/* * Cryptographic API. * Support for Nomadik hardware crypto engine. * Copyright (C) ST-Ericsson SA 2010 * Author: Shujuan Chen for ST-Ericsson * Author: Joakim Bech for ST-Ericsson * Author: Berne Hebark for ST-Ericsson. * Author: Niklas Hernaeus for ST-Ericsson. * Author: Andreas Westin for ST-Ericsson. * License terms: GNU General Public License (GPL) version 2 */ #define pr_fmt(fmt) "hashX hashX: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "hash_alg.h" static int hash_mode; module_param(hash_mode, int, 0); MODULE_PARM_DESC(hash_mode, "CPU or DMA mode. CPU = 0 (default), DMA = 1"); /** * Pre-calculated empty message digests. */ static const u8 zero_message_hash_sha1[SHA1_DIGEST_SIZE] = { 0xda, 0x39, 0xa3, 0xee, 0x5e, 0x6b, 0x4b, 0x0d, 0x32, 0x55, 0xbf, 0xef, 0x95, 0x60, 0x18, 0x90, 0xaf, 0xd8, 0x07, 0x09 }; static const u8 zero_message_hash_sha256[SHA256_DIGEST_SIZE] = { 0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, 0x9a, 0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24, 0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c, 0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55 }; /* HMAC-SHA1, no key */ static const u8 zero_message_hmac_sha1[SHA1_DIGEST_SIZE] = { 0xfb, 0xdb, 0x1d, 0x1b, 0x18, 0xaa, 0x6c, 0x08, 0x32, 0x4b, 0x7d, 0x64, 0xb7, 0x1f, 0xb7, 0x63, 0x70, 0x69, 0x0e, 0x1d }; /* HMAC-SHA256, no key */ static const u8 zero_message_hmac_sha256[SHA256_DIGEST_SIZE] = { 0xb6, 0x13, 0x67, 0x9a, 0x08, 0x14, 0xd9, 0xec, 0x77, 0x2f, 0x95, 0xd7, 0x78, 0xc3, 0x5f, 0xc5, 0xff, 0x16, 0x97, 0xc4, 0x93, 0x71, 0x56, 0x53, 0xc6, 0xc7, 0x12, 0x14, 0x42, 0x92, 0xc5, 0xad }; /** * struct hash_driver_data - data specific to the driver. * * @device_list: A list of registered devices to choose from. * @device_allocation: A semaphore initialized with number of devices. */ struct hash_driver_data { struct klist device_list; struct semaphore device_allocation; }; static struct hash_driver_data driver_data; /* Declaration of functions */ /** * hash_messagepad - Pads a message and write the nblw bits. * @device_data: Structure for the hash device. * @message: Last word of a message * @index_bytes: The number of bytes in the last message * * This function manages the final part of the digest calculation, when less * than 512 bits (64 bytes) remain in message. This means index_bytes < 64. * */ static void hash_messagepad(struct hash_device_data *device_data, const u32 *message, u8 index_bytes); /** * release_hash_device - Releases a previously allocated hash device. * @device_data: Structure for the hash device. * */ static void release_hash_device(struct hash_device_data *device_data) { spin_lock(&device_data->ctx_lock); device_data->current_ctx->device = NULL; device_data->current_ctx = NULL; spin_unlock(&device_data->ctx_lock); /* * The down_interruptible part for this semaphore is called in * cryp_get_device_data. */ up(&driver_data.device_allocation); } static void hash_dma_setup_channel(struct hash_device_data *device_data, struct device *dev) { struct hash_platform_data *platform_data = dev->platform_data; struct dma_slave_config conf = { .direction = DMA_MEM_TO_DEV, .dst_addr = device_data->phybase + HASH_DMA_FIFO, .dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES, .dst_maxburst = 16, }; dma_cap_zero(device_data->dma.mask); dma_cap_set(DMA_SLAVE, device_data->dma.mask); device_data->dma.cfg_mem2hash = platform_data->mem_to_engine; device_data->dma.chan_mem2hash = dma_request_channel(device_data->dma.mask, platform_data->dma_filter, device_data->dma.cfg_mem2hash); dmaengine_slave_config(device_data->dma.chan_mem2hash, &conf); init_completion(&device_data->dma.complete); } static void hash_dma_callback(void *data) { struct hash_ctx *ctx = data; complete(&ctx->device->dma.complete); } static int hash_set_dma_transfer(struct hash_ctx *ctx, struct scatterlist *sg, int len, enum dma_data_direction direction) { struct dma_async_tx_descriptor *desc = NULL; struct dma_chan *channel = NULL; dma_cookie_t cookie; if (direction != DMA_TO_DEVICE) { dev_err(ctx->device->dev, "%s: Invalid DMA direction\n", __func__); return -EFAULT; } sg->length = ALIGN(sg->length, HASH_DMA_ALIGN_SIZE); channel = ctx->device->dma.chan_mem2hash; ctx->device->dma.sg = sg; ctx->device->dma.sg_len = dma_map_sg(channel->device->dev, ctx->device->dma.sg, ctx->device->dma.nents, direction); if (!ctx->device->dma.sg_len) { dev_err(ctx->device->dev, "%s: Could not map the sg list (TO_DEVICE)\n", __func__); return -EFAULT; } dev_dbg(ctx->device->dev, "%s: Setting up DMA for buffer (TO_DEVICE)\n", __func__); desc = dmaengine_prep_slave_sg(channel, ctx->device->dma.sg, ctx->device->dma.sg_len, direction, DMA_CTRL_ACK | DMA_PREP_INTERRUPT); if (!desc) { dev_err(ctx->device->dev, "%s: dmaengine_prep_slave_sg() failed!\n", __func__); return -EFAULT; } desc->callback = hash_dma_callback; desc->callback_param = ctx; cookie = dmaengine_submit(desc); dma_async_issue_pending(channel); return 0; } static void hash_dma_done(struct hash_ctx *ctx) { struct dma_chan *chan; chan = ctx->device->dma.chan_mem2hash; dmaengine_terminate_all(chan); dma_unmap_sg(chan->device->dev, ctx->device->dma.sg, ctx->device->dma.sg_len, DMA_TO_DEVICE); } static int hash_dma_write(struct hash_ctx *ctx, struct scatterlist *sg, int len) { int error = hash_set_dma_transfer(ctx, sg, len, DMA_TO_DEVICE); if (error) { dev_dbg(ctx->device->dev, "%s: hash_set_dma_transfer() failed\n", __func__); return error; } return len; } /** * get_empty_message_digest - Returns a pre-calculated digest for * the empty message. * @device_data: Structure for the hash device. * @zero_hash: Buffer to return the empty message digest. * @zero_hash_size: Hash size of the empty message digest. * @zero_digest: True if zero_digest returned. */ static int get_empty_message_digest( struct hash_device_data *device_data, u8 *zero_hash, u32 *zero_hash_size, bool *zero_digest) { int ret = 0; struct hash_ctx *ctx = device_data->current_ctx; *zero_digest = false; /** * Caller responsible for ctx != NULL. */ if (HASH_OPER_MODE_HASH == ctx->config.oper_mode) { if (HASH_ALGO_SHA1 == ctx->config.algorithm) { memcpy(zero_hash, &zero_message_hash_sha1[0], SHA1_DIGEST_SIZE); *zero_hash_size = SHA1_DIGEST_SIZE; *zero_digest = true; } else if (HASH_ALGO_SHA256 == ctx->config.algorithm) { memcpy(zero_hash, &zero_message_hash_sha256[0], SHA256_DIGEST_SIZE); *zero_hash_size = SHA256_DIGEST_SIZE; *zero_digest = true; } else { dev_err(device_data->dev, "%s: Incorrect algorithm!