/****************************************************************************** * * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * Copyright(c) 2007 - 2015 Intel Corporation. All rights reserved. * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH * Copyright(c) 2016 Intel Deutschland GmbH * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, * USA * * The full GNU General Public License is included in this distribution * in the file called COPYING. * * Contact Information: * Intel Linux Wireless * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 * * BSD LICENSE * * Copyright(c) 2005 - 2015 Intel Corporation. All rights reserved. * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH * Copyright(c) 2016 Intel Deutschland GmbH * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * *****************************************************************************/ #include #include #include #include #include #include #include #include #include "iwl-drv.h" #include "iwl-trans.h" #include "iwl-csr.h" #include "iwl-prph.h" #include "iwl-scd.h" #include "iwl-agn-hw.h" #include "iwl-fw-error-dump.h" #include "internal.h" #include "iwl-fh.h" /* extended range in FW SRAM */ #define IWL_FW_MEM_EXTENDED_START 0x40000 #define IWL_FW_MEM_EXTENDED_END 0x57FFF static void iwl_pcie_free_fw_monitor(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); if (!trans_pcie->fw_mon_page) return; dma_unmap_page(trans->dev, trans_pcie->fw_mon_phys, trans_pcie->fw_mon_size, DMA_FROM_DEVICE); __free_pages(trans_pcie->fw_mon_page, get_order(trans_pcie->fw_mon_size)); trans_pcie->fw_mon_page = NULL; trans_pcie->fw_mon_phys = 0; trans_pcie->fw_mon_size = 0; } static void iwl_pcie_alloc_fw_monitor(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct page *page = NULL; dma_addr_t phys; u32 size; u8 power; if (trans_pcie->fw_mon_page) { dma_sync_single_for_device(trans->dev, trans_pcie->fw_mon_phys, trans_pcie->fw_mon_size, DMA_FROM_DEVICE); return; } phys = 0; for (power = 26; power >= 11; power--) { int order; size = BIT(power); order = get_order(size); page = alloc_pages(__GFP_COMP | __GFP_NOWARN | __GFP_ZERO, order); if (!page) continue; phys = dma_map_page(trans->dev, page, 0, PAGE_SIZE << order, DMA_FROM_DEVICE); if (dma_mapping_error(trans->dev, phys)) { __free_pages(page, order); page = NULL; continue; } IWL_INFO(trans, "Allocated 0x%08x bytes (order %d) for firmware monitor.\n", size, order); break; } if (WARN_ON_ONCE(!page)) return; trans_pcie->fw_mon_page = page; trans_pcie->fw_mon_phys = phys; trans_pcie->fw_mon_size = size; } static u32 iwl_trans_pcie_read_shr(struct iwl_trans *trans, u32 reg) { iwl_write32(trans, HEEP_CTRL_WRD_PCIEX_CTRL_REG, ((reg & 0x0000ffff) | (2 << 28))); return iwl_read32(trans, HEEP_CTRL_WRD_PCIEX_DATA_REG); } static void iwl_trans_pcie_write_shr(struct iwl_trans *trans, u32 reg, u32 val) { iwl_write32(trans, HEEP_CTRL_WRD_PCIEX_DATA_REG, val); iwl_write32(trans, HEEP_CTRL_WRD_PCIEX_CTRL_REG, ((reg & 0x0000ffff) | (3 << 28))); } static void iwl_pcie_set_pwr(struct iwl_trans *trans, bool vaux) { if (vaux && pci_pme_capable(to_pci_dev(trans->dev), PCI_D3cold)) iwl_set_bits_mask_prph(trans, APMG_PS_CTRL_REG, APMG_PS_CTRL_VAL_PWR_SRC_VAUX, ~APMG_PS_CTRL_MSK_PWR_SRC); else iwl_set_bits_mask_prph(trans, APMG_PS_CTRL_REG, APMG_PS_CTRL_VAL_PWR_SRC_VMAIN, ~APMG_PS_CTRL_MSK_PWR_SRC); } /* PCI registers */ #define PCI_CFG_RETRY_TIMEOUT 0x041 static void iwl_pcie_apm_config(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); u16 lctl; u16 cap; /* * HW bug W/A for instability in PCIe bus L0S->L1 transition. * Check if BIOS (or OS) enabled L1-ASPM on this device. * If so (likely), disable L0S, so device moves directly L0->L1; * costs negligible amount of power savings. * If not (unlikely), enable L0S, so there is at least some * power savings, even without L1. */ pcie_capability_read_word(trans_pcie->pci_dev, PCI_EXP_LNKCTL, &lctl); if (lctl & PCI_EXP_LNKCTL_ASPM_L1) iwl_set_bit(trans, CSR_GIO_REG, CSR_GIO_REG_VAL_L0S_ENABLED); else iwl_clear_bit(trans, CSR_GIO_REG, CSR_GIO_REG_VAL_L0S_ENABLED); trans->pm_support = !(lctl & PCI_EXP_LNKCTL_ASPM_L0S); pcie_capability_read_word(trans_pcie->pci_dev, PCI_EXP_DEVCTL2, &cap); trans->ltr_enabled = cap & PCI_EXP_DEVCTL2_LTR_EN; dev_info(trans->dev, "L1 %sabled - LTR %sabled\n", (lctl & PCI_EXP_LNKCTL_ASPM_L1) ? "En" : "Dis", trans->ltr_enabled ? "En" : "Dis"); } /* * Start up NIC's basic functionality after it has been reset * (e.g. after platform boot, or shutdown via iwl_pcie_apm_stop()) * NOTE: This does not load uCode nor start the embedded processor */ static int iwl_pcie_apm_init(struct iwl_trans *trans) { int ret = 0; IWL_DEBUG_INFO(trans, "Init card's basic functions\n"); /* * Use "set_bit" below rather than "write", to preserve any hardware * bits already set by default after reset. */ /* Disable L0S exit timer (platform NMI Work/Around) */ if (trans->cfg->device_family != IWL_DEVICE_FAMILY_8000) iwl_set_bit(trans, CSR_GIO_CHICKEN_BITS, CSR_GIO_CHICKEN_BITS_REG_BIT_DIS_L0S_EXIT_TIMER); /* * Disable L0s without affecting L1; * don't wait for ICH L0s (ICH bug W/A) */ iwl_set_bit(trans, CSR_GIO_CHICKEN_BITS, CSR_GIO_CHICKEN_BITS_REG_BIT_L1A_NO_L0S_RX); /* Set FH wait threshold to maximum (HW error during stress W/A) */ iwl_set_bit(trans, CSR_DBG_HPET_MEM_REG, CSR_DBG_HPET_MEM_REG_VAL); /* * Enable HAP INTA (interrupt from management bus) to * wake device's PCI Express link L1a -> L0s */ iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG, CSR_HW_IF_CONFIG_REG_BIT_HAP_WAKE_L1A); iwl_pcie_apm_config(trans); /* Configure analog phase-lock-loop before activating to D0A */ if (trans->cfg->base_params->pll_cfg_val) iwl_set_bit(trans, CSR_ANA_PLL_CFG, trans->cfg->base_params->pll_cfg_val); /* * Set "initialization complete" bit to move adapter from * D0U* --> D0A* (powered-up active) state. */ iwl_set_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE); /* * Wait for clock stabilization; once stabilized, access to * device-internal resources is supported, e.g. iwl_write_prph() * and accesses to uCode SRAM. */ ret = iwl_poll_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 25000); if (ret < 0) { IWL_DEBUG_INFO(trans, "Failed to init the card\n"); goto out; } if (trans->cfg->host_interrupt_operation_mode) { /* * This is a bit of an abuse - This is needed for 7260 / 3160 * only check host_interrupt_operation_mode even if this is * not related to host_interrupt_operation_mode. * * Enable the oscillator to count wake up time for L1 exit. This * consumes slightly more power (100uA) - but allows to be sure * that we wake up from L1 on time. * * This looks weird: read twice the same register, discard the * value, set a bit, and yet again, read that same register * just to discard the value. But that's the way the hardware * seems to like it. */ iwl_read_prph(trans, OSC_CLK); iwl_read_prph(trans, OSC_CLK); iwl_set_bits_prph(trans, OSC_CLK, OSC_CLK_FORCE_CONTROL); iwl_read_prph(trans, OSC_CLK); iwl_read_prph(trans, OSC_CLK); } /* * Enable DMA clock and wait for it to stabilize. * * Write to "CLK_EN_REG"; "1" bits enable clocks, while "0" * bits do not disable clocks. This preserves any hardware * bits already set by default in "CLK_CTRL_REG" after reset. */ if (trans->cfg->device_family != IWL_DEVICE_FAMILY_8000) { iwl_write_prph(trans, APMG_CLK_EN_REG, APMG_CLK_VAL_DMA_CLK_RQT); udelay(20); /* Disable L1-Active */ iwl_set_bits_prph(trans, APMG_PCIDEV_STT_REG, APMG_PCIDEV_STT_VAL_L1_ACT_DIS); /* Clear the interrupt in APMG if the NIC is in RFKILL */ iwl_write_prph(trans, APMG_RTC_INT_STT_REG, APMG_RTC_INT_STT_RFKILL); } set_bit(STATUS_DEVICE_ENABLED, &trans->status); out: return ret; } /* * Enable LP XTAL to avoid HW bug where device may consume much power if * FW is not loaded after device reset. LP XTAL is disabled by default * after device HW reset. Do it only if XTAL is fed by internal source. * Configure device's "persistence" mode to avoid resetting XTAL again when * SHRD_HW_RST occurs in S3. */ static void iwl_pcie_apm_lp_xtal_enable(struct iwl_trans *trans) { int ret; u32 apmg_gp1_reg; u32 apmg_xtal_cfg_reg; u32 dl_cfg_reg; /* Force XTAL ON */ __iwl_trans_pcie_set_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_XTAL_ON); /* Reset entire device - do controller reset (results in SHRD_HW_RST) */ iwl_set_bit(trans, CSR_RESET, CSR_RESET_REG_FLAG_SW_RESET); udelay(10); /* * Set "initialization complete" bit to move adapter from * D0U* --> D0A* (powered-up active) state. */ iwl_set_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE); /* * Wait for clock stabilization; once stabilized, access to * device-internal resources is possible. */ ret = iwl_poll_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 25000); if (WARN_ON(ret < 0)) { IWL_ERR(trans, "Access time out - failed to enable LP XTAL\n"); /* Release XTAL ON request */ __iwl_trans_pcie_clear_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_XTAL_ON); return; } /* * Clear "disable persistence" to avoid LP XTAL resetting when * SHRD_HW_RST is applied in S3. */ iwl_clear_bits_prph(trans, APMG_PCIDEV_STT_REG, APMG_PCIDEV_STT_VAL_PERSIST_DIS); /* * Force APMG XTAL to be active to prevent its disabling by HW * caused by APMG idle state. */ apmg_xtal_cfg_reg = iwl_trans_pcie_read_shr(trans, SHR_APMG_XTAL_CFG_REG); iwl_trans_pcie_write_shr(trans, SHR_APMG_XTAL_CFG_REG, apmg_xtal_cfg_reg | SHR_APMG_XTAL_CFG_XTAL_ON_REQ); /* * Reset entire device again - do controller reset (results in * SHRD_HW_RST). Turn MAC off before proceeding. */ iwl_set_bit(trans, CSR_RESET, CSR_RESET_REG_FLAG_SW_RESET); udelay(10); /* Enable LP XTAL by indirect access through CSR */ apmg_gp1_reg = iwl_trans_pcie_read_shr(trans, SHR_APMG_GP1_REG); iwl_trans_pcie_write_shr(trans, SHR_APMG_GP1_REG, apmg_gp1_reg | SHR_APMG_GP1_WF_XTAL_LP_EN | SHR_APMG_GP1_CHICKEN_BIT_SELECT); /* Clear delay line clock power up */ dl_cfg_reg = iwl_trans_pcie_read_shr(trans, SHR_APMG_DL_CFG_REG); iwl_trans_pcie_write_shr(trans, SHR_APMG_DL_CFG_REG, dl_cfg_reg & ~SHR_APMG_DL_CFG_DL_CLOCK_POWER_UP); /* * Enable persistence mode to avoid LP XTAL resetting when * SHRD_HW_RST is applied in S3. */ iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG, CSR_HW_IF_CONFIG_REG_PERSIST_MODE); /* * Clear "initialization complete" bit to move adapter from * D0A* (powered-up Active) --> D0U* (Uninitialized) state. */ iwl_clear_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE); /* Activates XTAL resources monitor */ __iwl_trans_pcie_set_bit(trans, CSR_MONITOR_CFG_REG, CSR_MONITOR_XTAL_RESOURCES); /* Release XTAL ON request */ __iwl_trans_pcie_clear_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_XTAL_ON); udelay(10); /* Release APMG XTAL */ iwl_trans_pcie_write_shr(trans, SHR_APMG_XTAL_CFG_REG, apmg_xtal_cfg_reg & ~SHR_APMG_XTAL_CFG_XTAL_ON_REQ); } static int iwl_pcie_apm_stop_master(struct iwl_trans *trans) { int ret = 0; /* stop device's busmaster DMA activity */ iwl_set_bit(trans, CSR_RESET, CSR_RESET_REG_FLAG_STOP_MASTER); ret = iwl_poll_bit(trans, CSR_RESET, CSR_RESET_REG_FLAG_MASTER_DISABLED, CSR_RESET_REG_FLAG_MASTER_DISABLED, 100); if (ret < 0) IWL_WARN(trans, "Master Disable Timed Out, 100 usec\n"); IWL_DEBUG_INFO(trans, "stop master\n"); return ret; } static void iwl_pcie_apm_stop(struct iwl_trans *trans, bool op_mode_leave) { IWL_DEBUG_INFO(trans, "Stop card, put in low power state\n"); if (op_mode_leave) { if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status)) iwl_pcie_apm_init(trans); /* inform ME that we are leaving */ if (trans->cfg->device_family == IWL_DEVICE_FAMILY_7000) iwl_set_bits_prph(trans, APMG_PCIDEV_STT_REG, APMG_PCIDEV_STT_VAL_WAKE_ME); else if (trans->cfg->device_family == IWL_DEVICE_FAMILY_8000) { iwl_set_bit(trans, CSR_DBG_LINK_PWR_MGMT_REG, CSR_RESET_LINK_PWR_MGMT_DISABLED); iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG, CSR_HW_IF_CONFIG_REG_PREPARE | CSR_HW_IF_CONFIG_REG_ENABLE_PME); mdelay(1); iwl_clear_bit(trans, CSR_DBG_LINK_PWR_MGMT_REG, CSR_RESET_LINK_PWR_MGMT_DISABLED); } mdelay(5); } clear_bit(STATUS_DEVICE_ENABLED, &trans->status); /* Stop device's DMA activity */ iwl_pcie_apm_stop_master(trans); if (trans->cfg->lp_xtal_workaround) { iwl_pcie_apm_lp_xtal_enable(trans); return; } /* Reset the entire device */ iwl_set_bit(trans, CSR_RESET, CSR_RESET_REG_FLAG_SW_RESET); udelay(10); /* * Clear "initialization complete" bit to move adapter from * D0A* (powered-up Active) --> D0U* (Uninitialized) state. */ iwl_clear_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE); } static int iwl_pcie_nic_init(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); /* nic_init */ spin_lock(&trans_pcie->irq_lock); iwl_pcie_apm_init(trans); spin_unlock(&trans_pcie->irq_lock); if (trans->cfg->device_family != IWL_DEVICE_FAMILY_8000) iwl_pcie_set_pwr(trans, false); iwl_op_mode_nic_config(trans->op_mode); /* Allocate the RX queue, or reset if it is already allocated */ iwl_pcie_rx_init(trans); /* Allocate or reset and init all Tx and Command queues */ if (iwl_pcie_tx_init(trans)) return -ENOMEM; if (trans->cfg->base_params->shadow_reg_enable) { /* enable shadow regs in HW */ iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTRL, 0x800FFFFF); IWL_DEBUG_INFO(trans, "Enabling shadow registers in device\n"); } return 0; } #define HW_READY_TIMEOUT (50) /* Note: returns poll_bit return value, which is >= 0 if success */ static int iwl_pcie_set_hw_ready(struct iwl_trans *trans) { int ret; iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG, CSR_HW_IF_CONFIG_REG_BIT_NIC_READY); /* See if we got it */ ret = iwl_poll_bit(trans, CSR_HW_IF_CONFIG_REG, CSR_HW_IF_CONFIG_REG_BIT_NIC_READY, CSR_HW_IF_CONFIG_REG_BIT_NIC_READY, HW_READY_TIMEOUT); if (ret >= 0) iwl_set_bit(trans, CSR_MBOX_SET_REG, CSR_MBOX_SET_REG_OS_ALIVE); IWL_DEBUG_INFO(trans, "hardware%s ready\n", ret < 0 ? " not" : ""); return ret; } /* Note: returns standard 0/-ERROR code */ static int iwl_pcie_prepare_card_hw(struct iwl_trans *trans) { int ret; int t = 0; int iter; IWL_DEBUG_INFO(trans, "iwl_trans_prepare_card_hw enter\n"); ret = iwl_pcie_set_hw_ready(trans); /* If the card is ready, exit 0 */ if (ret >= 0) return 0; iwl_set_bit(trans, CSR_DBG_LINK_PWR_MGMT_REG, CSR_RESET_LINK_PWR_MGMT_DISABLED); msleep(1); for (iter = 0; iter < 10; iter++) { /* If HW is not ready, prepare the conditions to check again */ iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG, CSR_HW_IF_CONFIG_REG_PREPARE); do { ret = iwl_pcie_set_hw_ready(trans); if (ret >= 0) return 0; usleep_range(200, 1000); t += 200; } while (t < 150000); msleep(25); } IWL_ERR(trans, "Couldn't prepare the card\n"); return ret; } /* * ucode */ static int iwl_pcie_load_firmware_chunk(struct iwl_trans *trans, u32 dst_addr, dma_addr_t phy_addr, u32 byte_cnt) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); int ret; trans_pcie->ucode_write_complete = false; iwl_write_direct32(trans, FH_TCSR_CHNL_TX_CONFIG_REG(FH_SRVC_CHNL), FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE); iwl_write_direct32(trans, FH_SRVC_CHNL_SRAM_ADDR_REG(FH_SRVC_CHNL), dst_addr); iwl_write_direct32(trans, FH_TFDIB_CTRL0_REG(FH_SRVC_CHNL), phy_addr & FH_MEM_TFDIB_DRAM_ADDR_LSB_MSK); iwl_write_direct32(trans, FH_TFDIB_CTRL1_REG(FH_SRVC_CHNL), (iwl_get_dma_hi_addr(phy_addr) << FH_MEM_TFDIB_REG1_ADDR_BITSHIFT) | byte_cnt); iwl_write_direct32(trans, FH_TCSR_CHNL_TX_BUF_STS_REG(FH_SRVC_CHNL), 1 << FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM | 1 << FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX | FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID); iwl_write_direct32(trans, FH_TCSR_CHNL_TX_CONFIG_REG(FH_SRVC_CHNL), FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE | FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE | FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD); ret = wait_event_timeout(trans_pcie->ucode_write_waitq, trans_pcie->ucode_write_complete, 5 * HZ); if (!ret) { IWL_ERR(trans, "Failed to load firmware chunk!\n"); return -ETIMEDOUT; } return 0; } static int iwl_pcie_load_section(struct iwl_trans *trans, u8 section_num, const struct fw_desc *section) { u8 *v_addr; dma_addr_t p_addr; u32 offset, chunk_sz = min_t(u32, FH_MEM_TB_MAX_LENGTH, section->len); int ret = 0; IWL_DEBUG_FW(trans, "[%d] uCode section being loaded...