1 /*
2  * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License as published by the Free
6  * Software Foundation; either version 2 of the License, or (at your option)
7  * any later version.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * The full GNU General Public License is included in this distribution in the
15  * file called COPYING.
16  */
17 #ifndef LINUX_DMAENGINE_H
18 #define LINUX_DMAENGINE_H
19 
20 #include <linux/device.h>
21 #include <linux/err.h>
22 #include <linux/uio.h>
23 #include <linux/bug.h>
24 #include <linux/scatterlist.h>
25 #include <linux/bitmap.h>
26 #include <linux/types.h>
27 #include <asm/page.h>
28 
29 /**
30  * typedef dma_cookie_t - an opaque DMA cookie
31  *
32  * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
33  */
34 typedef s32 dma_cookie_t;
35 #define DMA_MIN_COOKIE	1
36 
dma_submit_error(dma_cookie_t cookie)37 static inline int dma_submit_error(dma_cookie_t cookie)
38 {
39 	return cookie < 0 ? cookie : 0;
40 }
41 
42 /**
43  * enum dma_status - DMA transaction status
44  * @DMA_COMPLETE: transaction completed
45  * @DMA_IN_PROGRESS: transaction not yet processed
46  * @DMA_PAUSED: transaction is paused
47  * @DMA_ERROR: transaction failed
48  */
49 enum dma_status {
50 	DMA_COMPLETE,
51 	DMA_IN_PROGRESS,
52 	DMA_PAUSED,
53 	DMA_ERROR,
54 };
55 
56 /**
57  * enum dma_transaction_type - DMA transaction types/indexes
58  *
59  * Note: The DMA_ASYNC_TX capability is not to be set by drivers.  It is
60  * automatically set as dma devices are registered.
61  */
62 enum dma_transaction_type {
63 	DMA_MEMCPY,
64 	DMA_XOR,
65 	DMA_PQ,
66 	DMA_XOR_VAL,
67 	DMA_PQ_VAL,
68 	DMA_MEMSET,
69 	DMA_MEMSET_SG,
70 	DMA_INTERRUPT,
71 	DMA_SG,
72 	DMA_PRIVATE,
73 	DMA_ASYNC_TX,
74 	DMA_SLAVE,
75 	DMA_CYCLIC,
76 	DMA_INTERLEAVE,
77 /* last transaction type for creation of the capabilities mask */
78 	DMA_TX_TYPE_END,
79 };
80 
81 /**
82  * enum dma_transfer_direction - dma transfer mode and direction indicator
83  * @DMA_MEM_TO_MEM: Async/Memcpy mode
84  * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
85  * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
86  * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
87  */
88 enum dma_transfer_direction {
89 	DMA_MEM_TO_MEM,
90 	DMA_MEM_TO_DEV,
91 	DMA_DEV_TO_MEM,
92 	DMA_DEV_TO_DEV,
93 	DMA_TRANS_NONE,
94 };
95 
96 /**
97  * Interleaved Transfer Request
98  * ----------------------------
99  * A chunk is collection of contiguous bytes to be transfered.
100  * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
101  * ICGs may or maynot change between chunks.
102  * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
103  *  that when repeated an integral number of times, specifies the transfer.
104  * A transfer template is specification of a Frame, the number of times
105  *  it is to be repeated and other per-transfer attributes.
106  *
107  * Practically, a client driver would have ready a template for each
108  *  type of transfer it is going to need during its lifetime and
109  *  set only 'src_start' and 'dst_start' before submitting the requests.
110  *
111  *
112  *  |      Frame-1        |       Frame-2       | ~ |       Frame-'numf'  |
113  *  |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
114  *
115  *    ==  Chunk size
116  *    ... ICG
117  */
118 
119 /**
120  * struct data_chunk - Element of scatter-gather list that makes a frame.
121  * @size: Number of bytes to read from source.
122  *	  size_dst := fn(op, size_src), so doesn't mean much for destination.
123  * @icg: Number of bytes to jump after last src/dst address of this
124  *	 chunk and before first src/dst address for next chunk.
125  *	 Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
126  *	 Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
127  * @dst_icg: Number of bytes to jump after last dst address of this
128  *	 chunk and before the first dst address for next chunk.
129  *	 Ignored if dst_inc is true and dst_sgl is false.
130  * @src_icg: Number of bytes to jump after last src address of this
131  *	 chunk and before the first src address for next chunk.
132  *	 Ignored if src_inc is true and src_sgl is false.
133  */
134 struct data_chunk {
135 	size_t size;
136 	size_t icg;
137 	size_t dst_icg;
138 	size_t src_icg;
139 };
140 
141 /**
142  * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
143  *	 and attributes.
144  * @src_start: Bus address of source for the first chunk.
145  * @dst_start: Bus address of destination for the first chunk.
146  * @dir: Specifies the type of Source and Destination.
147  * @src_inc: If the source address increments after reading from it.
148  * @dst_inc: If the destination address increments after writing to it.
149  * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
150  *		Otherwise, source is read contiguously (icg ignored).
151  *		Ignored if src_inc is false.
152  * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
153  *		Otherwise, destination is filled contiguously (icg ignored).
154  *		Ignored if dst_inc is false.
155  * @numf: Number of frames in this template.
156  * @frame_size: Number of chunks in a frame i.e, size of sgl[].
157  * @sgl: Array of {chunk,icg} pairs that make up a frame.
158  */
159 struct dma_interleaved_template {
160 	dma_addr_t src_start;
161 	dma_addr_t dst_start;
162 	enum dma_transfer_direction dir;
163 	bool src_inc;
164 	bool dst_inc;
165 	bool src_sgl;
166 	bool dst_sgl;
167 	size_t numf;
168 	size_t frame_size;
169 	struct data_chunk sgl[0];
170 };
171 
172 /**
173  * enum dma_ctrl_flags - DMA flags to augment operation preparation,
174  *  control completion, and communicate status.