\n", __func__); ret = -EINVAL; goto out; } } else if (HASH_OPER_MODE_HMAC == ctx->config.oper_mode) { if (!ctx->keylen) { if (HASH_ALGO_SHA1 == ctx->config.algorithm) { memcpy(zero_hash, &zero_message_hmac_sha1[0], SHA1_DIGEST_SIZE); *zero_hash_size = SHA1_DIGEST_SIZE; *zero_digest = true; } else if (HASH_ALGO_SHA256 == ctx->config.algorithm) { memcpy(zero_hash, &zero_message_hmac_sha256[0], SHA256_DIGEST_SIZE); *zero_hash_size = SHA256_DIGEST_SIZE; *zero_digest = true; } else { dev_err(device_data->dev, "%s: Incorrect algorithm!\n", __func__); ret = -EINVAL; goto out; } } else { dev_dbg(device_data->dev, "%s: Continue hash calculation, since hmac key available\n", __func__); } } out: return ret; } /** * hash_disable_power - Request to disable power and clock. * @device_data: Structure for the hash device. * @save_device_state: If true, saves the current hw state. * * This function request for disabling power (regulator) and clock, * and could also save current hw state. */ static int hash_disable_power(struct hash_device_data *device_data, bool save_device_state) { int ret = 0; struct device *dev = device_data->dev; spin_lock(&device_data->power_state_lock); if (!device_data->power_state) goto out; if (save_device_state) { hash_save_state(device_data, &device_data->state); device_data->restore_dev_state = true; } clk_disable(device_data->clk); ret = regulator_disable(device_data->regulator); if (ret) dev_err(dev, "%s: regulator_disable() failed!\n", __func__); device_data->power_state = false; out: spin_unlock(&device_data->power_state_lock); return ret; } /** * hash_enable_power - Request to enable power and clock. * @device_data: Structure for the hash device. * @restore_device_state: If true, restores a previous saved hw state. * * This function request for enabling power (regulator) and clock, * and could also restore a previously saved hw state. */ static int hash_enable_power(struct hash_device_data *device_data, bool restore_device_state) { int ret = 0; struct device *dev = device_data->dev; spin_lock(&device_data->power_state_lock); if (!device_data->power_state) { ret = regulator_enable(device_data->regulator); if (ret) { dev_err(dev, "%s: regulator_enable() failed!\n", __func__); goto out; } ret = clk_enable(device_data->clk); if (ret) { dev_err(dev, "%s: clk_enable() failed!\n", __func__); ret = regulator_disable( device_data->regulator); goto out; } device_data->power_state = true; } if (device_data->restore_dev_state) { if (restore_device_state) { device_data->restore_dev_state = false; hash_resume_state(device_data, &device_data->state); } } out: spin_unlock(&device_data->power_state_lock); return ret; } /** * hash_get_device_data - Checks for an available hash device and return it. * @hash_ctx: Structure for the hash context. * @device_data: Structure for the hash device. * * This function check for an available hash device and return it to * the caller. * Note! Caller need to release the device, calling up(). */ static int hash_get_device_data(struct hash_ctx *ctx, struct hash_device_data **device_data) { int ret; struct klist_iter device_iterator; struct klist_node *device_node; struct hash_device_data *local_device_data = NULL; /* Wait until a device is available */ ret = down_interruptible(&driver_data.device_allocation); if (ret) return ret; /* Interrupted */ /* Select a device */ klist_iter_init(&driver_data.device_list, &device_iterator); device_node = klist_next(&device_iterator); while (device_node) { local_device_data = container_of(device_node, struct hash_device_data, list_node); spin_lock(&local_device_data->ctx_lock); /* current_ctx allocates a device, NULL = unallocated */ if (local_device_data->current_ctx) { device_node = klist_next(&device_iterator); } else { local_device_data->current_ctx = ctx; ctx->device = local_device_data; spin_unlock(&local_device_data->ctx_lock); break; } spin_unlock(&local_device_data->ctx_lock); } klist_iter_exit(&device_iterator); if (!device_node) { /** * No free device found. * Since we allocated a device with down_interruptible, this * should not be able to happen. * Number of available devices, which are contained in * device_allocation, is therefore decremented by not doing * an up(device_allocation). */ return -EBUSY; } *device_data = local_device_data; return 0; } /** * hash_hw_write_key - Writes the key to the hardware registries. * * @device_data: Structure for the hash device. * @key: Key to be written. * @keylen: The lengt of the key. * * Note! This function DOES NOT write to the NBLW registry, even though * specified in the the hw design spec. Either due to incorrect info in the * spec or due to a bug in the hw. */ static void hash_hw_write_key(struct hash_device_data *device_data, const u8 *key, unsigned int keylen) { u32 word = 0; int nwords = 1; HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK); while (keylen >= 4) { u32 *key_word = (u32 *)key; HASH_SET_DIN(key_word, nwords); keylen -= 4; key += 4; } /* Take care of the remaining bytes in the last word */ if (keylen) { word = 0; while (keylen) { word |= (key[keylen - 1] << (8 * (keylen - 1))); keylen--; } HASH_SET_DIN(&word, nwords); } while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK) cpu_relax(); HASH_SET_DCAL; while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK) cpu_relax(); } /** * init_hash_hw - Initialise the hash hardware for a new calculation. * @device_data: Structure for the hash device. * @ctx: The hash context. * * This function will enable the bits needed to clear and start a new * calculation. */ static int init_hash_hw(struct hash_device_data *device_data, struct hash_ctx *ctx) { int ret = 0; ret = hash_setconfiguration(device_data, &ctx->config); if (ret) { dev_err(device_data->dev, "%s: hash_setconfiguration() failed!