1 /*
2  * Generic EDAC defs
3  *
4  * Author: Dave Jiang <djiang@mvista.com>
5  *
6  * 2006-2008 (c) MontaVista Software, Inc. This file is licensed under
7  * the terms of the GNU General Public License version 2. This program
8  * is licensed "as is" without any warranty of any kind, whether express
9  * or implied.
10  *
11  */
12 #ifndef _LINUX_EDAC_H_
13 #define _LINUX_EDAC_H_
14 
15 #include <linux/atomic.h>
16 #include <linux/device.h>
17 #include <linux/completion.h>
18 #include <linux/workqueue.h>
19 #include <linux/debugfs.h>
20 
21 struct device;
22 
23 #define EDAC_OPSTATE_INVAL	-1
24 #define EDAC_OPSTATE_POLL	0
25 #define EDAC_OPSTATE_NMI	1
26 #define EDAC_OPSTATE_INT	2
27 
28 extern int edac_op_state;
29 extern int edac_err_assert;
30 extern atomic_t edac_handlers;
31 extern struct bus_type edac_subsys;
32 
33 extern int edac_handler_set(void);
34 extern void edac_atomic_assert_error(void);
35 extern struct bus_type *edac_get_sysfs_subsys(void);
36 extern void edac_put_sysfs_subsys(void);
37 
38 enum {
39 	EDAC_REPORTING_ENABLED,
40 	EDAC_REPORTING_DISABLED,
41 	EDAC_REPORTING_FORCE
42 };
43 
44 extern int edac_report_status;
45 #ifdef CONFIG_EDAC
get_edac_report_status(void)46 static inline int get_edac_report_status(void)
47 {
48 	return edac_report_status;
49 }
50 
set_edac_report_status(int new)51 static inline void set_edac_report_status(int new)
52 {
53 	edac_report_status = new;
54 }
55 #else
get_edac_report_status(void)56 static inline int get_edac_report_status(void)
57 {
58 	return EDAC_REPORTING_DISABLED;
59 }
60 
set_edac_report_status(int new)61 static inline void set_edac_report_status(int new)
62 {
63 }
64 #endif
65 
opstate_init(void)66 static inline void opstate_init(void)
67 {
68 	switch (edac_op_state) {
69 	case EDAC_OPSTATE_POLL:
70 	case EDAC_OPSTATE_NMI:
71 		break;
72 	default:
73 		edac_op_state = EDAC_OPSTATE_POLL;
74 	}
75 	return;
76 }
77 
78 /* Max length of a DIMM label*/
79 #define EDAC_MC_LABEL_LEN	31
80 
81 /* Maximum size of the location string */
82 #define LOCATION_SIZE 256
83 
84 /* Defines the maximum number of labels that can be reported */
85 #define EDAC_MAX_LABELS		8
86 
87 /* String used to join two or more labels */
88 #define OTHER_LABEL " or "
89 
90 /**
91  * enum dev_type - describe the type of memory DRAM chips used at the stick
92  * @DEV_UNKNOWN:	Can't be determined, or MC doesn't support detect it
93  * @DEV_X1:		1 bit for data
94  * @DEV_X2:		2 bits for data
95  * @DEV_X4:		4 bits for data
96  * @DEV_X8:		8 bits for data
97  * @DEV_X16:		16 bits for data
98  * @DEV_X32:		32 bits for data
99  * @DEV_X64:		64 bits for data
100  *
101  * Typical values are x4 and x8.
102  */
103 enum dev_type {
104 	DEV_UNKNOWN = 0,
105 	DEV_X1,
106 	DEV_X2,
107 	DEV_X4,
108 	DEV_X8,
109 	DEV_X16,
110 	DEV_X32,		/* Do these parts exist? */
111 	DEV_X64			/* Do these parts exist? */
112 };
113 
114 #define DEV_FLAG_UNKNOWN	BIT(DEV_UNKNOWN)
115 #define DEV_FLAG_X1		BIT(DEV_X1)
116 #define DEV_FLAG_X2		BIT(DEV_X2)
117 #define DEV_FLAG_X4		BIT(DEV_X4)
118 #define DEV_FLAG_X8		BIT(DEV_X8)
119 #define DEV_FLAG_X16		BIT(DEV_X16)
120 #define DEV_FLAG_X32		BIT(DEV_X32)
121 #define DEV_FLAG_X64		BIT(DEV_X64)
122 
123 /**
124  * enum hw_event_mc_err_type - type of the detected error
125  *
126  * @HW_EVENT_ERR_CORRECTED:	Corrected Error - Indicates that an ECC
127  *				corrected error was detected
128  * @HW_EVENT_ERR_UNCORRECTED:	Uncorrected Error - Indicates an error that
129  *				can't be corrected by ECC, but it is not
130  *				fatal (maybe it is on an unused memory area,
131  *				or the memory controller could recover from
132  *				it for example, by re-trying the operation).
