Lines Matching refs:fadd
2486 # fadd fdadd fsadd fasin frem
5223 fadd.x %fp2,%fp1 # [A1+T(A3+T(A5+TA7))]+[S(A2+T(A4+TA6))]
5230 fadd.x X(%a6),%fp0 # last inst - possible exception set
5268 fadd.d COSB6(%pc),%fp2 # B6+TB8
5269 fadd.d COSB5(%pc),%fp3 # B5+TB7
5274 fadd.d COSB4(%pc),%fp2 # B4+T(B6+TB8)
5275 fadd.x COSB3(%pc),%fp3 # B3+T(B5+TB7)
5280 fadd.x COSB2(%pc),%fp2 # B2+T(B4+T(B6+TB8))
5281 fadd.s COSB1(%pc),%fp1 # B1+T(B3+T(B5+TB7))
5285 fadd.x %fp1,%fp0
5292 fadd.s POSNEG1(%a6),%fp0 # last inst - possible exception set
5322 fadd.s &0x80800000,%fp0 # last inst - possible exception set
5406 fadd.d SINA6(%pc),%fp1 # A6+SA7
5407 fadd.d COSB7(%pc),%fp2 # B7+SB8
5418 fadd.d SINA5(%pc),%fp1 # A5+S(A6+SA7)
5419 fadd.d COSB6(%pc),%fp2 # B6+S(B7+SB8)
5425 fadd.d SINA4(%pc),%fp1 # A4+S(A5+S(A6+SA7))
5427 fadd.d COSB5(%pc),%fp2 # B5+S(B6+S(B7+SB8))
5432 fadd.d SINA3(%pc),%fp1 # A3+S(A4+...)
5433 fadd.d COSB4(%pc),%fp2 # B4+S(B5+...)
5438 fadd.x SINA2(%pc),%fp1 # A2+S(A3+...)
5439 fadd.x COSB3(%pc),%fp2 # B3+S(B4+...)
5444 fadd.x SINA1(%pc),%fp1 # A1+S(A2+...)
5445 fadd.x COSB2(%pc),%fp2 # B2+S(B3+...)
5457 fadd.x RPRIME(%a6),%fp1 # COS(X)
5459 fadd.s POSNEG1(%a6),%fp0 # SIN(X)
5479 fadd.d COSB7(%pc),%fp1 # B7+SB8
5480 fadd.d SINA6(%pc),%fp2 # A6+SA7
5492 fadd.d COSB6(%pc),%fp1 # B6+S(B7+SB8)
5493 fadd.d SINA5(%pc),%fp2 # A5+S(A6+SA7)
5498 fadd.d COSB5(%pc),%fp1 # B5+S(B6+S(B7+SB8))
5499 fadd.d SINA4(%pc),%fp2 # A4+S(A5+S(A6+SA7))
5504 fadd.d COSB4(%pc),%fp1 # B4+S(B5+...)
5505 fadd.d SINA3(%pc),%fp2 # A3+S(A4+...)
5510 fadd.x COSB3(%pc),%fp1 # B3+S(B4+...)
5511 fadd.x SINA2(%pc),%fp2 # A2+S(A3+...)
5516 fadd.x COSB2(%pc),%fp1 # B2+S(B3+...)
5517 fadd.x SINA1(%pc),%fp2 # A1+S(A2+...)
5523 fadd.s COSB1(%pc),%fp1 # B1+S(B2...)
5530 fadd.s POSNEG1(%a6),%fp1 # COS(X)
5532 fadd.x RPRIME(%a6),%fp0 # SIN(X)
5599 fadd.x FP_SCR0(%a6),%fp0 # high part of reduction is exact
5601 fadd.x FP_SCR1(%a6),%fp0 # low part of reduction
5603 fadd.x FP_SCR1(%a6),%fp1 # fp0/fp1 are reduced argument.
6082 fadd.s TWOTO63(%a6),%fp2 # THE FRACTIONAL PART OF FP1 IS ROUNDED
6111 fadd.x %fp5,%fp3 # fp3 = P
6115 fadd.x %fp5,%fp4 # fp4 = p = (W-P)+w
6122 fadd.x %fp1,%fp0 # fp0 = R := A+a
6129 fadd.x %fp3,%fp1 # fp1 = r := (A-R)+a
6394 fadd.s &0x3F800000,%fp1 # FP1 IS 1 + X*F
6435 fadd.x %fp1,%fp2 # A3+V
6438 fadd.d ATANA2(%pc),%fp2 # A2+V*(A3+V)
6441 fadd.x %fp1,%fp0 # ATAN(U), FP1 RELEASED
6446 fadd.x ATANF(%a6),%fp0 # ATAN(X)
6479 fadd.d ATANB4(%pc),%fp2 # B4+Z*B6
6480 fadd.d ATANB3(%pc),%fp3 # B3+Z*B5
6485 fadd.d ATANB2(%pc),%fp2 # B2+Z*(B4+Z*B6)
6486 fadd.d ATANB1(%pc),%fp1 # B1+Z*(B3+Z*B5)
6491 fadd.x %fp2,%fp1 # [B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))]
6498 fadd.x X(%a6),%fp0
6550 fadd.x %fp2,%fp1 # [Y*(C2+Z*C4)]+[C1+Z*(C3+Z*C5)]
6654 fadd.x %fp0,%fp2 # 1+X
6744 fadd.x %fp0,%fp1 # 1+X
6746 fadd.s &0x3F800000,%fp0 # 1-X
6757 fadd.x %fp0,%fp0 # 2 * ATAN( STUFF )
6774 fadd.s &0x00800000,%fp0 # add a small value
8436 fadd.s one(%pc),%fp0 # FP0 IS X+1
8437 fadd.x %fp1,%fp1 # FP1 IS 2(X-1)
8461 fadd.d LOGB3(%pc),%fp3 # B3+W*B5
8462 fadd.d LOGB2(%pc),%fp2 # B2+W*B4
8468 fadd.d LOGB1(%pc),%fp1 # B1+W*(B3+W*B5)
8471 fadd.x %fp2,%fp1 # B1+W*(B3+W*B5) + V*(B2+W*B4), FP2 RELEASED
8477 fadd.x SAVEU(%a6),%fp0
9183 fadd.s %d1,%fp0
9307 fadd.s %d1,%fp0
11391 bsr.l fadd
11404 # routines like fadd/fmul/fabs as well as the transcendentals.
11445 long fadd - tbl_unsupp # 22: fadd
14603 # fadd(): emulates the fadd instruction #
14604 # fsadd(): emulates the fadd instruction #
14639 bra.b fadd
14646 global fadd
14647 fadd: label
14669 fadd.x FP_SCR0(%a6),%fp0 # execute add
14762 fadd.x FP_SCR0(%a6),%fp0 # execute add
14780 fadd.x FP_SCR0(%a6),%fp0 # execute add
14814 fadd.x FP_SCR0(%a6),%fp1 # execute multiply
14876 fadd.x FP_SCR0(%a6),%fp1 # execute add
14995 # the DENORM or NORM and jump to the regular fadd routine.
15005 bra.w fadd_zero_entry # go execute fadd
15015 bra.w fadd_zero_entry # go execute fadd
15840 # addsub_scaler2(): scale inputs to fadd/fsub such that no #