Lines Matching refs:exp
5032 mov.l (%a0),%d1 # put exp in hi word
6692 # fp0 = exp(X) or exp(X)-1 #
6784 # Step 4. Approximate exp(R)-1 by a polynomial #
6791 # |p - (exp(R)-1)| < 2^(-68.8) for all |R| <= 0.0062. #
6799 # Step 5. Compute 2^(J/64)*exp(R) = 2^(J/64)*(1+p) by #
6811 # Step 6. Reconstruction of exp(X) #
6812 # exp(X) = 2^M * 2^(J/64) * exp(R). #
6818 # |M| <= 16380, and Scale = 2^M. Moreover, exp(X) will #
6822 # Hence, exp(X) may overflow or underflow or neither. #
6844 # Step 8. Handle exp(X) where |X| >= 16380log2. #
6857 # Step 9. Handle exp(X), |X| > 16480 log2. #
7428 #--Step 9 exp(X)-1 by a simple polynomial
7520 fmov.w %d0,%fp0 # return exp in fp0
7587 # y = |X|, z = exp(Y), and #
7594 # cosh(X) = sign(X) * exp(|X|)/2. #
7595 # However, invoking exp(|X|) may cause premature #
7708 # sinh(X) = sign(X) * exp(|X|)/2. #
7709 # However, invoking exp(|X|) may cause premature overflow. #
7829 # sgn := sign(X), y := 2|X|, z := exp(Y), #
8840 # 2**X = 2**(M') * 2**(M) * 2**(j/64) * exp(r). #
8856 # 10**X = 2**(M') * 2**(M) * 2**(j/64) * exp(r). #
8867 # 3. Calculate P where 1 + P approximates exp(r): #
9299 addi.w &0x3fff,%d0 # turn src amt into exp value
9525 mov.l %d3,L_SCR1(%a6) # save biased exp(Y)
9526 mov.l %d0,-(%sp) # save biased exp(X)
9543 addq.l &0x4,%sp # erase exp(X)
10920 cmp.w %d0, %d1 # will denorm push exp < 0?
10921 bgt.b unnorm_nrm_zero # yes; denorm only until exp = 0
10929 or.w %d0, %d1 # {sgn,new exp}
10938 # exponent would go < 0, so only denormalize until exp = 0
10941 cmp.b %d1, &32 # is exp <= 32?
10951 and.w &0x8000, FTEMP_EX(%a0) # set exp = 0
10968 and.w &0x8000, FTEMP_EX(%a0) # set exp = 0