133  * @HW_EVENT_ERR_FATAL:		Fatal Error - Uncorrected error that could not
134  *				be recovered.
135  */
136 enum hw_event_mc_err_type {
137 	HW_EVENT_ERR_CORRECTED,
138 	HW_EVENT_ERR_UNCORRECTED,
139 	HW_EVENT_ERR_FATAL,
140 	HW_EVENT_ERR_INFO,
141 };
142 
mc_event_error_type(const unsigned int err_type)143 static inline char *mc_event_error_type(const unsigned int err_type)
144 {
145 	switch (err_type) {
146 	case HW_EVENT_ERR_CORRECTED:
147 		return "Corrected";
148 	case HW_EVENT_ERR_UNCORRECTED:
149 		return "Uncorrected";
150 	case HW_EVENT_ERR_FATAL:
151 		return "Fatal";
152 	default:
153 	case HW_EVENT_ERR_INFO:
154 		return "Info";
155 	}
156 }
157 
158 /**
159  * enum mem_type - memory types. For a more detailed reference, please see
160  *			http://en.wikipedia.org/wiki/DRAM
161  *
162  * @MEM_EMPTY		Empty csrow
163  * @MEM_RESERVED:	Reserved csrow type
164  * @MEM_UNKNOWN:	Unknown csrow type
165  * @MEM_FPM:		FPM - Fast Page Mode, used on systems up to 1995.
166  * @MEM_EDO:		EDO - Extended data out, used on systems up to 1998.
167  * @MEM_BEDO:		BEDO - Burst Extended data out, an EDO variant.
168  * @MEM_SDR:		SDR - Single data rate SDRAM
169  *			http://en.wikipedia.org/wiki/Synchronous_dynamic_random-access_memory
170  *			They use 3 pins for chip select: Pins 0 and 2 are
171  *			for rank 0; pins 1 and 3 are for rank 1, if the memory
172  *			is dual-rank.
173  * @MEM_RDR:		Registered SDR SDRAM
174  * @MEM_DDR:		Double data rate SDRAM
175  *			http://en.wikipedia.org/wiki/DDR_SDRAM
176  * @MEM_RDDR:		Registered Double data rate SDRAM
177  *			This is a variant of the DDR memories.
178  *			A registered memory has a buffer inside it, hiding
179  *			part of the memory details to the memory controller.
180  * @MEM_RMBS:		Rambus DRAM, used on a few Pentium III/IV controllers.
181  * @MEM_DDR2:		DDR2 RAM, as described at JEDEC JESD79-2F.
182  *			Those memories are labed as "PC2-" instead of "PC" to
183  *			differenciate from DDR.
184  * @MEM_FB_DDR2:	Fully-Buffered DDR2, as described at JEDEC Std No. 205
185  *			and JESD206.
186  *			Those memories are accessed per DIMM slot, and not by
187  *			a chip select signal.
188  * @MEM_RDDR2:		Registered DDR2 RAM
189  *			This is a variant of the DDR2 memories.
190  * @MEM_XDR:		Rambus XDR
191  *			It is an evolution of the original RAMBUS memories,
192  *			created to compete with DDR2. Weren't used on any
193  *			x86 arch, but cell_edac PPC memory controller uses it.
194  * @MEM_DDR3:		DDR3 RAM
195  * @MEM_RDDR3:		Registered DDR3 RAM
196  *			This is a variant of the DDR3 memories.
197  * @MEM_LRDDR3		Load-Reduced DDR3 memory.
198  * @MEM_DDR4:		Unbuffered DDR4 RAM
199  * @MEM_RDDR4:		Registered DDR4 RAM
200  *			This is a variant of the DDR4 memories.