\n", section_num); v_addr = dma_alloc_coherent(trans->dev, chunk_sz, &p_addr, GFP_KERNEL | __GFP_NOWARN); if (!v_addr) { IWL_DEBUG_INFO(trans, "Falling back to small chunks of DMA\n"); chunk_sz = PAGE_SIZE; v_addr = dma_alloc_coherent(trans->dev, chunk_sz, &p_addr, GFP_KERNEL); if (!v_addr) return -ENOMEM; } for (offset = 0; offset < section->len; offset += chunk_sz) { u32 copy_size, dst_addr; bool extended_addr = false; copy_size = min_t(u32, chunk_sz, section->len - offset); dst_addr = section->offset + offset; if (dst_addr >= IWL_FW_MEM_EXTENDED_START && dst_addr <= IWL_FW_MEM_EXTENDED_END) extended_addr = true; if (extended_addr) iwl_set_bits_prph(trans, LMPM_CHICK, LMPM_CHICK_EXTENDED_ADDR_SPACE); memcpy(v_addr, (u8 *)section->data + offset, copy_size); ret = iwl_pcie_load_firmware_chunk(trans, dst_addr, p_addr, copy_size); if (extended_addr) iwl_clear_bits_prph(trans, LMPM_CHICK, LMPM_CHICK_EXTENDED_ADDR_SPACE); if (ret) { IWL_ERR(trans, "Could not load the [%d] uCode section\n", section_num); break; } } dma_free_coherent(trans->dev, chunk_sz, v_addr, p_addr); return ret; } /* * Driver Takes the ownership on secure machine before FW load * and prevent race with the BT load. * W/A for ROM bug. (should be remove in the next Si step) */ static int iwl_pcie_rsa_race_bug_wa(struct iwl_trans *trans) { u32 val, loop = 1000; /* * Check the RSA semaphore is accessible. * If the HW isn't locked and the rsa semaphore isn't accessible, * we are in trouble. */ val = iwl_read_prph(trans, PREG_AUX_BUS_WPROT_0); if (val & (BIT(1) | BIT(17))) { IWL_DEBUG_INFO(trans, "can't access the RSA semaphore it is write protected\n"); return 0; } /* take ownership on the AUX IF */ iwl_write_prph(trans, WFPM_CTRL_REG, WFPM_AUX_CTL_AUX_IF_MAC_OWNER_MSK); iwl_write_prph(trans, AUX_MISC_MASTER1_EN, AUX_MISC_MASTER1_EN_SBE_MSK); do { iwl_write_prph(trans, AUX_MISC_MASTER1_SMPHR_STATUS, 0x1); val = iwl_read_prph(trans, AUX_MISC_MASTER1_SMPHR_STATUS); if (val == 0x1) { iwl_write_prph(trans, RSA_ENABLE, 0); return 0; } udelay(10); loop--; } while (loop > 0); IWL_ERR(trans, "Failed to take ownership on secure machine\n"); return -EIO; } static int iwl_pcie_load_cpu_sections_8000(struct iwl_trans *trans, const struct fw_img *image, int cpu, int *first_ucode_section) { int shift_param; int i, ret = 0, sec_num = 0x1; u32 val, last_read_idx = 0; if (cpu == 1) { shift_param = 0; *first_ucode_section = 0; } else { shift_param = 16; (*first_ucode_section)++; } for (i = *first_ucode_section; i < IWL_UCODE_SECTION_MAX; i++) { last_read_idx = i; if (!image->sec[i].data || image->sec[i].offset == CPU1_CPU2_SEPARATOR_SECTION) { IWL_DEBUG_FW(trans, "Break since Data not valid or Empty section, sec = %d\n", i); break; } ret = iwl_pcie_load_section(trans, i, &image->sec[i]); if (ret) return ret; /* Notify the ucode of the loaded section number and status */ val = iwl_read_direct32(trans, FH_UCODE_LOAD_STATUS); val = val | (sec_num << shift_param); iwl_write_direct32(trans, FH_UCODE_LOAD_STATUS, val); sec_num = (sec_num << 1) | 0x1; } *first_ucode_section = last_read_idx; if (cpu == 1) iwl_write_direct32(trans, FH_UCODE_LOAD_STATUS, 0xFFFF); else iwl_write_direct32(trans, FH_UCODE_LOAD_STATUS, 0xFFFFFFFF); return 0; } static int iwl_pcie_load_cpu_sections(struct iwl_trans *trans, const struct fw_img *image, int cpu, int *first_ucode_section) { int shift_param; int i, ret = 0; u32 last_read_idx = 0; if (cpu == 1) { shift_param = 0; *first_ucode_section = 0; } else { shift_param = 16; (*first_ucode_section)++; } for (i = *first_ucode_section; i < IWL_UCODE_SECTION_MAX; i++) { last_read_idx = i; if (!image->sec[i].data || image->sec[i].offset == CPU1_CPU2_SEPARATOR_SECTION) { IWL_DEBUG_FW(trans, "Break since Data not valid or Empty section, sec = %d\n", i); break; } ret = iwl_pcie_load_section(trans, i, &image->sec[i]); if (ret) return ret; } if (trans->cfg->device_family == IWL_DEVICE_FAMILY_8000) iwl_set_bits_prph(trans, CSR_UCODE_LOAD_STATUS_ADDR, (LMPM_CPU_UCODE_LOADING_COMPLETED | LMPM_CPU_HDRS_LOADING_COMPLETED | LMPM_CPU_UCODE_LOADING_STARTED) << shift_param); *first_ucode_section = last_read_idx; return 0; } static void iwl_pcie_apply_destination(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); const struct iwl_fw_dbg_dest_tlv *dest = trans->dbg_dest_tlv; int i; if (dest->version) IWL_ERR(trans, "DBG DEST version is %d - expect issues\n", dest->version); IWL_INFO(trans, "Applying debug destination %s\n", get_fw_dbg_mode_string(dest->monitor_mode)); if (dest->monitor_mode == EXTERNAL_MODE) iwl_pcie_alloc_fw_monitor(trans); else IWL_WARN(trans, "PCI should have external buffer debug\n"); for (i = 0; i < trans->dbg_dest_reg_num; i++) { u32 addr = le32_to_cpu(dest->reg_ops[i].addr); u32 val = le32_to_cpu(dest->reg_ops[i].val); switch (dest->reg_ops[i].op) { case CSR_ASSIGN: iwl_write32(trans, addr, val); break; case CSR_SETBIT: iwl_set_bit(trans, addr, BIT(val)); break; case CSR_CLEARBIT: iwl_clear_bit(trans, addr, BIT(val)); break; case PRPH_ASSIGN: iwl_write_prph(trans, addr, val); break; case PRPH_SETBIT: iwl_set_bits_prph(trans, addr, BIT(val)); break; case PRPH_CLEARBIT: iwl_clear_bits_prph(trans, addr, BIT(val)); break; default: IWL_ERR(trans, "FW debug - unknown OP %d\n", dest->reg_ops[i].op); break; } } if (dest->monitor_mode == EXTERNAL_MODE && trans_pcie->fw_mon_size) { iwl_write_prph(trans, le32_to_cpu(dest->base_reg), trans_pcie->fw_mon_phys >> dest->base_shift); if (trans->cfg->device_family == IWL_DEVICE_FAMILY_8000) iwl_write_prph(trans, le32_to_cpu(dest->end_reg), (trans_pcie->fw_mon_phys + trans_pcie->fw_mon_size - 256) >> dest->end_shift); else iwl_write_prph(trans, le32_to_cpu(dest->end_reg), (trans_pcie->fw_mon_phys + trans_pcie->fw_mon_size) >> dest->end_shift); } } static int iwl_pcie_load_given_ucode(struct iwl_trans *trans, const struct fw_img *image) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); int ret = 0; int first_ucode_section; IWL_DEBUG_FW(trans, "working with %s CPU\n", image->is_dual_cpus ? "Dual" : "Single"); /* load to FW the binary non secured sections of CPU1 */ ret = iwl_pcie_load_cpu_sections(trans, image, 1, &first_ucode_section); if (ret) return ret; if (image->is_dual_cpus) { /* set CPU2 header address */ iwl_write_prph(trans, LMPM_SECURE_UCODE_LOAD_CPU2_HDR_ADDR, LMPM_SECURE_CPU2_HDR_MEM_SPACE); /* load to FW the binary sections of CPU2 */ ret = iwl_pcie_load_cpu_sections(trans, image, 2, &first_ucode_section); if (ret) return ret; } /* supported for 7000 only for the moment */ if (iwlwifi_mod_params.fw_monitor && trans->cfg->device_family == IWL_DEVICE_FAMILY_7000) { iwl_pcie_alloc_fw_monitor(trans); if (trans_pcie->fw_mon_size) { iwl_write_prph(trans, MON_BUFF_BASE_ADDR, trans_pcie->fw_mon_phys >> 4); iwl_write_prph(trans, MON_BUFF_END_ADDR, (trans_pcie->fw_mon_phys + trans_pcie->fw_mon_size) >> 4); } } else if (trans->dbg_dest_tlv) { iwl_pcie_apply_destination(trans); } /* release CPU reset */ iwl_write32(trans, CSR_RESET, 0); return 0; } static int iwl_pcie_load_given_ucode_8000(struct iwl_trans *trans, const struct fw_img *image) { int ret = 0; int first_ucode_section; IWL_DEBUG_FW(trans, "working with %s CPU\n", image->is_dual_cpus ? "Dual" : "Single"); if (trans->dbg_dest_tlv) iwl_pcie_apply_destination(trans); /* TODO: remove in the next Si step */ ret = iwl_pcie_rsa_race_bug_wa(trans); if (ret) return ret; /* configure the ucode to be ready to get the secured image */ /* release CPU reset */ iwl_write_prph(trans, RELEASE_CPU_RESET, RELEASE_CPU_RESET_BIT); /* load to FW the binary Secured sections of CPU1 */ ret = iwl_pcie_load_cpu_sections_8000(trans, image, 1, &first_ucode_section); if (ret) return ret; /* load to FW the binary sections of CPU2 */ ret = iwl_pcie_load_cpu_sections_8000(trans, image, 2, &first_ucode_section); if (ret) return ret; return 0; } static int iwl_trans_pcie_start_fw(struct iwl_trans *trans, const struct fw_img *fw, bool run_in_rfkill) { int ret; bool hw_rfkill; /* This may fail if AMT took ownership of the device */ if (iwl_pcie_prepare_card_hw(trans)) { IWL_WARN(trans, "Exit HW not ready\n"); return -EIO; } iwl_enable_rfkill_int(trans); /* If platform's RF_KILL switch is NOT set to KILL */ hw_rfkill = iwl_is_rfkill_set(trans); if (hw_rfkill) set_bit(STATUS_RFKILL, &trans->status); else clear_bit(STATUS_RFKILL, &trans->status); iwl_trans_pcie_rf_kill(trans, hw_rfkill); if (hw_rfkill && !run_in_rfkill) return -ERFKILL; iwl_write32(trans, CSR_INT, 0xFFFFFFFF); ret = iwl_pcie_nic_init(trans); if (ret) { IWL_ERR(trans, "Unable to init nic\n"); return ret; } /* make sure rfkill handshake bits are cleared */ iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL); iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED); /* clear (again), then enable host interrupts */ iwl_write32(trans, CSR_INT, 0xFFFFFFFF); iwl_enable_interrupts(trans); /* really make sure rfkill handshake bits are cleared */ iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL); iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL); /* Load the given image to the HW */ if (trans->cfg->device_family == IWL_DEVICE_FAMILY_8000) return iwl_pcie_load_given_ucode_8000(trans, fw); else return iwl_pcie_load_given_ucode(trans, fw); } static void iwl_trans_pcie_fw_alive(struct iwl_trans *trans, u32 