 #ifndef __CROS_EC_COMMANDS_H
24 #define __CROS_EC_COMMANDS_H
25 
26 /*
27  * Current version of this protocol
28  *
29  * TODO(crosbug.com/p/11223): This is effectively useless; protocol is
30  * determined in other ways.  Remove this once the kernel code no longer
31  * depends on it.
32  */
33 #define EC_PROTO_VERSION          0x00000002
34 
35 /* Command version mask */
36 #define EC_VER_MASK(version) (1UL << (version))
37 
38 /* I/O addresses for ACPI commands */
39 #define EC_LPC_ADDR_ACPI_DATA  0x62
40 #define EC_LPC_ADDR_ACPI_CMD   0x66
41 
42 /* I/O addresses for host command */
43 #define EC_LPC_ADDR_HOST_DATA  0x200
44 #define EC_LPC_ADDR_HOST_CMD   0x204
45 
46 /* I/O addresses for host command args and params */
47 /* Protocol version 2 */
48 #define EC_LPC_ADDR_HOST_ARGS    0x800  /* And 0x801, 0x802, 0x803 */
49 #define EC_LPC_ADDR_HOST_PARAM   0x804  /* For version 2 params; size is
50 					 * EC_PROTO2_MAX_PARAM_SIZE */
51 /* Protocol version 3 */
52 #define EC_LPC_ADDR_HOST_PACKET  0x800  /* Offset of version 3 packet */
53 #define EC_LPC_HOST_PACKET_SIZE  0x100  /* Max size of version 3 packet */
54 
55 /* The actual block is 0x800-0x8ff, but some BIOSes think it's 0x880-0x8ff
56  * and they tell the kernel that so we have to think of it as two parts. */
57 #define EC_HOST_CMD_REGION0    0x800
58 #define EC_HOST_CMD_REGION1    0x880
59 #define EC_HOST_CMD_REGION_SIZE 0x80
60 
61 /* EC command register bit functions */
62 #define EC_LPC_CMDR_DATA	(1 << 0)  /* Data ready for host to read */
63 #define EC_LPC_CMDR_PENDING	(1 << 1)  /* Write pending to EC */
64 #define EC_LPC_CMDR_BUSY	(1 << 2)  /* EC is busy processing a command */
65 #define EC_LPC_CMDR_CMD		(1 << 3)  /* Last host write was a command */
66 #define EC_LPC_CMDR_ACPI_BRST	(1 << 4)  /* Burst mode (not used) */
67 #define EC_LPC_CMDR_SCI		(1 << 5)  /* SCI event is pending */
68 #define EC_LPC_CMDR_SMI		(1 << 6)  /* SMI event is pending */
69 
70 #define EC_LPC_ADDR_MEMMAP       0x900
71 #define EC_MEMMAP_SIZE         255 /* ACPI IO buffer max is 255 bytes */
72 #define EC_MEMMAP_TEXT_MAX     8   /* Size of a string in the memory map */
73 
74 /* The offset address of each type of data in mapped memory. */
75 #define EC_MEMMAP_TEMP_SENSOR      0x00 /* Temp sensors 0x00 - 0x0f */
76 #define EC_MEMMAP_FAN              0x10 /* Fan speeds 0x10 - 0x17 */
77 #define EC_MEMMAP_TEMP_SENSOR_B    0x18 /* More temp sensors 0x18 - 0x1f */
78 #define EC_MEMMAP_ID               0x20 /* 0x20 == 'E', 0x21 == 'C' */
79 #define EC_MEMMAP_ID_VERSION       0x22 /* Version of data in 0x20 - 0x2f */
80 #define EC_MEMMAP_THERMAL_VERSION  0x23 /* Version of data in 0x00 - 0x1f */
81 #define EC_MEMMAP_BATTERY_VERSION  0x24 /* Version of data in 0x40 - 0x7f */
82 #define EC_MEMMAP_SWITCHES_VERSION 0x25 /* Version of data in 0x30 - 0x33 */
83 #define EC_MEMMAP_EVENTS_VERSION   0x26 /* Version of data in 0x34 - 0x3f */
84 #define EC_MEMMAP_HOST_CMD_FLAGS   0x27 /* Host cmd interface flags (8 bits) */
85 /* Unused 0x28 - 0x2f */
86 #define EC_MEMMAP_SWITCHES         0x30	/* 8 bits */
87 /* Unused 0x31 - 0x33 */
88 #define EC_MEMMAP_HOST_EVENTS      0x34 /* 32 bits */
89 /* Reserve 0x38 - 0x3f for additional host event-related stuff */
90 /* Battery values are all 32 bits */
91 #define EC_MEMMAP_BATT_VOLT        0x40 /* Battery Present Voltage */
92 #define EC_MEMMAP_BATT_RATE        0x44 /* Battery Present Rate */
93 #define EC_MEMMAP_BATT_CAP         0x48 /* Battery Remaining Capacity */
94 #define EC_MEMMAP_BATT_FLAG        0x4c /* Battery State, defined below */
95 #define EC_MEMMAP_BATT_DCAP        0x50 /* Battery Design Capacity */
96 #define EC_MEMMAP_BATT_DVLT        0x54 /* Battery Design Voltage */
97 #define EC_MEMMAP_BATT_LFCC        0x58 /* Battery Last Full Charge Capacity */
98 #define EC_MEMMAP_BATT_CCNT        0x5c /* Battery Cycle Count */
99 /* Strings are all 8 bytes (EC_MEMMAP_TEXT_MAX) */
100 #define EC_MEMMAP_BATT_MFGR        0x60 /* Battery Manufacturer String */
101 #define EC_MEMMAP_BATT_MODEL       0x68 /* Battery Model Number String */
102 #define EC_MEMMAP_BATT_SERIAL      0x70 /* Battery Serial Number String */
103 #define EC_MEMMAP_BATT_TYPE        0x78 /* Battery Type String */
104 #define EC_MEMMAP_ALS              0x80 /* ALS readings in lux (2 X 16 bits) */
105 /* Unused 0x84 - 0x8f */
106 #define EC_MEMMAP_ACC_STATUS       0x90 /* Accelerometer status (8 bits )*/
107 /* Unused 0x91 */
108 #define EC_MEMMAP_ACC_DATA         0x92 /* Accelerometer data 0x92 - 0x9f */
109 #define EC_MEMMAP_GYRO_DATA        0xa0 /* Gyroscope data 0xa0 - 0xa5 */
110 /* Unused 0xa6 - 0xfe (remember, 0xff is NOT part of the memmap region) */
111 
112 
113 /* Define the format of the accelerometer mapped memory status byte. */
114 #define EC_MEMMAP_ACC_STATUS_SAMPLE_ID_MASK  0x0f
115 #define EC_MEMMAP_ACC_STATUS_BUSY_BIT        (1 << 4)
116 #define EC_MEMMAP_ACC_STATUS_PRESENCE_BIT    (1 << 7)
117 
118 /* Number of temp sensors at EC_MEMMAP_TEMP_SENSOR */
119 #define EC_TEMP_SENSOR_ENTRIES     16
120 /*
121  * Number of temp sensors at EC_MEMMAP_TEMP_SENSOR_B.
122  *
123  * Valid only if EC_MEMMAP_THERMAL_VERSION returns >= 2.
124  */
125 #define EC_TEMP_SENSOR_B_ENTRIES      8
126 
127 /* Special values for mapped temperature sensors */
128 #define EC_TEMP_SENSOR_NOT_PRESENT    0xff
129 #define EC_TEMP_SENSOR_ERROR          0xfe
130 #define EC_TEMP_SENSOR_NOT_POWERED    0xfd
131 #define EC_TEMP_SENSOR_NOT_CALIBRATED 0xfc
132 /*
133  * The offset of temperature value stored in mapped memory.  This allows
134  * reporting a temperature range of 200K to 454K = -73C to 181C.
135  */
136 #define EC_TEMP_SENSOR_OFFSET      200
137 
138 /*
139  * Number of ALS readings at EC_MEMMAP_ALS
140  */
141 #define EC_ALS_ENTRIES             2
142 
143 /*
144  * The default value a temperature sensor will return when it is present but
145  * has not been read this boot.  This is a reasonable number to avoid
146  * triggering alarms on the host.
147  */
148 #define EC_TEMP_SENSOR_DEFAULT     (296 - EC_TEMP_SENSOR_OFFSET)
149 
150 #define EC_FAN_SPEED_ENTRIES       4       /* Number of fans at EC_MEMMAP_FAN */
151 #define EC_FAN_SPEED_NOT_PRESENT   0xffff  /* Entry not present */
152 #define EC_FAN_SPEED_STALLED       0xfffe  /* Fan stalled */
153 
154 /* Battery bit flags at EC_MEMMAP_BATT_FLAG. */
155 #define EC_BATT_FLAG_AC_PRESENT   0x01
156 #define EC_BATT_FLAG_BATT_PRESENT 0x02
157 #define EC_BATT_FLAG_DISCHARGING  0x04
158 #define EC_BATT_FLAG_CHARGING     0x08
159 #define EC_BATT_FLAG_LEVEL_CRITICAL 0x10
160 
161 /* Switch flags at EC_MEMMAP_SWITCHES */
162 #define EC_SWITCH_LID_OPEN               0x01
163 #define EC_SWITCH_POWER_BUTTON_PRESSED   0x02
164 #define EC_SWITCH_WRITE_PROTECT_DISABLED 0x04
165 /* Was recovery requested via keyboard; now unused. */
166 #define EC_SWITCH_IGNORE1		 0x08
167 /* Recovery requested via dedicated signal (from servo board) */
168 #define EC_SWITCH_DEDICATED_RECOVERY     0x10
169 /* Was fake developer mode switch; now unused.  Remove in next refactor. */
170 #define EC_SWITCH_IGNORE0                0x20
171 
172 /* Host command interface flags */
173 /* Host command interface supports LPC args (LPC interface only) */
174 #define EC_HOST_CMD_FLAG_LPC_ARGS_SUPPORTED  0x01
175 /* Host command interface supports version 3 protocol */
176 #define EC_HOST_CMD_FLAG_VERSION_3   0x02
177 
178 /* Wireless switch flags */
179 #define EC_WIRELESS_SWITCH_ALL       ~0x00  /* All flags */
180 #define EC_WIRELESS_SWITCH_WLAN       0x01  /* WLAN radio */
181 #define EC_WIRELESS_SWITCH_BLUETOOTH  0x02  /* Bluetooth radio */
182 #define EC_WIRELESS_SWITCH_WWAN       0x04  /* WWAN power */
183 #define EC_WIRELESS_SWITCH_WLAN_POWER 0x08  /* WLAN power */
184 
185 /*
186  * This header file is used in coreboot both in C and ACPI code.  The ACPI code
187  * is pre-processed to handle constants but the ASL compiler is unable to
188  * handle actual C code so keep it separate.
189  */
190 #ifndef __ACPI__
191 
192 /*
193  * Define __packed if someone hasn't beat us to it.  Linux kernel style
194  * checking prefers __packed over __attribute__((packed)).
195  */
196 #ifndef __packed
197 #define __packed __attribute__((packed))
198 #endif
199 
200 /* LPC command status byte masks */
201 /* EC has written a byte in the data register and host hasn't read it yet */
202 #define EC_LPC_STATUS_TO_HOST     0x01
203 /* Host has written a command/data byte and the EC hasn't read it yet */
204 #define EC_LPC_STATUS_FROM_HOST   0x02
205 /* EC is processing a command */
206 #define EC_LPC_STATUS_PROCESSING  0x04
207 /* Last write to EC was a command, not data */
208 #define EC_LPC_STATUS_LAST_CMD    0x08
209 /* EC is in burst mode.  Unsupported by Chrome EC, so this bit is never set */
210 #define EC_LPC_STATUS_BURST_MODE  0x10
211 /* SCI event is pending (requesting SCI query) */
212 #define EC_LPC_STATUS_SCI_PENDING 0x20
213 /* SMI event is pending (requesting SMI query) */
214 #define EC_LPC_STATUS_SMI_PENDING 0x40
215 /* (reserved) */
216 #define EC_LPC_STATUS_RESERVED    0x80
217 
218 /*
219  * EC is busy.  This covers both the EC processing a command, and the host has
220  * written a new command but the EC hasn't picked it up yet.
221  */
222 #define EC_LPC_STATUS_BUSY_MASK \
223 	(EC_LPC_STATUS_FROM_HOST | EC_LPC_STATUS_PROCESSING)
224 
225 /* Host command response codes */
226 enum ec_status {
227 	EC_RES_SUCCESS = 0,
228 	EC_RES_INVALID_COMMAND = 1,
229 	EC_RES_ERROR = 2,
230 	EC_RES_INVALID_PARAM = 3,
231 	EC_RES_ACCESS_DENIED = 4,
232 	EC_RES_INVALID_RESPONSE = 5,
233 	EC_RES_INVALID_VERSION = 6,
234 	EC_RES_INVALID_CHECKSUM = 7,
235 	EC_RES_IN_PROGRESS = 8,		/* Accepted, command in progress */
236 	EC_RES_UNAVAILABLE = 9,		/* No response available */
237 	EC_RES_TIMEOUT = 10,		/* We got a timeout */
238 	EC_RES_OVERFLOW = 11,		/* Table / data overflow */
239 	EC_RES_INVALID_HEADER = 12,     /* Header contains invalid data */
240 	EC_RES_REQUEST_TRUNCATED = 13,  /* Didn't get the entire request */
241 	EC_RES_RESPONSE_TOO_BIG = 14    /* Response was too big to handle */
242 };
243 
244 /*
245  * Host event codes.  Note these are 1-based, not 0-based, because ACPI query
246  * EC command uses code 0 to mean "no event pending".  We explicitly specify
247  * each value in the enum listing so they won't change if we delete/insert an
248  * item or rearrange the list (it needs to be stable across platforms, not
249  * just within a single compiled instance).