201  */
202 enum mem_type {
203 	MEM_EMPTY = 0,
204 	MEM_RESERVED,
205 	MEM_UNKNOWN,
206 	MEM_FPM,
207 	MEM_EDO,
208 	MEM_BEDO,
209 	MEM_SDR,
210 	MEM_RDR,
211 	MEM_DDR,
212 	MEM_RDDR,
213 	MEM_RMBS,
214 	MEM_DDR2,
215 	MEM_FB_DDR2,
216 	MEM_RDDR2,
217 	MEM_XDR,
218 	MEM_DDR3,
219 	MEM_RDDR3,
220 	MEM_LRDDR3,
221 	MEM_DDR4,
222 	MEM_RDDR4,
223 };
224 
225 #define MEM_FLAG_EMPTY		BIT(MEM_EMPTY)
226 #define MEM_FLAG_RESERVED	BIT(MEM_RESERVED)
227 #define MEM_FLAG_UNKNOWN	BIT(MEM_UNKNOWN)
228 #define MEM_FLAG_FPM		BIT(MEM_FPM)
229 #define MEM_FLAG_EDO		BIT(MEM_EDO)
230 #define MEM_FLAG_BEDO		BIT(MEM_BEDO)
231 #define MEM_FLAG_SDR		BIT(MEM_SDR)
232 #define MEM_FLAG_RDR		BIT(MEM_RDR)
233 #define MEM_FLAG_DDR		BIT(MEM_DDR)
234 #define MEM_FLAG_RDDR		BIT(MEM_RDDR)
235 #define MEM_FLAG_RMBS		BIT(MEM_RMBS)
236 #define MEM_FLAG_DDR2           BIT(MEM_DDR2)
237 #define MEM_FLAG_FB_DDR2        BIT(MEM_FB_DDR2)
238 #define MEM_FLAG_RDDR2          BIT(MEM_RDDR2)
239 #define MEM_FLAG_XDR            BIT(MEM_XDR)
240 #define MEM_FLAG_DDR3		 BIT(MEM_DDR3)
241 #define MEM_FLAG_RDDR3		 BIT(MEM_RDDR3)
242 
243 /**
244  * enum edac-type - Error Detection and Correction capabilities and mode
245  * @EDAC_UNKNOWN:	Unknown if ECC is available
246  * @EDAC_NONE:		Doesn't support ECC
247  * @EDAC_RESERVED:	Reserved ECC type
248  * @EDAC_PARITY:	Detects parity errors
249  * @EDAC_EC:		Error Checking - no correction
250  * @EDAC_SECDED:	Single bit error correction, Double detection
251  * @EDAC_S2ECD2ED:	Chipkill x2 devices - do these exist?
252  * @EDAC_S4ECD4ED:	Chipkill x4 devices
253  * @EDAC_S8ECD8ED:	Chipkill x8 devices
254  * @EDAC_S16ECD16ED:	Chipkill x16 devices
255  */
256 enum edac_type {
257 	EDAC_UNKNOWN =	0,
258 	EDAC_NONE,
259 	EDAC_RESERVED,
260 	EDAC_PARITY,
261 	EDAC_EC,
262 	EDAC_SECDED,
263 	EDAC_S2ECD2ED,
264 	EDAC_S4ECD4ED,
265 	EDAC_S8ECD8ED,
266 	EDAC_S16ECD16ED,
267 };
268 
269 #define EDAC_FLAG_UNKNOWN	BIT(EDAC_UNKNOWN)
270 #define EDAC_FLAG_NONE		BIT(EDAC_NONE)
271 #define EDAC_FLAG_PARITY	BIT(EDAC_PARITY)
272 #define EDAC_FLAG_EC		BIT(EDAC_EC)
273 #define EDAC_FLAG_SECDED	BIT(EDAC_SECDED)
274 #define EDAC_FLAG_S2ECD2ED	BIT(EDAC_S2ECD2ED)
275 #define EDAC_FLAG_S4ECD4ED	BIT(EDAC_S4ECD4ED)
276 #define EDAC_FLAG_S8ECD8ED	BIT(EDAC_S8ECD8ED)
277 #define EDAC_FLAG_S16ECD16ED	BIT(EDAC_S16ECD16ED)
278 
279 /**
280  * enum scrub_type - scrubbing capabilities
281  * @SCRUB_UNKNOWN		Unknown if scrubber is available
282  * @SCRUB_NONE:			No scrubber
283  * @SCRUB_SW_PROG:		SW progressive (sequential) scrubbing
284  * @SCRUB_SW_SRC:		Software scrub only errors
285  * @SCRUB_SW_PROG_SRC:		Progressive software scrub from an error
286  * @SCRUB_SW_TUNABLE:		Software scrub frequency is tunable
287  * @SCRUB_HW_PROG:		HW progressive (sequential) scrubbing
288  * @SCRUB_HW_SRC:		Hardware scrub only errors
289  * @SCRUB_HW_PROG_SRC:		Progressive hardware scrub from an error
290  * SCRUB_HW_TUNABLE:		Hardware scrub frequency is tunable
