Lines Matching refs:R
5062 fsub.s (%a1),%fp0 # fp0 = R = (X-Y1)-Y2
5067 #--GET N+ADJN AND SEE IF SIN(R) OR COS(R) IS NEEDED
5075 #--THEN WE RETURN SGN*SIN(R). SGN*SIN(R) IS COMPUTED BY
5076 #--R' + R'*S*(A1 + S(A2 + S(A3 + S(A4 + ... + SA7)))), WHERE
5077 #--R' = SGN*R, S=R*R. THIS CAN BE REWRITTEN AS
5078 #--R' + R'*S*( [A1+T(A3+T(A5+TA7))] + [S(A2+T(A4+TA6))])
5097 eor.l %d1,X(%a6) # X IS NOW R'= SGN*R
5115 fmul.x X(%a6),%fp0 # R'*S
5119 fmul.x %fp1,%fp0 # SIN(R')-R'
5130 #--S=R*R AND S'=SGN*S. THIS CAN BE REWRITTEN AS
5564 #--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and
5573 #--Then, we need to compute A := R-P and a := r-p
5577 fsub.x %fp3,%fp0 # fp0 = A := R - P
5583 #--Now we need to normalize (A,a) to "new (R,r)" where R+r = A+a but
5584 #--|r| <= half ulp of R.
5585 fadd.x %fp1,%fp0 # fp0 = R := A+a
5591 fsub.x %fp0,%fp3 # fp3 = A-R
5592 fadd.x %fp3,%fp1 # fp1 = r := (A-R)+a
5789 fsub.s (%a1),%fp0 # FP0 IS R = (X-Y1)-Y2
5801 fmul.x %fp1,%fp1 # S = R*R
5826 fadd.x %fp2,%fp0 # R+RS(P1+S(P2+SP3))
5838 fmul.x %fp0,%fp0 # S = R*R
5863 fadd.x %fp2,%fp1 # R+RS(P1+S(P2+SP3))
5932 #--Intermeditate remainder is 66-bit long; (R,r) in (FP0,FP1)
5950 #--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN
6758 # 3.1 R := X + N*L1, #
6760 # 3.2 R := R + N*L2, #
6767 # cancellation. Thus, R is practically X+N(L1+L2) to full #
6769 # d) It is important to estimate how large can |R| be #
6784 # Step 4. Approximate exp(R)-1 by a polynomial #
6785 # p = R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5)))) #
6791 # |p - (exp(R)-1)| < 2^(-68.8) for all |R| <= 0.0062. #
6795 # p = [ R + R*S*(A2 + S*A4) ] + #
6797 # where S = R*R. #
6799 # Step 5. Compute 2^(J/64)*exp(R) = 2^(J/64)*(1+p) by #
6812 # exp(X) = 2^M * 2^(J/64) * exp(R). #
6817 # Notes: If AdjFlag = 0, we have X = Mlog2 + Jlog2/64 + R, #
6821 # X = (M1+M)log2 + Jlog2/64 + R, |M1+M| >= 16380. #
7148 fadd.x %fp2,%fp0 # fp0 is R, reduced arg.
7151 #--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL
7152 #-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5))))
7153 #--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R
7154 #--[R+R*S*(A2+S*A4)] + [S*(A1+S*(A3+S*A5))]
7157 fmul.x %fp1,%fp1 # fp1 IS S = R*R
7176 fmul.x %fp0,%fp3 # fp3 IS R*S*(A2+S*A4)
7179 fadd.x %fp3,%fp0 # fp0 IS R+R*S*(A2+S*A4),
7182 fadd.x %fp2,%fp0 # fp0 is EXP(R) - 1
7186 #--EXP(X) = 2^M * ( 2^(J/64) + 2^(J/64)*(EXP(R)-1) )
7188 fmul.x %fp1,%fp0 # 2^(J/64)*(Exp(R)-1)
7310 fadd.x %fp2,%fp0 # fp0 is R, reduced arg.