\n", __func__); return ret; } hash_begin(device_data, ctx); if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC) hash_hw_write_key(device_data, ctx->key, ctx->keylen); return ret; } /** * hash_get_nents - Return number of entries (nents) in scatterlist (sg). * * @sg: Scatterlist. * @size: Size in bytes. * @aligned: True if sg data aligned to work in DMA mode. * */ static int hash_get_nents(struct scatterlist *sg, int size, bool *aligned) { int nents = 0; bool aligned_data = true; while (size > 0 && sg) { nents++; size -= sg->length; /* hash_set_dma_transfer will align last nent */ if ((aligned && !IS_ALIGNED(sg->offset, HASH_DMA_ALIGN_SIZE)) || (!IS_ALIGNED(sg->length, HASH_DMA_ALIGN_SIZE) && size > 0)) aligned_data = false; sg = sg_next(sg); } if (aligned) *aligned = aligned_data; if (size != 0) return -EFAULT; return nents; } /** * hash_dma_valid_data - checks for dma valid sg data. * @sg: Scatterlist. * @datasize: Datasize in bytes. * * NOTE! This function checks for dma valid sg data, since dma * only accept datasizes of even wordsize. */ static bool hash_dma_valid_data(struct scatterlist *sg, int datasize) { bool aligned; /* Need to include at least one nent, else error */ if (hash_get_nents(sg, datasize, &aligned) < 1) return false; return aligned; } /** * hash_init - Common hash init function for SHA1/SHA2 (SHA256). * @req: The hash request for the job. * * Initialize structures. */ static int hash_init(struct ahash_request *req) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct hash_ctx *ctx = crypto_ahash_ctx(tfm); struct hash_req_ctx *req_ctx = ahash_request_ctx(req); if (!ctx->key) ctx->keylen = 0; memset(&req_ctx->state, 0, sizeof(struct hash_state)); req_ctx->updated = 0; if (hash_mode == HASH_MODE_DMA) { if (req->nbytes < HASH_DMA_ALIGN_SIZE) { req_ctx->dma_mode = false; /* Don't use DMA */ pr_debug("%s: DMA mode, but direct to CPU mode for data size < %d\n", __func__, HASH_DMA_ALIGN_SIZE); } else { if (req->nbytes >= HASH_DMA_PERFORMANCE_MIN_SIZE && hash_dma_valid_data(req->src, req->nbytes)) { req_ctx->dma_mode = true; } else { req_ctx->dma_mode = false; pr_debug("%s: DMA mode, but use CPU mode for datalength < %d or non-aligned data, except in last nent\n", __func__, HASH_DMA_PERFORMANCE_MIN_SIZE); } } } return 0; } /** * hash_processblock - This function processes a single block of 512 bits (64 * bytes), word aligned, starting at message. * @device_data: Structure for the hash device. * @message: Block (512 bits) of message to be written to * the HASH hardware. * */ static void hash_processblock(struct hash_device_data *device_data, const u32 *message, int length) { int len = length / HASH_BYTES_PER_WORD; /* * NBLW bits. Reset the number of bits in last word (NBLW). */ HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK); /* * Write message data to the HASH_DIN register. */ HASH_SET_DIN(message, len); } /** * hash_messagepad - Pads a message and write the nblw bits. * @device_data: Structure for the hash device. * @message: Last word of a message. * @index_bytes: The number of bytes in the last message. * * This function manages the final part of the digest calculation, when less * than 512 bits (64 bytes) remain in message. This means index_bytes < 64. * */ static void hash_messagepad(struct hash_device_data *device_data, const u32 *message, u8 index_bytes) { int nwords = 1; /* * Clear hash str register, only clear NBLW * since DCAL will be reset by hardware. */ HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK); /* Main loop */ while (index_bytes >= 4) { HASH_SET_DIN(message, nwords); index_bytes -= 4; message++; } if (index_bytes) HASH_SET_DIN(message, nwords); while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK) cpu_relax(); /* num_of_bytes == 0 => NBLW <- 0 (32 bits valid in DATAIN) */ HASH_SET_NBLW(index_bytes * 8); dev_dbg(device_data->dev, "%s: DIN=0x%08x NBLW=%lu\n", __func__, readl_relaxed(&device_data->base->din), readl_relaxed(&device_data->base->str) & HASH_STR_NBLW_MASK); HASH_SET_DCAL; dev_dbg(device_data->dev, "%s: after dcal -> DIN=0x%08x NBLW=%lu\n", __func__, readl_relaxed(&device_data->base->din), readl_relaxed(&device_data->base->str) & HASH_STR_NBLW_MASK); while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK) cpu_relax(); } /** * hash_incrementlength - Increments the length of the current message. * @ctx: Hash context * @incr: Length of message processed already * * Overflow cannot occur, because conditions for overflow are checked in * hash_hw_update. */ static void hash_incrementlength(struct hash_req_ctx *ctx, u32 incr) { ctx->state.length.low_word += incr; /* Check for wrap-around */ if (ctx->state.length.low_word < incr) ctx->state.length.high_word++; } /** * hash_setconfiguration - Sets the required configuration for the hash * hardware. * @device_data: Structure for the hash device. * @config: Pointer to a configuration structure. */ int hash_setconfiguration(struct hash_device_data *device_data, struct hash_config *config) { int ret = 0; if (config->algorithm != HASH_ALGO_SHA1 && config->algorithm != HASH_ALGO_SHA256) return -EPERM; /* * DATAFORM bits. Set the DATAFORM bits to 0b11, which means the data * to be written to HASH_DIN is considered as 32 bits. */ HASH_SET_DATA_FORMAT(config->data_format); /* * ALGO bit. Set to 0b1 for SHA-1 and 0b0 for SHA-256 */ switch (config->algorithm) { case HASH_ALGO_SHA1: HASH_SET_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK); break; case HASH_ALGO_SHA256: HASH_CLEAR_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK); break; default: dev_err(device_data->dev, "%s: Incorrect algorithm\n", __func__); return -EPERM; } /* * MODE bit. This bit selects between HASH or HMAC mode for the * selected algorithm. 