scd_addr) { iwl_pcie_reset_ict(trans); iwl_pcie_tx_start(trans, scd_addr); } static void iwl_trans_pcie_stop_device(struct iwl_trans *trans, bool low_power) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); bool hw_rfkill, was_hw_rfkill; was_hw_rfkill = iwl_is_rfkill_set(trans); /* tell the device to stop sending interrupts */ spin_lock(&trans_pcie->irq_lock); iwl_disable_interrupts(trans); spin_unlock(&trans_pcie->irq_lock); /* device going down, Stop using ICT table */ iwl_pcie_disable_ict(trans); /* * If a HW restart happens during firmware loading, * then the firmware loading might call this function * and later it might be called again due to the * restart. So don't process again if the device is * already dead. */ if (test_and_clear_bit(STATUS_DEVICE_ENABLED, &trans->status)) { IWL_DEBUG_INFO(trans, "DEVICE_ENABLED bit was set and is now cleared\n"); iwl_pcie_tx_stop(trans); iwl_pcie_rx_stop(trans); /* Power-down device's busmaster DMA clocks */ if (trans->cfg->device_family != IWL_DEVICE_FAMILY_8000) { iwl_write_prph(trans, APMG_CLK_DIS_REG, APMG_CLK_VAL_DMA_CLK_RQT); udelay(5); } } /* Make sure (redundant) we've released our request to stay awake */ iwl_clear_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); /* Stop the device, and put it in low power state */ iwl_pcie_apm_stop(trans, false); /* stop and reset the on-board processor */ iwl_write32(trans, CSR_RESET, CSR_RESET_REG_FLAG_SW_RESET); udelay(20); /* * Upon stop, the APM issues an interrupt if HW RF kill is set. * This is a bug in certain verions of the hardware. * Certain devices also keep sending HW RF kill interrupt all * the time, unless the interrupt is ACKed even if the interrupt * should be masked. Re-ACK all the interrupts here. */ spin_lock(&trans_pcie->irq_lock); iwl_disable_interrupts(trans); spin_unlock(&trans_pcie->irq_lock); /* clear all status bits */ clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status); clear_bit(STATUS_INT_ENABLED, &trans->status); clear_bit(STATUS_TPOWER_PMI, &trans->status); clear_bit(STATUS_RFKILL, &trans->status); /* * Even if we stop the HW, we still want the RF kill * interrupt */ iwl_enable_rfkill_int(trans); /* * Check again since the RF kill state may have changed while * all the interrupts were disabled, in this case we couldn't * receive the RF kill interrupt and update the state in the * op_mode. * Don't call the op_mode if the rkfill state hasn't changed. * This allows the op_mode to call stop_device from the rfkill * notification without endless recursion. Under very rare * circumstances, we might have a small recursion if the rfkill * state changed exactly now while we were called from stop_device. * This is very unlikely but can happen and is supported. */ hw_rfkill = iwl_is_rfkill_set(trans); if (hw_rfkill) set_bit(STATUS_RFKILL, &trans->status); else clear_bit(STATUS_RFKILL, &trans->status); if (hw_rfkill != was_hw_rfkill) iwl_trans_pcie_rf_kill(trans, hw_rfkill); /* re-take ownership to prevent other users from stealing the deivce */ iwl_pcie_prepare_card_hw(trans); } void iwl_trans_pcie_rf_kill(struct iwl_trans *trans, bool state) { if (iwl_op_mode_hw_rf_kill(trans->op_mode, state)) iwl_trans_pcie_stop_device(trans, true); } static void iwl_trans_pcie_d3_suspend(struct iwl_trans *trans, bool test) { iwl_disable_interrupts(trans); /* * in testing mode, the host stays awake and the * hardware won't be reset (not even partially) */ if (test) return; iwl_pcie_disable_ict(trans); iwl_clear_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); iwl_clear_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE); /* * reset TX queues -- some of their registers reset during S3 * so if we don't reset everything here the D3 image would try * to execute some invalid memory upon resume */ iwl_trans_pcie_tx_reset(trans); iwl_pcie_set_pwr(trans, true); } static int iwl_trans_pcie_d3_resume(struct iwl_trans *trans, enum iwl_d3_status *status, bool test) { u32 val; int ret; if (test) { iwl_enable_interrupts(trans); *status = IWL_D3_STATUS_ALIVE; return 0; } /* * Also enables interrupts - none will happen as the device doesn't * know we're waking it up, only when the opmode actually tells it * after this call. */ iwl_pcie_reset_ict(trans); iwl_set_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); iwl_set_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE); if (trans->cfg->device_family == IWL_DEVICE_FAMILY_8000) udelay(2); ret = iwl_poll_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 25000); if (ret < 0) { IWL_ERR(trans, "Failed to resume the device (mac ready)\n"); return ret; } iwl_pcie_set_pwr(trans, false); iwl_trans_pcie_tx_reset(trans); ret = iwl_pcie_rx_init(trans); if (ret) { IWL_ERR(trans, "Failed to resume the device (RX reset)\n"); return ret; } val = iwl_read32(trans, CSR_RESET); if (val & CSR_RESET_REG_FLAG_NEVO_RESET) *status = IWL_D3_STATUS_RESET; else *status = IWL_D3_STATUS_ALIVE; return 0; } static int iwl_trans_pcie_start_hw(struct iwl_trans *trans, bool low_power) { bool hw_rfkill; int err; err = iwl_pcie_prepare_card_hw(trans); if (err) { IWL_ERR(trans, "Error while preparing HW: %d\n", err); return err; } /* Reset the entire device */ iwl_write32(trans, CSR_RESET, CSR_RESET_REG_FLAG_SW_RESET); usleep_range(10, 15); iwl_pcie_apm_init(trans); /* From now on, the op_mode will be kept updated about RF kill state */ iwl_enable_rfkill_int(trans); hw_rfkill = iwl_is_rfkill_set(trans); if (hw_rfkill) set_bit(STATUS_RFKILL, &trans->status); else clear_bit(STATUS_RFKILL, &trans->status); iwl_trans_pcie_rf_kill(trans, hw_rfkill); return 0; } static void iwl_trans_pcie_op_mode_leave(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); /* disable interrupts - don't enable HW RF kill interrupt */ spin_lock(&trans_pcie->irq_lock); iwl_disable_interrupts(trans); spin_unlock(&trans_pcie->irq_lock); iwl_pcie_apm_stop(trans, true); spin_lock(&trans_pcie->irq_lock); iwl_disable_interrupts(trans); spin_unlock(&trans_pcie->irq_lock); iwl_pcie_disable_ict(trans); } static void iwl_trans_pcie_write8(struct iwl_trans *trans, u32 ofs, u8 val) { writeb(val, IWL_TRANS_GET_PCIE_TRANS(trans)->hw_base + ofs); } static void iwl_trans_pcie_write32(struct iwl_trans *trans, u32 ofs, u32 val) { writel(val, IWL_TRANS_GET_PCIE_TRANS(trans)->hw_base + ofs); } static u32 iwl_trans_pcie_read32(struct iwl_trans *trans, u32 ofs) { return readl(IWL_TRANS_GET_PCIE_TRANS(trans)->hw_base + ofs); } static u32 iwl_trans_pcie_read_prph(struct iwl_trans *trans, u32 reg) { iwl_trans_pcie_write32(trans, HBUS_TARG_PRPH_RADDR, ((reg & 0x000FFFFF) | (3 << 24))); return iwl_trans_pcie_read32(trans, HBUS_TARG_PRPH_RDAT); } static void iwl_trans_pcie_write_prph(struct iwl_trans *trans, u32 addr, u32 val) { iwl_trans_pcie_write32(trans, HBUS_TARG_PRPH_WADDR, ((addr & 0x000FFFFF) | (3 << 24))); iwl_trans_pcie_write32(trans, HBUS_TARG_PRPH_WDAT, val); } static int iwl_pcie_dummy_napi_poll(struct napi_struct *napi, int budget) { WARN_ON(1); return 0; } static void iwl_trans_pcie_configure(struct iwl_trans *trans, const struct iwl_trans_config *trans_cfg) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); trans_pcie->cmd_queue = trans_cfg->cmd_queue; trans_pcie->cmd_fifo = trans_cfg->cmd_fifo; trans_pcie->cmd_q_wdg_timeout = trans_cfg->cmd_q_wdg_timeout; if (WARN_ON(trans_cfg->n_no_reclaim_cmds > MAX_NO_RECLAIM_CMDS)) trans_pcie->n_no_reclaim_cmds = 0; else trans_pcie->n_no_reclaim_cmds = trans_cfg->n_no_reclaim_cmds; if (trans_pcie->n_no_reclaim_cmds) memcpy(trans_pcie->no_reclaim_cmds, trans_cfg->no_reclaim_cmds, trans_pcie->n_no_reclaim_cmds * sizeof(u8)); trans_pcie->rx_buf_size_8k = trans_cfg->rx_buf_size_8k; if (trans_pcie->rx_buf_size_8k) trans_pcie->rx_page_order = get_order(8 * 1024); else trans_pcie->rx_page_order = get_order(4 * 1024); trans_pcie->command_names = trans_cfg->command_names; trans_pcie->bc_table_dword = trans_cfg->bc_table_dword; trans_pcie->scd_set_active = trans_cfg->scd_set_active; /* init ref_count to 1 (should be cleared when ucode is loaded) */ trans_pcie->ref_count = 1; /* Initialize NAPI here - it should be before registering to mac80211 * in the opmode but after the HW struct is allocated. * As this function may be called again in some corner cases don't * do anything if NAPI was already initialized. */ if (!trans_pcie->napi.poll && trans->op_mode->ops->napi_add) { init_dummy_netdev(&trans_pcie->napi_dev); iwl_op_mode_napi_add(trans->op_mode, &trans_pcie->napi, &trans_pcie->napi_dev, iwl_pcie_dummy_napi_poll, 64); } } void