291  */
292 enum scrub_type {
293 	SCRUB_UNKNOWN =	0,
294 	SCRUB_NONE,
295 	SCRUB_SW_PROG,
296 	SCRUB_SW_SRC,
297 	SCRUB_SW_PROG_SRC,
298 	SCRUB_SW_TUNABLE,
299 	SCRUB_HW_PROG,
300 	SCRUB_HW_SRC,
301 	SCRUB_HW_PROG_SRC,
302 	SCRUB_HW_TUNABLE
303 };
304 
305 #define SCRUB_FLAG_SW_PROG	BIT(SCRUB_SW_PROG)
306 #define SCRUB_FLAG_SW_SRC	BIT(SCRUB_SW_SRC)
307 #define SCRUB_FLAG_SW_PROG_SRC	BIT(SCRUB_SW_PROG_SRC)
308 #define SCRUB_FLAG_SW_TUN	BIT(SCRUB_SW_SCRUB_TUNABLE)
309 #define SCRUB_FLAG_HW_PROG	BIT(SCRUB_HW_PROG)
310 #define SCRUB_FLAG_HW_SRC	BIT(SCRUB_HW_SRC)
311 #define SCRUB_FLAG_HW_PROG_SRC	BIT(SCRUB_HW_PROG_SRC)
312 #define SCRUB_FLAG_HW_TUN	BIT(SCRUB_HW_TUNABLE)
313 
314 /* FIXME - should have notify capabilities: NMI, LOG, PROC, etc */
315 
316 /* EDAC internal operation states */
317 #define	OP_ALLOC		0x100
318 #define OP_RUNNING_POLL		0x201
319 #define OP_RUNNING_INTERRUPT	0x202
320 #define OP_RUNNING_POLL_INTR	0x203
321 #define OP_OFFLINE		0x300
322 
323 /*
324  * Concepts used at the EDAC subsystem
325  *
326  * There are several things to be aware of that aren't at all obvious:
327  *
328  * SOCKETS, SOCKET SETS, BANKS, ROWS, CHIP-SELECT ROWS, CHANNELS, etc..
329  *
330  * These are some of the many terms that are thrown about that don't always
331  * mean what people think they mean (Inconceivable!).  In the interest of
332  * creating a common ground for discussion, terms and their definitions
333  * will be established.
334  *
335  * Memory devices:	The individual DRAM chips on a memory stick.  These
336  *			devices commonly output 4 and 8 bits each (x4, x8).
337  *			Grouping several of these in parallel provides the
338  *			number of bits that the memory controller expects:
339  *			typically 72 bits, in order to provide 64 bits +
340  *			8 bits of ECC data.
341  *
342  * Memory Stick:	A printed circuit board that aggregates multiple
343  *			memory devices in parallel.  In general, this is the
344  *			Field Replaceable Unit (FRU) which gets replaced, in
345  *			the case of excessive errors. Most often it is also
346  *			called DIMM (Dual Inline Memory Module).
347  *
348  * Memory Socket:	A physical connector on the motherboard that accepts
349  *			a single memory stick. Also called as "slot" on several
350  *			datasheets.
351  *
352  * Channel:		A memory controller channel, responsible to communicate
353  *			with a group of DIMMs. Each channel has its own
354  *			independent control (command) and data bus, and can
355  *			be used independently or grouped with other channels.
356  *
357  * Branch:		It is typically the highest hierarchy on a
358  *			Fully-Buffered DIMM memory controller.
359  *			Typically, it contains two channels.
360  *			Two channels at the same branch can be used in single
361  *			mode or in lockstep mode.
362  *			When lockstep is enabled, the cacheline is doubled,
363  *			but it generally brings some performance penalty.