7314 #--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL
7315 #-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*(A5 + R*A6)))))
7316 #--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R
7317 #--[R*S*(A2+S*(A4+S*A6))] + [R+S*(A1+S*(A3+S*A5))]
7320 fmul.x %fp1,%fp1 # fp1 IS S = R*R
7349 fmul.x %fp0,%fp2 # fp2 IS R*S*(A2+S*(A4+S*A6))
7350 fadd.x %fp1,%fp0 # fp0 IS R+S*(A1+S*(A3+S*A5))
7352 fadd.x %fp2,%fp0 # fp0 IS EXP(R)-1
7359 fmul.x (%a1),%fp0 # 2^(J/64)*(Exp(R)-1)
9041 fmul.x LOG2(%pc),%fp0 # FP0 IS R
9143 fmul.x LOG10(%pc),%fp0 # FP0 IS R
9151 #-- 2**(M'+M) * 2**(J/64) * EXP(R)
9154 fmul.x %fp1,%fp1 # FP1 IS S = R*R
9169 fmul.x %fp0,%fp3 # FP3 IS R*S*(A2+S*A4)
9172 fadd.x %fp3,%fp0 # FP0 IS R+R*S*(A2+S*A4)
9173 fadd.x %fp2,%fp0 # FP0 IS EXP(R) - 1
9178 #--EXP(X) = 2^M*2^(J/64) + 2^M*2^(J/64)*(EXP(R)-1) - (1 OR 0)
9364 # R := X, go to Step 4. #
9366 # R := 2^(-L)X, j := L. #
9370 # 3.1 If R = Y, go to Step 9. #
9371 # 3.2 If R > Y, then { R := R - Y, Q := Q + 1} #
9373 # 3.4 k := k + 1, j := j - 1, Q := 2Q, R := 2R. Go to #
9376 # Step 4. At this point, R = X - QY = MOD(X,Y). Set #
9380 # Step 5. R = MOD(X,Y), but REM(X,Y) is requested. #
9381 # 5.1 If R < Y/2, then R = MOD(X,Y) = REM(X,Y). Go to #
9383 # 5.2 If R > Y/2, then { set Last_Subtract := true, #
9385 # 5.3 This is the tricky case of R = Y/2. If Q is odd, #
9388 # Step 6. R := signX*R. #
9390 # Step 7. If Last_Subtract = true, R := R - Y. #
9392 # Step 8. Return signQ, last 7 bits of Q, and R as required. #
9394 # Step 9. At this point, R = 2^(-j)*X - Q Y = Y. Thus, #
9396 # R := 0. Return signQ, last 7 bits of Q, and R. #
9411 set R,FP_SCR1
9412 set R_Hi,R+4
9413 set R_Lo,R+8
9533 #..(Carry,D1,D2) is R
9544 #..At this point R = 2^(-L)X; Q = 0; k = 0; and k+j = L
9549 #..At this point carry = 0, R = (D1,D2), Y = (D4,D5)
9550 cmp.l %d1,%d4 # compare hi(R) and hi(Y)
9552 cmp.l %d2,%d5 # compare lo(R) and lo(Y)
9555 #..At this point, R = Y
9560 bcs.b R_LT_Y # borrow is set iff R < Y
9564 #..and Y < (D1,D2) < 2Y. Either way, perform R - Y
9565 sub.l %d5,%d2 # lo(R) - lo(Y)
9566 subx.l %d4,%d1 # hi(R) - hi(Y)
9571 #..At this point, Carry=0, R < Y. R = 2^(k-L)X - QY; k+j = L; j >= 0.
9576 add.l %d2,%d2 # lo(R) = 2lo(R)
9577 roxl.l &1,%d1 # hi(R) = 2hi(R) + carry
9578 scs %d6 # set Carry if 2(R) overflows
9581 #..At this point, R=(Carry,D1,D2) = 2^(k-L)X - QY, j+k=L, j >= 0, R < 2Y.
9586 #..k = L, j = 0, Carry = 0, R = (D1,D2) = X - QY, R < Y.
9588 #..normalize R.
9589 mov.l L_SCR1(%a6),%d0 # new biased expo of R
9622 mov.w %d0,R(%a6)
9629 fmov.x R(%a6),%fp0 # no exception
9636 mov.w %d0,R(%a6)
9640 fmov.x R(%a6),%fp0