250  */
251 enum host_event_code {
252 	EC_HOST_EVENT_LID_CLOSED = 1,
253 	EC_HOST_EVENT_LID_OPEN = 2,
254 	EC_HOST_EVENT_POWER_BUTTON = 3,
255 	EC_HOST_EVENT_AC_CONNECTED = 4,
256 	EC_HOST_EVENT_AC_DISCONNECTED = 5,
257 	EC_HOST_EVENT_BATTERY_LOW = 6,
258 	EC_HOST_EVENT_BATTERY_CRITICAL = 7,
259 	EC_HOST_EVENT_BATTERY = 8,
260 	EC_HOST_EVENT_THERMAL_THRESHOLD = 9,
261 	EC_HOST_EVENT_THERMAL_OVERLOAD = 10,
262 	EC_HOST_EVENT_THERMAL = 11,
263 	EC_HOST_EVENT_USB_CHARGER = 12,
264 	EC_HOST_EVENT_KEY_PRESSED = 13,
265 	/*
266 	 * EC has finished initializing the host interface.  The host can check
267 	 * for this event following sending a EC_CMD_REBOOT_EC command to
268 	 * determine when the EC is ready to accept subsequent commands.
269 	 */
270 	EC_HOST_EVENT_INTERFACE_READY = 14,
271 	/* Keyboard recovery combo has been pressed */
272 	EC_HOST_EVENT_KEYBOARD_RECOVERY = 15,
273 
274 	/* Shutdown due to thermal overload */
275 	EC_HOST_EVENT_THERMAL_SHUTDOWN = 16,
276 	/* Shutdown due to battery level too low */
277 	EC_HOST_EVENT_BATTERY_SHUTDOWN = 17,
278 
279 	/* Suggest that the AP throttle itself */
280 	EC_HOST_EVENT_THROTTLE_START = 18,
281 	/* Suggest that the AP resume normal speed */
282 	EC_HOST_EVENT_THROTTLE_STOP = 19,
283 
284 	/* Hang detect logic detected a hang and host event timeout expired */
285 	EC_HOST_EVENT_HANG_DETECT = 20,
286 	/* Hang detect logic detected a hang and warm rebooted the AP */
287 	EC_HOST_EVENT_HANG_REBOOT = 21,
288 
289 	/*
290 	 * The high bit of the event mask is not used as a host event code.  If
291 	 * it reads back as set, then the entire event mask should be
292 	 * considered invalid by the host.  This can happen when reading the
293 	 * raw event status via EC_MEMMAP_HOST_EVENTS but the LPC interface is
294 	 * not initialized on the EC, or improperly configured on the host.
295 	 */
296 	EC_HOST_EVENT_INVALID = 32
297 };
298 /* Host event mask */
299 #define EC_HOST_EVENT_MASK(event_code) (1UL << ((event_code) - 1))
300 
301 /* Arguments at EC_LPC_ADDR_HOST_ARGS */
302 struct ec_lpc_host_args {
303 	uint8_t flags;
304 	uint8_t command_version;
305 	uint8_t data_size;
306 	/*
307 	 * Checksum; sum of command + flags + command_version + data_size +
308 	 * all params/response data bytes.
309 	 */
310 	uint8_t checksum;
311 } __packed;
312 
313 /* Flags for ec_lpc_host_args.flags */
314 /*
315  * Args are from host.  Data area at EC_LPC_ADDR_HOST_PARAM contains command
316  * params.
317  *
318  * If EC gets a command and this flag is not set, this is an old-style command.
319  * Command version is 0 and params from host are at EC_LPC_ADDR_OLD_PARAM with
320  * unknown length.  EC must respond with an old-style response (that is,
321  * withouth setting EC_HOST_ARGS_FLAG_TO_HOST).
322  */
323 #define EC_HOST_ARGS_FLAG_FROM_HOST 0x01
324 /*
325  * Args are from EC.  Data area at EC_LPC_ADDR_HOST_PARAM contains response.
326  *
327  * If EC responds to a command and this flag is not set, this is an old-style
328  * response.  Command version is 0 and response data from EC is at
329  * EC_LPC_ADDR_OLD_PARAM with unknown length.
330  */
331 #define EC_HOST_ARGS_FLAG_TO_HOST   0x02
332 
333 /*****************************************************************************/
334 /*
335  * Byte codes returned by EC over SPI interface.
336  *
337  * These can be used by the AP to debug the EC interface, and to determine
338  * when the EC is not in a state where it will ever get around to responding
339  * to the AP.
340  *
341  * Example of sequence of bytes read from EC for a current good transfer:
342  *   1. -                  - AP asserts chip select (CS#)
343  *   2. EC_SPI_OLD_READY   - AP sends first byte(s) of request
344  *   3. -                  - EC starts handling CS# interrupt
345  *   4. EC_SPI_RECEIVING   - AP sends remaining byte(s) of request
346  *   5. EC_SPI_PROCESSING  - EC starts processing request; AP is clocking in
347  *                           bytes looking for EC_SPI_FRAME_START
348  *   6. -                  - EC finishes processing and sets up response
349  *   7. EC_SPI_FRAME_START - AP reads frame byte
350  *   8. (response packet)  - AP reads response packet
351  *   9. EC_SPI_PAST_END    - Any additional bytes read by AP
352  *   10 -                  - AP deasserts chip select
353  *   11 -                  - EC processes CS# interrupt and sets up DMA for
354  *                           next request
355  *
356  * If the AP is waiting for EC_SPI_FRAME_START and sees any value other than
357  * the following byte values:
358  *   EC_SPI_OLD_READY
359  *   EC_SPI_RX_READY
360  *   EC_SPI_RECEIVING
361  *   EC_SPI_PROCESSING
362  *
363  * Then the EC found an error in the request, or was not ready for the request
364  * and lost data.  The AP should give up waiting for EC_SPI_FRAME_START,
365  * because the EC is unable to tell when the AP is done sending its request.
366  */
367 
368 /*
369  * Framing byte which precedes a response packet from the EC.  After sending a
370  * request, the AP will clock in bytes until it sees the framing byte, then
371  * clock in the response packet.
372  */
373 #define EC_SPI_FRAME_START    0xec
374 
375 /*
376  * Padding bytes which are clocked out after the end of a response packet.
377  */
378 #define EC_SPI_PAST_END       0xed
379 
380 /*
381  * EC is ready to receive, and has ignored the byte sent by the AP.  EC expects
382  * that the AP will send a valid packet header (starting with
383  * EC_COMMAND_PROTOCOL_3) in the next 32 bytes.
384  */
385 #define EC_SPI_RX_READY       0xf8
386 
387 /*
388  * EC has started receiving the request from the AP, but hasn't started
389  * processing it yet.
390  */
391 #define EC_SPI_RECEIVING      0xf9
392 
393 /* EC has received the entire request from the AP and is processing it. */
394 #define EC_SPI_PROCESSING     0xfa
395 
396 /*
397  * EC received bad data from the AP, such as a packet header with an invalid
398  * length.  EC will ignore all data until chip select deasserts.
399  */
400 #define EC_SPI_RX_BAD_DATA    0xfb
401 
402 /*
403  * EC received data from the AP before it was ready.  That is, the AP asserted
404  * chip select and started clocking data before the EC was ready to receive it.
405  * EC will ignore all data until chip select deasserts.
406  */
407 #define EC_SPI_NOT_READY      0xfc
408 
409 /*
410  * EC was ready to receive a request from the AP.  EC has treated the byte sent
411  * by the AP as part of a request packet, or (for old-style ECs) is processing
412  * a fully received packet but is not ready to respond yet.
413  */
414 #define EC_SPI_OLD_READY      0xfd
415 
416 /*****************************************************************************/
417 
418 /*
419  * Protocol version 2 for I2C and SPI send a request this way:
420  *
421  *	0	EC_CMD_VERSION0 + (command version)
422  *	1	Command number
423  *	2	Length of params = N
424  *	3..N+2	Params, if any
425  *	N+3	8-bit checksum of bytes 0..N+2
426  *
427  * The corresponding response is:
428  *
429  *	0	Result code (EC_RES_*)
430  *	1	Length of params = M
431  *	2..M+1	Params, if any
432  *	M+2	8-bit checksum of bytes 0..M+1
433  */
434 #define EC_PROTO2_REQUEST_HEADER_BYTES 3
435 #define EC_PROTO2_REQUEST_TRAILER_BYTES 1
436 #define EC_PROTO2_REQUEST_OVERHEAD (EC_PROTO2_REQUEST_HEADER_BYTES +	\
437 				    EC_PROTO2_REQUEST_TRAILER_BYTES)
438 
439 #define EC_PROTO2_RESPONSE_HEADER_BYTES 2
440 #define EC_PROTO2_RESPONSE_TRAILER_BYTES 1
441 #define EC_PROTO2_RESPONSE_OVERHEAD (EC_PROTO2_RESPONSE_HEADER_BYTES +	\
442 				     EC_PROTO2_RESPONSE_TRAILER_BYTES)
443 
444 /* Parameter length was limited by the LPC interface */
445 #define EC_PROTO2_MAX_PARAM_SIZE 0xfc
446 
447 /* Maximum request and response packet sizes for protocol version 2 */
448 #define EC_PROTO2_MAX_REQUEST_SIZE (EC_PROTO2_REQUEST_OVERHEAD +	\
449 				    EC_PROTO2_MAX_PARAM_SIZE)
450 #define EC_PROTO2_MAX_RESPONSE_SIZE (EC_PROTO2_RESPONSE_OVERHEAD +	\
451 				     EC_PROTO2_MAX_PARAM_SIZE)
452 
453 /*****************************************************************************/
454 
455 /*
456  * Value written to legacy command port / prefix byte to indicate protocol
457  * 3+ structs are being used.  Usage is bus-dependent.
458  */
459 #define EC_COMMAND_PROTOCOL_3 0xda
460 
461 #define EC_HOST_REQUEST_VERSION 3
462 
463 /* Version 3 request from host */
464 struct ec_host_request {
465 	/* Struct version (=3)
466 	 *
467 	 * EC will return EC_RES_INVALID_HEADER if it receives a header with a
468 	 * version it doesn't know how to parse.
469 	 */
470 	uint8_t struct_version;
471 
472 	/*
473 	 * Checksum of request and data; sum of all bytes including checksum
474 	 * should total to 0.
475 	 */
476 	uint8_t checksum;
477 
478 	/* Command code */
479 	uint16_t command;
480 
481 	/* Command version */
482 	uint8_t command_version;
483 
484 	/* Unused byte in current protocol version; set to 0 */
485 	uint8_t reserved;
486 
487 	/* Length of data which follows this header */
488 	uint16_t data_len;
489 } __packed;
490 
491 #define EC_HOST_RESPONSE_VERSION 3
492 
493 /* Version 3 response from EC */
494 struct ec_host_response {
495 	/* Struct version (=3) */
496 	uint8_t struct_version;
497 
498 	/*
499 	 * Checksum of response and data; sum of all bytes including checksum
500 	 * should total to 0.
501 	 */
502 	uint8_t checksum;
503 
504 	/* Result code (EC_RES_*) */
505 	uint16_t result;
506 
507 	/* Length of data which follows this header */
508 	uint16_t data_len;
509 
510 	/* Unused bytes in current protocol version; set to 0 */
511 	uint16_t reserved;
512 } __packed;
513 
514 /*****************************************************************************/
515 /*
516  * Notes on commands:
517  *
518  * Each command is an 16-bit command value.  Commands which take params or
519  * return response data specify structs for that data.  If no struct is
520  * specified, the command does not input or output data, respectively.
521  * Parameter/response length is implicit in the structs.  Some underlying
522  * communication protocols (I2C, SPI) may add length or checksum headers, but
523  * those are implementation-dependent and not defined here.
524  */
525 
526 /*****************************************************************************/
527 /* General / test commands */
528 
529 /*
530  * Get protocol version, used to deal with non-backward compatible protocol
531  * changes.
532  */
533 #define EC_CMD_PROTO_VERSION 0x00
534 
535 struct ec_response_proto_version {
536 	uint32_t version;
537 } __packed;
538 
539 /*
540  * Hello.  This is a simple command to test the EC is responsive to
541  * commands.