364  *			Also, it is generally not possible to point to just one
365  *			memory stick when an error occurs, as the error
366  *			correction code is calculated using two DIMMs instead
367  *			of one. Due to that, it is capable of correcting more
368  *			errors than on single mode.
369  *
370  * Single-channel:	The data accessed by the memory controller is contained
371  *			into one dimm only. E. g. if the data is 64 bits-wide,
372  *			the data flows to the CPU using one 64 bits parallel
373  *			access.
374  *			Typically used with SDR, DDR, DDR2 and DDR3 memories.
375  *			FB-DIMM and RAMBUS use a different concept for channel,
376  *			so this concept doesn't apply there.
377  *
378  * Double-channel:	The data size accessed by the memory controller is
379  *			interlaced into two dimms, accessed at the same time.
380  *			E. g. if the DIMM is 64 bits-wide (72 bits with ECC),
381  *			the data flows to the CPU using a 128 bits parallel
382  *			access.
383  *
384  * Chip-select row:	This is the name of the DRAM signal used to select the
385  *			DRAM ranks to be accessed. Common chip-select rows for
386  *			single channel are 64 bits, for dual channel 128 bits.
387  *			It may not be visible by the memory controller, as some
388  *			DIMM types have a memory buffer that can hide direct
389  *			access to it from the Memory Controller.
390  *
391  * Single-Ranked stick:	A Single-ranked stick has 1 chip-select row of memory.
392  *			Motherboards commonly drive two chip-select pins to
393  *			a memory stick. A single-ranked stick, will occupy
394  *			only one of those rows. The other will be unused.
395  *
396  * Double-Ranked stick:	A double-ranked stick has two chip-select rows which
397  *			access different sets of memory devices.  The two
398  *			rows cannot be accessed concurrently.
399  *
400  * Double-sided stick:	DEPRECATED TERM, see Double-Ranked stick.
401  *			A double-sided stick has two chip-select rows which
402  *			access different sets of memory devices. The two
403  *			rows cannot be accessed concurrently. "Double-sided"
404  *			is irrespective of the memory devices being mounted
405  *			on both sides of the memory stick.
406  *
407  * Socket set:		All of the memory sticks that are required for
408  *			a single memory access or all of the memory sticks
409  *			spanned by a chip-select row.  A single socket set
410  *			has two chip-select rows and if double-sided sticks
411  *			are used these will occupy those chip-select rows.
412  *
413  * Bank:		This term is avoided because it is unclear when
414  *			needing to distinguish between chip-select rows and
415  *			socket sets.
416  *
417  * Controller pages:
418  *
419  * Physical pages:
420  *
421  * Virtual pages:
422  *
423  *
424  * STRUCTURE ORGANIZATION AND CHOICES
425  *
426  *
427  *
428  * PS - I enjoyed writing all that about as much as you enjoyed reading it.
429  */
430 
431 /**
432  * enum edac_mc_layer - memory controller hierarchy layer
433  *
434  * @EDAC_MC_LAYER_BRANCH:	memory layer is named "branch"
435  * @EDAC_MC_LAYER_CHANNEL:	memory layer is named "channel"
436  * @EDAC_MC_LAYER_SLOT:		memory layer is named "slot"
437  * @EDAC_MC_LAYER_CHIP_SELECT:	memory layer is named "chip select"
438  * @EDAC_MC_LAYER_ALL_MEM:	memory layout is unknown. All memory is mapped
439  *				as a single memory area. This is used when
440  *				retrieving errors from a firmware driven driver.
441  *
442  * This enum is used by the drivers to tell edac_mc_sysfs what name should
443  * be used when describing a memory stick location.
444  */
445 enum edac_mc_layer_type {
446 	EDAC_MC_LAYER_BRANCH,
447 	EDAC_MC_LAYER_CHANNEL,
448 	EDAC_MC_LAYER_SLOT,
449 	EDAC_MC_LAYER_CHIP_SELECT,
450 	EDAC_MC_LAYER_ALL_MEM,
451 };
452 
453 /**
454  * struct edac_mc_layer - describes the memory controller hierarchy
455  * @layer:		layer type
456  * @size:		number of components per layer. For example,
457  *			if the channel layer has two channels, size = 2
458  * @is_virt_csrow:	This layer is part of the "csrow" when old API
459  *			compatibility mode is enabled. Otherwise, it is
460  *			a channel
461  */
462 struct edac_mc_layer {
463 	enum edac_mc_layer_type	type;
464 	unsigned		size;
465 	bool			is_virt_csrow;
466 };
467 
468 /*
469  * Maximum number of layers used by the memory controller to uniquely
470  * identify a single memory stick.