0b0 = HASH and 0b1 = HMAC. */ if (HASH_OPER_MODE_HASH == config->oper_mode) HASH_CLEAR_BITS(&device_data->base->cr, HASH_CR_MODE_MASK); else if (HASH_OPER_MODE_HMAC == config->oper_mode) { HASH_SET_BITS(&device_data->base->cr, HASH_CR_MODE_MASK); if (device_data->current_ctx->keylen > HASH_BLOCK_SIZE) { /* Truncate key to blocksize */ dev_dbg(device_data->dev, "%s: LKEY set\n", __func__); HASH_SET_BITS(&device_data->base->cr, HASH_CR_LKEY_MASK); } else { dev_dbg(device_data->dev, "%s: LKEY cleared\n", __func__); HASH_CLEAR_BITS(&device_data->base->cr, HASH_CR_LKEY_MASK); } } else { /* Wrong hash mode */ ret = -EPERM; dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n", __func__); } return ret; } /** * hash_begin - This routine resets some globals and initializes the hash * hardware. * @device_data: Structure for the hash device. * @ctx: Hash context. */ void hash_begin(struct hash_device_data *device_data, struct hash_ctx *ctx) { /* HW and SW initializations */ /* Note: there is no need to initialize buffer and digest members */ while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK) cpu_relax(); /* * INIT bit. Set this bit to 0b1 to reset the HASH processor core and * prepare the initialize the HASH accelerator to compute the message * digest of a new message. */ HASH_INITIALIZE; /* * NBLW bits. Reset the number of bits in last word (NBLW). */ HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK); } static int hash_process_data(struct hash_device_data *device_data, struct hash_ctx *ctx, struct hash_req_ctx *req_ctx, int msg_length, u8 *data_buffer, u8 *buffer, u8 *index) { int ret = 0; u32 count; do { if ((*index + msg_length) < HASH_BLOCK_SIZE) { for (count = 0; count < msg_length; count++) { buffer[*index + count] = *(data_buffer + count); } *index += msg_length; msg_length = 0; } else { if (req_ctx->updated) { ret = hash_resume_state(device_data, &device_data->state); memmove(req_ctx->state.buffer, device_data->state.buffer, HASH_BLOCK_SIZE / sizeof(u32)); if (ret) { dev_err(device_data->dev, "%s: hash_resume_state() failed!\n", __func__); goto out; } } else { ret = init_hash_hw(device_data, ctx); if (ret) { dev_err(device_data->dev, "%s: init_hash_hw() failed!\n", __func__); goto out; } req_ctx->updated = 1; } /* * If 'data_buffer' is four byte aligned and * local buffer does not have any data, we can * write data directly from 'data_buffer' to * HW peripheral, otherwise we first copy data * to a local buffer */ if ((0 == (((u32)data_buffer) % 4)) && (0 == *index)) hash_processblock(device_data, (const u32 *)data_buffer, HASH_BLOCK_SIZE); else { for (count = 0; count < (u32)(HASH_BLOCK_SIZE - *index); count++) { buffer[*index + count] = *(data_buffer + count); } hash_processblock(device_data, (const u32 *)buffer, HASH_BLOCK_SIZE); } hash_incrementlength(req_ctx, HASH_BLOCK_SIZE); data_buffer += (HASH_BLOCK_SIZE - *index); msg_length -= (HASH_BLOCK_SIZE - *index); *index = 0; ret = hash_save_state(device_data, &device_data->state); memmove(device_data->state.buffer, req_ctx->state.buffer, HASH_BLOCK_SIZE / sizeof(u32)); if (ret) { dev_err(device_data->dev, "%s: hash_save_state() failed!\n", __func__); goto out; } } } while (msg_length != 0); out: return ret; } /** * hash_dma_final - The hash dma final function for SHA1/SHA256. * @req: The hash request for the job. */ static int hash_dma_final(struct ahash_request *req) { int ret = 0; struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct hash_ctx *ctx = crypto_ahash_ctx(tfm); struct hash_req_ctx *req_ctx = ahash_request_ctx(req); struct hash_device_data *device_data; u8 digest[SHA256_DIGEST_SIZE]; int bytes_written = 0; ret = hash_get_device_data(ctx, &device_data); if (ret) return ret; dev_dbg(device_data->dev, "%s: (ctx=0x%x)!\n", __func__, (u32) ctx); if (req_ctx->updated) { ret = hash_resume_state(device_data, &device_data->state); if (ret) { dev_err(device_data->dev, "%s: hash_resume_state() failed!\n", __func__); goto out; } } if (!req_ctx->updated) { ret = hash_setconfiguration(device_data, &ctx->config); if (ret) { dev_err(device_data->dev, "%s: hash_setconfiguration() failed!\n", __func__); goto out; } /* Enable DMA input */ if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode) { HASH_CLEAR_BITS(&device_data->base->cr, HASH_CR_DMAE_MASK); } else { HASH_SET_BITS(&device_data->base->cr, HASH_CR_DMAE_MASK); HASH_SET_BITS(&device_data->base->cr, HASH_CR_PRIVN_MASK); } HASH_INITIALIZE; if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC) hash_hw_write_key(device_data, ctx->key, ctx->keylen); /* Number of bits in last word = (nbytes * 8) % 32 */ HASH_SET_NBLW((req->nbytes * 8) % 32); req_ctx->updated = 1; } /* Store the nents in the dma struct. */ ctx->device->dma.nents = hash_get_nents(req->src, req->nbytes, NULL); if (!ctx->device->dma.nents) { dev_err(device_data->dev, "%s: ctx->device->dma.nents = 0\n", __func__); ret = ctx->device->dma.nents; goto out; } bytes_written = hash_dma_write(ctx, req->src, req->nbytes); if (bytes_written != req->nbytes) { dev_err(device_data->dev, "%s: hash_dma_write() failed!\n", __func__); ret = bytes_written; goto out; } wait_for_completion(&ctx->device->dma.complete); hash_dma_done(ctx); while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK) cpu_relax(); if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) { unsigned int keylen = ctx->keylen; u8 *key = ctx->key; dev_dbg(device_data->dev, "%s: keylen: %d\n", __func__, ctx->keylen); hash_hw_write_key(device_data, key, keylen); } hash_get_digest(device_data, digest, ctx->config.algorithm); memcpy(req->result, digest, ctx->digestsize); out: release_hash_device(device_data); /** * Allocated in setkey, and only used in HMAC. */ kfree(ctx->key); return ret; } /** * hash_hw_final - The final hash calculation function * @req: The hash request for the job. */ static int hash_hw_final(struct ahash_request *req) { int ret = 0; struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct hash_ctx *ctx = crypto_ahash_ctx(tfm); struct hash_req_ctx *req_ctx = ahash_request_ctx(req); struct hash_device_data *device_data; u8 digest[SHA256_DIGEST_SIZE]; ret = hash_get_device_data(ctx, &device_data); if (ret) return ret; dev_dbg(device_data->dev, "%s: (ctx=0x%x)!