542  */
543 #define EC_CMD_HELLO 0x01
544 
545 struct ec_params_hello {
546 	uint32_t in_data;  /* Pass anything here */
547 } __packed;
548 
549 struct ec_response_hello {
550 	uint32_t out_data;  /* Output will be in_data + 0x01020304 */
551 } __packed;
552 
553 /* Get version number */
554 #define EC_CMD_GET_VERSION 0x02
555 
556 enum ec_current_image {
557 	EC_IMAGE_UNKNOWN = 0,
558 	EC_IMAGE_RO,
559 	EC_IMAGE_RW
560 };
561 
562 struct ec_response_get_version {
563 	/* Null-terminated version strings for RO, RW */
564 	char version_string_ro[32];
565 	char version_string_rw[32];
566 	char reserved[32];       /* Was previously RW-B string */
567 	uint32_t current_image;  /* One of ec_current_image */
568 } __packed;
569 
570 /* Read test */
571 #define EC_CMD_READ_TEST 0x03
572 
573 struct ec_params_read_test {
574 	uint32_t offset;   /* Starting value for read buffer */
575 	uint32_t size;     /* Size to read in bytes */
576 } __packed;
577 
578 struct ec_response_read_test {
579 	uint32_t data[32];
580 } __packed;
581 
582 /*
583  * Get build information
584  *
585  * Response is null-terminated string.
586  */
587 #define EC_CMD_GET_BUILD_INFO 0x04
588 
589 /* Get chip info */
590 #define EC_CMD_GET_CHIP_INFO 0x05
591 
592 struct ec_response_get_chip_info {
593 	/* Null-terminated strings */
594 	char vendor[32];
595 	char name[32];
596 	char revision[32];  /* Mask version */
597 } __packed;
598 
599 /* Get board HW version */
600 #define EC_CMD_GET_BOARD_VERSION 0x06
601 
602 struct ec_response_board_version {
603 	uint16_t board_version;  /* A monotonously incrementing number. */
604 } __packed;
605 
606 /*
607  * Read memory-mapped data.
608  *
609  * This is an alternate interface to memory-mapped data for bus protocols
610  * which don't support direct-mapped memory - I2C, SPI, etc.
611  *
612  * Response is params.size bytes of data.
613  */
614 #define EC_CMD_READ_MEMMAP 0x07
615 
616 struct ec_params_read_memmap {
617 	uint8_t offset;   /* Offset in memmap (EC_MEMMAP_*) */
618 	uint8_t size;     /* Size to read in bytes */
619 } __packed;
620 
621 /* Read versions supported for a command */
622 #define EC_CMD_GET_CMD_VERSIONS 0x08
623 
624 struct ec_params_get_cmd_versions {
625 	uint8_t cmd;      /* Command to check */
626 } __packed;
627 
628 struct ec_response_get_cmd_versions {
629 	/*
630 	 * Mask of supported versions; use EC_VER_MASK() to compare with a
631 	 * desired version.
632 	 */
633 	uint32_t version_mask;
634 } __packed;
635 
636 /*
637  * Check EC communcations status (busy). This is needed on i2c/spi but not
638  * on lpc since it has its own out-of-band busy indicator.
639  *
640  * lpc must read the status from the command register. Attempting this on
641  * lpc will overwrite the args/parameter space and corrupt its data.
642  */
643 #define EC_CMD_GET_COMMS_STATUS		0x09
644 
645 /* Avoid using ec_status which is for return values */
646 enum ec_comms_status {
647 	EC_COMMS_STATUS_PROCESSING	= 1 << 0,	/* Processing cmd */
648 };
649 
650 struct ec_response_get_comms_status {
651 	uint32_t flags;		/* Mask of enum ec_comms_status */
652 } __packed;
653 
654 /* Fake a variety of responses, purely for testing purposes. */
655 #define EC_CMD_TEST_PROTOCOL		0x0a
656 
657 /* Tell the EC what to send back to us. */
658 struct ec_params_test_protocol {
659 	uint32_t ec_result;
660 	uint32_t ret_len;
661 	uint8_t buf[32];
662 } __packed;
663 
664 /* Here it comes... */
665 struct ec_response_test_protocol {
666 	uint8_t buf[32];
667 } __packed;
668 
669 /* Get prococol information */
670 #define EC_CMD_GET_PROTOCOL_INFO	0x0b
671 
672 /* Flags for ec_response_get_protocol_info.flags */
673 /* EC_RES_IN_PROGRESS may be returned if a command is slow */
674 #define EC_PROTOCOL_INFO_IN_PROGRESS_SUPPORTED (1 << 0)
675 
676 struct ec_response_get_protocol_info {
677 	/* Fields which exist if at least protocol version 3 supported */
678 
679 	/* Bitmask of protocol versions supported (1 << n means version n)*/
680 	uint32_t protocol_versions;
681 
682 	/* Maximum request packet size, in bytes */
683 	uint16_t max_request_packet_size;
684 
685 	/* Maximum response packet size, in bytes */
686 	uint16_t max_response_packet_size;
687 
688 	/* Flags; see EC_PROTOCOL_INFO_* */
689 	uint32_t flags;
690 } __packed;
691 
692 
693 /*****************************************************************************/
694 /* Get/Set miscellaneous values */
695 
696 /* The upper byte of .flags tells what to do (nothing means "get") */
697 #define EC_GSV_SET        0x80000000
698 
699 /* The lower three bytes of .flags identifies the parameter, if that has
700    meaning for an individual command. */
701 #define EC_GSV_PARAM_MASK 0x00ffffff
702 
703 struct ec_params_get_set_value {
704 	uint32_t flags;
705 	uint32_t value;
706 } __packed;
707 
708 struct ec_response_get_set_value {
709 	uint32_t flags;
710 	uint32_t value;
711 } __packed;
712 
713 /* More than one command can use these structs to get/set paramters. */
714 #define EC_CMD_GSV_PAUSE_IN_S5	0x0c
715 
716 
717 /*****************************************************************************/
718 /* Flash commands */
719 
720 /* Get flash info */
721 #define EC_CMD_FLASH_INFO 0x10
722 
723 /* Version 0 returns these fields */
724 struct ec_response_flash_info {
725 	/* Usable flash size, in bytes */
726 	uint32_t flash_size;
727 	/*
728 	 * Write block size.  Write offset and size must be a multiple
729 	 * of this.
730 	 */
731 	uint32_t write_block_size;
732 	/*
733 	 * Erase block size.  Erase offset and size must be a multiple
734 	 * of this.
735 	 */
736 	uint32_t erase_block_size;
737 	/*
738 	 * Protection block size.  Protection offset and size must be a
739 	 * multiple of this.
740 	 */
741 	uint32_t protect_block_size;
742 } __packed;
743 
744 /* Flags for version 1+ flash info command */
745 /* EC flash erases bits to 0 instead of 1 */
746 #define EC_FLASH_INFO_ERASE_TO_0 (1 << 0)
747 
748 /*
749  * Version 1 returns the same initial fields as version 0, with additional
750  * fields following.
751  *
752  * gcc anonymous structs don't seem to get along with the __packed directive;
753  * if they did we'd define the version 0 struct as a sub-struct of this one.
754  */
755 struct ec_response_flash_info_1 {
756 	/* Version 0 fields; see above for description */
757 	uint32_t flash_size;
758 	uint32_t write_block_size;
759 	uint32_t erase_block_size;
760 	uint32_t protect_block_size;
761 
762 	/* Version 1 adds these fields: */
763 	/*
764 	 * Ideal write size in bytes.  Writes will be fastest if size is
765 	 * exactly this and offset is a multiple of this.  For example, an EC
766 	 * may have a write buffer which can do half-page operations if data is
767 	 * aligned, and a slower word-at-a-time write mode.
768 	 */
769 	uint32_t write_ideal_size;
770 
771 	/* Flags; see EC_FLASH_INFO_* */
772 	uint32_t flags;
773 } __packed;
774 
775 /*
776  * Read flash
777  *
778  * Response is params.size bytes of data.
779  */
780 #define EC_CMD_FLASH_READ 0x11
781 
782 struct ec_params_flash_read {
783 	uint32_t offset;   /* Byte offset to read */
784 	uint32_t size;     /* Size to read in bytes */
785 } __packed;
786 
787 /* Write flash */
788 #define EC_CMD_FLASH_WRITE 0x12
789 #define EC_VER_FLASH_WRITE 1
790 
791 /* Version 0 of the flash command supported only 64 bytes of data */
792 #define EC_FLASH_WRITE_VER0_SIZE 64
793 
794 struct ec_params_flash_write {
795 	uint32_t offset;   /* Byte offset to write */
796 	uint32_t size;     /* Size to write in bytes */
797 	/* Followed by data to write */
798 } __packed;
799 
800 /* Erase flash */
801 #define EC_CMD_FLASH_ERASE 0x13
802 
803 struct ec_params_flash_erase {
804 	uint32_t offset;   /* Byte offset to erase */
805 	uint32_t size;     /* Size to erase in bytes */
806 } __packed;
807 
808 /*
809  * Get/set flash protection.
810  *
811  * If mask!=0, sets/clear the requested bits of flags.  Depending on the
812  * firmware write protect GPIO, not all flags will take effect immediately;
813  * some flags require a subsequent hard reset to take effect.  Check the
814  * returned flags bits to see what actually happened.
815  *
816  * If mask=0, simply returns the current flags state.
817  */
818 #define EC_CMD_FLASH_PROTECT 0x15
819 #define EC_VER_FLASH_PROTECT 1  /* Command version 1 */
820 
821 /* Flags for flash protection */
822 /* RO flash code protected when the EC boots */
823 #define EC_FLASH_PROTECT_RO_AT_BOOT         (1 << 0)
824 /*
825  * RO flash code protected now.  If this bit is set, at-boot status cannot
826  * be changed.
827  */
828 #define EC_FLASH_PROTECT_RO_NOW             (1 << 1)
829 /* Entire flash code protected now, until reboot. */
830 #define EC_FLASH_PROTECT_ALL_NOW            (1 << 2)
831 /* Flash write protect GPIO is asserted now */
832 #define EC_FLASH_PROTECT_GPIO_ASSERTED      (1 << 3)
833 /* Error - at least one bank of flash is stuck locked, and cannot be unlocked */
834 #define EC_FLASH_PROTECT_ERROR_STUCK        (1 << 4)
835 /*
836  * Error - flash protection is in inconsistent state.  At least one bank of
837  * flash which should be protected is not protected.  Usually fixed by
838  * re-requesting the desired flags, or by a hard reset if that fails.
839  */
840 #define EC_FLASH_PROTECT_ERROR_INCONSISTENT (1 << 5)
841 /* Entile flash code protected when the EC boots */
842 #define EC_FLASH_PROTECT_ALL_AT_BOOT        (1 << 6)
843 
844 struct ec_params_flash_protect {
845 	uint32_t mask;   /* Bits in flags to apply */
846 	uint32_t flags;  /* New flags to apply */
847 } __packed;
848 
849 struct ec_response_flash_protect {
850 	/* Current value of flash protect flags */
851 	uint32_t flags;
852 	/*
853 	 * Flags which are valid on this platform.  This allows the caller
854 	 * to distinguish between flags which aren't set vs. flags which can't
855 	 * be set on this platform.
856 	 */
857 	uint32_t valid_flags;
858 	/* Flags which can be changed given the current protection state */
859 	uint32_t writable_flags;
860 } __packed;
861 
862 /*
863  * Note: commands 0x14 - 0x19 version 0 were old commands to get/set flash
864  * write protect.  These commands may be reused with version > 0.
865  */
866 
867 /* Get the region offset/size */
868 #define EC_CMD_FLASH_REGION_INFO 0x16
869 #define EC_VER_FLASH_REGION_INFO 1
870 
871 enum ec_flash_region {
872 	/* Region which holds read-only EC image */
873 	EC_FLASH_REGION_RO = 0,
874 	/* Region which holds rewritable EC image */
875 	EC_FLASH_REGION_RW,
876 	/*
877 	 * Region which should be write-protected in the factory (a superset of
878 	 * EC_FLASH_REGION_RO)
879 	 */
880 	EC_FLASH_REGION_WP_RO,
881 	/* Number of regions */
882 	EC_FLASH_REGION_COUNT,
883 };
884 
885 struct ec_params_flash_region_info {
886 	uint32_t region;  /* enum ec_flash_region */
887 } __packed;
888 
889 struct ec_response_flash_region_info {
890 	uint32_t offset;
891 	uint32_t size;
892 } __packed;
893 
894 /* Read/write VbNvContext */
895 #define EC_CMD_VBNV_CONTEXT 0x17
896 #define EC_VER_VBNV_CONTEXT 1
897 #define EC_VBNV_BLOCK_SIZE 16
898 
899 enum ec_vbnvcontext_op {
900 	EC_VBNV_CONTEXT_OP_READ,
901 	EC_VBNV_CONTEXT_OP_WRITE,
902 };
903 
904 struct ec_params_vbnvcontext {
905 	uint32_t op;
906 	uint8_t block[EC_VBNV_BLOCK_SIZE];
907 } __packed;
908 
909 struct ec_response_vbnvcontext {
910 	uint8_t block[EC_VBNV_BLOCK_SIZE];
911 } __packed;
912 
913 /*****************************************************************************/
914 /* PWM commands */
915 
916 /* Get fan target RPM */
917 #define EC_CMD_PWM_GET_FAN_TARGET_RPM 0x20
918 
919 struct ec_response_pwm_get_fan_rpm {
920 	uint32_t rpm;
921 } __packed;
922 
923 /* Set target fan RPM */
924 #define EC_CMD_PWM_SET_FAN_TARGET_RPM 0x21
925 
926 struct ec_params_pwm_set_fan_target_rpm {
927 	uint32_t rpm;
928 } __packed;
929 
930 /* Get keyboard backlight */
931 #define EC_CMD_PWM_GET_KEYBOARD_BACKLIGHT 0x22
932 
933 struct ec_response_pwm_get_keyboard_backlight {
934 	uint8_t percent;
935 	uint8_t enabled;
936 } __packed;
937 
938 /* Set keyboard backlight */
939 #define EC_CMD_PWM_SET_KEYBOARD_BACKLIGHT 0x23
940 
941 struct ec_params_pwm_set_keyboard_backlight {
942 	uint8_t percent;
943 } __packed;
944 
945 /* Set target fan PWM duty cycle */
946 #define EC_CMD_PWM_SET_FAN_DUTY 0x24
947 
948 struct ec_params_pwm_set_fan_duty {
949 	uint32_t percent;
950 } __packed;
951 
952 /*****************************************************************************/
953 /*
954  * Lightbar commands. This looks worse than it is. Since we only use one HOST
955  * command to say "talk to the lightbar", we put the "and tell it to do X" part
956  * into a subcommand. We'll make separate structs for subcommands with
957  * different input args, so that we know how much to expect.