175  * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
176  *  this transaction
177  * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
178  *  acknowledges receipt, i.e. has has a chance to establish any dependency
179  *  chains
180  * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
181  * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
182  * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
183  *  sources that were the result of a previous operation, in the case of a PQ
184  *  operation it continues the calculation with new sources
185  * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
186  *  on the result of this operation
187  * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till
188  *  cleared or freed
189  */
190 enum dma_ctrl_flags {
191 	DMA_PREP_INTERRUPT = (1 << 0),
192 	DMA_CTRL_ACK = (1 << 1),
193 	DMA_PREP_PQ_DISABLE_P = (1 << 2),
194 	DMA_PREP_PQ_DISABLE_Q = (1 << 3),
195 	DMA_PREP_CONTINUE = (1 << 4),
196 	DMA_PREP_FENCE = (1 << 5),
197 	DMA_CTRL_REUSE = (1 << 6),
198 };
199 
200 /**
201  * enum sum_check_bits - bit position of pq_check_flags
202  */
203 enum sum_check_bits {
204 	SUM_CHECK_P = 0,
205 	SUM_CHECK_Q = 1,
206 };
207 
208 /**
209  * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
210  * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
211  * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
212  */
213 enum sum_check_flags {
214 	SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
215 	SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
216 };
217 
218 
219 /**
220  * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
221  * See linux/cpumask.h
222  */
223 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
224 
225 /**
226  * struct dma_chan_percpu - the per-CPU part of struct dma_chan
227  * @memcpy_count: transaction counter
228  * @bytes_transferred: byte counter
229  */
230 
231 struct dma_chan_percpu {
232 	/* stats */
233 	unsigned long memcpy_count;
234 	unsigned long bytes_transferred;
235 };
236 
237 /**
238  * struct dma_router - DMA router structure
239  * @dev: pointer to the DMA router device
240  * @route_free: function to be called when the route can be disconnected
241  */
242 struct dma_router {
243 	struct device *dev;
244 	void (*route_free)(struct device *dev, void *route_data);
245 };
246 
247 /**
248  * struct dma_chan - devices supply DMA channels, clients use them
249  * @device: ptr to the dma device who supplies this channel, always !%NULL
250  * @cookie: last cookie value returned to client
251  * @completed_cookie: last completed cookie for this channel
252  * @chan_id: channel ID for sysfs
253  * @dev: class device for sysfs
254  * @device_node: used to add this to the device chan list
255  * @local: per-cpu pointer to a struct dma_chan_percpu
256  * @client_count: how many clients are using this channel
257  * @table_count: number of appearances in the mem-to-mem allocation table
258  * @router: pointer to the DMA router structure
259  * @route_data: channel specific data for the router
260  * @private: private data for certain client-channel associations
261  */
262 struct dma_chan {
263 	struct dma_device *device;
264 	dma_cookie_t cookie;
265 	dma_cookie_t completed_cookie;
266 
267 	/* sysfs */
268 	int chan_id;
269 	struct dma_chan_dev *dev;
270 
271 	struct list_head device_node;
272 	struct dma_chan_percpu __percpu *local;
273 	int client_count;
274 	int table_count;
275 
276 	/* DMA router */
277 	struct dma_router *router;
278 	void *route_data;
279 
280 	void *private;
281 };
282 
283 /**
284  * struct dma_chan_dev - relate sysfs device node to backing channel device
285  * @chan: driver channel device
286  * @device: sysfs device
287  * @dev_id: parent dma_device dev_id
288  * @idr_ref: reference count to gate release of dma_device dev_id
289  */
290 struct dma_chan_dev {
291 	struct dma_chan *chan;
292 	struct device device;
293 	int dev_id;
294 	atomic_t *idr_ref;
295 };
296 
297 /**
298  * enum dma_slave_buswidth - defines bus width of the DMA slave
299  * device, source or target buses
300  */
301 enum dma_slave_buswidth {
302 	DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
303 	DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
304 	DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
305 	DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
306 	DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
307 	DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
308 	DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
309 	DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
310 	DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
311 };
312 
313 /**
314  * struct dma_slave_config - dma slave channel runtime config
315  * @direction: whether the data shall go in or out on this slave
316  * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
317  * legal values. DEPRECATED, drivers should use the direction argument
318  * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
319  * the dir field in the dma_interleaved_template structure.
320  * @src_addr: this is the physical address where DMA slave data
321  * should be read (RX), if the source is memory this argument is
322  * ignored.
323  * @dst_addr: this is the physical address where DMA slave data
324  * should be written (TX), if the source is memory this argument
325  * is ignored.
326  * @src_addr_width: this is the width in bytes of the source (RX)
327  * register where DMA data shall be read. If the source
328  * is memory this may be ignored depending on architecture.
329  * Legal values: 1, 2, 4, 8.
330  * @dst_addr_width: same as src_addr_width but for destination
331  * target (TX) mutatis mutandis.
332  * @src_maxburst: the maximum number of words (note: words, as in
333  * units of the src_addr_width member, not bytes) that can be sent
334  * in one burst to the device. Typically something like half the
335  * FIFO depth on I/O peripherals so you don't overflow it. This
336  * may or may not be applicable on memory sources.
337  * @dst_maxburst: same as src_maxburst but for destination target
338  * mutatis mutandis.
339  * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
340  * with 'true' if peripheral should be flow controller. Direction will be
341  * selected at Runtime.
342  * @slave_id: Slave requester id. Only valid for slave channels. The dma
343  * slave peripheral will have unique id as dma requester which need to be
344  * pass as slave config.
