Lines Matching refs:N
79 | Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ).
81 | 2.2 N := round-to-nearest-integer( X * 64/log2 ).
82 | 2.3 Calculate J = N mod 64; so J = 0,1,2,..., or 63.
83 | 2.4 Calculate M = (N - J)/64; so N = 64M + J.
89 | N := round-to-nearest-integer(Z)
103 | Step 3. Calculate X - N*log2/64.
104 | 3.1 R := X + N*L1, where L1 := single-precision(-log2/64).
105 | 3.2 R := R + N*L2, L2 := extended-precision(-log2/64 - L1).
108 | b) N*L1 is exact because N is no longer than 22 bits and
110 | c) The calculation X+N*L1 is also exact due to cancellation.
111 | Thus, R is practically X+N(L1+L2) to full 64 bits.
115 | N = rnd-to-int( X*64/log2 (1+eps) ), |eps|<=2^(-24)
116 | X*64/log2 (1+eps) = N + f, |f| <= 0.5
117 | X*64/log2 - N = f - eps*X 64/log2
118 | X - N*log2/64 = f*log2/64 - eps*X
123 | |X - N*log2/64| <= (0.5 + 16446/2^(18))*log2/64
188 | 8.2 N := round-to-integer( X * 64/log2 )
189 | 8.3 Calculate J = N mod 64, J = 0,1,...,63
190 | 8.4 K := (N-J)/64, M1 := truncate(K/2), M = K-M1, AdjFlag := 1.
487 fmovel %fp0,%d0 | ...N = int( X * 64/log2 )
491 movel %d0,L_SCR1(%a6) | ...save N temporarily
492 andil #0x3F,%d0 | ...D0 is J = N mod 64
502 |--fp1,fp2 saved on the stack. fp0 is N, fp1 is X,
505 fmuls #0xBC317218,%fp0 | ...N * L1, L1 = lead(-log2/64)
506 fmulx L2,%fp2 | ...N * L2, L1+L2 = -log2/64
507 faddx %fp1,%fp0 | ...X + N*L1
588 fmovel %fp0,%d0 | ...N = int( X * 64/log2 )
591 movel %d0,L_SCR1(%a6) | ...save N temporarily
592 andil #0x3F,%d0 | ...D0 is J = N mod 64
654 fmovel %fp0,%d0 | ...N = int( X * 64/log2 )
658 movel %d0,L_SCR1(%a6) | ...save N temporarily
659 andil #0x3F,%d0 | ...D0 is J = N mod 64
668 |--fp1,fp2 saved on the stack. fp0 is N, fp1 is X,
671 fmuls #0xBC317218,%fp0 | ...N * L1, L1 = lead(-log2/64)
672 fmulx L2,%fp2 | ...N * L2, L1+L2 = -log2/64
673 faddx %fp1,%fp0 | ...X + N*L1