958  */
959 #define EC_CMD_LIGHTBAR_CMD 0x28
960 
961 struct rgb_s {
962 	uint8_t r, g, b;
963 };
964 
965 #define LB_BATTERY_LEVELS 4
966 /* List of tweakable parameters. NOTE: It's __packed so it can be sent in a
967  * host command, but the alignment is the same regardless. Keep it that way.
968  */
969 struct lightbar_params_v0 {
970 	/* Timing */
971 	int32_t google_ramp_up;
972 	int32_t google_ramp_down;
973 	int32_t s3s0_ramp_up;
974 	int32_t s0_tick_delay[2];		/* AC=0/1 */
975 	int32_t s0a_tick_delay[2];		/* AC=0/1 */
976 	int32_t s0s3_ramp_down;
977 	int32_t s3_sleep_for;
978 	int32_t s3_ramp_up;
979 	int32_t s3_ramp_down;
980 
981 	/* Oscillation */
982 	uint8_t new_s0;
983 	uint8_t osc_min[2];			/* AC=0/1 */
984 	uint8_t osc_max[2];			/* AC=0/1 */
985 	uint8_t w_ofs[2];			/* AC=0/1 */
986 
987 	/* Brightness limits based on the backlight and AC. */
988 	uint8_t bright_bl_off_fixed[2];		/* AC=0/1 */
989 	uint8_t bright_bl_on_min[2];		/* AC=0/1 */
990 	uint8_t bright_bl_on_max[2];		/* AC=0/1 */
991 
992 	/* Battery level thresholds */
993 	uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
994 
995 	/* Map [AC][battery_level] to color index */
996 	uint8_t s0_idx[2][LB_BATTERY_LEVELS];	/* AP is running */
997 	uint8_t s3_idx[2][LB_BATTERY_LEVELS];	/* AP is sleeping */
998 
999 	/* Color palette */
1000 	struct rgb_s color[8];			/* 0-3 are Google colors */
1001 } __packed;
1002 
1003 struct lightbar_params_v1 {
1004 	/* Timing */
1005 	int32_t google_ramp_up;
1006 	int32_t google_ramp_down;
1007 	int32_t s3s0_ramp_up;
1008 	int32_t s0_tick_delay[2];		/* AC=0/1 */
1009 	int32_t s0a_tick_delay[2];		/* AC=0/1 */
1010 	int32_t s0s3_ramp_down;
1011 	int32_t s3_sleep_for;
1012 	int32_t s3_ramp_up;
1013 	int32_t s3_ramp_down;
1014 	int32_t tap_tick_delay;
1015 	int32_t tap_display_time;
1016 
1017 	/* Tap-for-battery params */
1018 	uint8_t tap_pct_red;
1019 	uint8_t tap_pct_green;
1020 	uint8_t tap_seg_min_on;
1021 	uint8_t tap_seg_max_on;
1022 	uint8_t tap_seg_osc;
1023 	uint8_t tap_idx[3];
1024 
1025 	/* Oscillation */
1026 	uint8_t osc_min[2];			/* AC=0/1 */
1027 	uint8_t osc_max[2];			/* AC=0/1 */
1028 	uint8_t w_ofs[2];			/* AC=0/1 */
1029 
1030 	/* Brightness limits based on the backlight and AC. */
1031 	uint8_t bright_bl_off_fixed[2];		/* AC=0/1 */
1032 	uint8_t bright_bl_on_min[2];		/* AC=0/1 */
1033 	uint8_t bright_bl_on_max[2];		/* AC=0/1 */
1034 
1035 	/* Battery level thresholds */
1036 	uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1037 
1038 	/* Map [AC][battery_level] to color index */
1039 	uint8_t s0_idx[2][LB_BATTERY_LEVELS];	/* AP is running */
1040 	uint8_t s3_idx[2][LB_BATTERY_LEVELS];	/* AP is sleeping */
1041 
1042 	/* Color palette */
1043 	struct rgb_s color[8];			/* 0-3 are Google colors */
1044 } __packed;
1045 
1046 struct ec_params_lightbar {
1047 	uint8_t cmd;		      /* Command (see enum lightbar_command) */
1048 	union {
1049 		struct {
1050 			/* no args */
1051 		} dump, off, on, init, get_seq, get_params_v0, get_params_v1,
1052 			version, get_brightness, get_demo;
1053 
1054 		struct {
1055 			uint8_t num;
1056 		} set_brightness, seq, demo;
1057 
1058 		struct {
1059 			uint8_t ctrl, reg, value;
1060 		} reg;
1061 
1062 		struct {
1063 			uint8_t led, red, green, blue;
1064 		} set_rgb;
1065 
1066 		struct {
1067 			uint8_t led;
1068 		} get_rgb;
1069 
1070 		struct lightbar_params_v0 set_params_v0;
1071 		struct lightbar_params_v1 set_params_v1;
1072 	};
1073 } __packed;
1074 
1075 struct ec_response_lightbar {
1076 	union {
1077 		struct {
1078 			struct {
1079 				uint8_t reg;
1080 				uint8_t ic0;
1081 				uint8_t ic1;
1082 			} vals[23];
1083 		} dump;
1084 
1085 		struct  {
1086 			uint8_t num;
1087 		} get_seq, get_brightness, get_demo;
1088 
1089 		struct lightbar_params_v0 get_params_v0;
1090 		struct lightbar_params_v1 get_params_v1;
1091 
1092 		struct {
1093 			uint32_t num;
1094 			uint32_t flags;
1095 		} version;
1096 
1097 		struct {
1098 			uint8_t red, green, blue;
1099 		} get_rgb;
1100 
1101 		struct {
1102 			/* no return params */
1103 		} off, on, init, set_brightness, seq, reg, set_rgb,
1104 			demo, set_params_v0, set_params_v1;
1105 	};
1106 } __packed;
1107 
1108 /* Lightbar commands */
1109 enum lightbar_command {
1110 	LIGHTBAR_CMD_DUMP = 0,
1111 	LIGHTBAR_CMD_OFF = 1,
1112 	LIGHTBAR_CMD_ON = 2,
1113 	LIGHTBAR_CMD_INIT = 3,
1114 	LIGHTBAR_CMD_SET_BRIGHTNESS = 4,
1115 	LIGHTBAR_CMD_SEQ = 5,
1116 	LIGHTBAR_CMD_REG = 6,
1117 	LIGHTBAR_CMD_SET_RGB = 7,
1118 	LIGHTBAR_CMD_GET_SEQ = 8,
1119 	LIGHTBAR_CMD_DEMO = 9,
1120 	LIGHTBAR_CMD_GET_PARAMS_V0 = 10,
1121 	LIGHTBAR_CMD_SET_PARAMS_V0 = 11,
1122 	LIGHTBAR_CMD_VERSION = 12,
1123 	LIGHTBAR_CMD_GET_BRIGHTNESS = 13,
1124 	LIGHTBAR_CMD_GET_RGB = 14,
1125 	LIGHTBAR_CMD_GET_DEMO = 15,
1126 	LIGHTBAR_CMD_GET_PARAMS_V1 = 16,
1127 	LIGHTBAR_CMD_SET_PARAMS_V1 = 17,
1128 	LIGHTBAR_NUM_CMDS
1129 };
1130 
1131 /*****************************************************************************/
1132 /* LED control commands */
1133 
1134 #define EC_CMD_LED_CONTROL 0x29
1135 
1136 enum ec_led_id {
1137 	/* LED to indicate battery state of charge */
1138 	EC_LED_ID_BATTERY_LED = 0,
1139 	/*
1140 	 * LED to indicate system power state (on or in suspend).
1141 	 * May be on power button or on C-panel.
1142 	 */
1143 	EC_LED_ID_POWER_LED,
1144 	/* LED on power adapter or its plug */
1145 	EC_LED_ID_ADAPTER_LED,
1146 
1147 	EC_LED_ID_COUNT
1148 };
1149 
1150 /* LED control flags */
1151 #define EC_LED_FLAGS_QUERY (1 << 0) /* Query LED capability only */
1152 #define EC_LED_FLAGS_AUTO  (1 << 1) /* Switch LED back to automatic control */
1153 
1154 enum ec_led_colors {
1155 	EC_LED_COLOR_RED = 0,
1156 	EC_LED_COLOR_GREEN,
1157 	EC_LED_COLOR_BLUE,
1158 	EC_LED_COLOR_YELLOW,
1159 	EC_LED_COLOR_WHITE,
1160 
1161 	EC_LED_COLOR_COUNT
1162 };
1163 
1164 struct ec_params_led_control {
1165 	uint8_t led_id;     /* Which LED to control */
1166 	uint8_t flags;      /* Control flags */
1167 
1168 	uint8_t brightness[EC_LED_COLOR_COUNT];
1169 } __packed;
1170 
1171 struct ec_response_led_control {
1172 	/*
1173 	 * Available brightness value range.
1174 	 *
1175 	 * Range 0 means color channel not present.
1176 	 * Range 1 means on/off control.
1177 	 * Other values means the LED is control by PWM.
1178 	 */
1179 	uint8_t brightness_range[EC_LED_COLOR_COUNT];
1180 } __packed;
1181 
1182 /*****************************************************************************/
1183 /* Verified boot commands */
1184 
1185 /*
1186  * Note: command code 0x29 version 0 was VBOOT_CMD in Link EVT; it may be
1187  * reused for other purposes with version > 0.
1188  */
1189 
1190 /* Verified boot hash command */
1191 #define EC_CMD_VBOOT_HASH 0x2A
1192 
1193 struct ec_params_vboot_hash {
1194 	uint8_t cmd;             /* enum ec_vboot_hash_cmd */
1195 	uint8_t hash_type;       /* enum ec_vboot_hash_type */
1196 	uint8_t nonce_size;      /* Nonce size; may be 0 */
1197 	uint8_t reserved0;       /* Reserved; set 0 */
1198 	uint32_t offset;         /* Offset in flash to hash */
1199 	uint32_t size;           /* Number of bytes to hash */
1200 	uint8_t nonce_data[64];  /* Nonce data; ignored if nonce_size=0 */
1201 } __packed;
1202 
1203 struct ec_response_vboot_hash {
1204 	uint8_t status;          /* enum ec_vboot_hash_status */
1205 	uint8_t hash_type;       /* enum ec_vboot_hash_type */
1206 	uint8_t digest_size;     /* Size of hash digest in bytes */
1207 	uint8_t reserved0;       /* Ignore; will be 0 */
1208 	uint32_t offset;         /* Offset in flash which was hashed */
1209 	uint32_t size;           /* Number of bytes hashed */
1210 	uint8_t hash_digest[64]; /* Hash digest data */
1211 } __packed;
1212 
1213 enum ec_vboot_hash_cmd {
1214 	EC_VBOOT_HASH_GET = 0,       /* Get current hash status */
1215 	EC_VBOOT_HASH_ABORT = 1,     /* Abort calculating current hash */
1216 	EC_VBOOT_HASH_START = 2,     /* Start computing a new hash */
1217 	EC_VBOOT_HASH_RECALC = 3,    /* Synchronously compute a new hash */
1218 };
1219 
1220 enum ec_vboot_hash_type {
1221 	EC_VBOOT_HASH_TYPE_SHA256 = 0, /* SHA-256 */
1222 };
1223 
1224 enum ec_vboot_hash_status {
1225 	EC_VBOOT_HASH_STATUS_NONE = 0, /* No hash (not started, or aborted) */
1226 	EC_VBOOT_HASH_STATUS_DONE = 1, /* Finished computing a hash */
1227 	EC_VBOOT_HASH_STATUS_BUSY = 2, /* Busy computing a hash */
1228 };
1229 
1230 /*
1231  * Special values for offset for EC_VBOOT_HASH_START and EC_VBOOT_HASH_RECALC.
1232  * If one of these is specified, the EC will automatically update offset and
1233  * size to the correct values for the specified image (RO or RW).