345  *
346  * This struct is passed in as configuration data to a DMA engine
347  * in order to set up a certain channel for DMA transport at runtime.
348  * The DMA device/engine has to provide support for an additional
349  * callback in the dma_device structure, device_config and this struct
350  * will then be passed in as an argument to the function.
351  *
352  * The rationale for adding configuration information to this struct is as
353  * follows: if it is likely that more than one DMA slave controllers in
354  * the world will support the configuration option, then make it generic.
355  * If not: if it is fixed so that it be sent in static from the platform
356  * data, then prefer to do that.
357  */
358 struct dma_slave_config {
359 	enum dma_transfer_direction direction;
360 	dma_addr_t src_addr;
361 	dma_addr_t dst_addr;
362 	enum dma_slave_buswidth src_addr_width;
363 	enum dma_slave_buswidth dst_addr_width;
364 	u32 src_maxburst;
365 	u32 dst_maxburst;
366 	bool device_fc;
367 	unsigned int slave_id;
368 };
369 
370 /**
371  * enum dma_residue_granularity - Granularity of the reported transfer residue
372  * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
373  *  DMA channel is only able to tell whether a descriptor has been completed or
374  *  not, which means residue reporting is not supported by this channel. The
375  *  residue field of the dma_tx_state field will always be 0.
376  * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
377  *  completed segment of the transfer (For cyclic transfers this is after each
378  *  period). This is typically implemented by having the hardware generate an
379  *  interrupt after each transferred segment and then the drivers updates the
380  *  outstanding residue by the size of the segment. Another possibility is if
381  *  the hardware supports scatter-gather and the segment descriptor has a field
382  *  which gets set after the segment has been completed. The driver then counts
383  *  the number of segments without the flag set to compute the residue.
384  * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
385  *  burst. This is typically only supported if the hardware has a progress
386  *  register of some sort (E.g. a register with the current read/write address
387  *  or a register with the amount of bursts/beats/bytes that have been
388  *  transferred or still need to be transferred).
389  */
390 enum dma_residue_granularity {
391 	DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
392 	DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
393 	DMA_RESIDUE_GRANULARITY_BURST = 2,
394 };
395 
396 /* struct dma_slave_caps - expose capabilities of a slave channel only
397  *
398  * @src_addr_widths: bit mask of src addr widths the channel supports
399  * @dst_addr_widths: bit mask of dstn addr widths the channel supports
400  * @directions: bit mask of slave direction the channel supported
401  * 	since the enum dma_transfer_direction is not defined as bits for each
402  * 	type of direction, the dma controller should fill (1 << <TYPE>) and same
403  * 	should be checked by controller as well
404  * @cmd_pause: true, if pause and thereby resume is supported
405  * @cmd_terminate: true, if terminate cmd is supported
406  * @residue_granularity: granularity of the reported transfer residue
407  * @descriptor_reuse: if a descriptor can be reused by client and
408  * resubmitted multiple times
409  */
410 struct dma_slave_caps {
411 	u32 src_addr_widths;
412 	u32 dst_addr_widths;
413 	u32 directions;
414 	bool cmd_pause;
415 	bool cmd_terminate;
416 	enum dma_residue_granularity residue_granularity;
417 	bool descriptor_reuse;
418 };
419 
dma_chan_name(struct dma_chan * chan)420 static inline const char *dma_chan_name(struct dma_chan *chan)
421 {
422 	return dev_name(&chan->dev->device);
423 }
424 
425 void dma_chan_cleanup(struct kref *kref);
426 
427 /**
428  * typedef dma_filter_fn - callback filter for dma_request_channel
429  * @chan: channel to be reviewed
430  * @filter_param: opaque parameter passed through dma_request_channel
431  *
432  * When this optional parameter is specified in a call to dma_request_channel a
433  * suitable channel is passed to this routine for further dispositioning before
434  * being returned.  Where 'suitable' indicates a non-busy channel that
435  * satisfies the given capability mask.  It returns 'true' to indicate that the
436  * channel is suitable.
437  */
438 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
439 
440 typedef void (*dma_async_tx_callback)(void *dma_async_param);
441 
442 struct dmaengine_unmap_data {
443 	u8 map_cnt;
444 	u8 to_cnt;
445 	u8 from_cnt;
446 	u8 bidi_cnt;
447 	struct device *dev;
448 	struct kref kref;
449 	size_t len;
450 	dma_addr_t addr[0];
451 };
452 
453 /**
454  * struct dma_async_tx_descriptor - async transaction descriptor
455  * ---dma generic offload fields---
456  * @cookie: tracking cookie for this transaction, set to -EBUSY if
457  *	this tx is sitting on a dependency list
458  * @flags: flags to augment operation preparation, control completion, and
459  * 	communicate status
460  * @phys: physical address of the descriptor
461  * @chan: target channel for this operation
462  * @tx_submit: accept the descriptor, assign ordered cookie and mark the
463  * descriptor pending. To be pushed on .issue_pending() call
464  * @callback: routine to call after this operation is complete
465  * @callback_param: general parameter to pass to the callback routine
466  * ---async_tx api specific fields---
467  * @next: at completion submit this descriptor
468  * @parent: pointer to the next level up in the dependency chain
469  * @lock: protect the parent and next pointers
470  */
471 struct dma_async_tx_descriptor {
472 	dma_cookie_t cookie;
473 	enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
474 	dma_addr_t phys;
475 	struct dma_chan *chan;
476 	dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
477 	int (*desc_free)(struct dma_async_tx_descriptor *tx);
478 	dma_async_tx_callback callback;
479 	void *callback_param;
480 	struct dmaengine_unmap_data *unmap;
481 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
482 	struct dma_async_tx_descriptor *next;
483 	struct dma_async_tx_descriptor *parent;
484 	spinlock_t lock;
485 #endif
486 };
487 
488 #ifdef CONFIG_DMA_ENGINE