\n", __func__, (u32) ctx); if (req_ctx->updated) { ret = hash_resume_state(device_data, &device_data->state); if (ret) { dev_err(device_data->dev, "%s: hash_resume_state() failed!\n", __func__); goto out; } } else if (req->nbytes == 0 && ctx->keylen == 0) { u8 zero_hash[SHA256_DIGEST_SIZE]; u32 zero_hash_size = 0; bool zero_digest = false; /** * Use a pre-calculated empty message digest * (workaround since hw return zeroes, hw bug!?) */ ret = get_empty_message_digest(device_data, &zero_hash[0], &zero_hash_size, &zero_digest); if (!ret && likely(zero_hash_size == ctx->digestsize) && zero_digest) { memcpy(req->result, &zero_hash[0], ctx->digestsize); goto out; } else if (!ret && !zero_digest) { dev_dbg(device_data->dev, "%s: HMAC zero msg with key, continue...\n", __func__); } else { dev_err(device_data->dev, "%s: ret=%d, or wrong digest size? %s\n", __func__, ret, zero_hash_size == ctx->digestsize ? "true" : "false"); /* Return error */ goto out; } } else if (req->nbytes == 0 && ctx->keylen > 0) { dev_err(device_data->dev, "%s: Empty message with keylength > 0, NOT supported\n", __func__); goto out; } if (!req_ctx->updated) { ret = init_hash_hw(device_data, ctx); if (ret) { dev_err(device_data->dev, "%s: init_hash_hw() failed!\n", __func__); goto out; } } if (req_ctx->state.index) { hash_messagepad(device_data, req_ctx->state.buffer, req_ctx->state.index); } else { HASH_SET_DCAL; while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK) cpu_relax(); } if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) { unsigned int keylen = ctx->keylen; u8 *key = ctx->key; dev_dbg(device_data->dev, "%s: keylen: %d\n", __func__, ctx->keylen); hash_hw_write_key(device_data, key, keylen); } hash_get_digest(device_data, digest, ctx->config.algorithm); memcpy(req->result, digest, ctx->digestsize); out: release_hash_device(device_data); /** * Allocated in setkey, and only used in HMAC. */ kfree(ctx->key); return ret; } /** * hash_hw_update - Updates current HASH computation hashing another part of * the message. * @req: Byte array containing the message to be hashed (caller * allocated). */ int hash_hw_update(struct ahash_request *req) { int ret = 0; u8 index = 0; u8 *buffer; struct hash_device_data *device_data; u8 *data_buffer; struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct hash_ctx *ctx = crypto_ahash_ctx(tfm); struct hash_req_ctx *req_ctx = ahash_request_ctx(req); struct crypto_hash_walk walk; int msg_length = crypto_hash_walk_first(req, &walk); /* Empty message ("") is correct indata */ if (msg_length == 0) return ret; index = req_ctx->state.index; buffer = (u8 *)req_ctx->state.buffer; /* Check if ctx->state.length + msg_length overflows */ if (msg_length > (req_ctx->state.length.low_word + msg_length) && HASH_HIGH_WORD_MAX_VAL == req_ctx->state.length.high_word) { pr_err("%s: HASH_MSG_LENGTH_OVERFLOW!\n", __func__); return -EPERM; } ret = hash_get_device_data(ctx, &device_data); if (ret) return ret; /* Main loop */ while (0 != msg_length) { data_buffer = walk.data; ret = hash_process_data(device_data, ctx, req_ctx, msg_length, data_buffer, buffer, &index); if (ret) { dev_err(device_data->dev, "%s: hash_internal_hw_update() failed!\n", __func__); goto out; } msg_length = crypto_hash_walk_done(&walk, 0); } req_ctx->state.index = index; dev_dbg(device_data->dev, "%s: indata length=%d, bin=%d\n", __func__, req_ctx->state.index, req_ctx->state.bit_index); out: release_hash_device(device_data); return ret; } /** * hash_resume_state - Function that resumes the state of an calculation. * @device_data: Pointer to the device structure. * @device_state: The state to be restored in the hash hardware */ int hash_resume_state(struct hash_device_data *device_data, const struct hash_state *device_state) { u32 temp_cr; s32 count; int hash_mode = HASH_OPER_MODE_HASH; if (NULL == device_state) { dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n", __func__); return -EPERM; } /* Check correctness of index and length members */ if (device_state->index > HASH_BLOCK_SIZE || (device_state->length.low_word % HASH_BLOCK_SIZE) != 0) { dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n", __func__); return -EPERM; } /* * INIT bit. Set this bit to 0b1 to reset the HASH processor core and * prepare the initialize the HASH accelerator to compute the message * digest of a new message. */ HASH_INITIALIZE; temp_cr = device_state->temp_cr; writel_relaxed(temp_cr & HASH_CR_RESUME_MASK, &device_data->base->cr); if (readl(&device_data->base->cr) & HASH_CR_MODE_MASK) hash_mode = HASH_OPER_MODE_HMAC; else hash_mode = HASH_OPER_MODE_HASH; for (count = 0; count < HASH_CSR_COUNT; count++) { if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH)) break; writel_relaxed(device_state->csr[count], &device_data->base->csrx[count]); } writel_relaxed(device_state->csfull, &device_data->base->csfull); writel_relaxed(device_state->csdatain, &device_data->base->csdatain); writel_relaxed(device_state->str_reg, &device_data->base->str); writel_relaxed(temp_cr, &device_data->base->cr); return 0; } /** * hash_save_state - Function that saves the state of hardware. * @device_data: Pointer to the device structure. * @device_state: The strucure where the hardware state should be saved. */ int hash_save_state(struct hash_device_data *device_data, struct hash_state *device_state) { u32 temp_cr; u32 count; int hash_mode = HASH_OPER_MODE_HASH; if (NULL == device_state) { dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n", __func__); return -ENOTSUPP; } /* Write dummy value to force digest intermediate calculation. This * actually makes sure that there isn't any ongoing calculation in