471  * NOTE: Changing this constant requires not only to change the constant
472  * below, but also to change the existing code at the core, as there are
473  * some code there that are optimized for 3 layers.
474  */
475 #define EDAC_MAX_LAYERS		3
476 
477 /**
478  * EDAC_DIMM_OFF - Macro responsible to get a pointer offset inside a pointer array
479  *		   for the element given by [layer0,layer1,layer2] position
480  *
481  * @layers:	a struct edac_mc_layer array, describing how many elements
482  *		were allocated for each layer
483  * @n_layers:	Number of layers at the @layers array
484  * @layer0:	layer0 position
485  * @layer1:	layer1 position. Unused if n_layers < 2
486  * @layer2:	layer2 position. Unused if n_layers < 3
487  *
488  * For 1 layer, this macro returns &var[layer0] - &var
489  * For 2 layers, this macro is similar to allocate a bi-dimensional array
490  *		and to return "&var[layer0][layer1] - &var"
491  * For 3 layers, this macro is similar to allocate a tri-dimensional array
492  *		and to return "&var[layer0][layer1][layer2] - &var"
493  *
494  * A loop could be used here to make it more generic, but, as we only have
495  * 3 layers, this is a little faster.
496  * By design, layers can never be 0 or more than 3. If that ever happens,
497  * a NULL is returned, causing an OOPS during the memory allocation routine,
498  * with would point to the developer that he's doing something wrong.
499  */
500 #define EDAC_DIMM_OFF(layers, nlayers, layer0, layer1, layer2) ({		\
501 	int __i;							\
502 	if ((nlayers) == 1)						\
503 		__i = layer0;						\
504 	else if ((nlayers) == 2)					\
505 		__i = (layer1) + ((layers[1]).size * (layer0));		\
506 	else if ((nlayers) == 3)					\
507 		__i = (layer2) + ((layers[2]).size * ((layer1) +	\
508 			    ((layers[1]).size * (layer0))));		\
509 	else								\
510 		__i = -EINVAL;						\
511 	__i;								\
512 })
513 
514 /**
515  * EDAC_DIMM_PTR - Macro responsible to get a pointer inside a pointer array
516  *		   for the element given by [layer0,layer1,layer2] position
517  *
518  * @layers:	a struct edac_mc_layer array, describing how many elements
519  *		were allocated for each layer
520  * @var:	name of the var where we want to get the pointer
521  *		(like mci->dimms)
522  * @n_layers:	Number of layers at the @layers array
523  * @layer0:	layer0 position
524  * @layer1:	layer1 position. Unused if n_layers < 2
525  * @layer2:	layer2 position. Unused if n_layers < 3
526  *
527  * For 1 layer, this macro returns &var[layer0]
528  * For 2 layers, this macro is similar to allocate a bi-dimensional array
529  *		and to return "&var[layer0][layer1]"
530  * For 3 layers, this macro is similar to allocate a tri-dimensional array
531  *		and to return "&var[layer0][layer1][layer2]"
532  */
533 #define EDAC_DIMM_PTR(layers, var, nlayers, layer0, layer1, layer2) ({	\
534 	typeof(*var) __p;						\
535 	int ___i = EDAC_DIMM_OFF(layers, nlayers, layer0, layer1, layer2);	\
536 	if (___i < 0)							\
537 		__p = NULL;						\
538 	else								\
539 		__p = (var)[___i];					\
540 	__p;								\
541 })
542 
543 struct dimm_info {
544 	struct device dev;
545 
546 	char label[EDAC_MC_LABEL_LEN + 1];	/* DIMM label on motherboard */
547 
548 	/* Memory location data */
549 	unsigned location[EDAC_MAX_LAYERS];
550 
551 	struct mem_ctl_info *mci;	/* the parent */
552 
553 	u32 grain;		/* granularity of reported error in bytes */
554 	enum dev_type dtype;	/* memory device type */
555 	enum mem_type mtype;	/* memory dimm type */
556 	enum edac_type edac_mode;	/* EDAC mode for this dimm */
557 
558 	u32 nr_pages;			/* number of pages on this dimm */
559 
560 	unsigned csrow, cschannel;	/* Points to the old API data */
561 };
562 
563 /**
564  * struct rank_info - contains the information for one DIMM rank
565  *
566  * @chan_idx:	channel number where the rank is (typically, 0 or 1)
567  * @ce_count:	number of correctable errors for this rank
568  * @csrow:	A pointer to the chip select row structure (the parent
569  *		structure). The location of the rank is given by
570  *		the (csrow->csrow_idx, chan_idx) vector.
