Lines Matching refs:log2

34 |	argument X whose magnitude is less than 16380 log2, which
79 | Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ).
81 | 2.2 N := round-to-nearest-integer( X * 64/log2 ).
99 | Z = X*(64/log2)*(1+eps), |eps| <= 2^(-24).
103 | Step 3. Calculate X - N*log2/64.
104 | 3.1 R := X + N*L1, where L1 := single-precision(-log2/64).
105 | 3.2 R := R + N*L2, L2 := extended-precision(-log2/64 - L1).
107 | the value -log2/64 to 88 bits of accuracy.
115 | N = rnd-to-int( X*64/log2 (1+eps) ), |eps|<=2^(-24)
116 | X*64/log2 (1+eps) = N + f, |f| <= 0.5
117 | X*64/log2 - N = f - eps*X 64/log2
118 | X - N*log2/64 = f*log2/64 - eps*X
121 | Now |X| <= 16446 log2, thus
123 | |X - N*log2/64| <= (0.5 + 16446/2^(18))*log2/64
124 | <= 0.57 log2/64.
134 | Note that 0.0062 is slightly bigger than 0.57 log2/64.
162 | X = (M1+M)log2 + Jlog2/64 + R, |M1+M| >= 16380.
186 | 8.1 If |X| > 16480 log2, go to Step 9.
188 | 8.2 N := round-to-integer( X * 64/log2 )
196 | Step 9. Handle exp(X), |X| > 16480 log2.
474 cmpil #0x400CB167,%d0 | ...16380 log2 trunc. 16 bits
480 |--This is the normal branch: 2^(-65) <= |X| < 16380 log2.
484 fmuls #0x42B8AA3B,%fp0 | ...64/log2 * X
487 fmovel %fp0,%d0 | ...N = int( X * 64/log2 )
505 fmuls #0xBC317218,%fp0 | ...N * L1, L1 = lead(-log2/64)
506 fmulx L2,%fp2 | ...N * L2, L1+L2 = -log2/64
579 cmpil #0x400CB27C,%d0 | ...16480 log2
585 fmuls #0x42B8AA3B,%fp0 | ...64/log2 * X
588 fmovel %fp0,%d0 | ...N = int( X * 64/log2 )
647 |--This is the case: 1/4 <= |X| <= 70 log2.
651 fmuls #0x42B8AA3B,%fp0 | ...64/log2 * X
654 fmovel %fp0,%d0 | ...N = int( X * 64/log2 )
671 fmuls #0xBC317218,%fp0 | ...N * L1, L1 = lead(-log2/64)
672 fmulx L2,%fp2 | ...N * L2, L1+L2 = -log2/64
853 |--Step 10 |X| > 70 log2