dma_set_unmap(struct dma_async_tx_descriptor * tx,struct dmaengine_unmap_data * unmap)489 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
490 				 struct dmaengine_unmap_data *unmap)
491 {
492 	kref_get(&unmap->kref);
493 	tx->unmap = unmap;
494 }
495 
496 struct dmaengine_unmap_data *
497 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
498 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
499 #else
dma_set_unmap(struct dma_async_tx_descriptor * tx,struct dmaengine_unmap_data * unmap)500 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
501 				 struct dmaengine_unmap_data *unmap)
502 {
503 }
504 static inline struct dmaengine_unmap_data *
dmaengine_get_unmap_data(struct device * dev,int nr,gfp_t flags)505 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
506 {
507 	return NULL;
508 }
dmaengine_unmap_put(struct dmaengine_unmap_data * unmap)509 static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
510 {
511 }
512 #endif
513 
dma_descriptor_unmap(struct dma_async_tx_descriptor * tx)514 static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
515 {
516 	if (tx->unmap) {
517 		dmaengine_unmap_put(tx->unmap);
518 		tx->unmap = NULL;
519 	}
520 }
521 
522 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
txd_lock(struct dma_async_tx_descriptor * txd)523 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
524 {
525 }
txd_unlock(struct dma_async_tx_descriptor * txd)526 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
527 {
528 }
txd_chain(struct dma_async_tx_descriptor * txd,struct dma_async_tx_descriptor * next)529 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
530 {
531 	BUG();
532 }
txd_clear_parent(struct dma_async_tx_descriptor * txd)533 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
534 {
535 }
txd_clear_next(struct dma_async_tx_descriptor * txd)536 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
537 {
538 }
txd_next(struct dma_async_tx_descriptor * txd)539 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
540 {
541 	return NULL;
542 }
txd_parent(struct dma_async_tx_descriptor * txd)543 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
544 {
545 	return NULL;
546 }
547 
548 #else
txd_lock(struct dma_async_tx_descriptor * txd)549 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
550 {
551 	spin_lock_bh(&txd->lock);
552 }
txd_unlock(struct dma_async_tx_descriptor * txd)553 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
554 {
555 	spin_unlock_bh(&txd->lock);
556 }
txd_chain(struct dma_async_tx_descriptor * txd,struct dma_async_tx_descriptor * next)557 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
558 {
559 	txd->next = next;
560 	next->parent = txd;
561 }
txd_clear_parent(struct dma_async_tx_descriptor * txd)562 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
563 {
564 	txd->parent = NULL;
565 }
txd_clear_next(struct dma_async_tx_descriptor * txd)566 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
567 {
568 	txd->next = NULL;
569 }
txd_parent(struct dma_async_tx_descriptor * txd)570 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
571 {
572 	return txd->parent;
573 }
txd_next(struct dma_async_tx_descriptor * txd)574 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
575 {
576 	return txd->next;
577 }
578 #endif
579 
580 /**
581  * struct dma_tx_state - filled in to report the status of
582  * a transfer.
583  * @last: last completed DMA cookie
584  * @used: last issued DMA cookie (i.e. the one in progress)
585  * @residue: the remaining number of bytes left to transmit
586  *	on the selected transfer for states DMA_IN_PROGRESS and
587  *	DMA_PAUSED if this is implemented in the driver, else 0
588  */
589 struct dma_tx_state {
590 	dma_cookie_t last;
591 	dma_cookie_t used;
592 	u32 residue;
593 };
594 
595 /**
596  * enum dmaengine_alignment - defines alignment of the DMA async tx
597  * buffers
598  */
599 enum dmaengine_alignment {
600 	DMAENGINE_ALIGN_1_BYTE = 0,
601 	DMAENGINE_ALIGN_2_BYTES = 1,
602 	DMAENGINE_ALIGN_4_BYTES = 2,
603 	DMAENGINE_ALIGN_8_BYTES = 3,
604 	DMAENGINE_ALIGN_16_BYTES = 4,
605 	DMAENGINE_ALIGN_32_BYTES = 5,
606 	DMAENGINE_ALIGN_64_BYTES = 6,
607 };
608 
609 /**
610  * struct dma_device - info on the entity supplying DMA services
611  * @chancnt: how many DMA channels are supported
612  * @privatecnt: how many DMA channels are requested by dma_request_channel
613  * @channels: the list of struct dma_chan
614  * @global_node: list_head for global dma_device_list
615  * @cap_mask: one or more dma_capability flags
616  * @max_xor: maximum number of xor sources, 0 if no capability
617  * @max_pq: maximum number of PQ sources and PQ-continue capability
618  * @copy_align: alignment shift for memcpy operations
619  * @xor_align: alignment shift for xor operations
620  * @pq_align: alignment shift for pq operations
621  * @fill_align: alignment shift for memset operations
622  * @dev_id: unique device ID
623  * @dev: struct device reference for dma mapping api
624  * @src_addr_widths: bit mask of src addr widths the device supports
625  * @dst_addr_widths: bit mask of dst addr widths the device supports
626  * @directions: bit mask of slave direction the device supports since
627  * 	the enum dma_transfer_direction is not defined as bits for
628  * 	each type of direction, the dma controller should fill (1 <<
629  * 	<TYPE>) and same should be checked by controller as well
630  * @residue_granularity: granularity of the transfer residue reported
631  *	by tx_status
632  * @device_alloc_chan_resources: allocate resources and return the
633  *	number of allocated descriptors
634  * @device_free_chan_resources: release DMA channel's resources
635  * @device_prep_dma_memcpy: prepares a memcpy operation
636  * @device_prep_dma_xor: prepares a xor operation
637  * @device_prep_dma_xor_val: prepares a xor validation operation
638  * @device_prep_dma_pq: prepares a pq operation
639  * @device_prep_dma_pq_val: prepares a pqzero_sum operation
640  * @device_prep_dma_memset: prepares a memset operation
641  * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list
642  * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
643  * @device_prep_slave_sg: prepares a slave dma operation
644  * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
645  *	The function takes a buffer of size buf_len. The callback function will
646  *	be called after period_len bytes have been transferred.