1234  */
1235 #define EC_VBOOT_HASH_OFFSET_RO 0xfffffffe
1236 #define EC_VBOOT_HASH_OFFSET_RW 0xfffffffd
1237 
1238 /*****************************************************************************/
1239 /*
1240  * Motion sense commands. We'll make separate structs for sub-commands with
1241  * different input args, so that we know how much to expect.
1242  */
1243 #define EC_CMD_MOTION_SENSE_CMD 0x2B
1244 
1245 /* Motion sense commands */
1246 enum motionsense_command {
1247 	/*
1248 	 * Dump command returns all motion sensor data including motion sense
1249 	 * module flags and individual sensor flags.
1250 	 */
1251 	MOTIONSENSE_CMD_DUMP = 0,
1252 
1253 	/*
1254 	 * Info command returns data describing the details of a given sensor,
1255 	 * including enum motionsensor_type, enum motionsensor_location, and
1256 	 * enum motionsensor_chip.
1257 	 */
1258 	MOTIONSENSE_CMD_INFO = 1,
1259 
1260 	/*
1261 	 * EC Rate command is a setter/getter command for the EC sampling rate
1262 	 * of all motion sensors in milliseconds.
1263 	 */
1264 	MOTIONSENSE_CMD_EC_RATE = 2,
1265 
1266 	/*
1267 	 * Sensor ODR command is a setter/getter command for the output data
1268 	 * rate of a specific motion sensor in millihertz.
1269 	 */
1270 	MOTIONSENSE_CMD_SENSOR_ODR = 3,
1271 
1272 	/*
1273 	 * Sensor range command is a setter/getter command for the range of
1274 	 * a specified motion sensor in +/-G's or +/- deg/s.
1275 	 */
1276 	MOTIONSENSE_CMD_SENSOR_RANGE = 4,
1277 
1278 	/*
1279 	 * Setter/getter command for the keyboard wake angle. When the lid
1280 	 * angle is greater than this value, keyboard wake is disabled in S3,
1281 	 * and when the lid angle goes less than this value, keyboard wake is
1282 	 * enabled. Note, the lid angle measurement is an approximate,
1283 	 * un-calibrated value, hence the wake angle isn't exact.
1284 	 */
1285 	MOTIONSENSE_CMD_KB_WAKE_ANGLE = 5,
1286 
1287 	/* Number of motionsense sub-commands. */
1288 	MOTIONSENSE_NUM_CMDS
1289 };
1290 
1291 enum motionsensor_id {
1292 	EC_MOTION_SENSOR_ACCEL_BASE = 0,
1293 	EC_MOTION_SENSOR_ACCEL_LID = 1,
1294 	EC_MOTION_SENSOR_GYRO = 2,
1295 
1296 	/*
1297 	 * Note, if more sensors are added and this count changes, the padding
1298 	 * in ec_response_motion_sense dump command must be modified.
1299 	 */
1300 	EC_MOTION_SENSOR_COUNT = 3
1301 };
1302 
1303 /* List of motion sensor types. */
1304 enum motionsensor_type {
1305 	MOTIONSENSE_TYPE_ACCEL = 0,
1306 	MOTIONSENSE_TYPE_GYRO = 1,
1307 };
1308 
1309 /* List of motion sensor locations. */
1310 enum motionsensor_location {
1311 	MOTIONSENSE_LOC_BASE = 0,
1312 	MOTIONSENSE_LOC_LID = 1,
1313 };
1314 
1315 /* List of motion sensor chips. */
1316 enum motionsensor_chip {
1317 	MOTIONSENSE_CHIP_KXCJ9 = 0,
1318 };
1319 
1320 /* Module flag masks used for the dump sub-command. */
1321 #define MOTIONSENSE_MODULE_FLAG_ACTIVE (1<<0)
1322 
1323 /* Sensor flag masks used for the dump sub-command. */
1324 #define MOTIONSENSE_SENSOR_FLAG_PRESENT (1<<0)
1325 
1326 /*
1327  * Send this value for the data element to only perform a read. If you
1328  * send any other value, the EC will interpret it as data to set and will
1329  * return the actual value set.
1330  */
1331 #define EC_MOTION_SENSE_NO_VALUE -1
1332 
1333 struct ec_params_motion_sense {
1334 	uint8_t cmd;
1335 	union {
1336 		/* Used for MOTIONSENSE_CMD_DUMP. */
1337 		struct {
1338 			/* no args */
1339 		} dump;
1340 
1341 		/*
1342 		 * Used for MOTIONSENSE_CMD_EC_RATE and
1343 		 * MOTIONSENSE_CMD_KB_WAKE_ANGLE.
1344 		 */
1345 		struct {
1346 			/* Data to set or EC_MOTION_SENSE_NO_VALUE to read. */
1347 			int16_t data;
1348 		} ec_rate, kb_wake_angle;
1349 
1350 		/* Used for MOTIONSENSE_CMD_INFO. */
1351 		struct {
1352 			/* Should be element of enum motionsensor_id. */
1353 			uint8_t sensor_num;
1354 		} info;
1355 
1356 		/*
1357 		 * Used for MOTIONSENSE_CMD_SENSOR_ODR and
1358 		 * MOTIONSENSE_CMD_SENSOR_RANGE.
1359 		 */
1360 		struct {
1361 			/* Should be element of enum motionsensor_id. */
1362 			uint8_t sensor_num;
1363 
1364 			/* Rounding flag, true for round-up, false for down. */
1365 			uint8_t roundup;
1366 
1367 			uint16_t reserved;
1368 
1369 			/* Data to set or EC_MOTION_SENSE_NO_VALUE to read. */
1370 			int32_t data;
1371 		} sensor_odr, sensor_range;
1372 	};
1373 } __packed;
1374 
1375 struct ec_response_motion_sense {
1376 	union {
1377 		/* Used for MOTIONSENSE_CMD_DUMP. */
1378 		struct {
1379 			/* Flags representing the motion sensor module. */
1380 			uint8_t module_flags;
1381 
1382 			/* Flags for each sensor in enum motionsensor_id. */
1383 			uint8_t sensor_flags[EC_MOTION_SENSOR_COUNT];
1384 
1385 			/* Array of all sensor data. Each sensor is 3-axis. */
1386 			int16_t data[3*EC_MOTION_SENSOR_COUNT];
1387 		} dump;
1388 
1389 		/* Used for MOTIONSENSE_CMD_INFO. */
1390 		struct {
1391 			/* Should be element of enum motionsensor_type. */
1392 			uint8_t type;
1393 
1394 			/* Should be element of enum motionsensor_location. */
1395 			uint8_t location;
1396 
1397 			/* Should be element of enum motionsensor_chip. */
1398 			uint8_t chip;
1399 		} info;
1400 
1401 		/*
1402 		 * Used for MOTIONSENSE_CMD_EC_RATE, MOTIONSENSE_CMD_SENSOR_ODR,
1403 		 * MOTIONSENSE_CMD_SENSOR_RANGE, and
1404 		 * MOTIONSENSE_CMD_KB_WAKE_ANGLE.
1405 		 */
1406 		struct {
1407 			/* Current value of the parameter queried. */
1408 			int32_t ret;
1409 		} ec_rate, sensor_odr, sensor_range, kb_wake_angle;
1410 	};
1411 } __packed;
1412 
1413 /*****************************************************************************/
1414 /* USB charging control commands */
1415 
1416 /* Set USB port charging mode */
1417 #define EC_CMD_USB_CHARGE_SET_MODE 0x30
1418 
1419 struct ec_params_usb_charge_set_mode {
1420 	uint8_t usb_port_id;
1421 	uint8_t mode;
1422 } __packed;
1423 
1424 /*****************************************************************************/
1425 /* Persistent storage for host */
1426 
1427 /* Maximum bytes that can be read/written in a single command */
1428 #define EC_PSTORE_SIZE_MAX 64
1429 
1430 /* Get persistent storage info */
1431 #define EC_CMD_PSTORE_INFO 0x40
1432 
1433 struct ec_response_pstore_info {
1434 	/* Persistent storage size, in bytes */
1435 	uint32_t pstore_size;
1436 	/* Access size; read/write offset and size must be a multiple of this */
1437 	uint32_t access_size;
1438 } __packed;
1439 
1440 /*
1441  * Read persistent storage
1442  *
1443  * Response is params.size bytes of data.
1444  */
1445 #define EC_CMD_PSTORE_READ 0x41
1446 
1447 struct ec_params_pstore_read {
1448 	uint32_t offset;   /* Byte offset to read */
1449 	uint32_t size;     /* Size to read in bytes */
1450 } __packed;
1451 
1452 /* Write persistent storage */
1453 #define EC_CMD_PSTORE_WRITE 0x42
1454 
1455 struct ec_params_pstore_write {
1456 	uint32_t offset;   /* Byte offset to write */
1457 	uint32_t size;     /* Size to write in bytes */
1458 	uint8_t data[EC_PSTORE_SIZE_MAX];
1459 } __packed;
1460 
1461 /*****************************************************************************/
1462 /* Real-time clock */
1463 
1464 /* RTC params and response structures */
1465 struct ec_params_rtc {
1466 	uint32_t time;
1467 } __packed;
1468 
1469 struct ec_response_rtc {
1470 	uint32_t time;
1471 } __packed;
1472 
1473 /* These use ec_response_rtc */
1474 #define EC_CMD_RTC_GET_VALUE 0x44
1475 #define EC_CMD_RTC_GET_ALARM 0x45
1476 
1477 /* These all use ec_params_rtc */
1478 #define EC_CMD_RTC_SET_VALUE 0x46
1479 #define EC_CMD_RTC_SET_ALARM 0x47
1480 
1481 /*****************************************************************************/
1482 /* Port80 log access */
1483 
1484 /* Maximum entries that can be read/written in a single command */
1485 #define EC_PORT80_SIZE_MAX 32
1486 
1487 /* Get last port80 code from previous boot */
1488 #define EC_CMD_PORT80_LAST_BOOT 0x48
1489 #define EC_CMD_PORT80_READ 0x48
1490 
1491 enum ec_port80_subcmd {
1492 	EC_PORT80_GET_INFO = 0,
1493 	EC_PORT80_READ_BUFFER,
1494 };
1495 
1496 struct ec_params_port80_read {
1497 	uint16_t subcmd;
1498 	union {
1499 		struct {
1500 			uint32_t offset;
1501 			uint32_t num_entries;
1502 		} read_buffer;
1503 	};
1504 } __packed;
1505 
1506 struct ec_response_port80_read {
1507 	union {
1508 		struct {
1509 			uint32_t writes;
1510 			uint32_t history_size;
1511 			uint32_t last_boot;
1512 		} get_info;
1513 		struct {
1514 			uint16_t codes[EC_PORT80_SIZE_MAX];
1515 		} data;
1516 	};
1517 } __packed;
1518 
1519 struct ec_response_port80_last_boot {
1520 	uint16_t code;
1521 } __packed;
1522 
1523 /*****************************************************************************/
1524 /* Thermal engine commands. Note that there are two implementations. We'll
1525  * reuse the command number, but the data and behavior is incompatible.
1526  * Version 0 is what originally shipped on Link.
1527  * Version 1 separates the CPU thermal limits from the fan control.
1528  */
1529 
1530 #define EC_CMD_THERMAL_SET_THRESHOLD 0x50
1531 #define EC_CMD_THERMAL_GET_THRESHOLD 0x51
1532 
1533 /* The version 0 structs are opaque. You have to know what they are for
1534  * the get/set commands to make any sense.
1535  */
1536 
1537 /* Version 0 - set */
1538 struct ec_params_thermal_set_threshold {
1539 	uint8_t sensor_type;
1540 	uint8_t threshold_id;
1541 	uint16_t value;
1542 } __packed;
1543 
1544 /* Version 0 - get */
1545 struct ec_params_thermal_get_threshold {
1546 	uint8_t sensor_type;
1547 	uint8_t threshold_id;
1548 } __packed;
1549 
1550 struct ec_response_thermal_get_threshold {
1551 	uint16_t value;
1552 } __packed;
1553 
1554 
1555 /* The version 1 structs are visible. */
1556 enum ec_temp_thresholds {
1557 	EC_TEMP_THRESH_WARN = 0,
1558 	EC_TEMP_THRESH_HIGH,
1559 	EC_TEMP_THRESH_HALT,
1560 
1561 	EC_TEMP_THRESH_COUNT
1562 };
1563 
1564 /* Thermal configuration for one temperature sensor. Temps are in degrees K.
1565  * Zero values will be silently ignored by the thermal task.
1566  */
1567 struct ec_thermal_config {
1568 	uint32_t temp_host[EC_TEMP_THRESH_COUNT]; /* levels of hotness */
1569 	uint32_t temp_fan_off;		/* no active cooling needed */
1570 	uint32_t temp_fan_max;		/* max active cooling needed */
1571 } __packed;
1572 
1573 /* Version 1 - get config for one sensor. */
1574 struct ec_params_thermal_get_threshold_v1 {
1575 	uint32_t sensor_num;
1576 } __packed;
1577 /* This returns a struct ec_thermal_config */
1578 
1579 /* Version 1 - set config for one sensor.