the * hardware. */ while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK) cpu_relax(); temp_cr = readl_relaxed(&device_data->base->cr); device_state->str_reg = readl_relaxed(&device_data->base->str); device_state->din_reg = readl_relaxed(&device_data->base->din); if (readl(&device_data->base->cr) & HASH_CR_MODE_MASK) hash_mode = HASH_OPER_MODE_HMAC; else hash_mode = HASH_OPER_MODE_HASH; for (count = 0; count < HASH_CSR_COUNT; count++) { if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH)) break; device_state->csr[count] = readl_relaxed(&device_data->base->csrx[count]); } device_state->csfull = readl_relaxed(&device_data->base->csfull); device_state->csdatain = readl_relaxed(&device_data->base->csdatain); device_state->temp_cr = temp_cr; return 0; } /** * hash_check_hw - This routine checks for peripheral Ids and PCell Ids. * @device_data: * */ int hash_check_hw(struct hash_device_data *device_data) { /* Checking Peripheral Ids */ if (HASH_P_ID0 == readl_relaxed(&device_data->base->periphid0) && HASH_P_ID1 == readl_relaxed(&device_data->base->periphid1) && HASH_P_ID2 == readl_relaxed(&device_data->base->periphid2) && HASH_P_ID3 == readl_relaxed(&device_data->base->periphid3) && HASH_CELL_ID0 == readl_relaxed(&device_data->base->cellid0) && HASH_CELL_ID1 == readl_relaxed(&device_data->base->cellid1) && HASH_CELL_ID2 == readl_relaxed(&device_data->base->cellid2) && HASH_CELL_ID3 == readl_relaxed(&device_data->base->cellid3)) { return 0; } dev_err(device_data->dev, "%s: HASH_UNSUPPORTED_HW!\n", __func__); return -ENOTSUPP; } /** * hash_get_digest - Gets the digest. * @device_data: Pointer to the device structure. * @digest: User allocated byte array for the calculated digest. * @algorithm: The algorithm in use. */ void hash_get_digest(struct hash_device_data *device_data, u8 *digest, int algorithm) { u32 temp_hx_val, count; int loop_ctr; if (algorithm != HASH_ALGO_SHA1 && algorithm != HASH_ALGO_SHA256) { dev_err(device_data->dev, "%s: Incorrect algorithm %d\n", __func__, algorithm); return; } if (algorithm == HASH_ALGO_SHA1) loop_ctr = SHA1_DIGEST_SIZE / sizeof(u32); else loop_ctr = SHA256_DIGEST_SIZE / sizeof(u32); dev_dbg(device_data->dev, "%s: digest array:(0x%x)\n", __func__, (u32) digest); /* Copy result into digest array */ for (count = 0; count < loop_ctr; count++) { temp_hx_val = readl_relaxed(&device_data->base->hx[count]); digest[count * 4] = (u8) ((temp_hx_val >> 24) & 0xFF); digest[count * 4 + 1] = (u8) ((temp_hx_val >> 16) & 0xFF); digest[count * 4 + 2] = (u8) ((temp_hx_val >> 8) & 0xFF); digest[count * 4 + 3] = (u8) ((temp_hx_val >> 0) & 0xFF); } } /** * hash_update - The hash update function for SHA1/SHA2 (SHA256). * @req: The hash request for the job. */ static int ahash_update(struct ahash_request *req) { int ret = 0; struct hash_req_ctx *req_ctx = ahash_request_ctx(req); if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode) ret = hash_hw_update(req); /* Skip update for DMA, all data will be passed to DMA in final */ if (ret) { pr_err("%s: hash_hw_update() failed!\n", __func__); } return ret; } /** * hash_final - The hash final function for SHA1/SHA2 (SHA256). * @req: The hash request for the job. */ static int ahash_final(struct ahash_request *req) { int ret = 0; struct hash_req_ctx *req_ctx = ahash_request_ctx(req); pr_debug("%s: data size: %d\n", __func__, req->nbytes); if ((hash_mode == HASH_MODE_DMA) && req_ctx->dma_mode) ret = hash_dma_final(req); else ret = hash_hw_final(req); if (ret) { pr_err("%s: hash_hw/dma_final() failed\n", __func__); } return ret; } static int hash_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen, int alg) { int ret = 0; struct hash_ctx *ctx = crypto_ahash_ctx(tfm); /** * Freed in final. */ ctx->key = kmemdup(key, keylen, GFP_KERNEL); if (!ctx->key) { pr_err("%s: Failed to allocate ctx->key for %d\n", __func__, alg); return -ENOMEM; } ctx->keylen = keylen; return ret; } static int ahash_sha1_init(struct ahash_request *req) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct hash_ctx *ctx = crypto_ahash_ctx(tfm); ctx->config.data_format = HASH_DATA_8_BITS; ctx->config.algorithm = HASH_ALGO_SHA1; ctx->config.oper_mode = HASH_OPER_MODE_HASH; ctx->digestsize = SHA1_DIGEST_SIZE; return hash_init(req); } static int ahash_sha256_init(struct ahash_request *req) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct hash_ctx *ctx = crypto_ahash_ctx(tfm); ctx->config.data_format = HASH_DATA_8_BITS; ctx->config.algorithm = HASH_ALGO_SHA256; ctx->config.oper_mode = HASH_OPER_MODE_HASH; ctx->digestsize = SHA256_DIGEST_SIZE; return hash_init(req); } static int ahash_sha1_digest(struct ahash_request *req) { int ret2, ret1; ret1 = ahash_sha1_init(req); if (ret1) goto out; ret1 = ahash_update(req); ret2 = ahash_final(req); out: return ret1 ? ret1 : ret2; } static int ahash_sha256_digest(struct ahash_request *req) { int ret2, ret1; ret1 = ahash_sha256_init(req); if (ret1) goto out; ret1 = ahash_update(req); ret2 = ahash_final(req); out: return ret1 ? ret1 : ret2; } static int hmac_sha1_init(struct ahash_request *req) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct hash_ctx *ctx = crypto_ahash_ctx(tfm); ctx->config.data_format = HASH_DATA_8_BITS; ctx->config.algorithm = HASH_ALGO_SHA1; ctx->config.oper_mode = HASH_OPER_MODE_HMAC; ctx->digestsize = SHA1_DIGEST_SIZE; return hash_init(req); } static int hmac_sha256_init(struct ahash_request *req) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct hash_ctx *ctx = crypto_ahash_ctx(tfm); ctx->config.data_format = HASH_DATA_8_BITS; ctx->config.algorithm = HASH_ALGO_SHA256; ctx->config.oper_mode = HASH_OPER_MODE_HMAC; ctx->digestsize = SHA256_DIGEST_SIZE; return hash_init(req); } static int hmac_sha1_digest(struct ahash_request *req) { int ret2, ret1; ret1 = hmac_sha1_init(req); if (ret1) goto out; ret1 = ahash_update(req); ret2 = ahash_final(req); out: return ret1 ? ret1 : ret2; } static int hmac_sha256_digest(struct ahash_request *req) { int ret2, ret1; ret1 = hmac_sha256_init(req); if (ret1) goto out; ret1 = ahash_update(req); ret2 = ahash_final(req); out: return ret1 ? ret1 : ret2; } static int hmac_sha1_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen) { return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA1); } static int hmac_sha256_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen) { return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA256); } struct hash_algo_template { struct hash_config conf; struct ahash_alg hash; }; static int hash_cra_init(struct crypto_tfm *tfm) { struct hash_ctx *ctx = crypto_tfm_ctx(tfm); struct crypto_alg *alg = tfm->__crt_alg; struct hash_algo_template *hash_alg; hash_alg = container_of(__crypto_ahash_alg(alg), struct hash_algo_template, hash); crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), sizeof(struct hash_req_ctx)); ctx->config.data_format = HASH_DATA_8_BITS; ctx->config.algorithm = hash_alg->conf.algorithm; ctx->config.oper_mode = hash_alg->conf.oper_mode; ctx->digestsize = hash_alg->hash.halg.digestsize; return 0; } static struct hash_algo_template hash_algs[] = { { .conf.algorithm = HASH_ALGO_SHA1, .conf.oper_mode = HASH_OPER_MODE_HASH, .hash = { .init = hash_init, .update = ahash_update, .final = ahash_final, .digest = ahash_sha1_digest, .halg.digestsize = SHA1_DIGEST_SIZE, .halg.statesize = sizeof(struct hash_ctx), .halg.base = { .cra_name = "sha1", .cra_driver_name = "sha1-ux500", .cra_flags = (CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC), .cra_blocksize = SHA1_BLOCK_SIZE, .cra_ctxsize = sizeof(struct hash_ctx), .cra_init = hash_cra_init, .cra_module = THIS_MODULE, } } }, { .conf.algorithm = HASH_ALGO_SHA256, .conf.oper_mode = HASH_OPER_MODE_HASH, .hash = { .init = hash_init, .update = ahash_update, .final = ahash_final, .digest = ahash_sha256_digest, .halg.digestsize = SHA256_DIGEST_SIZE, .halg.statesize = sizeof(struct hash_ctx), .halg.base = { .cra_name = "sha256", .cra_driver_name = "sha256-ux500", .cra_flags = (CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC), .cra_blocksize = SHA256_BLOCK_SIZE, .cra_ctxsize = sizeof(struct hash_ctx), .cra_type = &crypto_ahash_type, .cra_init = hash_cra_init, .cra_module = THIS_MODULE, } } }, { .conf.algorithm = HASH_ALGO_SHA1, .conf.oper_mode = HASH_OPER_MODE_HMAC, .hash = { .init = hash_init, .update = ahash_update, .final = ahash_final, .digest = hmac_sha1_digest, .setkey = hmac_sha1_setkey, .halg.digestsize = SHA1_DIGEST_SIZE, .halg.statesize = sizeof(struct hash_ctx), .halg.base = { .cra_name = "hmac(sha1)", .cra_driver_name = "hmac-sha1-ux500", .cra_flags = (CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC), .cra_blocksize = SHA1_BLOCK_SIZE, .cra_ctxsize = sizeof(struct hash_ctx), .cra_type = &crypto_ahash_type, .cra_init = hash_cra_init, .cra_module = THIS_MODULE, } } }, { .conf.algorithm = HASH_ALGO_SHA256, .conf.oper_mode = HASH_OPER_MODE_HMAC, .hash = { .init = hash_init, .update = ahash_update, .final = ahash_final, .digest = hmac_sha256_digest, .setkey = hmac_sha256_setkey, .halg.digestsize = SHA256_DIGEST_SIZE, .halg.statesize = sizeof(struct hash_ctx), .halg.base = { .cra_name = "hmac(sha256)", .cra_driver_name = "hmac-sha256-ux500", .cra_flags = (CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC), .cra_blocksize = SHA256_BLOCK_SIZE, .cra_ctxsize = sizeof(struct hash_ctx), .cra_type = &crypto_ahash_type, .cra_init = hash_cra_init, .cra_module = THIS_MODULE, } } } }; /** * hash_algs_register_all - */ static int ahash_algs_register_all(struct hash_device_data *device_data) { int ret; int i; int count; for (i = 0; i < ARRAY_SIZE(hash_algs); i++) { ret = crypto_register_ahash(&hash_algs[i].hash); if (ret) { count = i; dev_err(device_data->dev, "%s: alg registration failed\n", hash_algs[i].hash.halg.base.cra_driver_name); goto unreg; } } return 0; unreg: for (i = 0; i < count; i++) crypto_unregister_ahash(&hash_algs[i].hash); return ret; } /** * hash_algs_unregister_all - */ static void ahash_algs_unregister_all(struct hash_device_data *device_data) { int i; for (i = 0; i < ARRAY_SIZE(hash_algs); i++) crypto_unregister_ahash(&hash_algs[i].hash); } /** * ux500_hash_probe - Function that probes the hash hardware. * @pdev: The platform device. */ static int ux500_hash_probe(struct platform_device *pdev) { int ret = 0; struct resource *res = NULL; struct hash_device_data *device_data; struct device *dev = &pdev->dev; device_data = devm_kzalloc(dev, sizeof(*device_data), GFP_ATOMIC); if (!device_data) { ret = -ENOMEM; goto out; } device_data->dev = dev; device_data->current_ctx = NULL; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) { dev_dbg(dev, "%s: platform_get_resource() failed!\n", __func__); ret = -ENODEV; goto out; } device_data->phybase = res->start; device_data->base = devm_ioremap_resource(dev, res); if (IS_ERR(device_data->base)) { dev_err(dev, "%s: ioremap() failed!\n", __func__); ret = PTR_ERR(device_data->base); goto out; } spin_lock_init(&device_data->ctx_lock); spin_lock_init(&device_data->power_state_lock); /* Enable power for HASH1 hardware block */ device_data->regulator = regulator_get(dev, "v-ape"); if (IS_ERR(device_data->regulator)) { dev_err(dev, "%s: regulator_get() failed!\n", __func__); ret = PTR_ERR(device_data->regulator); device_data->regulator = NULL; goto out; } /* Enable the clock for HASH1 hardware block */ device_data->clk = devm_clk_get(dev, NULL); if (IS_ERR(device_data->clk)) { dev_err(dev, "%s: clk_get() failed!\n", __func__); ret = PTR_ERR(device_data->clk); goto out_regulator; } ret = clk_prepare(device_data->clk); if (ret) { dev_err(dev, "%s: clk_prepare() failed!\n", __func__); goto out_regulator; } /* Enable device power (and clock) */ ret = hash_enable_power(device_data, false); if (ret) { dev_err(dev, "%s: hash_enable_power() failed!\n", __func__); goto out_clk_unprepare; } ret = hash_check_hw(device_data); if (ret) { dev_err(dev, "%s: hash_check_hw() failed!