iwl_trans_pcie_free(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); synchronize_irq(trans_pcie->pci_dev->irq); iwl_pcie_tx_free(trans); iwl_pcie_rx_free(trans); free_irq(trans_pcie->pci_dev->irq, trans); iwl_pcie_free_ict(trans); pci_disable_msi(trans_pcie->pci_dev); iounmap(trans_pcie->hw_base); pci_release_regions(trans_pcie->pci_dev); pci_disable_device(trans_pcie->pci_dev); kmem_cache_destroy(trans->dev_cmd_pool); if (trans_pcie->napi.poll) netif_napi_del(&trans_pcie->napi); iwl_pcie_free_fw_monitor(trans); kfree(trans); } static void iwl_trans_pcie_set_pmi(struct iwl_trans *trans, bool state) { if (state) set_bit(STATUS_TPOWER_PMI, &trans->status); else clear_bit(STATUS_TPOWER_PMI, &trans->status); } static bool iwl_trans_pcie_grab_nic_access(struct iwl_trans *trans, bool silent, unsigned long *flags) { int ret; struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); spin_lock_irqsave(&trans_pcie->reg_lock, *flags); if (trans_pcie->cmd_hold_nic_awake) goto out; /* this bit wakes up the NIC */ __iwl_trans_pcie_set_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); if (trans->cfg->device_family == IWL_DEVICE_FAMILY_8000) udelay(2); /* * These bits say the device is running, and should keep running for * at least a short while (at least as long as MAC_ACCESS_REQ stays 1), * but they do not indicate that embedded SRAM is restored yet; * 3945 and 4965 have volatile SRAM, and must save/restore contents * to/from host DRAM when sleeping/waking for power-saving. * Each direction takes approximately 1/4 millisecond; with this * overhead, it's a good idea to grab and hold MAC_ACCESS_REQUEST if a * series of register accesses are expected (e.g. reading Event Log), * to keep device from sleeping. * * CSR_UCODE_DRV_GP1 register bit MAC_SLEEP == 0 indicates that * SRAM is okay/restored. We don't check that here because this call * is just for hardware register access; but GP1 MAC_SLEEP check is a * good idea before accessing 3945/4965 SRAM (e.g. reading Event Log). * * 5000 series and later (including 1000 series) have non-volatile SRAM, * and do not save/restore SRAM when power cycling. */ ret = iwl_poll_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_VAL_MAC_ACCESS_EN, (CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY | CSR_GP_CNTRL_REG_FLAG_GOING_TO_SLEEP), 15000); if (unlikely(ret < 0)) { iwl_write32(trans, CSR_RESET, CSR_RESET_REG_FLAG_FORCE_NMI); if (!silent) { u32 val = iwl_read32(trans, CSR_GP_CNTRL); WARN_ONCE(1, "Timeout waiting for hardware access (CSR_GP_CNTRL 0x%08x)\n", val); spin_unlock_irqrestore(&trans_pcie->reg_lock, *flags); return false; } } out: /* * Fool sparse by faking we release the lock - sparse will * track nic_access anyway. */ __release(&trans_pcie->reg_lock); return true; } static void iwl_trans_pcie_release_nic_access(struct iwl_trans *trans, unsigned long *flags) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); lockdep_assert_held(&trans_pcie->reg_lock); /* * Fool sparse by faking we acquiring the lock - sparse will * track nic_access anyway. */ __acquire(&trans_pcie->reg_lock); if (trans_pcie->cmd_hold_nic_awake) goto out; __iwl_trans_pcie_clear_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); /* * Above we read the CSR_GP_CNTRL register, which will flush * any previous writes, but we need the write that clears the * MAC_ACCESS_REQ bit to be performed before any other writes * scheduled on different CPUs (after we drop reg_lock). */ mmiowb(); out: spin_unlock_irqrestore(&trans_pcie->reg_lock, *flags); } static int iwl_trans_pcie_read_mem(struct iwl_trans *trans, u32 addr, void *buf, int dwords) { unsigned long flags; int offs, ret = 0; u32 *vals = buf; if (iwl_trans_grab_nic_access(trans, false, &flags)) { iwl_write32(trans, HBUS_TARG_MEM_RADDR, addr); for (offs = 0; offs < dwords; offs++) vals[offs] = iwl_read32(trans, HBUS_TARG_MEM_RDAT); iwl_trans_release_nic_access(trans, &flags); } else { ret = -EBUSY; } return ret; } static int iwl_trans_pcie_write_mem(struct iwl_trans *trans, u32 addr, const void *buf, int dwords) { unsigned long flags; int offs, ret = 0; const u32 *vals = buf; if (iwl_trans_grab_nic_access(trans, false, &flags)) { iwl_write32(trans, HBUS_TARG_MEM_WADDR, addr); for (offs = 0; offs < dwords; offs++) iwl_write32(trans, HBUS_TARG_MEM_WDAT, vals ? vals[offs] : 0); iwl_trans_release_nic_access(trans, &flags); } else { ret = -EBUSY; } return ret; } static void iwl_trans_pcie_freeze_txq_timer(struct iwl_trans *trans, unsigned long txqs, bool freeze) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); int queue; for_each_set_bit(queue, &txqs, BITS_PER_LONG) { struct iwl_txq *txq = &trans_pcie->txq[queue]; unsigned long now; spin_lock_bh(&txq->lock); now = jiffies; if (txq->frozen == freeze) goto next_queue; IWL_DEBUG_TX_QUEUES(trans, "%s TXQ %d\n", freeze ? "Freezing" : "Waking", queue); txq->frozen = freeze; if (txq->q.read_ptr == txq->q.write_ptr) goto next_queue; if (freeze) { if (unlikely(time_after(now, txq->stuck_timer.expires))) { /* * The timer should have fired, maybe it is * spinning right now on the lock. */ goto next_queue; } /* remember how long until the timer fires */ txq->frozen_expiry_remainder = txq->stuck_timer.expires - now; del_timer(&txq->stuck_timer); goto next_queue; } /* * Wake a non-empty queue -> arm timer with the * remainder before it froze */ mod_timer(&txq->stuck_timer, now + txq->frozen_expiry_remainder); next_queue: spin_unlock_bh(&txq->lock); } } #define IWL_FLUSH_WAIT_MS 2000 static int iwl_trans_pcie_wait_txq_empty(struct iwl_trans *trans, u32 txq_bm) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct iwl_txq *txq; struct iwl_queue *q; int cnt; unsigned long now = jiffies; u32 scd_sram_addr; u8 buf[16]; int ret = 0; /* waiting for all the tx frames complete might take a while */ for (cnt = 0; cnt < trans->cfg->base_params->num_of_queues; cnt++) { u8 wr_ptr; if (cnt == trans_pcie->cmd_queue) continue; if (!test_bit(cnt, trans_pcie->queue_used)) continue; if (!(BIT(cnt) & txq_bm)) continue; IWL_DEBUG_TX_QUEUES(trans, "Emptying queue %d...\n", cnt); txq = &trans_pcie->txq[cnt]; q = &txq->q; wr_ptr = ACCESS_ONCE(q->write_ptr); while (q->read_ptr != ACCESS_ONCE(q->write_ptr) && !time_after(jiffies, now + msecs_to_jiffies(IWL_FLUSH_WAIT_MS))) { u8 write_ptr = ACCESS_ONCE(q->write_ptr); if (WARN_ONCE(wr_ptr != write_ptr, "WR pointer moved while flushing %d -> %d\n", wr_ptr, write_ptr)) return -ETIMEDOUT; msleep(1); } if (q->read_ptr != q->write_ptr) { IWL_ERR(trans, "fail to flush all tx fifo queues Q %d\n", cnt); ret = -ETIMEDOUT; break; } IWL_DEBUG_TX_QUEUES(trans, "Queue %d is now empty.\n", cnt); } if (!ret) return 0; IWL_ERR(trans, "Current SW read_ptr %d write_ptr %d\n", txq->q.read_ptr, txq->q.write_ptr); scd_sram_addr = trans_pcie->scd_base_addr + SCD_TX_STTS_QUEUE_OFFSET(txq->q.id); iwl_trans_read_mem_bytes(trans, scd_sram_addr, buf, sizeof(buf)); iwl_print_hex_error(trans, buf, sizeof(buf)); for (cnt = 0; cnt < FH_TCSR_CHNL_NUM; cnt++) IWL_ERR(trans, "FH TRBs(%d) = 0x%08x\n", cnt, iwl_read_direct32(trans, FH_TX_TRB_REG(cnt))); for (cnt = 0; cnt < trans->cfg->base_params->num_of_queues; cnt++) { u32 status = iwl_read_prph(trans, SCD_QUEUE_STATUS_BITS(cnt)); u8 fifo = (status >> SCD_QUEUE_STTS_REG_POS_TXF) & 0x7; bool active = !!(status & BIT(SCD_QUEUE_STTS_REG_POS_ACTIVE)); u32 tbl_dw = iwl_trans_read_mem32(trans, trans_pcie->scd_base_addr + SCD_TRANS_TBL_OFFSET_QUEUE(cnt)); if (cnt & 0x1) tbl_dw = (tbl_dw & 0xFFFF0000) >> 16; else tbl_dw = tbl_dw & 0x0000FFFF; IWL_ERR(trans, "Q %d is %sactive and mapped to fifo %d ra_tid 0x%04x [%d,%d]\n", cnt, active ? "" : "in", fifo, tbl_dw, iwl_read_prph(trans, SCD_QUEUE_RDPTR(cnt)) & (TFD_QUEUE_SIZE_MAX - 1), iwl_read_prph(trans, SCD_QUEUE_WRPTR(cnt))); } return ret; } static void iwl_trans_pcie_set_bits_mask(struct iwl_trans *trans, u32 reg, u32 mask, u32 value) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); unsigned long flags; spin_lock_irqsave(&trans_pcie->reg_lock, flags); __iwl_trans_pcie_set_bits_mask(trans, reg, mask, value); spin_unlock_irqrestore(&trans_pcie->reg_lock, flags); } void iwl_trans_pcie_ref(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); unsigned long flags; if (iwlwifi_mod_params.d0i3_disable) return; spin_lock_irqsave(&trans_pcie->ref_lock, flags); IWL_DEBUG_RPM(trans, "ref_counter: %d\n", trans_pcie->ref_count); trans_pcie->ref_count++; spin_unlock_irqrestore(&trans_pcie->ref_lock, flags); } void iwl_trans_pcie_unref(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); unsigned long flags; if (iwlwifi_mod_params.d0i3_disable) return; spin_lock_irqsave(&trans_pcie->ref_lock, flags); IWL_DEBUG_RPM(trans, "ref_counter: %d\n", trans_pcie->ref_count); if (WARN_ON_ONCE(trans_pcie->ref_count == 0)) { spin_unlock_irqrestore(&trans_pcie->ref_lock, flags); return; } trans_pcie->ref_count--; spin_unlock_irqrestore(&trans_pcie->ref_lock, flags); } static const char *get_csr_string(int cmd) { #define IWL_CMD(x) case x: return #x switch (cmd) { IWL_CMD(CSR_HW_IF_CONFIG_REG); IWL_CMD(CSR_INT_COALESCING); IWL_CMD(CSR_INT); IWL_CMD(CSR_INT_MASK); IWL_CMD(CSR_FH_INT_STATUS); IWL_CMD(CSR_GPIO_IN); IWL_CMD(CSR_RESET); IWL_CMD(CSR_GP_CNTRL); IWL_CMD(CSR_HW_REV); IWL_CMD(CSR_EEPROM_REG); IWL_CMD(CSR_EEPROM_GP); IWL_CMD(CSR_OTP_GP_REG); IWL_CMD(CSR_GIO_REG); IWL_CMD(CSR_GP_UCODE_REG); IWL_CMD(CSR_GP_DRIVER_REG); IWL_CMD(CSR_UCODE_DRV_GP1); IWL_CMD(CSR_UCODE_DRV_GP2); IWL_CMD(CSR_LED_REG); IWL_CMD(CSR_DRAM_INT_TBL_REG); IWL_CMD(CSR_GIO_CHICKEN_BITS); IWL_CMD(CSR_ANA_PLL_CFG); IWL_CMD(CSR_HW_REV_WA_REG); IWL_CMD(CSR_MONITOR_STATUS_REG); IWL_CMD(CSR_DBG_HPET_MEM_REG); default: return "UNKNOWN"; } #undef IWL_CMD } void iwl_pcie_dump_csr(struct iwl_trans *trans) { int i; static const u32 csr_tbl[] = { CSR_HW_IF_CONFIG_REG, CSR_INT_COALESCING, CSR_INT, CSR_INT_MASK, CSR_FH_INT_STATUS, CSR_GPIO_IN, CSR_RESET, CSR_GP_CNTRL, CSR_HW_REV, CSR_EEPROM_REG, CSR_EEPROM_GP, CSR_OTP_GP_REG, CSR_GIO_REG, CSR_GP_UCODE_REG, CSR_GP_DRIVER_REG, CSR_UCODE_DRV_GP1, CSR_UCODE_DRV_GP2, CSR_LED_REG, CSR_DRAM_INT_TBL_REG, CSR_GIO_CHICKEN_BITS, CSR_ANA_PLL_CFG, CSR_MONITOR_STATUS_REG, CSR_HW_REV_WA_REG, CSR_DBG_HPET_MEM_REG }; IWL_ERR(trans, "CSR values:\n"); IWL_ERR(trans, "(2nd byte of CSR_INT_COALESCING is " "CSR_INT_PERIODIC_REG)\n"); for (i = 0; i < ARRAY_SIZE(csr_tbl); i++) { IWL_ERR(trans, " %25s: 0X%08x\n", get_csr_string(csr_tbl[i]), iwl_read32(trans, csr_tbl[i])); } } #ifdef CONFIG_IWLWIFI_DEBUGFS /* create and remove of files */ #define DEBUGFS_ADD_FILE(name, parent, mode) do { \ if (!debugfs_create_file(#name, mode, parent, trans, \ &iwl_dbgfs_##name##_ops)) \ goto err; \ } while (0) /* file operation */ #define DEBUGFS_READ_FILE_OPS(name) \ static const struct file_operations iwl_dbgfs_##name##_ops = { \ .read = iwl_dbgfs_##name##_read, \ .open = simple_open, \ .llseek = generic_file_llseek, \ }; #define DEBUGFS_WRITE_FILE_OPS(name) \ static const struct file_operations iwl_dbgfs_##name##_ops = { \ .write = iwl_dbgfs_##name##_write, \ .open = simple_open, \ .llseek = generic_file_llseek, \ }; #define DEBUGFS_READ_WRITE_FILE_OPS(name) \ static const struct file_operations iwl_dbgfs_##name##_ops = { \ .write = iwl_dbgfs_##name##_write, \ .read = iwl_dbgfs_##name##_read, \ .open = simple_open, \ .llseek = generic_file_llseek, \ }; static ssize_t iwl_dbgfs_tx_queue_read(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { struct iwl_trans *trans = file->private_data; struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct iwl_txq *txq; struct iwl_queue *q; char *buf; int pos = 0; int cnt; int ret; size_t bufsz; bufsz = sizeof(char) * 75 * trans->cfg->base_params->num_of_queues; if (!trans_pcie->txq) return -EAGAIN; buf = kzalloc(bufsz, GFP_KERNEL); if (!buf) return -ENOMEM; for (cnt = 0; cnt < trans->cfg->base_params->num_of_queues; cnt++) { txq = &trans_pcie->txq[cnt]; q = &txq->q; pos += scnprintf(buf + pos, bufsz - pos, "hwq %.2d: read=%u write=%u use=%d stop=%d need_update=%d frozen=%d%s\n", cnt, q->read_ptr, q->write_ptr, !!test_bit(cnt, trans_pcie->queue_used), !!test_bit(cnt, trans_pcie->queue_stopped), txq->need_update, txq->frozen, (cnt == trans_pcie->cmd_queue ? " HCMD" : "")); } ret = simple_read_from_buffer(user_buf, count, ppos, buf, pos); kfree(buf); return ret; } static ssize_t iwl_dbgfs_rx_queue_read(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { struct iwl_trans *trans = file->private_data; struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct iwl_rxq *rxq = &trans_pcie->rxq; char buf[256]; int pos = 0; const size_t bufsz = sizeof(buf); pos += scnprintf(buf + pos, bufsz - pos, "read: %u\n", rxq->read); pos += scnprintf(buf + pos, bufsz - pos, "write: %u\n", rxq->write); pos += scnprintf(buf + pos, bufsz - pos, "write_actual: %u\n", rxq->write_actual); pos += scnprintf(buf + pos, bufsz - pos, "need_update: %d\n", rxq->need_update); pos += scnprintf(buf + pos, bufsz - pos, "free_count: %u\n", rxq->free_count); if (rxq->rb_stts) { pos += scnprintf(buf + pos, bufsz - pos, "closed_rb_num: %u\n", le16_to_cpu(rxq->rb_stts->closed_rb_num) & 0x0FFF); } else { pos += scnprintf(buf + pos, bufsz - pos, "closed_rb_num: Not Allocated\n"); } return simple_read_from_buffer(user_buf, count, ppos, buf, pos); } static ssize_t iwl_dbgfs_interrupt_read(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { struct iwl_trans *trans = file->private_data; struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct isr_statistics *isr_stats = &trans_pcie->isr_stats; int pos = 0; char *buf; int bufsz = 24 * 64; /* 24 items * 64 char per item */ ssize_t ret; buf = kzalloc(bufsz, GFP_KERNEL); if (!buf) return -ENOMEM; pos += scnprintf(buf + pos, bufsz - pos, "Interrupt Statistics Report:\n"); pos += scnprintf(buf + pos, bufsz - pos, "HW Error:\t\t\t %u\n", isr_stats->hw); pos += scnprintf(buf + pos, bufsz - pos, "SW Error:\t\t\t %u\n", isr_stats->sw); if (isr_stats->sw || isr_stats->hw) { pos += scnprintf(buf + pos, bufsz - pos, "\tLast Restarting Code: 0x%X\n", isr_stats->err_code); } #ifdef CONFIG_IWLWIFI_DEBUG pos += scnprintf(buf + pos, bufsz - pos, "Frame transmitted:\t\t %u\n", isr_stats->sch); pos += scnprintf(buf + pos, bufsz - pos, "Alive interrupt:\t\t %u\n", isr_stats->alive); #endif pos += scnprintf(buf + pos, bufsz - pos, "HW RF KILL switch toggled:\t %u\n", isr_stats->rfkill); pos += scnprintf(buf + pos, bufsz - pos, "CT KILL:\t\t\t %u\n", isr_stats->ctkill); pos += scnprintf(buf + pos, bufsz - pos, "Wakeup Interrupt:\t\t %u\n", isr_stats->wakeup); pos += scnprintf(buf + pos, bufsz - pos, "Rx command responses:\t\t %u\n", isr_stats->rx); pos += scnprintf(buf + pos, bufsz - pos, "Tx/FH interrupt:\t\t %u\n", isr_stats->tx); pos += scnprintf(buf + pos, bufsz - pos, "Unexpected INTA:\t\t %u\n", isr_stats->unhandled); ret = simple_read_from_buffer(user_buf, count, ppos, buf, pos); kfree(buf); return ret; } static ssize_t iwl_dbgfs_interrupt_write(struct file *file, const char __user *user_buf, size_t count, loff_t *ppos) { struct iwl_trans *trans = file->private_data; struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct isr_statistics *isr_stats = &trans_pcie->isr_stats; char buf[8]; int buf_size; u32 reset_flag; memset(buf, 0, sizeof(buf)); buf_size = min(count, sizeof(buf) - 1); if (copy_from_user(buf, user_buf, buf_size)) return -EFAULT; if (sscanf(buf, "%x", &reset_flag) != 1) return -EFAULT; if (reset_flag == 0) memset(isr_stats, 0, sizeof(*isr_stats)); return count; } static ssize_t iwl_dbgfs_csr_write(struct file *file, const char __user *user_buf, size_t count, loff_t *ppos) { struct iwl_trans *trans = file->private_data; char buf[8]; int buf_size; int csr; memset(buf, 0, sizeof(buf)); buf_size = min(count, sizeof(buf) - 1); if (copy_from_user(buf, user_buf, buf_size)) return -EFAULT; if (sscanf(buf, "%d", &csr) != 1) return -EFAULT; iwl_pcie_dump_csr(trans); return count; } static ssize_t iwl_dbgfs_fh_reg_read(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { struct iwl_trans *trans = file->private_data; char *buf = NULL; ssize_t ret; ret = iwl_dump_fh(trans, &buf); if (ret < 0) return ret; if (!buf) return -EINVAL; ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); kfree(buf); return ret; } DEBUGFS_READ_WRITE_FILE_OPS(interrupt); DEBUGFS_READ_FILE_OPS(fh_reg); DEBUGFS_READ_FILE_OPS(rx_queue); DEBUGFS_READ_FILE_OPS(tx_queue); DEBUGFS_WRITE_FILE_OPS(csr); /* * Create the debugfs files and directories * */ static int iwl_trans_pcie_dbgfs_register(struct iwl_trans *trans, struct dentry *dir) { DEBUGFS_ADD_FILE(rx_queue, dir, S_IRUSR); DEBUGFS_ADD_FILE(tx_queue, dir, S_IRUSR); DEBUGFS_ADD_FILE(interrupt, dir, S_IWUSR | S_IRUSR); DEBUGFS_ADD_FILE(csr, dir, S_IWUSR); DEBUGFS_ADD_FILE(fh_reg, dir, S_IRUSR); return 0; err: IWL_ERR(trans, "failed to create the trans debugfs entry\n"); return -ENOMEM; } #else static int iwl_trans_pcie_dbgfs_register(struct iwl_trans *trans, struct dentry *dir) { return 0; } #endif /*CONFIG_IWLWIFI_DEBUGFS */ static u32 iwl_trans_pcie_get_cmdlen(struct iwl_tfd *tfd) { u32 cmdlen = 0; int i; for (i = 0; i < IWL_NUM_OF_TBS; i++) cmdlen += iwl_pcie_tfd_tb_get_len(tfd, i); return