647  * @device_prep_interleaved_dma: Transfer expression in a generic way.
648  * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address
649  * @device_config: Pushes a new configuration to a channel, return 0 or an error
650  *	code
651  * @device_pause: Pauses any transfer happening on a channel. Returns
652  *	0 or an error code
653  * @device_resume: Resumes any transfer on a channel previously
654  *	paused. Returns 0 or an error code
655  * @device_terminate_all: Aborts all transfers on a channel. Returns 0
656  *	or an error code
657  * @device_tx_status: poll for transaction completion, the optional
658  *	txstate parameter can be supplied with a pointer to get a
659  *	struct with auxiliary transfer status information, otherwise the call
660  *	will just return a simple status code
661  * @device_issue_pending: push pending transactions to hardware
662  */
663 struct dma_device {
664 
665 	unsigned int chancnt;
666 	unsigned int privatecnt;
667 	struct list_head channels;
668 	struct list_head global_node;
669 	dma_cap_mask_t  cap_mask;
670 	unsigned short max_xor;
671 	unsigned short max_pq;
672 	enum dmaengine_alignment copy_align;
673 	enum dmaengine_alignment xor_align;
674 	enum dmaengine_alignment pq_align;
675 	enum dmaengine_alignment fill_align;
676 	#define DMA_HAS_PQ_CONTINUE (1 << 15)
677 
678 	int dev_id;
679 	struct device *dev;
680 
681 	u32 src_addr_widths;
682 	u32 dst_addr_widths;
683 	u32 directions;
684 	enum dma_residue_granularity residue_granularity;
685 
686 	int (*device_alloc_chan_resources)(struct dma_chan *chan);
687 	void (*device_free_chan_resources)(struct dma_chan *chan);
688 
689 	struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
690 		struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
691 		size_t len, unsigned long flags);
692 	struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
693 		struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
694 		unsigned int src_cnt, size_t len, unsigned long flags);
695 	struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
696 		struct dma_chan *chan, dma_addr_t *src,	unsigned int src_cnt,
697 		size_t len, enum sum_check_flags *result, unsigned long flags);
698 	struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
699 		struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
700 		unsigned int src_cnt, const unsigned char *scf,
701 		size_t len, unsigned long flags);
702 	struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
703 		struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
704 		unsigned int src_cnt, const unsigned char *scf, size_t len,
705 		enum sum_check_flags *pqres, unsigned long flags);
706 	struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
707 		struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
708 		unsigned long flags);
709 	struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)(
710 		struct dma_chan *chan, struct scatterlist *sg,
711 		unsigned int nents, int value, unsigned long flags);
712 	struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
713 		struct dma_chan *chan, unsigned long flags);
714 	struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
715 		struct dma_chan *chan,
716 		struct scatterlist *dst_sg, unsigned int dst_nents,
717 		struct scatterlist *src_sg, unsigned int src_nents,
718 		unsigned long flags);
719 
720 	struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
721 		struct dma_chan *chan, struct scatterlist *sgl,
722 		unsigned int sg_len, enum dma_transfer_direction direction,
723 		unsigned long flags, void *context);
724 	struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
725 		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
726 		size_t period_len, enum dma_transfer_direction direction,
727 		unsigned long flags);
728 	struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
729 		struct dma_chan *chan, struct dma_interleaved_template *xt,
730 		unsigned long flags);
731 	struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)(
732 		struct dma_chan *chan, dma_addr_t dst, u64 data,
733 		unsigned long flags);
734 
735 	int (*device_config)(struct dma_chan *chan,
736 			     struct dma_slave_config *config);
737 	int (*device_pause)(struct dma_chan *chan);
738 	int (*device_resume)(struct dma_chan *chan);
739 	int (*device_terminate_all)(struct dma_chan *chan);
740 
741 	enum dma_status (*device_tx_status)(struct dma_chan *chan,
742 					    dma_cookie_t cookie,
743 					    struct dma_tx_state *txstate);
744 	void (*device_issue_pending)(struct dma_chan *chan);
745 };
746 
dmaengine_slave_config(struct dma_chan * chan,struct dma_slave_config * config)747 static inline int dmaengine_slave_config(struct dma_chan *chan,
748 					  struct dma_slave_config *config)
749 {
750 	if (chan->device->device_config)
751 		return chan->device->device_config(chan, config);
752 
753 	return -ENOSYS;
754 }
755 
is_slave_direction(enum dma_transfer_direction direction)756 static inline bool is_slave_direction(enum dma_transfer_direction direction)
757 {
758 	return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
759 }
760 
dmaengine_prep_slave_single(struct dma_chan * chan,dma_addr_t buf,size_t len,enum dma_transfer_direction dir,unsigned long flags)761 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
762 	struct dma_chan *chan, dma_addr_t buf, size_t len,
763 	enum dma_transfer_direction dir, unsigned long flags)
764 {
765 	struct scatterlist sg;
766 	sg_init_table(&sg, 1);
767 	sg_dma_address(&sg) = buf;
768 	sg_dma_len(&sg) = len;
769 
770 	return chan->device->device_prep_slave_sg(chan, &sg, 1,
771 						  dir, flags, NULL);
772 }
773 
dmaengine_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction dir,unsigned long flags)774 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
775 	struct dma_chan *chan, struct scatterlist *sgl,	unsigned int sg_len,
776 	enum dma_transfer_direction dir, unsigned long flags)