\n", __func__); goto out_power; } if (hash_mode == HASH_MODE_DMA) hash_dma_setup_channel(device_data, dev); platform_set_drvdata(pdev, device_data); /* Put the new device into the device list... */ klist_add_tail(&device_data->list_node, &driver_data.device_list); /* ... and signal that a new device is available. */ up(&driver_data.device_allocation); ret = ahash_algs_register_all(device_data); if (ret) { dev_err(dev, "%s: ahash_algs_register_all() failed!\n", __func__); goto out_power; } dev_info(dev, "successfully registered\n"); return 0; out_power: hash_disable_power(device_data, false); out_clk_unprepare: clk_unprepare(device_data->clk); out_regulator: regulator_put(device_data->regulator); out: return ret; } /** * ux500_hash_remove - Function that removes the hash device from the platform. * @pdev: The platform device. */ static int ux500_hash_remove(struct platform_device *pdev) { struct hash_device_data *device_data; struct device *dev = &pdev->dev; device_data = platform_get_drvdata(pdev); if (!device_data) { dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__); return -ENOMEM; } /* Try to decrease the number of available devices. */ if (down_trylock(&driver_data.device_allocation)) return -EBUSY; /* Check that the device is free */ spin_lock(&device_data->ctx_lock); /* current_ctx allocates a device, NULL = unallocated */ if (device_data->current_ctx) { /* The device is busy */ spin_unlock(&device_data->ctx_lock); /* Return the device to the pool. */ up(&driver_data.device_allocation); return -EBUSY; } spin_unlock(&device_data->ctx_lock); /* Remove the device from the list */ if (klist_node_attached(&device_data->list_node)) klist_remove(&device_data->list_node); /* If this was the last device, remove the services */ if (list_empty(&driver_data.device_list.k_list)) ahash_algs_unregister_all(device_data); if (hash_disable_power(device_data, false)) dev_err(dev, "%s: hash_disable_power() failed\n", __func__); clk_unprepare(device_data->clk); regulator_put(device_data->regulator); return 0; } /** * ux500_hash_shutdown - Function that shutdown the hash device. * @pdev: The platform device */ static void ux500_hash_shutdown(struct platform_device *pdev) { struct hash_device_data *device_data; device_data = platform_get_drvdata(pdev); if (!device_data) { dev_err(&pdev->dev, "%s: platform_get_drvdata() failed!\n", __func__); return; } /* Check that the device is free */ spin_lock(&device_data->ctx_lock); /* current_ctx allocates a device, NULL = unallocated */ if (!device_data->current_ctx) { if (down_trylock(&driver_data.device_allocation)) dev_dbg(&pdev->dev, "%s: Cryp still in use! Shutting down anyway...\n", __func__); /** * (Allocate the device) * Need to set this to non-null (dummy) value, * to avoid usage if context switching. */ device_data->current_ctx++; } spin_unlock(&device_data->ctx_lock); /* Remove the device from the list */ if (klist_node_attached(&device_data->list_node)) klist_remove(&device_data->list_node); /* If this was the last device, remove the services */ if (list_empty(&driver_data.device_list.k_list)) ahash_algs_unregister_all(device_data); if (hash_disable_power(device_data, false)) dev_err(&pdev->dev, "%s: hash_disable_power() failed\n", __func__); } #ifdef CONFIG_PM_SLEEP /** * ux500_hash_suspend - Function that suspends the hash device. * @dev: Device to suspend. */ static int ux500_hash_suspend(struct device *dev) { int ret; struct hash_device_data *device_data; struct hash_ctx *temp_ctx = NULL; device_data = dev_get_drvdata(dev); if (!device_data) { dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__); return -ENOMEM; } spin_lock(&device_data->ctx_lock); if (!device_data->current_ctx) device_data->current_ctx++; spin_unlock(&device_data->ctx_lock); if (device_data->current_ctx == ++temp_ctx) { if (down_interruptible(&driver_data.device_allocation)) dev_dbg(dev, "%s: down_interruptible() failed\n", __func__); ret = hash_disable_power(device_data, false); } else { ret = hash_disable_power(device_data, true); } if (ret) dev_err(dev, "%s: hash_disable_power()\n", __func__); return ret; } /** * ux500_hash_resume - Function that resume the hash device. * @dev: Device to resume. */ static int ux500_hash_resume(struct device *dev) { int ret = 0; struct hash_device_data *device_data; struct hash_ctx *temp_ctx = NULL; device_data = dev_get_drvdata(dev); if (!device_data) { dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__); return -ENOMEM; } spin_lock(&device_data->ctx_lock); if (device_data->current_ctx == ++temp_ctx) device_data->current_ctx = NULL; spin_unlock(&device_data->ctx_lock); if (!device_data->current_ctx) up(&driver_data.device_allocation); else ret = hash_enable_power(device_data, true); if (ret) dev_err(dev, "%s: hash_enable_power() failed!\n", __func__); return ret; } #endif static SIMPLE_DEV_PM_OPS(ux500_hash_pm, ux500_hash_suspend, ux500_hash_resume); static const struct of_device_id ux500_hash_match[] = { { .compatible = "stericsson,ux500-hash" }, { }, }; MODULE_DEVICE_TABLE(of, ux500_hash_match); static struct platform_driver hash_driver = { .probe = ux500_hash_probe, .remove = ux500_hash_remove, .shutdown = ux500_hash_shutdown, .driver = { .name = "hash1", .of_match_table = ux500_hash_match, .pm = &ux500_hash_pm, } }; /** * ux500_hash_mod_init - The kernel module init function. */ static int __init ux500_hash_mod_init(void) { klist_init(&driver_data.device_list, NULL, NULL); /* Initialize the semaphore to 0 devices (locked state) */ sema_init(&driver_data.device_allocation, 0); return platform_driver_register(&hash_driver); } /** * ux500_hash_mod_fini - The kernel module exit function. */ static void __exit ux500_hash_mod_fini(void) { platform_driver_unregister(&hash_driver); } module_init(ux500_hash_mod_init); module_exit(ux500_hash_mod_fini); MODULE_DESCRIPTION("Driver for ST-Ericsson UX500 HASH engine."); MODULE_LICENSE("GPL"); MODULE_ALIAS_CRYPTO("sha1-all"); MODULE_ALIAS_CRYPTO("sha256-all"); MODULE_ALIAS_CRYPTO("hmac-sha1-all"); MODULE_ALIAS_CRYPTO("hmac-sha256-all");