1580  * Use read-modify-write for best results! */
1581 struct ec_params_thermal_set_threshold_v1 {
1582 	uint32_t sensor_num;
1583 	struct ec_thermal_config cfg;
1584 } __packed;
1585 /* This returns no data */
1586 
1587 /****************************************************************************/
1588 
1589 /* Toggle automatic fan control */
1590 #define EC_CMD_THERMAL_AUTO_FAN_CTRL 0x52
1591 
1592 /* Get TMP006 calibration data */
1593 #define EC_CMD_TMP006_GET_CALIBRATION 0x53
1594 
1595 struct ec_params_tmp006_get_calibration {
1596 	uint8_t index;
1597 } __packed;
1598 
1599 struct ec_response_tmp006_get_calibration {
1600 	float s0;
1601 	float b0;
1602 	float b1;
1603 	float b2;
1604 } __packed;
1605 
1606 /* Set TMP006 calibration data */
1607 #define EC_CMD_TMP006_SET_CALIBRATION 0x54
1608 
1609 struct ec_params_tmp006_set_calibration {
1610 	uint8_t index;
1611 	uint8_t reserved[3];  /* Reserved; set 0 */
1612 	float s0;
1613 	float b0;
1614 	float b1;
1615 	float b2;
1616 } __packed;
1617 
1618 /* Read raw TMP006 data */
1619 #define EC_CMD_TMP006_GET_RAW 0x55
1620 
1621 struct ec_params_tmp006_get_raw {
1622 	uint8_t index;
1623 } __packed;
1624 
1625 struct ec_response_tmp006_get_raw {
1626 	int32_t t;  /* In 1/100 K */
1627 	int32_t v;  /* In nV */
1628 };
1629 
1630 /*****************************************************************************/
1631 /* MKBP - Matrix KeyBoard Protocol */
1632 
1633 /*
1634  * Read key state
1635  *
1636  * Returns raw data for keyboard cols; see ec_response_mkbp_info.cols for
1637  * expected response size.
1638  */
1639 #define EC_CMD_MKBP_STATE 0x60
1640 
1641 /* Provide information about the matrix : number of rows and columns */
1642 #define EC_CMD_MKBP_INFO 0x61
1643 
1644 struct ec_response_mkbp_info {
1645 	uint32_t rows;
1646 	uint32_t cols;
1647 	uint8_t switches;
1648 } __packed;
1649 
1650 /* Simulate key press */
1651 #define EC_CMD_MKBP_SIMULATE_KEY 0x62
1652 
1653 struct ec_params_mkbp_simulate_key {
1654 	uint8_t col;
1655 	uint8_t row;
1656 	uint8_t pressed;
1657 } __packed;
1658 
1659 /* Configure keyboard scanning */
1660 #define EC_CMD_MKBP_SET_CONFIG 0x64
1661 #define EC_CMD_MKBP_GET_CONFIG 0x65
1662 
1663 /* flags */
1664 enum mkbp_config_flags {
1665 	EC_MKBP_FLAGS_ENABLE = 1,	/* Enable keyboard scanning */
1666 };
1667 
1668 enum mkbp_config_valid {
1669 	EC_MKBP_VALID_SCAN_PERIOD		= 1 << 0,
1670 	EC_MKBP_VALID_POLL_TIMEOUT		= 1 << 1,
1671 	EC_MKBP_VALID_MIN_POST_SCAN_DELAY	= 1 << 3,
1672 	EC_MKBP_VALID_OUTPUT_SETTLE		= 1 << 4,
1673 	EC_MKBP_VALID_DEBOUNCE_DOWN		= 1 << 5,
1674 	EC_MKBP_VALID_DEBOUNCE_UP		= 1 << 6,
1675 	EC_MKBP_VALID_FIFO_MAX_DEPTH		= 1 << 7,
1676 };
1677 
1678 /* Configuration for our key scanning algorithm */
1679 struct ec_mkbp_config {
1680 	uint32_t valid_mask;		/* valid fields */
1681 	uint8_t flags;		/* some flags (enum mkbp_config_flags) */
1682 	uint8_t valid_flags;		/* which flags are valid */
1683 	uint16_t scan_period_us;	/* period between start of scans */
1684 	/* revert to interrupt mode after no activity for this long */
1685 	uint32_t poll_timeout_us;
1686 	/*
1687 	 * minimum post-scan relax time. Once we finish a scan we check
1688 	 * the time until we are due to start the next one. If this time is
1689 	 * shorter this field, we use this instead.
1690 	 */
1691 	uint16_t min_post_scan_delay_us;
1692 	/* delay between setting up output and waiting for it to settle */
1693 	uint16_t output_settle_us;
1694 	uint16_t debounce_down_us;	/* time for debounce on key down */
1695 	uint16_t debounce_up_us;	/* time for debounce on key up */
1696 	/* maximum depth to allow for fifo (0 = no keyscan output) */
1697 	uint8_t fifo_max_depth;
1698 } __packed;
1699 
1700 struct ec_params_mkbp_set_config {
1701 	struct ec_mkbp_config config;
1702 } __packed;
1703 
1704 struct ec_response_mkbp_get_config {
1705 	struct ec_mkbp_config config;
1706 } __packed;
1707 
1708 /* Run the key scan emulation */
1709 #define EC_CMD_KEYSCAN_SEQ_CTRL 0x66
1710 
1711 enum ec_keyscan_seq_cmd {
1712 	EC_KEYSCAN_SEQ_STATUS = 0,	/* Get status information */
1713 	EC_KEYSCAN_SEQ_CLEAR = 1,	/* Clear sequence */
1714 	EC_KEYSCAN_SEQ_ADD = 2,		/* Add item to sequence */
1715 	EC_KEYSCAN_SEQ_START = 3,	/* Start running sequence */
1716 	EC_KEYSCAN_SEQ_COLLECT = 4,	/* Collect sequence summary data */
1717 };
1718 
1719 enum ec_collect_flags {
1720 	/*
1721 	 * Indicates this scan was processed by the EC. Due to timing, some
1722 	 * scans may be skipped.
1723 	 */
1724 	EC_KEYSCAN_SEQ_FLAG_DONE	= 1 << 0,
1725 };
1726 
1727 struct ec_collect_item {
1728 	uint8_t flags;		/* some flags (enum ec_collect_flags) */
1729 };
1730 
1731 struct ec_params_keyscan_seq_ctrl {
1732 	uint8_t cmd;	/* Command to send (enum ec_keyscan_seq_cmd) */
1733 	union {
1734 		struct {
1735 			uint8_t active;		/* still active */
1736 			uint8_t num_items;	/* number of items */
1737 			/* Current item being presented */
1738 			uint8_t cur_item;
1739 		} status;
1740 		struct {
1741 			/*
1742 			 * Absolute time for this scan, measured from the
1743 			 * start of the sequence.
1744 			 */
1745 			uint32_t time_us;
1746 			uint8_t scan[0];	/* keyscan data */
1747 		} add;
1748 		struct {
1749 			uint8_t start_item;	/* First item to return */
1750 			uint8_t num_items;	/* Number of items to return */
1751 		} collect;
1752 	};
1753 } __packed;
1754 
1755 struct ec_result_keyscan_seq_ctrl {
1756 	union {
1757 		struct {
1758 			uint8_t num_items;	/* Number of items */
1759 			/* Data for each item */
1760 			struct ec_collect_item item[0];
1761 		} collect;
1762 	};
1763 } __packed;
1764 
1765 /*****************************************************************************/
1766 /* Temperature sensor commands */
1767 
1768 /* Read temperature sensor info */
1769 #define EC_CMD_TEMP_SENSOR_GET_INFO 0x70
1770 
1771 struct ec_params_temp_sensor_get_info {
1772 	uint8_t id;
1773 } __packed;
1774 
1775 struct ec_response_temp_sensor_get_info {
1776 	char sensor_name[32];
1777 	uint8_t sensor_type;
1778 } __packed;
1779 
1780 /*****************************************************************************/
1781 
1782 /*
1783  * Note: host commands 0x80 - 0x87 are reserved to avoid conflict with ACPI
1784  * commands accidentally sent to the wrong interface.  See the ACPI section
1785  * below.
1786  */
1787 
1788 /*****************************************************************************/
1789 /* Host event commands */
1790 
1791 /*
1792  * Host event mask params and response structures, shared by all of the host
1793  * event commands below.
1794  */
1795 struct ec_params_host_event_mask {
1796 	uint32_t mask;
1797 } __packed;
1798 
1799 struct ec_response_host_event_mask {
1800 	uint32_t mask;
1801 } __packed;
1802 
1803 /* These all use ec_response_host_event_mask */
1804 #define EC_CMD_HOST_EVENT_GET_B         0x87
1805 #define EC_CMD_HOST_EVENT_GET_SMI_MASK  0x88
1806 #define EC_CMD_HOST_EVENT_GET_SCI_MASK  0x89
1807 #define EC_CMD_HOST_EVENT_GET_WAKE_MASK 0x8d
1808 
1809 /* These all use ec_params_host_event_mask */
1810 #define EC_CMD_HOST_EVENT_SET_SMI_MASK  0x8a
1811 #define EC_CMD_HOST_EVENT_SET_SCI_MASK  0x8b
1812 #define EC_CMD_HOST_EVENT_CLEAR         0x8c
1813 #define EC_CMD_HOST_EVENT_SET_WAKE_MASK 0x8e
1814 #define EC_CMD_HOST_EVENT_CLEAR_B       0x8f
1815 
1816 /*****************************************************************************/
1817 /* Switch commands */
1818 
1819 /* Enable/disable LCD backlight */
1820 #define EC_CMD_SWITCH_ENABLE_BKLIGHT 0x90
1821 
1822 struct ec_params_switch_enable_backlight {
1823 	uint8_t enabled;
1824 } __packed;
1825 
1826 /* Enable/disable WLAN/Bluetooth */
1827 #define EC_CMD_SWITCH_ENABLE_WIRELESS 0x91
1828 #define EC_VER_SWITCH_ENABLE_WIRELESS 1
1829 
1830 /* Version 0 params; no response */
1831 struct ec_params_switch_enable_wireless_v0 {
1832 	uint8_t enabled;
1833 } __packed;
1834 
1835 /* Version 1 params */
1836 struct ec_params_switch_enable_wireless_v1 {
1837 	/* Flags to enable now */
1838 	uint8_t now_flags;
1839 
1840 	/* Which flags to copy from now_flags */
1841 	uint8_t now_mask;
1842 
1843 	/*
1844 	 * Flags to leave enabled in S3, if they're on at the S0->S3
1845 	 * transition.  (Other flags will be disabled by the S0->S3
1846 	 * transition.)
1847 	 */
1848 	uint8_t suspend_flags;
1849 
1850 	/* Which flags to copy from suspend_flags */
1851 	uint8_t suspend_mask;
1852 } __packed;
1853 
1854 /* Version 1 response */
1855 struct ec_response_switch_enable_wireless_v1 {
1856 	/* Flags to enable now */
1857 	uint8_t now_flags;
1858 
1859 	/* Flags to leave enabled in S3 */
1860 	uint8_t suspend_flags;
1861 } __packed;
1862 
1863 /*****************************************************************************/
1864 /* GPIO commands. Only available on EC if write protect has been disabled. */
1865 
1866 /* Set GPIO output value */
1867 #define EC_CMD_GPIO_SET 0x92
1868 
1869 struct ec_params_gpio_set {
1870 	char name[32];
1871 	uint8_t val;
1872 } __packed;
1873 
1874 /* Get GPIO value */
1875 #define EC_CMD_GPIO_GET 0x93
1876 
1877 /* Version 0 of input params and response */
1878 struct ec_params_gpio_get {
1879 	char name[32];
1880 } __packed;
1881 struct ec_response_gpio_get {
1882 	uint8_t val;
1883 } __packed;
1884 
1885 /* Version 1 of input params and response */
1886 struct ec_params_gpio_get_v1 {
1887 	uint8_t subcmd;
1888 	union {
1889 		struct {
1890 			char name[32];
1891 		} get_value_by_name;
1892 		struct {
1893 			uint8_t index;
1894 		} get_info;
1895 	};
1896 } __packed;
1897 
1898 struct ec_response_gpio_get_v1 {
1899 	union {
1900 		struct {
1901 			uint8_t val;
1902 		} get_value_by_name, get_count;
1903 		struct {
1904 			uint8_t val;
1905 			char name[32];
1906 			uint32_t flags;
1907 		} get_info;
1908 	};
1909 } __packed;
1910 
1911 enum gpio_get_subcmd {
1912 	EC_GPIO_GET_BY_NAME = 0,
1913 	EC_GPIO_GET_COUNT = 1,
1914 	EC_GPIO_GET_INFO = 2,
1915 };
1916 
1917 /*****************************************************************************/
1918 /* I2C commands. Only available when flash write protect is unlocked. */
1919 
1920 /*
1921  * TODO(crosbug.com/p/23570): These commands are deprecated, and will be
1922  * removed soon.  Use EC_CMD_I2C_XFER instead.