777 {
778 	return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
779 						  dir, flags, NULL);
780 }
781 
782 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
783 struct rio_dma_ext;
dmaengine_prep_rio_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction dir,unsigned long flags,struct rio_dma_ext * rio_ext)784 static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
785 	struct dma_chan *chan, struct scatterlist *sgl,	unsigned int sg_len,
786 	enum dma_transfer_direction dir, unsigned long flags,
787 	struct rio_dma_ext *rio_ext)
788 {
789 	return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
790 						  dir, flags, rio_ext);
791 }
792 #endif
793 
dmaengine_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t buf_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction dir,unsigned long flags)794 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
795 		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
796 		size_t period_len, enum dma_transfer_direction dir,
797 		unsigned long flags)
798 {
799 	return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
800 						period_len, dir, flags);
801 }
802 
dmaengine_prep_interleaved_dma(struct dma_chan * chan,struct dma_interleaved_template * xt,unsigned long flags)803 static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
804 		struct dma_chan *chan, struct dma_interleaved_template *xt,
805 		unsigned long flags)
806 {
807 	return chan->device->device_prep_interleaved_dma(chan, xt, flags);
808 }
809 
dmaengine_prep_dma_memset(struct dma_chan * chan,dma_addr_t dest,int value,size_t len,unsigned long flags)810 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset(
811 		struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
812 		unsigned long flags)
813 {
814 	if (!chan || !chan->device)
815 		return NULL;
816 
817 	return chan->device->device_prep_dma_memset(chan, dest, value,
818 						    len, flags);
819 }
820 
dmaengine_prep_dma_sg(struct dma_chan * chan,struct scatterlist * dst_sg,unsigned int dst_nents,struct scatterlist * src_sg,unsigned int src_nents,unsigned long flags)821 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_sg(
822 		struct dma_chan *chan,
823 		struct scatterlist *dst_sg, unsigned int dst_nents,
824 		struct scatterlist *src_sg, unsigned int src_nents,
825 		unsigned long flags)
826 {
827 	return chan->device->device_prep_dma_sg(chan, dst_sg, dst_nents,
828 			src_sg, src_nents, flags);
829 }
830 
dmaengine_terminate_all(struct dma_chan * chan)831 static inline int dmaengine_terminate_all(struct dma_chan *chan)
832 {
833 	if (chan->device->device_terminate_all)
834 		return chan->device->device_terminate_all(chan);
835 
836 	return -ENOSYS;
837 }
838 
dmaengine_pause(struct dma_chan * chan)839 static inline int dmaengine_pause(struct dma_chan *chan)
840 {
841 	if (chan->device->device_pause)
842 		return chan->device->device_pause(chan);
843 
844 	return -ENOSYS;
845 }
846 
dmaengine_resume(struct dma_chan * chan)847 static inline int dmaengine_resume(struct dma_chan *chan)
848 {
849 	if (chan->device->device_resume)
850 		return chan->device->device_resume(chan);
851 
852 	return -ENOSYS;
853 }
854 
dmaengine_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * state)855 static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
856 	dma_cookie_t cookie, struct dma_tx_state *state)
857 {
858 	return chan->device->device_tx_status(chan, cookie, state);
859 }
860 
dmaengine_submit(struct dma_async_tx_descriptor * desc)861 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
862 {
863 	return desc->tx_submit(desc);
864 }
865 
dmaengine_check_align(enum dmaengine_alignment align,size_t off1,size_t off2,size_t len)866 static inline bool dmaengine_check_align(enum dmaengine_alignment align,
867 					 size_t off1, size_t off2, size_t len)
868 {
869 	size_t mask;
870 
871 	if (!align)
872 		return true;
873 	mask = (1 << align) - 1;
874 	if (mask & (off1 | off2 | len))
875 		return false;
876 	return true;
877 }
878 
is_dma_copy_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)879 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
880 				       size_t off2, size_t len)
881 {
882 	return dmaengine_check_align(dev->copy_align, off1, off2, len);
883 }
884 
is_dma_xor_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)885 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
886 				      size_t off2, size_t len)
887 {
888 	return dmaengine_check_align(dev->xor_align, off1, off2, len);
889 }
890 
is_dma_pq_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)891 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
892 				     size_t off2, size_t len)
893 {
894 	return dmaengine_check_align(dev->pq_align, off1, off2, len);
895 }
896 
is_dma_fill_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)897 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
898 				       size_t off2, size_t len)
899 {
900 	return dmaengine_check_align(dev->fill_align, off1, off2, len);
901 }
902 
903 static inline void
dma_set_maxpq(struct dma_device * dma,int maxpq,int has_pq_continue)904 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
905 {
906 	dma->max_pq = maxpq;
907 	if (has_pq_continue)
908 		dma->max_pq |= DMA_HAS_PQ_CONTINUE;
909 }
910 
dmaf_continue(enum dma_ctrl_flags flags)911 static inline bool dmaf_continue(enum dma_ctrl_flags flags)
912 {
913 	return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
914 }
915 
dmaf_p_disabled_continue(enum dma_ctrl_flags flags)916 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
917 {
918 	enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
919 
920 	return (flags & mask) == mask;
921 }
922 
dma_dev_has_pq_continue(struct dma_device * dma)923 static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
924 {
925 	return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
926 }
927 