571  * @dimm:	A pointer to the DIMM structure, where the DIMM label
572  *		information is stored.
573  *
574  * FIXME: Currently, the EDAC core model will assume one DIMM per rank.
575  *	  This is a bad assumption, but it makes this patch easier. Later
576  *	  patches in this series will fix this issue.
577  */
578 struct rank_info {
579 	int chan_idx;
580 	struct csrow_info *csrow;
581 	struct dimm_info *dimm;
582 
583 	u32 ce_count;		/* Correctable Errors for this csrow */
584 };
585 
586 struct csrow_info {
587 	struct device dev;
588 
589 	/* Used only by edac_mc_find_csrow_by_page() */
590 	unsigned long first_page;	/* first page number in csrow */
591 	unsigned long last_page;	/* last page number in csrow */
592 	unsigned long page_mask;	/* used for interleaving -
593 					 * 0UL for non intlv */
594 
595 	int csrow_idx;			/* the chip-select row */
596 
597 	u32 ue_count;		/* Uncorrectable Errors for this csrow */
598 	u32 ce_count;		/* Correctable Errors for this csrow */
599 
600 	struct mem_ctl_info *mci;	/* the parent */
601 
602 	/* channel information for this csrow */
603 	u32 nr_channels;
604 	struct rank_info **channels;
605 };
606 
607 /*
608  * struct errcount_attribute - used to store the several error counts
609  */
610 struct errcount_attribute_data {
611 	int n_layers;
612 	int pos[EDAC_MAX_LAYERS];
613 	int layer0, layer1, layer2;
614 };
615 
616 /**
617  * edac_raw_error_desc - Raw error report structure
618  * @grain:			minimum granularity for an error report, in bytes
619  * @error_count:		number of errors of the same type
620  * @top_layer:			top layer of the error (layer[0])
621  * @mid_layer:			middle layer of the error (layer[1])
622  * @low_layer:			low layer of the error (layer[2])
623  * @page_frame_number:		page where the error happened
624  * @offset_in_page:		page offset
625  * @syndrome:			syndrome of the error (or 0 if unknown or if
626  * 				the syndrome is not applicable)
627  * @msg:			error message
628  * @location:			location of the error
629  * @label:			label of the affected DIMM(s)
630  * @other_detail:		other driver-specific detail about the error
631  * @enable_per_layer_report:	if false, the error affects all layers
632  *				(typically, a memory controller error)
633  */
634 struct edac_raw_error_desc {
635 	/*
636 	 * NOTE: everything before grain won't be cleaned by
637 	 * edac_raw_error_desc_clean()
638 	 */
639 	char location[LOCATION_SIZE];
640 	char label[(EDAC_MC_LABEL_LEN + 1 + sizeof(OTHER_LABEL)) * EDAC_MAX_LABELS];
641 	long grain;
642 
643 	/* the vars below and grain will be cleaned on every new error report */
644 	u16 error_count;
645 	int top_layer;
646 	int mid_layer;
647 	int low_layer;
648 	unsigned long page_frame_number;
649 	unsigned long offset_in_page;
650 	unsigned long syndrome;
651 	const char *msg;
652 	const char *other_detail;
653 	bool enable_per_layer_report;
654 };
655 
656 /* MEMORY controller information structure
657  */
658 struct mem_ctl_info {
659 	struct device			dev;
660 	struct bus_type			*bus;
661 
662 	struct list_head link;	/* for global list of mem_ctl_info structs */
663 
664 	struct module *owner;	/* Module owner of this control struct */
665 
666 	unsigned long mtype_cap;	/* memory types supported by mc */
667 	unsigned long edac_ctl_cap;	/* Mem controller EDAC capabilities */
668 	unsigned long edac_cap;	/* configuration capabilities - this is
669 				 * closely related to edac_ctl_cap.  The
670 				 * difference is that the controller may be
671 				 * capable of s4ecd4ed which would be listed
672 				 * in edac_ctl_cap, but if channels aren't
673 				 * capable of s4ecd4ed then the edac_cap would
674 				 * not have that capability.