1923  */
1924 
1925 /* Read I2C bus */
1926 #define EC_CMD_I2C_READ 0x94
1927 
1928 struct ec_params_i2c_read {
1929 	uint16_t addr; /* 8-bit address (7-bit shifted << 1) */
1930 	uint8_t read_size; /* Either 8 or 16. */
1931 	uint8_t port;
1932 	uint8_t offset;
1933 } __packed;
1934 struct ec_response_i2c_read {
1935 	uint16_t data;
1936 } __packed;
1937 
1938 /* Write I2C bus */
1939 #define EC_CMD_I2C_WRITE 0x95
1940 
1941 struct ec_params_i2c_write {
1942 	uint16_t data;
1943 	uint16_t addr; /* 8-bit address (7-bit shifted << 1) */
1944 	uint8_t write_size; /* Either 8 or 16. */
1945 	uint8_t port;
1946 	uint8_t offset;
1947 } __packed;
1948 
1949 /*****************************************************************************/
1950 /* Charge state commands. Only available when flash write protect unlocked. */
1951 
1952 /* Force charge state machine to stop charging the battery or force it to
1953  * discharge the battery.
1954  */
1955 #define EC_CMD_CHARGE_CONTROL 0x96
1956 #define EC_VER_CHARGE_CONTROL 1
1957 
1958 enum ec_charge_control_mode {
1959 	CHARGE_CONTROL_NORMAL = 0,
1960 	CHARGE_CONTROL_IDLE,
1961 	CHARGE_CONTROL_DISCHARGE,
1962 };
1963 
1964 struct ec_params_charge_control {
1965 	uint32_t mode;  /* enum charge_control_mode */
1966 } __packed;
1967 
1968 /*****************************************************************************/
1969 /* Console commands. Only available when flash write protect is unlocked. */
1970 
1971 /* Snapshot console output buffer for use by EC_CMD_CONSOLE_READ. */
1972 #define EC_CMD_CONSOLE_SNAPSHOT 0x97
1973 
1974 /*
1975  * Read next chunk of data from saved snapshot.
1976  *
1977  * Response is null-terminated string.  Empty string, if there is no more
1978  * remaining output.
1979  */
1980 #define EC_CMD_CONSOLE_READ 0x98
1981 
1982 /*****************************************************************************/
1983 
1984 /*
1985  * Cut off battery power immediately or after the host has shut down.
1986  *
1987  * return EC_RES_INVALID_COMMAND if unsupported by a board/battery.
1988  *	  EC_RES_SUCCESS if the command was successful.
1989  *	  EC_RES_ERROR if the cut off command failed.
1990  */
1991 
1992 #define EC_CMD_BATTERY_CUT_OFF 0x99
1993 
1994 #define EC_BATTERY_CUTOFF_FLAG_AT_SHUTDOWN	(1 << 0)
1995 
1996 struct ec_params_battery_cutoff {
1997 	uint8_t flags;
1998 } __packed;
1999 
2000 /*****************************************************************************/
2001 /* USB port mux control. */
2002 
2003 /*
2004  * Switch USB mux or return to automatic switching.
2005  */
2006 #define EC_CMD_USB_MUX 0x9a
2007 
2008 struct ec_params_usb_mux {
2009 	uint8_t mux;
2010 } __packed;
2011 
2012 /*****************************************************************************/
2013 /* LDOs / FETs control. */
2014 
2015 enum ec_ldo_state {
2016 	EC_LDO_STATE_OFF = 0,	/* the LDO / FET is shut down */
2017 	EC_LDO_STATE_ON = 1,	/* the LDO / FET is ON / providing power */
2018 };
2019 
2020 /*
2021  * Switch on/off a LDO.
2022  */
2023 #define EC_CMD_LDO_SET 0x9b
2024 
2025 struct ec_params_ldo_set {
2026 	uint8_t index;
2027 	uint8_t state;
2028 } __packed;
2029 
2030 /*
2031  * Get LDO state.
2032  */
2033 #define EC_CMD_LDO_GET 0x9c
2034 
2035 struct ec_params_ldo_get {
2036 	uint8_t index;
2037 } __packed;
2038 
2039 struct ec_response_ldo_get {
2040 	uint8_t state;
2041 } __packed;
2042 
2043 /*****************************************************************************/
2044 /* Power info. */
2045 
2046 /*
2047  * Get power info.
2048  */
2049 #define EC_CMD_POWER_INFO 0x9d
2050 
2051 struct ec_response_power_info {
2052 	uint32_t usb_dev_type;
2053 	uint16_t voltage_ac;
2054 	uint16_t voltage_system;
2055 	uint16_t current_system;
2056 	uint16_t usb_current_limit;
2057 } __packed;
2058 
2059 /*****************************************************************************/
2060 /* I2C passthru command */
2061 
2062 #define EC_CMD_I2C_PASSTHRU 0x9e
2063 
2064 /* Read data; if not present, message is a write */
2065 #define EC_I2C_FLAG_READ	(1 << 15)
2066 
2067 /* Mask for address */
2068 #define EC_I2C_ADDR_MASK	0x3ff
2069 
2070 #define EC_I2C_STATUS_NAK	(1 << 0) /* Transfer was not acknowledged */
2071 #define EC_I2C_STATUS_TIMEOUT	(1 << 1) /* Timeout during transfer */
2072 
2073 /* Any error */
2074 #define EC_I2C_STATUS_ERROR	(EC_I2C_STATUS_NAK | EC_I2C_STATUS_TIMEOUT)
2075 
2076 struct ec_params_i2c_passthru_msg {
2077 	uint16_t addr_flags;	/* I2C slave address (7 or 10 bits) and flags */
2078 	uint16_t len;		/* Number of bytes to read or write */
2079 } __packed;
2080 
2081 struct ec_params_i2c_passthru {
2082 	uint8_t port;		/* I2C port number */
2083 	uint8_t num_msgs;	/* Number of messages */
2084 	struct ec_params_i2c_passthru_msg msg[];
2085 	/* Data to write for all messages is concatenated here */
2086 } __packed;
2087 
2088 struct ec_response_i2c_passthru {
2089 	uint8_t i2c_status;	/* Status flags (EC_I2C_STATUS_...) */
2090 	uint8_t num_msgs;	/* Number of messages processed */
2091 	uint8_t data[];		/* Data read by messages concatenated here */
2092 } __packed;
2093 
2094 /*****************************************************************************/
2095 /* Power button hang detect */
2096 
2097 #define EC_CMD_HANG_DETECT 0x9f
2098 
2099 /* Reasons to start hang detection timer */
2100 /* Power button pressed */
2101 #define EC_HANG_START_ON_POWER_PRESS  (1 << 0)
2102 
2103 /* Lid closed */
2104 #define EC_HANG_START_ON_LID_CLOSE    (1 << 1)
2105 
2106  /* Lid opened */
2107 #define EC_HANG_START_ON_LID_OPEN     (1 << 2)
2108 
2109 /* Start of AP S3->S0 transition (booting or resuming from suspend) */
2110 #define EC_HANG_START_ON_RESUME       (1 << 3)
2111 
2112 /* Reasons to cancel hang detection */
2113 
2114 /* Power button released */
2115 #define EC_HANG_STOP_ON_POWER_RELEASE (1 << 8)
2116 
2117 /* Any host command from AP received */
2118 #define EC_HANG_STOP_ON_HOST_COMMAND  (1 << 9)
2119 
2120 /* Stop on end of AP S0->S3 transition (suspending or shutting down) */
2121 #define EC_HANG_STOP_ON_SUSPEND       (1 << 10)
2122 
2123 /*
2124  * If this flag is set, all the other fields are ignored, and the hang detect
2125  * timer is started.  This provides the AP a way to start the hang timer
2126  * without reconfiguring any of the other hang detect settings.  Note that
2127  * you must previously have configured the timeouts.
2128  */
2129 #define EC_HANG_START_NOW             (1 << 30)
2130 
2131 /*
2132  * If this flag is set, all the other fields are ignored (including
2133  * EC_HANG_START_NOW).  This provides the AP a way to stop the hang timer
2134  * without reconfiguring any of the other hang detect settings.
2135  */
2136 #define EC_HANG_STOP_NOW              (1 << 31)
2137 
2138 struct ec_params_hang_detect {
2139 	/* Flags; see EC_HANG_* */
2140 	uint32_t flags;
2141 
2142 	/* Timeout in msec before generating host event, if enabled */
2143 	uint16_t host_event_timeout_msec;
2144 
2145 	/* Timeout in msec before generating warm reboot, if enabled */
2146 	uint16_t warm_reboot_timeout_msec;
2147 } __packed;
2148 
2149 /*****************************************************************************/
2150 /* Commands for battery charging */
2151 
2152 /*
2153  * This is the single catch-all host command to exchange data regarding the
2154  * charge state machine (v2 and up).
2155  */
2156 #define EC_CMD_CHARGE_STATE 0xa0
2157 
2158 /* Subcommands for this host command */
2159 enum charge_state_command {
2160 	CHARGE_STATE_CMD_GET_STATE,
2161 	CHARGE_STATE_CMD_GET_PARAM,
2162 	CHARGE_STATE_CMD_SET_PARAM,
2163 	CHARGE_STATE_NUM_CMDS
2164 };
2165 
2166 /*
2167  * Known param numbers are defined here. Ranges are reserved for board-specific
2168  * params, which are handled by the particular implementations.
2169  */
2170 enum charge_state_params {
2171 	CS_PARAM_CHG_VOLTAGE,	      /* charger voltage limit */
2172 	CS_PARAM_CHG_CURRENT,	      /* charger current limit */
2173 	CS_PARAM_CHG_INPUT_CURRENT,   /* charger input current limit */
2174 	CS_PARAM_CHG_STATUS,	      /* charger-specific status */
2175 	CS_PARAM_CHG_OPTION,	      /* charger-specific options */
2176 	/* How many so far? */
2177 	CS_NUM_BASE_PARAMS,
2178 
2179 	/* Range for CONFIG_CHARGER_PROFILE_OVERRIDE params */
2180 	CS_PARAM_CUSTOM_PROFILE_MIN = 0x10000,
2181 	CS_PARAM_CUSTOM_PROFILE_MAX = 0x1ffff,
2182 
2183 	/* Other custom param ranges go here... */
2184 };
2185 
2186 struct ec_params_charge_state {
2187 	uint8_t cmd;				/* enum charge_state_command */
2188 	union {
2189 		struct {
2190 			/* no args */
2191 		} get_state;
2192 
2193 		struct {
2194 			uint32_t param;		/* enum charge_state_param */
2195 		} get_param;
2196 
2197 		struct {
2198 			uint32_t param;		/* param to set */
2199 			uint32_t value;		/* value to set */
2200 		} set_param;
2201 	};
2202 } __packed;
2203 
2204 struct ec_response_charge_state {
2205 	union {
2206 		struct {
2207 			int ac;
2208 			int chg_voltage;
2209 			int chg_current;
2210 			int chg_input_current;
2211 			int batt_state_of_charge;
2212 		} get_state;
2213 
2214 		struct {
2215 			uint32_t value;
2216 		} get_param;
2217 		struct {
2218 			/* no return values */
2219 		} set_param;
2220 	};
2221 } __packed;
2222 
2223 
2224 /*
2225  * Set maximum battery charging current.
2226  */
2227 #define EC_CMD_CHARGE_CURRENT_LIMIT 0xa1
2228 
2229 struct ec_params_current_limit {
2230 	uint32_t limit; /* in mA */
2231 } __packed;
2232 
2233 /*
2234  * Set maximum external power current.
2235  */
2236 #define EC_CMD_EXT_POWER_CURRENT_LIMIT 0xa2
2237 
2238 struct ec_params_ext_power_current_limit {
2239 	uint32_t limit; /* in mA */
2240 } __packed;
2241 
2242 /*****************************************************************************/
2243 /* Smart battery pass-through */
2244 
2245 /* Get / Set 16-bit smart battery registers */
2246 #define EC_CMD_SB_READ_WORD   0xb0
2247 #define EC_CMD_SB_WRITE_WORD  0xb1
2248 
2249 /* Get / Set string smart battery parameters
2250  * formatted as SMBUS "block".
2251  */
2252 #define EC_CMD_SB_READ_BLOCK  0xb2
2253 #define EC_CMD_SB_WRITE_BLOCK 0xb3
2254 
2255 struct ec_params_sb_rd {
2256 	uint8_t reg;
2257 } __packed;
2258 
2259 struct ec_response_sb_rd_word {
2260 	uint16_t value;
2261 } __packed;
2262 
2263 struct ec_params_sb_wr_word {
2264 	uint8_t reg;
2265 	uint16_t value;
2266 } __packed;
2267 
2268 struct ec_response_sb_rd_block {
2269 	uint8_t data[32];
2270 } __packed;
2271 
2272 struct ec_params_sb_wr_block {
2273 	uint8_t reg;
2274 	uint16_t data[32];
2275 } __packed;
2276 
2277 /*****************************************************************************/
2278 /* Battery vendor parameters
2279  *
2280  * Get or set vendor-specific parameters in the battery. Implementations may
2281  * differ between boards or batteries. On a set operation, the response
2282  * contains the actual value set, which may be rounded or clipped from the
2283  * requested value.