dma_dev_to_maxpq(struct dma_device * dma)928 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
929 {
930 	return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
931 }
932 
933 /* dma_maxpq - reduce maxpq in the face of continued operations
934  * @dma - dma device with PQ capability
935  * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
936  *
937  * When an engine does not support native continuation we need 3 extra
938  * source slots to reuse P and Q with the following coefficients:
939  * 1/ {00} * P : remove P from Q', but use it as a source for P'
940  * 2/ {01} * Q : use Q to continue Q' calculation
941  * 3/ {00} * Q : subtract Q from P' to cancel (2)
942  *
943  * In the case where P is disabled we only need 1 extra source:
944  * 1/ {01} * Q : use Q to continue Q' calculation
945  */
dma_maxpq(struct dma_device * dma,enum dma_ctrl_flags flags)946 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
947 {
948 	if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
949 		return dma_dev_to_maxpq(dma);
950 	else if (dmaf_p_disabled_continue(flags))
951 		return dma_dev_to_maxpq(dma) - 1;
952 	else if (dmaf_continue(flags))
953 		return dma_dev_to_maxpq(dma) - 3;
954 	BUG();
955 }
956 
dmaengine_get_icg(bool inc,bool sgl,size_t icg,size_t dir_icg)957 static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg,
958 				      size_t dir_icg)
959 {
960 	if (inc) {
961 		if (dir_icg)
962 			return dir_icg;
963 		else if (sgl)
964 			return icg;
965 	}
966 
967 	return 0;
968 }
969 
dmaengine_get_dst_icg(struct dma_interleaved_template * xt,struct data_chunk * chunk)970 static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt,
971 					   struct data_chunk *chunk)
972 {
973 	return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl,
974 				 chunk->icg, chunk->dst_icg);
975 }
976 
dmaengine_get_src_icg(struct dma_interleaved_template * xt,struct data_chunk * chunk)977 static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt,
978 					   struct data_chunk *chunk)
979 {
980 	return dmaengine_get_icg(xt->src_inc, xt->src_sgl,
981 				 chunk->icg, chunk->src_icg);
982 }
983 
984 /* --- public DMA engine API --- */
985 
986 #ifdef CONFIG_DMA_ENGINE
987 void dmaengine_get(void);
988 void dmaengine_put(void);
989 #else
dmaengine_get(void)990 static inline void dmaengine_get(void)
991 {
992 }
dmaengine_put(void)993 static inline void dmaengine_put(void)
994 {
995 }
996 #endif
997 
998 #ifdef CONFIG_ASYNC_TX_DMA
999 #define async_dmaengine_get()	dmaengine_get()
1000 #define async_dmaengine_put()	dmaengine_put()
1001 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1002 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
1003 #else
1004 #define async_dma_find_channel(type) dma_find_channel(type)
1005 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
1006 #else
async_dmaengine_get(void)1007 static inline void async_dmaengine_get(void)
1008 {
1009 }
async_dmaengine_put(void)1010 static inline void async_dmaengine_put(void)
1011 {
1012 }
1013 static inline struct dma_chan *
async_dma_find_channel(enum dma_transaction_type type)1014 async_dma_find_channel(enum dma_transaction_type type)
1015 {
1016 	return NULL;
1017 }
1018 #endif /* CONFIG_ASYNC_TX_DMA */
1019 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1020 				  struct dma_chan *chan);
1021 
async_tx_ack(struct dma_async_tx_descriptor * tx)1022 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
1023 {
1024 	tx->flags |= DMA_CTRL_ACK;
1025 }
1026 
async_tx_clear_ack(struct dma_async_tx_descriptor * tx)1027 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
1028 {
1029 	tx->flags &= ~DMA_CTRL_ACK;
1030 }
1031 
async_tx_test_ack(struct dma_async_tx_descriptor * tx)1032 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
1033 {
1034 	return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
1035 }
1036 
1037 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
1038 static inline void
__dma_cap_set(enum dma_transaction_type tx_type,dma_cap_mask_t * dstp)1039 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1040 {
1041 	set_bit(tx_type, dstp->bits);
1042 }
1043 
1044 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
1045 static inline void
__dma_cap_clear(enum dma_transaction_type tx_type,dma_cap_mask_t * dstp)1046 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1047 {
1048 	clear_bit(tx_type, dstp->bits);
1049 }
1050 
1051 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
__dma_cap_zero(dma_cap_mask_t * dstp)1052 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
1053 {
1054 	bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
1055 }
1056 
1057 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
1058 static inline int
__dma_has_cap(enum dma_transaction_type tx_type,dma_cap_mask_t * srcp)1059 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
1060 {
1061 	return test_bit(tx_type, srcp->bits);
1062 }
1063 
1064 #define for_each_dma_cap_mask(cap, mask) \
1065 	for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
1066 
1067 /**
1068  * dma_async_issue_pending - flush pending transactions to HW
1069  * @chan: target DMA channel
1070  *
1071  * This allows drivers to push copies to HW in batches,
1072  * reducing MMIO writes where possible.
1073  */
dma_async_issue_pending(struct dma_chan * chan)1074 static inline void dma_async_issue_pending(struct dma_chan *chan)
1075 {
1076 	chan->device->device_issue_pending(chan);
1077 }
1078 
1079 /**
1080  * dma_async_is_tx_complete - poll for transaction completion
1081  * @chan: DMA channel
1082  * @cookie: transaction identifier to check status of
1083  * @last: returns last completed cookie, can be NULL
1084  * @used: returns last issued cookie, can be NULL
1085  *
1086  * If @last and @used are passed in, upon return they reflect the driver
1087  * internal state and can be used with dma_async_is_complete() to check
1088  * the status of multiple cookies without re-checking hardware state.