cmdlen; } static const struct { u32 start, end; } iwl_prph_dump_addr[] = { { .start = 0x00a00000, .end = 0x00a00000 }, { .start = 0x00a0000c, .end = 0x00a00024 }, { .start = 0x00a0002c, .end = 0x00a0003c }, { .start = 0x00a00410, .end = 0x00a00418 }, { .start = 0x00a00420, .end = 0x00a00420 }, { .start = 0x00a00428, .end = 0x00a00428 }, { .start = 0x00a00430, .end = 0x00a0043c }, { .start = 0x00a00444, .end = 0x00a00444 }, { .start = 0x00a004c0, .end = 0x00a004cc }, { .start = 0x00a004d8, .end = 0x00a004d8 }, { .start = 0x00a004e0, .end = 0x00a004f0 }, { .start = 0x00a00840, .end = 0x00a00840 }, { .start = 0x00a00850, .end = 0x00a00858 }, { .start = 0x00a01004, .end = 0x00a01008 }, { .start = 0x00a01010, .end = 0x00a01010 }, { .start = 0x00a01018, .end = 0x00a01018 }, { .start = 0x00a01024, .end = 0x00a01024 }, { .start = 0x00a0102c, .end = 0x00a01034 }, { .start = 0x00a0103c, .end = 0x00a01040 }, { .start = 0x00a01048, .end = 0x00a01094 }, { .start = 0x00a01c00, .end = 0x00a01c20 }, { .start = 0x00a01c58, .end = 0x00a01c58 }, { .start = 0x00a01c7c, .end = 0x00a01c7c }, { .start = 0x00a01c28, .end = 0x00a01c54 }, { .start = 0x00a01c5c, .end = 0x00a01c5c }, { .start = 0x00a01c60, .end = 0x00a01cdc }, { .start = 0x00a01ce0, .end = 0x00a01d0c }, { .start = 0x00a01d18, .end = 0x00a01d20 }, { .start = 0x00a01d2c, .end = 0x00a01d30 }, { .start = 0x00a01d40, .end = 0x00a01d5c }, { .start = 0x00a01d80, .end = 0x00a01d80 }, { .start = 0x00a01d98, .end = 0x00a01d9c }, { .start = 0x00a01da8, .end = 0x00a01da8 }, { .start = 0x00a01db8, .end = 0x00a01df4 }, { .start = 0x00a01dc0, .end = 0x00a01dfc }, { .start = 0x00a01e00, .end = 0x00a01e2c }, { .start = 0x00a01e40, .end = 0x00a01e60 }, { .start = 0x00a01e68, .end = 0x00a01e6c }, { .start = 0x00a01e74, .end = 0x00a01e74 }, { .start = 0x00a01e84, .end = 0x00a01e90 }, { .start = 0x00a01e9c, .end = 0x00a01ec4 }, { .start = 0x00a01ed0, .end = 0x00a01ee0 }, { .start = 0x00a01f00, .end = 0x00a01f1c }, { .start = 0x00a01f44, .end = 0x00a01ffc }, { .start = 0x00a02000, .end = 0x00a02048 }, { .start = 0x00a02068, .end = 0x00a020f0 }, { .start = 0x00a02100, .end = 0x00a02118 }, { .start = 0x00a02140, .end = 0x00a0214c }, { .start = 0x00a02168, .end = 0x00a0218c }, { .start = 0x00a021c0, .end = 0x00a021c0 }, { .start = 0x00a02400, .end = 0x00a02410 }, { .start = 0x00a02418, .end = 0x00a02420 }, { .start = 0x00a02428, .end = 0x00a0242c }, { .start = 0x00a02434, .end = 0x00a02434 }, { .start = 0x00a02440, .end = 0x00a02460 }, { .start = 0x00a02468, .end = 0x00a024b0 }, { .start = 0x00a024c8, .end = 0x00a024cc }, { .start = 0x00a02500, .end = 0x00a02504 }, { .start = 0x00a0250c, .end = 0x00a02510 }, { .start = 0x00a02540, .end = 0x00a02554 }, { .start = 0x00a02580, .end = 0x00a025f4 }, { .start = 0x00a02600, .end = 0x00a0260c }, { .start = 0x00a02648, .end = 0x00a02650 }, { .start = 0x00a02680, .end = 0x00a02680 }, { .start = 0x00a026c0, .end = 0x00a026d0 }, { .start = 0x00a02700, .end = 0x00a0270c }, { .start = 0x00a02804, .end = 0x00a02804 }, { .start = 0x00a02818, .end = 0x00a0281c }, { .start = 0x00a02c00, .end = 0x00a02db4 }, { .start = 0x00a02df4, .end = 0x00a02fb0 }, { .start = 0x00a03000, .end = 0x00a03014 }, { .start = 0x00a0301c, .end = 0x00a0302c }, { .start = 0x00a03034, .end = 0x00a03038 }, { .start = 0x00a03040, .end = 0x00a03048 }, { .start = 0x00a03060, .end = 0x00a03068 }, { .start = 0x00a03070, .end = 0x00a03074 }, { .start = 0x00a0307c, .end = 0x00a0307c }, { .start = 0x00a03080, .end = 0x00a03084 }, { .start = 0x00a0308c, .end = 0x00a03090 }, { .start = 0x00a03098, .end = 0x00a03098 }, { .start = 0x00a030a0, .end = 0x00a030a0 }, { .start = 0x00a030a8, .end = 0x00a030b4 }, { .start = 0x00a030bc, .end = 0x00a030bc }, { .start = 0x00a030c0, .end = 0x00a0312c }, { .start = 0x00a03c00, .end = 0x00a03c5c }, { .start = 0x00a04400, .end = 0x00a04454 }, { .start = 0x00a04460, .end = 0x00a04474 }, { .start = 0x00a044c0, .end = 0x00a044ec }, { .start = 0x00a04500, .end = 0x00a04504 }, { .start = 0x00a04510, .end = 0x00a04538 }, { .start = 0x00a04540, .end = 0x00a04548 }, { .start = 0x00a04560, .end = 0x00a0457c }, { .start = 0x00a04590, .end = 0x00a04598 }, { .start = 0x00a045c0, .end = 0x00a045f4 }, }; static u32 iwl_trans_pcie_dump_prph(struct iwl_trans *trans, struct iwl_fw_error_dump_data **data) { struct iwl_fw_error_dump_prph *prph; unsigned long flags; u32 prph_len = 0, i; if (!iwl_trans_grab_nic_access(trans, false, &flags)) return 0; for (i = 0; i < ARRAY_SIZE(iwl_prph_dump_addr); i++) { /* The range includes both boundaries */ int num_bytes_in_chunk = iwl_prph_dump_addr[i].end - iwl_prph_dump_addr[i].start + 4; int reg; __le32 *val; prph_len += sizeof(**data) + sizeof(*prph) + num_bytes_in_chunk; (*data)->type = cpu_to_le32(IWL_FW_ERROR_DUMP_PRPH); (*data)->len = cpu_to_le32(sizeof(*prph) + num_bytes_in_chunk); prph = (void *)(*data)->data; prph->prph_start = cpu_to_le32(iwl_prph_dump_addr[i].start); val = (void *)prph->data; for (reg = iwl_prph_dump_addr[i].start; reg <= iwl_prph_dump_addr[i].end; reg += 4) *val++ = cpu_to_le32(iwl_trans_pcie_read_prph(trans, reg)); *data = iwl_fw_error_next_data(*data); } iwl_trans_release_nic_access(trans, &flags); return prph_len; } #define IWL_CSR_TO_DUMP (0x250) static u32 iwl_trans_pcie_dump_csr(struct iwl_trans *trans, struct iwl_fw_error_dump_data **data) { u32 csr_len = sizeof(**data) + IWL_CSR_TO_DUMP; __le32 *val; int i; (*data)->type = cpu_to_le32(IWL_FW_ERROR_DUMP_CSR); (*data)->len = cpu_to_le32(IWL_CSR_TO_DUMP); val = (void *)(*data)->data; for (i = 0; i < IWL_CSR_TO_DUMP; i += 4) *val++ = cpu_to_le32(iwl_trans_pcie_read32(trans, i)); *data = iwl_fw_error_next_data(*data); return csr_len; } static u32 iwl_trans_pcie_fh_regs_dump(struct iwl_trans *trans, struct iwl_fw_error_dump_data **data) { u32 fh_regs_len = FH_MEM_UPPER_BOUND - FH_MEM_LOWER_BOUND; unsigned long flags; __le32 *val; int i; if (!iwl_trans_grab_nic_access(trans, false, &flags)) return 0; (*data)->type = cpu_to_le32(IWL_FW_ERROR_DUMP_FH_REGS); (*data)->len = cpu_to_le32(fh_regs_len); val = (void *)(*data)->data; for (i = FH_MEM_LOWER_BOUND; i < FH_MEM_UPPER_BOUND; i += sizeof(u32)) *val++ = cpu_to_le32(iwl_trans_pcie_read32(trans, i)); iwl_trans_release_nic_access(trans, &flags); *data = iwl_fw_error_next_data(*data); return sizeof(**data) + fh_regs_len; } static struct iwl_trans_dump_data *iwl_trans_pcie_dump_data(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct iwl_fw_error_dump_data *data; struct iwl_txq *cmdq = &trans_pcie->txq[trans_pcie->cmd_queue]; struct iwl_fw_error_dump_txcmd *txcmd; struct iwl_trans_dump_data *dump_data; u32 len; u32 monitor_len; int i, ptr; /* transport dump header */ len = sizeof(*dump_data); /* host commands */ len += sizeof(*data) + cmdq->q.n_window * (sizeof(*txcmd) + TFD_MAX_PAYLOAD_SIZE); /* CSR registers */ len += sizeof(*data) + IWL_CSR_TO_DUMP; /* PRPH registers */ for (i = 0; i < ARRAY_SIZE(iwl_prph_dump_addr); i++) { /* The range includes both boundaries */ int num_bytes_in_chunk = iwl_prph_dump_addr[i].end - iwl_prph_dump_addr[i].start + 4; len += sizeof(*data) + sizeof(struct iwl_fw_error_dump_prph) + num_bytes_in_chunk; } /* FH registers */ len += sizeof(*data) + (FH_MEM_UPPER_BOUND - FH_MEM_LOWER_BOUND); /* FW monitor */ if (trans_pcie->fw_mon_page) { len += sizeof(*data) + sizeof(struct iwl_fw_error_dump_fw_mon) + trans_pcie->fw_mon_size; monitor_len = trans_pcie->fw_mon_size; } else if (trans->dbg_dest_tlv) { u32 base, end; base = le32_to_cpu(trans->dbg_dest_tlv->base_reg); end = le32_to_cpu(trans->dbg_dest_tlv->end_reg); base = iwl_read_prph(trans, base) << trans->dbg_dest_tlv->base_shift; end = iwl_read_prph(trans, end) << trans->dbg_dest_tlv->end_shift; /* Make "end" point to the actual end */ if (trans->cfg->device_family == IWL_DEVICE_FAMILY_8000) end += (1 << trans->dbg_dest_tlv->end_shift); monitor_len = end - base; len += sizeof(*data) + sizeof(struct iwl_fw_error_dump_fw_mon) + monitor_len; } else { monitor_len = 0; } dump_data = vzalloc(len); if (!dump_data) return NULL; len = 0; data = (void *)dump_data->data; data->type = cpu_to_le32(IWL_FW_ERROR_DUMP_TXCMD); txcmd = (void *)data->data; spin_lock_bh(&cmdq->lock); ptr = cmdq->q.write_ptr; for (i = 0; i < cmdq->q.n_window; i++) { u8 idx = get_cmd_index(&cmdq->q, ptr); u32 caplen, cmdlen; cmdlen = iwl_trans_pcie_get_cmdlen(&cmdq->tfds[ptr]); caplen = min_t(u32, TFD_MAX_PAYLOAD_SIZE, cmdlen); if (cmdlen) { len += sizeof(*txcmd) + caplen; txcmd->cmdlen = cpu_to_le32(cmdlen); txcmd->caplen = cpu_to_le32(caplen); memcpy(txcmd->data, cmdq->entries[idx].cmd, caplen); txcmd = (void *)((u8 *)txcmd->data + caplen); } ptr = iwl_queue_dec_wrap(ptr); } spin_unlock_bh(&cmdq->lock); data->len = cpu_to_le32(len); len += sizeof(*data); data = iwl_fw_error_next_data(data); len += iwl_trans_pcie_dump_prph(trans, &data); len += iwl_trans_pcie_dump_csr(trans, &data); len += iwl_trans_pcie_fh_regs_dump(trans, &data); /* data is already pointing to the next section */ if ((trans_pcie->fw_mon_page && trans->cfg->device_family == IWL_DEVICE_FAMILY_7000) || trans->dbg_dest_tlv) { struct iwl_fw_error_dump_fw_mon *fw_mon_data; u32 base, write_ptr, wrap_cnt; /* If there was a dest TLV - use the values from there */ if (trans->dbg_dest_tlv) { write_ptr = le32_to_cpu(trans->dbg_dest_tlv->write_ptr_reg); wrap_cnt = le32_to_cpu(trans->dbg_dest_tlv->wrap_count); base = le32_to_cpu(trans->dbg_dest_tlv->base_reg); } else { base = MON_BUFF_BASE_ADDR; write_ptr = MON_BUFF_WRPTR; wrap_cnt = MON_BUFF_CYCLE_CNT; } data->type = cpu_to_le32(IWL_FW_ERROR_DUMP_FW_MONITOR); fw_mon_data = (void *)data->data; fw_mon_data->fw_mon_wr_ptr = cpu_to_le32(iwl_read_prph(trans, write_ptr)); fw_mon_data->fw_mon_cycle_cnt = cpu_to_le32(iwl_read_prph(trans, wrap_cnt)); fw_mon_data->fw_mon_base_ptr = cpu_to_le32(iwl_read_prph(trans, base)); len += sizeof(*data) + sizeof(*fw_mon_data); if (trans_pcie->fw_mon_page) { data->len = cpu_to_le32(trans_pcie->fw_mon_size + sizeof(*fw_mon_data)); /* * The firmware is now asserted, it won't write anything * to the buffer. CPU can take ownership to fetch the * data. The buffer will be handed back to the device * before the firmware will be restarted. */ dma_sync_single_for_cpu(trans->dev, trans_pcie->fw_mon_phys, trans_pcie->fw_mon_size, DMA_FROM_DEVICE); memcpy(fw_mon_data->data, page_address(trans_pcie->fw_mon_page), trans_pcie->fw_mon_size); len += trans_pcie->fw_mon_size; } else { /* If we are here then the buffer is internal */ /* * Update pointers to reflect actual values after * shifting */ base = iwl_read_prph(trans, base) << trans->dbg_dest_tlv->base_shift; iwl_trans_read_mem(trans, base, fw_mon_data->data, monitor_len / sizeof(u32)); data->len = cpu_to_le32(sizeof(*fw_mon_data) + monitor_len); len += monitor_len; } } dump_data->len = len; return dump_data; } static const struct iwl_trans_ops trans_ops_pcie = { .start_hw = iwl_trans_pcie_start_hw, .op_mode_leave = iwl_trans_pcie_op_mode_leave, .fw_alive = iwl_trans_pcie_fw_alive, .start_fw = iwl_trans_pcie_start_fw, .stop_device = iwl_trans_pcie_stop_device, .d3_suspend = iwl_trans_pcie_d3_suspend, .d3_resume = iwl_trans_pcie_d3_resume, .send_cmd = iwl_trans_pcie_send_hcmd, .tx = iwl_trans_pcie_tx, .reclaim = iwl_trans_pcie_reclaim, .txq_disable = iwl_trans_pcie_txq_disable, .txq_enable = iwl_trans_pcie_txq_enable, .dbgfs_register = iwl_trans_pcie_dbgfs_register, .wait_tx_queue_empty = iwl_trans_pcie_wait_txq_empty, .freeze_txq_timer = iwl_trans_pcie_freeze_txq_timer, .write8 = iwl_trans_pcie_write8, .write32 = iwl_trans_pcie_write32, .read32 = iwl_trans_pcie_read32, .read_prph = iwl_trans_pcie_read_prph, .write_prph = iwl_trans_pcie_write_prph, .read_mem = iwl_trans_pcie_read_mem, .write_mem = iwl_trans_pcie_write_mem, .configure = iwl_trans_pcie_configure, .set_pmi = iwl_trans_pcie_set_pmi, .grab_nic_access = iwl_trans_pcie_grab_nic_access, .release_nic_access = iwl_trans_pcie_release_nic_access, .set_bits_mask = iwl_trans_pcie_set_bits_mask, .ref = iwl_trans_pcie_ref, .unref = iwl_trans_pcie_unref, .dump_data = iwl_trans_pcie_dump_data, }; struct iwl_trans *iwl_trans_pcie_alloc(struct pci_dev *pdev, const struct pci_device_id *ent, const struct iwl_cfg *cfg) { struct iwl_trans_pcie *trans_pcie; struct iwl_trans *trans; u16 pci_cmd; int err; trans = kzalloc(sizeof(struct iwl_trans) + sizeof(struct iwl_trans_pcie), GFP_KERNEL); if (!trans) { err = -ENOMEM; goto out; } trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); trans->ops = &trans_ops_pcie; trans->cfg = cfg; trans_lockdep_init(trans); trans_pcie->trans = trans; spin_lock_init(&trans_pcie->irq_lock); spin_lock_init(&trans_pcie->reg_lock); spin_lock_init(&trans_pcie->ref_lock); init_waitqueue_head(&trans_pcie->ucode_write_waitq); err = pci_enable_device(pdev); if (err) goto out_no_pci; if (!cfg->base_params->pcie_l1_allowed) { /* * W/A - seems to solve weird behavior. We need to remove this * if we don't want to stay in L1 all the time. This wastes a * lot of power. */ pci_disable_link_state(pdev, PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM); } pci_set_master(pdev); err = pci_set_dma_mask(pdev, DMA_BIT_MASK(36)); if (!err) err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(36)); if (err) { err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); if (!err) err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); /* both attempts failed: */ if (err) { dev_err(&pdev->dev, "No suitable DMA available\n"); goto out_pci_disable_device; } } err = pci_request_regions(pdev, DRV_NAME); if (err) { dev_err(&pdev->dev, "pci_request_regions failed\n"); goto out_pci_disable_device; } trans_pcie->hw_base = pci_ioremap_bar(pdev, 0); if (!trans_pcie->hw_base) { dev_err(&pdev->dev, "pci_ioremap_bar failed\n"); err = -ENODEV; goto out_pci_release_regions; } /* We disable the RETRY_TIMEOUT register (0x41) to keep * PCI Tx retries from interfering with C3 CPU state */ pci_write_config_byte(pdev, PCI_CFG_RETRY_TIMEOUT, 0x00); trans->dev = &pdev->dev; trans_pcie->pci_dev = pdev; iwl_disable_interrupts(trans); err = pci_enable_msi(pdev); if (err) { dev_err(&pdev->dev, "pci_enable_msi failed(0X%x)\n", err); /* enable rfkill interrupt: hw bug w/a */ pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd); if (pci_cmd & PCI_COMMAND_INTX_DISABLE) { pci_cmd &= ~PCI_COMMAND_INTX_DISABLE; pci_write_config_word(pdev, PCI_COMMAND, pci_cmd); } } trans->hw_rev = iwl_read32(trans, CSR_HW_REV); /* * In the 8000 HW family the format of the 4 bytes of CSR_HW_REV have * changed, and now the revision step also includes bit 0-1 (no more * "dash" value). To keep hw_rev backwards compatible - we'll store it * in the old format. */ if (trans->cfg->device_family == IWL_DEVICE_FAMILY_8000) { unsigned long flags; int ret; trans->hw_rev = (trans->hw_rev & 0xfff0) | (CSR_HW_REV_STEP(trans->hw_rev << 2) << 2); ret = iwl_pcie_prepare_card_hw(trans); if (ret) { IWL_WARN(trans, "Exit HW not ready\n"); goto out_pci_disable_msi; } /* * in-order to recognize C step driver should read chip version * id located at the AUX bus MISC address space. */ iwl_set_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE); udelay(2); ret = iwl_poll_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 25000); if (ret < 0) { IWL_DEBUG_INFO(trans, "Failed to wake up the nic\n"); goto out_pci_disable_msi; } if (iwl_trans_grab_nic_access(trans, false, &flags)) { u32 hw_step; hw_step = __iwl_read_prph(trans, WFPM_CTRL_REG); hw_step |= ENABLE_WFPM; __iwl_write_prph(trans, WFPM_CTRL_REG, hw_step); hw_step = __iwl_read_prph(trans, AUX_MISC_REG); hw_step = (hw_step >> HW_STEP_LOCATION_BITS) & 0xF; if (hw_step == 0x3) trans->hw_rev = (trans->hw_rev & 0xFFFFFFF3) | (SILICON_C_STEP << 2); iwl_trans_release_nic_access(trans, &flags); } } trans->hw_id = (pdev->device << 16) + pdev->subsystem_device; snprintf(trans->hw_id_str, sizeof(trans->hw_id_str), "PCI ID: 0x%04X:0x%04X", pdev->device, pdev->subsystem_device); /* Initialize the wait queue for commands */ init_waitqueue_head(&trans_pcie->wait_command_queue); snprintf(trans->dev_cmd_pool_name, sizeof(trans->dev_cmd_pool_name), "iwl_cmd_pool:%s", dev_name(trans->dev)); trans->dev_cmd_headroom = 0; trans->dev_cmd_pool = kmem_cache_create(trans->dev_cmd_pool_name, sizeof(struct iwl_device_cmd) + trans->dev_cmd_headroom, sizeof(void *), SLAB_HWCACHE_ALIGN, NULL); if (!trans->dev_cmd_pool) { err = -ENOMEM; goto out_pci_disable_msi; } if (iwl_pcie_alloc_ict(trans)) goto out_free_cmd_pool; err = request_threaded_irq(pdev->irq, iwl_pcie_isr, iwl_pcie_irq_handler, IRQF_SHARED, DRV_NAME, trans); if (err) { IWL_ERR(trans, "Error allocating IRQ %d\n", pdev->irq); goto out_free_ict; } trans_pcie->inta_mask = CSR_INI_SET_MASK; trans->d0i3_mode = IWL_D0I3_MODE_ON_SUSPEND; return trans; out_free_ict: iwl_pcie_free_ict(trans); out_free_cmd_pool: kmem_cache_destroy(trans->dev_cmd_pool); out_pci_disable_msi: pci_disable_msi(pdev); out_pci_release_regions: pci_release_regions(pdev); out_pci_disable_device: pci_disable_device(pdev); out_no_pci: kfree(trans); out: return ERR_PTR(err); }