2284  */
2285 
2286 #define EC_CMD_BATTERY_VENDOR_PARAM 0xb4
2287 
2288 enum ec_battery_vendor_param_mode {
2289 	BATTERY_VENDOR_PARAM_MODE_GET = 0,
2290 	BATTERY_VENDOR_PARAM_MODE_SET,
2291 };
2292 
2293 struct ec_params_battery_vendor_param {
2294 	uint32_t param;
2295 	uint32_t value;
2296 	uint8_t mode;
2297 } __packed;
2298 
2299 struct ec_response_battery_vendor_param {
2300 	uint32_t value;
2301 } __packed;
2302 
2303 /*****************************************************************************/
2304 /* System commands */
2305 
2306 /*
2307  * TODO(crosbug.com/p/23747): This is a confusing name, since it doesn't
2308  * necessarily reboot the EC.  Rename to "image" or something similar?
2309  */
2310 #define EC_CMD_REBOOT_EC 0xd2
2311 
2312 /* Command */
2313 enum ec_reboot_cmd {
2314 	EC_REBOOT_CANCEL = 0,        /* Cancel a pending reboot */
2315 	EC_REBOOT_JUMP_RO = 1,       /* Jump to RO without rebooting */
2316 	EC_REBOOT_JUMP_RW = 2,       /* Jump to RW without rebooting */
2317 	/* (command 3 was jump to RW-B) */
2318 	EC_REBOOT_COLD = 4,          /* Cold-reboot */
2319 	EC_REBOOT_DISABLE_JUMP = 5,  /* Disable jump until next reboot */
2320 	EC_REBOOT_HIBERNATE = 6      /* Hibernate EC */
2321 };
2322 
2323 /* Flags for ec_params_reboot_ec.reboot_flags */
2324 #define EC_REBOOT_FLAG_RESERVED0      (1 << 0)  /* Was recovery request */
2325 #define EC_REBOOT_FLAG_ON_AP_SHUTDOWN (1 << 1)  /* Reboot after AP shutdown */
2326 
2327 struct ec_params_reboot_ec {
2328 	uint8_t cmd;           /* enum ec_reboot_cmd */
2329 	uint8_t flags;         /* See EC_REBOOT_FLAG_* */
2330 } __packed;
2331 
2332 /*
2333  * Get information on last EC panic.
2334  *
2335  * Returns variable-length platform-dependent panic information.  See panic.h
2336  * for details.
2337  */
2338 #define EC_CMD_GET_PANIC_INFO 0xd3
2339 
2340 /*****************************************************************************/
2341 /*
2342  * ACPI commands
2343  *
2344  * These are valid ONLY on the ACPI command/data port.
2345  */
2346 
2347 /*
2348  * ACPI Read Embedded Controller
2349  *
2350  * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*).
2351  *
2352  * Use the following sequence:
2353  *
2354  *    - Write EC_CMD_ACPI_READ to EC_LPC_ADDR_ACPI_CMD
2355  *    - Wait for EC_LPC_CMDR_PENDING bit to clear
2356  *    - Write address to EC_LPC_ADDR_ACPI_DATA
2357  *    - Wait for EC_LPC_CMDR_DATA bit to set
2358  *    - Read value from EC_LPC_ADDR_ACPI_DATA
2359  */
2360 #define EC_CMD_ACPI_READ 0x80
2361 
2362 /*
2363  * ACPI Write Embedded Controller
2364  *
2365  * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*).
2366  *
2367  * Use the following sequence:
2368  *
2369  *    - Write EC_CMD_ACPI_WRITE to EC_LPC_ADDR_ACPI_CMD
2370  *    - Wait for EC_LPC_CMDR_PENDING bit to clear
2371  *    - Write address to EC_LPC_ADDR_ACPI_DATA
2372  *    - Wait for EC_LPC_CMDR_PENDING bit to clear
2373  *    - Write value to EC_LPC_ADDR_ACPI_DATA
2374  */
2375 #define EC_CMD_ACPI_WRITE 0x81
2376 
2377 /*
2378  * ACPI Query Embedded Controller
2379  *
2380  * This clears the lowest-order bit in the currently pending host events, and
2381  * sets the result code to the 1-based index of the bit (event 0x00000001 = 1,
2382  * event 0x80000000 = 32), or 0 if no event was pending.
2383  */
2384 #define EC_CMD_ACPI_QUERY_EVENT 0x84
2385 
2386 /* Valid addresses in ACPI memory space, for read/write commands */
2387 
2388 /* Memory space version; set to EC_ACPI_MEM_VERSION_CURRENT */
2389 #define EC_ACPI_MEM_VERSION            0x00
2390 /*
2391  * Test location; writing value here updates test compliment byte to (0xff -
2392  * value).
2393  */
2394 #define EC_ACPI_MEM_TEST               0x01
2395 /* Test compliment; writes here are ignored. */
2396 #define EC_ACPI_MEM_TEST_COMPLIMENT    0x02
2397 
2398 /* Keyboard backlight brightness percent (0 - 100) */
2399 #define EC_ACPI_MEM_KEYBOARD_BACKLIGHT 0x03
2400 /* DPTF Target Fan Duty (0-100, 0xff for auto/none) */
2401 #define EC_ACPI_MEM_FAN_DUTY           0x04
2402 
2403 /*
2404  * DPTF temp thresholds. Any of the EC's temp sensors can have up to two
2405  * independent thresholds attached to them. The current value of the ID
2406  * register determines which sensor is affected by the THRESHOLD and COMMIT
2407  * registers. The THRESHOLD register uses the same EC_TEMP_SENSOR_OFFSET scheme
2408  * as the memory-mapped sensors. The COMMIT register applies those settings.
2409  *
2410  * The spec does not mandate any way to read back the threshold settings
2411  * themselves, but when a threshold is crossed the AP needs a way to determine
2412  * which sensor(s) are responsible. Each reading of the ID register clears and
2413  * returns one sensor ID that has crossed one of its threshold (in either
2414  * direction) since the last read. A value of 0xFF means "no new thresholds
2415  * have tripped". Setting or enabling the thresholds for a sensor will clear
2416  * the unread event count for that sensor.
2417  */
2418 #define EC_ACPI_MEM_TEMP_ID            0x05
2419 #define EC_ACPI_MEM_TEMP_THRESHOLD     0x06
2420 #define EC_ACPI_MEM_TEMP_COMMIT        0x07
2421 /*
2422  * Here are the bits for the COMMIT register:
2423  *   bit 0 selects the threshold index for the chosen sensor (0/1)
2424  *   bit 1 enables/disables the selected threshold (0 = off, 1 = on)
2425  * Each write to the commit register affects one threshold.
2426  */
2427 #define EC_ACPI_MEM_TEMP_COMMIT_SELECT_MASK (1 << 0)
2428 #define EC_ACPI_MEM_TEMP_COMMIT_ENABLE_MASK (1 << 1)
2429 /*
2430  * Example:
2431  *
2432  * Set the thresholds for sensor 2 to 50 C and 60 C:
2433  *   write 2 to [0x05]      --  select temp sensor 2
2434  *   write 0x7b to [0x06]   --  C_TO_K(50) - EC_TEMP_SENSOR_OFFSET
2435  *   write 0x2 to [0x07]    --  enable threshold 0 with this value
2436  *   write 0x85 to [0x06]   --  C_TO_K(60) - EC_TEMP_SENSOR_OFFSET
2437  *   write 0x3 to [0x07]    --  enable threshold 1 with this value
2438  *
2439  * Disable the 60 C threshold, leaving the 50 C threshold unchanged:
2440  *   write 2 to [0x05]      --  select temp sensor 2
2441  *   write 0x1 to [0x07]    --  disable threshold 1
2442  */
2443 
2444 /* DPTF battery charging current limit */
2445 #define EC_ACPI_MEM_CHARGING_LIMIT     0x08
2446 
2447 /* Charging limit is specified in 64 mA steps */
2448 #define EC_ACPI_MEM_CHARGING_LIMIT_STEP_MA   64
2449 /* Value to disable DPTF battery charging limit */
2450 #define EC_ACPI_MEM_CHARGING_LIMIT_DISABLED  0xff
2451 
2452 /* Current version of ACPI memory address space */
2453 #define EC_ACPI_MEM_VERSION_CURRENT 1
2454 
2455 
2456 /*****************************************************************************/
2457 /*
2458  * Special commands
2459  *
2460  * These do not follow the normal rules for commands.  See each command for
2461  * details.
2462  */
2463 
2464 /*
2465  * Reboot NOW
2466  *
2467  * This command will work even when the EC LPC interface is busy, because the
2468  * reboot command is processed at interrupt level.  Note that when the EC
2469  * reboots, the host will reboot too, so there is no response to this command.
2470  *
2471  * Use EC_CMD_REBOOT_EC to reboot the EC more politely.
2472  */
2473 #define EC_CMD_REBOOT 0xd1  /* Think "die" */
2474 
2475 /*
2476  * Resend last response (not supported on LPC).
2477  *
2478  * Returns EC_RES_UNAVAILABLE if there is no response available - for example,
2479  * there was no previous command, or the previous command's response was too
2480  * big to save.
2481  */
2482 #define EC_CMD_RESEND_RESPONSE 0xdb
2483 
2484 /*
2485  * This header byte on a command indicate version 0. Any header byte less
2486  * than this means that we are talking to an old EC which doesn't support
2487  * versioning. In that case, we assume version 0.
2488  *
2489  * Header bytes greater than this indicate a later version. For example,
2490  * EC_CMD_VERSION0 + 1 means we are using version 1.
2491  *
2492  * The old EC interface must not use commands 0xdc or higher.
2493  */
2494 #define EC_CMD_VERSION0 0xdc
2495 
2496 #endif  /* !__ACPI__ */
2497 
2498 /*****************************************************************************/
2499 /*
2500  * PD commands
2501  *
2502  * These commands are for PD MCU communication.
2503  */
2504 
2505 /* EC to PD MCU exchange status command */
2506 #define EC_CMD_PD_EXCHANGE_STATUS 0x100
2507 
2508 /* Status of EC being sent to PD */
2509 struct ec_params_pd_status {
2510 	int8_t batt_soc; /* battery state of charge */
2511 } __packed;
2512 
2513 /* Status of PD being sent back to EC */
2514 struct ec_response_pd_status {
2515 	int8_t status;        /* PD MCU status */
2516 	uint32_t curr_lim_ma; /* input current limit */
2517 } __packed;
2518 
2519 /* Set USB type-C port role and muxes */
2520 #define EC_CMD_USB_PD_CONTROL 0x101
2521 
2522 enum usb_pd_control_role {
2523 	USB_PD_CTRL_ROLE_NO_CHANGE = 0,
2524 	USB_PD_CTRL_ROLE_TOGGLE_ON = 1, /* == AUTO */
2525 	USB_PD_CTRL_ROLE_TOGGLE_OFF = 2,
2526 	USB_PD_CTRL_ROLE_FORCE_SINK = 3,
2527 	USB_PD_CTRL_ROLE_FORCE_SOURCE = 4,
2528 };
2529 
2530 enum usb_pd_control_mux {
2531 	USB_PD_CTRL_MUX_NO_CHANGE = 0,
2532 	USB_PD_CTRL_MUX_NONE = 1,
2533 	USB_PD_CTRL_MUX_USB = 2,
2534 	USB_PD_CTRL_MUX_DP = 3,
2535 	USB_PD_CTRL_MUX_DOCK = 4,
2536 	USB_PD_CTRL_MUX_AUTO = 5,
2537 };
2538 
2539 struct ec_params_usb_pd_control {
2540 	uint8_t port;
2541 	uint8_t role;
2542 	uint8_t mux;
2543 } __packed;
2544 
2545 /*****************************************************************************/
2546 /*
2547  * Passthru commands
2548  *
2549  * Some platforms have sub-processors chained to each other.  For example.
2550  *
2551  *     AP <--> EC <--> PD MCU
2552  *
2553  * The top 2 bits of the command number are used to indicate which device the
2554  * command is intended for.  Device 0 is always the device receiving the
2555  * command; other device mapping is board-specific.
2556  *
2557  * When a device receives a command to be passed to a sub-processor, it passes
2558  * it on with the device number set back to 0.  This allows the sub-processor
2559  * to remain blissfully unaware of whether the command originated on the next
2560  * device up the chain, or was passed through from the AP.
2561  *
2562  * In the above example, if the AP wants to send command 0x0002 to the PD MCU,
2563  *     AP sends command 0x4002 to the EC
2564  *     EC sends command 0x0002 to the PD MCU
2565  *     EC forwards PD MCU response back to the AP
2566  */
2567 
2568 /* Offset and max command number for sub-device n */
2569 #define EC_CMD_PASSTHRU_OFFSET(n) (0x4000 * (n))
2570 #define EC_CMD_PASSTHRU_MAX(n) (EC_CMD_PASSTHRU_OFFSET(n) + 0x3fff)
2571 
2572 /*****************************************************************************/
2573 /*
2574  * Deprecated constants. These constants have been renamed for clarity. The
2575  * meaning and size has not changed. Programs that use the old names should
2576  * switch to the new names soon, as the old names may not be carried forward
2577  * forever.
2578  */
2579 #define EC_HOST_PARAM_SIZE      EC_PROTO2_MAX_PARAM_SIZE
2580 #define EC_LPC_ADDR_OLD_PARAM   EC_HOST_CMD_REGION1
2581 #define EC_OLD_PARAM_SIZE       EC_HOST_CMD_REGION_SIZE
2582 
2583 #endif  /* __CROS_EC_COMMANDS_H */
2584