1089  */
dma_async_is_tx_complete(struct dma_chan * chan,dma_cookie_t cookie,dma_cookie_t * last,dma_cookie_t * used)1090 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
1091 	dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1092 {
1093 	struct dma_tx_state state;
1094 	enum dma_status status;
1095 
1096 	status = chan->device->device_tx_status(chan, cookie, &state);
1097 	if (last)
1098 		*last = state.last;
1099 	if (used)
1100 		*used = state.used;
1101 	return status;
1102 }
1103 
1104 /**
1105  * dma_async_is_complete - test a cookie against chan state
1106  * @cookie: transaction identifier to test status of
1107  * @last_complete: last know completed transaction
1108  * @last_used: last cookie value handed out
1109  *
1110  * dma_async_is_complete() is used in dma_async_is_tx_complete()
1111  * the test logic is separated for lightweight testing of multiple cookies
1112  */
dma_async_is_complete(dma_cookie_t cookie,dma_cookie_t last_complete,dma_cookie_t last_used)1113 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1114 			dma_cookie_t last_complete, dma_cookie_t last_used)
1115 {
1116 	if (last_complete <= last_used) {
1117 		if ((cookie <= last_complete) || (cookie > last_used))
1118 			return DMA_COMPLETE;
1119 	} else {
1120 		if ((cookie <= last_complete) && (cookie > last_used))
1121 			return DMA_COMPLETE;
1122 	}
1123 	return DMA_IN_PROGRESS;
1124 }
1125 
1126 static inline void
dma_set_tx_state(struct dma_tx_state * st,dma_cookie_t last,dma_cookie_t used,u32 residue)1127 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1128 {
1129 	if (st) {
1130 		st->last = last;
1131 		st->used = used;
1132 		st->residue = residue;
1133 	}
1134 }
1135 
1136 #ifdef CONFIG_DMA_ENGINE
1137 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1138 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
1139 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
1140 void dma_issue_pending_all(void);
1141 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1142 					dma_filter_fn fn, void *fn_param);
1143 struct dma_chan *dma_request_slave_channel_reason(struct device *dev,
1144 						  const char *name);
1145 struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
1146 void dma_release_channel(struct dma_chan *chan);
1147 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
1148 #else
dma_find_channel(enum dma_transaction_type tx_type)1149 static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1150 {
1151 	return NULL;
1152 }
dma_sync_wait(struct dma_chan * chan,dma_cookie_t cookie)1153 static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1154 {
1155 	return DMA_COMPLETE;
1156 }
dma_wait_for_async_tx(struct dma_async_tx_descriptor * tx)1157 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1158 {
1159 	return DMA_COMPLETE;
1160 }
dma_issue_pending_all(void)1161 static inline void dma_issue_pending_all(void)
1162 {
1163 }
__dma_request_channel(const dma_cap_mask_t * mask,dma_filter_fn fn,void * fn_param)1164 static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1165 					      dma_filter_fn fn, void *fn_param)
1166 {
1167 	return NULL;
1168 }
dma_request_slave_channel_reason(struct device * dev,const char * name)1169 static inline struct dma_chan *dma_request_slave_channel_reason(
1170 					struct device *dev, const char *name)
1171 {
1172 	return ERR_PTR(-ENODEV);
1173 }
dma_request_slave_channel(struct device * dev,const char * name)1174 static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
1175 							 const char *name)
1176 {
1177 	return NULL;
1178 }
dma_release_channel(struct dma_chan * chan)1179 static inline void dma_release_channel(struct dma_chan *chan)
1180 {
1181 }
dma_get_slave_caps(struct dma_chan * chan,struct dma_slave_caps * caps)1182 static inline int dma_get_slave_caps(struct dma_chan *chan,
1183 				     struct dma_slave_caps *caps)
1184 {
1185 	return -ENXIO;
1186 }
1187 #endif
1188 
dmaengine_desc_set_reuse(struct dma_async_tx_descriptor * tx)1189 static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx)
1190 {
1191 	struct dma_slave_caps caps;
1192 
1193 	dma_get_slave_caps(tx->chan, &caps);
1194 
1195 	if (caps.descriptor_reuse) {
1196 		tx->flags |= DMA_CTRL_REUSE;
1197 		return 0;
1198 	} else {
1199 		return -EPERM;
1200 	}
1201 }
1202 
dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor * tx)1203 static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx)
1204 {
1205 	tx->flags &= ~DMA_CTRL_REUSE;
1206 }
1207 
dmaengine_desc_test_reuse(struct dma_async_tx_descriptor * tx)1208 static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx)
1209 {
1210 	return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE;
1211 }
1212 
dmaengine_desc_free(struct dma_async_tx_descriptor * desc)1213 static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc)
1214 {
1215 	/* this is supported for reusable desc, so check that */
1216 	if (dmaengine_desc_test_reuse(desc))
1217 		return desc->desc_free(desc);
1218 	else
1219 		return -EPERM;
1220 }
1221 
1222 /* --- DMA device --- */
1223 
1224 int dma_async_device_register(struct dma_device *device);
1225 void dma_async_device_unregister(struct dma_device *device);
1226 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
1227 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan);
1228 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device);
1229 #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
1230 #define dma_request_slave_channel_compat(mask, x, y, dev, name) \
1231 	__dma_request_slave_channel_compat(&(mask), x, y, dev, name)
1232 
1233 static inline struct dma_chan
__dma_request_slave_channel_compat(const dma_cap_mask_t * mask,dma_filter_fn fn,void * fn_param,struct device * dev,const char * name)1234 *__dma_request_slave_channel_compat(const dma_cap_mask_t *mask,
1235 				  dma_filter_fn fn, void *fn_param,
1236 				  struct device *dev, const char *name)
1237 {
1238 	struct dma_chan *chan;
1239 
1240 	chan = dma_request_slave_channel(dev, name);
1241 	if (chan)
1242 		return chan;
1243 
1244 	if (!fn || !fn_param)
1245 		return NULL;
1246 
1247 	return __dma_request_channel(mask, fn, fn_param);
1248 }
1249 #endif /* DMAENGINE_H */
1250