675 				 */
676 	unsigned long scrub_cap;	/* chipset scrub capabilities */
677 	enum scrub_type scrub_mode;	/* current scrub mode */
678 
679 	/* Translates sdram memory scrub rate given in bytes/sec to the
680 	   internal representation and configures whatever else needs
681 	   to be configured.
682 	 */
683 	int (*set_sdram_scrub_rate) (struct mem_ctl_info * mci, u32 bw);
684 
685 	/* Get the current sdram memory scrub rate from the internal
686 	   representation and converts it to the closest matching
687 	   bandwidth in bytes/sec.
688 	 */
689 	int (*get_sdram_scrub_rate) (struct mem_ctl_info * mci);
690 
691 
692 	/* pointer to edac checking routine */
693 	void (*edac_check) (struct mem_ctl_info * mci);
694 
695 	/*
696 	 * Remaps memory pages: controller pages to physical pages.
697 	 * For most MC's, this will be NULL.
698 	 */
699 	/* FIXME - why not send the phys page to begin with? */
700 	unsigned long (*ctl_page_to_phys) (struct mem_ctl_info * mci,
701 					   unsigned long page);
702 	int mc_idx;
703 	struct csrow_info **csrows;
704 	unsigned nr_csrows, num_cschannel;
705 
706 	/*
707 	 * Memory Controller hierarchy
708 	 *
709 	 * There are basically two types of memory controller: the ones that
710 	 * sees memory sticks ("dimms"), and the ones that sees memory ranks.
711 	 * All old memory controllers enumerate memories per rank, but most
712 	 * of the recent drivers enumerate memories per DIMM, instead.
713 	 * When the memory controller is per rank, csbased is true.
714 	 */
715 	unsigned n_layers;
716 	struct edac_mc_layer *layers;
717 	bool csbased;
718 
719 	/*
720 	 * DIMM info. Will eventually remove the entire csrows_info some day
721 	 */
722 	unsigned tot_dimms;
723 	struct dimm_info **dimms;
724 
725 	/*
726 	 * FIXME - what about controllers on other busses? - IDs must be
727 	 * unique.  dev pointer should be sufficiently unique, but
728 	 * BUS:SLOT.FUNC numbers may not be unique.
729 	 */
730 	struct device *pdev;
731 	const char *mod_name;
732 	const char *mod_ver;
733 	const char *ctl_name;
734 	const char *dev_name;
735 	void *pvt_info;
736 	unsigned long start_time;	/* mci load start time (in jiffies) */
737 
738 	/*
739 	 * drivers shouldn't access those fields directly, as the core
740 	 * already handles that.
741 	 */
742 	u32 ce_noinfo_count, ue_noinfo_count;
743 	u32 ue_mc, ce_mc;
744 	u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
745 
746 	struct completion complete;
747 
748 	/* Additional top controller level attributes, but specified
749 	 * by the low level driver.
750 	 *
751 	 * Set by the low level driver to provide attributes at the
752 	 * controller level.
753 	 * An array of structures, NULL terminated
754 	 *
755 	 * If attributes are desired, then set to array of attributes
756 	 * If no attributes are desired, leave NULL
757 	 */
758 	const struct mcidev_sysfs_attribute *mc_driver_sysfs_attributes;
759 
760 	/* work struct for this MC */
761 	struct delayed_work work;
762 
763 	/*
764 	 * Used to report an error - by being at the global struct
765 	 * makes the memory allocated by the EDAC core
766 	 */
767 	struct edac_raw_error_desc error_desc;
768 
769 	/* the internal state of this controller instance */
770 	int op_state;
771 
772 	struct dentry *debugfs;
773 	u8 fake_inject_layer[EDAC_MAX_LAYERS];
774 	bool fake_inject_ue;
775 	u16 fake_inject_count;
776 };
777 
778 /*
779  * Maximum number of memory controllers in the coherent fabric.
780  */
781 #define EDAC_MAX_MCS	16
782 
783 #endif
784